
Faculty of Sciences

Designing an approach for highlighting
requirements from elicitation interviews

Master Thesis

Xavier de Bondt

Artificial Intelligence

Daily Supervisor:

T. Spijkman
fizor. business applications

First Supervisor:

Dr. F. Dalpiaz
Intelligent Software Systems

Second Supervisor:

Prof. Dr. S. Brinkkemper
Intelligent Software Systems

August 15, 2022

CONTENTS i

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Research Objective and Questions . 1
1.3 Thesis outline . 3

2 Research 4
2.1 Structure . 4
2.2 Goal . 5
2.3 Challenges . 6

3 Background 8
3.1 Requirements Engineering . 8
3.2 Interviews . 9
3.3 User stories . 12

3.3.1 INVEST . 12
3.3.2 QUS . 12

3.4 Acceptance criteria . 15
3.5 Ambiguity . 15
3.6 Natural Language Processing . 17

3.6.1 Part of Speech (POS) tagging . 19
3.6.2 Named Entity Recognition (NER) . 20

3.7 Machine Learning . 21
3.7.1 Model selection . 22
3.7.2 Transfer Learning . 24
3.7.3 Zero-shot learning . 24
3.7.4 Ensemble learning . 26

4 Related work 27
4.1 Conceptual works . 27

4.1.1 Fit-Gap Analysis . 27
4.1.2 Concept Extraction . 28

4.2 Related techniques . 29
4.2.1 Automated demarcation . 29
4.2.2 Requirement Classification . 31
4.2.3 Extracting Declarative Process Models from Natural Language 33

5 Approach development 36
5.1 Questions and answers . 36

5.1.1 Iteration 1 - POS tagging for finding questions . 38
5.1.2 Iteration 2 - Speech Act Classification for finding questions 40

5.2 Relevance . 42
5.2.1 Iteration 1 - Relevant questions . 43
5.2.2 Fixing the transcripts . 45
5.2.3 Iteration 2 - Relevant parts of the speakerturn . 45
5.2.4 Iteration 3 - Questions that can be answered with requirements-relevant information . 47
5.2.5 Iteration 4 - Tagging the requirements-relevant data 51
5.2.6 Creating a golden standard . 55

5.3 Identifying requirements-relevant question . 58
5.3.1 Iteration 1 - Context Document . 58
5.3.2 Iteration 2 - Wikipedia . 60
5.3.3 Automated requirements-relevant questions . 61
5.3.4 Comparing approaches for finding questions . 61
5.3.5 Comparing approaches for finding relevant questions 62
5.3.6 Comparing ’learning’ approaches for finding relevant questions 65

5.4 Classifying the reason of requirements relevance . 67

CONTENTS ii

6 Discussion 75
6.1 Answering the sub research questions . 75
6.2 Answering the main research question . 76
6.3 Limitations . 77

6.3.1 Conclusion validity . 77
6.3.2 Internal validity . 77
6.3.3 Construct validity . 77
6.3.4 External validity . 78

6.4 Future work . 78

A Feature matrices for automated demarcation 79

B System descriptions 81

C Speech Acts 85

D Transcription Errors 86

E Tagging guide 89

References VI

1 INTRODUCTION 1

1 Introduction

Any software project starts with correctly understanding what the problem is, why this is a problem and
who should be involved in solving this problem. This is what the discipline of Requirements Engineering
(RE) expands on [1]. In the several phases of requirements engineering, many artefacts are created. The
quality of the activities within RE affect the quality of the designed artifacts. As reported by Smith, Bieg,
and Cabrey [2], about half of unsuccessful projects fail due to poor requirements management, hence the
phrase “Poor requirements = Poor performance”

Requirements elicitation is an important phase of the RE process. As defined by Zowghi and Coulin
[3], this is the process of seeking, uncovering, acquiring and elaborating requirements for computer-based
systems. This phase comes with a set of problems that are not straightforward to solve.

One of these problems is that it relies on the communicative skills of the requirements engineer. There exist
many techniques and approaches for requirements elicitation [1] and the choice for choosing one technique
over the other is not always clear [4]. Whatever technique is chosen, it always involves human-to-human
interaction, often in conversational form. This can be quite a challenge [5], since it attempts to explore the
boundaries of knowledge, who possesses this knowledge and how to acquire that knowledge correctly [6].
Therefore it is important that we make the most of these moments of interaction.

This is where the usage of Natural Language Processing could be very helpful. Natural language processing
(NLP) is a field that employs computational techniques to learn, understand and produce human language
content [7]. In this thesis, we present a concept of an NLP tool that can assist humans analyze the conducted
interviews. This is done by showing the important questions asked in a transcript, allowing the user to
expand on these questions and see the answers. We can classify our tool according to the tool types for
Natural Language Processing for Requirements Engineering (NLP4RE) [8]. The task of showing the user the
important questions falls under the ‘Search & Retrieval’ tasks and after this, we categorize these questions,
which falls under the ‘Classification’ tasks.

This approach provides a direct transfer of knowledge. Whereas in an elicitation interview, the interviewers
notes are often not the precise wording of the interviewee. Next to that, it could uncover certain things that
would have gone unnoticed. This could lead to better requirements, thus better performance [2].

1.1 Problem statement

While the different accounts on the problem of poor requirements, as reported by Smith, Bieg, and Cabrey
[2], created awareness of the problem, it remains a problem. The consequences of such mistakes can be severe,
therefore some form of aid is needed for this process. Especially, since this task is so skill-dependent.

There has been a lot of research in the usage of Natural Language Processing for Requirements Engineering
(NLP4RE) [8], creating more possibilities to guide the process of requirements engineering. These researches
mainly focus on improving artefacts resulting from phases of requirements engineering.

While this research has been important, little to no work has been conducted regarding the application
of NLP4RE into processing pre-requirements specification artefacts. In this research we aim to do this by
using transcripts of elicitation interviews. By aiding requirements engineers directly after such an interview,
the core problem of misunderstanding or missing requirements can be mitigated. This will benefit the entire
requirements engineering process and improve all resulting artefacts.

1.2 Research Objective and Questions

Due to COVID, there has been a huge increase in online communication via online platforms. According
to the Central Office of Statistics in the Netherlands, in 2019 approximately 20% of people in the ICT sector
were working at home, while this increased to 40% in 2020 [9]. Nowadays it seems more and more common
to communicate via these online environments, allowing the recordings of these conversations to be more
frequent. These recordings gives us the opportunity to aid requirements engineers by showing requirements
relevant information in the transcripts of these interviews. Especially since more platforms like Microsoft
Teams now allow to record transcripts of the conversations1. By considering this highlighted information, it

1https://techcommunity.microsoft.com/t5/microsoft-teams-blog/live-transcription-with-speaker-attribution-now-available-in/

ba-p/2228817

https://techcommunity.microsoft.com/t5/microsoft-teams-blog/live-transcription-with-speaker-attribution-now-available-in/ba-p/2228817
https://techcommunity.microsoft.com/t5/microsoft-teams-blog/live-transcription-with-speaker-attribution-now-available-in/ba-p/2228817

1 INTRODUCTION 2

could improve the quality of the resulting artefacts. Another reason for showing these requirements relevant
parts of the transcript can be to validate the resulting artefacts. By reviewing the highlighted parts, a
requirements engineer could acquire more context and refresh their memory.

This research aims to design a new tool, to identify this relevant information in a transcript from an
elicitation interview. In particular, we aim to compare a NLP based approach to a machine learning approach.
This allows us to test respectively a symbolic NLP approach and a statistical NLP approach [8]. In the case
of the symbolic NLP approach we might encounter a lack of flexibility, while the statistical NLP approach
might have a too large need for annotated natural language. Therefore it is interesting to see which approach
works well in which scenario. For this comparison, we use a combination of data from an Master level RE
course from Utrecht University and real-world cases provided by fizor.

The main research question that will be discussed in this thesis is the following:

MQ: How can we identify requirements-relevant information in a transcript from a
conversation between a business analyst and a stakeholder aiming to elicit requirements?

In order to do this, we will answer a set of sub questions (SQs).

• SQ1: What are state-of-the-art techniques for identifying requirements-relevant informa-
tion in conversations?
This research question is addressed via a literature research that explores the different possibilities
for identifying requirements-relevant information in conversations. This allows us to not re-invent the
wheel, but use the knowledge that has already been published, considering the benefits and drawbacks
of different approaches.

• SQ2: How to design an approach for identifying requirements relevant information?
The sub question described here tackles the design phase of our approach to identify requirements
relevant information. This design will be done in two different ways: a NLP based approach and a
machine learning approach. Furthermore, this sub question entails finding out in what cases which
approach works best.

• SQ3: What is the expected effectiveness of the approaches from SQ2?
To test the expected effectiveness of the approaches, we make use of interviews made during the Re-
quirements engineering (INFOMRE) course [10], given at Utrecht University by Fabiano Dalpiaz. This
will give us a view on how well these approaches work and how useful the approaches are expected to
be in practice.

• SQ4: How can domain information improve our approach?
A key problem for NLP4RE tools is domain specificity [8]. There is a shortage of RE specific resources,
making it hard to train NLP4RE approaches, since they would have to use general-purpose language,
while they need to model this domain specific language.Depending on the case, there is often some
form of domain information available, prior to the requirements elicitation interview. This sub question
explores how this information could be a part of our approach and how much this will improve the
outcome.

This set of sub questions can be visualized in Figure 1.1. It is important to note that the fourth sub
question has an overlap in both the second and the third, while the first sub question stand apart from this.
Furthermore, the sub questions one, three and four form a cycle. This is connected with the Emperical Cycle
of Design Science as described by Wieringa [11], which will be covered in Chapter 2.

1 INTRODUCTION 3

Figure 1.1: A visualisation of the sub questions of this research

1.3 Thesis outline

This thesis is structured in the following fashion: In Chapter 2 we will discuss our structure, goals and
foreseen challenges. This will go over the usage of the Empirical Cycle, specifying how we will use it in this
research. After that, in Chapter 3, the necessary background knowledge will be explained. This will go over
the basics of Requirements Engineering, Natural Language and Natural Language Processing and Machine
Learning. Then, in Chapter 4, the related works will be discussed. This reports on the most relevant papers,
highlighting the parts that can be useful for this project. Finally, Chapter 5 explains how this tool was
developed. We conclude the thesis in Chapter 6 with a discussion of the the research questions.

2 RESEARCH 4

2 Research

2.1 Structure

As this thesis focuses on developing a tool for showing requirements from elicitation interviews, we will
need to design an artefact that is able to do so. Furthermore, we want to advance scientific knowledge beyond
current knowledge by doing so. Therefore, we make use of the Emperical Cycle of Design Science as described
by Wieringa [11]. This cycle, as shown in figure 2.3, consists of five phases:

1. Research problem analysis
In this phase we clearly state what the research problem is that has to be solved and frame it. In our
case we try to answer our different research questions. This first focuses on researching the literature
for similar approaches to classify requirements, after which we will start the design of our tool and test
it on several real-world cases, taking into consideration that we sometimes have the possibility to use
a domain-model in our approach.

2. Research design and inference design
This research will make use of recordings from the Requirements engineering (INFOMRE) course [10],
given at Utrecht University by Fabiano Dalpiaz. The recordings from 2021 were only on three different
systems, giving us two to four recordings of these conversations per system. Furthermore, they all have
a system description, giving us the possibility to create a domain model to use in our approaches. Since
these recordings are fairly generic per system, this is a good starting point for designing our tool. This
will be done as a sample-based research, where we research all the different recordings as a sample of
cases, as shown in figure 2.2. This phase will start with creating a NLP based approach, after which it
moves on to creating a machine learning approach.

Figure 2.2: Empirical research setup, where sample-based research studies samples of objects of study (OoSs)

3. Validation of research and inference design
To validate our models, we can use the recordings from the INFOMRE course. These refer to three
different domains, each having domain information in the form of a system description (see Appendix
B). This allows us to compare the algorithm over different domains, but having several recordings for
each domain. This would show how well our model generalizes over these different domains.

4. Research execution
This phase will focus on the execution of our model. Does everything work correctly? Are there any
critical errors and does each step do what we want it to do?

5. Data analysis
Finally, we analyze the results from our models. Is one model significantly better than the other? Why
does this model recognize certain requirements while the other one does not? What requirements did
we find that are also found by the business analyst? Did we find any new requirements? How useful is

2 RESEARCH 5

Figure 2.3: The empirical cycle [11]

the output according to a business analyst? What would be the precision and the recall for a certain
case?

To start, we will compare the requirements elicitated by the business analyst to the parts that are
highlighted by the tool. As the tool develops, we will check the usefulness of the output by reviewing
the outputs with practitioners. From there on, we can check for ourselves which outputs are generated
correctly or not and validate from there forth. Finally, we could work out a case fully and check what
parts are missing and get a sense of precision and recall.

2.2 Goal

The goal of this thesis is to aid the identification of requirements, by conceiving a tool that is able to
show requirements relevant transcript segments, to improve the quality of the resulting process. By using
two different approaches, a NLP based approach and a machine learning based approach, we can determine
in what situation which approach works best. Furthermore, in the process of developing these different
approaches, their findings can be of interest for each other. For example, when certain parts of the NLP
based approach are very insightful, this might prove to be a good feature for the machine learning approach.

This tool is intended to help requirements elicitation, but this can be done in different scenarios:

• Custom development
When it comes to custom development, there is a lot of requirements relevant information in the tran-
script of the conversation between the business analyst and the stakeholders. To aid the identification
of the requirements, our tool could be useful to distinguish between information that is relevant or
irrelevant to the software system. A taxonomy for the scope of this system could prove very useful in
making this differentiation.

• Replacing a legacy system
Replacing a legacy system involves differentiating between things that must change in this system and
things that must remain the same. The important distinction to make here is what parts of the software
system have to change and what must remain the same. Furthermore, we should look out for indications
that something is outdated, since these parts must be replaced as well.

• Extending an existing system
Likewise, when adding to an existing system we must differentiate the things that must change in the
system and the the things that remain the same.

2 RESEARCH 6

While this tool can be used in different scenarios, it can also be used in different stage of Requirements
Engineering:

• Before specification documents are written
When using the tool in the stage where the specification documents are not written, it can help with
writing the specification documents. The difficulty here lies in terms of validation. This could not
be validated by comparing it to the requirements mentioned in the specification document, but we
must rely on another way of validating the tool. This validation could be done by questioning the
business analyst how useful the output is as an aid to create the specification document. Another, less
representative way of validating would be to compare how many of the outputs that are generated are
classified as correct by an expert. Finally, as in all cases this transcript could be fully worked out and
compared to the output generated, giving us insight into precision, recall and other metrics.
In future research it would be interesting to see a form of action research [12], where the tool is used
during the elicitation interview, highlighting relevant parts of the live transcript.
Another possible experiment would be to test the user interaction with the system via A/B testing
[13]. This experiment would entail asking practitioners to perform an interview based on a case study,
where the practitioners are split into two groups; A and B. Group A will report on this interview as
they would normally, whereas group B will report on the interview, assisted by the tool.

• After specification documents are written
On the other hand, using the tool after the specification documents are written would allow the output to
be validated by comparing it to the requirements mentioned in the specification document. Furthermore,
this document could provide additional context and traceability. Next to that, the other validation
methods mentioned in the other stage could be used as well.

2.3 Challenges

This research, as any research, comes with its own set of challenges. As seen in Section 2.2 there are
many different ways to validate our tool. This can be done in four different ways:

• The first way is to compare the requirements elicited by the business analyst and written in the spec-
ification document to the output of the tool. This can be a useful first insight, but ultimately defeats
our goal of aiding the business analyst as it recreates their findings.

• Another way of validation would be to test the perceived usefulness of the output of the tool. This can
be done by creating a questionnaire and asking business analysts how useful they rate the output to
be. This can be a good indication for improvement between iterations of the tool.

• A less representative validation method would be to check whether the output of the tool is correct or
not, giving a percentage of correct outputs. This can be used as a quick way of validating the tool, but
should not be considered to be very representative, since the missing requirements are not mentioned.
However, since we do have True Positives and False Positives, we can calculate the precision of the tool.

• Finally, the most representative way of validating would be to go through the entire transcript and
manually highlight the relevant information and compare this to the output of the tool. The drawback
is that this takes a high amount of time, but this does give us an insight into precision, recall and other
useful metrics.

The choice between these different ways of validating are different for each of the scenarios mentioned in
Section 2.2.

While other approaches have clear candidate requirements when selecting or demarcating them, we are
using transcripts of a conversation, thus not having any clear requirements. They are often not in perfect
English, sometimes containing wrong words. The challenge here is to focus on what information could
possibly be relevant in the future; what is relevant for our cause.

When creating the machine learning approach, there is a need for labeled data. Labelling a whole case
would take a considerable amount of time, but it is necessary to create an approach based on machine
learning. Transfer learning [14] can help overcome this issue, but perhaps this will go at the expense of the

2 RESEARCH 7

generalization of such a model. This must be thoroughly researched and thought out during the process of
the creation of the machine learning approach.

3 BACKGROUND 8

3 Background

3.1 Requirements Engineering

Creating a software system involves correctly understanding what the problem is that needs to be solved.
This comes with the task of discovering what the problem is, why it is a problem and who should be involved
in solving that problem. After this discovery, there will be a formulation, analysis and agreement on these
problems. This is what the concept of Requirements Engineering (RE) goes into [1].

Requirements engineering for a single software system involves different activities and actors. Each of these
actors are so-called stakeholders, which are people that are affected by the software system that is discussed.
Every stakeholder has a certain influence on this system and play an important role in the requirements
engineering process. This process of requirements engineering is guided by a requirements engineer. A
requirements engineer’s aim is to help guide the software design and development of the system as correctly
as possible.

Figure 3.4: The requirements engineering process [1]

The phases of requirements engineering can be depicted in figure 3.4 following the handbook of Van
Lamsweerde [1]. Note that this is one way of describing the several phases of requirements engineering,
other handbooks such as the handbook by Glinz et al. [15] may be different. While these phases may
be intertwined, overlapping or going back and forth, this model does give a general and flexible view on
the process. We will only focus on the first phase of this model. Requirements traceability is another
important notion to requirements engineering, essential for developing better quality software systems [16].
Requirements traceability is defined by Gotel and Finkelstein [17] as the ability to describe and follow the
life of a requirement in both a forward and a backwards direction. There exist two types of requirements
traceability:

• Pre-requirements specification (pre-RS) traceability
This type of requirements traceability is concerned with the aspects of a requirement’s life before its
inclusion in the requirements specification.

• Post-requirements specification (post-RS) traceability
Post-RS traceability is about the aspects of a requirement’s life that result from its inclusion in the
requirements specification.

Domain understanding and requirements elicitation

The first phase of the spiral process model is domain understanding. This is the study of the system
within the organization and its context, figuring out what the cause of the problem is and where it is situated

3 BACKGROUND 9

[1]. Furthermore, it creates a picture of the involved stakeholders, the scope of the system, the organization
and the strengths and weaknesses of the system. Ideally, this phase should result in a proposal that describes
these aspects and furthermore describes a glossary of terms. This glossary of terms describes the key concepts
on which everyone should agree and makes sure nobody uses the same term for a different concept or the
same concept for different terms.

