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Abstract

Since its inception, AdS/CFT duality has become an indispensable tool with which to analyse
quantum systems with holographic duals. Whilst the assumptions which render this theory an-
alytically tractable do not hold for general systems of interest, the duality can provide especially
powerful bounds on physical observables. This duality allows us to draw explicit connections
between entanglement and geometry. This deep connection simpli�es the study of entanglement
spreading and place limits on physical observables for holographic systems. One such example
is given by the upper bound on the so-called butter�y velocity which tells us how chaos spreads
in a quantum system. In this thesis we explore a quantum corrected BTZ black hole, dubbed
the QuBTZ by Emparan et al. as a model for a BTZ black hole with quantum corrections. The
QuBTZ model employs a holographic braneworld construction of a BTZ black hole localised on a
three-dimensional brane which receives corrections from a CFT3 living outside its horizon. This
model exactly incorporates both quantum corrections from the low-energy CFT modes and back-
reactions on the geometry which emerge from integrating out energy modes above a cuto� scale.
New features of this model are illuminated and existing features demysti�ed. The butter�y ve-
locity is calculated for the QuBTZ to linear order in the backreaction using the subregion duality
method of Mezei and Stanford. Using these methods, the butter�y velocity for the QuBTZ is
naively found to be v(QuBTZ)B ≥ 1. Subsequent numerical and analytic calculations of the entangle-
ment wedge con�rm this result at linear order in CFT e�ects. These corrections were found to
be smaller than anticipated, forcing us to reconsider the assumptions of the original prescription.
This realisation motivated a more general proposal for calculating the butter�y velocity for global
geometries away from the planar limit. A more general approach to calculating vB for small black
holes with non-uniform energy densities and holographic duals is conjectured.
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Introduction

In the decades since holography was conjectured, its application has left virtually no area of theo-
retical physics untouched. At the heart of its analytic power is the duality between a gravitational
system in (d+1)-dimensions and non-gravitational system in d-dimensions. This duality suggests
a profound connection between quantum information and gravity, entanglement and geometry
and weakly coupled and strongly coupled systems.

The �rst hint of this duality emerged as a result of Bekenstein and Hawking’s formula for the
entropy of a Schwarzschild Black hole (1)(2),

SBH =
Ah

4GN

where Aℎ is the area of the horizon of the black hole and GN is Newton’s constant1. Unlike
thermodynamic entropy, this result implied that the leading order gravitational entropy of black
holes is not an extensive quantity. This observation inspired a picture of how information is
distributed in black holes: to an external observer, the information about the black hole lives on
its horizon with a density of log2 bits of information per four Planck areas2.

A generalisation of the connection between area and information in quantum gravity, known
as the Holographic Principle, was �rst put forth by t’Hooft (4) and given a precise string theoretic
interpretation by Susskind (5). Soon afterwards, Maldacena’s AdS/CFT conjecture provided the
�rst and, to date, best studied realisation of the holographic principle(6).

Inspired by the AdS/CFT correspondence, Ryu and Takayanagi (RT) conjectured that, for
static holographic systems, the leading order entropy contribution is proportional to the min-
imal surface of the bulk region homologous to the boundary CFT region(7). This conjecture
was soon extended to encompass time-dependent theories in the covariant Hubeny-Ranganami-
Takayanagi (HRT) formula (8) and to higher-derivative gravitational theories in (9),(10). Engel-
hardt and Wall then extended these theories to include corrections from bulk matter outside the
horizon in the Quantum Extremal Surface (QES) prescription (11). In Part I, we provide some

1Throughout this paper we work in natural units, c = ℎ = 1.
2This conclusion follows naturally from the no-hair theorem (3), ie. that black holes are highly symmetric and

can be described by a very small number of parameters. A stronger claim is the so-called Central Dogma, which
states that black holes essentially behave like very large quantum states.
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background on quantum information theory and standard techniques in AdS/CFT and key re-
sults from the AdS/CFT dictionary. This part of the thesis is intended for those without extensive
knowledge of holographic techniques and hence those well-versed in these techniques may opt
to skip it.

Holographic techniques can also be applied to braneworld constructions (12)(13), allowing for
exact solutions for geometries with quantum corrections and backreactions sourced by matter
�elds. We explore the model of (14) which exploits the AdS4/CFT3 duality to model a BTZ black
hole with exact quantum corrections and backreactions from a CFT3 �eld outside the horizon
of the black hole. The second part of this thesis provides a detailed discussion of this model,
dubbed the QuBTZ model by its authors. We explore the behaviour of geodesics in the QuBTZ
and its holographic dual and investigate subregion dualities, neither of which were explored in
the original paper. Our key results are (i) temperatures, horizons and renormalized masses of the
QuBTZ solutions on the Casimir branch have dominated by high energy CFTs whilst those on the
thermal branch are dominated by the classical mass parameter, (ii) the Casimir branch of QuBTZ
solutions are energetically less favourable than the thermal solutions which lay perturbatively
close to the classical result, (iii) infalling lightlike trajectories approach the horizon faster for the
QuBTZ than for its classical BTZ equivalent, (iv) for thermal solutions with small backreaction
we �nd that minimal surfaces are smaller than those of the classical BTZ and (v) the �nite mass
range of the QuBTZ solution limits the QuBTZ horizon to 0 < rℎ ≤ 2√

3�3 such that we are unable to
make the standard ‘large black hole’ or planar approximations. We provide analytic calculations
of the minimal surface for the class of solutions where f (r) has two equal negative roots and
numerical results for the more general case when these roots are not equal.

The topic of holography and quantum chaos is then broached in the third part of this thesis.
Following on from the work of (15) and (16), we calculate the butter�y velocity for the QuBTZ
solution using the entanglement wedge duality. This naive calculation yields a superluminal value
for the butter�y velocity is conjectured to result from limitations of this technique as applied to
small black holes. The peculiar features of the QuBTZ solution prevent us from using the standard
assumptions about large black holes, motivating a new technique. We propose that for small
black holes, one ought to consider calculate the butter�y velocity near the critical point where
the minimal surfaces exchange dominance rather than the near-horizon region. For the classical
BTZ result we obtain a value of vB = 1 consistent with the methods of (15) and (16). Using this
technique we show that for small backreaction the butter�y velocity of the QuBTZ solution gives
the superluminal result vB ≥ 1. Analytical and numerical results support this �nding to �rst order
in the backreaction parameter. Several explanations for this are proposed but remain open topics
for future research. We identify a gap in the Mezei-Stanford approach for smaller black holes far
away from the planar limit with non-constant energy density. We propose that in such systems,
the transition point of the minimal surface from its connected to disconnected phase provides a
more sensible point at which to calculate the butter�y velocity.
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The �nal part of this thesis consists of a summary of these results and motivates future work in
this direction. Due to time constraints, we were unable to explore all branches of the QuBTZ solu-
tion in detail and propose extensions of our analysis to the branch of dressed singularities, rotat-
ing solutions and solutions with large backreaction where we must account for higher-derivative
gravity corrections. We argue that the QuBTZ model provides an interesting case study for the in-
vestigation of entanglement islands. This model would serve as an ideal candidate for the study of
the quantum bit thread proposal of (17) and propose a concrete methodology by which to study
it. Our proposed methodology for calculating the butter�y velocity for black holes with radii
rℎ < �d+1 is only checked for the trivial case of the BTZ solution, however, an extension to higher
dimensional theories would provide a non-trivial test of this proposal. This technique would be
especially valuable in the study of classical black holes below the planar limit and models with
horizons with signi�cant backreaction e�ects as in the QuBTZ.
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Part I

‘It from Qubit’
An Introduction to Holography
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Entropy is an ubiquitous concept in physics. From the classical to the quantum and across all
energy scales a quanti�able measure of disorder or knowledge of the system of interest allows
us to make powerful physical inferences. We must, however, be cautious with what we mean
by ‘entropy’. In this part, we de�ne several incarnations of entropy encountered throughout this
thesis. Chapter 1 will assume that we are working in the low-energy limit in which our quantum
mechanical systems are well-de�ned. Chapter 3 extends these notions to the continuum limit to
obtain a manifestly Lorentz invariant QFT description. This chapter will closely follow (18) and
(19) and references therein.

In holographic systems the link between quantum gravity and information is made explicit,
allowing us to constrain holographic theories using QIT. In Chapter 3, we apply information the-
oretic notions to the AdS/CFT duality. In 2.2 we see that to preserve a unitary theory of quantum
gravity, we require that �ne grained (von Neumann) entropy be conserved under unitary time
evolution. In Chapter 3.3, we introduce the Ryu-Takayanagi (RT) prescription and its extensions.
These techniques provide a mathematically precise duality between geometry and entanglement
which we apply to the QuBTZ solution in Parts II and III.
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Chapter 1

Foray into Quantum Information

The notion of entropy was �rst introduced by Clausius in the context of equilibrium thermody-
namics to assign a quantitative degree of order to a system(20). An in�nitesimal change thermo-
dynamic entropy, dStℎ of an equilibrium system is given by the familiar equation

dStℎ =
dQrev

T
(1.1)

where dQrev is the (reversible) heat exchanged between the system and its bath at a �xed
temperature T 3.

Soon after, Boltzmann developed his famous statistical mechanical formulation of entropy in
terms of the systems constituent microstates, Ω, for the microcanonical ensemble

S = kB ln(Ω) (1.2)

where kB is Boltzmann’s constant. For a more general statistical ensemble, in which each
microstate has probability pi , this becomes

S = −kB ∑
i
pi ln(pi) (1.3)

This insight was gleaned before the development of quantum mechanics and hence �rmly
rooted in the classical mindset. Quantum mechanics can be straightforwardly incorporated into
systems in the thermodynamic limit to produce non-trivial distinctions from the classical case. To
make such generalisations, we must still de�ne ensemble quantities and take large-N 4 such that
the partition function becomes sharply peaked about a typical energy. Therefore, such de�nitions

3This of course applies to a canonical ensemble with a �xed number of particles and volume. This relationship
can be extended to other forms of energy transfer, other thermodynamic systems such the grand canonical ensemble
and even to non-equilibrium dynamics.

4We use large N to mean the thermodynamic limit, in which the number of particles is large whilst in later
chapters this terminology will refer to the rank of the gauge group in the AdS/CFT correspondence

11



still require us to ‘coarse grain’ the system such that we give up some knowledge of the system.
This approximation means we no longer keep track of its precise microscopic details.

Useful as coarse grained entropy is, we would like a paradigm with which to discuss infor-
mation in quantum systems. Let us then suppose we have a source from which we receive some
output signal and we wish to identify what data was originally generated by the source on the
basis of the information we receive. The Shannon Entropy represents the limit of how success-
fully one can compress the output information into a noiseless channel without information loss.
Though the precise mathematical de�nition of the Shannon Entropy is equivalent to (1.2), it is
more general and can be interpreted as the average amount of uncertainty or information which
is inherent to the possible outcomes of the variable.

To describe correlations in a quantum mechanical system we introduce the density matrix, �.
If the density matrix of the state in the Hilbert space , | ⟩ ∈  can be written in as a linear
combination of a �nite number of basis states then it is called pure, otherwise it is referred to
as a mixed state and can be represented by an ensemble of basis states | i⟩ with corresponding
probabilities pi ,

�pure = | ⟩ ⟨ | (1.4)

and
�mixed =

∞

∑
i
pi | i⟩ ⟨ i | (1.5)

with
∞

∑
i
pi = 1 = Tr[�mixed] (1.6)

for which we de�ne the expectation value of an operator  as5,

⟨⟩ = Tr(�) =
∞

∑
i=0

pi ⟨ i | | i⟩ (1.7)

The Shannon Entropy was then extended to include quantum correlations by von Neumann,

SvN = −Tr[� log �] ≥ 0 (1.8)

The von Neumann Entropy is a �ne-grained entropy which quanti�es our ignorance about the
precise state of the quantum system. The von Neumann entropy obeys four important properties,

1. SvN = 0 for pure states
5The density matrix of a pure state can be thought of as a special case of the mixed density matrix for which

pi = 1, ∀i and so we assume that � = �mixed unless speci�ed.
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2. The entropy of a maximally mixed state (where pi = p0, ∀i) with density matrix �mm is

SvN = lnΩ (1.9)

where Ω is the dimension of the Hilbert space . In units of kB = 1 we recover the answer
for the microcanonical ensemble (1.2)

3. It is manifestly invariant under unitary time evolution,

SvN (�) = SvN (U (t)�U −1(t)); U U −1 = U −1U = (1.10)

ie. a pure state cannot evolve into a mixed state and vice-versa.

4. Course graining always discards information about the system such that we always know
less about a course grained system than we do about our �ne grained system. The �ne
grained entropy then acts as a lower bound to the coarse grained entropy,

SvN ≤ Stℎ (1.11)

The thermodynamic entropy of a quantum system is that which maximizes SvN with respect
to all possible density matrices of the system yielding the same expectation value of some set of
coarse grained observables,

Stℎ(�) = max
�′
[SvN (�′)] = SvN (�tℎ) (1.12)

where the thermal density matrix for a �xed temperature is given by

�tℎ =
e−�H

Z
; Z = Tr[e−�H] (1.13)

where � = 1
T , H is the Hamiltonian of the system and Z is the thermodynamic partition

function. We note that this de�nition holds only for states which are at thermal equilibrium with
some temperature bath.

1.1 Entanglement Entropy and Puri�cation

We can also consider a bipartite system with Hilbert space | ⟩ ∈ ⊗�� . Suppose it can be
separated into two spatial regions A and its complement Ā such that their Hilbert spaces are
⊗�� u A ⊗Ā. Supposing we are only privy to the information in A and we wish to �nd its
density matrix from the full density matrix of the system, we must then trace over the degrees of
freedom in the complement Ā,

13



�A = ⟨ Ā| ⟩ ⟨ | Ā⟩ = TrĀ(| ⟩ ⟨ |) (1.14)

This corresponds to determining the state of the degrees of freedom in A while remaining
ignorant about the microscopic details of region Ā. It is important to understand that this entropy
is de�ned in terms of traces and as such is determined by the eigenvalues of the density matrices.
Crucially, unitary transformations acting on �A or �Ā do not change the entanglement properties
of the system. To change the entanglement entropy of the system a unitary transformation must
be performed on the entire system, A ∪ Ā.

One can then de�ne the entanglement entropy of the system by the von Neumann entropy
of the reduced density matrix,

S(A) = −TrA(�A log �A) (1.15)

For a pure system, it follows trivially that S(A) = S(Ā). This leads us to puri�cation which
takes a mixed state given by �A and expresses it as the reduced density matrix of a subregion
A within some larger pure state. Physically, one can imagine that we are simply coupling our
system to a heat bath at equilibrium. Puri�cation is always possible and admits in�nitely many
possible puri�cation states to which one may couple the mixed state. For an ensemble given by
�A or the set {| i⟩A , pi} ∈ A, a general puri�cation is given by,

|Ψ⟩ = ∑
i

√pi | i⟩A ⊗ | i⟩B (1.16)

where n is the number of replicas and {| i⟩B} is an orthogonal set of states in some Hilbert
space B whose dimension is at least as large as the number of non-zero eigenvalues of �. A
state represented in the form (1.16) is known as a Schmidt composition and allows us to represent
any state of a combined system. Generally, the simplest puri�cations are of the form {| i⟩B} =
{| i⟩A}. The fact that the entanglement spectrum of the system of interest and the purifying
state in (1.16) follows directly from S(A) = S(Ā). We should not take for granted the fact that the
existence of a puri�cation is always possible in quantum systems: as there is no way to take a
classical probability distribution and purify it as its puri�cation relies on the presence of quantum
entanglement.

1.2 Rényi Entropies

From Equation (1.8), we see that to calculate the �ne grained entropy, one must take a trace over
a non-linear operator of our density matrix. In general, such a computation is di�cult to perform
and so we must look for alternative methods. To circumvent the challenges of calculating the von
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Neumann entropy, we introduce the Rényi entropy for a reduced density matrix �A6,

S(n)(A) =
1

1 − n
log TrA(�nA) =

1
1 − n

log
(
∑
i
�ni )

(1.17)

where T is temperature and �i are the eigenvalues of the reduced density matrix under the
assumption that the system is �nite. These values further comprise the entanglement spectrum
of the density matrix.

There are several things to note:

1. The Rényi Entropy is not an entropy in the physical sense but is simply de�ned in terms of
moments of the reduced density matrix

2. The canonical de�nition of n should require that n ∈ ℤ+ however it will be convenient for
us to analytically continue it such that n ∈ ℝ+

3. If a pure system is properly normalised then, Tr �2 = 1 whilst if it is in a mixed state then
Tr �2 < 1. The Rényi Entropy then gives a measure for quantum purity despite its non-
linearity.

4. Taking limit as n → 1we see that using (1.17), the the sum limn→1 log (∑i �ni ) = log(∑i �i) =
log(1) = 0. The denominator clearly diverges and so we must use l’Hopital’s rule,

lim
n→1

S(n)A = lim
n→1

)n(log(∑i �ni ))
)n(1 − n)

= lim
n→1

−)n log(
∑
i
�ni )

= lim
n→1

−
) log(∑i �ni )
)(∑i �ni )

)(∑i �ni )
)n

= − lim
n→1

∑i �ni log(�i)
∑i �ni

= −∑
i
�i log(�i) = SA

recovering the von Neumann Entropy in this limit.

5. The Rényi Entropy is analagous to the thermodynamic free energy at a temperature 1
n . If

we de�ne the modular Hamiltonian as A = − log �A Then we can view the Rényi entropy
as the free energy modulo the normalizing factor as we have

S(n)A =
1

1 − n
log Tr(e−qA)

6This could of course be substituted for some more general density matrix �, however, we will be primarily
concerned with entanglement entropies of subregions hence we have chosen to write it in this form.
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which compares (schematically) to the standard thermodynamic form of the free energy,

F = −T log(Z) = −
1
�
Tr(e−�H )

Assuming we can analytically continue n, it is clear why calculating the Rényi entropy is
preferable to calculating the von Neumann entropy directly: one need only calculate Tr(�n), take
the logarithm of this quantity (which is a now just a function of n) and then take the limit that
n → 1.

We may further consider another entropy-like quantity known as the modular entropy:

S̃(n)A =
1
n2
)n(

n − 1
n

S(n)A ) (1.18)

We can see that one may also de�ne the modular entropy as:

S̃(n)A = −
1
n2
)n(

1
n
log TrA(e−qA)) = −

1
n2
)n(

1 − n
n

S(n)A ) (1.19)

We can likewise make the analogy with the thermodynamic entropy by the relation:

S = −
)F
)T

= −�2)�(
1
�
log Tr(e−�H)) (1.20)

Therefore, if we neglect rescaling of the this result with respect to the inverse temperature
we see that the modular entropy has a direct interpretation as an entropic quantity.

1.3 Entropy Constraints

Having de�ned some useful notions of entropy in quantum mechanics, it is worth exploring
some of the inequalities one can derive purely from the information theoretic de�nitions. These
inequalities allow us to prove various equivalences between holographic descriptions as well
as various bounds and limitations which enables the classi�cation of holographic systems as a
subset of general quantum theories. Unfortunately, this thesis does not give scope for a thorough
calculation of the relevant inequalities here, however, for those interested readers we recommend
the resources (19)(20)(21)(22). Whilst classical information theoretic quantities generally have
clearly de�ned physical interpretations, the presence of entanglement muddies the water when
extended to QIT. Regardless, we shall endeavor to provide some intuition motivated by classical
notions.
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1.3.1 Subadditivity, Strong Subadditivity and the Araki-Lieb Inequality

Thankfully, there exist some universal features which hold for both classical and quantum no-
tions of entropy. These inequalities are extremely useful when determining bounds on other
information theoretic notions de�ned below.

For subregions A and B the subadditivity property is

S(A ∪ B) ≤ S(A) + S(B) (1.21)

which along with the Araki-Lieb Inequality,

|S(A) − S(B)| ≤ S(A ∪ B) (1.22)

de�ne the triangle inequality for entropy. The Araki-Lieb Inequality is an upper bound on the
di�erence of entanglement entropies of a system and its complement in terms of the entropy of the
total density matrix of their union. The subadditivity constraint implies that we can never know
more about a system from observing its individual constituents than we can from the complete
system. Subadditivity also has a stronger cousin, Strong Subadditivity (23),

S(A ∪ B) + S(B ∪ C) ≥ S(A ∪ B ∪ C) + S(B) (1.23)

which is di�cult to prove for continuum systems. In holographic theories, however, we can
take advantage of the geometrisation of entropy to produce signi�cantly simpler proofs (24).

1.3.2 Mutual Information

A related quantity is the mutual information, de�ned in both the classical and quantum cases as,

I (A; B) = S(A) + S(B) − S(A ∪ B) (1.24)

The classical mutual information quanti�es how much information we can obtain aboutA just
from observing B. For both its classical and quantum incarnations, I (A; B) ≥ 0. In the quantum
case, the non-negativity of mutual information follows directly from the Araki-Lieb Inequality
(25) and one sees that I (A; B) = 0 only for the case in which the density matrix of the full space
factorizes such that �AB = �A ⊗ �B. In holographic systems, we also have the property of mono-
tonicity of mutual information,

I (A; B∪C) ≥ I (A; B) (1.25)

which states that mutual information is non-decreasing under the addition of additional re-
gions. Another important feature of mutual information particular to holographic systems is that
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it is monogamous,
I (A; B ∪ C) ≥ I (A; B) + I (A; C) (1.26)

For holographic systems, the Monogomy of Mutual Information (MMI) or I3(A; B; C) is always
negative, suggesting that correlations in holographic theories arise primarily through entangle-
ment rather than classical correlations.

1.3.3 Conditional and Relative Entropy

Both classical and quantum conditional entropy are given by,

H(A|B) = S(A ∪ B) − S(B) (1.27)

Classically, one interprets this quantity as the entropy remaining in the probability distribution A
conditioned on knowing B. The classical conditional entropy is positive semi-de�nite, S(A|B) ≥ 0,
whilst the quantum conditional entropy can be negative. Take for example, a pure state A∪B for
which A = B and in which A, B are mixed such that S(B) = S(A) > 0 ergo H(A|B) = −S(B) < 0.

The classical relative entropy requires demands qualitative discussion. Suppose we have some
random variable X and some theory which predicts the probability distribution, Q(X ) for the �nal
state. Suppose our theory states that the probability to observe the �nal state X = xi , where i
runs over all possible outcomes, is qi = Q(X )(xi). Furthermore, we entertain the possibility that
our theory is in fact incorrect and the distribution follows some other probability distribution
pi = P(X )(xi). Once we have observed N such events, we wish to be able to form a notion for how
correct our model is. This can be measured by the relative entropy,

S(P(X )||Q(X )) = ∑
i
pi(ln pi − ln qi) (1.28)

which can also be used to prove the positivity of mutual information (18). Its quantum extension
is then given in terms of two density matrices, � and � which are quantum analogs to P(X ) and
Q(X ),

S(�||�) = Tr �(ln � − ln �) (1.29)

which, unlike some of the previous de�nitions, is identical in classical and quantum descriptions
along with the property,

S(�||�) ≥ 0 (1.30)

Suppose we have some density matrix �A∪B = �A�B such that:

ln �A∪B = ln(�A ⊗ B) + ln(A ⊗ �B) (1.31)
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Such that,

S(�A∪B||�A∪B) = TrA∪B �A∪B(ln �A∪B − ln �A∪B)
= TrA∪B �A∪B(ln �A∪B − ln(�A ⊗ B) + ln(A ⊗ �B)
=S(A) + S(B) − S(A ∪ B) = I (A; B) ≥ 0

(1.32)

hence proving the positivity of mutual information.
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Chapter 2

Holography and AdS/CFT
Correspondence

Black holes are a resplendent source of intrigue for theoretical physicists, o�ering a limit within
which we are able to simultaneously explore signi�cant gravitational and quantum mechanical
e�ects. Not only do black holes display high degrees of symmetry, but the broadly accepted
central dogma of black hole information asserts that to a distant observer, a black hole can be
described by a unitary quantum mechanical system with a large but �nite number of degrees of
freedom set by the area of the event horizon. What’s more, the quantum numbers we require
to describe the black hole are simple quantum numbers such as angular momentum, mass and
charge. The central dogma then tells us that black holes can be treated as simple thermodynamic
objects, an observation which lead Bekenstein and Hawking to de�ne the laws of black hole ther-
modynamics and later allowed Hawking to show that black holes can evaporate7. This work on
black hole thermodynamics resulted in the the Black Hole Information Paradox (BHIP), a cen-
tral conundrum to be resolved by any consistent theory of quantum gravity. The non extensive
property of black hole entropy can be interepreted as though the information is projected onto
its surface like a hologram. It was this observation which �rst spawned the notion that quantum
gravity is holographic.

This chapter is devoted to a formal de�nition and the best known example of holography,
the AdS/CFT correspondence. For context, Chapter 2.1 will introduce the basics of black hole
thermodynamics and brie�y sketch how the BHIP comes about. In Chapter 2.2 we formally intro-
duce the concept of holography. Chapter 2.3 delves into the AdS/CFT correspondence, including
some elementary background on Anti-de Sitter space (AdS) and Conformal Field Theory (CFT).
In preparation for the central topic of this paper, Chapter 2.4.1 provides an in-depth treatment of
black holes in AdS space.

7The use of ‘small’ here will be made more precise in Chapter 2.4.1
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2.1 Black Hole Thermodynamics

While long assumed that black holes obeyed standard conservation laws, the similarities be-
tween between black hole horizons and classical thermodynamic systems were �rst studied by
Bekenstein (1) (26). The laws of black hole thermodynamics can be summarised as in the table
below(27).

Thermodynamics Black hole

Zeroth law
Temperature T is constant

at equilibrium
Surface gravity � is constant

for a stationary solution
First law dE = TdS dM = �

8�GN
dA

Second law dS ≥ 0 dA ≥ 0
Third law S → 0 as T → 0 S → 0 as T → 0

whereGN is Newton’s constant. But how exactly can one ascribe temperature to a black hole?
Suppose we throw some in�nitesimal mass dM into a Schwarzschild black hole8, the horizon of
the black hole responds dynamically,

�
8�GN

dA = dM − ΩdJ (2.1)

where � is the surface gravity of the black hole, A is the area of its horizon, Ω is its rotational
velocity and and J is its angular momentum. Using energy-mass equivalence, Bekenstein argued
that the total di�erence in the energy of the black hole must be, dE = dM − ΩdJ such that

dM − ΩdJ = dE = TdS (2.2)

Hence, one can deduce that the entropy of the black hole is proportional to the area of its
event horizon,

SBH =
Aℎ

4GN
(2.3)

and its characteristic temperature is therefore given by the famous Hawking Temperature(28)(29),

TH =
�
2�

(2.4)

Whilst we have presented this result in a rather ad hoc manner, Hawking derived this by
noting that directly outside of a large black hole the tidal forces are negligible and the space near
its horizon is approximately �at with a constant acceleration given by its surface gravity �. In
this regime, we are free to use semi-classical gravity.

8Or any black hole in which we keep angular momentum and charge constant
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The metric for a Schwarzschild black hole in asymptotically Minkowski space in (d + 1)-
dimensions is given by:

ds2 = −F(r)dt2 +
dr2

F (r)
+ r2dΩ2

d−1 (2.5)

where
F (r) = (1 −

2GNM
r ) = (1 −

rℎ
r )

(2.6)

where dΩ2
d−1 is the metric of a (d − 1)-sphere, rℎ is the horizon of the black hole, r is the distance

from the centre of the black hole and t is the time experienced by an observer at r = ∞.
Near the horizon, we can perform a similar procedure by Taylor expanding the metric about

r = rℎ such that,

F (r) ≈
4�
�
(r − rℎ) where � =

4�
)rF (r)|r=rℎ

(2.7)

For a geometry with a timelike Killing vector we can Wick rotate, t = itE , where tE is Euclidean
time. In the near horizon limit,

ds2 ≈
4�
�
(r − rℎ)dt2E +

�
4�

dr2

r − rℎ
(2.8)

We can then make the substitutions

� =

√
�
�
(r − rℎ); � =

2�
�
tE (2.9)

which yields,

ds2 ≈ d�2 + �2d�2 (2.10)

This looks like Euclidean space in polar coordinates provided that there are no conical singu-
larities. To remove this possibility, we require that � ∼ � + 2� and therefore the Euclidean time
tE has period � as in Figure 2.1. Recalling that Euclidean time at equilibrium can be related to the
inverse temperature of the system, we �nd

T =
1
�
=
)rF (r)|rℎ
4�

(2.11)

2.1.1 The Black Hole Information Paradox

According to (2.1), as black holes evaporate, they radiate energy to the environment and hence
their horizons shrink. At �rst glance the second law of thermodynamics appears to have been

22



Figure 2.1: The Euclidean cigar representing the geometry of a Schwarzschild black hole.

violated however we note that what really obeys the second law is the generalised entropy,

Sgen =
A
4GN

+ Sout ; ΔSgen ≥ 0 (2.12)

where Sout is the contribution from any �elds outside the horizon. But this is not the end of our
troubles. For classical black holes, black holes can only grow or stay static and therefore we can
simply apply the No Hair Theorem(30) claiming that the information about the state of anything
which fell in is encoded on its horizon, but microscopic details of what happens inside the black
hole are fundamentally inaccessible to an external observer. Unsettling as this may be, the details
are not lost, simply inaccessible due to the presence of a physical horizon. This is not so when
quantum mechanics is included and we must eventually explain what is left when everything has
evaporated. In fact, the trouble starts well before this at the so called Page Time(31).