Requirements elicitation is the process of seeking, uncovering, acquiring and elaborating requirements for
computer-based systems [3]. It involves discovering candidate requirements and assumptions that will create
the solution and delves into the symptoms, causes and consequences of the weaknesses of the system. This
is done in an incremental fashion, by exploring the entire problem. Requirements elicitation is a so called
cooperative learning process [1], where the requirements engineer and the stakeholders collaborate closely to
elicit the correct requirements. This is a very critical phase, since poor requirements result in poor solutions
[2].

Requirements elicitation comes with a set of problems [3]. The first being that the requirements are spread
across many sources; we have problem owners, stakeholders, documentation of the system and sometimes
other existing systems. Therefore, many different techniques are used from different non-computing fields of
science such as social sciences, organizational theory, group dynamics and knowledge engineering.

The second problem is that of communication. Requirements elicitation depends highly on the commu-
nications skills of the requirements engineering. As an example, the requirements engineer has to be a good
listener, speak clearly and stay professional. Likewise, the commitment and cooperation of the stakeholders
influences the requirements elicitation greatly. Internal politics or an over-scheduled stakeholder can get in
the way of the requirements elicitation.

The third and final problem is that, there is not one single solution for requirements elicitation. Every
customer will be different, some companies are small and some may have very large enterprise systems.
Sometimes it involves maintenance of existing systems or legacy systems, but other times it might involve
creating a new system or adding new features to an existing system. This makes requirements elicitation a
difficult concept that requires choosing the right techniques for the right circumstances and context.

There exist many techniques and approaches for requirements elicitation [1]. While this choice for select-
ing an elicitation technique is so difficult that Carrizo, Dieste, and Juristo [4] proposed a systematic way of
selecting these techniques, we will simply name a few. The most traditional and commonly used technique
being interviews [3], which we will elaborate on in Section 3.2. Furthermore, questionnaires are often used
during early stages. Task analysis and domain analysis give very good examples. Group work and brain-
storming are techniques that serve as extra engagement. Ethnography and observation are about studying
the current processes. Prototyping can be very helpful for human-computer interfaces and finally, scenarios
can be very useful for understanding and validating requirements.

3.2 Interviews

As we noted in Section 3.1, interviews are one of the most commonly used techniques for requirements
elicitation. Furthermore, in this thesis we will be working with transcripts made of elicitation interviews. It
is defined by Briggs [18] as follows: “An interview is a communicative event in which the interviewers asks
questions to reach the reality of a phenomenon conceived inside the mind of the interviewee.” This can be
quite a challenge [5] and attempts to explore the boundaries of knowledge, who posses this knowledge and
how to acquire that knowledge correctly [6]. These boundaries of knowledge can be expressed using the Tacit
Knowledge Framework [19].

The Tacit Knowledge Framework uses four properties. Knowledge is

• expressible if it is known knowledge.

• articulated if it is documented as known knowledge.

• accessible if it is known, but not in the foreground of the stakeholder’s mind.

• relevant if it is relevant to the project and the domain.

Using these properties, it gives definitions for

3 BACKGROUND 10

• Known knowns: expressible, articulated and relevant. This is essentially the information that is passed
from the stakeholder to the analyst.

• Known unknowns: not expressible or articulated, but accessible and potentially relevant. Here, the
stakeholder does not express this information, but the analyst suspects its existence.

• Unknown knowns: potentially accessible, but not articulated. Hence this is tacit knowledge: the
stakeholder knows, but cannot articulate it.

• Unknown unknowns: not expressible, articulated or accessible, but still potentially relevant. This is
information that is unknown to both the stakeholder and the analyst.

An example of the Tacit Knowledge Framework can be explained using the following example of an online
marketplace.

• A known known is the amount of users that are using this marketplace. It is information that is passed
from the stakeholder to the analyst.

• A known unknown on the other hand is how many of these users are selling fake goods. This is
information that the stakeholder did not express, but the analyst does suspect that there will be users
that attempt to sell fake goods.

• An unknown known is the fact that this marketplace is losing a lot of money, but the stakeholder is
not allowed to express this due to the internal politics.

• An unknown unknown could be that the fact that the marketplace is losing money is due to internal
fraud and money laundering. Neither the stakeholder nor the analyst suspected this or knew this.

When using an interview as a means of requirements elicitation, according to Ferrari et al. [20], three
key steps have to be taken. The first step is preparing for the interview. This involves defining the purpose
of the meeting, selecting the right person, researching the interviewee, creating the questions and arranging
the logistics. When defining the purpose of the meeting, the interviewer should ask questions on whether
they need to meet with this person and how it will benefit them both. Furthermore, the interviewer should
select the right person. The stakeholder should be relevant, since all stakeholders differ in knowledge and
perspective. Next to that, the research on the interviewee has to be done, gaining professional information
and information on their relationship with the project. Moreover, the questions and question-types should
be decided on. It is customary to start with open-ended questions, not forgetting to aim for obtaining
both domain knowledge and process knowledge. Finally, the logistics for this meeting have to be arranged.
Selecting a location that is suitable and contacting the interviewee and informing them about the purpose.

The second step is actually conducting the interview. The interviewer should build a rapport, layout
the expectations, ask meaningful questions, listen actively, take notes and wrap up the interview. Building
rapport can give an insight into the mindset of the interviewee. This rapport can be created on three levels:
professional rapport, personal rapport or rapport in terms of the product. Next to this, it is important that the
interviewer lays out the expectations and goals by sharing them. This helps to understand the interviewee’s
attitude towards the interview. During the interview, the interviewer should aim to ask meaningful questions,
keeping their goals and expectations in mind. Therefore, the interviewer should also actively listen. This
helps turning the stated requirements into actual requirements. Meanwhile, the interviewer should take
notes of important information, using the purpose of the meeting as a guideline on how much to write down
and what to focus on. Lastly, the interviewer should properly wrap up the interview. This involves taking
out some time to conclude the interview, summarizing what was covered, asking for any concerns of the
interviewee, planning for more time if needed, reviewing some items to follow up and thanking them for their
time.

Finally, once the interview is the interviewer should reinforce what was achieved and build on it. This
involves thanking the interviewee again, checking the notes taken and continuing the communication.

While following these three steps might seem very easy, research has shown that there is still a lot of
mistakes that can be made [5]. The most common mistakes can be categorized into seven categories:

1. Question formulation
This category of mistakes can be split into three main groups:

3 BACKGROUND 11

(a) Asking vague questions
One of the most frequent mistakes made is asking vague questions. Ambiguities in a question
can result in issues later. The question should be understood by both the interviewee and the
interviewer.

(b) Asking technical questions
Asking technical questions may result in an inadequate response, because the given interviewee
does not hold that knowledge. This can also be intimidating and lead to bad rapport.

(c) Asking irrelevant or incorrect questions
Questions that are out-of-scope are a waste of time. Questions related to the solution are confusing
and long questions are often not taken fully or misunderstood.

2. Question omission
The most frequently made mistakes when it comes to omitting questions are the following: Not asking
to identify other stakeholders, not asking follow-up or probing questions, not inquiring about existing
systems or business processes, not asking about feature priority and not asking about the problem
domain.

3. Order in the interview
The order of topics also has to be logical, but often the mistake of an illogical order is made. Further-
more, going back and forth among topics is another bad habit that often occurs.

4. Communication skills
The most frequent mistakes observed can be split into four groups:

(a) Unnatural dialog style
An interrogatory-style question is uncomfortable. Allowing the customer to create scenarios is
more natural.

(b) Language-related issues
Speaking clearly and correct while minimizing mistakes and minding the pronunciation helps a lot
when understanding each other.

(c) Low and unclear tone
Your tone should be motivating and the interviewee should be able to hear you clearly, otherwise
this can be irritating.

(d) Poor listening skills
Sticking to your agenda is a mistake that leads to bad listening. Actively listening and reacting
to the interviewee’s words is essential in a good interview.

5. Analyst behavior
These mistakes can be categorized into three categories:

(a) Confidence
An interviewer could lack confidence, resulting in the interviewee thinking the interviewer was not
valuable or doing a poor job. On the other hand an interviewer could be overconfident and come
over arrogant, thinking they knew all the answers.

(b) Passive attitude
Being an active participant ensures the interview does not dominate you and creates a better
atmosphere for engaging the interviewee.

(c) Unprofessional behaviour
The necessity to be professional ensures focus on the interview and getting the most out of it.

6. Interaction with the interviewee
Mistakes that are often made here is not creating rapport or trying to influence the interviewee with
certain questions.

7. Planning
Planning is very important. Poor time management, lack of preparation or long pauses during the
interview can make it really uncomfortable for the interviewee and result in a bad interview.

3 BACKGROUND 12

3.3 User stories

User stories are a widely used notation for expressing requirements, consisting of three basic components:

• A short piece of text that describes and represents the user story.

• Conversations between stakeholders to exchange perspectives on the user story.

• Acceptance criteria.

This short piece of text that represents the user story captures the essential elements of a requirement:

• who it is is for

• what is expected from the system

• optionally, why it is important

A format that is popularized by Cohn [21] is “As a ⟨type of user⟩, I want ⟨goal⟩, [so that ⟨some reason⟩].
For example, “As a user, I am required to enter a strong password when creating my account, so that my
account is secure”. Acceptance criteria for this could be that it contains at least 10 characters, 2 digits and
1 uppercase letter.

In the dataset provided by the INFOMRE course, we also have the specification documents that were
created after the elicitation interview. These specification documents are a set of user stories, created by the
students.

3.3.1 INVEST

In order to assess the quality of user stories and improve them, there are only a limited number of methods.
One of these methods is INVEST [22]. INVEST stands for

• Independent
According to INVEST, the dependencies between user stories should be avoided to the extent that this
is possible.

• Negotiable
The details of a user story may be changed during the discussion in the iteration planning meetings.

• Valuable
The user stories have to be valuable to the customer in some way.

• Estimable
The user story is sufficiently detailed so that an estimation of the required effort can be made.

• Scalable
A user story should be small in effort, not containing any big requirements.

• Testable
A user story has to be testable on its acceptance criteria.

3.3.2 QUS

A more advanced method for assessing the quality of user stories is the Quality User Story (QUS) frame-
work [23]. This is a collection of 13 different criteria that determine the quality of the user stories based on
their syntactic, semantic and pragmatic qualities.

Figure 3.5 shows the model for user stories as a class diagram. The user story is made up of four different
parts, a role, a means, zero or more ends and a format. Note that an epic is essentially a large user story
that can be spit up into multiple smaller, implementable user stories.

The role in this model represents the stakeholder that expressed the need in the user story. Alternatively,
one could use personas, who have may be defined with more rigor and have clearer goals.

The means of a user story in this model consists of three common elements:

3 BACKGROUND 13

Figure 3.5: Conceptual model of user stories by the QUS framework [23]

• a subject with an aim such as ‘wanting’ something or ‘being able’ to do something.

• an action verb that serves as the action related to the feature being request.

• a direct object on which the subject executes the action.

An example could be ”I want to open the document”. To allow flexibility, this model has two common
additions to its structure that are optional. These are an adjective and an indirect object. So extending our
example, we get ”I want to open a plain text version of the document from my co-workers’ shared files”. Here
the plain text version can be seen as the adjective, and the co-workers’ shared files are the indirect object.

The end of the user story aims to explain the means that are requested. There are three possible variants
of a well-formed end in this model:

• Clarification of means
This variant aims to explain the reason for the means. For example: “As a User, I want to edit my
input, so that I can correct any mistakes”

• Dependency on another functionality
Here, the end can implicitly reference to another functionality which is needed for the means to be
realized. While we attempt to avoid dependencies, having no dependencies at all is impossible. As an
example: “As a Visitor, I want to view the contact page, so that I can contact the business.”

• Quality requirement
This end expresses the intended quality of the means. For example: “As an Editor, I want to sort my
footage, so that I can more easily select the one I need.”

Note that these three types of ends can occur simultaneously, so they are not mutually exclusive.
Finally, the format in this model specifies that a user story should follow a certain pre-defined template.

Since there are many existing ones, this allows for great flexibility in the QUS model.
In order to check the quality of these user stories, according to the QUS model there are 13 quality

criteria it can follow. These are split into how these criteria are made, either syntactically, semantically or
pragmatically, as shown in figure 3.6.

A subset of these criteria has a potential to create 100% recall, marking user stories that abide to these
criteria linguistically ‘good’. The following quality criteria are in this first subset:

3 BACKGROUND 14

Figure 3.6: The Quality User Story framework defines 13 criteria for user story quality. [23]

• Well-formed
A user story should at least include a role and expected functionality.

• Atomic
A user story should express a requirement for exactly one feature or problem, no more.

• Minimal
A user story contains no more than a role, an action and a benefit.

• Conceptually Sound
The action only expresses a feature, while the benefit only expresses a rationale. These two should not
be intertwined.

• Problem Oriented
A user story does not go into the solution, but only specifies the problem.

• Full sentence
A user story should read like a full sentence.

• Uniform
All user stories should (roughly) use the same template.

The other criteria become more relevant after the stories are marked to be linguistically ‘good’ by abiding
the first set of criteria. These second criteria are:

• Unambiguous
A user story should avoid using words that have multiple interpretations.

• Conflict free
A user story should not be inconsistent with other stories.

• Estimable
A user story should be easy to plan. They should not denote an unrefined requirement that is difficult
to plan and/or prioritize.

• Unique
A user story should be unique; any duplicates are removed.

3 BACKGROUND 15

• Independent
A user story should be self-contained and should have no inherent dependencies on other stories.

• Completeness
A set of user stories should create a feature-complete application when implemented correctly, where
no steps are missing.

3.4 Acceptance criteria

As mentioned in Section 3.3, a user story also contains certain acceptance criteria. While the user story
itself may be very broad, the acceptance criteria specify more precisely on what to make. These acceptance
criteria aim to explain when a solution is acceptable to the customer. An example of an acceptance criteria
would be “A customer should not be able to use invalid credit card details”. This description leaves a lot of
room for ambiguity and misunderstanding. By making it more specific and clear, we ensure that the solution
will always be the same. In our example, it would look something like this: “Given that a customer enters
their credit card number and it isn’t exactly 16 digits long, when trying to submit the form, it should be
re-displayed with an error message and point them to the correct number of digits”. Furthermore by showing
this back to the customer you have more specific information to talk about.

Gherkin [24] is a lightweight structure for documenting examples of the behavior our stakeholders want,
in a way that can be easily understood by both the stakeholders and the developers. Its primary goal is to
increase human readability, which is achieved by giving us a strict format on our acceptance criteria. Every
acceptance criterion can be written in the form “Given ⟨some context⟩, When ⟨some action is carried out⟩,
Then ⟨some set of consequences⟩” [25].

This standard form of Gherkin can be extended using the keywords ‘And’ and ‘But’, which would make
our example look something like this: “Given that a customer enters their credit card number, But it isn’t
exactly 16 digits long, When trying to submit the form, Then it should be re-displayed with an error message
And point them to the correct number of digits”.

3.5 Ambiguity

As we have seen in the previous sections, most software requirements are written in natural language.
This has also been shown in previous research on documents for requirement analysis by Mich, Franch, and
Novi Inverardi [26], giving the following statistics:

• 71.8 % of these documents were in common natural language.

• 15.9 % of these documents were in structured natural language.

• 5.3 % of these documents were written in formalized language.

This much natural language is a problem, since it introduces unintended ambiguity. As defined by Berry
et al. [27], unrecognized or unconscious disambiguation is that process by which a reader, totally oblivious to
other meanings of some text that he has read, understands the first meaning that comes to mind and takes it
as the only meaning of the text. That unconsciously assumed meaning may entirely be wrong. This loosely
translates to there being multiple interpretations of a software requirements specification (SRS) document,
possibly resulting in different implementations. There exist different kinds of ambiguity, as investigated in
different fields, under which linguistics [28], computational linguistics [29, 30] and philosophy [31]. These
different kinds of ambiguity as defined by Berry et al. [27] are:

• Lexical ambiguity
This kind of ambiguity occurs when a word has several meanings. It can be subdivided into two types
of ambiguity:

– Homonymy
Two words are written the same way and pronounced the same way, but have unrelated meanings
and different etymologies. Here etymology means the history of development. An example could
be the word bank, it can refer to the establishment for custody, loans, exchange or issue of money.
Another interpretation of the word bank could be the rising ground before a lake, river or sea.

3 BACKGROUND 16

– Polysemy
A word has several meanings, but only one etymology. An example of this is the word green. This
has one etymology, but can mean the colour green, something that is not ripened or matured, or
the way power is produced.

• Syntactic ambiguity
Syntactic ambiguity, or otherwise known as structural ambiguity, occurs when a given sequence of words
can be assigned to more than one grammatical structure, where each structure has a different meaning.
There are four forms of syntactic ambiguity:

– Analytical ambiguity
The role of the constituents within a certain phrase are ambiguous. An example of this type of
ambiguity can be found in the sentence “The Dutch history teacher”. This can be read as “The
(Dutch history) teacher” or “The Dutch (history teacher)”. The first means that the teacher
teaches Dutch history, while the second means that this is a Dutch teacher that teaches history.

– Attachment ambiguity
This type of ambiguity occurs when a particular syntactic constituent of a sentence, can be legally
attached to two parts of a sentence. For instance, “The man shouted at the boy with a megaphone”.
This phrase could either mean that the man shouted at the boy using a megaphone, or that the
man shouted at a certain boy who had a megaphone on him.

– Coordination ambiguity
Coordination ambiguity occurs when either

1. more than one conjunction (‘and’ or ‘or’) is used in a sentence.

2. one conjunction is used with a modifier.

This first type of coordination ambiguity can be seen in the following sentence: “I saw Peter and
Paul and Mary saw me”. This could mean that I saw Peter, while Paul and Mary saw me. On
the other hand, it could also mean that I saw both Peter and Paul, while Mary saw me.

An example of this second type would be “Your work will be tracked and saved automatically”.
Does this mean that your work will be automatically tracked and automatically saved, or does it
mean that your work will be tracked (manually) and automatically saved?

– Elliptical ambiguity
An ellipsis is a gap in a sentence caused by omission of a lexically or syntactically necessary
constituent. Elliptical ambiguity happens when it is not certain whether or not a sentence contains
an ellipsis. Shown by Hakobyan [32] is that having an ellipsis in a sentence does not always mean
ambiguity, but it can happen. An example often used for explaining elliptical ambiguity is the
following sentence: “Perot knows a man richer than Trump”. This could mean, assuming there is
no ellipsis, that Perot knows a man who is richer than Trump. On the other hand, assuming there
is an ellipsis, that implies a missing ‘knows’ coming after Trump, we could interpret the sentence
to mean that Perot knows a man who is richer than any man Trump knows.

• Semantic ambiguity
Semantic ambiguity occurs when a sentence has more than one way of reading it within its context.
According to Berry et al. [27] there are three causes for semantic ambiguity:

1. Coordination ambiguity

2. Scope ambiguity

3. Referential ambiguity

Furthermore, there is one main form of Semantic ambiguity:

– Scope ambiguity
Scope ambiguity occurs when quantifier operators (such as every, all and each) and negation
operators can enter into different scoping relations with other sentence constituents. This can be
seen in the following example: “All developers prefer a workplace”. The quantifiers ‘all’ and ‘a’

3 BACKGROUND 17

can interact in two ways. When the scope of ‘a’ includes the scope of ‘all’, it would mean that all
developers prefer the same one workplace. On the other hand when the scope of ‘all’ includes the
scope of ‘a’ it would mean that each developer prefers a, perhaps different, workplace.