Figure 2.2: A diagram illustrating the Page Curve. The Page Time is the time at which the �ne
and course grained entropies are equal(32).
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In Chapter 1, we pointed out that the thermodynamic entropy places an upper bound on the
�ne-grained entropy. In the semi-classical picture, the entropy of the radiation increases mono-
tonically implying that information about our pure state is lost. Each ingoing mode is entangled
with at most one outgoing mode. When the number of outgoing modes exceeds the number of
ingoing modes, the Black Hole Information Paradox (BHIP) already emerges(33)(34)(32). Eventu-
ally, the energy of the outgoing radiation modes will be larger than the energy of the remaining
energy in the black hole system. The time at which this occurs is referred to as the Page Time.
Beyond this time, the entropy bound (1.11) is violated as there is not enough mass remaining in
the black hole to accommodate all outgoing radiation. For the black hole system to remain uni-
tary, the �ne grained entropy of the Hawking radiation cannot continue unbounded. There must
exist some turning point near the Page Time at which it is now monotonically decreasing and
the curve follows the Page Curve shown in Figure 2.2. Page pointed out that this turning point
should coincide with the time at which approximately half the mass of the black hole has evap-
orated such that if we started with a black hole made from a pure state, our Hawking radiation
should also eventually have a von Neumann entropy, S(rad)vN (t → ∞) = 0(31).

The Bekenstein-Hawking radiation in tandem with the Central Dogma imply some funda-
mental link between the information which forms the black hole and its horizon, however its
details are obfuscated. So, what happens to the information which was hidden behind the hori-
zon and can we recover the details? As explained in Chapter 1, the conservation of information
is equivalent to unitary evolution of quantum mechanical systems and hence any loss of infor-
mation strikes to the heart of fundamental quantum mechanics or, at least, any quantum theory
of gravity.

To labour the point, consider that we take some very large system of particles whose collective
state is pure and we collapse this into a black hole. The black hole then evaporates through the
emission of Hawking quanta (each of which together form a pure state). Let us suppose that the
entire black hole evaporates and we are left with nothing but the Hawking radiation as our �nal
state. Though we started with pure states, the emission of the Hawking quanta is thermal and so
we have evolved from a pure state into a mixed state, a clear violation of unitarity. Another way
of seeing the issue is to imagine that we have an evaporating black hole, but for every Hawking
quantum which is emitted, we compensate by throwing an identical quantum in. In this manner,
we can continue to �ll the black hole up with information inde�nitely whilst keeping its horizon
�xed. By the Bekenstein-Hawking entropy this should not be allowed as we are directly violating
our statement linking the black hole horizon to the information stored within. This enigma has
two obvious solutions: either the information is permanently lost and we must discard unitarity
or the information is somehow encoded in the remnants of the evaporation9.

Whilst the black hole information paradox is a consequence of semi-classical approximations,
9This is an extremely rich topic which we unfortunately do not have time to explore. For a general review of the

topic, see (32)
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it was shown in (33) that small corrections do not resolve the problem. Under the assumption that
a unitary quantum theory of gravity exists, it is broadly believed that a resolution to this paradox
will provide signi�cant support for this mechanism as a suitable model for quantum gravity. We
can categorise some interpretations and their suggested solutions to the paradox as:

1. Information is left as a remnant. In this interpretation, the black hole does not com-
pletely evaporate and what is left behind is some remnant acting as a black box storing the
information which formed the black hole. Both Planckian sized (35)(36) and large remnant
cases have been considered (37)(38). In the Planckian case, an object this small containing so
much information is a violation of the Bekenstein bound(39). For non-Planckian remnants,
there must be some mechanism to prevent the black hole from radiating well before the
Planckian limit which cannot be accounted for in semi-classical gravity and the Bekenstein
bound is similarly violated. Another o�shoot is that black holes could form a Euclidean
time wormhole to another universe or causally disconnected region of spacetime(40)(41).
Unfortunately, this also seems to violate unitary evolution without an explicit way in which
to recover the information from these causally disconnected regions.

2. Information escapes during evaporationOne possibility is in non-Markovian dynamics
where there is some correlation between the past and future evolution(42). This formula-
tion is consistent with semi-classical gravity but contradicts our normal notions of causal-
ity. In (43) (44) (45) the information is encoded in the outgoing Hawking radiation or some
disconnected island region. These theories preserve unitarity and reversibility criteria but
require a signi�cant deviation from semi-classical predictions.

The latter theories in which the information is recoverable and eventually escapes the black
hole will be of most interest to us. In Chapter 3.4 we will discuss entanglement islands which are
believed to resolve the BHIP in AdS/CFT.

2.2 Holography

What other features of quantum gravity could be deduced from semi-classical black hole ther-
modynamics? The Bekenstein Hawking entropy of a black hole seems to imply that to leading
order, information is encoded in a co-dimension two subregion of the full Lorentzian spacetime10,
inspiring the holographic principle.

The holographic principle was �rst conjectured by t’Hooft and later formalised more explicitly
by Susskind (46) (47)(5)(47). According to this principle, one can describe a theory of quantum
gravity in (d + 1) dimensions using a dual non-gravitational theory in d dimensions.

10For non-static cases, this subregion generically becomes codimension one
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Returning to (2.3) we may consider the microscopic degrees of freedom of the black hole are
encoded entirely on the macroscopic boundary surface of the black hole11. Because black holes
represent the most entropic con�guration that can be constructed within a region of spacetime,
we may consider the Bekenstein-Hawking radiation to be some upper entropy bound for regions,
Σ, in a theory of quantum gravity12,

S(Σ) ≤
A()Σ)
4GN

(2.13)

Whilst this expression holds for static spacetimes, covariant generalisations such as Bousso’s
covariant entropy bound preserves the general claim of the holographic principle(48). In the fol-
lowing Section 2.3 we devote signi�cant time to the best understood manifestation of holography
in quantum gravity, the AdS/CFT correspondence. We then brie�y discuss the famous ER=EPR
conjecture as another manifestation of the holographic principle.

2.3 AdS/CFT

Maldacena �rst proposed a holographic duality in the low energy limit of type IIB string theory
living on AdS5×S5 and the = 4 supersymmetric Yang-Mills theory in four spatial dimensions(6).
While this initial observation came from a top-down approach, a more general correspondence
between AdSd+1 and CFTd can be described from the bottom-up approach and need not make a
direct connection to strings 13(49)(50)(51)(52)(53) (54). This AdS/CFT correspondence is the best
understood and most studied example of holographic duality and can be generalised to any d-
dimensional CFT and any theory of quantum gravity on an asymptotically AdSd+1 × spacetime
in which  is a compact manifold. Though the AdS/CFT conjecture has not been rigorously
proven, it has been shown to work in many important cases. Furthermore, precise maps which
allow us to reconstruct the bulk from states on the conformal boundary are non-trivial, however,
some progress has been made using tensor networks for example. Cosmological studies suggest
that our universe is asymptotically de Sitter rather than Anti-de Sitter, however, as it is widely
believed that quantum gravity is generically holographic, one hopes that the study of holography
in the AdS/CFT correspondence will yield insights and tools into how to describe holography in
more general non-compact spacetimes(27).

11Though we have so far limited the discussion to black holes, there is no reason to believe that the black hole
case is simply a limit of a more general feature of quantum gravity

12For now we shall assume that the spacetime is static and Σ is just a constant time hypersurface.
13Top-down meaning that one starts from a string theory and takes the low energy limit and the bottom-up

approach is to ground the result in the low energy-limit directly
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2.3.1 Anti de Sitter Space

Einstein’s �eld equations are given by,

G�� = R�� −
1
2
Rg�� + Λg�� = �T�� (2.14)

where R�� is the Ricci curvature tensor, R is the Ricci scalar, Λ is the cosmological constant,
� is the Einstein gravity constant and T�� is the energy momentum tensor. In the vacuum case
T�� = 0 and the sign of the intrinsic curvature of solutions is determined entirely by the sign of
Λ. In the case that Λ < 0, one obtains the maximally symmetric Anti-de Sitter solution which can
be embedded in (d + 2)- dimensional Minkowski space with (2, d) signature as:

ds2 = −dX 2
0 − dX

2
d+2 +

d+1

∑
i=1

dX 2
i (2.15)

We can further de�ne the AdSd+1 space as the hypersurface

� 2d+1 = X
2
0 + X

2
d+2 −

d+1

∑
i=1

X 2
i (2.16)

where for pure AdS, the radius of curvature �d+1 is related to Λ by Λ = −(n−1)(n−2)
2� 2d+1

. For non-
vacuum cases, we can also relate the vacuum energy density �0 to �d+1 in the case that T�� = −�0g��
by,

�0 = −
d(d − 1)
16�GN � 2d+1

(2.17)

From the embedding coordinates, it is clear that the AdS space inherits the symmetries of
the Lorentz group SO(2, d) as well as the property of homogeneity from the ambient space ℝ2,d .
Being homogenous, all points in the vacuum AdS solution are equivalent and are related by a
symmetry transformation from the SO(2, d) group. There exist two standard coordinates of AdS
in the literature, the global and Poincaré patch coordinates.

In global coordinates we map,

X0 = �d+1 cosh � cos � (2.18)
Xd+2 = �d+1 cosh � sin � (2.19)
Xi = �d+1 sinh �x̂i (2.20)

where i ∈ [1, d + 1], ∑i x̂2i = 1, � ∈ [0, 2�] and � ∈ [0,∞). The corresponding metric in global
coordinates is then,

ds2 = � 2d+1(− cosh
2 �d� 2 + d�2 + sinh2 �dΩ2

d−1) (2.21)
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To see directly that on scales much smaller than lAdS the metric is approximately �at, we can
also consider the static coordinates,

r = �d+1 sinh � (2.22)
t = �d+1� (2.23)

such that we can write the metric as:

ds2 = −(1 +
r2

� 2d+1)
dt2 +

dr2

(1 +
r2
� 2d+1)

+ r2dΩ2
d−1 (2.24)

Here, we see that as we consider scales r2/� 2d+1 ≪ 1 we recover spherical Minkowski coordi-
nates.

Figure 2.3: A representation of the subspace of global AdS covered by the Poincaré patch co-
ordinates (2.30) embedded in global coordinates (2.21). The full Poincaré patch is indicated in
light blue. Timeslices represent hyperbolic discs with � moving from 0 at the centre to �/2 at the
boundary.
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The Poincaré patch coordinates will often be useful to us despite only covering a �nite patch
of the global AdS space where z ∈ [0,∞). In these coordinates, we have:

X0 =
� 2d+1
2r (1 +

r2

� 4d+1
(� 2d+1 + x⃗

2 − t2)) (2.25)

Xd−1 =
� 2d+1
2r (1 −

r2

� 4d+1
(� 2d+1 − x⃗

2 + t2)) (2.26)

Xd+2 =
r
�d+1

t (2.27)

Xi<d−1 =
r
�d+1

xi (2.28)

z =
� 2d+1
r

(2.29)

In these coordinates, the timelike conformal boundary is located at z = 0 and the metric is
given by,

ds2 =
� 2d+1
z2 ( − dt2 + dz2 + dx�dx�) (2.30)

where � ∈ [1, d −1] ∈ ℤ. The region of the full AdS space covered by the Poincare coordinates
can be seen in Figure 2.3. In general, we will be interested in non-vacuum solutions which are
asymptotically AdSd+1 × (where  is compact) such that near the boundary z = 0 the space
is locally identical to the vacuum solution.

2.3.2 Conformal Field Theory

Conformal �eld theories (CFTs) are a subset of QFTs which exhibit conformal symmetry. Con-
formal transformations are given by changes of coordinate x� → y� such that,

g′�� (y) =
)x�

)y�
)x�

)y�
g�� (x) = Ω(x)g�� (x) (2.31)

where Ω(x) is referred to as the Weyl factor. A conformal transformation can therefore be con-
sidered as a particular type of di�eomorphism which changes the metric up to some Weyl factor.
Physically, conformal transformations locally preserve angles and shapes but change scale and
curvature.

The conformal group is isomorphic to SO(2, d) which we note is the same group structure of
the embedding space ℝ(2,d) inherited by AdSd+1. As the two spaces share the same group structure,
the bottom-up duality can be easily shown by making the appropriate transformations from the
generators of the embedding space(53)(27). The group SO(2, d) has four generators:
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1. P � which generates spacetime translations

x� → x� + �� (2.32)

where � is some constant vector.

2. J�� which generates boosts and rotations:

x� → Λ�
�x

� (2.33)

where Λ�
� is a Lorentz transform.

3. D which generates dilations that rescale the system,

x� → �x� (2.34)

where � is some scalar.

4. K�� which generate the special conformal transformations (SCTs):

x� →
x� + ��x2

1 + 2��x� + �2x2
(2.35)

The �rst two generators form the familiar Poincaré group, dilations simply rescale the system and
the SCTs can be understood as an inversion of x� such that x� → x�/x2 followed by a translation
�� and a second inversion(55)(56). SCTs are not globally de�ned as the denominator in (2.35) can
go to zero and therefore additional points must be added. In the case of two dimensions we can use
the identi�cation that on the Euclidean plane ℝ ≃ ℂ. In order to make the SCTs globally de�ned,
we can include a point at in�nity such that we conformally compactify ℝ2 to get S2 ≃ ℂ ∪ {∞}.
The case of two dimensional Euclidean space is a special one in which the algebra of conformal
transformations is in�nite dimensional. The two dimensional case then has an additional set of
constraints allowing for exact solutions.

Returning to the arbitrary dimensional case, we can represent the conformal group by the
explicit generators,

P� = −i)� (2.36)
J�� = i(x�)� − x�)�) (2.37)
D = −ix�)� (2.38)
K� = i(x2)� − 2x�x�)� ) (2.39)
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The non-vanishing commutators of the generators are given by:

[D, P�] = iP� , [D, K�] = −iK� , [K� , P�] = 2i (���D − J��)

[K� , J��] = i (���K� − ���K�) , [P� , J��] = i (���P� − ���P�)

[J�� , J��] = i (���J�� + ��� J�� − ���J�� − ��� J��)

(2.40)

where ��� is the Minkowski metric.
The most interesting class of operators in CFTs are those which transform under dilations,

x� → �x� as

Δ(�x) = �−ΔΔ(x) (2.41)

where we refer to Δ as the conformal scaling dimension of the operator Δ. These operators
are referred to as primary operators. From each primary operator, we can take n derivatives to
obtain another primary operator, )nΔ, which we refer to as a descendent. Each derivative can
be thought of as a introducing an additional energy dimension to the original primary �eld such
that the scaling dimension of the n-th descendent is Δ+n and under dilatations they scale as �Δ−n.

Another useful feature of CFTs is that we can deduce correlation functions quite easily from
their symmetry properties alone. For example, it can be shown that the time ordered two-point
function of primary operators is constrained by

⟨Ψ|  [Δ2(x2, t2)Δ1(x1, t1)] |Ψ⟩ =
C12�Δ1,Δ2

(|x2 − x1|2 − (t2 − t1)2 + i�)
Δ1 (2.42)

where C12 is some constant. This property does not rely on the existence of a Lagrangian for
the theory and can be used to obtain non-perturbative results. This process is referred to as the
‘Conformal Bootstrap’.

A crucial feature of CFTs is that the complete set of their primary operators (including descen-
dants) form a basis for the CFT living on Sd−1. If, for example, we centre a Euclidean ball about the
operator and perform a path integral on it we can obtain a state such that there exists a bijective
map between operators in the CFT and states. This relationship is the so called state-operator
correspondence and forms a crucial role in the AdS/CFT correspondence. For every such primary
operator in the CFT, there must exist a primary state Δ(x) obeying,

[D,Δ(x)] = iΔΔ(x); [K� ,Δ(x)] = 0 (2.43)

In the following, we shall see that we can draw mathematically precise relationships between

31



states in the bulk of AdS spaces and primary operators which reside on the light-like conformal
boundary in one lower dimension.

2.3.3 The AdS/CFT Dictionary

Armed with a familiarity with both AdS and CFTs we can formally state the AdS/CFT correspon-
dence (57)(27):

A relativistic conformal theory on ℝ × Sd−1 is equivalent to a theory of quantum gravity existing
in a bulk AdSd+1 × spacetime, where is a compact manifold.

We may make this conceptually and mathematically precise through the so-called AdS/CFT
Dictionary. It must be noted, however, that whilst we have a ‘dictionary’ it is often di�cult to
form full sentences as we do not yet have a rigorous way to reconstruct systems calculated in
one description from its dual.

A direct mathematical statement follows from this correspondence, namely, that the Hilbert
space of the CFT and that of the quantum gravitational theory in the bulk are equivalent,

QG = CFT (2.44)

Therefore, states in the bulk are in one-to-one correspondence with local operators (including
descendants) in the CFT. A corollary of this is the GKP-Witten relation(58)(49), which states that
thermodynamic quantities such as partition functions Z at inverse temperature � = 1

T must also
agree,

ZQG(�) = ZCFT (�) = Tr e−�HCFT = Tr e−�HQG ⟹ HCFT = HQG (2.45)

A direct consequence is that unitary boundary CFTs are dual to unitary bulk descriptions.
This fact is encouraging in the context of the BHIP and we shall return to it in due course.

As argued in Chapter 2.3.1, the light-like conformal boundary of AdSd+1 has the topology
ℝ × Sd−1 which can be seen by taking (2.30) in the limit z → 0. To describe the spectrum of
the CFT de�ned on this boundary, we consider the dilaton operator in Euclidean space. We can
perform a conformal transformation of this d-dimensional cylinder by taking � → e� ,

ds2 = d�2 + �2dΩ2
d−1 = e

2� (d� 2 + dΩ2
d−1) (2.46)

From this, we see that the dilations � → e�� are equivalent to time translations on ℝ × Sd−1 and
therefore the dilaton acts as the Hamiltonian for the CFT on Sd−1. To obtain the eigenspectrum of
the CFT, we must need only diagonalise the dilaton operator. We note that the UV singularities
in the CFT correspond to IR divergences in the bulk due to the in�nite volume of the AdS space.
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Strongly coupled systems in the CFT then correspond to weakly coupled systems in the bulk14.
Furthermore, taking this particular transformation ensures that the boundary is �at and therefore
non-gravitational15.

Another tool in this dictionary is the �eld/operator correspondence. Whilst the general details
depend upon which string theory one is working with in the top-down approach, there are some
common results which are informative(52)(27). One such example is that the bulk metric g��
is dual to the stress-energy tensor T�� of the boundary CFT. The stress-energy tensor is a quasi-
primary �eld with conformal dimensionΔT�� = d and is a conserved quantity, )�T �� = 0. Likewise,
continuous global symmetries of the boundary CFT generate a Noether current J� with conformal
dimension ΔJ� = d − 1 which is dual to a U (1) symmetry in the bulk. Therefore, J� in the CFT
generates spin-1 gauge �elds A� in the bulk. Because mass breaks conformal symmetry, the
current A� is only conserved for massless excitations. We can then consider a scalar �eld, � in
the bulk which is dual to a scalar primary operator  in the CFT for which we have the relation

lim
r→∞

rΔ��(t, r , Ω) ≡ (t, Ω) (2.47)

where the conformal dimension, Δ� is related to the mass of the scalar �eld, m, by

Δ� =
1
2(
d +

√
d2 + 4m2) (2.48)

Therefore, the boundary value of the scalar �eld (�), the metric (g�� ) and the spin-one gauge
�eld (A�) source the primary �eld (), the stress-energy tensor (T�� ) and the current (J�) respec-
tively.

To calculate correlation functions for the CFT using the bulk gravitational theory we can
simply evaluate correlation functions of the scalar �eld at the boundary16,

⟨Ω|1(x1) …n(xn) |Ω⟩CFT = lim
�→�/2

⟨Ω| �1(�, x1) … �n(�, xn) |Ω⟩QG (2.49)

The expectation value in this case is computed for the ground state of the CFT on Sd−1. Simi-
larly, for equilibrium con�gurations we can make use of the thermal partition function by taking
the usual variational derivatives with respect to bulk sources at the boundary,

⟨Ω|1(x1) …n(xn) |Ω⟩CFT =
�n

��(x1) … ��(xn)
ZCFT [�]|�=0 (2.50)

14This property is one of the main reasons AdS/CFT is so useful. For strongly coupled systems such as those
involving strong force interactions, we can treat the system perturbatively in the gravitational dual whilst in the
CFT theory the quarks are con�ned and perturbation theory breaks down.

15It is worth noting that we have once again assumed that we can go to Euclidean space by Wick rotating and,
mentioned previously, this is not always possible outside of static cases. This need not worry us for the vacuum case
and furthermore the logic follows analogously in the Lorentzian signature.

16Up to some divergent quantity. These divergences will be revisited in more detail in Chapter 3
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Figure 2.4: (Left) The vacuum state of the CFT on ℝ1,d−1 is dual to a pure AdSd+1 bulk spacetime
(Right) CFT excitations correspond to bulk excitations such as gravitons or gauge �elds. Figure
inspired by (59)

.

where � is evaluated at � = �/2.
Earlier, we noted that in general UV and IR divergences emerge without inserting appropriate

cut-o�s. Suppose we have a �nite set of primary CFT operators i
17 and a local bulk e�ective

action, Sef f [�i , �], with a UV cuto� such that 1
lAdS

≪ � < 1
lPlank

. We can then state that the CFT has
a semi-classical dual provided,

⟨Ω|1(x1) …n(xn) |Ω⟩CFT = ∫ �ieiSef f [�i ,�]1(x1) …n(xn) (2.51)

The bulk �elds in this case must obey asymptotic AdS boundary conditions. We further note
that not all CFTs admit a well-de�ned semi-classical description which can be approximated by
Einstein’s equations when we go to the deep IR. For example, in Chapter II we encounter a model
in which the the holographic CFT is coupled to a defect (dCFT), inducing a higher-derivative
gravity theory rather than Einstein gravity.

So far we have provided several useful tools which allow us to make use of the AdS/CFT
correspondence. In the following chapter, we will elaborate on precisely how we can connect
this correspondence to more interesting states in the bulk and how this e�ects the geometry of
the boundary CFT.

2.4 Thermal States in AdS

In the previous chapter we outlined some key de�nitions in the AdS/CFT dictionary. We now
discuss how thermal states in the AdS bulk manifest in the AdS/CFT correspondence. From the

17These need not be scalar and could include gauge �elds such as gravitons.
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GKP-Witten relation (2.45), thermal states in the bulk correspond to thermal states in the CFT.
Most importantly, this duality will also allow us to describe black holes in AdS as well as their
formation and evaporation allowing us to gain valuable insight into the BHIP in the context
of asymptotically AdS spaces. Entanglement plays a crucial role in the following discussion. By
purifying a thermal CFT state we can construct a pure CFT state dual to a double-sided AdS black
hole. This puri�ed state is referred to as the Thermo�eld Double State (TFD) and allows us to
simplify calculations in the pure state and retrieve our initial values by tracing out the purifying
state at the end(52). To cap o� this chapter, we shall see how the tools developed o�er an heuristic
solution to the BHIP.

2.4.1 Black Holes in AdS

From the perspective of the dual CFT, the excited states on the boundary correspond to non-trivial
AdS geometries in the bulk which can be found using the Einstein equations. In the simplest ex-
ample of such an excitation is the thermal state of the CFTd which is dual to a black hole in the
AdSd+1 bulk. The simplest AdS black hole is described by the familiar Schwarzschild black hole
(SAdS) embedded in an asymptotically AdS space. There exist two such black hole solutions, the
planar black hole and the spherically symmetric solution both of which have simple interpreta-
tions on the CFT dual.

In the Einstein static universe where our CFT resides on ℝd−1, the ground state bulk space-
time is given by the global AdS metric (2.24). The excited states in this case correspond to the
spherically symmetric global solutions in the bulk with metric

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

d−1; f (r) = 1 +
r2

l2d+1
−
rd−2ℎ

rd−2(
1 +

r2ℎ
l2d+1)

(2.52)

where rℎ is the position of the black hole horizon and is determined by the mass of the black
hole. Using the previously detailed techniques, the temperature of the black hole can be related
to the horizon radius by

T =
1

4��d+1(
d
r+
�d+1

+ (d − 2)
�d+1
r+ ) (2.53)

It is worth noting that such black holes only exist above a minimum temperature, T > Tmin =√
d(d−2)
2��d+1

. This critical temperature is referred to as the Hawking-Page Transition(60), below which
small black holes are thermodynamically unstable and will quickly evaporate. Correspondingly,
only large (or eternal) black holes with rℎ >

√
d−2
d �d+1 dominate the globally18.

18Physically, we recall that lightlike paths are re�ected by the AdS boundary in �nite proper time such that the
lightlike Hawking radiation coming from a large enough black hole will simply bounce back into the black hole and
it reaches equilibrium.
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Figure 2.5: Constant time Cauchy slices corresponding to (a) The thermal excitation of the
Minkowski CFTd state corresponds to a planar black hole de�ned in the Poincaré patch (b) Ther-
mal excitation of the CFTd state on a the cylinder corresponds to a spherical black hole in the
global AdS bulk. Figure inspired by (59).

We may also be interested in limiting to excitations of the Poincaré patch of the AdSd+1 whose
CFTd dual exists on a Minkowski spacetime ℝd−1,1. These excitations correspond to the planar
SAdSd+1 given by:

ds2 =
� 2d+1
z2 ( − f (z)dt2 + dx⃗2d−1 +

dz2

f (z))
; f (z) = 1 −

zd

zd+
(2.54)

where z+ is the location of the horizon and its temperature is

T =
d

4�z+
(2.55)

In the limit that rℎ ≫ �d+1 the curvature of the spacelike sphere in global coordinates becomes
negligible at the black hole horizon and (2.50) reduces to (2.52).

Of particular interest to us is the SAdS3 or BTZ (61) solution,

ds2 = −
r2 − r2ℎ
� 23

dt2 +
� 23 dr2

r2 − r2ℎ
+ r2d�2 (2.56)

where � ∈ [0, 2�]. The boundary of the global BTZ black hole is then S1 × ℝ. We can, consider
several interesting cases of the BTZ black hole:

1. For rℎ ≫ l3 can decompactify the BTZ solution by taking � → x
l3

to �nd the planar BTZ
black hole.

2. We can analytically continue such that rℎ = i�3 to �nd the global AdS solution. Since we
obtain the black hole solution by making identi�cations (ie. quotienting the space by an
isometry), this makes sense.
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3. Solutions with rℎ = i�AdS
√
1 − � where � ∈ [0, 1) describe conical defects (horizon free

singularities). Conical singularities, also referred to as cosmic strings, can be thought of as
the geometry backreacting against the presence of some energy ∝ �.

In the remainder of this thesis, we shall further elaborate on the BTZ black hole and a speci�c
model of a quantum corrected BTZ solution.

2.4.2 Puri�cation and the Thermo�eld Double State

We may further detail QIT-gravity connection through the thermo�eld double (TFD). The TFD
allows us to purify a thermal state of the boundary CFT dual to a double sided black hole.

Figure 2.6: The Penrose diagram of the global SAdS solution with the future/past horizons given
by ±. The topology of the boundary in these coordinates is ℝ × sd−1 as we would expect.

One can �nd the Penrose diagrams in the usual manner described in standard books on general
relativity (62)(63). The Penrose diagram for a large maximally extended black hole is divided by
the presence of the black hole horizon into four patches:

1. Right Asymptotic Region (Region 1): Future oriented lightcones can either asymptoti-
cally reach the vacuum AdS solution on the right boundary or fall into the black hole.
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2. Black Hole Interior (Region 2): All future oriented lightcones hit the black hole singu-
larity.

3. Left Asymptotic Region (Region 3): Future oriented lightcones can either asymptoti-
cally reach the vacuum AdS solution on the left boundary or fall into the black hole.

4. White Hole Interior (Region 4): Future oriented lightcones can reach Regions 1 and 2.
This region also contains the past spacetime singularity of the black hole.

In the previous chapter, we showed that AdS black holes are dual to thermal states of the
boundary CFT. As it is generally easier to work with pure states, we would like some way to purify
these thermal states. In section 1 we discussed that any mixed state can be puri�ed by introducing
an auxiliary system such the original state can be found by tracing out the puri�cation state.

Maldacena was the �rst to apply this observation in the context of black holes by showing
that the maximally extended black hole solution is dual to the TFD(64). The TFD consists of
an entangled state of two non-interacting, identical copies of the boundary CFT living on the
asymptotic boundary regions (Regions 1 and 2 in Figure 2.6). The TFD state, | ⟩TFD is

| ⟩TFD = ∑
i

e−�Ei/2√
Z(�)

|Ei⟩L ⊗ |Ei⟩R (2.57)

where Z(�) = ∑i e−�Ei and |Ei⟩R/L ∈ R/L is an energy eigenstate with eigenvalue Ei correspond-
ing to the CFT on the right (left) boundary. Applying the GKP-Witten conjecture, the thermal
partition function of the bulk quantum gravity theory corresponds to that of the boundary CFT,
ZQG[; ) = Σ] = ZCFT [Σ]. Since the spacetime is static, we can go to Euclidean signature with-
out issue and compactify along the � direction � = � + � such that the topology of its boundary
is S� × Sd−1.

As a sanity check, let us consider the density matrix of the TFD, �TFD ,

�TFD = ∑
i,j

e−�(Ei+Ej )/2

Z(�)
|Ei⟩L ⊗ |Ei⟩R ⟨Ej ||L ⊗ ⟨Ej ||R (2.58)

Tracing out the left system to returns the original thermal state,

�TFD = ∑
n

⟨n|L(∑
i,j

e−�(Ei+Ej )/2

Z(�)
|Ei⟩L |Ei⟩R ⟨Ej ||L ⟨Ej

||R ) |n⟩L (2.59)

= ∑
i
e−�Ei |Ei⟩R ⟨Ei |R = e−�HR (2.60)

where n is some index of orthogonal basis states and HR is the Hamiltonian of the right CFT.
We have therefore illustrated that the original state is indeed thermal. Using the cyclicity of the
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Figure 2.7: A schematic representation of the TFD. Entangling two non-interacting copies of the
boundary CFT in the a thermal state is holographically dual to a maximally extended double sided
SAdS geometry.

trace can therefore compute thermal expectation values of operators R de�ned on the right CFT
as an expectation value of an operator in the TFD,

⟨R⟩ = Tr[�RR] = ⟨ TFD |R | TFD⟩ (2.61)

If the TFD Hamiltonian is time independent then

HTFD = HR − HL (2.62)

where HL has an opposite sign due to the fact that the timelike killing vector on the left
asymptotic patch runs with opposite orientation to that of the right.

It is worth reiterating some subtle points on the surprising nature of the gravitation TFD.
We have managed to create a pure gravitational state made of two non-interacting CFTs which
must correspond to completely distinct asymptotically AdS spacetimes. The individual terms
in the TFD (2.57) are entirely independent, however, the quantum superposition of these states
correspond to the two-sided black hole where both sides are smoothly connected by a classical
wormhole. What is remarkable about this is that we can create a connected spacetime by en-
tangling degrees of freedom from two non-interacting gravitational systems together to create
a new smooth geometry. This set-up is especially useful for the analysis of entanglement and
entanglement spreading in holographic settings. Notably, this set-up has a very speci�c entan-
glement structure which is can be destroyed by an infalling perturbation as we discuss in Part
III.

2.4.3 Shockwaves

Due to the special entanglement structure of the TFD, the time-evolved thermo�eld double de-
pends only on the combination tL + tR , where L and R indicate time evolution on the left side
and the right side respectively. Let us suppose that the L side is the original system in which
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time runs forwards and the R side is a copy in which time runs backwards. For the unperturbed
TFD in the in�nite temperature limit, the TFD simply corresponds to many entangled pairs and
therefore there exists a large mutual information between regions L and R. If we allow time to
evolve on the left hand side, the initially localised entanglement spreads in space and the L − R
mutual information decreases. Suppose we evolve the L system back to time tL = −tW and apply
a simple operator Wx and then evolve the system back to time tL = 0 such that the system is the
same but with some small perturbation in the past. If we suppose that this perturbation happens
in the distant past such that tW ≫ � , one may wonder what impact this has on the entanglement
structure of the system. Neither the L or R system will note any signi�cant di�erences. In other
words, we suppose that in the distant past, we throw some localised probe into the black hole
from the left and leave the right unperturbed. Assuming that the perturbation on the left hand
side has a rest frame energy, E, that is small compared to the mass of the black black hole, M , this
probe will only have a small local e�ect on the system. The memory of this e�ect, such as which
operator Wx we applied will be lost at large tW and hence its e�ect will not be visible to simple
probes at tL = 0. In fact, the boost ambiguity allows us to go to a frame in which the energy is
small and hence we have no reason to expect any large local invariants.

Figure 2.8: A Penrose diagram of the shockwave setup. We have emphasized the distance of the
infalling perturbation (yellow) from the horizon for the sake of clarity, but as tW is increased then
it will hug the horizon, causing a shockwave at t = 0.
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There must, however, be some signi�cant clue as to its presence. If we take tW → ∞, then
the probe will fall close to the black hole horizon at the tL = 0. According to the local frame at
tL = 0, this probe has been accelerating towards the black hole for such a long time that it will
appear to be travelling close to the speed of light and hence its energy is blue shifted according
to a stationary observer outside the horizon.

We can explicitly write the metric in the Kruskal coordinates. We start with a generic metric
of the form,

ds2 = −f (r)dt2 + f −1(r)dr2 + r2d�2 (2.63)

We assume that there exists some horizon radius rℎ de�ned by the positive root of f (r). We
can then pass to Kruskal coordinates

ds2 = −
f (r)
f ′(rℎ)2

e−f
′(rℎ)r∗(r)dudv + r2d�2 (2.64)

which in three dimensions gives

ds2 =
−4� 23 dudv + r2ℎ(1 − uv)2d�2

(1 + uv)2
(2.65)

such that the right exterior has u < 0, v > 0, the boundaries are at uv = −1 and the singularities
are at uv = 1. We de�ne the tortoise coordinate as r∗ = ∫ drf −1(r) and uv = ef ′(rℎ)r∗(r) and
u/v = −e−f ′(rℎ)t . In these coordinates, a translation in t corresponds to a boost in the Kruskal
coordinates and so the energy of the probe as it hits the horizon at tL = 0 is given by:

Ep ≈
E�3
rℎ
erℎtW /�

2
3 (2.66)

According to the frame at tL = 0, the probe appears as a high energy shockwave following
an e�ective null trajectory and hence its backreaction must be taken into account. To do so, we
construct a perturbed metric by gluing the unperturbed metric with mass M and the perturbed
metric with mass M + E along the null surface de�ned by u = uW = e−rℎtW /�3 . We de�ne the
coordinates to the right of the shell to be u, v and those to the left of the shell to be ũ, ṽ. The
change in mass induces a change in the radius,

r̃ℎ =
√
M + E
M

R (2.67)

The relative boost ambiguity between tilded and non-tilded coordinates can be �xed by demand-
ing that the time coordinate �ows continuously at their boundary. The location of the shell is
then determined by ũW = e−r̃ℎtW /� 23 . We further demand the radius of the S1 generated by rotations
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about � to have a constant radius across the shell,

r̃ℎ
1 − ũW ṽ
1 + ũW ṽ

= rℎ
1 − uWv
1 + uWv

(2.68)

For small E/M we make the ansatz,

ṽ = v + �; � =
E
4M

erℎtW /�
2
3 (2.69)

where for �xed � , E/M → 0 and tW →∞ this relationship becomes exact. Assuming the pertur-
bation happens for TW ≫ � we can shift the coordinates, U = u and V = v + ��(u), where �(u) is
the Heaviside theta function. The metric then takes the standard shockwave form

ds2 =
−4� 23 dUdV + 4�3��(U )dU 2 + r2ℎ(1 − UV )2d�2

(1 + UV )2
(2.70)

This geometry is continuous, however the presence of the impulsive curvature at U = 0 means
that its �rst derivative is not. The Einstein equations imply a stress tensor,

Tuu =
�

4�GN
�(u) (2.71)

the interpretation of which is a shell of null particles distributed across the horizon. By exam-
ining the mutual information between the boundary subregions, (15) illustrated that the mutual
information between equally sized regions on the L and R CFT, A and B respectively, is destroyed
by the propagation of the shockwave. For small regions where sinh(rℎ�/2�d+1) < 1, the mutual
information is zero for all values of � . For larger regions and small � , the mutual information
becomes positive and is given by

I (A; B) =
�
GN [ log( sinh

��3
� ) − log(1 +

E�
4SBH e2�tW /�)] (2.72)

where SBH is the Bekenstein-Hawking entropy of the black hole. The mutual information is
then a monotonically decreasing function of tW . In the high-temperature limit, I (A; B) → 0when
tW approaches

t∗(�) =
��3
2
+
�
2�

log
2SBH
�E

(2.73)

Assuming large N on the boundary CFT, we have a large entropy SBH ≈ N 2 and we can take
the smallest reasonable energy value, E ≈ T = 1/� such that correlations between L and R are
destroyed when

t∗ ≈
�
2�

log SBH (2.74)

where t∗ is de�ned as the fast scrambling time. Physically, the scrambling time is the time that
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it takes for the e�ect of the perturbation to become of order one and gives us a notion of how
long it takes a system to e�ectively forget the perturbation. This result suggests that black holes
are the fastest scramblers in nature (65). We return to this set-up later when investigating how
chaos spreads in holographic systems.
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Chapter 3

Quantum Extremal Surfaces

Through our discussion of the BHIP we were able to discern that the semi-classical approximation
was a poor candidate theory of quantum gravity. To resolve the paradox, it would therefore
appear that we must be precise in how we de�ne quantum information and its relation to gravity.

The holographic principle implies that bulk geometries can be encoded in a higher dimen-
sional non-gravitational space. More explicitly, the AdS/CFT dictionary provides us with a pre-
cise sense in which this is true. Making use of this toolbox we can directly relate information on
the boundary theory to bulk structures living in the asymptotically AdS spacetimes. One can then
view particular con�gurations of the CFT state as corresponding to the emergence of gravity in
the bulk. A key ingredient in how this emergent theory of gravity is realised was related to the
entanglement entropy between a region and its complement(s) (52)(66).

In Chapter 1, we worked under the assumption that we were working with a low-energy
quantum mechanical description which allows us to conserve particle number and sidestep di-
vergences. To resolve the BHIP, we then wish to extend these notions of information in quantum
mechanical systems to a more general QFT description in such a way that the low energy limit
returns the quantum mechanical notions of QIT. In general, however, the task of calculating en-
tanglement entropy requires new techniques. In this section we shall elaborate upon methods in
which we may calculate the entropy and, more speci�cally, the entanglement entropy of systems.
Using such a de�nition leads us to the notion of entanglement islands which act as disconnected
regions of space encoding the information escaping an evaporating black hole. Within asymp-
totically AdS space, it has been shown that for toy models the islands appear to resolve the BHIP
and follow curves very close to that predicted by Page (67)(68)(69)(32). Remarkably, these islands
appear to be features of several independent prescriptions by which we can calculate entangle-
ment entropy. Using a path integral formulation, we can construct replica Euclidean wormholes
which appear to encode gravitational information(69)(67). We shall also see that an equivalent
description can be found using the holographic principle directly which leads to the Quantum
Extremal Surfaces (QES).
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Chapter 3.2 will introduce the so-called replica trick which simpli�es the calculation of en-
tanglement entropy in quantum �eld theories by taking n-copies of the �eld theory. In Chapter
3.3 we introduce the Ryu-Takayanagi (RT) conjecture directly linking entanglement entropy in
the boundary to minimal surfaces in the bulk. Finally, in Chapter 3.4 we make use of these con-
structions to de�ne how entanglement islands emerge and brie�y discuss how they resolve the
BHIP in holographic systems.

3.1 Entanglement Entropy in Quantum Field Theories

Of all techniques for calculating entanglement entropy for continuum systems, the path integral
formulation is the most general approach we have. The path integral applies to general quantum
mechanical systems and is by construction covariant and valid to all orders in perturbation theory
for renormalizable QFTs.

In Chapter 1 we introduced some notions from QIT which allowed us to de�ne various notions
of information in quantum systems. Naturally, when we consider Lorentz invariant QFTs or semi-
classical gravity, we lose some of the more intuitive interpretations of what this information is
in the material sense19. Following Chapter 3, we saw that notions of entanglement present a
fungible resource with which we may probe potential theories of quantum gravity. We wish to
formally show how quantum gravity emerges from the dynamics of a CFT. In the speci�c context
of AdS/CFT, �eld theories in the bulk and must correspond to local �eld theories on the boundary
and so we are primarily interested in de�ning these notions of information on the boundary
CFT can be mapped to its gravitational dual. The inclusion of arbitrarily high energy states in
the CFT20 means that entanglement entropies are divergent and must therefore be regulated.
Intuitively, the entanglement entropy can be thought of as the number of EPR pairs which are
separated across the entangling surface. In this subsection, we will discuss both general behaviour
of entanglement entropy in QFTs as well as a convenient way to measure entanglement entropies
in QFTs known as the Replica Trick.

3.2 The Path Integral and Replicas

To extend the QIT notions to a QFT, we need to take the continuum limit of our quantum lattice
theory and specify some key constraints placed on density matrices and entanglement measures

19In the quantum mechanical case we retain notions which allow us to imagine that two electrons are in a Bell-
state, for example. In the QFT case we must consider quantum �uctuations which contribute to the correlation
functions as well as a frame dependence which, as we encountered in the discussion of the Unruh e�ect, prevents
such neat interpretations.

20In the dual description this divergence is in fact a consequence of IR divergences owing to integrating over
in�nite distances.
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for our QFTs. A discussion of these constraints can be found in Appendix A. Henceforth, we
discard the operator formalism in favour of the functional integral formalism. From introduc-
tory QFT courses, we are accustomed to calculating observables by calculating Euclidean path
integrals leading to Wightman Functions. In this paradigm, the temporal and spatial compo-
nents are on equal footing. In the Lorentzian context, we impose temporal ordering which gives
a number of possible interaction pathways which must be re�ected in the �nal path integral.
When we include non-static spacetimes in our path integral, the Euclidean prescription becomes
ill-de�ned and more work must be done to identify appropriate saddle points. The Euclidean
framework, however, is best suited to non-dynamic cases where we do not have to worry about
some time-dependent interaction Hamiltonian. We can also extend the Euclidean proscription
to the special cases where we calculate the observable at a moment of time re�ection symmetry.
For general cases, we assume that the Hamiltonian is time dependent which requires us to adopt
a non-equilibrium path integral method known as the Keldysh-Schwinger (SK) formalism (70).

We de�ne a reduced density matrix �A on a Cauchy slice Σt=0 where there exists some time
dependent Hamiltonian acting on the system. We can split the �elds on this Cauchy slice into
two sets based on their domains of dependence Φ(x) = {ΦA(x ∈ A), ΦAc (x ∈ Ā)}. The reduced
density matrix is an operation acting on the Hilbert space  and its matrix elements depending
on the support of x ∈ A alone. Let us now imagine that we regulate the path integral by applying
the boundary conditions for �elds de�ned in A,

ΦA|t=0− = Φ−, ΦA|t=0+ = Φ+ (3.1)

where t± = 0± represents an in�nitesimal approach from above (below). This is equivalent to
cutting open the path integral about t± = 0± and then projecting this result onto well de�ned �eld
values. To enact this, we include a delta functional in our path integral which acts as a projection
operator,

�(±)A = ∫ [Φ]e−SQFT [Φ]�E(Φ∓,A) (3.2)

where �E(Φ∓,A) = �(ΦA(t = 0−) − Φ−)�(ΦA(t = 0+) − Φ+).
To �nd the elements of our reduced density matrix, we slice open the functional integral

about the region of interest A and then impose the boundary conditions just above and below
this region (A ∈ Σt=0) and impose the boundary conditions above and below as we would in the
case of trivial time evolution. We can then write out our real time dependent reduced density
matrices,

�(±)A = ∫
J −[Σt ]

[ΦR][ΦL]eiSQFT [ΦR]−iSQFT [ΦL]�L(Φ∓RL,A) (3.3)

where �L(Φ∓RL,A = �(ΦR,A(t = 0−) − Φ−)�(ΦL,A(t = 0+) − Φ+). Heuristically one can consider that
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we have our right �elds evolving forwards in time from the in�nite past and the left handed �elds
evolve from t = 0 to the initial state.

Having successfully constructed a method by which to calculate the density matrix, we are
interested in �nding higher moments (�A)n. Using this, we may calculate the Rényi entropy which
we may analytically continue to �nd the von Neumann entropy. This method is referred to as
the replica method.

To apply the replica method, we take n-copies of our path integral for �A and make some
identi�cations. This is required as the density matrices so to apply matrix multiplication we
must apply the boundary conditions Φ(k)+ = Φ(k+1)− . For the static case in Euclidean time, we have:

(�A)n−+ = ∫
n−1

∏
j=1

dΦ(j)+ �(Φ
(j)
+ − Φ(j+1)− )×

[ ∫
n

∏
k=1

[Φ(k)]
{
e−∑

n
k=1 SQFT [Φ(k)]�E(Φ(k)∓A)

}

]

(3.4)

We see that the �rst integral identi�es the (n − 1) boundary conditions we wish to impose
and the second functional integral acts to replicate the path integral for the individual matrix
elements.

To picture this, we should view the situation as one in which each copy of the density matrix
is computed on a copy of the background spacetime. In the Euclidean case, this background
spacetime would beEuc or in the Lorentzian case would be two copies of the causal past J −[Σt] ⊂
 joined together along the Cauchy slice that we wish to compute our state on. One can also
imagine that we are merely identifying the spacetimes together along the boundary )A. We can
equivalently consider this to be a new manifold n. Following the canonical construction from
topology, we will refer to this manifold n as the n-fold branched cover of .

We can now compute the path integral of the theory by integrating over all the �elds living
on this background n. We de�ne this as the partition function

Zn[A] = Tr(�nA) (3.5)

with Rényi entropy

S(n)A =
1

1 − n
log(Tr [

�A
Tr �A ]

n

) =
1

1 − n
log(

Zn[A]
Z1[A]n)

(3.6)

where we have renormalised our partition function on n by dividing by the n-copies of the
single sheet partition function.

As on the discrete lattice, we now wish to take the appropriate limit as n → 1. Using the
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Figure 3.1: A visualization of (3.4) for n = 3. Identi�cations are indicated by arrows(19).

functional integrals we have just de�ned, we can take the trace by identifying Φ(1)− with Φ(q)+ in
the Euclidean computation to get the Rényi entropy.

The trace is a central operation to this calculation, generating a ℤn cyclic permutation sym-
metry between copies of the path integral. On the other hand, the Lorentzian case can be con-
sidered to contain 2n-copies of the background manifold. These copies, however, are also sewn
together in a way which also respects the cyclic ℤn replica symmetry so that we do not �nd any
contradiction.

Finally, one can calculate the entanglement entropy itself by taking the limit that n → 1.
This throws up more issues as formally, our de�nition is restricted to integer values of n which
does not a priori allow us to analytically continue the argument to real values. However, if the
function is de�ned on integers which are also well-behaved as z → ±∞ then we can de�ne a
unique analytic continuation away from the integers21. A simple example of the replica trick is
provided in Appendix B.

21This can be shown by Carlson’s theorem, which can be derived from the Phragmén-Lindelhöf principle. Carl-
son’s theorem simply requires that functions do not grow rapidly (sub exponential) at imaginary in�nity. By bound-
ing these numbers in certain directions, these results assert that the function itself is bounded in the complex plane.
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3.3 Holographic Entanglement Entropy

In AdS/CFT, the crucial entanglement entropy of a bulk subregion can be calculated simply from
the entropy of the CFT region dual to it. We introduce here the Ryu-Takayanagi (RT) conjecture
which posits an explicit link between the boundary region and the geometry of the bulk for static
spacetimes. We then discuss the Quantum Extremal Surface (QES) prescription which allows for
arbitrary order quantum corrections to the RT prescription. The QES prescription appears to
provide solutions to the BHIP through the formation of disconnected regions known as islands.
Discussion of the covariant HRT extension are left to Appendix C.

3.3.1 The Ryu Takayanagi Conjecture

The RT conjecture stands as one of the most useful results in AdS/CFT to date. Previously, we
discussed the role of entanglement as the glue which holds spacetime together in holographic
theories. From the perspective of quantum gravity, the holographic entanglement entropy (HEE)
is a rich source of information which o�ers progress on bulk reconstruction, is generally easier to
compute than the complete path integral and places stronger constraints on holographic theories
through direct connection to QIT identities.

In (71) and (72), Ryu and Takayanagi conjectured that the entanglement entropy of some
subregion of a CFT, A, is given by a co-dimension two minimal surface m(A) projected into the
bulk AdS spacetime. To �nd this surface, one must take the area with the smallest area over the
set of all possible surfaces in the bulk which are homologous to the region A. This simple theory
also provides a convenient interpretation which connects directly back to holography in that the
minimal surface can be interpreted as a sort of holographic screen upon which the boundary
information is projected.

Consider a constant time Cauchy slice Σ of the AdS bulk and some subset of the conformal
boundary A ⊂ )Σ with reduced matrix �A. The RT formula states that the von Neumann entropy
of the region A in the CFT is

S(�A) =
A[m(A)]
4GN

(3.7)

where A[m(A)] is the area of the bulk subregion homologous to A. The appropriate minimal
surface must obey the conditions(52)(19)(71)(72):

1. The boundary of the minimal surface must be the same as the CFT subregion, A: )A =
)m(A)

2. The minimal surface is homologous to A such that A ∪ m(A) form the boundary of some
d-dimensional spacelike surface in 
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3. The minimal surface minimizes the area functional with respect to all possible surfaces
mi(A): S(�A) = minmi (A)

A[mi (A)]
4GN

Suppose we have a |Ψ⟩ associated with the region A of the CFT. The boundary region which
encodes the dual of this state, Ψ ⊂  is referred to as the entanglement wedge. The entangle-
ment wedge is denoted as the W[A] and can be interpreted as the bulk domain of dependence
bounded by the A and m(A) (73). If one considers some local boundary perturbation, the spread
of the microscopic information it contained is bounded by this entanglement wedge.

Making reference only to the geometric notions, one can prove that the HEE calculated by
the RT formula obeys the desired QIT identities given in Chapter 1. In Appendix C, we detail the
covariant Hubeny-Rangamani-Takayanagi (HRT) generalization of the RT formula for the sake
of keeping our discussion self-contained.

3.3.2 The Quantum Extremal Surface

So far we have only de�ned the leading order contributions to the entanglement entropy given
by the classical spacetime. For a more complete description, we wish to capture the full entan-
glement entropy including quantum �elds in the bulk and how they backreact on the geometry.
The �rst such attempt to incorporate these corrections was published by Faulkner, Lewkowyckz
and Maldacena (FLM) who were able to incorporate �rst order quantum corrections (74). They
found that the total entanglement entropy up to �rst order in a bipartite state is found by simply
including the next to leading order terms by hand

SvN [�A] = SRT (�A) + Squant(�A)

= min
mi (A)(

A[mi(A)]
4GN

+ Sbulk(�ΣA))
(3.8)

where we de�ne Sbulk as the entanglement entropy between quantum �elds living on the bulk
region described by the boundary region A (ΣA) and those on the bulk region described by the
boundary region Ā (ΣĀ). Higher order terms mixing the quantum �elds and the classical geometry
are not included at this level, nor are linear order backreactions on the geometry itself.

Let’s consider the generalised entropy of a black hole,

Sgen[�BH ] =
AH

4GN
+ Sout(�BH ) (3.9)

where Sout is the �ne grained entropy of anything between the black hole horizon and the cuto�.
This formulation satis�es the second law of black hole thermodynamics. The density matrix
�BH encodes the state which corresponds to the degrees of freedom in the central dogma. In the
black hole context, one can imagine that the region A represents the region dual to the Hawking
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radiation while the region Ā is the region dual to the black hole degrees of freedom. In this case,
the FLM estimation of the �rst order quantum correction reduces to the generalised entropy and
the minimal surface corresponds to the black hole horizon as expected.

Not long after the FLM proposal, Engelhardt and Wall were able to take this a step further
by modifying the HRT proposal to include quantum corrections(11). In Engelhardt and Wall’s
conjecture, the required quantum corrected and covariant entanglement between the subregion
A and its complement Ā is given by the minimal extremal generalised entropy Sgen(�� ) which
corresponds to the quantum extremal surface (QES) in the bulk � ,

SvN [�A] = Sgen(�� ) =
A[�(A)]
4GN

+ Sbulk(��(A)) (3.10)

We now return to the notion of the entanglement wedgeW[A]whose information is encoded
in the density matrix �� which in general need not describe connected subregions. The QES must
satisfy the properties:

1. The boundary of the CFT subregion A is the same as the boundary of the extremal surface
�(A(t)): )A(t) = )�(A(t)).

2. The QES is homologous to A(t) such that A(t) ∪ �(A(t)) form the boundary of some d-
dimensional spacelike surface in .

3. The QES must extremise the generalized entropy such that for candidate surfaces �i(A(t))
which satisfy the previous conditions, there exists some subset of surfaces �(A(t)) for which

Sgen(�� ) = ext�i Sgen(��i ) (3.11)

where � ∈ {�ext}.

4. The QES is then de�ned as the extremal surface which yields the minimal generalized en-
tropy,

Sgen(�� ) = min
�ext

Sgen(�ext) (3.12)

We can now state the full QES conjecture as

SvN (�A) = min
�i
ext�i Sgen(��i )

= min
�i
ext�i [

A[�i]
4GN

+ Sbulk(��i )]

(3.13)

where the extremization and minimization should be read as being with respect to the
variations in the location of the co-dimension two candidate extremal surface �i which
obeys the �rst two conditions.
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A QES maximin prescription was proposed in (75),

SvN (�A) = max
ΣA

min
�i

Sgen[�i(ΣA)] = max
ΣA

Sgen[�min(ΣA)] (3.14)

where the minimization is performed over all bulk surfaces �i . The maximin procedure is espe-
cially useful when proving that the information theoretic properties described in Chapter 1 hold.
In the following subsection we shall also touch on the QES prescription in the context of the
BHIP.

3.4 Entanglement Islands

It transpires that the QES appear to provide a unitary Page Curve for the evaporation of asymp-
totically AdS black holes(67). Before the Page Time, tPage , the QES is the empty surface but for
t > tPage , a QES forms in the interior region of the black hole (76)(77)(78) near the horizon. There-
fore, the QES prescription tells us that there should indeed be a phase transition near the Page
Time. The maximin prescription allows us to foliate the spacetime into Cauchy slices and con-
sider the portion of slices which extend from the QES to the cuto� surface. The cuto� surface is
simply de�ned in this context as the region which partitions the region which collects the Hawk-
ing radiation from the black hole. From the QES formula, we know that given a minimal QES, � ,
it is possible to write the generalised entropy as

SvN (�BH ) =
A[�]
4GN

+ Sbulk(�� ) (3.15)

where A[�] is the area of the QES.
For t < tPage the area term vanishes as the QES is the empty surface, ie. during early times the

QES simply lies very close to the horizon. The only non-vanishing contribution is then from the
bulk entropy of any �elds in the entanglement wedge of the black hole W[BH]. This entangle-
ment wedge contains the entirety of the black hole’s interior region and extends up to the cuto�
surface. Due to the evaporation of the black hole, outgoing radiation escapes the entanglement
wedge of the black hole. As the Hawking radiation escapes, interior modes begin to accumu-
late within the entanglement wedge of the black hole which results in a steady increase in the
entanglement entropy. Equivalently, we can say that the second term in (3.15) dominates.

For t > tPage , the bulk entanglement entropy contribution becomes negligible because only a
minute portion of Hawking modes are contained within the QES which lies just inside the horizon
and the cuto� surface. This is a consequence of the fact that interior modes have fallen deeper
than the QES and most of their outgoing partners are now far from the cuto� surface. At this
point, however, the gravitational area term is non-vanishing such that we have a contribution
to the entanglement entropy from the QES proportional to its area. The QES remains close to
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the shrinking horizon of the black hole and so this contribution to the entropy will decrease
proportional to the horizon of the black hole and will eventually go to zero. Therefore, we recover
the desired Page Curve behaviour required for unitarity. This can also be seen in Figure 3.2.

Figure 3.2: (a) A visualisation of the QES for an evaporating black hole. Hawking modes are
represented by the squiggles which always appear in pairs, one inside and the other outside of
the horizon. For early times, t1, t2 < tPage the QES shown by the grey dot vanishes. The only
contribution at early times is from the Hawking modes in the bulk which are de�ned on the
orange lines which extend from the QES to the cuto� surface which is represented by the dotted
blue lines. For later times, t3, t4 > tPage the QES is no longer vanishing and becomes dominant.
The QES then stays close to the interior of the horizon such it decreases monotonically as the
black hole shrinks. (b) The unitary Page Curve for the �ne grained entropy of the black hole.
The vanishing-QES contribution is shown in red whilst the QES contribution is shown in green.
We see that they are monotonically increasing and decreasing respectively and follow the Page
Curve showed in blue due to the phase transition at tPage . This �gure can be found in (32).

The black hole system only gives half of the total Hilbert space as the horizon physically
divides the spacetime into two complementary regions: the black hole and radiation regions. If
the �ne grained entropy of the black hole follows the Page Curve and the total state (interior
and exterior) of the black hole is pure, then the radiation entanglement entropy must necessarily
follow the same Page Curve. We therefore collect the Hawking radiation far away from the black
hole but at the Page Time, there must be a phase transition. This can be illuminated by the QES
prescription. At early times, all of the information which composes the black hole is contained
within the horizon. Therefore, information remains encoded within the entanglement wedge of
the black hole. The formation of the non-vanishing QES at the Page Time in the interior of the
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black hole implies that for late times, the degrees of freedom of the black hole are only encoding
information about what lies between the QES and the cuto� surface.

This warrants the question of what happened to the interior modes which have passed the
QES. Where is this information encoded? As the outgoing radiation is entangled with the infalling
modes, it would then make sense that this information was encoded in the entanglement wedge
of the radiation instead. This implies that the information about the state of the system associated
to the region deeper than the QES is encoded in an ‘entanglement island’ disconnected from the
radiation region. This island can be de�ned by making the appropriate changes to the radiation
region such that it also follows the Page Curve.

3.4.1 Rules on the Island

Let us take some boundary subset A dual to the radiation region in the bulk. The generalised
entropy we must now consider is given by

SvN (�A) = Sgen(A ∪ I ) =
A[)I ]
4GN

+ Smat(A ∪ I ) (3.16)

where I is the disconnected island region with boundary )I . The union, A ∪ I is the region
of the bulk spacetime extremizing the generalized entropy. The island exhibits the following
features:

1. The boundary of the island’s boundary coincides with the boundary of the radiation region
of the CFT

)A = )()I ) (3.17)

2. The boundary of the island )I is homologous to the radiation region such that their union
forms a spacelike surface in the bulk.