• Pragmatic ambiguity
Pragmatic ambiguity is a type of ambiguity that occurs when a sentence has several meanings in the
context in which it is situated. This context can be

– The sentences before and after, or

– The situation, background knowledge or expectations from one of the two parties involved in the
conversation

There are two distinct types of pragmatic ambiguity:

– Referential ambiguity
An anaphor is an element of a sentence that depends for its reference on the reference of another
element, possibly a part of another sentence. When such an anaphor can take its reference from
more than one element, that can each play the role of the antecedent, we speak of so called
referential ambiguity. An example can be the following: “The police will arrest the thieves before
they go home”. This could either mean that the police will arrest the thieves, before the thieves
go home or before the police go home. Here ‘they’ is the anaphor and it could refer to either the
thieves or the police.

– Deictic ambiguity
Deictic ambiguity occurs when pronouns, time and adverbs (such as now and here) and other
grammatical features have more than one point of reference in the context. This can be seen
in the following conversation between Peter and Hank. Hank says “Are you coming here this
weekend?” where Peter replied with “No, I thought you were coming here!” Anderson [33]. In
this example it is unclear where ‘here’ refers to; it could either refer to the place Hank is thinking
about or the place Peter is thinking about.

Two other concepts that are closely related to ambiguity are vagueness and generality. In the sentence “Sue is
visiting her cousin”, its is general with respect to gender, since cousin could either refer to a male or a female.
Furthermore, a sentence using the word ‘tall’ can be considered vague, since we have no clear definition of
tall.

Finally, Berry et al. [27] has experienced an extra category of pragmatic ambiguity; language error. This
type of ambiguity occurs when grammatical, punctuation, word choice or other mistakes in the language of
discourse lead to text that is interpreted by a receiver as having a meaning other than that intended by the
sender. An example of this can be seen in the sentence “Every light has their switch”. Here ‘their’ is plural
while it should be singular, thus one could interpret this sentence as “Every light has its switch” or “All
lights share their switch” if the error was made in the verb.

3.6 Natural Language Processing

The importance of natural language for requirements engineering has been known for a long time [34,
35]. As noted in Section 3.5, most documents based on requirements are written in natural language. Next
to that, we have seen in Section 3.2 that interviews are a communicative event, thus also based on natural
language. Abbott and Moorhead [36] found that “the best language for requirements is natural language”,
explaining that often the issue at hand is too hard to be formalized, thus leaving natural language as the
better option to describe that issue. While natural language is easy to write and comprehend, as we saw in
Section 3.5, it is inherently ambiguous [27] and large collections of natural language requirements are hard
to examine manually to obtain an overview, find inconsistencies, duplicates or missing requirements [37].

Inspired by the close relationship between natural language and requirements, there have been many
attempts in developing natural language processing tools and methods for processing requirements texts
since the early nineties [35]. The research in Natural Language Processing for Requirements Engineering
or NLP4RE in short, has grown into an active research area [38], resulting in annual workshops such as

3 BACKGROUND 18

NLP4RE [37], NLPaSE [39] and NLP-SEA [40]. Recent developments in this research area, as mapped by
Zhao et al. [8], include tools for requirements classification [41], detection of requirement defects [42], smells
[43] and equivalence [44], glossary term extraction [45], requirements tracing [46], extraction of conceptual
models from user stories [47], analyzing requirements-relevant legal texts [48], demarcation of requirements
[49], and concept extraction [50].

Natural language processing (NLP) is a field that employs computational techniques to learn, understand
and produce human language content [7]. A definition by Liddy [51] is the following:

Natural Language Processing is a theoretically motivated range of computational techniques for analyzing
and representing naturally occurring texts at one or more levels of linguistic analysis for the propose of

achieving human-like language processing for a range of tasks or applications [51]

In this definition, the levels of linguistic analysis refer to phonetic, lexical, syntactic, discourse and pragmatic
analysis of language. It is assumed that humans use all these levels of linguistic analysis to produce or
comprehend language [52].

The approaches to NLP can be broadly categorized into symbolic NLP, statistical NLP and connectionist
NLP [51].

• Symbolic NLP
This category of NLP goes into performing a deep analysis of linguistic phenomena. This analysis is
based on explicit representations of facts about language [51]. While this work very well in rule-based
systems or semantic networks by using facts and production rules, it does come with some drawbacks.
First off, it lacks flexibility to adapt to new language phenomena. Next to that, the amount of rules
may become too big to be able to manage [53]. Finally the symbolic NLP approach may be fail when
they are represented with unrecognized grammatical input. [51].

• Statistical NLP
Statistical NLP approaches employs various machine learning methods and large quantities of linguistic
data to create approximate and probabilistic models of language [8]. These statistical models are
fairly simple, but still robust, because they are based on examples from the linguistic data, rather
than analyzed language phenomena as in symbolic NLP. However, some drawbacks for statistical NLP
include that the models can also degrade with unfamiliar inputs or inputs with a lot of errors [53]. Next
to that, statistical NLP is mostly used for low-level NLP tasks, such as parsing or POS tagging [51].

• Connectionist NLP
Like statistical NLP approaches, connectionist NLP approaches also develop generalized models of
linguistic phenomena [51]. What seperates this category of NLP is the usage of various representations,
allowing transformations, inferences and manipulations of logic formulas. This is where the usage of
neural networks lie, leading to high-level, but less observable models.

Natural Language Processing for Requirements Engineering (NLP4RE) is defined by Zhao et al. [8] as
follows:

Natural language processing for requirements engineering is an area of research and development that seeks
to apply NLP technologies to different types of requirements documents to support a range of linguistic

analysis tasks performed at various RE phases [8]

Where the NLP techonologies in this definition can refer to:

• NLP techniques
NLP techniques are practical method, approach, process or procedure for performing a certain NLP
task [8]. Examples of this are POS tagging, parsing or tokenizing.

• NLP tools
NLP tools are software systems or libraries that support one or more NLP techniques [8]. Examples
are Spacy2, Stanford CoreNLP3, NLTK4 or OpenNLP5.

2https://spacy.io
3https://stanfordnlp.github.io/CoreNLP/
4https://www.nltk.org
5https://opennlp.apache.org

3 BACKGROUND 19

• NLP resources
An NLP resource is a linguistic data resource for supporting NLP techniques or tools (Zhao et al. [8]).
This can be a lexicon (i.e. dictionary) or a corpus (i.e. a collection of texts). Existing lexicons include
WordNet6 and FrameNet7, where examples of a corpus are the Brown Corpus8 or the British National
Corpus9

Not all of these NLP technologies will be useful for every purpose. For our purpose, we will go over a few
NLP techniques as described by Jurafsky and Martin [54].

3.6.1 Part of Speech (POS) tagging

Part of Speech tagging is a sequence labeling task that assigns a part-of-speech to each word in a text.
Given a certain input sequence x1, x2, . . . , xn of words and a tagset, the output is a sequence y1, y2, . . . , yn.
Each output yi corresponds to its input xi, giving a tag to that word as show in figure 3.7.

Figure 3.7: Mapping from inputs x1, x2, . . . , xn to output POS tags y1, y2, . . . , yn [54]

It is important to note that tagging is a disambiguation task; words are ambigious and therefore have
more than one possible part-of-speech as we can see in figure 3.8. The goal here is to find the correct tag for
this situation. The accuracy for part-of-speech tagging algorithms are very high.

Figure 3.8: Tag ambiguity in two different corpora [54]

These parts of speech fall into two categories: open class and closed class. Closed class parts of speech
generally stay the same and rarely new closed class parts of speech get created. These closed class words are
generally function words, which occur frequently and give structure to sentences. On the other hand, open
class parts of speech are continually being created and borrowed. As we can see in figure 3.9, English has five
major open classes, namely nouns (including proper nouns), verbs, adjectives, adverbs and a smaller open
class of interjections. Most languages have four open classes.

• Nouns
Nouns are used to describe people, places or things. We can divide these nouns into count nouns and
mass nouns. Count nouns are things that can be singular or plural. For example ‘speaker’/‘speakers’,
‘interview’/’interviews’. While mass nouns do not have this property and are used to describe something
that is conceptualized as a homogeneous group [54]. For example ‘snow’ or ’salt’. Finally, we have proper
nouns, which describe specific persons or entities such as ‘Utrecht’ or ‘Regina’.

6https://wordnet.princeton.edu
7http://www.icsi.berkeley.edu/icsi/projects/ai/framenet
8http://korpus.uib.no/icame/manuals/
9http://www.natcorp.ox.ac.uk

3 BACKGROUND 20

Figure 3.9: The 17 parts of speech in the Universal Dependencies tagset (Nivre et al. [55]), from Jurafsky
and Martin [54]

• Verbs
The verbs are actions or processes, for example ‘walk’, ‘jump’ and ‘run’. In English there are certain
inflections for a word, for the word ‘walk’ this would be ‘walk’-‘walks’-‘walking’-‘walked’.

• Adjectives
To describe properties or qualities of our nouns, we use adjectives, such as age (‘young’, ‘old’) and price
(‘cheap’, ‘expensive’).

• Adverbs
The usage of adverbs is very broad, but generally they modify something. According to Jurafsky and
Martin [54] there are a lot of adverb types we can define. We can distinct directional or locative adverbs,
that specify the direction or location of some action, such as ‘here’, ‘there’ and ‘home’. On the other
hand we have degree adverbs such as ‘extremely’, ‘very’ or ‘somewhat’. Degree adverbs specify the
extent of some action, process or property. To describe the manner of some action, manner adverbs
are used, like ‘slowly’, ‘delicately’ or ‘sneakily’. Finally, to tell when some action or event took place,
we can use temporal adverbs such as ‘yesterday’, ‘Monday’ or ‘tomorrow’.

• Interjections
The interjections are small sudden utterances (‘oh’, ‘um’), including greetings (‘hey’, ‘bye’) and question
responses (‘yes’, ‘no’).

A another tagset that is more English-specific is the Penn Treebank tagset [56], which has been used to make
many different annotated corpora. The part-of-speech tags can be seen in figure 3.10. Note that this tagset
is more specific when it comes to tense and participles on verbs.

3.6.2 Named Entity Recognition (NER)

As we have seen in Section 3.6.1, POS tagging can recognize proper nouns. These proper nouns can be
different kinds of entities, for example ‘Utrecht’ is a location while ‘Regina’ could be a person. Therefore, we
have named entities, which are things that can be referred to with a proper name: a location, a person, an
organization. The task of named-entity recognition (NER) is to find parts of text that have proper names
and tag the correct type of entity [54]. Four of these types of entity tags are most common: PER for person,
LOC for location, ORG for organization and GPE for a geo-political entity. There are many more named
entities, but these main types can be seen in figure 3.11.

3 BACKGROUND 21

Figure 3.10: Penn Treebank part-of-speech tags (Marcus, Santorini, and Marcinkiewicz [56]), from Jurafsky
and Martin [54]

Figure 3.11: The four most common named entity types, from Jurafsky and Martin [54]

3.7 Machine Learning

Machine Learning aims to allow computer programs that can “learn” from input available to them. As
said by Shalev-Shwartz and Ben-David [57], learning is the process of converting experience into expertise or
knowledge. The input of such a learning algorithm is training data, representing experience. The output is
some expertise.

A useful definition for machine learning, by [58], is:

A computer program is said to learn from experience E with respect to some class of task T and
performance measure P, if its performance at tasks in T, as measured by P, improved with experience E.

An example if this would be:

• Task T:
Highlighting requirements relevant information from transcripts.

• Performance P:
The fraction of correctly highlighted information.

• Experience E:
A set of labelled transcript sections (relevant or not relevant).

Often, we turn to machine learning for tasks are that difficult to write a provably correct algorithm for. By
allowing our program to learn from experience, we can achieve satisfactory results once trained on enough
examples. This could also mean going beyond human capabilities, such as predicting the weather or detecting
meaningful patterns in data. There are three main categories of Machine Learning, namely:

1. Supervised learning
Supervised learning starts with reading in training data and computing a learned function, after which
this can be used to predict other input [59]. An example of this could be learning to classify e-mails
as spam. By learning on a training set of e-mails that are already classified as spam or not-spam, the
learner can effectively figure out whether a new e-mail is spam or not.

2. Unsupervised learning
Unsupervised learning can be done with a set of statistical tools, discovering things about the mea-
surements on our data and using this to predict our desired output [60]. This could be used to detect

3 BACKGROUND 22

“unusual” messages within e-mails, without training on a set of labeled e-mails but by training on a
large body of e-mail messages.

3. Reinforcement learning
This type of machine learning deals with learning from interaction with an environment to maximize a
long-term objective [61]. This is mainly used in games such as chess, by giving a reward to the moves
played.

Next to that, we have some types of Machine Learning that do not fall within the bounds of these categories:

• Semi-Supervised learning
Semi-supervised learning is a mix between supervised and unsupervised learning. Here, next to unla-
belled data, there is some supervision information provided, but not for all examples [62].

• Self-Supervised learning
In self-supervised learning, the training data is automatically labeled by leveraging the relations between
different input sensor signals [63]. Compared to unsupervised learning, we do not detect specific patterns
but aims to recover. Figure 3.12 tries to explain this, comparing it to supervised and unsupervised
learning.

Figure 3.12: The difference between supervised, unsupervised and self-supervised learning [63].

A specific type of machine learning that is often mentioned is deep learning. Deep learning effectively
represents the world as a nested hierarchy of concepts, where each concept is defined in relation to simpler
concepts, and more abstract representations computed in terms of less abstract representations [64]. To show
the difference of this type of machine learning, figure 3.13 shows a high-level schematic of how different types
of AI systems work compared to deep learning. More specifically, when looking at artificial neural networks,
a deep neural network is an artificial neural network with two or more layers. We speak of a neural network
that is two or more layers deep (hence the name “deep” learning).

3.7.1 Model selection

When selecting a model, we are interested in how well it generalizes, in other words, how does it perform
on data that it has not seen before. This comes with the notions of underfitting and overfitting. For this we
will use the definitions given by Daumé [59]. Underfitting supposes the model had an opportunity to learn
something, but it did not; the model is too simple. On the other hand, overfitting is when you pay too much
attention to the idiosyncrasies of the training data; the model is too detailed.

After checking how well a model generalizes, we need to evaluate how well it performs compared to other
models. A commonly used evaluation metric is accuracy; the fraction of correct answers of the total answers.
While this may seem like a very good metric, it is not suitable when the label distributions are skewed.
Therefore, when evaluating machine learning models, precision and recall are more appropriate metrics.

In order to talk about the precision and recall, we must first introduce the notion of a confusion matrix.
A confusion matrix compares the output of a model, or the predicted truth, to the actual truth. Therefore

3 BACKGROUND 23

Figure 3.13: A flowchart of how different parts of an AI system relate to each other in different AI disciplines.
The gray boxes indicate components that are able to learn from data. [64]

Figure 3.14: A confusion matrix [65]

not simply checking if the answer is correct, but which prediction it made to be correct or be incorrect. An
theoretical example of such a confusion matrix can be seen in figure 3.14.

In this case, there are two predictions: something is positive or something is negative. Therefore, when a
prediction of hypothesized class is positive while the actual truth is positive, we count this as a true positive.
On the other hand, when it would have been hypothesized to be negative, this would be a false negative.
Likewise, when the truth is negative, but the prediction is positive, we count it as a false positive. On the
other hand, when the prediction would have been negative, this is seen as a true negative.

Precision describes what fraction of the ones we have identified to belong to a class, actually belong to
that class. For example, what fraction of messages labeled as spam was actually spam. This is calculated as

3 BACKGROUND 24

follows:

Precision =
True Positives

True Positives+ False Positives

On the other hand, recall describes what fraction of the ones that belong to a certain class, has our model
identified. In the same example, this would be checking what fraction of the messages that are actually spam
have we identified and labeled as spam. The calculation for this would be the following:

Recall =
True Positives

True Positives+ False Negatives

Often, these two metrics are combined into the F1 score, which can be computed in the following fashion:

F1 =
2

1
Recall +

1
Precision

3.7.2 Transfer Learning

The effectiveness of supervised learning breaks down when we do not have sufficient labeled data to train
and validate on [14, 38, 8]. Transfer learning allows us to deal with this by using already existing labeled data
of some related task or domain [66]. By storing the knowledge gained in solving the source task in the source
domain, we can apply it to our problem of interest, on our target task. Howard and Ruder [67] have shown
that with transfer learning, but using 100 times less data to fine-tune on, it still matches the performance of
a model trained from scratch.

Figure 3.15: Difference in learning process between (a) traditional machine learning and (b) transfer learning.
here it is clear that transfer learning aims to extract the knowledge from one or more source tasks and applies
the knowledge to a target task [68]

Usage of transfer learning can be seen in different domains. For example, an article by Kermany et al. [69]
shows the implementation of transfer learning to support clinical decisions with clinical image classification.
By using a convolutional neural network trained on the ImageNet image database [70], which is proven to be
very effective [71], this knowledge could be transferred to the training on the clinical image dataset. Figure
3.16 shows the schematic of how this is done.

3.7.3 Zero-shot learning

Compared to Transfer Learning, Zero-shot learning (ZSL) improves the idea of training with little labeled
data, by reasoning only on the embedding of sentences and tags, thus requiring no labeled data. Originally,
ZSL was used in image processing to predict unseen images [72]. After that it was adapted to the use of
text classification to predict unseen classes, by Pushp and Srivastava [73]. These models predict whether a
sentence is related to a certain tag or not. It sees this problem as finding relatedness between sentences and

3 BACKGROUND 25

Figure 3.16: Schematic of the solution for classifying clinical images by Kermany et al. [69]

classes.
There are two main methods for training a ZSL model:

• embedding-based method
This method integrates two layers: the text embedding layer and the tag embedding layer. After that
it measures the probabilities for their relatedness, using a similarity function [73].

• entailment-based method
Here, the input text sequence is treated as a premise and the candidate tags as an hypothesis. By
inferring if the input text is an entailment of any of the tags, gives the output whether the tag fits with
the sequence or not [74].

By using large pre-trained language models such as BERT, a ZSL model can perform NLP tasks without
fine-tuning (zero-shot) or with only some labelled examples (few-shot). This similarly tackles the issue of the

3 BACKGROUND 26

expensive need for data-labelling [14, 38, 8].

3.7.4 Ensemble learning

Ensemble learning is a term for methods that combine multiple models, so that the errors of a single
model will likely be compensated by others, so that the overall prediction performance of the ensemble would
be better [75]. There are several factors that the usage of ensemble methods could improve [76, 77]:

• Avoidance of overfitting
Taking the average of different hypothesis reduces the risk of choosing a wrong hypothesis, therefore
avoiding the overfitting.

• Computational
A single model could get stuck in a local optimum, but by combining different different models this can
be overcome.

• Representational
By combining different models, the search space may be extended to better fit to the data space.

To families of ensemble methods can be distinguished [78]:

• Averaging methods
Here, several models are built build independently after which their predictions are averaged.