3. The island extremizes the generalized entropy of the union of the radiation and the island.
This means that it belongs to the set of extremal bulk regions {Iext} satisfying

Sgen(A ∪ Iext) = extIi Sgen(A ∪ Ii)

= extIi [
A[)Ii]
4GN

+ Smat(A ∪ Ii)]
(3.18)

4. If there exist multiple candidates extremizing the generalised entropy in the last step, then
the island is the candidate which yields the minimal generalised entropy:

Sgen(A ∪ I ) = min
Iext

Sgen(A ∪ Iext) (3.19)
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such that we can express (3.16) as

SvN (�A) = min
Iext

{
extI [Sgen[A ∪ I ]]

}
(3.20)

There also exists a maximin prescription for islands (75). In this case, we must foliate the
spacetime with a set of spacelike Cauchy slices Σ containing the boundary CFT region represent-
ing the radiation, A, such that )A ⊂ Σ. We pick a single Cauchy slice Σi and then �nd the minimal
QES, �min(Σi) which minimizing the generalized entropy (de�ned as the quantum �elds and area
terms from ΣA∪I which is the portion of the Cauchy slice enclosed by the entangling surface union
region A). We then maximize the minimal surface over time or Cauchy slice within the set {Σi},

SvN (�A) = max
Σ
min
� [

A[�(Σ)]
4GN

+ Smat(ΣA∪I )] (3.21)

Islands exhibit several non-trivial features. The island can be empty, at which point it re-
duces to the normal entanglement entropy on the boundary region describing the radiation A
which is described by the non-gravitational CFT. Due to the minimization procedure, the island
only dominates when its entanglement entropy that is smaller than the one associated with the
vanishing island solution. Non-vanishing islands are always spacelike separated from A. As pre-
viously mentioned, the island can be disconnected and in this case is simply the union of disjoint
subregions of the bulk. For asymptotically AdS spacetimes, the island’s boundary turns out to be
a quantum extremal surface )I = � , which requires that the �rst two conditions hold.

Maldacena et al. illustrated that a new dominant saddle point emerges in the path inte-
gral which corresponds to the case where all replica manifolds are fully connected by replica
wormholes(67). This new saddle point can be interpreted as the emergence of the islands. It is
therefore believed that this island prescription should hold for more general systems where there
exist CFTs living in the same bulk spacetime as the island region or in a disjoint bulk region.
Whilst this result is encouraging, we recall that the Euclidean path integral formulation cannot
generally be assumed valid for dynamic spacetimes and that these results were only illustrated
for CFTs with central charge c ≫ 1(67).
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Part II

From Qubits to QuBTZ
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Even armed with the QES prescription, exact results in quantum gravity are di�cult to come
by. There exists, however, another class of exact solutions to Einstein’s equations exploiting
the AdS/CFT duality to construct e�ective theories localised on branes. These ‘holographic
braneworld’ constructions have been used to good e�ect to �nd useful results ranging from nor-
malizable gravity theories localised on the brane (79)(12), novel models of entanglement islands
(13) and branes accounting for quantum corrections to classical black holes(14)(80).

This part of the thesis will focus on the quantum corrected QuBTZ model proposed in (14).
The QuBTZ employs the AdS4/CFT3 duality to construct a backreacted BTZ geometry with cor-
rections sourced by CFT3 �elds outside of its horizon. We provide a brief overview of this fas-
cinating model in Chapter 4. In Chapter 5, we turn our attention to physics on the brane. We
calculate thermodynamic properties and geodesics on the brane, focussing on the small backre-
action limit allowing us to use the RT prescription on the brane. Unfortunately, this limits us to
linear order CFT and backreaction e�ects and we leave higher-derivative corrections to future
research.
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Chapter 4

The Quantum Corrected Black Hole

Sans a complete theory of quantum gravity, one cannot construct a reliable notion of a general
quantum black hole. However, we are able to glean some insight into quantum gravity from
holography and semi-classical approximations. In such limits, a sensible approach is to treat
gravity as a classical �eld generated by the expectation value of the fully quantum �elds in the
theory,

G�� (g��) = 8�G ⟨T�� (g��)⟩ (4.1)

Obviously, this approach is often impractical and analytically intractable for non-symmetrical
matter con�gurations. Furthermore, the inclusion of �elds within a bulk naturally generates
some backreaction to the black hole which is not well accounted for in this scheme.

In this chapter we introduce the quantum BTZ (QuBTZ) geometry which applies the braneworld
construction to account for the presence and backreaction of bulk CFT3 �elds on a BTZ black
hole. Branes are geometric objects embedded in a non-trivial higher dimensional geometry and
localised at a �xed position. The formulation of this model involves concepts such as C-metrics
and other unnecessary details well described in (81) (82). We will spare the reader a detailed
review of these concepts as they are not vital to our discussion.

The AdS4/CFT3 duality maps CFT3 �elds to a problem of gravitational dynamics in a 4D bulk
geometry. Using the tools of holography we can construct a gravity theory described by

�� (g��) = 8�G ⟨T�� (g��)⟩planar (4.2)

where the �� captures higher curvature corrections. Using holography the problem re-
duces to simply solving the classical gravitational equations of the braneworld in one more
dimension(83)(84).

In the QuBTZ, an e�ective three-dimensional gravity theory becomes localised on the brane.
This theory is dual to a CFT3 with cuto� scale 1/� . The higher-derivative curvature terms on
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the left of (4.2) are then induced by the CFT above the cuto� of the theory backreacting directly
on the geometry. Correspondingly, the energy momentum tensor on the right is induced by the
CFT below the cuto�. Hence, the left hand side emerges as an e�ective theory of gravity on the
brane resulting from integrating out modes above the cuto� scale in the CFT. This remarkable
construction thus incorporates both high and low energy quantum e�ects in an exact manner.

Backreactions can be treated perturbatively in the limit of small cG3/L3 where G3 and L3 are
the e�ective three dimensional Newton’s constant and AdS3 radius. For the low energy limit,
the backreation is proportional to the central charge and hence linear in this parameter. The
curvature corrections appearing on the left of (4.2), however are quadratic in this parameter due
to the cuto� length of the e�ective theory being proportional to cG3. For this reason, we can
consider linear corrections in which we can extract the leading order CFT backreaction while
ignoring higher-derivative gravity modi�cations.

Previously, we introduced the concept of the generalised entropy,

Sgen = SWald + Sout (4.3)

where we recall that Sout is the entropy of all �elds living outside the BH once the leading di-
vergent term proportional to the area has been reabsorbed into the renormalisation of G (d+1)

N .
For higher-curvature theories, we must instead use the Bekenstein-Hawking-Wald entropy, Swald
rather than SBH (85). As stressed previously, the CFT entropy Sout ∝ c and is hence distinct from
the leading curvature corrections in the Wald entropy appearing on the left of (4.2).

However, the holographic approach allows us to instead calculate Sgen in the bulk of the higher
dimensional picture in which the brane lives,

Sgen =
Abulk

4G (d+1)
N

(4.4)

In this interpretation, the second picture allows us to simply calculate the entropy by �nding
the RT surface in the four dimensional picture (86). The entire entropy should therefore be con-
sidered as an entanglement entropy in contrast to the Sout on the brane. The reason for this is
that both the Einstein-Hilbert and higher-derivative terms in the action are induced by integrat-
ing out the UV degrees of freedom in the CFT. Therefore, the Wald entropy can be interpreted
as being induced by the entanglement of short wavelength modes across the black hole horizon.
This method also allows us to calculate the QES for a system localised on a brane. In (14), it was
shown explicitly that Sgen indeed obeys the �rst law of black hole thermodynamics,

TdSgen = dM − ΩdJ (4.5)

where M, J , T and Ω are all measured on the brane. In contrast, the Wald Entropy of the black
hole was found not to obey the �rst law. To reconcile this, one can interpret that generalised
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Figure 4.1: A schematic of the braneworld setup from (80). a) shows the CFT picture in which
two copies of a thermal CFT3 are coupled to a thermal CFT2 defect. b) The thermal CFT2 can be
replaced with its dual representation. c) The two thermal CFT3 can also be replaced with asymp-
totically AdS4 bulks. The boundary conditions between the defect and the CFT3 are transparent.

entropy in the brane picture as being composed of the Wald entropy and an entanglement entropy
sourced by the CFT3 �elds outside its horizon de�ned by the di�erence between the Wald and the
generalised entropy. This result is non-trivial and rather remarkable considering that Sbulk lives
in the higher dimensional picture.

4.1 Bulk Dual to the QuBTZ

In this chapter, we follow methods developed in (87) and (88) for solving a quantum corrected
black hole using a classical bulk dual with a black hole localized on the braneworld.

We start by introducing the AdS4 C-metric (11)(89)(90),

ds2 =
� 2

(� + xr)2 (
−H(r)dt2 +

dr2

H(r)
+ r2(

dx2

G(x)
+ G(x)d�2)) (4.6)

with
H(r) =

r2

� 23
+ � −

��
r
; G(x) = 1 − �x2 − �x3 (4.7)

which solves the Einstein equations with

Rab = −3(
1
� 2
+
1
� 23 )

gab (4.8)
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such that the AdS4 radius is given by �4 = (
1
� 2 +

1
� 23 ). The parameters �, �, � and �3 are parameters

whose physical interpretations can be given as:

1. � is the strength or state of the CFTs which determine the strength of the quantum correc-
tions

2. � = {−1, 0, 1} depending on the curvature of the space. For � = 1 one �nds a dressed
conical singularity, whilst for � = −1 we have a dressed BTZ solution. We assume that
� = −1 throughout our work.

3. �3 is the induced AdS3 radius on the brane such that �3 ∝ L3+Higher Curvature Corrections

4. � can be expressed as
1
� 2
=
1
� 24
−
1
� 23

(4.9)

where �4 is the AdS4 radius in the bulk. We will assume that 0 ≤ � < ∞ so that �3 > �4.
This parameter contains a great deal of physical information, providing a notion of the
brane position (and hence the cuto� scale of the 3D e�ective theory and the strength of the
backreaction) and the inverse of the brane tension.

In the e�ective three-dimensional picture on the brane, we will generally be interested in
keeping �3 �xed and instead looking at � /�3 and �. Though we have presented an ad hoc picture,
it should be obvious that �4 is a derived scale such that we can interpret the four-dimensional
bulk as emerging from the boundary physics.

Setting � = 0, we can recast the metric for the bulk as

cosh � =
�3
�4

√
1 + r2x2

� 23

|1 + rx
� |

, r̂ = r
√
1 − �x2

1 + r2x2
� 23

(4.10)

then the geometry becomes more explicitly pure AdS4,

ds2 = � 24 d�
2 +

� 24
� 23
cosh2 �

(
dr̂2
r̂2
� 23
+ �

− (
r̂2

� 23
+ �)dt2 + r̂2d�2

)
(4.11)

We can now foliate this spacetime along constant � slices with familiar asymptotically AdS3
geometries with radius given by �4 cosh(�). Each value of � gives either global, Poincaré or BTZ
branes at each � for � = {−1, 0, 1} respectively.22

22if we cut a � = 1 solution at � = �b and integrate out � > �b , this gives the ground state of the Karch-Randall
set-up (12)
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Figure 4.2: The bulk geometry at a constant t and � for the braneworld construction with a black
hole in it(14). The thin black border is the asymptotic AdS4 boundary, the thick blue region is the
brane and the black region represents the bulk black hole with horizon at r = r+. We cut o� the
bulk at x = 0 so only the gray region 0 ≤ x ≤ x1 is retained, where x1 is the smallest positive root
of G(x). This root is also now the � axis. In our construction, we glue a second copy of this region
along the brane to make a ℤ2-symmetric two sided braneworld. The dual three dimensional �elds
satisfy transparent boundary conditions at the AdS4 boundary.

Turning on the quantum corrections, the geometry naturally becomes more complicated.
Along the axis x = 0, however, the induced metric is totally umbilic such that the intrinsic cur-
vature is given by,

Kab = −
1
�
ℎab (4.12)

so we choose the x = 0 surface for the position of the brane as in Figure 4.2.
To gain insight, we consider the case of � = 0. We �st glue the metric at x = 0 to a copy of

itself, imposing the Israel junction conditions(91) across the gluing surface at x = 0. The metric
is continuous across the brane but its derivative becomes discontinuous due to the stress tensor
on the brane,

Sab = −
2

8�G4
(Kab − ℎab) = −

1
2�G4�

ℎab (4.13)

giving a brane tension,

62



� =
1

2�G4�
(4.14)

which is found by relating the discontinuity of the extrinsic curvature tensor across the po-
sition of the gluing surface to the stress tensor induced by the brane. In the limit � → ∞ we �nd
�3 → �4 such that the brain becomes tensionless and we are on an equatorial � = 0 slice of the
AdS4 bulk. In the opposite limit � → 0, the brane moves closer to the asymptotic bulk boundary
at � → ∞. Karch and Randall showed that for 0 < � < ∞, there is a massive graviton bound state
localised on the brane (12). When � is very small, however, the brane is close to the boundary
and the graviton is almost massless.

The e�ective theory on the brane is obtained by solving the bulk Einstein equations for the
excluded region between the brane at x = 0 and the AdS4 conformal boundary (the white region
in Figure 4.2) in an expansion for small � . The holographic interpretation of this is that we are
integrating out the ultraviolet CFT degrees of freedom down to the cuto� �−1(92) inducing the
gravitational dynamics on the brane.

The action on the brane is23

I =
1

16�G3 ∫
d3x

√
−ℎ [

2
L23
+ R + � 2 (

3
8
R2 − RabRab) + …] + ICFT (4.15)

where the e�ective three-dimensional Newton’s constant is

G3 =
1
2�4

G4, (4.16)

and the three-dimensional cosmological constant term as

1
L23
=
2
� 24 (1 −

�4
� )

=
1
� 23 (1 +

� 2

4� 23 )
. (4.17)

where in the �nal step in this expression, we expanded �4 = (
1
� 2 +

1
� 23 )

−1/2
to quadratic order

in � .
On the brane the number of microscopic degrees of freedom in the holographic CFT is mea-

sured by an e�ective central charge c normalised as

c =
� 24
G4

(4.18)

Together with our previous relationship for �4 we can relate this to terms in the dual three-
dimensional theory,

23We note that in the limit that the graviton becomes massless, the higher curvature corrections become irrelevant
and we can use the Bekenstein-Hawking entropy.
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�
1 + (� /�3)2

=
cG4
2�4

= 2cG3 (4.19)

This relation is exact, but we can also consider the relevant small � expansion,

� = 2cG3(1 + (cG3/L3)) (4.20)

Importantly, as long as we keep c and L3 �nite, the brane approaches the AdS4 boundary such
that the gravitational coupling G3 vanishes and there is backreaction of the CFT.

We note that there is no contradiction between requiring c ≫ 1 and performing a small �
expansion as long as we expand in orders of

�
�3
∼
c~G3
L3

≪ 1 (4.21)

which allows us to use the three dimensional description and the limit of the large central charge
is

c ∼
�

~G3
≫ 1 (4.22)

so that both limits are satis�ed provided that � ≪ �3 and we do not include quantum corrections
to the bulk. From (4.21), we see that leading order CFT contributions enter at linear order in c
in ICFT are also in linear order of �

�3
, distinguishing them from the higher-curvature corrections

which are (( �
�3 )

2
).

4.2 Global Features of Bulk and Physical Parameters

The presence and variety of black holes depends on the functions H(r) and G(x), introduced
earlier. Clearly, the positive roots of H(r) correspond to Killing horizons of )t . Provided there is
a positive root of H(r), we can identify it as the black hole horizon rℎ but we also want to ensure
that the horizon is compact. To ensure this, we consider the (x, �) sector in which the real roots
of G(x) are symmetry axes of )� . The properties of these solutions determine the topology of the
horizons. We can consider a di�erent parameterization for G(x) and H(r) allowing for cleaner
expressions.

To have a C-metric which contains a �nite black hole in the bulk24, we restrict our parameters
to the range where there exists (at least) one positive root of G(x). The smallest of these roots
we refer to as x1(89). This root will therefore be the axis of rotation for the brane. We can then

24As opposed to an in�nite black string
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restrict the range of x to 0 ≤ x ≤ x1. Using x1, we can then paramaterize the CFT state by,

� =
1 − �x21
x31

(4.23)

In the cases of interest where � = −1, x1 ∈ (0,∞)25. The strength, �, is a monotonically
decreasing function of x so that as � → 0, x1 →∞ and as � → ∞, x1 → 0.

Furthermore, we want to remove the conical singularity at x = x1 such that we identify,

� ∼ � + 2�Δ (4.24)

with
Δ =

2
|G′ (x1) |

=
2x1

3 − �x21
(4.25)

We can then consider that for constant t and r , variations in 0 ≤ x ≤ x1 give topological discs.
Conveniently, we can think of them as caps where x corresponds roughly to the cosine of the
polar angle along the cap. We note that G′(x1) < 0 in this range and Δ is independent of � . A
trivial calculation shows that Δ reaches it maximum Δ = 1√

3 at x1 =
√
3.

4.3 Physical Parameters

The metric induced on the brane at x = 0 is asymptotic to AdS3 at r → ∞, but the coordinates are
not canonically normalized since � has periodicity 2�Δ. To rectify this, we rescale the variables

t →
t
Δ
, � →

�
Δ
, r → Δr, (4.26)

so that now � ∼ � + 2� and the metric takes the form

ds2 = −(
r2

� 23
− 83M −

�F(M)
r ) dt⃗2 +

dr2
r2
� 23
− 83M − �F (M)

r

+ r2d�2 (4.27)

where 3 is a ‘renormalized Newton’s constant’ given by

3 = (
1 −

� 2

2L23
+ (

�
L3)

4

)
G3

=
1 − � 2

2� 23
2�4

G4 + (
�
L3)

4

=
�4
�
G3 =

1
2�
G4

(4.28)

25The case where � → 0 can be taken to be a limiting case
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where the last line is equivalent up to order(� /L3)4. We can also identify the three-dimensional
mass M ,

M = −
�
8G3

�
�4
Δ2 = −

1
2G3

�
�4

�x21
(3 − �x21 )

2 , (4.29)

and the mass parameter of the solution given by

F (M) = �Δ3 = 8
1 − �x21
(3 − �x21 )

3 (4.30)

We henceforth work under the assumption that M and 3 remain valid to all orders in � .
We ought to be careful in our de�nition of mass which is given in Einstein-AdS gravity by the
subleading constant term in gtt . Here, however, the higher order terms in the e�ective theory
modify the de�nition by adding corrections beginning at order � 2. We can account for this am-
biguity internally provided we use the renormalized Newton’s constant. On this, we note that
we will continue to �x the renormalized quantities �3 and 3 which appear in the exact metric
instead of the bare parameters in the e�ective action, G3 and L3. The function F (M) depends on
3M only through x1 but is otherwise independent of � /�3 so as we change the strength of the
backreaction for a �xed (renormalized) mass, 3M , the function does not change.

Making use of the holographic dictionary, it can be shown that the metric induced on the brane
indeed solves the semi-classical equation with higher order derivatives(14), though this must be
done order by order and quickly becomes tedious. The stress tensor of the holographic CFT can
be found in increasing orders of � 2. It was shown in (14) that at order � 2, the conformal symmetry
of the CFT is broken on the brane due to the cuto� � . Using the relationship �

1+(� /�3)2
= 2cG3, we

can eliminate � and give the stress energy tensor in terms of magnitudes on the brane alone. For
small � we �nd,

⟨T a
b⟩ =

c
8�

F(M)
r3

diag{1, 1, −2} (1 +  (cG3/�3)2) (4.31)

where we observe the strength of the quantum corrections from the CFT is determined en-
tirely by c and F (M) for small � . In the limit of � → 0, the metric (4.27) can be interpreted as a
classical solution to the Einstein equations. Within this limit of small backreaction, the correc-
tions to the classical geometry are (cG3). The CFT is therefore consistently solved simultane-
ously with the three-dimensional gravitational equations, yielding an exact backreaction of the
CFT degrees of freedom for �nite � , for both light and heavy CFTs through the non-perturbative
resummation of the higher-curvature corrections.

Because the classical BTZ solution is recovered when � = −1, � = 0, we refer to the range of
� > 0 as the QuBTZ. Lastly, we note that � /�3 does not enter directly into F (M) and depends only
on the backreaction through the rescaling of G3 to 3. The dependence of the stress tensor on M
at low orders in � is simple as there is no term in ⟨T a

b⟩ ∝ � 2 and any subsequent (� 3) behaviour
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comes from the higher-curvature corrections.
A fascinating result of this analysis is that the range of masses on the brane are �nite26,

−
1
83

≤ M ≤
1

243
(4.32)

For a �xed value of 3M , we have that for � = −1 there exist two branches covering this mass
range,

Branch (1b) ∶ � = −1, 0 < x1 <
√
3

Branch (2) ∶ � = −1,
√
3 < x1 < ∞

(4.33)

which the authors interpreted as corresponding to Casimir dominated (1b) and thermal (Hawking
radiation) dominated (2) con�gurations.

Figure 4.3: Plots of F (M) as a function of 83M taken from (14). The branch labelled (1a) corre-
sponds to � = 1 solutions while branch (3) gives the black string solutions which are the only
other bulk solution in this setup admitting higher mass solutions. These solutions are clearly in
the ground state of the CFT as F (M) = 0. Branches (1b) and (2) correspond to QuBTZ solutions
dominated by Casimir and thermal modes respectively.

A novel feature of this solution is the �nite mass range, which the authors argued is a conse-
quence of holographically representing the CFT by a four dimensional bulk theory. This bound
is likely not a general feature of the braneworld construction but rather represents a limit on

26We include here the range of negative masses reached by � = 1, corresponding to a dressed conical singularity,
but leave aside this for consideration in future research.
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a more general class of QuBTZ-type solutions for which the CFT is captured by localized bulk
black holes. In the following chapter, we see that this e�ect yields interesting consequences for
the physics on the brane.

68



Chapter 5

Physics on the Brane

We have encountered many facets of the QuBTZ solutions, however, we so far lack a good picture
of how physics manifests on the brane for the range of z and � values. It will be most instructive
to work in the small � /�3 limit where we may apply the RT prescription on the brane. The physical
horizon will be given by the real positive root of H(r) as was previously noted, with the radius
of the circular horizon given by r = Δrℎ, meaning that r+ ought to be considered the black hole
horizon induced in the bulk.

We can assume that � /�3 and � inhabit sensible ranges where a positive root exists and �nd a
more convenient paramaterization,

z =
�3
r+x1

(5.1)

and
� =

�
�3

(5.2)

where one can interpret z as determining the uncorrected BTZ mass and � as a dimensionless
backreaction parameter27. One can eliminate x1, or �, and r+ using

x21 = −
1
�

1 − �z3

z2(1 + �z)

r2+ = −�
2
3�

1 + �z
1 − �z3

�x1 = −�
1 + z2

1 − �z3

(5.3)

27From here on we shall refer to orders in the backreaction � and � interchangeably.
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with � and z as parameters the ADM mass is

M =
1
23

z2 (1 − �z3) (1 + �z)
(1 + 3z2 + 2�z3)2

(5.4)

where 3 = G3√
1+�2 and the coe�cient of the stress tensor is

F (M) = 8
z4 (1 + z2) (1 + �z)2

(1 + 3z2 + 2�z3)3
(5.5)

In this form it is not apparent that F (M) depends only on 3M and not separately on � , but of
course it is still true since

)�F (M) − )zF (M))� (3M) /)z (3M) = 0 (5.6)

In this parametrization � is not present in the expressions for physical quantities and is de�ned
implicitly by,

� = sign (�z3 − 1) (5.7)

which covers the entire range of branches (1) and (2) of bulk black holes of �nite size by letting

0 ≤ � < ∞, 0 ≤ z < ∞ (5.8)

The temperature of the horizon, relative to the canonical timelike Killing vector on the brane,
)/)t , is

T =
ΔH ′ (r+)
4�

=
1

2��3
z (2 + 3�z + �z3)
1 + 3z2 + 2�z3

(5.9)

where r+ is the positive root of H(r). In the limit that � → 0, we return the standard expression
for the BTZ solution28,

ds2 = −(
r2

� 23
− 83M)dt2 +

dr2
r2
� 23
− 83M

+ r2d�2

= −(
r2 − r2ℎ
� 23 )dt2 +

� 23 dr2

r2 − r2ℎ
+ r2d�2

(5.10)

28We could also take F (M) = 0 as illustrated in Figure 4.3 however F (M) = 0 only occurs when 3M = 0 which
is uninteresting. There also exist black string solutions for which F (M) = 0 and 0 ≤ M < ∞ however we shall not
discuss them here.
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where r2ℎ = 8G3M� 23 , the standard expression for the horizon of a spherical BTZ black hole. In
this limit, we �nd that 3 → G3, M → 1

2G3
z2

(1+3z2)2 and T → 1
2��3

2z
1+3z2 such that even in the limit

of zero backreaction the range the classical masses in this theory is limited to 0 ≤ G3M ≤ 1
24 with

corresponding radii in the limit rℎ
�3
≤ 1√

3 . We see that z controls the classical mass of the black hole
induced on the brane, reaching a maximum at z = 1√

3 and going to zero monotonically on either
size of this value. Naturally, the inclusion of backreaction alters this maximum but the salient
point is that this model only allows for corrections to small black holes. This limitation prevents
us from taking helpful limits such as that of the planar black hole, a point which we return to in
Part III.

The polynomial dependence of important physical parameters in parameters r , � and z obfus-
cates the behaviour of observables of interest on the brane. We can, however, draw some general
conclusions about the behaviour of physical parameters of interest by plotting them as a function
of z and � as in Figure 5.1 and Figure 5.2 respectively.

Figure 5.1: A plot of the black hole horizon on the brane rℎ, its temperature T , its mass 3M and
the CFT state function F (M) normalised by their maximum value for � = {10−6, 10−3, 100, 103}
(ordered left to right, top to bottom) and 0 < z < �−1/3. We see F (M) is monotonically increasing
function of z.

Fixing the backreaction and varying z can be thought of as choosing a backreaction strength
and then seeing how this alters the parameters as we change the mass of the classical solution.
In the �rst plot in Figure 5.1, we see for small � , we pass very quickly from the thermal (2) to
the Casimir (1b) branch and the temperature is determined almost entirely by the radius and the
renormalized mass. As expected, for small backreaction the solution remains close to the classical

71



behaviour in which the temperature is determined entirely by the horizon radius. Furthermore,
the maximum value of the mass, temperature and horizon radius is reached close to the transition
point from branch (2) to (1b) at F (M)/Max[F (M)] = 0.5. In the second and third plots, we see that
as z is increased the behaviour becomes more complicated causing deviations from the classical
behaviour, shifting the maximum values due to mixing of the mass and CFT state terms. Notably,
the maximum values of the physical parameters move further to the right in their respective
ranges of z29 and in the limit of large backreaction, the behaviour of temperature and radius once
again coincide and only reach their maximum value in the upper bound of z. In contrast to the
small � case, the temperature and radius behaviour follows F (M)more closely, indicating that the
high energy conformal �elds become dominant over the mass.

Figure 5.2: A plot of the black hole horizon on the brane rℎ, its temperature T , its mass 3M and
the CFT state function F (M) normalised by their maximum value for z = {10−1, 5 × 10−1, 100, 101}
(ordered left to right, top to bottom) and 0 < � < z−3. We see F (M), rℎ and T are all monotonically
increasing functions of � .

Unlike the previous case in which varying z for �xed � covered the full range of3M and F (M),
we note that �xing z and varying � generically does not cover the range of physical solutions and
hence there exists some cuto� value of z beyond which only branch (1b) solutions exist. From
Figure 5.2, it is clear that for a �xed z both F (M) and rℎ are monotonically increasing functions
of � . Since F (M) increases monotonically with � , one can �nd the critical value z∗ explicitly by
considering the values of z such that F (M) > 4/27 for all � ≥ 0,

29It is important to stress that as we increase � , the range of z decreases such that the z-axes are of di�erent scales
in accordance with (5.7).
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8
z4(1 + z2)
(1 + 3z)3

>
4
27

⟹ z >
1√
3

(5.11)

Hence, for z∗ > 1√
3 the only consistent QuBTZ solutions reside on branch (1b).

Conversely, for z∗ < 1√
3 , there exist two values of � which give the same mass for a �xed z,

0 < �1 <
1 − 9z4

z3 + 9z5
; �2 =

1 − z3(�1 + 9z(1 + z�1))
z3 + 9z5 + 8z6�1

(5.12)

and

�2 >�1, for 0 < �1 <
1 − 3z2

4z3

�2 <�1, for
1 − 3z2

4z3
< �1 <

1 − 9z4

z3 + 9z5

(5.13)

where additional constraints have been imposed on �1 in terms of z such that the full range
(5.7) of �1 is not generally covered. Additionally, it should be apparent that the range of possible
values of � decreases monotonically to the limit �1 → 0 as z → 1√

3 . As previously established,
for �xed 83M and z, the solution with the higher backreaction belongs to the (1b) branch whilst
the lower belongs to branch (2). Furthermore, we observe that we can �nd the global maximum
of rℎ by noting that for � = 0, the global maximum is at z∗ and that both rℎ and F (M) increase
monotonically with � such that we must choose the largest value of � allowed by (5.7) given by
� → 3

√
3,

Max[rℎ/�3] ≤
2√
3

(5.14)

which is precisely twice the size of the � = 0maximum. Unfortunately, this does not assuage us of
the limitations of working with small black holes and we must proceed without this comforting
assumption.

For small � , the range of z covered is large and we see the full spectrum of physical results.
Increasing the backreaction, the behaviour of these parameters linearises. Perhaps more inter-
esting is that for small backreaction, the classical horizon radius-temperature relationship is well
observed but as we leave the small � limit and become con�ned to the (1b) branch, the horizon
radius behaviour follows the behaviour of F (M) more closely. This observation further supports
the notion that the dominant e�ects on the (1b) branch are generated by the high energy Casimir
modes of the CFT stress-energy tensor which scales with F (M), whilst in the small coupling limit
the dominant e�ects are thermal. The advantage of such an analysis is that one may be interested
in seeing how a classical black hole, with mass determined entirely by z, is altered by increasing
the backreaction of the CFT.
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5.1 Stability of the Branches

So far we have not broached the subject of the worrisome ambiguity of dual mass solutions on
branch (1b) and (2) in any great detail. The existence of two equal mass QuBTZ solutions with
di�erent CFT states is curious and begs the question: which will be the most physical. Natu-
rally, one expects that thermal solutions ought to be the more physical solutions when viewed
as perturbative corrections to the classical BTZ behaviour. To investigate this, we employ some
reasoning from thermodynamics under the assumption that the most sensible comparison results
from �xing the classical mass parameter z and ADM mass 3M and comparing the two values of
� for values where both solutions exist. One may consider other comparisons in which one �xes
the value of z and allows the renormalized mass and the backreaction to vary. From the brane
perspective this would not be particularly physically meaningful as one would not be guided by
physical observables.

It was observed in (14) that the negative mass branches have negative speci�c heat, )M/)T
and hence will not reach equilibrium with their Hawking radiation and will eventually evaporate.
The hotter branch (2) always has positive speci�c heat whilst the story for the colder branch (1b)
is more subtle. For some �xed � , the speci�c heat diverges at two points on branch (1b), once at
M = 0 and another at a �nite mass M1(�). Energy �uctuations in a thermal state are given by

⟨�E2⟩ = T 2 )E
)T

(5.15)

and hence it was argued that branch (1b) will be susceptible to large thermodynamic �uctu-
ations, hinting at instability. In the range M1(�) < M < 1

243 , the solutions have negative speci�c
heat and hence may be able to evaporate through the transparent boundary theory. From the per-
spective of entanglement islands, this prospect is rather interesting as it suggests that the islands
would reside in the bulk picture as proposed in (13).

To diagnose this more rigorously, we make the reasonable claim that the physical solution
will be that with the smaller free energy,  . To do so, we follow (93) in which we make use of
the regularised on-shell action, �

� = � (5.16)

where � is the inverse cuto� scale of the radius. Though generally divergent, di�erences in
free energy will be �nite in the limit � → 0. In the QuBTZ theory, we make use of the bulk
action which is accurate to all orders in � and has a simple Einstein gravity dual such that it can
be calculated using the Euclidean Einstein Hilbert action. This result takes into consideration the
conformal �elds residing outside of the bulk and hence we are calculating the free energy of the
entire con�guration on the brane rather than just that of the black hole. Firstly, we recall that the
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bulk Ricci curvature is given by (4.8) and hence the bulk Ricci scalar is30

R(Bulk) = −12(
1
� 2
+
1
� 23 )

= −
12
� 24

(5.17)

The Einstein-Hilbert action for the bulk with Euclidean metric gE is given by

� =
1

8�G4 ∫
d4x√gER(Bulk)

=
−12

8�� 24G4 ∫
�

0
dtE ∫

2�Δ

0
d� ∫

x1

0
dx ∫

1/�

r+
dr

� 4r2

(� + rx)4

=
−��Δ
2� 24G4 [

r3+(2� + r+x1)
(� + r+x1)2

−
(2�� + x1)
�2(�� + x1)2 ]

(5.18)

from which we may rewrite the free energy in terms of the e�ective theory parameters as,

 (z, �) =
(1 − �2)3/2

2G3�2(z�(z2 − 3) − 4)(
(1 + 2z�)

z2
√
(1 + z�)(1 − z3�)

−
(z3� − 1)(2�� +

√
1−z3�
1+z� )

6�2(�� +
√

1−z3�
1+z� )2

)
(5.19)

One can then compare the free energy of the two possible solutions by making use of (5.12) and

Figure 5.3: A typical plot of the di�erence in free energies Δ for z0 = 0.99 1√
3 . As we lower z, the

range of � increases and the di�erence in free energy turns more sharply.

(5.13) to �nd their di�erence, Δ = (2) − (1b),
30Naturally, one could also consider using the e�ective action (4.15) though this would be tedious and would limit

the analysis to a subsystem of the full bulk thermodynamics.
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Δ =

{
 (z, �1) −  (z, �2) for 0 < �1 < 1−3z2

4z3

 (z, �2) −  (z, �1) for 1−3z2
4z3 < �1 < 1−9z4

z3+9z5
(5.20)

the precise form of which is not particularly enlightening. As one can see from Figure 5.3,
Δ ≤ 0 such that the thermal branch will always dominate the thermal partition function as an-
ticipated. This analysis does not, however, give much insight into the proposed interpretation of
negative heat capacity solutions on branch (1b) as evaporating through the transparent interface
to the non-dynamical boundary region beyond rea�rming the relative stability of the thermal
branch. Unfortunately, due to time constraints this avenue could not be explored in detail and is
deferred to future study.

5.2 Geodesics in the QuBTZ

Our discussion so far has focused on global features of the bulk and its holographic correspon-
dence. However, we would also like to gain some notions of how test particles behave on the
brane, particularly infalling radial trajectories which elucidate limiting physical behaviour. Of
primary interest is gaining a better understand how the presence of conformal �elds and their
backreaction on the geometry alter the minimal surfaces present in the bulk for subregions of the
boundary CFT. These analyses will also be important in Part III of this thesis where we turn our
attention to the spreading of chaos and entanglement in black holes with a holographic dual.

5.2.1 Geodesics of an Infalling Particle

In this chapter, we calculate the geodesics of infalling particles and simplify some bounds for the
QuBTZ metric. We will work under the assumption that the backreaction remains small such that
the higher-derivative-gravity corrections in (4.15) are suppressed and we can employ the standard
techniques from Einstein gravity. We �rst note that there exist two familiar Killing vectors which
can be read directly from the metric (4.27),

K = )t ; R = )� (5.21)

from which we �nd,

K� = −f (r))t ; R� = r2)� ;

with f (r) = (
r3 − 83M� 23 r − � 33 �F (M)

r� 23 )
(5.22)
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These Killing vectors generate the familiar conserved charges along geodesics corresponding
to translations in � and t , which are the angular momentum and energy31 respectively.

E = −K�
dx�

d�
= f (r)ṫ ; L = R�

dx�

d�
= r2�̇ (5.23)

where the dot indicates a derivative with respect to the a�ne parameter, �. We can then use the
symmetry of the problem to recast it as,

� = − f (r)ṫ2 +
ṙ2

f (r)
+ r2�̇2

=
−E2

f (r)
+

ṙ2

f (r)
+
L2

r2

(5.24)

where � = {−1, 0, 1} for timelike (� = � ), lightlike (ds2 = 0) and spacelike (� = s) geodesics
respectively. We are most interested in radially infalling trajectories where L = 0 and

ṙ = ±
√
�f (r) + E2 → Δ� = ∫

dr√
�f (r) + E2

(5.25)

Let’s �rst consider the lightlike case �rst where � = 0,

∫ dt = ± ∫
dr
f (r)

(5.26)

The polynomials in f (r) change sign only once, meaning that it has one positive root and we
can write,

f (r) =
1
r� 23

(r − a)(r + b)(r + c) (5.27)

where a = rℎ ∈ ℝ+ and b, c are the roots of the cubic f (r) where one either has {b, c} ∈ ℝ+ or
b = c∗ ∈ ℂ depending on the sign of the determinant 32. We can also make use of a = b + c to
cancel one variable, though it does not add much insight here. For more details, see Appendix E.

31Per unit mass
32We have simply used Descartes rule here. There is one sign change in f(r) and two in f(-r) implying that we

have one positive real and either two negative real or two complex conjugate roots. Though the roots can be found
analytically, their form is not particularly illuminating. Since our polynomial is a depressed cubic polynomial, we
can easily �nd the determinant which gives us: 4�63 − 27(���23 )2 in the non-canonical coordinates.
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Lightlike paths

While the general equations of motion on the brane should be solved by minimizing the higher-
derivative action, we note that for radially infalling lightlike paths, the solution for the constant
x in the bulk coincides with that on the brane up to a conformal rescaling which factors out. The
bulk theory has an Einstein dual so we need not worry about the inclusion of the higher-derivative
corrections for radially infalling lightlike paths and these solutions automatically capture back-
reaction to all orders in � . These geodesics are found by solving (5.26),

t(r) = ± �3
rℎ(b − c) ln(

r−rℎ
r0−rℎ) − b(rℎ + c) ln(

r+b
r0+b) + c(rℎ + b) ln(

r+c
r0+c)

(rℎ + b)(b − c)(rℎ + c)

= ± �3
rℎ(b − c) ln(r − rℎ) − b(rℎ + c) ln(r + b) + c(rℎ + b) ln(r + c)

(rℎ + b)(b − c)(rℎ + c)
for r0 →∞

(5.28)

where a, b, c were de�ned previously. It may be instructive to consider the solution for the un-
corrected case, which can be easily found to be,

t(r) = ± [�3
tanh−1 ( r

′

rℎ )
rℎ ]

r ′=r

r ′=r0

= ±
�3
2rℎ

ln(
(r + rℎ)(r0 − rℎ)
(r − rℎ)(r0 + rℎ))

t(r) = ±
�3
2rℎ

ln(
(r + rℎ)
(r − rℎ))

for r0 →∞

(5.29)

where we choose ± for infalling and outgoing respectively. Unfortunately, this expression is
not invertible, nor is it clear from this form which function is larger. We can, however, deduce
from its derivative that the classical result will always be larger than the quantum corrected
result. One would also like to check if there are any local changes to the near horizon behaviour
according to the infalling observer. To check this, we can simply adapt our coordinates to the near
horizon region. The QuBTZ and BTZ solutions are plotted against one another in Figure 5.4.
Increasing the backreaction causes the infalling observer to approach the horizon faster. This
can be seen more explicitly by looking at the derivatives as illustrated in Figure 5.5 where we
see that the classical solution bounds the rate of approach from below, with the rate increasing
monotonically with the strength of the backreaction. Further away from the black hole, the
backreaction becomes negligible and the dominant e�ects are simply from the ADM mass. From
this, we can deduce that equal ADM mass solutions with �xed z will approach the black hole
faster on the Casimir branch than on the thermal branch. Notably, Figures 5.4 and 5.5 do not
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Figure 5.4: Plots of the near horizon behaviour of radial lightlike paths for z = 9
10

√
3 , �i = 10

−i and
�3 = 1. We have adapted the coordinates to the horizon such that r̃ = r − rℎ and plotted against
tan−1(t) for ease of interpretation. The dashed line indicates the classical solution.

indicate signi�cant changes to the near horizon behaviour for an infalling observer. One can
show that for a �xed penetration depth, r∗, the lightcone of the QuBTZ will be bounded from
below by the � = 0 BTZ lightcone and from above by the BTZ with rℎ determined by the ADM
of the QuBTZ solution.

5.3 Holographic Entanglement Entropy in the QuBTZ

We now wish to gain a better understanding of how quantum corrections alter the holographic
entanglement entropy of the black hole. The authors of (14) provided analysis of how corrections
alter the entropy of the black hole but did not extend this to subregions of the QuBTZ. In this
subsection, we review key results of (14) and calculate the holographic entanglement entropy for
subregions of the QuBTZ in the limit of small backreaction.

5.3.1 Entropy of the QuBTZ

In their original paper, Emparan et. al employed holography to identify the generalized entropy
of the QuBTZ by calculating the area of the bulk black hole solution,
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Figure 5.5: Plots of the near horizon behaviour of the lightcone for z = 9
10

√
3 , �i = 10−i and

�3 = 1. We have adapted the coordinates to the horizon such that r̃ = r − rℎ and plotted against
tan−1(dr̃ /dt) for ease of interpretation. The dashed line indicates the classical solution.

Sgen =
2
4G4 ∫

2�Δ

0
d� ∫

x1

0
dxr2+

� 2

(� + r+x)2

=
��3
G3

z
√
1 + �2

1 + 3z2 + 2�z3

=
��3
3

z
1 + 3z2 + 2�z3

(5.30)

On the brane, we have a higher-derivative gravity theory such that the correct procedure to
apply for �nding the entropy of the black hole is the Wald entropy,

SW =
1
4G3 ∫

dx√q(1 + �
2
(
3
4
R − gab⟂ Rab) + (� /�3)4) (5.31)

where we integrate over the horizon with induced metric qab, R and Rab are the three dimensional
spacetime curvatures at the horizon and gab⟂ = gab − qab is the metric orthogonal to the horizon.
One can expand in orders of � ,

Sgen =
A4

4G4
=

A3

4G3
+ �

�A3

4G3
+ � 2 + Sout (|�⟩) + … (5.32)

from which we may identify the contributions in order as: the Bekenstein-Hawking entropy
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of the uncorrected BTZ black hole, corrections to its area due to leading-order quantum backre-
action, the Wald entropy from higher-curvature terms in the semi-classical action and the con-
tribution from the entanglement entropy of the conformal �elds outside the horizon beginning
at linear order in � . Fixing M and expanding to linear order in � one �nds,

Sgen = ��3

√
2M
G3 (1 +

��
2�3)

−
��
x1

√
2M
G3

+  (� 2) (5.33)

where the leading order term is the Bekenstein-Hawking entropy of the uncorrected black hole
with a correction term∝ �� coming from the quantum backreaction on the geometry and the �nal
term coming from the entanglement entropy of the conformal �elds. We justify the claim that
linear order terms in � are proportional to linear order CFT e�ects proportional to c by recalling
that c ≈ � �3

2G3
. Neglecting higher order �2 terms, we �nd that at linear order the contribution from

the entanglement entropy of CFT �elds outside the horizon is given by,

Sout = Sgen − SWald = −�zSBTZ + (�2) (5.34)

where we note that the entanglement entropy of the CFT need not be negative as this is simply
the �nite part of the entanglement entropy after reabsorbing the leading order corrections into
the normalization ofG3. Generally, Sout is dominated by entanglement across the horizon between
the black hole and the CFT with large Casimir e�ects. For small black holes, such as in the limits
considered these e�ects are expected to be small and thermal e�ects will dominate as can be seen
for small � and z where we �nd,

Sout ≈ −2�c(��3T )2 (5.35)

where the T 2 dependence is that of a (2+1)-dimensional conformal gas. In contrast, solutions with
z ≫ 1 and � ≪ 1 are located close to the global AdS3 vacuum give a non-thermal result,

Sout ≈ −2
�
3
c (5.36)

For a given mass, the entropy of branch (1b) was found to be larger than that of branch (2)
due to entanglement e�ects from the Casimir dominated CFT state. In the following subsection,
we turn our attention to the more challenging problem of calculating the minimal surfaces and
entanglement entropy of subregions of the QuBTZ.

5.4 Minimal Surfaces of QuBTZ Subregions

Understanding the full entanglement structure of the QuBTZ on the brane demands that we
not only analyze the correspondence between global properties of the bulk and brane but also
the interplay of entanglement entropy for subregions of this construction. We must consider a
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Figure 5.6: A schematic showing how the entropy is calculated in the geometric picture. The
brane is indicated in green, the black region shows the bulk black hole region, red indicates the
bulk conformal boundary, the dark blue region is the region integrated out and the light blue
region is the bulk region outside the black hole.

number of additional complications which are not present in the global analysis.
The �rst such challenge emerges when we consider subregions of the bulk, where general

minimal surfaces are now two-dimensional surfaces rather than simple geodesics. The second
complication comes from the higher-derivative gravity theory induced on the brane which re-
quiring the use of the Dong-Iyer-Wald formalism(9) (10) rather than the relatively simple RT
formula. The third di�culty is that on both the brane and in the bulk the presence of the black
hole introduces a non-trivial phase transition between the two possible minimal surfaces as in
the classical case explained in Appendix D.

We focus here on the most physically relevant limit in which we consider linear corrections to
the classical BTZ result from the brane perspective. In the limit of small � the higher-derivative
gravity corrections beginning at order �2 become irrelevant. This allows us to use the tamer
RT formula for subregions in this limit. Physically, this prescription is equivalent to the FLM
procedure plus contributions accounting for �rst order backreactions on the geometry(48).

5.4.1 Minimal Surfaces and Entanglement Entropy

Take a t = 0 slice of the geometry with a boundary region � ∈ [−�A, �A] in the limit that � << 1.
The metric of the constant time slice is given by,

ds2|t=0 =
dr2

r2
� 23
− 83M − �F (M)

r

+ r2d�2 (5.37)
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To �nd the minimal surface from the RT formula, we simply need to �nd the geodesic con-
necting the point −�A to �A. We can choose the parameter r as our a�ne parameter and make
use of the fact that �′ = )r� is a Killing vector such that �

��′ = C = r∗.
We can then de�ne the connected minimal surface as twice curve which minimizes the in-

variant length between two points de�ned by,

s = ∫
sf

si
ds = ∫

r=r∗

r=∞
dr

= ∫
r=r∗

r=∞
dr

√
1

r2
� 23
− 83M − �F (M)

r

+ r2�′2
(5.38)

Taking the variation of the invariant length with respect to �′ yields

d�
dr

= ±
r∗�3√

r(r2 − r2∗ )(r3 − 83M� 23 r − � 33 �F (M)

= ±
r∗�3√

r(r2 − r2∗ )(� 23 rf (r))

(5.39)

where r∗ is the maximum radial penetration depth of the geodesic. While this particular integral
does not have an exact solution, we can factorise it into,

d�
dr

= ±
r∗�3√

r(r2 − r2∗ )(r − rℎ)(r + b)(r + c)
(5.40)

where rℎ, b, c are roots of f (r) as before. The connected minimal surface is then given by,

 (1)(�A) = �(r∗(�A)) = ∫
r=∞

r=r∗
dr

r∗�3√
r(r2 − r2∗ )(r − rℎ)(r + b)(r + c)

(5.41)

where we note that r∗ is a function of �A alone. As in the BTZ case we must also consider that
the disconnected minimal surface composed of the complement of  (1) on the boundary as well
as the contribution from the black hole horizon,

 (2)(�A) = �(r∗(� − �A)) ∪ rℎ (5.42)

From the RT formula, the entropy is found by choosing the minimal surface which minimizes
the entropy such that,

S =
{ 1

2G3
∫ r=r∗(�A)
r=1/� dr

√
r2

f (r)(r2−r2∗ )
, if �A < �c

1
2G3
�rℎ + 1

2G3
∫ r=r∗(�−�A)
r=1/� dr

√
r2

f (r)(r2−r2∗ )
, if �A ≥ �c

(5.43)
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where we made use of the fact that corrections to G3 start at (�2) and �c is the critical angle
where the minimal surfaces change dominance. Generally, �c can be found by equating the two
entropies, however, (5.43) does not have an analytical solution and we must expand to �rst order
in � . As stated previously, the RT prescription on the brane is only valid to �rst order in � anyway.

Before we move on to calculating these quantities in the linear � regime, it is worth com-
menting on some features of (5.43). Firstly, we expect that for small � the critical angle �∗A will be
close to the classical result. However, due to the fact that rℎ increases monotonically with � one
expects that for �xed z,

|S(�A) − S(� − �A)|QuBTZ ≤ |S(�A) − S(� − �A)|BTZ (5.44)

implying that the Araki-Lieb inequality is saturated for smaller values of �A. We therefore antic-
ipate that if the quantum corrected solution follows a relationship close to the classical solution
(�c)QuBTZ ≤ (�c)BTZ , though this will also depend on the shape of the minimal surface. Naturally,
these expectations must be altered for the full higher-derivative theory.

5.4.2 Minimal Surface for b = c

There exists no general analytic solution for the minimal surface of the QuBTZ covering arbitrary
values of b and c, however, it turns out that in the case when

83M = 3(
F(M)�
2 )

2/3

; Δ3 = 0 (5.45)

then b = c = rℎ/2, rℎ =
√

323M
3 = (4�F (M))1/3 and we �nd the analytic solution,

�(r) = ± ∫
r∗

∞
dr

r∗√
r(r2 − r2∗ )(r − rℎ)(r +

rℎ
2 )2

= ±
4√r∗
rℎ (

1
√rℎ + r∗(

F[�1(r ; r∗), �2(rℎ, r∗)] − K[�2(rℎ, r∗)])…

+
2r∗

(2r∗ − rℎ)(
Π[�0(rℎ, r∗), �2(rℎ, r∗)] − Π[�0(rℎ, r∗), �1(r ; r∗), �2(rℎ, r∗)]))

(5.46)

where �0(rℎ, r∗) = 2rℎ
rℎ−2r∗

, �1(r ; r∗) = sin−1( r+r∗2r ), �2(rℎ, r∗) =
2rℎ
rℎ+r∗

and F , Π and K are elliptic integrals.
In terms of z and � , these solutions occupy parameter space,

�b=c =
1

3z + 4z3
(5.47)
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such that to stay in the limit of �b=c < 1,

z > zb=c =
(1 +

√
2)2/3 − 1

2(1 +
√
2)1/3

(5.48)

Clearly this function is not invertible and hence a simple expression for the critical angle
eludes us. We can however, �nd an expression for the size of the operator on the boundary,

�A =
4√r∗
rℎ (

1
√rℎ + r∗(

F[�/4, �2(rℎ, r∗)] − K[�2(rℎ, r∗)])…

+
2r∗

(2r∗ − rℎ)(
Π[�0(rℎ, r∗), �2(rℎ, r∗)] − Π[�0(rℎ, r∗), �/4, �2(rℎ, r∗)]))

(5.49)

There exists an analytic solution for the entropy, however, lacking an invertible expression
for the critical angle it provides little insight. The geodesic for a radially falling lightlike observer
can also be shown to be

t(r) = ± (
2

3(2r + rℎ)
−
4
9rℎ

log(
2(r − rℎ)
2r + rℎ ))

= ± (
2

3(2r + rℎ)
+
4
9rℎ

log(1 +
3rℎ

2(r − rℎ)))

(5.50)

We shall return to this result in Part III when we discuss the butter�y velocity in the QuBTZ.

5.4.3 Linear Backreaction Corrections

Let us then focus on the small � limit and expand (5.39) to linear order about � = 0,

d�
dr

≈ ±
r∗�3√

r(r2 − r2∗ )(
1√

� 23 rf (r)
+ �)�

1√
� 23 rf (r))

||||�=0

=(
d�
dr )BTZ

+ �(
d�
dr )corr

(5.51)

The �rst term is the classical QuBTZ result with mass determined by z, whilst the second is
a simple correction term. At linear order, this equation is just a �rst order linear ODE,
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(
d�
dr )corr

= −
1
2

r∗�3√
r(r2 − r2∗ )

)� (� 23 rf (r))
(� 23 rf (r))3/2

||||�=0

=
1
2

r∗�3√
r(r2 − r2∗ )(

� 23 (ℎ1(z)r + ℎ2(z))
(� 23 rf (r)cl)3/2 )

(5.52)

where we de�ne f (r)cl = r2 − r2ℎ |�=0 and make use of

� 23 rf (r) = r
3 − 83M� 23 r − �

3
3 �F (M)

≈ � 23 rf (r)cl − ��
2
3 r)�f (r)|�=0

= � 23 rf (r)cl − ��
2
3(�

2
3
4z3(1 + z2)(−1 + 3z2)

(1 + 3z2)3
r − � 33

8z4(1 + z2)
(1 + 3z2)3 )

= � 23 rf (r)cl − ��
2
3 (ℎ1(z)r + ℎ2(z))

(5.53)

and ℎ1(z) = 8)�3M|�=0 and ℎ2(z) = )� (�F (M))|�=0 = F(M)|�=0. Therefore, to linear order in �
with �3 = 1, the equation (5.58) is solved as

�(r) = ± ( tanh−1(
rℎ
√
r2 − r2∗

r∗
√
r2 − r2ℎ )

−
�
2
(ℎ1(z)
1(r ; z) + ℎ2(z)
2(r ; z))) + Const (5.54)

where,


1(r ; z) = ∫ dr
r∗

r
√
((r2 − r2∗ )(r2 − r2ℎ)3)

= −
r∗
√
(r2 − r2∗ )

r2ℎ(r2ℎ − r2∗ )
√
r2 − r2ℎ

−
1
r3ℎ
tanh−1(

r∗
√
r2 − r2ℎ

rℎ
√
r2 − r2∗ )

(5.55)

and,


2(r ; z) =

√
r2 − r2∗
r2 − r2ℎ

r4ℎ + 2r2∗ r2 − r2ℎ(r2∗ + r2)
r4ℎ(r2ℎ − r2∗ )r

+
r2∗

r2ℎ(r2ℎ − r2∗ )(
− (r2ℎ − 2r

2
∗ )E[ − sin

−1
(
r
rℎ)

,
r2ℎ
r2∗ ]

+ …

2(r2ℎ − r
2
∗ )F[ − sin

−1
(
r
rℎ)

,
r2ℎ
r2∗ ])

(5.56)

where E is the elliptic integral of the second kind and F is the elliptic integral of the �rst kind
and the constant is found by matching �(r∗) = 0. The �rst term in (5.54) is precisely the same form
as the classical result found in Appendix D. One notes that we can identify the ℎ1(z) and 
1(r ; z)
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and ℎ2(z) and 
2(r ; z) with corrections coming directly from the �rst order backreaction on the
classical geometry and those from the CFT3 �elds below the cuto� respectively. In this sense
they can be pictured as subregion generalizations of (5.33). Though we cannot simply invert this
function, we can easily show that the corrections are positive such that |�(r)|cl ≤ |�(r)|qu and
Scl ≤ Squ.

Another alternative to the linear � procedure is to instead take the expansion about small b,

d�
dr

≈ ±
r∗�3√

r(r2 − r2∗ )(
1√

r2 − r2ℎ
+ b)b

1√
(r − a)(r + b)(r + a − b))

||||b=0

=(
d�
dr )BTZ

+ b(
d�
dr )corr

(5.57)

where,

(
d�
dr )corr

=
−r∗rℎ

2r2(r + rℎ)
√
(r2 − r2∗ )(r2 − r2ℎ)

(5.58)

with solution

�corr (r) =
1

2rr∗r2ℎ
√
r2 − r2ℎ(r2∗ − r2ℎ)(

rℎ
√
r2 − r2∗ (r

2
ℎ(r + rℎ) − r

2
∗ (3r + rℎ)) − r

√
r2 − r2ℎ …

((rℎ + r∗)(r
2
ℎ − 2r

2
∗ )E[�1(r ; r∗, rℎ), �2(r∗, rℎ)] + (r∗ − rℎ)(r

2
ℎF[�1(r ; r∗, rℎ), �2(r∗, rℎ)] + …

2(r∗ − rℎ)r∗Π[�0(r∗, rℎ), �1(r ; r∗, rℎ), �2(r∗, rℎ)])))
(5.59)

where �0(r∗, rℎ) = 2rℎ
rℎ+r∗

, �1(r ; r∗, rℎ) = sin−1(
(r−r∗)(rℎ+r∗)
2(r−rℎ)r∗ ), �3(r∗, rℎ) = 4rℎr∗

(rℎ+r∗)2
and E, F and Π are

elliptic integrals as before. While this result is equally cumbersome it provides a better approxi-
mation particularly when the corrections to the ADM mass are dominant over those from F (M).

Without an invertible expression for the linear order solution, we don’t have a handy expres-
sion for the critical angle as for the BTZ case. In the following subsection we shall make some
general constraints to guide our intuition.
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5.5 Constraints on Minimal Surfaces

There are several ways with which we could compare the minimal surfaces enabling us to deduce
some general features of the physics on the QuBTZ. An obvious complication, however, comes
from the phase change from connected to disconnected minimal surfaces. We will therefore
assume that this value lies close to that of a BTZ black hole with a mass determined by the
horizon radius of the QuBTZ of interest and set r∗ to be well away from this point and �xed for
comparisons.

Before resorting to numerics, we can apply some simple intuition to place bounds on the
quantum corrected solutions. Fixing z and 83M allows for comparison between two possible
backreacted corrections of a QuBTZ with mass parameter z and the same ADM mass. Assuming
that we further �x r∗33, the only change comes from the �F (M) contribution. One can see from
(5.41) that,

|||||(
d�
dr )

|||||cl
≤
|||||(
d�
dr )

|||||(2)
≤
|||||(
d�
dr )

|||||(1b)
(5.60)

which from (5.43) implies that,

||�(1b)(r ; z, �2, r∗)|| ≥ ||�(2)(r ; z, �1, r∗)|| ≥ |�cl(r ; z, � = 0, r∗)| (5.61)

and
S( (1))(1b) ≥ S( (1))(2) ≥ S( (1))cl (5.62)

where cl, (1b) and (2) indicate the BTZ, the Casimir and the thermal solutions. Note that we
cannot simultaneously constrain the classical solution to have the same ADM mass and z for
M > 0 and hence the classical comparison will generically have a di�erent mass. This result
agrees well with physical intuition from the perspective of an infalling observer. Far away from
the black hole, the geometries are locally similar. Closer to the horizon the CFT e�ects build up
in the bulk, requiring a larger entanglement wedge on the boundary. Furthermore, we note that
the entropy contribution from the black hole itself is proportional to horizon of the black hole,
which grows with � . We are only interested in cases where �(1b), �(2) < 1, which also restricts the
range of allowable z to,

0.456 < z <
1√
3

(5.63)

where the lower bound is calculated using some unenlightening roots. We can also compare the
33We must take care as the changing rℎ and rc as we increase � means that we may not freely choose r∗ for all

values. That is, we assume that r∗ ≥ rc for all geometries
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quantum corrected case to a classical BTZ with horizon equal to that of the QuBTZ34,

Δ�′ = (
d�
dr )cl

− (
d�
dr )QuBTZ

∝
1

√r + rℎ
−
√

r
(r + rℎ − b)(r + b)

(5.64)

where we used that a = b + c. We then �nd that Δ�′ > 0 provided b < rℎ or −4(Im[b])2 < 0 < r2ℎ
when the determinant of the cubic is positive or negative respectively. These hold trivially for all
b and rℎ. Hence, this further implies

||�QuBTZ (r ; rℎ, r∗)|| ≤ |�BTZ (r ; rℎ, r∗)| (5.65)

and
S( (1))BTZ ≥ S( (1))QuBTZ (5.66)

Making use of these two results, we �nd that there exists a general nesting property,

|||�BTZ (r ; r
(1b)
ℎ , r∗)

||| ≥
||�(1b)(r ; z, �2, r∗)|| ≥ |�cl(r ; z, � = 0, r∗)|

|||�BTZ (r ; r
(2)
ℎ , r∗)

||| ≥
||�(2)(r ; z, �1, r∗)|| ≥ |�cl(r ; z, � = 0, r∗)|

(5.67)

so that the quantum corrected solution is always bounded from above by the classical solution
with the same horizon radius and from below by the classical black hole with the same z as seen
in Figure 5.7.