• Boosting methods
In boosting methods, the models are built sequentially and one tries to reduce the bias of the combined
model.

4 RELATED WORK 27

4 Related work

When it comes to the related works on state-of-the-art techniques for identifying requirements-relevant
information in conversations, we can differentiate between two types of works. In Section 4.1, we discuss
research efforts that provide a concept that is relevant to our research. These works provide a concept or
concept tool that might show us a possible direction to take in our approach. Furthermore, in Section 4.2 we
go through different related works that show techniques that might prove useful in our use case. This can
also be the challenges that were faced in these works, or limitations in their approach.

4.1 Conceptual works

For the related works that discuss a concept or concept tool that is relevant to our research, we discuss
the works of Spijkman, Dalpiaz, and Brinkkemper [79] and Spijkman et al. [50]. In Section 4.1.1, we look at
a work that discusses a Fit-Gap analysis, done on transcripts of elicitation sessions. Next, in Section 4.1.2
we follow the design of a Natural Language Processing concept tool that extracts the known and unknown
concepts using a domain ontology.

4.1.1 Fit-Gap Analysis

As we have seen in Section 3.1, most requirements elicitation is done through conversational scenarios.
Which allows for opportunities in speech-driven RE : the analysis of conversations aimed at detecting and
extracting requirements-relevant information [79]. One of the opportunities is the so called Fit-gap analysis,
which is a commonly used elicitation method, mainly used for enterprise applications [80, 81, 82, 83, 84].
Fit-gap analysis (FGA) compares the abilities of a software product and certain characteristics of the target
organization [82].

When software products get extra requirements or requirements change, this can often lead to customiza-
tion of the product. In order to be more specific, we define customization, based on the work of Light [84]
as:

Any customer specific change or addition to the functionality available in the the standard software product.

A method for managing this mass customization is the creation of a product line, which consists of a set of
products that share similarities and are created from different reusable parts [85]. On the other hand, many
products can be adjust to the specific needs of a customer through configuration. To make a distinction
between customization and configuration, we use the following definition for configuration from Apel et al.
[85]:

Set-up of a software product concerning a predefined set of options used to tailor the software to the
customer.

Fit-gap analysis as defined by Spijkman, Dalpiaz, and Brinkkemper [79] is the following:

A requirements elicitation technique that based on a customer’s needs with the functionality of a software
product, identifies needs that are supported by the current functionality as fits, and needs that are not as

gaps.

As the name suggests, the outputs from a fit-gap analysis can be a fit between the customer needs and the
software products, or a gap in the functionality required by the customer [79]. Here the fits can be a part of
the functionality that is already implemented or some configuration. The gaps on the other hand indicate
that some customization has to be done. Figure 4.17 visualizes this input, process and output.

The concept of Fit-gap analysis could be very useful for recognizing important configuration or customiza-
tion requirements. However, this does requirement some form of vocabulary or ontology of the software
product. This is not always available, but when this is available the usage of Fit-gap analysis could be very
useful.

4 RELATED WORK 28

Figure 4.17: Fit-gap analysis in the context of requirements elicitation for software products [79]

4.1.2 Concept Extraction

As we noted in Section 3.6, a recent development in the usage of natural language processing in require-
ments engineering is concept extraction [50]. The aim of Spijkman et al. [50] is to discuss and design an
aid for RE practitioners, that extracts key concepts from RE transcripts and compares them to a software
product ontology. The definition for software product ontology by Spijkman et al. [50] is as follows:

A set of concepts and relationships in a software product domain, which describe functionalities, artifacts
and related software systems

They designed a prototype key abstraction extraction tool [86], aiming to detect both unknown and known
concepts in a requirements elicitation session. Here, unknown concepts will indicate the need for customization
of the product (with customization as defined in Section 4.1.1 by Light [84]). On the other hand, known
concepts will show the need for configurations of existing features of the product (as defined in Section 4.1.1
by Apel et al. [85]). For example:

“Our company provides shipping of goods on multiple types of routes. We utilize our trucks for national
shipping, and our Cargo ships to ship goods internationally. For all our shipping we need to ensure efficient

fuel use.” [50]

Here the known concept, highlighted in bold, fuel, indicates that efficiency as a key factor of the configuration.
While Cargo ships, the unknown concept, could indicate the support for naval route planning as a potential
customization.

A description of the early stage10 of this tool’s process in pseudocode is shown in figure 4.18.

Figure 4.18: Pseudocode of the key abstraction extraction tool prototype [50]

It starts with some preprocessing, splitting the text by speaker, removing timestamps, punctuation and
certain stop words. After that it starts with extracting the known and unknown concepts. For the known
concepts it is simply iteration through each word in the text matching with the ontology, adding it to the

10The work on this tool is still in progress and can be found on https://bowis.github.io/keyextractor/

https://bowis.github.io/keyextractor/

4 RELATED WORK 29

table when there is a match. For the unknown concepts, the noun phrases that are not known concepts are
selected and added to the table when occurring more than a certain frequency. At the end, two tables are
generated; one with known concepts and one with (potentially) unknown concepts.

What this work shows us, is that with the use of an ontology and relatively easy usage of NLP tooling
can result in a good tool. Even though our tool has to be a lot more complex, we can still use this as a part
of our tooling.

4.2 Related techniques

When it comes to techniques related to our thesis project, we first look at a prototype tool by Abualhaija
et al. [49] in Section 4.2.1, that demarcates requirements from free-form text. Then, we walk through different
approaches to categorize requirements [87, 88, 89, 90, 91, 92] in Section 4.2.2. Finally, in Section 4.2.3 we look
at related work that shows how to extract declarative process models from natural language [93]. All of these
works used different NLP techniques, showing how they can be utilized and what works well. Furthermore,
they reveal challenges that might reoccur in our project.

4.2.1 Automated demarcation

Another prototype tool, developed by Abualhaija et al. [49], aims to demarcate requirements in free-form
requirements specifications. By using machine learning, this prototype is flexible to be used in different
domains and used with different writing styles. By training and evaluating on labeled datasets, their average
precision and recall are very encouraging.

The tool was made using supervised machine learning (as explained in Section 3.7) and recognizing the
problem of distinguishing between requirements and non-requirements as a binary classification problem.
While most machine learning classification algorithms attempt to minimize misclassification, the rationale
here is that, as long as false positives are not too many, the effort of manually discarding them is a compelling
trade-off for a better recall.

By using three main NLP technologies [49], the parsing is done:

• Constituency parsing
Delineating the structural units of sentences, mostly Noun Phrases (NPs) and Verb Phrases (VPs).

• Dependency parsing
To infer grammatical dependencies between the words in sentences.

• Semantic parsing
To get a representation of the meaning of the sentence based on the meaning of the sentence’s con-
stituents.

For the preprocessing, three modules are used. The first being the Tokenizer, splitting the input text
into different tokens. The next is the Sentence Splitter, which splits the text into sentences based on the
delimiters. The third and final module is the POS tagger, which assigns a POS tag to each token (as described
in Section 3.6.1.

This whole NLP process can be seen in figure 4.19, as part of the whole process seen in figure 4.20. After
the completion of the NLP process, frequency-related metadata is computed based on:

• The most frequent modal verb in the text. A modal verb is, according to the Cambridge Academic
Content Dictionary, a verb that is used with another verb to express an idea such as possibility that is
not expressed by the main verb.

• The top 1% of the most frequent noun phrases.

• Frequency levels for the different identifier patterns used within the text.

The second phase is building the feature matrix for training our model and classifying our input. In order
to keep these features generic, Abualhaija et al. [49] oriented their features around structural and semantic
properties. By following the practices and of designing linguistic and stylistic features in NLP applications,
as described by Stamatatos [94], the features were designed in an iterative manner. This resulted in a table
of 20 features, split into four categories:

4 RELATED WORK 30

Figure 4.19: The NLP pipeline of the tool by Abualhaija et al. [49]

• Token-based features
The six features are based on the token-level information, such as the amount of tokens, number of
alphabetic words or the number of one-character tokens.

• Syntactic features
The syntactic features are a set of eight features that are derived from the syntax-related information,
such as POS tags, grammatical dependencies and phrasal structure. Examples of these features are
possession of a verb, a modal verb or conditional clauses.

• Semantic features
These three features are derived from semantic categories of the verbs, therefore checking if it contains
a cognition verb, action verb or stative verb.

• Frequency-based features
The document-wide frequency metadata, as created in the second phase, are represented in these three
features.

The full table can be found in Appendix A in tables 17 and 18
The third phase uses the train machine learning model and predicts for each requirement candidate

whether it will be a requirement or non-requirement. These are seen as intermediary results, as some post-
processing and refining is needed.

In the fourth and last step a list detection refinement is done. This parses the text and looks for any
environments containing a header and sub-items. These components of such an environment are considered
separately in the approach, therefore in this list detection phase they are considered together. If the header
of the list has been marked as a requirement, then the sub-items are also marked as requirements. This
can possibly increase the number of false positives, but can reduce the number of false negatives. This is a
consideration made by Abualhaija et al. [49], preferring a reduction of false negatives over and increase of
false positives.

Relating back to our project, the NLP pipeline seems very interesting. In this project, the usage of a
Sentence Splitter, POS tagger and Tokenizer is most likely very useful. Furthermore, the frequency metadata
focus on the modal verbs and most frequent noun phrases is something that can be used in the tool for this
project. On the other hand, the work by Abualhaija et al. [49] uses supervised learning, while we do not have
the option to do this. While this paper goes to talk about candidate requirements, these are not present in
the transcripts our tool will work with. Therefore our approach will look very different from what we see
here.

4 RELATED WORK 31

Figure 4.20: Overview of the approach by Abualhaija et al. [49]

4.2.2 Requirement Classification

Many papers in the NLP4RE area of research focus on classification of requirements. One of the RE17
data challenges was the identification of requirement types using the “Quality attributes (NFR)” dataset
provided. These papers mainly distinguishing functional and non-functional requirements [87, 88, 89, 90, 91,
92]. This automatic categorization of functional and non-functional requirements is successfully done using
Machine Learning techniques, where comparisons between these techniques are made by Dias Canedo and
Cordeiro Mendes [91] and Abad et al. [92].

As defined by Van Lamsweerde [1]:

• functional requirements

– Address what services the software-to-be should provide

– Capture the intended software effects on the environment

• non-functional requirements Constrain how the functional requirements should be, given:

– Quality requirements: safety, security, accuracy, . . .

– Other requirements; compliance, architectural, development, . . .

An approach taken by Kurtanović and Maalej [87] is to use supervised machine learning. By using a
Support Vector Machine, they were able to classify functional and non-functional requirements with high
precision and recall. Furthermore, they experimented with oversampling the dataset to handle the class
imbalance within the non-functional requirements. This indeed demonstrated to be a useful approach to
handle class imbalances. Next to that, they analyzed the most informative features. This showed that POS
tags, word n-grams, modal verbs and POS tag cardinal numbers were very informative. More work on this has
been done by Dalpiaz et al. [37], showing that certain higher-level linguistic dependencies can be very useful
as well. An important observation by Dalpiaz et al. [37] is that the performance of the classifiers degrade
considerably when using other datasets than they were trained on, especially when identifying quality aspects.

Whereas the other approaches focus on one machine learning algorithm to classify the requirements,
Dias Canedo and Cordeiro Mendes [91] and Abad et al. [92] compare different machine learning algorithms.
These researches concluded with Binarized Näıve Bayes performing the best [92] in one research and Logistic

4 RELATED WORK 32

Regression with Term Frequency–Inverse Document Frequency (TF-IDF) as feature selection [91] performing
the best in the other research.

Hey et al. [88] describe the increased usage of transfer learning approaches in natural language processing.
They point out that in cases such as requirements engineering, where only a limited amount of (labeled) data
exists, this might prove advantageous. This is done by fine-tuning the Bidirectional Encoder Representations
from Transformers (BERT) [95], a language model based on deep learning. BERT is pre-trained on a large
text corpus, but then fine-tuned on the specific task of requirement classification provided with only a small
amount of data. Hey et al. [88] call this approach NoRBERT, which stands for Non-functional and functional
Requirements classification using BERT.

Originally, BERT is a language model. This aims to estimate the probabilities of sequences of words,
thus predicting the probability of a word to follow a given sentence [88]. Though this is the main task for
such a language model, they are capable of transfer learning, thus allowing them to be used for other tasks
than they were trained on with little fine-tuning effort. As shown in figure 4.21, the input is tokenized and
fed into BERT, after which the pooled output can be fed into a classifier that assigns probabilities to the
different classes.

Figure 4.21: Architecture of BERT fine-tuning for classification [88]

Since the subclasses of non-functional requirements are very imbalanced, Hey et al. [88] experimented
with oversampling and undersampling strategies. For undersampling, they randomly sampled a number of of
the majority class representatives until equal to the number of minority class examples. On the other hand,
oversampling repeatedly adds the whole training set minority class population until the number of minority
class representatives would exceed one of the majority classes. Furthermore, they investigate the effect of
early stopping, to avoid overfitting.

While the goal of classifying requirements to be functional or non-functional has a more narrow focus than
this project, we can still relate these works back to this project. First and foremost, the usage of transfer
learning could be very helpful in our project. As noted by Hey et al. [88], in cases where only limited amount
of (labeled) data exists, this might prove advantageous. By using something similar like their approach using
BERT as shown in figure 4.21, we could create something similar. Furthermore, the practices of over- and
undersampling as seen in some of these papers should be taken into account. Likewise, the effect of other
practices such as early stopping should also be investigated when creating the machine learning approach.
Next to that, the most prominent features as shown by Kurtanović and Maalej [87] and Dalpiaz et al. [89]
should be noted and used in the approach. Finally, the best performing supervised machine learning models
shown by Abad et al. [92] and Dias Canedo and Cordeiro Mendes [91] should be taken into consideration
when attempting to create a supervised machine learning model. Furthermore, the observation mate by
Dalpiaz et al. [37] that the performance considerably degrades when testing on a different dataset should be

4 RELATED WORK 33

a lesson for our approach.

4.2.3 Extracting Declarative Process Models from Natural Language

In the extraction of declarative process models from natural language, similar challenges were tackled
that we will have in this thesis, while also using interesting techniques for our issue at hand.

For business processes that have activities executed in a typical order without any deviations or exceptions,
imperative business process modelling can be a good way of capturing these processes [93]. For example the
Business Process Modeling Notation is a notation that is readily understandable by all business users, from
the business analyst, to the technical developers and the business people [96]. On the other hand, other
business processes are often more complex, and their orders cannot be fully specified in advance [97]. These
processes are better captured using declarative process models. The paper by Aa et al. [93] introduces an
approach for automatic extraction of declarative process models from textual constraint descriptions.

This paper uses the Declare process modeling language [98], which provides a standard library of
templates [99]. For this research, they used the five most occurring templates [100], as explained with some
examples in figure 4.22.

Figure 4.22: Description and notation of the considered Declare constraints
[Aa.e tal/CAiSE2019:DeclarativeProcessModelsfromNaturalLanguage]

Some challenges addressed by Aa et al. [93] can be explained using their exemplary constraint descriptions
in figure 4.23.

C1: Synonymous terms and phrases
In the constraint descriptions, there will be synonymous terms. For example in S11 there could be
many words that indicate that this is the final step of a process. Furthermore, entire phrases could be
used to describe the same context, giving us synonymous phrasing as well.

C2: Description order
There can be a different order in each sentence. For example S1 and S4 use a chronological order, while
S2 and S4 use a reverse order.

C3: Noun-based actions
Another challenge is the identification and extraction of noun-based actions. While other approaches
[101] have tackled identifying verb-based activities such as “a claim must be created” in S1, noun-based
activities such as “creation of a claim” in S3 present a challenge.

C4: Constraint restrictiveness
The textual differences between Response(a, b), Precedence(a, b) and Succession(a, b) can be mi-
nor. For example the difference between S6 and S7 is the word “can” or “must”, but it creates the
distinction between Precedence and Response.

C5: Negation
Recognizing negation will be a crucial step in this approach. For example, in S9 the word “cannot” is
used, which changes it meaning completely compared to S10.

4 RELATED WORK 34

C6: Multi-constraint descriptions
Single sentences may describe more than one declarative constraint, by using terms such as “and” or
“or”. For example S1 is identical to S5 apart from the “or” in the end, which gives an additional
constraint.

Figure 4.23: Example natural language descriptions and their constraints [93]

Figure 4.24: The main semantic components extracted in the first step by [93]

The approach by Aa et al. [93] starts with linguistic processing. This tackles challenges C1 and C2. It
splits up sentences into the main semantic components shown in figure 4.24. These are identified in the
following way:

• Verbs
By using part-of-speech tagging, as explained in Section 3.6.1, the verbs are easily extracted from a
sentence.

• Subjects and objects
To identify the subjects and objects in a sentence, dependency grammars are used. These grammars
capture the grammatical relationships in the sentence, using dependency relations, such as the Stanford
relations [102]. By looking at S5, we can see some helpful examples, therefore the grammatical depen-
dencies for S5 are shown in figure 4.25. As an example, the relation nsubj(create, manager) shows that
“manager” is the subject performing the verb “create”. Furthermore, dobj(create, claim) tells us that
this is the direct object of a verb. On the other hand the nsubjpass relation refers to a synthetic subject
in a passive clause. As an example, the small sentence “A claim is created” would contain the relation
nsubjpass(create, claim) which is equivalent to the dobj relation for active phrases.

4 RELATED WORK 35

• Specifiers
The particular specifiers Aa et al. [93] focussed on were the following:

– Modal verbs
Modal verbs indicate if something is certain, probable or possible. This helps distinguish the
various declarative constraints (challenge C4). By extracting these modal verbs, they can be
associated with the related main verbs. For example in S5, the aux relation relates “must” to the
verb “created”.

– Negation
By using the neg dependency relation, the negated verbs can be identified.

– Prepositions
Prepositions are terms to specify the relationship between a noun and another part of the sentence,
commonly used to indicated ordering relations. By using mark and advmod dependencies, we can
identify these prepositions. For example in S5, which describes that “must create a claim” “before”
“a claim is approved”, which is found in the relation mark(accepted, before).

• Interrelations
There are two types of interrelations that are considered to exist among verbs in these constraint
descriptions:

– Adverbial clauses
Adverbial clauses are dependent clauses that modify other entities in a text, for example in S5 we
have the relation advcl(create, accepted) which indicates that the term “A manager must create a
claim” is a specifier for the latter term “it can be accepted”.

– Coordinating conjunctions
Conjunctions are often indicated by “and” or “or”, therefore in S5, conj(accepted, rejected) indi-
cates such a conjunctive relation.

After the linguistic processing, the semantic components are analyzed to identify the activities named in the
description, covering challenge C3. Finally, the constraints are generated, taking on challenges C4, C5 and
C6.

Figure 4.25: Grammatical dependencies for constraint S5 [93]

In the case of this thesis, we do not have access to such nice textual constraint descriptions, since we are
working with transcripts from a conversation. This does not take away the fact that the linguistic processing
shows us how useful part-of-speech tagging and dependency grammars can prove to be. By identifying our
own challenges when it comes to identifying requirements relevant information, we can tackle our problems
in a similar fashion to the approach taken by Aa et al. [93]. Furthermore, challenges C1, C3 and C5 will
definitely be part of this research as well.