This nice result further suggests that the critical angle will be somewhere between that of
these two results which can be determined analytically using the classical solution,

�(BTZ)c (rℎ(z, 0)) ≤ �(QuBTZ)c (rℎ(z, �)) ≤ �(BTZ)c (rℎ(z, �)) (5.68)

These results give some intuition regarding the behaviour of minimal surfaces in the small �
limit which does not require an analytical solution for the quantum corrected minimal surface. To
con�rm this analysis, one could determine the size of �A as a function of r∗ numerically and �nd
the values of r∗(�A) and r∗(� −�A). One could then plot the entropy of the two minimal surfaces as
a function of r∗ and �nd where the two minimal surfaces become equal. This procedure, however,
is tedious and is not particularly enlightening and so we defer it to later research.

34This is distinct from simply �xing the ADM mass for which the results are less clear-cut. In the case at hand
there is a contribution from �F (M) so the classical solution will generally have a di�erent ADM mass.
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Figure 5.7: This �gure shows the positive branch of the minimal surface for the unperturbed case
(Red, Dotted), the thermal solution (Blue, Dashed), the Casimir solution (Green, Dashed) and the
BTZ results with r (2)ℎ (Blue) and r (2)ℎ (Green) for the values z = 9

10
√
3 , �1 = 0.1, �2 = 0.6.
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Part III

Holography, Chaos and Quantum
Corrected Butter�ies
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Nature abounds with complex and inherently chaotic behaviour for which our optimistically
reductionist models are often insu�cient to accurately describe. Even small classical systems can
exhibit chaotic dynamics, without the additional woes of the inherent indeterminism of quantum
mechanics. In spite of the exact microscopic behaviour of individual particles or operators, we
can treat chaotic systems stochastically allowing us to make reasonable predictions of weather
patterns or thermal systems, for example. In the context of holographic systems, we can employ
the tools of the AdS/CFT correspondence as a means by which we can model thermalization and
scrambling in strongly coupled quantum systems. Of particular interest is modelling information
scrambling in black holes with holographic duals as well as using entanglement to place bounds
on information spreading and transport coe�cients(94)(95).

In this chapter, we review notions of classical and quantum chaos and its realisation in holo-
graphic systems. These techniques are then applied to calculate the so-called Butter�y Velocity,
vB quantifying the rate at which information spreads in a chaotic system. When applied to the
QuBTZ solution, one �nds that the standard approaches proposed by (15) and (16) suggest a
superluminal value for vB when backreaction from the bulk CFT is included. This unexpected re-
sult is intriguing and, prima facie, runs contrary to claims that these procedures are robust under
the addition of quantum and higher-derivative gravity corrections (96)(97). We discuss potential
sources for this discrepancy by focusing on the small � limit of the QuBTZ construction which
one expects to give results perturbatively close to those of the classical value. When one calcu-
lates the rate of growth of the operator on the boundary numerically one indeed con�rms that
vB ≥ 1. These corrections were found to be several orders of magnitude below expected linear
order when calculated at one thermal length from the horizon. Furthermore, we note that there
presently exists scant mention of how to generalize this procedure to smaller (non-planar) black
holes motivating a reappraisal of the assumptions employed by Mezei and Stanford. We further
argue that the standard methodology of (15) and (16) should be adapted for small black holes.
In this prescription, one calculates the butter�y velocity at the critical angle on the boundary or
radius in the bulk where the minimal surface transitions from the connected to the disconnected
phase rather than at a thermal length from the horizon.
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Chapter 6

Chaos in Holographic Systems

The study of chaotic systems began as early as Poincaré’s discovery of non-periodic elliptic or-
bits which never approach a �xed point. This behaviour is an example of deterministic chaos,
illustrating that even classical systems with a small number of degrees of freedom can exhibit
chaotic behaviour.

So, what is it we mean by chaos? There remains no universally accepted de�nition but we
may fall back on an heuristic notion that states which start close to one another in phase space
can exhibit trajectories which diverge exponentially from one another over time. This behaviour
is most generally captured by the Lyupanov exponent, �, characterizing the rate of separation of
in�nitesimally close trajectories of dynamical systems in phase space. Quantitatively, under the
assumption that we can linearize this separation in the large t limit, we �nd

|�Z (t)| ≈ e�t |�Z0| (6.1)

where |�Z0| is the separation of states in initial con�guration. Technically, there exists a spec-
trum of Lyupanov exponents which are characterised by the possible di�erent orientations of
the initial state separation vector. Systems with a compact phase space exhibit chaotic behaviour
provided the largest of these Lypanov exponents is positive. These notions were developed and
formalised in the following century and a half, culminating in a rich yet still incomplete under-
standing of complex systems.

Naturally, one may wonder how such behaviour manifests in quantum systems which are
inherently indeterministic. In particular, we are interested in the so-called scrambling of infor-
mation in many-body systems. Suppose we act some local operator and we wish to see how
this �ne-grained local information spreads dynamically under time evolution. The original in-
formation mixes with other local degrees of freedom until the original information contained in
this local operation becomes scrambled over a large number of degrees of freedom. Equivalently,
we can state that for chaotic systems the growth of a local operator under standard Heisenberg
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evolution e�ectively redistributes the local information to global information.
In the holographic context, we can study how information is scrambled in strongly coupled

systems by modelling quantum quenches in which some excess energy density is added to the
system. We recall that the bulk dual to a thermal CFT in the AdS/CFT correspondence is a black
hole geometry, however, this represents a global state of the boundary theory in the static limit.
We may instead be interested in how one can build up such a state by applying local operations
until these �ne grained degrees of freedom are scrambled across the full spacetime. In this limit,
the information is scrambled and the density matrix of the CFTs becomes mixed and manifest
as a non-local degrees of freedom characterised simply by the state of our boundary theory and
a subsequent phase transition which we would expect from the change in the global topology
of the space. Equally, we may be interested in what happens to local information as it falls into
the black hole or how scrambling e�ects obervables in strongly coupled quantum systems. In
the following, we provide an overview of chaos in quantum systems before delving into chaotic
dynamics in holographic systems.

6.1 Chaos in Quantum Systems

A simple probe, and functional de�nition characterising quantum chaos, appearing in the litera-
ture comes from the commutator-squared,

(x, t; �) ≡ − tr(�[O1(x, t), O2(0, 0)]†[O1(x, t), O2(0, 0)])
= −⟨|[O1(x, t), O2(0, 0)]|2⟩�

(6.2)

de�ned for local operators O1, O2 in the equilibrium state � with inverse temperature 1/� . Be-
yond the locality constraint and the assumption that these operators do not drastically change
the energy density35, these operators may be entirely arbitrary and have the simple heuristic in-
terpretation analogous to the classical state, paramaterising their state separation in Hilbert space.
The commutator-squared produces a lightcone-like spread of quantum information in the system
which is characterised by two state-dependent quantities: its quantum Lyupanov exponent and
its butter�y velocity, vB.

To picture why the OTOC is so useful, we can imagine that we make a small perturbation of
the system at O2(0, 0) and then another at O1(x, t) and measure the correlation function. We can
then calculate the time reversed correlation function where we �rst apply O1(x, t) and then an-
other at O2(x, 0). In general, we expect that the correlation functions ⟨O2(0, 0)O2(x, t)⟩� to decay
exponentially with t for late times as it dissolves into the thermal soup. After some (generally)
�nite time, one will be unable to distinguish which order these operators were applied and their

35Equivalently, we assume that there is negligible backreaction on the system but non-trivial change to the en-
tanglement structure.
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commutator will approach zero. Hence, the commutator quanti�es how well one can distinguish
perturbations of a quantum system in a state-dependent and relativistic scheme. At small t and x ,
one can recover the information of which operator was applied �rst by ‘measuring’ the commu-
tator36, thus giving a notion of the memory the system has of its microscopic details over time.
Only looking at the commutator, however, may gives a sign ambiguity and may present some
cancellations which we can remove by taking the norm of this value. As an easy toy example,
consider that O1 and O2 are both unitary and Hermitian such that,

(x, t; �) = ⟨O1O2O2O1 + O2O1O1O2 − O1O2O1O2 − O2O1O2O1⟩�
= 2(1 − Re[O2O1O2O1])

(6.3)

where we suppress coordinates for simplicity de�ne the OTOC as O2O1O2O137. In a chaotic sys-
tem, the OTOC decays from its maximum at unity to zero whilst (x, t; �) grows from zero to its
maximum of two.

These operators are local and hence the spread of information must be causally connected,
leading to an e�ective ‘lightcone’ like spreading of information referred to as the butter�y cone.
The behaviour of this lightcone is characterized by the rate at which the information spreads
known as the quantum Lyupanov exponent, and a characteristic velocity both of which depend
upon the state of the system. Just beyond this emergent butter�y cone for t > 0, the OTOC
behaves approximately as

(x, t; �) ∼ e−�(|x−x0 |/vB−t)
1+p/tp (6.4)

where p is some system dependent real number and vB is the butter�y velocity which can be
de�ned as the the rate of growth of the double-commutator when (x, t; �) = 1. When we take
the limit of large local degrees of freedom, the factor p generally goes to zero and the behaviour
becomes approximately exponential38. In (6.4) we note that the behaviour is characterised by
both exponential growth and di�usion. For quantum systems, the butter�y velocity therefore
gives a profound insight into transport and information spreading. The butter�y velocity gives
a state dependent speed of information propagation in quantum systems which is advantageous
over the Lieb-Robinson velocity39(98). The butter�y velocity is de�ned analogously to the Lieb-
Robinson velocity, but using the OTOC instead of the commutator-squared. This de�nition then
depends upon the state of �.

36We are being liberal with measurement here as this set-up would necessitate a system which could be reversed
in time or some exact copy which would violate no-cloning.

37We made use of O†i = Oi and O(t) = U †(t)O(0)U (t), where U †(t)U (t) = 1
38This is not precisely true of all systems, such as spin chains, for which p > 0 and therefore there is a additional

‘broadening’ e�ect on the dispersion of information, however we will assume that p = 0 throughout the this thesis.
39The Lieb-Robinson velocity gives a state independent locally emergent lightcone for for systems with a �nite

Hilbert space.
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We can also de�ne the ‘state-dependent Lyapunov exponent’ using (6.4),

�(v; �) ≡ lim
t→∞

1
t
ln(vt, t; �) (6.5)

The butter�y velocity cone can be de�ned as

�B(�) ≡ sup{� ∶ �(vn̂; �) ≥ 0} (6.6)

where n̂ is a unit normal vector. Within this cone, all Lyupanov exponents are greater than or
equal to zero and C(x, t; �) ≈ 1 everywhere. We emphasize that vB is de�ned as a local quantity
which cannot simply be determined at an arbitrary point. Physically, it captures the rate at which
quantum operators grow under chaotic Hamiltonian dynamics and hence characterizes the rate
of approach to the late time thermal value of the entropy.

6.2 Quantum Quenches and Thermalization

Accurately modelling non-equilibrium dynamics is a notoriously di�cult a�air. A simple but
analytically rich model of non-equilibrium processes in many-body quantum mechanical systems
comes through quantum quenches. A quantum quench involves turning on some excitation of
a system in its ground state at t = 0 and then allowing it to evolve. When the change in the
Hamiltonian of the system is homogenous over the entire system, the quench is global whilst if
we consider some subregion of the entire system it is referred to as a local quench. In particular,
such a mechanism is valuable for studying thermalization in strongly interacting systems40 and
distinguishing between pure and mixed states in AdS/CFT. The AdS/CFT correspondence gives
an appealing model for thermalization as the strong interactions of the boundary theory ensure
that such an excitation spreads e�ciently through the system.

From here on, we shall assume that we are working in the AdS/CFT picture and hence the CFT
coupling and gauge group N are both large41. For global quenches, we impart some �nite energy
to a strongly coupled system such that the energy is quickly distributed throughout the system.
As always, we may purify the state by going to the TFD con�guration. For t > 0, time evolution
of the state remains unitary and hence the system remains pure. Tracing out some region in the
total Hilbert space leaves us with a thermal density matrix which (for su�ciently small regions)
approaches the canonical distribution. The picture is clear, by tracing out the complement we
have e�ectively thermalized this subregion so that it remains in local equilibrium with an e�ective
bath(99)(100).

40By thermalization, we mean studying how systems go from pure to thermal systems under the addition of
energy. Further, we are mostly interested in systems which eventually come to thermal equilibrium.

41For more general treatments, see Chapter 7 of (19)
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This simple observation shows us that we cannot distinguish between a pure state of the
quantum quench and a thermal mixed state from coarse grained quantities such as correlation
functions alone. If, however, we consider the entanglement entropy, we are free to choose how
much of the system we wish to trace out and hence we have additional information to distin-
guish the mixed and the pure quench states. Thereby, the entanglement entropy is an invaluable
tool for studying quantum quenches and models of thermalization. In the context of AdS/CFT,
quantum quenches are particularly interesting as the thermalization of the boundary CFT gives
us information on the formation of black holes in the bulk.

Explicit models of thermalization have been studied in models of black hole formation with
an infalling shell of matter(101). In such models, the infalling matter is given by the Vaidya-AdS
metric and geodesics in AdS3 are glued to the BTZ shell after the it collapses beyond the event
horizon, accounting for the refraction through the infalling matter. Higher dimensional models
have also been discussed in (102)(103)(104).

6.3 Purity and Thermalization

The AdS/CFT correspondence tells us that quenches of the boundary CFT correspond to black
hole formation. In particular, we may wonder if the late time evolution saturates such that it ther-
malizes to the eternal black hole. For local correlation functions, this is precisely what happens. If
this were to hold for all observables, however, we would quickly come up against a contradiction
by creating a mixed state from a pure state. Fortunately, however, we can resolve this apparent
paradox by making use of the homology constraint.

If we consider an evolution of the HEE for both A and Ā we can make sense of this. In
the in�nite past, before the quench, there is no black hole and hence A and Ā share a common
entangling surface and S(A) = S(Ā). Once the black hole forms, however, there is now a physical
horizon in the bulk. However, one �nds that the extremal surface Ā wraps around the horizon
and hence contains the thermal contribution. We recall that the second asymptotic region is
no longer present in the case of the eternal black hole, hence we can show that the extremal
surface A is homologous to Ā despite the presence of the horizon. To see this, one may deform
Ā continuously to A without obstruction by moving the surface far back into the past before
collapse. By doing so, the surface moves outside of the horizon where this homology is manifest.
Hence, the horizon acts as a physical entangling surface which traces out its complement.

From this argument, we see that the global homology constrain ensures that our total sys-
tem remains in a pure state and hence from the holographic perspective, any quantum quench
of a holographic state remains pure (101)(105). In particular, the �ne-grained entropy of the total
system vanishes. A crucial ingredient in this argument is that the homology surface is spacelike.
What should we make of the physical meaning of the entropy of the horizon in such a model?
The entanglement entropy for subsystems approaches the result of a treatment of a �nite tem-
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perature CFT with its IR contribution approaching the black hole entropy. One can simply say
that the coarse grained entropy of some small subsystem is well approximated by the thermal
density matrix such that the region we have traced out acts as a heat bath for a su�ciently small
subsystem. Correlation functions and other local measurements, however, can not distinguish
between a thermal or a quench state 42. Because the thermal value dominates the partition func-
tion, we require exponentially precise measurements to distinguish the quench state from the
thermal state. We stress that entanglement entropy, however, is not a local observable and in-
stead encodes information about the wavefunction such that if one could access the �ne-grained
contribution for the geometry, they would be able to distinguish between a pure quenched state
and a mixed state.

6.4 Spread of Information in Holographic Systems

One appealing feature and recurring theme in AdS/CFT is that we can keep track of notions
of helpful information which we may use to diagnose otherwise complicated physical phenom-
ena such as phase transitions or thermalization. Pioneering work in this direction was done in
(106)(107) in which the authors classi�ed distinct phases of the evolution of entanglement entropy
through the poetically named ‘entanglement tsunami’.

Suppose we quench the system at t = 0 by dumping excess energy into the system. This
energy is �rst distributed amongst pairs of entangled quanta. The number of these quanta will
be proportional to the energy density "43. The phases of the entanglement tsunami can be split
into approximately three phases under the assumption that the system thermalizes to Teq at late
times. The thermalization value also sets an equilibrium length scale through its inverse �eq =
T −1
eq , allowing for useful approximations provided that our system is reasonably large and the

energy density remains approximately constant. We also assume that the region of interest is
macroscopic such that we are not limited to UV features of the entanglement entropy and de�ne
the length scale of the system, A, to be �A. We can then characterise the following distinct phases
by their statistical distributions. At early times, the system will not be in local equilibrium, at
intermediate times local equilibrium emerges and at late times the system reaches some global
equilibrium value.

1. t ≤ �eq: During this phase, local equilibrium has not been reached and we expect the rate of
change in entropy to be largest. Due to causality and the locality of the quantum dynamics,
the entanglement entropy only receives contributions from near the entangling surface.

42That is, without being able to make precise measurements of high point correlators.
43These should not be thought of as quasi-particle excitations as this would not be a good model within a strongly

coupled (holographic) QFT. We assume in this picture that the energy density should be approximately constant
here.
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Therefore, only modes in the vicinity of the entangling surface will contribute. One may
then introduce some dimensional analysis to show that the entanglement entropy should
grow quadratically following the quench,

ΔSA =
�

d − 1
"A()A)t2 + … (6.7)

Heuristically, we ought to expect this to be the case as pre-thermalization behaviour will
take on the characteristic entanglement entropy area-law behaviour. Furthermore, it was
proposed in (16) that

d
dt
S[A(t)] ≤ vEstℎA()A) (6.8)

implying that the rate of entanglement growth never grows faster than right after a quench.

2. �eq ≪ t ≪ �A: Parts of the system have now reached local equilibrium but we still remain
far away from a global equilibrium phase such that only patches are equilibrated 44. In this
regime, we anticipate a transition from the area-law to the thermal (IR) volume-law entropy
behaviour in a small ribbon about the entangling surface. Dimensional analysis can again
be employed to show that the leading order behaviour is linear with time. The volume-law
behaviour only emerges in a small region about the entangling surface such that we have:
ΔSA ∝ T d−1

eq A()A). We can normalise the result by some local equilibrium thermal entropy
density, seq,

ΔSA = vEseqA()A)t + … (6.9)

where vE is de�ned as the entanglement velocity(108)(107)(106). One can in fact take (6.9) to
de�ne the entanglement velocity as the speed of information propagation when the change
in entropy becomes linear. A more instructive intuition can be formed by considering that
the entanglement surface at intermediate times is surrounded by an approximately ho-
mogenous ‘ribbon’ within A. This ribbon broadens out along a wavefront formed by the
quanta produced at early times. The entanglement velocity then represents the spread of
the vanguard quanta linearly with time, or more simply the speed of propagation of entan-
gled quanta. From the de�nition, we note that vE can also be considered to be independent
of the shape of A. In (16), it was argued that vE can be linked to the probability that opera-
tors do not grow under a quench.

3. t ≫ �A: The wave eventually engulfs A and the entanglement entropy no longer increases,
plateauing to some thermal equilibrium value. The subsystemA is now thermalised and the

44Precisely what these patches are will be dependent on a large number of factors such as unperturbed geometry,
types of allowed interactions etc.
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reduced density matrix �A becomes practically indistinguishable from the thermal density
matrix such that �A u �eqA . In this regime, the system reaches saturation,

SA = seqV()A) (6.10)

The authors of (106)(107) also noted that there exists a universal upper bound of the rate of
growth of entanglement in holographic systems which can be easily found by di�erentiating (6.9).
From causality, one may naively expect that such a bound is given by the speed of light vE ≤ 1,
however, a stronger upper bound can be found by considering a collapsing shell of matter forming
an AdSd+1 black hole dual to the thermal Gibbs ensemble in the boundary theory(109)(110). In
this model, it was proposed that the upper bound on the rate of entanglement growth is

R(t) ≤ v∗E =
(� − 1)(�−1)/2

��/2
; � =

2(d − 1)
d

(6.11)

For conformal systems with d > 2, this bound on the entanglement velocity lies between vs =
1√
d−1 ≤ v

∗
E ≤ 1 where vs is the speed of sound in the system. This suggests that the quanta which

equilibrate the system and the entanglement quanta are distinct. For free-streaming particles, we
have the stronger bound

vf reeE =
Γ( d−12 )√
�Γ(d/2)

(6.12)

and it can be easily seen that for d > 2, vs < vf reeE < v∗E .
Yet another interesting bound in this context is the speed of the emergent lightcone, vLC .

This lightcone can be de�ned as the region outside of which the OTOC has exponentially small
support such that operators will approximately commute when x > vLC t . Naturally, vB ≤ vLC ≤ 1.

Just before the saturation regime, the system has lost any �ne-grained knowledge of its origi-
nal state. This is expected from ergodcity, as a thermal density matrix may have emerged from an
in�nite number of initial con�gurations. Such a system then exhibits the key features of a chaos
as it goes from some speci�c initial con�guration towards a typical state in a thermal distribu-
tion45. Indeed, we can examine the rate of approach to the late time asymptote using the butter�y
velocity. It has been suggested that such a value can be interpreted as a continuum extension of
the Lieb-Robinson bound (98). For holographic systems, the butter�y velocity is given by,

vB =

√
2d
d − 1

(6.13)

In the context of thermalization, the butter�y velocity can be de�ned as the upper bound on
45Naturally, this is true of any thermal system but it never hurts to labour an important point.
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the saturation rate for holographic systems46. You can therefore not thermalize a system faster
than the butter�y velocity. This de�nition can also be linked to our previous de�nition of the vB
as the speed at which chaos spreads through the system.

We remark, however, that in (111) the authors found that following a global quench the evolu-
tion of small subsystems occurs on timescales below the local equilibrium scale. One consequence
of this is that this entanglement tsunami picture we have sketched no longer applies. In partic-
ular, the instantaneous rate of entanglement growth is not constrained by causal dynamics but
rather its time average.

6.5 Butter�ies and Shockwaves

To study the sensitive dependence of holographic systems on initial conditions, we can return
to our earlier set-up where we discussed how small perturbations at the boundary in the distant
past give an impulsive shockwave solution at t = 0 corresponding to a spherically symmetric
infalling null-shell. In this picture, we make no assumptions about the topology of the horizon
itself it remains general to planar and global black hole solutions.

We now consider a stress-energy tensor which is localised in the angular directions such that
the perturbation acts as a infalling null trajectory from the distant past, residing entirely on the
right horizon of the TFD. Without loss of generality, we take the the source to be at the north
pole of a (d −1)-sphere for a (d +1)-dimensional black hole. We make the ansatz that ṽ = v +ℎ(Ω),
where Ω is the solid angle of the (d − 1)-sphere. One can then substitute this ansatz solution
into the Einstein equations by evaluating the Ricci tensor of the patched metric47 and solving
Einstein’s equations for a stress tensor with a matter source,

Tuu ∝ �(u)�d−1(Ω) (6.14)

such that we �nd that the equation,

(∇
2
Sd−1 −

(d − 1)
2

rℎf ′(rℎ))ℎ(Ω) ∝ �d−1(Ω) (6.15)

revealing that ℎ(Ω) is simply a Green’s function for a large mass particle on the sphere. For large
(d + 1)-dimensional Schwarzschild black holes, one �nds f ′(rℎ) = drℎ

� 2 such that it decays with
angular distance � from the north pole as

ℎ(Ω) ∝ e−
√

d(d−1)
2 rℎΩ/�d+1 (6.16)

46For uncharged black holes
47See Appendix A of (112). This calculation is rather involved and so we omit it here.
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We then have a notion of how the perturbation spreads on the boundary which we can com-
pare to our knowledge of how the perturbation along ũW grows with tW which is given by
ũW (tW ) ∝ ef ′(rℎ)tW /2. One can then �nd the butter�y velocity, vB by setting their exponents equal
such that level sets of increasing tW propagate outwardly with a maximum velocity,

vB =
�d+1Ω
tW

=
√

d
2(d − 1)

(6.17)

One may also wonder what happens if we use global coordinates. In this case, we have,

f ′(rℎ) =
1
�d+1(

d
rℎ
�d+1

+ (d − 2)
�d+1
rℎ ) (6.18)

and

vB =�d+1
f ′(rℎ)
2

√
2

(d − 1)f ′(rℎ)rℎ

=�d+1

√
f ′(rℎ)

2rℎ(d − 1)

=

√
d

2(d − 1)
−
(d − 2)
2(d − 1)

� 2d+1
r2ℎ

(6.19)

which remains valid above the Hawking-Page transition. For d > 2, one sees that butter�y
velocity for a global black hole is bounded from above by the planar solution. In d = 2, this
constraint does not apply and one instead �nds that the global and planar solutions are mathe-
matically equivalent. In the following section, we explore a simpler but equivalent method for
calculating the butter�y velocity in holographic systems.

6.6 Determining the Butter�y Velocity in Holographic Sys-
tems

We shall refer to this new technique as the Mezei-Stanford prescription(16). This method is ap-
pealingly simple, making use of the the subregion duality of the boundary theory to bound the
spread of the chaos in the bulk. Under certain circumstances, this procedure can be considered to
be equivalent to �nding the saturation time for the entropy of a ball-shaped region after a global
quench much like the shockwave method.

We again act with some light local operator Wx on a thermal state initially at equilibrium.
Suppose that initially one may recover information regarding which operator was applied by
taking a local measurement in the vicinity of the point x . As time passes, the information is
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scrambled as it is delocalised over a growing region in the bulk. At time (−t)we are able to recover
a maximal amount of information about the perturbation, or equally, there is a local quench of
the system at time (−t) such that the ‘size’ of the operator is simply the smallest region containing
a signi�cant amount of the information about the original state. The size of an operator has no
universal de�nition but roughly corresponds to a measure of the in�uence that a local operator
has on other local degrees of freedom. For theories admitting a dual gravitational description,
one can determine this size explicitly by making use of the subregion duality. This duality, which
we recall for simplicity, states that subregions of the boundary theory give complete descriptions
of the bulk subregion. For static bulk duals, we recall that this region is be found using the RT
formula whilst more general cases require the QES or HRT prescriptions.

We suppose that we act with a local operator on the boundary of the bulk picture, letting it fall
radially towards the horizon. After some time t , the smallest subregion required to reconstruct
signi�cant information about the operator is the entanglement wedge, which corresponds to the
maximal region over which information about the initial perturbation may be contained.

For simplicity, consider the general planar black hole in radial coordinates

ds2 = −f (r)dt2 +
dr2

f (r)
+ V (r)dx2 (6.20)

In the near horizon limit, we can take the �rst order expansion of f (r) about r = rℎ,

f (r) = f ′(rℎ)(r − rℎ) + ((r − rℎ)2) (6.21)

which gives us,

ds2 u −f ′(rℎ)(r − rℎ)dt2 +
dr2

f ′(rℎ)(r − rℎ)
+ V (r)dx2 (6.22)

We then shift our coordinates such that � = √r − rℎ and dr = 2�d� .
If V (r) = r2, the original metric is of a familiar spherical region of the black hole. In this case,

the near horizon geometry is of a spatial cone and we can identify the inverse temperature from
the time coordinate as,

(
2�
� )

2

= (
f ′(rℎ)
2 )

2

⟹ f ′(rℎ) =
4�
�

(6.23)

and the near horizon metric is given by,

ds2 = −(�
2 + (�4))(

2�
� )

2

dt2 + d�2 + (r
2
ℎ +

2�rℎ�2

�
+ (�4))

dxidxi
� 23

(6.24)

This calculation therefore holds for any spherical region of the boundary. Though we the xi
are Poincaré coordinates, in (d+1) = 3 this method holds in global coordinates under the rescaling
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Figure 6.1: A schematic of the growth of the entanglement wedge for a light infalling particle
(blue) for t1 < t2. For holographic systems the growth of the entanglement wedge places an upper
bound on the spread of �ne-grained information on the boundary. The upper bound of growth
on the boundary is given by a ball shaped region of radius R(t) about xi = 0 where R(0) = 0.

xi/�3 → �.
From this simple calculation, we can proceed to a consideration of the near-horizon behaviour

of light rays,

ds2 = 0 ⟹ �(t) = �0e−
2�
� t (6.25)

To estimate the size of the light operatorWx (t), we can consider the smallest boundary region
such that the RT surface extends to the radius �(t) on a constant t-slice of the boundary theory.
Here, we simply take some spherical region of the boundary of radius R and take make use of
the symmetry of the space to paramaterize � as �(xi) so that it only depends on the radius at the
boundary. In general, this requires computing the minimal surface area by minimizing the area
functional,
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A =∫ dd−1�
√
det[ℎ]; ℎij = (

d�
d�i

d�
d�j

+ (gxixi
dxi
d�i

dxi
d�j ))d�id�j

=
rd−1ℎ

� d−1d+1
∫ dd−1x

√

det
{
)i�)j� + (1 +

2�
�rℎ

�2)�i,j
} (6.26)

We are interested in the near horizon limit, where RT surface begins to wrap the black hole
and hence most of the RT surface remains very close to the horizon. Around the horizon, )i� is
also very small. We can then expand this area functional to order �2 using det{1 + X} ≈ 1+Tr{X}
for small X to give,

A =
rd−1ℎ

� d−1d+1
∫ dd−1x(1 +

1
2
� 2d+1
r2ℎ
()i�)2 +

1
2
2�(d − 1)

�rℎ
�2 + (�4, ()i�)4))

≈
rd−3ℎ

� d−3d+1
∫ dd−1x(

r2ℎ
� 2d+1

+
1
2
()i�)2 +

1
2
�2�2)

(6.27)

where �2 = 2�(d−1)
�rℎ

. We can then minimize this by solving the equation of motion )2i � = �2�.
These solutions will vary approximately exponentially as a function of x i as in the d = 2 case,

�(x) = A sinh(�|x|) + B cosh(�|x|)
⟹ �(x) = �∗ cosh(�x)

(6.28)

where )x�|x=0 = 0 and �|x=0 = �∗. A more general solution in the near-horizon limit was derived
in (113),

�(xi) = �∗
Γ(a + 1)
2−a�a

Ia(�|x|)
|x|a

(6.29)

Where a = d−3
2 and Ia is the modi�ed Bessel function,

Ia(�|x|) =
∞

∑
m=0

1
m!Γ(m + a + 1)(

�|x|
2 )

2m+a

(6.30)

When � > � , the minimal surface exits the near horizon limit and, due to the steep deriva-
tive, the minimal surface reaches the boundary within an order one distance in x . We can then
approximate the size of the operator R as corresponding to the CFT region over which the initial
perturbation has spread. This can be given in terms of �∗ to within an order one error by solving
the equation,
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� = �∗
Γ(a + 1)Ia(�R)
2−a�aRa

= �∗
∞

∑
m=0

1
m!am(

�R
2 )

2m

≈ �∗e�R (6.31)

In the last step we have neglect prefactors and subleading terms and make the approximation
that �∗ ≈ e−�R . The infalling particle must be contained within the entanglement wedge, �∗ ≤ �(t),
which in turn implies that R ≥ ṽBt and,

ṽB =
2�
��

=

√
2�� 2d+1

(d − 1)�rℎ
(6.32)

For an SAdS black hole in Einstein gravity, T = 1
� =

1
4��d+1 (d

rℎ
�d+1 ) and the butter�y velocity is

equal to that using the shockwave method, ṽB = vB =
√

d
2(d−1) .