5 APPROACH DEVELOPMENT 36

5 Approach development

This Chapter explains how the tool was developed and what decisions were made during this process. As
noted in section 2.1, the Empirical Design Cycle was used for this project. This allowed for many adjustments
and alterations in the design and structure of the approaches. An overview of the resulting tool can be seen
in Figure 5.26. This tool consists of three different stages. The first, explained in Section 5.1 detects the
questions in the transcript. Then, in Section 5.3 the second step in the tool is explained. This takes the
identified questions from the first step, and filters them based on relevance. Finally, as a last stage, these
relevant questions are categorized based on our tagged data. This data tagging is explained in Section 5.2
and the last step of this tool is explained in 5.4.

Figure 5.26: An overview of the resulting tool from this research, containing three different steps. One finds
questions, the next filters these questions on relevance and the last categorizes these relevant questions.

5.1 Questions and answers

Our main goal for this thesis is to identify requirements-relevant information in a transcript. While we
have seen in the related works in Chapter 4, that the demarcation of requirements-relevant information is an
option [49]. However, this would still make it hard to traverse a transcript, since the number of speakerturns
still remains the same. Therefore, we turned to summarizing the transcript of a conversation by showing
the relevant speakerturns. When analyzing conversations from the RE-course, it became clear that these
interviews revolve around questions and answers. This aligns with the definition from Chapter 3.2, where
Briggs [18] defines an interview as “A communicative event in which the interviewers asks questions to reach
the reality of a phenomenon conceived inside the mind of the interviewee.”. Often, the interviewer asks a
specific questions after which the interviewee answers that questions. By filtering out the relevant questions,
we could find the relevant parts of the conversation. Depending on the type of interview structure, there can
be a consistent back-and-forth between questions and answers, as meant in structured interviews. While,

5 APPROACH DEVELOPMENT 37

unstructured or semi-structured interviews leave more room for flexibility and open-ended questions [103].
These open-ended questions can lead to eliciting a narrative from the interviewee [104], instead of giving a
more concise answer.

By showing only the relevant questions, rather than all speakerturns, we can create a more concise view
of the transcript for the user to go through. This would allow for the user to only look at the question to see
if it interests them, otherwise moving on to reading the next question. When a question is of interest, they
can expand on that question showing the answer to the question and more context if needed.

In most written texts, it is easy to determine whether a sentence is a question or not. Often this is
indicated by a question mark at the end of a sentence. This is not always the case in our transcripts, since
these were automatically generated from a recorded conversation. These transcripts can contain a question
mark where no question was asked, and miss a question mark at the end of a question. Therefore, we turned
to two different ways of finding questions in our transcripts.

As a starting point, we used the interviews made during the Requirements engineering (INFOMRE) course
[10], given at Utrecht University by Fabiano Dalpiaz. These are 9 different interviews, where the students
from this course are the interviewers, while they interview an employee from Utrecht University whom has
more knowledge about the given domain. There are three different domains:

• A - The International Football Association (IFA) Portal
The IFA wants to create a portal for which the interviewers have to figure out the requirements. This
portal has to be able to manage various leagues, schedule games and referees, auditing budget of the
football teams, notifying the stakeholders on events, and providing statistics on things such as games,
players, teams and coaches.

• B - The Urban Mobility Simulator
This department from a municipality has to investigate and improve the traffic situation using an urban
mobility simulator.

• C - Hospital Management System
This hospital needs a new hospital management system to integrate a majority of components that are
provided over 32 different systems.

The full system descriptions can be found in Appendix B. An overview of the different conversations with
their identifiers can be found in Table 1.

5 APPROACH DEVELOPMENT 38

Identifier Domain Duration]
2 B 00:50:23
4 A 00:49:15
5 B 00:41:29
6 C 00:23:05
7 A 00:58:06
9 C 00:38:25

10 A 00:47:12
12 C 00:39:24
16 C 00:30:31

Total 06:17:50
Average 00:41:59

Table 1: The INFOMRE conversations used in this research, with the domain it belongs to and the duration
of the conversation.

The first task at hand is to identify the questions in the transcript. Since these transcripts are automat-
ically generated, it is not as trivial as searching for a question mark. For finding questions, we have used
two different approaches. The first based on Part of Speech tags and the second based on Speech Acts, as
described in sections 5.1.1 and 5.1.2. This allowed us to take any automatically generated transcript and find
the questions without any further input, as shown in Figure 5.27.

Figure 5.27: Given a transcript, we can use either Part of Speech tagging or Speech Act classification to get
a transcript in which it is clear what speakerturns are asking a question.

5.1.1 Iteration 1 - POS tagging for finding questions

The first treatment design for finding questions is based on Part of Speech (POS) tagging, as explained
in section 3.6.1. By using the Penn Treebank POS Tagset, we were able to determine whether a sentence is a
question without relying on the question mark11. This Penn Treebank POS Tagset contains two clause level
tags that can indicate questions [105], namely the SBARQ and SQ tag. These tags can find three different
types of questions, which can be found in Figure 5.28.

11With inspiration taken from https://github.com/garcia2015/NLP_QuestionDetector

https://github.com/garcia2015/NLP_QuestionDetector

5 APPROACH DEVELOPMENT 39

A wh-question, such as

(SBARQ (WHNP−1 Who)
(SQ (NP−SBJ ∗T∗−1)

(VP threw
(NP the ball)))

?)

A yes-no-question, which can be
answered with yes or no, for

example:

(SQ Did
(NP−SBJ Casey)
(VP throw

(NP the ball))
?)

A tag-question, which consists
of a statement, after which a
confirmation is asked. For

example:

(SQ (S (NP−SBJ That)
(VP ’s

(NP−PRD the problem)))
,
(SQ is

n’t
(NP−SBJ it)
(NP−PRD ∗?∗))

?)

Figure 5.28: Some examples for each different type of question that can be found using Part of Speech tags.

By using these tags, we were able to identify questions such as the one in Figure 5.29. It would be
impossible to find this situation by using only question marks, as seen in Figure 5.29a. While many questions
like these were identified, there were also identified questions that were questions to the speaker themselves,
for example the ones in Figure 5.29b.

Interviewer : Okay, and could you de-
scribed how you would like the home-
page to look like or what you would
like to know from the system in Yeah,
just an observation.

Interviewer : And then in what form it
is the the record itself like should the
system be able to read multiple for-
mats multiple different file types.

(a) Examples of a question the POS tagging approach
was able to find. Note that there is no question mark
that could indicate a question.

Interviewee : (...) Or what did he call?
Open street map, something like that. And
you can take the data, (...)

Interviewee : (...) How do I specify certain
season for a league? I would I sign ref-
erees to that league in specific season. (...)

Interviewee : (...) Okay what did the doc-
tor order, what kind of test did they
order? Um Is it urgent or is it not?
So they should be able to view all of this
information and then (...)

(b) Examples of questions that the speaker asked
themselves, but were identified as questions by the
POS tagging approach

Figure 5.29: Some examples of questions that were identified with the POS tagging approach.

In general, we are more focused on questions asked by the Interviewer than by the Interviewee. Overall,
the usage of the SQ and SBARQ tags is quite low compared to the other tags, as shown in Figure 5.30.

5 APPROACH DEVELOPMENT 40

Figure 5.30: The amount of Part of Speech tags used for all of the conversations in our INFOMRE dataset.

5.1.2 Iteration 2 - Speech Act Classification for finding questions

For our second iteration, we turn to another technique for identifying our questions, and we employ
classifier trained on Speech Acts. The Speech Act classifier that we used is trained on the Switchboard-1
corpus [106]. This corpus was created using 2,400 telephone conversations, with conversations among 543
speakers on 70 topics with 1,155 conversations in total. This data was tagged on their Speech Acts, of which
38 out of 42 are available using the Speech Act classifier found at https://github.com/bhavitvyamalik/
DialogTag. The list of the Speech Acts that indicate a question and examples of their usage can be found
in Table 2.

https://github.com/bhavitvyamalik/DialogTag
https://github.com/bhavitvyamalik/DialogTag

5 APPROACH DEVELOPMENT 41

TAG EXAMPLE
Yes-No-Question Is there is there already some data that can be gathered

from the existing systems that can already be put in The
new one or is there no,

Wh-Question I’m gonna ask you, how long does it take for that person
to analyze the situation and uh monitor a certain road
or urban traffic situations.

Declarative Yes-No-Question So it so it would be a manual change, not a new iteration
of the automated schedule.

Backchannel in question form Um, this should also be made available I imagine during
a match for instance, the score of the match should be
updated immediately once it’s changed. Right?

Open-Question What do you mean with local I. F. A. ?
Rhetorical-Questions (...) So what kind of privileges should the coaches have
Or-Clause So you you think there should be the same rights for

every user of the system? Or do you think that one user
should have less rights capable?

Tag-Question Right?
Declarative Wh-Question You are what kind of buff?

Table 2: Example usage of the Speech Acts that indicate questions, where the Tag-Question and Delcara-
tive Wh-Question are the default examples from https://github.com/bhavitvyamalik/DialogTag, since
these were not identified in any of our transcripts.

By using the different Speech Acts that indicate a question being asked, we can identify the questions in
our transcripts. Again, questions without a question mark could be easily identified, as shown in Table 2.
We were unable to find the Declarative Wh-question and Tag-Question in our dataset. The amount of
questions identified per tag varied, but most of them came from the Yes-No-Question tag, as can be seen
in Figure 5.31. This is comparable to the amount of identified questions in the previous treatment design
described in section 5.1.1. However, for this approach a lot more tags were used to identify these questions.
Furthermore, we were able to use 28 out of 38 of the Speech Acts that were available. A full overview of
examples of the Speech Acts found in the transcript can be found in Appendix C.

https://github.com/bhavitvyamalik/DialogTag

5 APPROACH DEVELOPMENT 42

Figure 5.31: The amount of Speech Act tags used for all of the conversations in our INFOMRE dataset.

In order to test the performance of our approaches, we need to compare this to tagged data, which we
will focus on in section 5.2. This will give insight into how many questions were identified correctly.

5.2 Relevance

One of the main hurdles in the development of our approach is to define for ourselves what requirements-
relevant information is and how this relevance is defined. The definition of requirements-relevance has changed
many times during the course of the project. Many times the question “what does it mean to be relevant?”
remained an open question. This can be attributed to the fact that there are no strict rules as to when
something is relevant to a requirement. At the stage that this tool can be used, these requirements are not
created yet. This makes it depend on the domain knowledge and requirements engineering expertise of the
person checking the sentence whether something is relevant to a requirement or not.

In the early phases of the research, we thought of checking the relevance of a sentence based on it being
close to As-is situation, close to the To-be situation or not close to either, comparable to the Fit Gap Analysis
[79]. While this idea still stands, it proved to be a difficult starting point. Especially when working with the
automatically generated transcripts and different domains, there was no way of automated classification of
our transcript based on these classes with the information that we have at our disposal.

While this first approach was a difficult starting point, another starting point was a binary classification of
the transcript. Either a speakerturn is relevant or irrelevant. This allowed us to create different approaches
and see how these can be improved or adjusted easily. In general, it was easy to look at and interpret
the output of the binary classification. We also considered that when using machine learning for binary
classification it is easier to fix overfitting or underfitting, than when using it with more than two classes.

5 APPROACH DEVELOPMENT 43

In order to get to our definition of requirements-relevant, we went through four different iterations of
Wieringa’s design science research methodology [11], as Sections 5.2.1, 5.2.3, 5.2.4 and 5.2.5. These iterations
allowed us to design our own tagging scheme for finding requirements-relevant information. Furthermore, in
Section 5.2.6 it allowed us to create a Golden Standard, to compare our different approaches from 5.1 to.

5.2.1 Iteration 1 - Relevant questions

To start with the problem investigation, by looking at the results of our binary classification in Chapter
5.1, it became clear to us that the interviews from the INFOMRE course were revolving around questions and
answers. Often, when a question is asked that is relevant to a requirement, the answers after that question are
also relevant to that requirement. This allowed us to narrow our focus on relevant questions, scoping down
the project. This means there are more than several categories in the set of questions, therefore introducing
our treatment design for this problem:

• Q: Questions
The set of questions in the transcript. Note that this set is not trivial, as question marks are often
omitted or placed on a wrong place in the process of automatically transcribing a conversation.

• RelQ: Relevant questions
These questions are directly relevant to a requirement. They are to the point and use the related
domain terms to that requirement.

• IdQ: Identified questions
The questions that are identified by the tool. As the tool is automated, we will have a set of questions
that are identified by the tool as a question.

• IdRelQ: Identified relevant questions
Combining the two previous categories, these are the questions that are identified by the tool and are
marked as relevant by the tool.

When discussing whether a question is relevant or not, we also noted that there are multiple reasons on why
a question can be relevant.

Q

IdQ RelQIdRelQ

Questions that were not identified
Questions discarded by the algorithm
Misclassified questions
Correctly classified questions
Missed relevant questions

Figure 5.32: Venn diagram on possibilities on relevant questions

In order to validate this treatment, we attempted to tag a conversation ourselves. This tagging was
done by two of the supervisors of this project, Fabiano Dalpiaz and Tjerk Spijkman. For this, we took
conversation 2, belonging to domain B (see Table 1. The tagging was done by showing the speakerturn that
contains a question, with the option to show more context. Using this option, the taggers would see the
previous speakerturn and the next speakerturn. Giving this option allowed us to see whether we relied on
the surrounding speakerturns or not. Several options were given for categorizing the relevance:

5 APPROACH DEVELOPMENT 44

• A question about functionality

• A question about a domain concept

• Another relevant question
This option included an option to fill in text.

• Relevant, but not a question
We already noted that some questions are not relevant, but the text around the question can be relevant.

On the other hand, we had some options for distinguishing between speakerturns that are not relevant:

• An unclear question

• An off-topic question

• Not a question

Tagger 1 Tagger 2
Total relevant 46 41
Total not relevant 11 16
Percentage relevant 81% 72%

Table 3: Tagging results on INFOMRE interview recording 2, on domain B, containing 57 questions.

Explanations tagger 1 Tagger 2
About the faced problems [also, more than one ques-
tion here!]

Context for the project

Problem/process understanding Can be about current process or functionality
Boundaries of the system (missed part of the next turn) - Relevant for building

the business case for the app
Goals of the system? Goals for the app, not necessarily functionality nor do-

main
It’s about who will use the system, not the what Constrains / environmental question. (non-

functional?)
Confirmation of the system idea presented before Question about users / stakeholders not functionality

nor domain
Mostly about qualities, not functionality question about stakeholders again
Stakeholder/user identification multiple questions, and most questions are more con-

versational than actually a question. (thinking process
of the speaker)

About users Current process is not the same as functionality.
User identification constraint question
Budget constraints constraint / project feasibility
Project boundaries (could be irrelevant) non-functional question
Qualities / NFRs validation of previous utterance
Qualities/NFRs project approach related question
Identifying problems planning / project management

questions on expertise of one party

Table 4: Other reasons why the taggers marked a question as relevant

Conversation 2 is a 50 minute conversation, in which we identified 57 questions. Between the two taggers,
the average percentage of relevant questions was 76, 5%. The full statistics can be found in table 3. There
were some disagreements, but most of these were attributed to the current tagging scheme, vision on the use
case or were resolved in the discussion afterwards.

5 APPROACH DEVELOPMENT 45

(I) A lot of times the options Another relevant question was used and several different explanations were
given for that, which can be found in table 4. In our next iteration, these should be translated into the
tagging scheme.

(II) Next to that, it was noted that the context should always be shown. The tagging activity became quite
tedious when having to select the option to show the next and previous speakerturn.

(III) The question we are looking at in the current speakerturn should be highlighted, to prevent any con-
fusion about this. Therefore, in the next iteration all questions will be marked in bold.

(IV) Furthermore, we found that not only a question can be relevant, but the question can also induce
relevance. For example the question itself was not very meaningful, but the context around it was.

(V) A final remark was made on the quality of the transcripts. Often, errors in the transcription were
confusing and led to different answers based on the guesses the taggers made some words were supposed
to be. Also, the quality of these transcripts from the INFOMRE course may differ from reality. These
interviews were straight to the point, not containing much small talk and asking very direct questions.

5.2.2 Fixing the transcripts

From Observation (V), it was clear that some errors had to be fixed in the transcript, in order for
our taggers to be able to correctly tag the conversation better. Since these transcripts were automatically
generated from an audio recording, these transcripts were not perfect. These fixes were needed to improve the
readability of the transcript and the understanding of the concept that was discussed in the transcript. This
involved different types of fixes, which varies from moving information from one speakerturn to the other,
adding information from the audio recording and adjusting information that is written in the transcript. For
example, in Figure 5.33 we see the question that we want is separated over three different speakerturns. For
our algorithms to correctly identify the questions, we need the questions to be in one single speakerturn and
not overlap with different speakerturns as is the case here. When this is not the case, we would miss out on
this question and not have this information available to the requirements engineer. For further examples of
all the different types of transcription errors, see Appendix D.

Interviewee : I think it’s fine if it is just on a
mobile version in terms of you access it via
the browser. Okay,

Interviewer : so web base is the

Interviewee : reference. Yeah. We’re not
putting the focus yet on Absolutely per-
fect. But maybe if that’s possible. I mean if
there’s an option for it. So in the future we
might consider developing an app that will
be great if we can somehow make it possi-
ble that this is a possible extension. Okay.
Yeah.

(a) An example of a part of a transcript where the
speakerturns are not ending properly.

Interviewee : I think it’s fine if it is just on a
mobile version in terms of you access it via
the browser.

Interviewer : Okay, so web base is the
preference?

Interviewee : Yeah. We’re not putting the fo-
cus yet on apps. But maybe if that’s pos-
sible. I mean if there’s an option for it. So
in the future we might consider developing
an app that will be great if we can some-
how make it possible that this is a possible
extension.

(b) After manually adjusting the endings of the
speakerturn, the transcript looks like this.

Figure 5.33: Example of a transcription error, where we adjusting the ending of a speakerturn,

5.2.3 Iteration 2 - Relevant parts of the speakerturn

The conclusions drawn in section 5.2.1 triggered a new design science iteration. Because of Observa-
tion (II), we focused more on parts of the speakerturn and the next speakerturn, shifting our focus from only

5 APPROACH DEVELOPMENT 46

the question in the current speakerturn to also the next speakerturn. To do so, we present the following
sequence of three speakerturns, chronological in order:

• The previous speakerturn
This speakerturn serves as context. It is there for the understanding of the conversation, but this should
not be tagged or analyzed.

• The current speakerturn
This is the speakerturn that we focus on and contains a question.

• The next speakerturn
The following speakerturn, that possibly includes an answer to the question asked.

Due to Observation (IV), we shift our focus from finding relevant questions to asking two different questions,
in order:
First, we aim to identify where the relevance is located by asking “How would you describe the relevance of
the following speakerturn?”. The different speakerturns allowed us to distinguish the type of relevance this
set of speakerturns into the following answers:

• A relevant question
The question asked in the current speakerturn is relevant and uses the related domain terms to a
requirement. For example:

Current Speakerturn : What kind of platform would you like the application to support?

• An irrelevant question, but the speakerturn itself is relevant
While this question in the current speakerturn may be irrelevant, the current speakerturn itself could
be relevant. So, while the question goes on about something else or is abstract and doesn’t use any
domain terms and is not related to any requirement, the speakerturn could be using domain terms and
could be related to a certain requirement. As an example:

Current Speakerturn : You mentioned over e-mail that the system should be able to support users
with multiple accounts. How does that work?

Here, the information that the system should be able to support users with multiple account is relevant
to a requirement, but the question does not contain requirements-relevant information. It simply tries
to elicit more information from the interviewee on this requirement.

• An irrelevant question and speakerturn, but the next speakerturn is relevant
In this case, the speakerturn we are looking at and its question are both not relevant. Due to the
question asked in this speakerturn, the next speakerturn is indeed relevant. We argue that the initial
speakerturn induced the relevance of this next speakerturn, thus we should mark is as relevant. The
following speakerturns show that such relevance.

Current Speakerturn : And how does that work?

Next Speakerturn : Explanation..

Here, the current speakerturn of the interviewer does not contain any relevant information, but induces
the relevance in the next speakerturn. It elicited this information from the interviewee, whom gave an
explanation as to how it works.

• Not relevant
Neither the speakerturn, question or next speakerturn are relevant. We could say, they are talking
about something abstract or off-topic subject matter. For example:

Current Speakerturn : How are you doing?

Next Speakerturn : I’m fine, thanks. How are you?

5 APPROACH DEVELOPMENT 47

Then, we aim to find the reason why this relevance was chosen. This scheme changed according to Observa-
tion (I). From the explanations given in the previous tagging exercise, as found in table 4, we came up with
the following categories of the relevance, as shown in Figure 5.34.

What

• A goal

• A functional requirement

• A non-functional requirement

Who

• System users

• Stakeholders

Other

• Faced problems or Current process un-
derstanding

• Project management

• Scope of the system or boundaries

• Other
Again, with the option to insert a tex-
tual answer

Figure 5.34: The categories of relevance for the second iteration of the approach.

Using these categories, we aim to reduce the amount of disagreements between the taggers and provide
the ability to discuss their tagging.

To validate this iteration of our design, we used interview 10, which is 47 minutes long, containing 49
questions (see Table 1. These questions have been checked manually and the entire transcript was also
improved manually. This manual improvement of the transcript involved fixing words that were supposed
to be different words and making sure the speakerturn was cut-off correctly according to section 5.2.2.
Furthermore, the questions were highlighted by putting them in bold, according to Observation (III).

The statistics on this tagging exercise can be found in table 5a. We see that we have a much higher
percentage of marking a set of speakerturns as relevant. The distinction between question, current speakerturn
or next speakerturn can be found in 5b. It can be noted that this dataset contained a lot of relevant questions.
There were 7 disagreements on the type on what part is relevant, which turned out to be not always as intuitive
as intended. This gave the insight that sometimes finding the relevant questions can be an identity function
from the identified questions, making all questions relevant. What is more interesting is the reasons why
these questions were marked as relevant, which can be seen in table 5c. There were 23 instances in which
the two taggers tagged completely different, so they did not use any of the same tags. These disagreements
were discussed and most can be attributed to the list of categories being non-exhaustive, having no crisp
distinction between the categories, difference in interpretation, bias on the usage of the tagging and bias on
the domain.

From this tagging exercise, we can draw the following conclusions:

(VI) Most disagreements are due to the fact that the list of reasons why something is requirements-relevant
is non-exhaustive. Furthermore, for others to be able to understand what falls under each category, it
would need a better description of that category.

(VII) The idea that a question can be requirements-relevant, but the speakerturn is not can be confusing.
Either the question can ask something that can be answered with requirements-relevant information or
not. This is a distinction that needs to be made.

(VIII) The bias of the tagger plays a big role in how they tag certain speakerturns. Once a tagger has more
knowledge about the domain, they are likely to use that to fill in the gaps.

5.2.4 Iteration 3 - Questions that can be answered with requirements-relevant information

For iteration 3, from Observation (VII) can be drawn that the current forms of relevance became difficult
to explain. Next to that, a focus can be put on the answer to the question as well. We are often looking for the
answer to the question that is asked, hence we should look into this as well and consider both the speakerturn
that contains the question and the next speakerturn that might contain the answer to that question. In order
to tag these questions, we first focus on the question “Where is the requirements-relevant information
located?”. Here we introduce the notion of requirements relevance, which which we define as follows:

5 APPROACH DEVELOPMENT 48

Tagger 1 Tagger 2
Total relevant 49 46
Not relevant 0 3
Percentage relevant 100% 94%
Number of disagreements 7

(a) Second tagging results on INFOMRE interview
10, which is 47 minutes long and contains 49 ques-
tions.

Tagger 1 Tagger 2
Question relevant 48 41
Current speakerturn rele-
vant

0 1

Next speakerturn relevant 1 4

(b) Choice of relevant tagging answers of the second tag-
ging.

Tagger 1 Tagger 2
Goal 0 0
Functional requirement 9 12
Non-functional requirement 14 1
System Users 0 0
Stakeholders 2 1
Faced problems or Current process understanding 10 2
Project management 0 0
Scope of the system or Boundaries 2 7
Number of disagreements 23

(c) Reasons why the parts were marked as relevant in the second tagging.

Table 5: Results of the tagging on the second iteration of the tagging scheme.

Definition 5.2.1. Requirements-relevant information is information that is relevant to requirements
engineers for setting up the requirements correctly.

To the question asked, we give the following possible answers:

• The question in the current speakerturn can be answered with requirements-relevant information
For example, the interviewer asks a question that that is most likely answered with requirements-
relevant information, since it is prompting information about the current situation.

Current Speakerturn : Okay. We’re not during, during the season. You should not change any
policies. Yeah. Okay. That’s good for the scheduling. And then the third value is better support
for the fans. And that was um, can you, first of all in the as-is situation, can you
explain some of the how are the fans able to, what kind of support is there for the
fans at the moment?

• The next speakerturn (after the question) contains requirements-relevant information
In this example, the interviewer asks a question that will be answered with requirements-relevant
information, after which the interviewee gives that requirements-relevant information in their answer.

Current Speakerturn : Okay. And then if we go to the referees, what kind of things
should the referees be able to manage in the system?

Next Speakerturn : The referees mainly can look at the game they are scheduled to. Uh huh. Uh
Can report on the events during the game.

The next speakerturn should be marked to contain requirements-relevant information, since it explicitly
describes what the referees can do. Next to that, the current speakerturn also contains a question that
will be answered with requirements-relevant information, so actually both options should be taken here.

After this question, we ask a question to categorize this requirements-relevance. For this, we have the
following categories, expanded with a description due to Observation (VI):

• Functional requirement
Functionality. The speakerturn refers to functionality that the software system has to exhibit. For
example, register users, schedule events, calculate something or allow messaging.

5 APPROACH DEVELOPMENT 49

• Non functional requirement
Software quality or non-functional requirement. The speakerturn refers to qualities that the system
should provide while delivering its functionalities, e.g. speed, security, capacity, compatibility, reliabil-
ity, usability, portability.

• System Users
This talks about the users of the system, also include other stakeholders here that do not use the
system.

• Current Process understanding
This is information about the current process or system as-is, this can be about the current problems
they are facing.

• Project Management
For this category, anything about the management of the project should be tagged. For example,
deadlines for the system to-be, colleagues, planning and expertise of people.

• Scope of the system
When tagging information about the scope of the system, this is any information that talks about
what the boundaries are of the system. What should be implemented in the system and what is to be
forgotten or not implemented in this system. What we also tag in this are limits to the system.

• Other
When you find that there is requirements-relevant information in one of the parts that you have tagged
to contain requirements-relevant information, but you cannot find a category that it might fit into, please
select this category and describe what you find to be requirements-relevant about this information.

For the next validation, with Observation (VIII) we noted that the actual tagging had to be done by
individuals that did not have the bias that we have. Working with this data, already having more knowledge
that provided about the domain, being part of the interview that was conducted or having a view on how
it should be tagged for a certain purpose gave us different biases that influence the way that we would tag
the data. Therefore, we introduced the idea of a group of candidates that would tag this data for us. This
required the process of tagging to be robust and reliable. Our candidates consist of other academics that
work for their PhD, MSc, or prospective PhD studies with dr. Fabiano Dalpiaz. We will refer to this group
of academics as the RE-Lab.

By providing a presentation on the way that the interviews should be tagged, a written tagging guide and
a system description as domain knowledge, two pairs of people from the RE-lab tagged another INFOMRE
interview recording, which contained 25 questions. The tagging was done by discussing the answers and
coming to an agreement on how the tagging should be done for each tagging. These discussions were
monitored to see what difficulties the participants encountered and how to improve on this. When putting
the tagging from the two pairs together, we come to a percentage of 92% requirements-relevant tagged
speakerturns, as seen in table 6a. The trend of a high percentage of relevant questions in the INFOMRE
interview recordings stays the same. Furthermore, all tags that were marked as relevant, marked that the
question in the current can be answered with requirements-relevant information, while it was not always the
case that the next speakerturn contained a requirements-relevant answer, see table 6b. Two categories that
were often used when choosing a reason as to why this information is requirements-relevant, are functional
requirement and system users, as shown in table 6c. Often in these interviews it is very clear that they
are discussing some functionality or talking about the users of the system. Less frequently, but also at
different points in the conversation, the current process is discussed, hence the usage of the current process
understanding is used more frequent than others.

5 APPROACH DEVELOPMENT 50

Count Percentage
Total relevant 23 92%
Not relevant 2 8%

(a) Pilot tagging results on an INFOMRE in-
terview recording containing 25 questions.

Count Percentage
Answer relevant 20 87%
Question relevant 23 100%

(b) Pilot relevant tagging results, separated
into relevant questions and answers.

Count Percentage
Functional requirement 17 74%
Non-functional requirement 4 17%
System Users 18 78%
Current process understanding 11 48%
Project Management 2 9%
Scope of the system 5 22%

(c) Pilot tagging results, categories for relevance.

Table 6: Results of the tagging pilot on the third iteration of the tagging scheme.

The RE-Lab participants of this pilot study tagging gave extensive feedback on their tagging experience,
which led to the following observations:

(IX) They noted that the transcriptions of the interviews were at first very confusing to read, it is com-
pletely different than reading normal text as it is a conversation that is directly transcribed, thus often
containing ’um’ or adjustments to what a speaker was trying to say. Next to that, it would be nice to
be able to see which speaker belongs to the speakerturn. This would tell a lot about the conversation
and the requirements-relevance of the question or answer.

(X) They also noted that they missed the possibility to go back to the previous question, since they were
still getting used to how to tag these parts of the conversation.

(XI) More specifically about the requirements-relevance categories, the participants found the scope of the
system category to be confusing. If it includes both what should and should not be included in the
system, most questions and answers belong to this category.

(XII) Next to that, it was unclear of how strict this categorization should be done. If the name of a system
user is mentioned, does it belong in the system users category? If ’real time’ is mentioned, does that
indicate a non-functional requirement? Also, some categorizations can be found indirectly. For example,
when the interviewee says:

Interviewee : The referee should be able to register events to their game.

We can argue that this implies that a referee should only be able to register events to the game they
are scheduled to, which would be a non-functional requirement (since this is a security constraint).

(XIII) When surveying the pairs of participants that were tagging, it became clear that showing the requirements-
relevance categories first, before asking where the requirements-relevant information is would be easier
for our participants. However, it would restrict the tagging to only those categories, while this list may
be non-exhaustive.

(XIV) Next to that, the term ’requirements-relevant’ can be misleading, since it refers to requirements engi-
neering as defined in definition 5.2.1, not to requirements themselves. Therefore it includes the category
of project management. For a more intuitive understanding for our participants, we should instead focus
on speakerturns that are relevant to requirements, not requirements engineering, and remove the project
management category. This would focus our tagging on what is relevant for requirements elicitation,
instead of a broader focus on the entire requirements engineering process.

5 APPROACH DEVELOPMENT 51

5.2.5 Iteration 4 - Tagging the requirements-relevant data

This iteration, will be the final tagging scheme that will tag the entire dataset of recordings of interviews
made during the INFOMRE course [10]. We improved the process of tagging according to the observations
of the pilot, as described in Chapter 5.2.4. In order to gather more participants, we created some broader
inclusion requirements for the tagging. These participants must:

• Have knowledge of the process of requirements elicitation, or have taken part in requirements elicitation.
Once our taggers know this, they understand what kind of conversation this is and what kind of
questions can be expected.

• Understand the relevance categories presented.
It is important that our taggers agree on what information fits what category. Therefore, the categories
were elaborated thoroughly in the tagging guide, but also the option itself was extended with a more
extensive description of what would fit this category, some with examples. Furthermore, if anything
was unclear the participants all had the option to contact me.

This allowed us to gather participants from fizor., other students at Utrecht University, more people from
the RE-Lab and others. For distributing the survey among our participants, we used the Utrecht University
Qualtrics survey tool12. By using Qualtrics, we were able to create a survey and distribute it among our
participants. Furthermore, it allows the downloading of the survey data in a format of choice that can be
processed afterwards. This resulted in the following order of events when a tagger uses the link distributed
to them. Before any tagger can start, they are presented with the screen shown in figure 5.35. This links to
a system description, as provided by the INFOMRE course that provides the taggers with sufficient domain
knowledge for the system. This can be seen as sufficient, since this was the only information the interviewers
had as well when they started the interview. These system descriptions can be found in Appendix B.
Furthermore, there is another link that goes to the tagging guide. This is a document that provides context
to the tagging exercise, explains the purpose, possible answers and gives some small examples. The tagging
guide can be found in Appendix E. Finally, they are asked to enter their name. This is solely for the purpose
of differentiating the different taggers.

Figure 5.35: The starting screen of the survey as shown to the taggers

12For further reference, see https://students.uu.nl/en/node/6/qualtrics-a-survey-tool

https://students.uu.nl/en/node/6/qualtrics-a-survey-tool

5 APPROACH DEVELOPMENT 52

In the next screens they will be shown three speakerturns, as seen in figure 5.36a. The previous speak-
erturn, current speakerturn and next speakerturn. The previous speakerturn is meant to provide context to
the part of the conversation that is shown. The current speakerturn contains a question that interests us and
the next speakerturn could contain an answer to that question. Because of Observation (IX), for each of the
speakerturns, it is specified what type of speaker says this. For this, there are two types, namely Interviewer
and Interviewee. In the case of these recordings from the INFOMRE course there are always two interviewers
and one interviewee. Below this part of the conversation is the question “What type of requirements-relevant
information can be found here?” as shown in figure 5.36b. The title of these categories was extended to make
it more clear what belongs to each category, as was found necessary in Observation (XII). Furthermore, due to
Observation (XIV) the project management category was removed and due to Observation (XI) we changed
the scoping category to be more clear. Therefore, the taggers are presented with the following options, of
which they can select multiple:

• A functional requirement (functionalities that the system should exhibit, e.g. registering users, schedul-
ing events, calculating something, ...) Functionality. The speakerturn refers to functionality that the
software system has to exhibit. For example, register users, schedule events, calculate something or
allow messaging.

• A non-functional requirement (a quality that should be there given certain functionality, e.g. speed,
security, capacity, compatibility, usability, ...) Software quality or non-functional requirement. The
speakerturn refers to qualities that the system should provide while delivering its functionalities, e.g.
speed, security, capacity, compatibility, reliability, usability, portability.

• System users (directly discusses the users of the system, or stakeholders) This talks about the users of
the system, also include other stakeholders here that do not use the system.

• Current process understanding (talks about the system as-is, problems that are faced or things that
have to improve) This is information about the current process or system as-is, this can be about the
current problems they are facing.

• Within or outside of the scope (directly talking about certain things that are inside the scope of the
system to-be or not, boundaries discussed) Any direct discussion of elements that should be in the
system to-be or not. This discussed boundaries to the scope of the system.

• There is no requirements-relevant information Some questions asked in the transcript and answers to
that question do not contain any requirements-relevant information. In other words, none of the other
categories apply to this part of the transcript.

(a) An example of the part of the conversation that
is shown to the tagger (b) The first question for every part of the conversa-

tion that is shown.

Figure 5.36: First part of the final tagging scheme

5 APPROACH DEVELOPMENT 53

When the option ‘There is no requirements-relevant information’ is not selected, another question in
shown, as shown in figure 5.37. Note that the order of questions is now different from the other iterations,
as we changed this order according to Observation (XIII). Here the taggers are asked the question ‘Where is
this requirements-relevant information located?’ with the following options:

• The question in the current speakerturn can be answered with requirements-relevant information

• The next speakerturn (after the question) contains requirements-relevant information

Figure 5.37: The second question shown for every part of the conversation.

At any point, the participants were able to go back to the previous question, as was noted in Observation (X).
To validate this iteration of the design, it is important to note that the number of questions and the length

of the conversations in the dataset varied. Table 7a shows that the amount of speakerturns vary from 69 to
179, averaging at 130. The amount of questions range from 21 to 56, with an average of 42. By looking at
the amount of speakerturns that were shown and that the participants were able to tag, we can look at table
7b to see what percentage of the conversation is shown in terms of speakerturns when it comes to questions,
shown speakerturns and taggable speakerturns. Furthermore, when looking at the length of the conversation
we can do a similar analysis. The duration of the conversation in which speakerturns ask a question can
be found in table 8a. Next to that, this table shows the duration of the conversation that is shown to the
tagger and that is taggable for the tagger. This translates to table 8b, where we can see the percentage of
the conversation in terms of duration that is shown, taggable or asks a question.

We can say that in terms of speakerturns, we summarize the conversation down to 30% of the conversation
when we only show the speakerturns that ask a question. When also showing the possible answer to this
question, this turns into about 60% of the conversation. Finally, once we add the speakerturn before the
question as well, this is about 70%. Likewise, when looking at the duration of the conversation, we can say
that about 30% of the conversation is made of speakerturns that ask or formulate a question. Including
the answer to this question, about 70% of the conversation’s duration is shown. With the context of the
speakerturn before the question, 80% of the duration of the conversation is shown to the tagger.

5 APPROACH DEVELOPMENT 54

Set Total Shown Taggable Questions
2 167 117 95 52
4 148 108 87 48
5 98 69 56 30
6 69 50 41 21
7 179 132 105 56
9 116 78 64 31
10 162 110 91 49
12 155 115 98 56
16 80 62 55 31
Average 130 93 77 42
Total 1174 841 692 374

(a) Speakerturn quantities, devided in shown, Tag-
gable and questioning.

Set Shown Taggable Questions
2 70.060% 56.886% 31.138%
4 72.973% 58.784% 32.432%
5 70.408% 57.143% 30.612%
6 72.464% 59.420% 30.435%
7 73.743% 58.659% 31.285%
9 67.241% 55.172% 26.724%
10 67.901% 56.173% 30.247%
12 74.194% 63.226% 36.129%
16 77.500% 68.750% 38.750%
Total 71.635% 58.944% 31.857%

(b) Percentages on the speakerturn quantities from
table 7a.

Table 7: Statistics on the speakerturns of the conversation.