We started with a local perturbation Wx and time evolved it. To measure this operator on the
boundary CFT at some later time, relativistic causality tells us that the largest ball we need will be
of radius t in the �eld theory. However, this bound is too strong as the emergent light cone vB =
vLC constrains the spread of information about this operator such that we need only measure the
smaller subregion of radius vBt related to the entanglement wedge. The boundary domain of the
smaller region does not containWx (−t) as a local operator but instead contains it approximately as
a non-local operator over it domain of dependence. That is to say, this operator is approximately
smeared over the entanglement wedge and the corresponding boundary subregion.

Naturally, we could use a non-spherical region, a massive operator, or consider some non-
radial trajectory but such considerations would not change the upper bound. To see why, note
that non-radial paths introduce an additional contribution to the potential such that it no longer
monotonically decreases as it moves towards the horizon. For signi�cantly large angular mo-
menta, the operator will in general have to tunnel through this potential. It should be apparent
that this will lead to a butter�y velocity smaller than the global upper bound. Furthermore, mas-
sive operators will likewise include an additional potential which will only act to slow the spread
of information. It was speculated in (16) that deforming the region will also fail to change the
global upper bound for obvious reasons.

In the following section we discover that a naive application of the Mezei-Stanford approach
presents problematic results, motivating additional discussion and alterations to the methodol-
ogy.
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6.7 Butter�y Velocity for the QuBTZ for Small Backreac-
tion

Recently, it has been argued in (96) that corrections to all orders in both backreaction and quantum
corrections leave the butter�y velocity calculation invariant. To directly verify this for the case at
hand, however, one must solve the equations of motion for the higher-derivative theory and then
apply the generalised Iyer-Wald construction (114). We once again limit ourselves to the small �
limit where the RT prescription is su�cient to calculate the size of the boundary operator.

Naively applying Mezei-Stanford prescription, we see that the butter�y velocity is distinct
from the pure BTZ case, vB = 1, due to changes in the temperature-horizon radius relationship,

�qu =
4�
f ′(rℎ)

=
4�� 23 rℎ

(rℎ + b)(rℎ + c)
=

4�� 23 r2ℎ
2r3ℎ + � 33 �F (M)

(6.33)

and the Butter�y Velocity reads,

ṽ(qu)B =

√
2�� 23
�qurℎ

=

√
(rℎ + b)(rℎ + c)

2r2ℎ
=

√
2r3ℎ + � 33 �F (M)

2r3ℎ
(6.34)

For small � we may also expand (6.34) to linear order in � ,

ṽ(qu)B =v(cl)B + �)�v
(qu)
B ||�=0 + (�2)

≈v(cl)B + �
�
v(cl)B

)�(
T (qu)

r (qu)ℎ
)
||||�=0

(6.35)

Recalling that v(cl)B = 1,

ΔvB ≈ṽ
(qu)
B − v(cl)B

=��(
rℎ)�T (qu)|�=0 − )�r (qu)ℎ |�=0T

r2ℎ )

=��
T
r2ℎ(

rℎ
(1 + 3z2)(3z + z3) − 4z3

2(1 + 3z2)
−
2(z2 + z4)
(1 + 3z2)2)

=��
T
rℎ(

(1 + 3z2)(3z + z3) − 4z3 − 2(z + z3)
2(1 + 3z2) )

=
�
2(

(1 + 3z2)(3z + z3) − 4z3 − 2(z + z3)
2(1 + 3z2) )

=
�(z + z3)

4
≥ 0

(6.36)
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For small � and z, we remain on the thermal branch and therefore close to the classical behaviour
as seen in Figure 6.2.

In the limit of zero backreaction, b, c → 0 and ṽ(qu)B = vB = 1 as expected. For non-zero values,
however, b, c > 0 and hence this method yields v(qu)B > 1, implying that the butter�y velocity in
such a system is superluminal. In lieu of an analytic solution for general cases, we can compare
the growth of the boundary operator over time in the QuBTZ to that in the BTZ by taking the
di�erences between �̇(r) = d�/dt ,

Δ�̇(r) = �̇qu(r) − �̇cl(r) ∝
√
(r + rℎ − b)(rℎ + b)/r) −

√
r + rℎ (6.37)

such that Δ�̇(r) > 0 when
rℎ > b (6.38)

which is satis�ed trivially for all � > 0. Naturally, this result is interesting as it implies that
information is spread acausally in the system.

Figure 6.2: A plot of the di�erence between the butter�y velocity calculated using the Mezei-
Stanford approach and the classical result, Δṽ(qu)B , and the expansion of this result to linear order
in � , (Δṽ(qu)B )Lin, for � = 0.1.
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Figure 6.3: A contour plot of the value of the ṽ(qu)B calculated using the entanglement wedge
method developed in (16) as values of � and z in the limit of � ≪ 1 and restricted to �z3 ≤ 1. We
see that as quantum corrections are incorporated, the butter�y velocity grows monotonically,
exceeding the causal limit vB = vLC = 1.
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Chapter 7

Dissecting the Butter�y

At this juncture, we ought to revisit some assumptions regarding the Mezei-Stanford procedure.
The obvious culprit for the discrepancies emerges from assumptions about the size of the black
hole and the energy density. Presently, this procedure has not been extended to account for
small black holes in global coordinates let alone those with quantum corrections. We explore
these assumptions and discover that when the butter�y velocity is calculated numerically, one
�nds that it indeed con�rms that in the small backreaction limit vB ≥ 1. Independent of this
result, we argue that the prescription of calculating the butter�y velocity one thermal length
from the horizon fails to capture the physical content of the butter�y velocity for the QuBTZ
and small black holes more generally. Instead, we propose that the physically relevant distance
from the horizon should instead be set by the critical radius and angle where the connected and
disconnected phases of the minimal surface exchange dominance. We propose an alteration to
the existing Mezei-Stanford approach which we argue holds for small black holes with quantum
corrections such as the QuBTZ.

7.1 Numerical Calculation of Butter�y Velocity

Changes to the near horizon behaviour will generically emerge when quantum corrections are
included. In the context of the QuBTZ, the presence of the �F (M)/r term in the metric indicates
that there will be non-trivial deviation from the normal Rindler dynamics close to the horizon
for small black holes. One would then expect that we must be careful in discarding sub-leading
order contributions to the near horizon behaviour as in (6.25) and (6.25).

Using numerical integration, we calculated the explicit value of the butter�y velocity without
discarding any subleading terms but retaining the prescription that it be determined one thermal
length r� from the horizon,

vB =
�(r�)
t(r�)

(7.1)
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where r� = r(� = �) = rℎ + �� . In Figure 7.1, one can see the vB > 1 for 0 < � < 1. The cor-
rections to the butter�y velocity increase rapidly for small values of � and z before asymptoting
as � = 1 is approached. One explanation is that as one increases the backreaction, the horizon
radius grows and r� grows non-linearly. Corrections to the classical solution in f (r) scale as 1/r
meaning that, although we are increasing the backreaction strength, we must also consider that
there will also be an additional balancing e�ect from the fact that our limits keep us further away
from the black hole such that as r� increases the contribution of conformal �elds near the horizon
begins to asymptote to a �xed value. Naturally, as we increase � the higher-derivative corrections
become relevant and our RT calculations break down so one must also consider that these e�ects
may also be altered by the inclusion of higher-derivative gravity contributions close to � = 1.
These corrections will be explored further in follow-up work.

Figure 7.1: A plot of the correction to the butter�y velocity as a function of r∗ for zi = 10i/2. Similar
results hold for z < 1√

3 , however, these corrections are relatively small and sensitive to rounding
errors. Small variations are apparent on z1 which are likely due to sensitivity to rounding errors
in Mathematica.

Though we do not have a general analytic result, we can check that these numerical results
are no anomalous or solely due to rounding errors by considering the analytic results obtained
in subsection 5.4.2. These results are depicted in Figure 7.2 which exhibits similar behaviour to
the numerical results. Whilst this result is troubling under causal considerations, the fact that
v(qu)B > v(cl)B is not entirely surprising if one considers that vB is essentially a rate of di�usion for
quantum information. With this physical intuition in hand, one imagines that the information
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about the operator is not only scrambled by the black hole itself but also by quantum �elds outside
its horizon.

At this stage it remains unclear where the problem emerges from. Our results indicate that
either the QuBTZ construction is unphysical, that the Mezei-Stanford prescription is inapplicable
or that higher-derivative gravity and quantum corrections within the bulk may come to the rescue
of causality. The �rst suggestion, at least in the planar approximation, seems to be an unlikely
explanation in light of the model obeying the �rst law of black hole thermodynamics. However,
there may be some subtlety to this which is obscured on the brane but may manifest in the bulk
picture. Furthermore, we note that due to the cancellation of the conformal factor for radially
infalling lightlike paths, bulk and brane calculations are equivalent and valid to all orders in � in
contrast to the boundary calculation which only remains valid to linear order in � . To account
for corrections to all orders, one could instead calculate minimal surfaces in the bulk picture,
however, these minimal surfaces are solutions to non-trivial di�erential equations which could
not be explored in the con�nes of this thesis. The second proposal is more likely on account of the
number of signi�cant assumptions about the system, some of which we discuss in the following
section. Mezei and Stanford argued that their prescription remains valid for higher-derivative
gravity theories, though this may also be altered when considering a non-constant energy density
and a non-planar solution. One could further calculate the butter�y velocity by making use of
the OTOC directly or checking whether higher-derivative corrections indeed change the QuBTZ
result however time restrictions limit such lines of inquiry and so we defer this to later work.
Another interesting consideration comes from applying the results of (59) who found that the rate
of entanglement spreading for small subregions is not limited by causality. Since the thermal scale
is pushed further away as the black hole horizon decreases, the boundary subregion de�ning it
also decreases. In such a picture, we are forced to consider that we must use small subregions and
hence these results may be explained and analysed in a perturbative expansion. In the remainder
of this thesis, we shall assume that this is not the case and return to this point in future research.

Though our results are discouraging for the plight of causality in the QuBTZ, one may also
have expected that corrections to the butter�y velocity at linear order in � would scale closely
with the backreaction strength. In the following subsection, we discuss whether the prescription
of calculated vB at r = r� consistently provides a sensible place to probe the desired physics in
small black holes and propose that the relevant point migrates from its thermal value in general
cases.

7.2 Migration of the Butter�y

Although the question of whether the butter�y velocity in the QuBTZ or more general double
holographic braneworld constructions is superluminal remains an outstanding problem, our in-
vestigations noted an absence of the Mezei-Stanford prescription for global solutions and small
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Figure 7.2: A plot of the correction to the butter�y velocity as a function of r∗ for {z1, z2, z3, z4} =
{1.5zb=c , 2zb=c , 2.5zb=c , 3zb=c}, where zb=c was de�ned in (5.48) and � is determined by (5.47). It
is worth noting that above zb=c , the backreaction strength for such solutions is a monotonically
decreasing function of z such that larger z values lead to smaller backreactions. Small deviations
in z1 are again likely due to sensitivity to rounding errors in Mathematica.

black holes away from the planar limit. Throughout our discussion of the Mezei-Stanford ap-
proach we were certain to highlight assumptions made in arriving at their result. We must con-
front two crucial assumptions: (a) the energy density is approximately uniform (b) the black hole
is large48. In general, one cannot make such assumptions and hence it would be ideal to derive a
more general prescription. Unfortunately, our research yielded no such attempts, motivating us
to propose a revision of the existing methodology.

The �rst assumption allows us to assign an e�ective length scale to the system corresponding
to the inverse temperature, � . From (4.31) it is clear that at linear order, the energy density near the
horizon of small QuBTZ black holes will not satisfy this assumption, especially as the size of the
black hole approaches zero and CFT modes build up. The second assumption is more profound.
In our previous discussion of the QuBTZ, we found that the inclusion of backreaction bounds the
horizon from above such that 0 ≤ rℎ ≤ 2√

3 ≈ (�3) and we can no longer assume that we can go
to planar coordinates nor ignore the transition between the connected and disconnected phases
of the minimal surface. There is no Hawking-Page transition in d + 1 = 3 dimensional systems

48Whilst the planar limit is often used for simplicity it is not required so ‘largeness’ of the black hole should be
taken to mean that it is above the Hawking-Page transition.
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and hence no lower bound on stable global solutions (115) forcing us to consider in�nitesimally
small black holes as physically permissible solutions. Crucially, the butter�y velocity is de�ned in
terms of local quantities such that we must de�ne a physically reasonable and consistent scheme
telling us where the butter�y velocity should be measured. In light of these considerations, we
must open our minds to the possibility that the butter�y migrates as the size of the black hole
decreases. Where should one then calculate the butter�y velocity?

Let us return to a more organic notion of what the butter�y velocity means physically: it
is the upper bound on how quickly one can thermalize the system. In the bulk picture of the
infalling perturbation, we consider that the infalling perturbation is not just being scrambled by
the black hole but also by the CFT3 �elds outside its horizon. One then imagines that a full picture
would require some notion of local entropy densities as well as the thermal equilibrium density
calculated purely from the black hole. Rather than doing this, we can stick to considering how the
global properties such as entanglement entropy change as the perturbation becomes scrambled.
One expects that a) the minimal surface will begin to wrap the black hole b) the entanglement
entropy between the region and its complement will be close to the thermal entropy. Both of
these indicate that near such a point it would be di�cult to determine within which entanglement
wedge this perturbation was located: that connected to the bulk or the disconnected wedge. At
this point, information about the perturbation is spread over either of these topologically distinct
regions, giving a sensible notion of scrambling. Analogous to the BTZ in Appendix D, the minimal
surface begins to wrap the black hole close to the critical angle. Here, the entanglement entropy
approaches the entanglement plateau and saturates the Araki-Lieb inequality at SBH .

Naturally, one may ask why the Mezei-Stanford prescription works for large SAdS black holes.
Firstly, for a large black hole the energy density will be approximately constant and hence it is
reasonable that once the perturbation is within a thermal length of the black hole the initial per-
turbation is quickly scrambled. Furthermore, as horizon radius of the SAdS solution increases the
thermal scale and critical point overlap, as one can see from Figure 7.4. Therefore, the distinction
between the thermal and critical scales is moot for large black holes. For small black holes, how-
ever, the thermal length scale is orders of magnitude larger than rℎ and rc such that the minimal
surface does not yet begin to wrap the horizon. Additionally, considering the cubic radial depen-
dence of the energy density of the QuBTZ solution, it is clear that the butter�y velocity calculated
at r� will fail to completely pick up the near-horizon quantum e�ects. This explanation gives a
plausible reason for the corrections to the butter�y velocity being many orders of magnitude
smaller than linear order in � . To labour the point, at linear order we have an intuitive picture
of the CFTs living on the brane between the horizon and the conformal boundary which build
up the closer we get to the horizon much like in a physical black hole. If for example, we set the
penetration depth r∗ to be far away from the black hole then we will fail to capture the quantum
corrections at all and we will only see classical e�ects.

This observation leads us to the proposal that one must instead calculate the butter�y velocity
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Figure 7.3: A simple illustration showing the build up of CFT3 �elds (grey) as one approaches the
horizon (blue).

at the critical point where the minimal surfaces change dominance. For the BTZ black hole one
can show explicitly that,

rc
r�
=
2 coth(�rℎ) − 1

1 + 2�2
r2ℎ

(7.2)

such that small black holes will have r� far from the critical point rc . One can further calculate the
butter�y velocity at rc analytically for the BTZ using (5.28) and (D.13). Unfortunately, this result
returns the trivial result vB = vLC = 1 for all values of r∗ as expected and hence fails to provide
insight into our conjecture. Due to time restrictions, we were unable to provide a more rigorous
argument in favour of this prescription for classical black holes. Regardless, we can consider
that the canonical point where one should calculate the butter�y velocity is indeed at rc for the
QuBTZ as in Figure 7.5 where we take the maximum penetration depth to be,

r∗ = rc + �r� (7.3)

where rc is the critical radius of the classical solution.
As predicted, as we approach rc we �nd that the butter�y velocity of the quantum corrected

solution becomes of order � × 10−1. This result agrees more closely with our expectations of near
linear behaviour close to the critical radius. This result, though encouraging, relied upon the
approximation that r (QuBTZ)c ≈ r (BTZ)c for small � . In our future investigations, we hope to derive a
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Figure 7.4: A plot of the ratio of the critical radius rc to the thermal radius r� as a function of rℎ
for the classical BTZ. For small rℎ, we note that rc is orders of magnitude smaller than r� , whilst
for small black holes, they become approximately equivalent.

Figure 7.5: A plot of showing the di�erence between the classical and quantum corrected results
against � for �j = 0.1 × 10−j/4 and z = 9

10
√
3 . Taking � → ∞, we �nd that vB → 1 as expected.
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better bound on the location of the critical radius allowing for more accurate approximations of
the precise value of the butter�y velocity in this scheme.
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Part IV

Outlook and Concluding Remarks
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This thesis set out to illuminate kinematic and dynamic aspects of the QuBTZ model, apply-
ing them as a non-trivial way to calculate the butter�y velocity of a BTZ black hole to linear
order in quantum corrections. Through these investigations we provided insight into the un-
usual two-branch mass solutions and were able to illuminate overlooked features of the QuBTZ
solution with particular emphasis on the dynamics of subregions on the brane. We show that
a naive calculation following (16) produces superluminal values at linear order in � . This result
was con�rmed analytically in the case where the negative roots of f (r), are equal (b = c) and
numerically for more general values where b ≠ c. In remains unclear at this juncture whether
higher-derivative gravity corrections will resolve this. We address a gap in the literature regard-
ing the calculation of vB using subregion duality for smaller black holes in global coordinates.
This led us to reevaluate the assumptions of this methodology and propose an alteration to the
Mezei-Stanford approach.

In Part I of the thesis, we provided a detailed overview of holography and its relation to
quantum information. This part was included to give the novice holographer a broad and ped-
agogically minded review of key concepts and techniques in holography. We derived a number
of key results and gave examples of how the AdS/CFT duality posits an intrinsic link between
semi-classical gravity and quantum entanglement.

We devoted Part II to demystifying many of the complicated and unorthodox features of the
QuBTZ, providing original calculations of global features as well as geodesics and holographic
entanglement entropy calculations for subregions of the brane to linear order in the backreaction.
We investigated the nature of the two branches of the QuBTZ and illustrated that there only
existed consistent solutions with equal z mass parameter and ADM mass 3M within a �nite
range of z values. The maximum radius of the QuBTZ was shown to be twice the maximum
radius of the uncorrected solution and of order �3. The free energy of these two solutions was
calculated illustrating that the thermal branch is thermodynamically preferable over the Casimir
branch. The classical equations of motion were used to derive analytic expressions for infalling
radial timelike (to linear order in �) and lightlike geodesics (to all orders in �). Numerical methods
were employed to calculate the spacelike minimal surfaces for the QuBTZ and analytical results
were derived for the special class of solutions where the negative roots of f (r) are equal (b = c). As
one would expect from the monotinicity of relative entropy, the QuBTZ minimal surface resulted
in larger minimal surfaces than the classical solutions and hence larger entanglement entropies.
Making use of the equations of motion for the minimal surfaces, we showed that for a �xed
penetration depth, the quantum corrected solutions were bounded from above by the minimal
surfaces of classical BTZ black holes with a mass determined by the horizon radius of the quantum
corrected solution and from below by those of the classical BTZ solution with �xed z and � = 0.
Armed with this result, we argued that the critical radius of the QuBTZ should then be somewhere
between that of the two solutions. Analytic results for the minimal surface to �rst order in � were
also calculated.

119



Making use of our results in Part II, Part III explored how chaos spreads in the QuBTZ model.
Applying the methods of Mezei and Stanford, we found that their simple formula for the butter�y
velocity produced a superluminal butter�y velocity. Both numerical for general values of b and
c and the analytic results for the special case b = c support this �nding. We assert that this
approximation is insu�cient in describing black holes with near horizon corrections and non-
uniform energy density. Following the more fundamental claim that the butter�y velocity could
be calculated using the subregion duality, we performed numerical calculations showing that
vB > 1 when backreaction e�ects were included. These corrections were orders of magnitude
smaller than those expected, leading us to further question whether the thermal length r� provides
an appropriate coordinate at which one should calculate the butter�y velocity for small quantum
corrected black holes. Though this calculation did not resolve causal concerns, it did reveal a
gap in the literature regarding an equivalent subregion duality approach for smaller global black
holes well below the planar limit. We conjectured a reasonable generalisation of this method in
which we propose that the butter�y velocity should be calculated near the critical radius where
the connected and disconnected minimal surfaces exchange dominance. Whilst this conjecture
was heuristic and less rigorous than we would like, it was able to capture the anticipated near
linear order � e�ects in the corrections to the classical butter�y velocity.

Unfortunately, time constraints prevent us from a more rigorous treatment of the myriad of
fascinating possibilities one might pursue in both the QuBTZ model or the proposed extension
to the Mezei-Stanford methodology. Being generous to our own e�orts, one may remark that the
mark of promising science is that it generates as many new insightful questions as it sought to
answer. In the following, we provide an outlook and a number of promising extensions to this
thesis which we endeavour to explore in upcoming work.

Outlook and New Horizons

Before discussing some more general proposals, we shall touch upon some facets of the QuBTZ
model and our proposal which we were unable to investigate fully,

1. Higher-Derivative Gravity Corrections: Integrating out the CFT modes above the cuto� in-
duces a higher-derivative gravity theory on the brane. Due to the general di�culty of their
inclusion and scope of this thesis we limited ourselves to the linear order backreaction
e�ects, allowing us to apply the RT prescription. Inclusion of the higher-derivative terms
would provide a more general and reliable analysis of the interesting features of the QuBTZ.
In particular, (16) argued that their butter�y velocity calculation remained consistent to all
orders in higher curvature couplings for four-derivative gravity which has been further
supported in (96). This result may require modi�cation when considering non-planar so-
lutions and non-constant energy densities. In Appendix B of (16), it was noted that due to
the butter�y velocity describing a high energy scattering problem, it may require stringy
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Regge corrections. It was shown in (116), however, that at the order calculated in � ′, these
corrections did not alter the butter�y velocity. They further noted that these higher order
corrections generally require a massive gravity theory for stability, which is a natural fea-
ture of the Randall-Sundrum-like braneworld models employed. More recently, the authors
of (97) also considered stringy corrections to the butter�y velocity and were able to show
that the rank of the gauge group and the string couplings did, in fact, lead to corrections in
the butter�y velocity but not in the upper bound of the Lyupanov exponent. These results,
however, do not take into consideration the additional presence of �elds outside the horizon
or their backreaction on the geometry. In the QuBTZ, the low energy CFT modes (∝ c) and
the higher-derivative gravity e�ects begin to mix at order �2 and would therefore provide
an interesting candidate for further exploration. Additionally, the small corrections to vB
calculated in this thesis could well be cancelled by these higher-derivative corrections. At
this order, the conformal symmetry is also broken on the brane, a result which has not yet
been explored in detail.

2. Dressed Singularities and Rotating QuBTZ Solutions: The QuBTZ contains an additional
branch (1a) of negative mass solutions interpreted in (14) as dressed conical singularities. It
was further claimed that these solutions implied a manifest form of the cosmic censorship
conjecture. Classical conical singularities are described by taking rℎ → i�d+1

√
1 − � with

� ∈ [0, 1) in the classical BTZ solution. Furthermore, one may be interested in calculating
vB for the dressed conical singularities for which closed timelike curves can exist. There-
fore, a comparison between the two may provide some fascinating insights. Furthermore,
the authors of (14) extended the QuBTZ to a range of rotating solutions which one may
explore.

3. Bulk Minimal Surface Calculations: On the brane, we are restricted to perturbation theory
and e�ective higher-derivative gravity. In contrast, calculating minimal surfaces on the
boundary gives non-perturbative results for the generalized entropy to all orders in both �
and c. Furthermore, one can calculate entanglement entropies using the relatively simple
RT formula. The RT formula, however, demands that we minimize the full four-dimensional
(three-dimensional time slice) bulk area functional. This is unlikely to yield analytical re-
sults and so need numerical toolkits must be developed. Following this procedure, however,
we would be able to isolate contributions order-by-order in � and c to determine the entan-
glement entropy between the brane and the CFTs outside of the horizon in the bulk picture
as in (5.32) but for subregions rather than the full QuBTZ.

4. Proof of Small Black Hole Proposal: The proposed modi�cation to the Mezei-Stanford pro-
cedure was only considered in the twilight of this thesis. In future, we would like to formu-
late a more robust argument in its favour through consideration of Wilson loops as explicit
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probes of operator behaviour and QIT arguments. As discussed, the result vB = vLC = 1 re-
mains exact for BTZ and hence trivial for all r∗ in the classical case. It would be interesting
to see if this prescription produces new results when applied to higher dimensional models
with known phase transitions for the minimal surfaces.

5. Higher Dimensional QuBTZ : Another interesting extension to the QuBTZ, or more general
braneworld constructions, would be to consider higher dimensional constructions. One
proposal would be to introduce additional axes of rotation to a QuBTZ-like model. It would
be particularly interesting to see if the bound on the ADM mass and radius are also present
or is perhaps relaxed in higher dimensions. It was argued in (14) that this feature was a
consequence of holographically representing the CFT by four-dimensional gravity rather
than a property of braneworld constructions.

6. Finding Critical Points: Using heuristic approaches we argued that the critical angle of the
QuBTZ was bounded from above and below. Without analytic results, �nding a precise
solution will require tedious numerical calculations. Finding exact values for the critical
points would allow us to more accurately calculate the butter�y velocity in our proposal.
Additionally, such critical points may be found if there does exist an exact solution for the
bulk minimal surface or through considering the boundary dual of a CFT3 coupled to a
conformal defect.

Beyond these extensions which build directly from concepts discussed explicitly, we may also
consider entirely new directions,

1. Islands: Another fascinating feature of braneworld constructions comes through the sim-
plicity with which one can describe quantum extremal islands(13). In the QuBTZ, it was
suggested by (14) that the unstable solutions on branch (1b) may evaporate into the CFT3

via the transparent boundary. This phenomena deserves further scrutiny, but may provide
an interesting model of black hole evaporation in which the islands are interpreted as living
on the bulk theory outside of the brane.

2. Quantum Bit Threads: The RT formula can be reformulated in terms of divergenceless,
norm-bounded vector �elds called bit threads (117). These bit threads allow for a more
information theoretically friendly notion of minimal surfaces which are rede�ned as con-
stant surfaces along which the norm bound is saturated. Due to the divergenceless condi-
tion, these bit thread are constrained to start and end on conformal boundaries or horizons.
More recently, a number of quantum bit thread proposals have been suggested (17)(118).
These proposals generally seek to include quantum corrections by altering this divergence-
less condition, allowing the bit threads to e�ectively tunnel through the bulk. In (17), Rolph
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proposes a model inspired by a double holographic picture similar to the QuBTZ construc-
tion where islands are likewise interpreted as living in the higher dimensional bulk or,
equivalently, along the CFTd+1. The QuBTZ model would therefore be a non-trivial check
of this prescription. Using the techniques of (119), one could further construct explicit quan-
tum bit thread con�gurations in the higher dimensional picture and project them onto to
the brane.
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Appendix A

Causal Domains in QFT

To extend our lattice quantum mechanics intuitions, we assume that our Hilbert space is non-
compact and replace the wavefunction with a wavefunctional Ψ(Φ(x)), where Φ(x) is a label for
some collection of �elds de�ned at point, x ∈ Σ and Σ is some spatial slice of our Lorentzian
and globally hyperbolic spacetime,  at �xed time49. The previous procedure of tracing out Ā is
now replaced by one in which we integrate over all �elds in the domain x ∈ Ā. We now have a
technical challenge in that we must take the logarithm of a continuum operator in order to de�ne
our entropy measures.