Set Total Shown Taggable Question
2 00:50:23 00:42:13 00:34:37 00:09:01
4 00:49:15 00:38:53 00:34:23 00:18:21
5 00:41:29 00:30:10 00:23:30 00:06:42
6 00:23:05 00:17:30 00:16:57 00:06:00
7 00:58:06 00:51:19 00:48:49 00:25:05
9 00:38:25 00:30:57 00:23:41 00:09:05
10 00:47:12 00:37:19 00:33:13 00:17:37
12 00:39:24 00:31:03 00:28:11 00:13:34
16 00:30:31 00:26:50 00:23:21 00:08:46
Average 00:41:59 00:34:02 00:29:38 00:12:41
Total 06:17:50 05:06:14 04:26:42 01:54:11

(a) Duration of the conversation, divided in shown, tag-
gable and questions.

Set Shown Taggable Question
2 83.791% 68.707% 17.896%
4 78.951% 69.814% 37.259%
5 72.720% 56.649% 16.151%
6 75.812% 73.430% 25.993%
7 88.325% 84.022% 43.173%
9 80.564% 61.649% 23.644%
10 79.061% 70.374% 37.323%
12 78.807% 71.531% 34.433%
16 87.930% 76.516% 28.727%
Total 81.050% 70.587% 30.221%

(b) Percentages of the duration of the conver-
sation from table 8a.

Table 8: Statistics on the duration of the conversation.

The amount of disagreements varied per pair of taggers, as can be seen in table 9a. Once a tagger chose
that something contained requirements-relevant information, they were given the option whether the question
and/or the answer contained this information. This allowed for the disagreement to be on the question or
the answer containing requirements-relevant information. These disagreements can be found in tables 9b and
9c. Overall, there was a disagreement percentage of about 30%, where the majority of the disagreements was
among the questions that were asked (about 70% of the disagreements).

5 APPROACH DEVELOPMENT 55

Set Amount Percentage
2 44 46.31%
4 44 50.58%
5 23 41.07%
6 5 12.20%
7 27 25.71%
9 28 43.75%
10 44 48.35%
12 15 15.31%
16 8 14.55%
Total 238 34.40%

(a) Amount of disagreements in the
final tagging, compared to the per-
centage of speakerturns that were
tagged.

Set Question Answer
2 34 12
4 32 13
5 16 7
6 3 2
7 17 10
9 15 13
10 36 8
12 10 5
16 4 4
Total 167 74

(b) Separated disagreements in
question and answer.

Set Question Answer
2 77.27% 27.27%
4 72.73% 29.55%
5 69.57% 30.43%
6 60.00% 40.00%
7 62.96% 37.04%
9 53.57% 46.43%
10 81.82% 18.18%
12 66.67% 33.33%
16 50.00% 50.00%
Total 70.17% 31.09%

(c) Percentages on the disagree-
ment separated in question and an-
swer.

Table 9: Statistics on the disagreements among the participants per conversation.

For the validation of iteration 4, the following observations can be made:

(XV) After and during the tagging by our participants, there was positive feedback on the differentiation
between the speakers and the fact that the taggers were tagging one conversation in chronological
order. This gave them the benefit of having one coherent story, allowing for sufficient focus on the
exercise. Next to that, it gave them more knowledge about the domain as they progressed through the
questions.

(XVI) It was noted that there was no clear category for questions that ask to clarify something further. Often
it occurred that the interviewee was explaining something and the interviewer asked to explain this
further, but there was no clear category for these types of questions.

(XVII) For some of the participants it would have been easier to highlight the location of the requirements-
relevant information instead of ticking whether the question and/or the answer contains that informa-
tion. This goes along with the feedback that there was no way to differentiate between the reason why
the question contains requirements-relevant information and why the answer contains requirements-
relevant information.

(XVIII) It was said that it could be beneficial that the speakerturns of the different interviewers can be combined.
In some conversations, the two interviewers were discussing whether they should ask a certain question
or not.

(XIX) Finally, some participants missed the initial links to the system description and the tagging guide. This
led to the questions being unclear and having difficulty understanding what to do.

5.2.6 Creating a golden standard

From the final tagging in Section 5.2.5, the goal was to create a golden standard, so we have data to
compare our different approaches for finding requirements-relevant information to. In order to do so, we
had to solve the disagreements among participants. We focus on the disagreements of the second question,
indicating where the requirements-relevant information is located. This was done by going through these
agreements together with the initial taggers of the first two iterations of the design, the supervisors of
this project, Fabiano Dalpiaz and Tjerk Spijkman. This allowed us to identify three different types of
disagreements:

• Missed nuance of the question.
The answer “The question in the current speakerturn can be answered with requirements-relevant
information” was misinterpreted as “The question in the current speakerturn contains requirements-
relevant information”. This could be seen by certain participants selecting this answer only when there

5 APPROACH DEVELOPMENT 56

is obvious requirements-relevant information in the question. The following example shows a question
that one participant did not mark the question as one that can be answered with requirements-relevant
information, however the other participant did mark it as such. We solved such disagreements, by
marking the question as one that can be answered with requirements-relevant information.

Interviewer 2 : How do you typically solve such a problem? What is the way to solve a
congestion like that?

Interviewee : Yeah, so we went through many different ways. So The typical one is, especially when
it is urgent, I meet a few people here in the department. These are very smart technical people,
they know some, we recently hired to some mathematicians, they do great models. So what they
try to do is the they kind of create a small map of roads around that problem and they tell us
well, if you redirect the cars there, it’s best for this and that reason. So that’s something we
do. Sometimes we try if it is not so urgent, we have a bigger kind of meeting uh in that case
which I have to involve uh more stakeholders, more people, so we go maybe beyond the micro
management. Still, it’s kind of saying in the first case, we focus here. In the second case, we have
a bigger area that we can consider because we vote for people.

• The answer was a yes- or no-answer. Sometimes, the question was answered with a yes or no.
In the tagging instructions it was not made clear whether when this answer should be considered
requirements-relevant, when the question asked can be answered with requirements-relevant informa-
tion. For example:

Interviewer 1 : So no digital versions being sent?

Interviewee : No. So right now you only get information when you come to an appointment from the
doctor verbally um and you have to call or walk into schedule an appointment and that’s basically
it. Um Only on request you can request to be sent like your your file but then in a printed version
other than that they are not included so far.

Therefore, here both the answer and question were marked to respectively ask for requirements-relevant
information and provide it.

• Interviewer summarizing In some cases, the interviewer was asking a question by summarizing what
has been talked about through the conversation and then asking the interviewee if they have anything
to add. This is a technique which can be used when taking interviews, as noted in Section 3.2. In our
case, we deem these types of questions as not relevant to our use-case. These are questions which do
not clearly indicate what they are asking, therefore a user could not see what this question is about,
or expect a certain answer to that question. Below is an example of such a summarizing question:

Interviewer 1 : If I could just clarify this, Excuse me. Uh In this case, you want to stakeholder as
the administrator to have whole um so they can manage to have all access to the each team’s uh
finance. So in this, in this case you want to connect both stakeholders, teams and the I. F. A
Administrators. Am I right in this case?

These types of questions were marked to not ask for requirements-relevant information, since they do
not ask for new information, they simply ask for confirmation.

By solving these disagreements and tagging them accordingly, we were able to create a golden standard
dataset, consisting of all the conversations from Table 1, indicating whether a question was requirements-
relevant or not.

Tables 10 and 11 show that the percentage of the conversations is reduced from about 30% to 20% when
only looking at the relevant questions. This confirms our idea of giving a concise overview of the transcript
by showing only the relevant questions to the requirements engineer, as this would show only 20% of the
transcript.

5 APPROACH DEVELOPMENT 57

Set Shown Taggable Question Relevant Question
2 83.791% 68.707% 17.896% 11.148%
4 78.951% 69.814% 37.259% 10.152%
5 72.720% 56.649% 16.151% 12.053%
6 75.812% 73.430% 25.993% 18.412%
7 88.325% 84.022% 43.173% 17.814%
9 80.564% 61.649% 23.644% 13.449%
10 79.061% 70.374% 37.323% 32.698%
12 78.807% 71.531% 34.433% 23.266%
16 87.930% 76.516% 28.727% 16.603%
Total 81.050% 70.587% 30.221% 20.004%

Table 10: Final percentages of the duration of the conversation, adjusted from table 8b, now showing how
long the relevant questions take.

Set Shown Taggable Questions Relevant Questions
2 70.060% 56.886% 31.138% 17.365%
4 72.973% 58.784% 32.432% 22.297%
5 70.408% 57.143% 30.612% 20.408%
6 72.464% 59.420% 30.435% 21.739%
7 73.743% 58.659% 31.285% 10.615%
9 67.241% 55.172% 26.724% 13.793%
10 67.901% 56.173% 30.247% 25.309%
12 74.194% 63.226% 36.129% 28.871%
16 77.500% 68.750% 38.750% 23.750%
Total 71.635% 58.944% 31.857% 19.506%

Table 11: Percentages on the amount of speakerturns of the conversation, adjusted from table 7b, now
including the relevant questions

5 APPROACH DEVELOPMENT 58

5.3 Identifying requirements-relevant question

In order to find the requirements-relevant questions, as the taggers did when creating the golden standard
in Section 5.2, we have created two different treatment designs using Wieringa’s design science research
methodology [11]. The first iteration takes the System Description that belongs to each of the different
domains that our interviews belong to (see Appendix B). We take this as our Context Document, as it
provides context to our classifier as to what words are expected to be used. The second iteration compares
our conversation to the words used in a large corpus of Wikipedia pages. Then, in Section 5.3.3, we see how
our approaches in combination with the approaches in Section 5.1 compare to our golden standard created
in Section 5.2. Finally, we also test how well Artificial Intelligence works on our tagged dataset, in Section
5.3.6.

Figure 5.38: A flowchart to explain the flow of the combination of our treatment designs. First the relevant
questions are identified, using either Part of Speech Tags or Speech Act classification. After that, the relevance
of these questions is classified. This is done by using TF-IDF on the Context Document or on the Transcript
itself. As a final output, this gives us a set of relevant questions according to our algorithms.

5.3.1 Iteration 1 - Context Document

To tackle the problem of finding requirements-relevant questions, the INFOMRE dataset provided us with
system descriptions, which can be found in Appendix B. These system descriptions introduce the context
and the project aims that the interviews will focus on. Therefore, in this first treatment design we will focus
on these system descriptions, as these documents are the starting points for our interviewers to ask their
questions. The terminology used in these documents will most likely match the terminology that will be used
in the conversations and therefore this terminology could determine whether a question is about something
that is relevant to the requirements of the system or not. To determine what specific terminology is used
in the context document, we used the stems and terms from a dataset containing a lot of Wikipedia pages
[107]. By using these terms in combination with Term Frequency-Inverse Document Frequency (TF-IDF),
we can determine what words in this system description are interesting. In combination with using this on
the questions can determine with the algorithms in section 5.1, we can find the questions that are interesting
to us, and most likely contain requirements-relevant information. This can be done with any document that
has this sort of context on the domain, therefore we shall refer to such a document as a Context Document,
as shown in Figure 5.39.

5 APPROACH DEVELOPMENT 59

Figure 5.39: By taking a Transcript that already has the questions marked, we can use TF-IDF with a
Wikipedia corpus and our Context Document in order to find the relevant questions.

After filtering based on common stop words, this approach gave us a set of words per context document
that most likely indicate relevance in our questions, of which Table 12 shows a subset.

Domain Relevance-indicating words
A IFA, stakeholders, auditing, infrastructure, notify, scheduling,

cancellation, fans, operational, teams, rescheduling, budget, real-
time, cio, systems, leagues, coaches, system, information, restruc-
ture, analytics, stadiums, unauthorized, automation, support,
transparency, monitored, transaction, updates, games, adminis-
tration

B mow, congestions, mobility, cloudbased, simulator, urban, mi-
crolevel, traffic, urgencies, simulation, pollution, replicating, plan-
ner, mathematical, citizens

C medz, transferals, scheduling, hospital, patient, management,
healthcare, departments, digitalization, privacy, janitors, data,
interoperable, presciptions, laboratory, referral, appointment, an-
alytics, nurses

Table 12: A selection of the words extracted using TF-IDF on our System Descriptions from Appendix B.

5 APPROACH DEVELOPMENT 60

5.3.2 Iteration 2 - Wikipedia

In order for us to create a second iteration, we can also apply Term Frequency-Inverse Document Frequency
(TF-IDF) on the transcript of the conversation itself. This would allow us to focus on the words that are
actually used in the conversation, instead of hoping that the Interviewer and Interviewee actually use the
terminology used in the Context Document. By using the stems and term from the Wikipedia dataset [107]
and using this in combination with our transcript with TF-IDF, we were able to identify different sets of
words that can indicate our relevant questions, as shown in Figure 5.40.

Figure 5.40: By taking a Transcript that already has the questions marked, we can use TF-IDF with a
Wikipedia corpus and our Transcript in order to find the relevant questions.

While these words did need a lot more filtering, as there are some special words being used in the
conversations nevertheless (such as ’Uh’, ’uhh’ and ’Um’), it did provide an interesting set of words for each
of the conversations, as can be seen in Table 13

5 APPROACH DEVELOPMENT 61

Identifier Domain Relevance-indicating words]
2 B sensors, wonderland, CO2, simulator, maps, traffic,

prototype
4 A referees, scheduling, cancellation, notification, stake-

holder, transparency, granularity, discussed, automa-
tion, fans, teams, leagues, budget

5 B roundabout, sensors, pollution, traffic, congestion,
functionalities, reversible, decisions, simulation

6 C patient, privacy, scheduling, prescription, mobile,
data, analytics, appointment, database, pharmacy, de-
vices, medical, system, electronic

7 A referees, stakeholder, notification, scheduling, fans, of-
fline, schedule, cancelling

9 C patient, DigiD, devices, patients, doctors, nurses, med-
ical, privacy, receptionists, solution, data, laboratory,
administrator

10 A scheduling, referees, notifications, biases, notify, pages,
fans, budget, privileges, coaches, manage, teams,

12 C patient, janitors, pharmacies, scope, scheduling, recep-
tionist, nurses, patients, laboratory, doctors, data, pre-
scriptions, authentication

16 C scheduling, patient, appointment, nurses, mobile, re-
ceptionists, inventory, device, privacy, outdated, doc-
tors, alert, safety

Table 13: A selection of the words extracted using TF-IDF on our Transcripts.

5.3.3 Automated requirements-relevant questions

In order to validate our treatment design for automatically finding requirements-relevant information, we
will combine the approaches used in section 5.1 and 5.3. This means combining the Part Of Speech Tagging
and Speech Act Tagging approaches from Section 5.1.1 and 5.1.2 with the Context Document TF-IDF and
Wikipedia TF-IDF approaches from Section 5.3.1 and 5.3.2. By combining these approaches as shown in
Figure 5.38 we can compare our results to the Golden Standard created in Section 5.2 and see how well our
treatment design works.

5.3.4 Comparing approaches for finding questions

First, we can compare our different approaches created for finding relevant questions. Here, we can also
take the combination of both approaches, which simply takes something to be a question if either of the al-
gorithms indicates this. For the results, we look at the confusion matrices of our approaches. These matrices
show the performance of a classifier with respect to some data it is tested on [108]. These matrices show the
true class of an object in the rows, while the predicted class of the object assigned by the classifier can be found
in the column.

Figure 5.41: An example confusion matrix, on a clas-
sifier for class A.

For example in Figure 5.41 we see a confusion
matrix where we show the performance of a classi-
fier with respect to class A. Here, the cases where
both the classifier and the actual class are A is des-
ignated as True Positives (TP). Furthermore, the
same is done for where both the classifier and the
actual class are not A, which are called True Neg-
atives (TN). Next to that, in the cases where the
classification goes wrong, we have two different des-
ignations. When the classifier predicts an object to

5 APPROACH DEVELOPMENT 62

belong to class A, while in fact it does not, we speak
of a False Positive (FP). Likewise, when the classi-
fier predicts an object not to belong to class while in truth it does belong to class A, we speak of a False
Negative (FN). Looking at the matrix in Figure 5.41 we see from the color bar that there are a lot of True
Positives, namely about 10. There are a bit less True Negatives, about 7 or so. There are no False Negatives
but there are approximately 3 False Positives. This is what we can quickly draw from this color bar, but in
our case the next confusion matrices in this thesis will have the exact numbers in the cells, so no estimation
is needed, but the color bar can give a quick overview.

Figure 5.42: Confusion Matrices for our different approaches for identifying questions.

Figure 5.42 show the confusion matrices for our two different approaches. It can be noted that both
algorithms work quite well, none a high number of False Positives or False Negatives. It must be said that
Speech Acts have a lot more True Positives, whereas the POS tags approach made a lot of False Negatives.
This can also be seen in the Precision, Recall, F1-Score and Accuracy of these solutions, as shown in Table
14. It can be said that in our case, Speech Acts have proven to be more useful.

The combination of both the algorithms if able to find more True Positives, at the compromise of finding
fewer True Negatives. It finds a lot more questions, since the False Positives have gone up as well. In terms
of statistics, it is better than Part of Speech Tags alone, but cannot improve over Speech Acts. However,
we are interested in finding all the questions, so this Combination approach is still a viable option, since it
returns the most True Positives.

Approach Precision Recall F1-score Accuracy
Speech Acts 81.8% 91.7% 86.5% 91.1%
Part of Speech Tags 69.7% 77.4% 73.4% 84.3%
Combination 76.8% 95.8% 85.3% 89.7%

Table 14: Precision, recall, f1 and accuracy on different approaches for finding questions.

5.3.5 Comparing approaches for finding relevant questions

By combining our approaches for identifying questions and filtering relevant questions, we can create
several confusion matrices. First, comparing our Context Document and Wikipedia TF-IDF approaches on
the questions identified by Speech Act classification. This comparison is done by looking at the confusion
matrices of the two approaches, similar to the comparison done in Section 5.3.4. The confusion matrices for
our approaches can be seen in Figure 5.43.

5 APPROACH DEVELOPMENT 63

Figure 5.43: The confusion matrices of our Context Document and Wikipedia TF-IDF approaches on the
questions identified by the Speech Act classification approach compared to the Golden Standard found in
section 5.2.

Again, both of the algorithms hold up quite well, although there are a lot of False Positives. While these
approaches seem to identify a lot of the relevant questions, in the process they also take a long some questions
that were not deemed relevant by the taggers.

Similarly, we can compare our approaches using Part of Speech Tagging, resulting in the confusion matrix
from Figure 5.44.

Figure 5.44: The confusion matrices of our Context Document and Wikipedia TF-IDF approaches on the
questions identified by the Part of Speech tags approach compared to the Golden Standard found in section
5.2.

5 APPROACH DEVELOPMENT 64

Approach Precision Recall F1-score Accuracy
Context Doc. - SA 64.4% 70.3% 67.2% 86.7%
Wikipedia - SA 64.4% 66.4% 65.4% 86.4%
Context Doc. - POS 53.8% 62.4% 57.8% 82.5%
Wikipedia - POS 53.9% 63.3% 58.2% 82.4%
Context Doc. - COMB 55.0% 81.7% 65.7% 83.5%
Wikipedia - COMB 55.7% 81.2% 66.1% 83.9%

Table 15: Precision, recall, f1 and accuracy on different approaches for finding relevant questions.