We de�ne a bipartite system A ∪ Ā = Σ. The entanglement surface, )A, which is de�ned as
the boundary between the two regions is now a co-dimension 2 hypersurface in our spacetime.
As one may intuit, the continuum limit will force us to introduce an explicit UV regulator � in
order to tame any divergences. This is equivalent to a tubular neighbourhood of )A of width �
which regulates the short distance entanglement between the degrees of freedom in A and Ā. As
before, the reduced density matrix captures the entanglement information between the two parts
of our bipartite system and once calculated one can straightforwardly calculate the entanglement
entropy50.

For local relativistic QFTs, the past and future evolution of information on a Cauchy slice
allow us to reconstruct the state of the QFT on the entirety of the Lorentzian manifold . That
is to say that the unitarity of evolution allows us to assert that the past and future domains of
dependenceD±[Σ] create the background spacetime on which the QFT lives. Similarly, this applies
to any subset of Σ such that the domain of dependence of A, D[A] = D[A+] ∪ D[A−] is the region
where the reduced density matrix �A can be uniquely evolved given the Hamiltonian acting on
the system.

Generally, domains of dependence of our bipartite system do not cover the full spacetime
49We note that x now represents some coordinate chart on the manifold.
50To �x gauge ambiguity of which subset )A is in, we simply assume that it belongs to eitherA or Ā in a consistent

way
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and we must also account for any regions which can be in�uenced by the entanglement surface
)A. This subtlety is paramount to understanding the later notion of the entanglement wedge.
We can now denote a general point p ∈  and its causal structure by J ±[p] such that we can
further de�ne the causal future (past) of the entanglement surface by J ±[)A]. Consequently, we
can construct the full manifold  by taking

 = D[A] ∪ D[Ā] ∪ J +[)A] ∪ J −[)A] (A.1)

The codimension-2 spacelike surfaces )A have a two-dimensional normal bundle with a Lorentzian
metric signature such that we can always visualise them as a point in 2D space(120).

This formulation in terms of causal domains allows us to formulate constraints on the en-
tanglement entropy which follow naturally from our notions of causality in relativity. Evolving
states in the Hilbert space by unitary transformations supported only in regions A or Ā (ie. 

or ̄) then the leaves the von Neumann and Rényi entropies for the total system Σ invariant
but changes the entanglement structure between subregions of Σ. We could also consider some
perturbation or deformation of the spatial slice such that �Σ → �Σ′ . This deformation is related
to the original slice by unitary operations constructed from localised A and Ā operators.

Consider a general construction by �xing a state in the in�nite past (t → −∞) and with
some perturbation of the Hamiltonian supported by some region ��H . By virtue of causality,
only points in the causal future of this region can be a�ected. Ergo, any region of the spacetime
which does not intersect J +[Σ�H ] remains una�ected. This class of perturbations can only a�ect
the entanglement spectrum (eigenvalues of our reduced density matrices) in the region J +[Σ�H ] ∩
J −[)A]. In this case, these perturbations in�uence both regions in our bipartite system and can
therefore modify the entanglement entropy. We can then reverse the time ordering and �x our
state as t → ∞ then the region which can be a�ected by this perturbation is J −[Σ�H ] ∩ J +[)A].
One can then consider a case in which we �x the state in the in�nite past and in�nite future. In
this case one may heuristically imagine a causal wedge being de�ned between these two events.

We can summarise the causal properties as:

1. The entanglement spectrum �A depends only on the causal domain of the region A and not
on any speci�c choice of Cauchy slice. The entanglement spectrum (entanglement entropy)
is referred to as a ‘wedge observable’ 51

2. If we �x the state in the in�nite past or in�nite future then the entanglement spectrum of
�A is una�ected by local deformations in regions D[A] or D[Ā].

3. The entanglement can be altered in the case that we �x the state in the in�nite past (future)
51One must however be careful to note that it is not an observable in the usual quantum mechanical sense as the

operator SA = �A log �A is clearly non-linear.
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in which case the entanglement spectrum will be altered provided that J +[Σ�H ] ∩ J −[)A]
(J −[Σ�H ] ∩ J +[)A]).

The entanglement wedge plays an essential role in understanding information spreading in
quantum systems and, by extension, holographic gravity theories. In Part III we employ this
duality to connect information spreading in the bulk to its boundary dynamics.
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Appendix B

The Gravitational Replica Trick

The replica trick applies not only to standard e�ective QFTs but also to gravitational �elds epre-
sented by the metric of the theory. Naturally, gravitons are non-renormalisable in such theories
however the semi-classical limit can still give instructive results. We can construct an n-cover
manifold made of glued n copies of the original, n then write out a path integral for all �elds
on the manifold(52)52,

Zn = ∫
n

�e−S[�] (B.1)

where we identify �E = �E+n� . In the most general case, the contribution to the entropy should
not only be from matter �elds but also from gauge �elds. This gives a �rst order correction to
the original result by Hawking and Bekenstein. We shall to restrict ourselves to the �rst order of
the semiclassical case here in which we will �nd that we recover the Hawking Bekenstein result
for the Schwarzchild black hole.

Let’s now ignore the matter �elds and make the semi-classical approximation that the metric
is �xed at the saddle point, or the classical solution to the action,

Zn = ∫
n

ge−Sgrav[g] → Z (s. cl.)
n

= e−Sgrav[g]|g �xed → logZn = −Sgrav(gn)
(B.2)

where the Euclidean time integral goes over �E ∶ 0 → n�
We recall that the metric for a Schwarzschild Black hole in maximally symmetric spacetimes

is
52For simplicity, we assume that the original manifold is static
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ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

d−2 (B.3)

where f (r) = 1 − k r2
L2 −

16�GM
(d−2)Ωd−2rd−3ℎ

in which k is some constant curvature and L is some length
scale. By going to Euclidean time and then rearranging our metric near the boundary, we get:

� =
1
T
=

4�
f ′(rℎ)

(B.4)

We can plot this as a cigar, with the horizon at the tip as given by Figure 2.1. In the single
sheet case, there is no conical de�cit at the horizon and this is what determines the appropriate
period of the Euclidean time.

In the n-fold case, our gluing changes the periodicity of Euclidean time to n-times its original
but this also changes the position on the horizon and the value of the mass as:

f (rn, Mn) = 0;
f ′(rn, Mn)

4�
=
1
n�

(B.5)

The resulting geometry then gives a new saddle point that we need to calculate the Renyi
entropy. In the semiclassical approximation, details about the full manifold become irrelevant
and all we need is its behaviour at the horizon and at in�nity.

We can now insert the saddle point values into the expression for the Von Neumann entropy.

SvN = )n(Sgrav[gn] − nSgrav[g1])|n=1 (B.6)

The basic approach we take is to consider that the geometry gn is an n fold cover of the original
but smoothed out at the horizon. We also have a replica symmetry ℤn which shifts the euclidean
time by � and iterates over the replicas.

We can now consider the quotient manifold, n/ℤn such that we now have an orbifold. We
can imagine that at all point on the manifold it is taking into account the degeneracy of the
original manifold and reducing the angle 2� to 2�/n. This is �ne for all points on the manifold
except for those which are �xed points of the ℤn action. In this case, those points are all on the
surface of the horizon as they are simply mapped to the same points when we go from n →
/ℤn and so we have a conical singularity for all points on the horizon with an angular dece�t

Δ�n = 2�(1 −
1
n)

(B.7)

To reiterate, the geometry of the orbifold is locally the same as the 1/n-th part of the original
replica manifold except at the tip of the cone. Therefore, we expect that the full action integral
over the original manifold is just equal to ntimes the copy of the orbifold except at the tip of the
cone. This makes clear that:

128



Sgrav[gn] =
n

16�G ∫
n/ℤn

√gn(R[gn] + (d − 2)Λ)|reg (B.8)

Here, reg means that we should remove the conical singularity at the horizon.
We may change the geometry slightly near the horizon by smoothing out the cone. We denote

this regularised geometry by g̃n. Now that it is regular, the action is well de�ned on the orbifold.
This is no longer a true saddle point of the original action, and doesn’t satisfy the Einstein Equa-
tions. We can assume that the new geometry is close to the original and only di�ers in �rst order
by n − 1. Since the metric gn extremizes the action, there is no change to the action to �rst order
in the approximation,

Sgrav[gn] ≈
n

16�G ∫
̃n/ℤn

√gn(R[g̃n] + (d − 2)Λ) + ((n − 1)2) (B.9)

The only contribution in our �nal result from this geometry will therefore come from near-
horizon region,

SvN =
d
dn
(Sgrav[gn] − nSgrav[g1])|n=1

=
d
dn
(nSgrav[g̃n]|̃n/ℤn

− nSgrav[g1])|n=1

= n
d
dn
(Sgrav[g̃n]|̃n/ℤn

)|n=1 + (Sgrav[g̃n]|̃n/ℤn
− Sgrav[g1])|n=1

= n
d
dn
(Sgrav[g̃n]|̃n/ℤn

)|n=1

(B.10)

Since g1 = g̃1 the terms cancel. Furthermore, outside of the smoothed region, the geometry is
equal to the saddle point geometry gn so when we take the derivative and so it obeys the Einstein
equations. Hence, we only need the result at the horizon.

We can then split the smoothed cone region into two parts, the (r , �E) and the (d − 2) dimen-
sions along the horizon. The action is translationally invariant in these horizon directions so the
integration just produces the area A of the horizon.

We then only have the two dimensional integral over the smoothed cone region, which can
be solved easily by using that the Ricci scalar in two dimensions,

R = g̃��(n,2)R�� = Kg̃
��
(n,2)g̃

(n,2)
�� = 2K (B.11)

where K is the Gauss curvature. We point out that g̃��(n,2) is the (r , �E) component of the
smoothed metric.

We now use the Gauss Bonnet theorem which relates the Gaussian curvature to the angular
defecit by
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∫
sm cone

K = Δ� ⟹ ∫
sm cone

√
g̃(n,2)R(2) = 4�(1 −

1
n
) (B.12)

giving,

Sgrav[gn] − nSgrav[g1] ≈
4�n
16�G(1 −

1
n)

AreaH + ((n − 1)2) (B.13)

from which we take the derivative with respect to n to get

S =
d
dn(

4�n
16�G(1 −

1
n)

AreaH)
||||n=1

=
AreaH
4G

(B.14)

As we can see, there we have indeed obtained the Hawking-Bekenstein result for the entropy.
There exists a more general procedure created by Wald for the case where we have higher order
derivatives and functions of the curvature in the action which relies upon a detailed treatment of
conserved currents on the horizon.
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Appendix C

The Covariant RT Conjecture (HRT)

The RT conjecture is an extremely useful tool for calculating holographic entanglement entropy
of static spacetimes, however, we would like to extend this to the case in which the spacetime
itself is dynamic. Not long after the RT conjecture was �rst put forward, Hubeny, Ranganami
and Takayanagi published (8) in which they provided a completely covariant extension to the RT
formula commonly referred to as the HRT proposal.

To see where the ambiguity lies, we consider some time dependent von Neumann entropy for
boundary region A,

SvN [�A(t)] = − Tr[�A(t) ln �A(t)] (C.1)

For the static case, we can simply go to Euclidean time and �nd an unambiguous de�nition
of the area which does not evolve in time. When we consider the time dependent case, the area
of such a surface is no longer well de�ned as the Lorentzian signature permits us to apply defor-
mations in the time direction which could make this area arbitrarily small. If we are permitted
to simply minimize over this co-dimension two area, we could always reduce the entropy to zero
and hence the RT formula loses all meaning.

To move towards a solution, we note that in Euclidean signature the proper length of a space-
like geodesic is given by a local minimum of the area functional while in Lorentzian spacetimes
we must �nd a saddle point which is a local extremum of the area functional. This gives us
some intuition that we ought to expect the Lorentzian analogue of the RT surface to represent an
extremal rather than minimal surface.

The HRT proposal was inspired by Bousso’s lightcone construction which allows for the con-
struction of a covariant entropy bound (48). Bousso’s entropy bound states that the entropy �ux53

integrated over a light sheet Lm(A(t)) is bounded from above by the Bekenstein Hawking entropy
of the surface54:

53This is de�ned as entropy per unit area, where the area is simply a co-dimension two spacelike region
54For the sake of simplicity, we shall continue to use m(A) here despite the fact that the surface is no longer

131



S(Lm(A(t))) ≤
A[m(A(t))]

4GN
(C.2)

The lightsheet Lm(A(t)) of a co-dimension two bulk spacelike surface, m(A(t)), can be con-
structed using four congruences55 which extend from the region m(A(t)). These congruences
represent in-going and out-going and past and future domains of dependence of the region. This
means that the geodesics converge to point and form a caustic.

To motivate the HRT conjecture, consider the subregion A(t) on the boundary CFT which has
boundary )A(t) and density matrix �A(t). We now construct future/past directed lightsheets L±)A(t)
de�ned by the region stretching from )A(t) into the bulk. In the bulk, our co-dimension two bulk
surfacem(A(t)) is then de�ned by the intersection of these two lightsheets,m(A(t)) = L+)A(t)∩L−)A(t).

The proposal can be de�ned in the bulk as:

SvN [�A(t)] = min
m(A(t))(

A[m(A(t))]
4GN ) =

A[mmin(A(t))]
4GN

(C.3)

where mmin(A(t)) is a minimum of all surfaces m(A(t)) which can be produced with this light
sheet construction. The null geodesic �± expansion on the light sheets is always non-positive
(�± ≤ 0) such that we can continuously deform some generic surface in the set m(A(t)) into the
boundary which is de�ned as the surface which saturated the bound so we have vanishing null
geodesic expansion, �± = 0. This means that the minimal surface we �nd from the light sheet
construction is equivalent to an extremal surface, mext(A(t)) provided that this extremum obeys:

1. The boundary of the CFT subregion A is the same as the boundary of the extremal surface
mext(A(t)): )A(t) = )mext(A(t)).

2. The extremal surface is homologous to A(t) such that A(t) ∪ mext(A(t)) form the boundary
of some d-dimensional spacelike surface in .

3. The extremal surface has a vanishing null-geodesic expansion. This means that along
mext(A(t)), the trace of the null extrinsic curvatures (�±)�� is vanishing:

�± = (�±)�� = ℎ
�
�ℎ

��∇�(N±)� = 0 (C.4)

where ℎ�� is the induced metric along the extremal surface mext(A(t)), N �
± are the two null

vectors orthogonal to mext(A(t)) normalised such that g��N �
+N �

− = −1. This condition de-
mands that mext(A(t)) lies within the set of all surfaces which obey our �rst two conditions

minimal and that we need not make speci�c reference to a boundary region A to de�ne this bound.
55We recall that a congruence is a set of integral curves of a nowhere vanishing vector �eld in a Lorentzian

manifold which can be interpreted as a model of spacetime. In this case, we foliate the spacetime by a set of null
geodesics.
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(ie. are within our causal domain). Extremizing over this set,

SvN [�A(t)] = extm(A(t))(
A[m(A(t))]

4GN ) =
A[mext(A(t))]

4GN
(C.5)

4. If the surface which meets the �rst three criteria is non-unique then one chooses that with
the minimal area.

It has been shown that the HRT formulation obeys the desired properties of entanglement
entropy as de�ned in Chapter 1 for dynamical spacetimes. An additional approach was introduced
by Wall in (121) known as the maxi-min prescription. In this formulation, the extremal surface
can be found by foliating the spacetime with a set of spacelike Cauchy slices ΣA where ΣA ⊂ )A.
We then pick a single Cauchy slice at time t , ΣA(t) and �nd the minimal surface on this slice which
is anchored to the boundary region )A(t) and homologous to A. Once this is done, we must �nd
the minimal surface over time which is equivalent to �nding its minimum over all possible choices
of Cauchy slices,

SvN [�A(t)] = max
ΣA(t)

min
m(A(t))(

Area[m(A(t))]
4GN ) =

Area[mext(A(t))]
4GN

(C.6)

What this prescription makes apparent is that we are looking for a saddle point of the area
functional located at a local minimum with respect to the spatial coordinates and at a local max-
imum with respect to time.
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Appendix D

RT Surfaces for Spherically Symmetric
Geometries in (d + 1) = 3

Below we calculate the RT surfaces of two simple spherically symmetric geometries in AdS3 in
global coordinates: the AdS3 solution and the BTZ black hole.

D.1 AdS3 in Global Coordinates

We shall assume that t = 0 and that we are considering a region such that � ∈ [−�A, �A]. The
metric of the constant time slice with AdS length, �3, is given by:

ds2 =
� 23

r2 + � 23
dr2 + r2d�2 (D.1)

To �nd the minimal surface, we simply need to �nd the geodesic connecting the points (−�A)
and �A. The minimal surface is then found by solving the equation:

d�
dr

= ±
C�3

r
√
(r2 + � 23 )(r2 − C2)

(D.2)

where C is a constant. For a general geodesic starting at (r0, �0) with slope d�
dr |(r0,�0) = �̇0,

C =
r20
√
(r20 + � 23 )√

� 23 /�̇20 + r20 (r20 + � 23 )
(D.3)

It is simple to check that if we parameterize this path by the deepest point r∗ such that at
�0 = 0, r0 = r∗ and �̇−10 we �nd that C = r0. For the minimal surface, this equation is solved by:

r(�) = �3 cos �A

√
1

cos2 � − cos2 �A
(D.4)
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Where we have used that the deepest point can be parameterised by r∗ = R cot(�A) 56.

D.2 BTZ in Global Coordinates

We again assume that t = 0 and that we are considering a region such that � ∈ [−�A, �A]. The
metric of the constant time slice is given by:

ds2 =
� 23

r2 − r2ℎ
dr2 + r2d�2 (D.5)

Of course, we see that we return the global AdS with the identi�cation R = irℎ such that the
period of � has been altered. To �nd the minimal surface, we simply need to �nd the geodesic
connecting the points (−�A) and �A.

d�
dr

= ±
C�3

r
√
(r2 − r2ℎ)(r2 − C2)

(D.6)

where C is a constant. For a general geodesic starting at (r0, �0) with slope d�
dr |(r0,�0) = �̇0, we

can write,

C =
r20
√
(r20 − r2ℎ)√

� 23 /�̇20 + r20 (r20 − r2ℎ)
(D.7)

It is simple to check that if we parameterize this path by the deepest point r∗ such that at
�0 = 0, r0 = r∗ and �̇−10 = s0 we �nd that C = r∗. In this case, there exist two minimal surfaces,

 (1) = r(�, �A, rℎ) = rℎ

√
cosh2( rℎ�A�3 )

cosh2( rℎ�A�3 ) − cosh
2( rℎ��3 )

(D.8)

and
 (2) = r(�, � − �A, rℎ) ∪ rℎ (D.9)

where we used that the deepest point can be parameterised by57.

r∗ = rℎ coth(
rℎ�A
�3 ) (D.10)

To �nd the entanglement entropy, one must calculate the area of each surface. In three di-
56This follows from solving the equation using that C = r∗ and then similarly solving the equation for general C

and then matching the conditions at �A as desired.
57This follows from solving the equation using that C = r∗ and then similarly solving the equation for general C

and then matching the conditions at �A as desired by demanding that at � → �A as r → ∞.
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mensions, this can be done by calculating the proper length of the minimal surfaces divided by
4G3,

SA( (1)) =
�3
4G3

2 ∫
rf

r∗
dr

√
1

r2 − r2ℎ
+ r2(

d�
dr )

2

=
c
3 ∫

rf

r∗
dr

√
r2

(r2 − r2ℎ)(r2 − r2∗ )

=
c
3[
sinh−1(

√
r2 − r2ℎ
r2ℎ − r2∗ )]

rf

r∗

=
c
3
log(

√
r2f − r2∗ +

√
r2f − r2ℎ

rℎ
√
coth2( rℎ�A�3 ) − 1

)

=
c
3
log(

2
�rℎ

sinh(
rℎ�A
�3 ))

=
c
3
log(

�
��

sinh(
rℎ�A
�3 ))

(D.11)

where in the �rst line we used the symmetry about � = 0, in the second last line we made use
of the fact that rf = 1

� is much larger than rℎ, r∗ in the limit that � → 0 and �nally we made the
identi�cation rℎ = 2�� 23 /� and R = 2��3 is the size of a spatial circle. The two possible minimal
surfaces are thus given by:

SA =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

c
3 log(

�
�� sinh(

R
� �A)), if �A < �∗A

c
3�rℎ +

c
3 log(

�
�� sinh(

R
� (� − �A))), if �A ≥ �∗A

(D.12)

Which is minimal depends upon the critical angle �∗A which can be found by �nding the point
where the HEE associated to the two possible minimal surfaces is equal, SA( (1)) = SA( (2)) giving,

�∗A(rℎ) =
�3
rℎ
coth−1(2 coth(

�rℎ
�3 ) − 1) (D.13)

Note that in the large rℎ limit we �nd, limrℎ→∞ �∗A = � as we would expect.
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Figure D.1: A plot showing minimal surfaces in the BTZ with black holes of radius rℎ = 1 and
rℎ = 0.2 on the left and right respectively. The central circle is the black hole horizon and the
minimal surfaces corresponding to 0 ≤ �A ≤ � colour coded from red to purple respectively. The
radial coordinate has been compacti�ed such that � = tan−1(r)(122).

D.3 Cosmic Strings in (d + 1) = 3

To move towards the cosmic string (or conical singularity) results, one simply makes the identi-
�cation rℎ = i�3

√
1 − � = i�3rc.ℎ. where � ∈ [0, 1) to �nd the t = 0 slice metric in �3 = 1 coordinates,

ds2 =
1

r2 + r2c.ℎ.
dr2 + r2d�2 (D.14)

and the minimal surface equation,

d�
dr

= ±
C�3

r
√
(r2 + r2c.ℎ.)(r2 − r2∗ )

(D.15)

where r∗ parameterizes the deepest point in the bulk. The connected minimal surface is given
by,

 (1) = �(r , r∗, rℎ) = ±
1
rc.ℎ.(

�
2
− tan−1(

r∗
√
(r2 + r2c.ℎ.)

rc.ℎ.
√
(r2 − r2∗ ))) (D.16)

or
 (1) = r(�, r∗, rℎ) =

rc.ℎ.r∗√
r2c.ℎ. sin

2(�/2 − rc.ℎ.�) − r2∗ cos2(�/2 − rc.ℎ.�)
(D.17)
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We can also �nd that
r∗ = ±rc.ℎ. tan(�/2 − rc.ℎ.�A) (D.18)

Where we use the positive solution for 0 ≤ �A ≤ �
2rc.ℎ.

and the negative for �
2rc.ℎ.

≤ �A ≤ �
rc.ℎ.

.
Unlike the QuBTZ, there is no horizon and hence there exists only a connected phase for the
minimal surface. We can also �nd the entanglement entropy for a region,

SA( (1)) =
�3
4G3

2 ∫
rf

r∗
dr

√
1

r2 + r2c.ℎ
+ r2(

d�
dr )

2

=
c
3 ∫

rf

r∗
dr

√
r2

(r2 + r2c.ℎ.)(r2 − r2∗ )

=
c
3[
i sin−1(

√
r2 + r2c.ℎ.
r2∗ + r2c.ℎ.)]

rf

r∗

=
c
3
log(

1
�

1 − i√
r2∗ + r2c.ℎ.)

(D.19)

where in the �rst line we used the symmetry about � = 0, in the second last line we made use of
the fact that rf = 1

� is much larger than rℎ, r∗ in the limit that � → 0. This result certainly looks
to be problematic in light of its imaginary component. However, if we take a di�erence of the
entropy in regions A and B with penetration depths r∗ and r∗∗ respectively we �nd that,

ΔS = SA − SB =
c
3
log(

√
r2∗∗ + r2c.ℎ.
r2∗ + r2c.ℎ.)

(D.20)

Regardless, these results are certainly unusual and warrant further investigation, particularly
when considering in light of the possibility of the Branch (1a) solutions to the QuBTZ.
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Appendix E

Roots and Timelike Paths

In this subsection, we provide supplementary information regarding the roots of f (r) and extend
our small � analysis to radial timelike paths in the bulk. Neither of these results are central to
this thesis but are included for the sake of completeness.

E.1 Lightlike Paths

For radially infalling lightlike paths, the reality of the roots of f (r) are determined by the deter-
minant of the polynomial,

Δ3 = 4� 63 (83M)3 − 27(�F (M)� 33 )2 (E.1)

where positive, zero and negative values correspond to the cases in which the roots are all real,
real with two repeated roots and one real root and two complex conjugate roots respectively.
This gives the non-canonical conditions:

�3 >
3
√
3
2

�� ; Δ3 > 0

�3 =
3
√
3
2

�� ; Δ3 = 0

�3 <
3
√
3
2

�� ; Δ3 < 0

(E.2)
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or in the canonical coordinates:

83M > 3(
F(M)�
2 )

2/3

; Δ3 > 0

83M = 3(
F(M)�
2 )

2/3

; Δ3 = 0

83M < 3(
F(M)�
2 )

2/3

; Δ3 < 0

(E.3)

The nature of these roots do not seem to provide any deeper physical insight but we include
them to complete the discussion.

Timelike Trajectories

In the small � limit, we can then also consider the timelike trajectories of massive observers,

∫ d� = ± �3 ∫
dr√

E2 − f (r)

= ±�3 ∫
dr

√
r√

(−r3 + � 23 (E2 + 83M)r + �� 33 F (M))

(E.4)

By the same logic as before, we can state that there now exists three separate conditions
depending on the parameter values. The discriminant is given by:

Δ̃3 = 4� 63 (83M + E2)3 − 27� 63 (�F (M))
2 (E.5)

We note that unlike the previous case, the positive root to this equation is not the value of the
horizon. The case in which E = 1 corresponds to the case in which our test particle is at rest at
r = ∞ but we shall keep E general such that:

83M > 3(
F(M)�
2 )

2/3

− E2; Δ3 > 0

83M = 3(
F(M)�
2 )

2/3

− E2; Δ3 = 0

83M < 3(
F(M)�
2 )

2/3

− E2; Δ3 < 0

(E.6)
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Once again, we simply write this expression as:

∫ d� = ±�3 ∫
dr

√
r√

((r − A)(r + B)((r + C)))
(E.7)

Where A, B, C are the roots of f (r) − E2. This results in the rather unwieldy expression

�(r) =�3 ∫

√
−r

((r − A)(r + B)(r + C)))
dr

=2�3

√
A(r − A)2(r + C)

r(A + C)

√
A(r + B)
B(r − A)

√
r

(r − A)(r + B)(r + C)
…

(F(g1(r ; A, C)|g2(A, B, C)) − Π(
C

A + C
; g1(r ; A, C)|g2(A, B, C)))

=2�3

√
A2

B(A + C)(
F(g1(r ; A, C)|g2(A, B, C)) − …

Π(
C

A + C
; g1(r ; A, C)|g2(A, B, C))) + Const

(E.8)

where F (x|m) and Π(n; x, m) are the elliptical integral of the �rst and third kind respectively with
parameter m = k2 and the constant is found by setting � (∞) = 0. Though it is not obvious from
these solutions, there is a duality under the switching of B and C . We also de�ne the functions

g1(r ; A, C) = sin−1(

√
(A + C)r
C(r − A))

; g2 =
(A + B)C
(A + C)B

(E.9)

In the limit that Δ̃3 → 0, we have B = C and g2 → 1.
We may once again compare this to the classical BTZ solution,

∫ d� = ±�3 ∫
dr√

r2ℎ + E2 − r2
(E.10)

yielding

� = ±[ tan
−1
(

r√
r2ℎ + E2 − r2)]

r=r

r=∞
(E.11)

We can also look at how massive particles move in time for the classical case by using

E = f (r)
dt
dr

dr
d�

= f (r)
√
E2 − f (r)

dt
dr

(E.12)
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which is solved by

t − t0 = ± ∫
E

f (r)
√
E2 − f (r)

= ∓
1
rℎ
tanh−1(

Er
rℎ
√
r2ℎ + E2 − r2)

(E.13)

which can be inverted to give

r = ±
(
rℎ
√
(r2ℎ + E2) tanh(rℎ(t − t0))√
E2 + r2ℎ tanh(rℎ(t − t0))

2 )
(E.14)

Rather surprisingly, there does exist an analytic solution for timelike paths in terms of t(r),

t(r) = ± ∫ dr
Er3/2

(r − a)(r − b)(r − c)
√
(r − A)(r − B)(r − C)

= ± 2AE
√
B(A − C)

⎛
⎜
⎜
⎜
⎝

−
AF (sin

−1
(
√

(C−A)r
C(r−A)) ∣

(A−B)C
B(A−C))

(a − A)(A − b)(A − c)
+
aΠ(

(A−a)C
a(A−C) ; sin

−1
(
√

(C−A)r
C(r−A)) ∣

(A−B)C
B(A−C))

(a − A)(a − b)(a − c)
…

+
bΠ(

(A−b)C
b(A−C) ; sin

−1
(
√

(C−A)r
C(r−A)) ∣

(A−B)C
B(A−C))

(a − b)(b − A)(b − c)
+
cΠ(

(A−c)C
c(A−C) ; sin

−1
(
√

(C−A)r
C(r−A)) ∣

(A−B)C
B(A−C))

(a − c)(c − A)(c − b)

⎞
⎟
⎟
⎟
⎠

+ Const

(E.15)

where A, B, C and a, b, c are de�ned as before and the constant is found by setting t(∞) = 0.
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