The results from this combination of approaches is similar to the previous. It must be noted that there are
more False Positives in this case, which can be explained by the performance of our Part of Speech tagging
approach. The Part of Speech tagging approach allowed a higher number of mistakes for finding questions
to come through, leading to more False Positives when it comes to finding relevant questions.

Finally, we can compare our approaches using the Combination of the Speech Act classification and Part
of Speech tags approach. These results are shown in Figure 5.45.

Figure 5.45: The confusion matrices of our Context Document and Wikipedia TF-IDF approaches on the
questions identified by the Combination of the Speech Act classification and the Part of Speech tagging
approach compared to the Golden Standard found in section 5.2.

These results are very similar to the results from using Part of Speech tagging approach, however they
include more True Positives due to the questions identified by the Speech Act classification approach.

In order to compare all these approaches at the same time, we can look at the statistics found in Table
15.

We see that the Context Document and Wikipedia TF-IDF approaches perform in a comparable way.
In all of the different approaches for finding questions, there are only minor differences in the amounts.
Furthermore, it can be said that the Speech Act classification approach outperforms Part of Speech tagging
approach, where a compromise can be made by taking the combination of both approaches, leading to more
identified questions. This can give a higher recall, since there are more True Positives, however the precision
will be lower since the False Positives will also increase.

5 APPROACH DEVELOPMENT 65

5.3.6 Comparing ’learning’ approaches for finding relevant questions

Since our Golden Standard dataset available from section 5.2, we test how well Machine Learning or
Transfer Learning approaches work on this data. This would involve taking the Transcript and then finding
the relevant questions, replacing the full solutions we compared earlier, as shown in Figure 5.46.

Figure 5.46: A flowchart to explain the flow of the combination of our next treatment designs. In one step,
the the relevant questions are identified, using either a Machine Learning or Transfer Learning model. This
is done by using Golden Standard as training data. We train on all but one dataset, which we predict.
Predicting all of the data with different models.

For Transfer Learning, we used a BERT-model, which took both the speakerturn it was attempting to
classify and the speakerturn after it. This was done, because when tagging the data, it was often needed to
look at the answer given to the question in order to determine whether it is relevant or not. The model used
for Machine Learning was a Random Forest classifier. This Random Forest classifier was also given some
extra Boolean features, inspired by Abualhaija et al. [49]:

• hasModal
This checks if a Modal verb is used in the questioning sentence.

• hasNPModalVP
This checks if a Noun Phrase is followed by a Verb Phrase that uses a Modal verb.

• hasHFNP
This checks if a high frequency (top 1%) Noun Phrase is used.

Note that the features presented by Abualhaija et al. [49] are based on requirements specifications, therefore
using this on our automatically transcribed text is very ambitious, but worth a shot. To research these
classifiers thoroughly, we follow the train-validate-test methodology.

5 APPROACH DEVELOPMENT 66

To validate these models, we use a stratified k-fold comparison, using k = 5 and k = 10 to see what kind
of result we can expect. For this, we look at the confusion matrices of these models.

Figure 5.47: The confusion matrices of the machine learning approach, based on the tagging done in section
5.2.5, evaluated using stratified k-fold.

In Figure 5.47 can see that, the Machine Learning model has a strong bias towards predicting speakerturns
to not be a relevant question. Furthermore, it does predict some to be relevant questions, but the majority
of those predictions are false.

Figure 5.48: The confusion matrices of the transfer learning approach, based on the tagging done in section
5.2.5, evaluated using stratified k-fold.

5 APPROACH DEVELOPMENT 67

The Transfer Learning model seems to be predicting almost everything to not be a relevant question, as
can be seen in the confusion matrices in Figure 5.48. This does not improve significantly by taking a higher
value for k. Therefore, we can expect this behaviour to be similar when testing this model.

Figure 5.49: The confusion matrices based on the tagging done in section 5.2.5. This is separated on the
disagreements on the relevance of questions, answer and the total.

When comparing these final results of these models, we should also compare this to the human performance
on tagging the dataset. How much did the participants (dis)agree amongst the pairs? Therefore, we can look
at the confusion matrices in Figure 5.49.

We can see, that in general about half of the questions presented, the participants agreed on to either
be relevant or irrelevant. Furthermore, it was easier to agree on the answers, than it was to agree on the
questions being relevant. Comparing this to the performance of our algorithms, we see the following row of
confusion matrices in Figure 5.50.

Figure 5.50: The confusion matrices based on the tagging done in section 5.2.5. This is separated on the
disagreements on the relevance of questions, answer and the total.

It can be noted that both classifiers try to classify all of the speakerturns as not relevant. Their predictions
on something to be relevant are very poor, as for Transfer Learning about half are false, while for Machine
Learning this is more than half. Next to that, it is incomparable to the human performance. This poor
performance can be accredited due to the hard task at hand. For a classifier to identify questions that are
relevant in one step, whilst not giving any information on what is relevant other than training that is very
hard. Next to that, the amount of questions that were relevant in our dataset was 229 while there were 1181
speakerturns.

5.4 Classifying the reason of requirements relevance

When creating the Golden Standard in section 5.2.5, the participants were selecting a reason as to why
this information is requirements-relevant. This can be seen as a labeling on the data. By using this training
a classifier on this labeling, we can add this labeling to the output of our tool. This would quickly indicate

5 APPROACH DEVELOPMENT 68

whether something talks about a functional requirements, non-functional requirements, system user, current
process or scope. Figure 5.51 shows how our classifier would take a transcript where the questions are already
filtered and then add a label to that transcript, for the end-user to see.

Figure 5.51: A flowchart to explain the flow of the continuation of our treatment designs. After the
requirements-relevant questions are found, we can use a Machine Learning, Transfer Learning or Zero-Shot
Learning model to classify the reason of requirements-relevance of these questions. This is done by training
on n-1 conversations of the Golden Standard dataset and predicting on the one conversation we did not train
on.

For Machine Learning, the same features were used when attempting to classify requirements-relevant
questions (see Section 5.3.6). Similarly, a BERT-model was used for Transfer Learning. Finally, for Zero-Shot
Learning, we take a large BERT model [109], trained on a Multi-Genre Natural Language Inference dataset
[110]. To validate our treatment designs, we will compare these approaches to the human performance, as
also done in Section 5.3.6. In this way, we can compare how well these classifiers perform, compared to
the agreement among the participants on the reason. Similarly, we first validate the machine learning and
transfer learning approaches using a stratified k-fold, after which we test the approach as shown in Figure
5.51.

5 APPROACH DEVELOPMENT 69

Functional

Figure 5.52: Confusion matrices for the Machine Learning and Transfer Learning with k = 5 and k = 10,
compared to the human performance as tested when creating the golden standard. This confusion matrix
focuses on the reason ‘Functional’

We can see in Figure 5.52, that the Machine Learning approach performs quite similar to the Human
Performance, either with k = 5 or k = 10. Most likely, this performance will also be seen in the final test.
For Transfer Learning it is obvious that it mainly predicts questions to belong to the ‘Functional’ category,
as the amount of True Negatives and False Negatives is very low.

Figure 5.53: Confusion matrices for the Machine Learning, Transfer Learning and Zero-Shot Learning ap-
proach for finding the reason of relevance, compared to the human performance as tested when creating the
golden standard. This confusion matrix focuses on the reason ‘Functional’

In Figure 5.53 we see the different confusion matrices for classifying whether a relevant question is relevant,
because it’s discussing something functional or not. Transfer Learning and Zero-Shot Learning seem to simply
classify most questions to be talking about something Functional. On the other hand, Machine Learning
does quite a decent job here, which is comparable to the Human Performance.

5 APPROACH DEVELOPMENT 70

Non-Functional

Figure 5.54: Confusion matrices for the Machine Learning and Transfer Learning with k = 5 and k = 10,
compared to the human performance as tested when creating the golden standard. This confusion matrix
focuses on the reason ‘Non-Functional’

For the ‘Non-Functional’ category, we can see in Figure 5.54, that Machine Learning again performs quite
similar to the Human Performance. Here, its performance worsens slightly with the increase from k = 5 to
k = 10, but it is still very comparable. On the other hand, Transfer Learning predicts most questions to not
belong to this category.

Figure 5.55: Confusion matrices for the Machine Learning, Transfer Learning and Zero-Shot Learning ap-
proach for finding the reason of relevance, compared to the human performance as tested when creating the
golden standard. This confusion matrix focuses on the reason ‘Non-Functional’

Figure 5.55 shows the confusion matrices for the category ’Non-Functional’. Here, again Transfer Learning
and Zero-Shot Learning seem to classify the questions respectively only as not belonging to ‘Non-Functional’
and mostly belonging to ‘Non-functional’. Machine Learning does a better job at this, whilst also creating a
lot of False Negatives. Again, Machine Learning is most comparable to the Human Performance.

5 APPROACH DEVELOPMENT 71

System Users

Figure 5.56: Confusion matrices for the Machine Learning and Transfer Learning with k = 5 and k = 10,
compared to the human performance as tested when creating the golden standard. This confusion matrix
focuses on the reason ‘System Users’

To validate the classification of questions about system users, Machine Learning performs quite well again.
It worsens slightly when changing k = 5 to k = 10, but it is still comparable to the Human Performance. On
the other hand, Transfer Learning predicts most questions to belong to this category, however its performance
improves slightly when increasing k = 5 to k = 10.

Figure 5.57: Confusion matrices for the Machine Learning, Transfer Learning and Zero-Shot Learning ap-
proach for finding the reason of relevance, compared to the human performance as tested when creating the
golden standard. This confusion matrix focuses on the reason ‘System Users’

When it comes to classifying whether a question belong to ‘System Users’, Machine Learning, Transfer
Learning and Zero-Shot Learning are comparable, as can be seen in Figure 5.57. They all classify a lot of the
questions as belonging to ‘System Users’, whilst also creating a lot of False Positives and False Negatives.
None are very comparable to the Human Performance.

5 APPROACH DEVELOPMENT 72

Current Process

Figure 5.58: Confusion matrices for the Machine Learning and Transfer Learning with k = 5 and k = 10,
compared to the human performance as tested when creating the golden standard. This confusion matrix
focuses on the reason ‘Current Process’

To validate the Machine Learning and Transfer Learning approaches for classifying whether questions
belong to the ‘Current Process’ tag, we see in Figure 5.58 that none of these approaches work well. They all
classify most questions not to belong to this class, which is not comparable to the Human Performance.

Figure 5.59: Confusion matrices for the Machine Learning, Transfer Learning and Zero-Shot Learning ap-
proach for finding the reason of relevance, compared to the human performance as tested when creating the
golden standard. This confusion matrix focuses on the reason ‘Current Process’

The confusion matrices in Figure 5.59 show how Machine Learning and Transfer Learning predict most
questions to not belong to the ‘Current Process’ tag. This can be accredited to the low usage of the tag.
Although Zero-Shot Learning does a more decent job at this tag, it is not comparable to the Human Perfor-
mance.

5 APPROACH DEVELOPMENT 73

Scope

Figure 5.60: Confusion matrices for the Machine Learning and Transfer Learning with k = 5 and k = 10,
compared to the human performance as tested when creating the golden standard. This confusion matrix
focuses on the reason ‘Scope’

Validating the final Machine Learning and Transfer Learning approaches, we see in Figure 5.60 that the
approaches for classifying ‘Scope’ questions works very poorly. They all classify most questions not to belong
to this category, and Transfer Learning even classifies all questions to not belong to this category. While the
usage of this tag is low in the Human Performance, this is not comparable.

Figure 5.61: Confusion matrices for the Machine Learning, Transfer Learning and Zero-Shot Learning ap-
proach for finding the reason of relevance, compared to the human performance as tested when creating the
golden standard. This confusion matrix focuses on the reason ‘Scope’

Finally, Figure 5.61 shows the confusion matrices for classifying whether a question belongs to the ‘Scope’
tag. This tag is used very infrequently in the Human Performance, because of which all the classifiers predict
most questions not to belong to this tag.

5 APPROACH DEVELOPMENT 74

Overall

Because of the distributions of the tags and the limited amount of relevant questions these algorithms
had to train on, the statistics found in Table 16 are not very impressive. In order to perform better, more
tagged data is required. However, the Machine Learning classifier for predicting if a question belonged to the
‘Functional’ was quite comparable to the Human Performance, which is impressive for the amount of data.

Precision Recall F1-score Support
Approach ML TL ZSL ML TL ZSL ML TL ZSL ML TL ZSL
Functional 71.5% 98.5% 92.3% 67.4% 55.2% 57.4% 69.4% 70.7% 70.8% 138 232 209
Non-functional 58.7% 6.7% 75.0% 56.0% 38.9% 45.9% 57.3% 11.5% 56.9% 109 18 170
System users 52.8% 48.0% 56.9% 56.0% 46.1% 55.1% 54.4% 47.0% 56.0% 116 128 127
Current process 28.9% 0.0% 27.6% 55.0% 0.0% 27.6% 37.9% 0.0% 27.6% 40 0 76
Scope 13.2% 0.0% 3.8% 30.4% 0.0% 33.3% 18.4% 0.0% 6.8% 23 0 6
Weighted avg. 56.0% 77.0% 70.4% 58.2% 51.3% 49.5% 56.5% 59.9% 57.4% 426 387 588

Table 16: Precision, recall, f1 and support on different approaches for classifying the reason of relevance.

6 DISCUSSION 75

6 Discussion

In this research, we went through different iterations of Wieringa’s design science research methodology
[11], in order to design an approach for finding requirements-relevant information in requirements elicitation
interviews. This started with two iterations for finding relevant questions in Sections 5.1.1 and 5.1.2. After
which we also had two iterations for filtering requirements-relevant questions in Sections 5.3.1 and 5.3.2. In
order to evaluate this treatment design, we created a Golden Standard on our dataset of transcripts, which
can be found in Section 5.2.6. We enabled different participants to label the data for us. This showed us how
well our tagging scheme performed, since this taught us what the tagger perceived. It removed our biased
view, giving an unbiased understanding of relevance. Furthermore, the tagging allowed us to not spend a
considerable amount of time labeling, while making our goal more clear and opening a discussion about the
disagreements among these participants.This required to finely line out what the scope of our project is and
what requirements relevance means and took four iterations of design, found in Sections 5.2.1, 5.2.3, 5.2.4
and 5.2.5. We analyzed how the use of different Natural Language Processing (NLP) techniques compared,
in Sections 5.3.4 and 5.3.5. Next to that, we attempted to do this identification of relevant questions using
Artificial Intelligence in Section 5.3.6. Finally, we attempted to classify the reason of relevance, using this
data as a potential way of categorizing our relevant questions in Section 5.4. This chapter discusses our
research questions, the limitations and possibilities for future work.

6.1 Answering the sub research questions

SQ1: What are state of the art techniques for identifying requirements-relevant information
in conversations?

In Chapter 4 we have discussed several related works. On a conceptual level, there were a couple of
different works. The first being a study on the categorization of information in transcripts of Fit-Gap
Analysis elicitation sessions [79]. This empirical investigation provided a list of keywords that could identify
these different categories in a conversation. Furthermore, another study was done on requirements elicitation
sessions where the concepts were extracted, with the ability to identify known and unknown concepts based
on an ontology [50]. This provided insight into the design of a prototype NLP tool on transcripts.

When it comes to techniques, other related works show different approaches to categorize requirements
[87, 88, 89, 90, 91, 92], demarcate requirements from free-form text [49] or extract declarative process models
from natural language [93]. These works gave an idea of how to create our NLP approach and what challenges
are to be expect.

While we were able to identify these different techniques and concepts, new progress had to be made on
the identification of requirements-relevant information in transcripts and the classification of that information.

SQ2: How to design an approach for identifying requirements relevant information?

As the literature suggested [18], by focusing on the questions asked by the Interviewer, we were able to
identify questions that ask for requirements-relevant information from the Interviewee. This could be done
automatically using several Natural Language Processing (NLP) techniques. For the detection of questions,
given the limitations of the language created from an automatic transcription, we were able to test both
Speech Act classification and Part of Speech tags. Furthermore, when combining these approaches with the
most important words found using Term Frequency-Inverse Document Frequency on either the transcript
or a context document, we were able to identify the requirements-relevant questions. Finally, with the help
of a dataset of tagged conversations we were able to train models that could categorize these requirements-
relevant questions into five categories.

SQ3: What is the expected effectiveness of the approaches from SQ2?

In order to estimate the expected effectiveness of these approaches, we created a tagged dataset, by having
pairs of taggers tag our questions and answers to be requirements-relevant or not, given a certain reason.

6 DISCUSSION 76

These conversations were taken from a requirements engineering course, given at Utrecht University. This
tagged dataset allowed us to get an insight into the performance of our approaches. For the detection of
questions, it became clear that Speech Act classification worked better than Part of Speech tags for detecting
the questions in our Transcripts, as can be seen in Section 5.3.4. Using Speech Act classification we were able
to identify the questions with a precision 80%, recall of 90% and accuracy of 90%. Furthermore, when adding
the identification of requirements-relevant information to this, there was no difference in performance when
it came to using Term Frequency-Inverse Document Frequency on the transcript or the context document. In
Section 5.3.5 it can be seen that with the use of Speech Act classification and TF-IDF on a context document,
were able to identify the requirements-relevant questions with a precision of 70%, recall of 80% and accuracy
of 66%. Finally, for the classification of the requirements-relevant information we tested Machine Learning,
Transfer Learning and Zero-Shot Learning models for this task. However, none of these approaches turned
out to be great classifiers, with the weighted average F1-score under 60%, most likely due to the lack of
quality data to train on. While some categories seemed to have a decent classifier, this was mostly due to the
high imbalance in the use of this category. In our results, the Machine Learning approach performed most
comparable to the human performance.

SQ4: How can domain information improve our approach?

By using a context document in our approach for determining whether a question is relevant or not,
we tested the usage of domain information. For our approaches, there was no significant difference in the
outcome, as show in the answer to SQ3. However, during the creation of the tagged dataset, participants
noted that the domain knowledge they gathered throughout the tagging exercise helped their understanding
of the transcript. This allows us to believe that our testing is inconclusive, assuming that our approach tries
to mimic this human behaviour of gathering domain knowledge in order to classify the requirements-relevance
better.

6.2 Answering the main research question

Given the answers to the sub research questions above, we can now answer the main research question of
this thesis:

MQ: How can we identify requirements relevant information in a transcript from a
conversation between a business analyst and a stakeholder aiming to elicit requirements?

Literature has shown that there is limited work on transcriptions of requirements elicitation interviews,
as seen in SQ1. Therefore, it was necessary to create a new approach to identify the requirements-relevant
information in these transcripts. Given the fact that these interviews are “A communicative event in which the
interviewers asks questions to reach the reality of a phenomenon conceived inside the mind of the interviewee.”
[18], we have focused on the questions asked by the Interviewer, especially the ones concerning requirements-
relevant topics, as discussed in SQ2. These questions were identified best using Speech Act classification,
since this technique was able to identify many of the questions asked, compared to Part of Speech tags.
Furthermore, by using Term Frequency-Inverse Document Frequency (TF-IDF) we were able to identify
the words that could indicate the requirements-relevant topics of information. Here, the use of a context
document did not perform better than using the transcript itself, as shown in SQ4. By creating a Golden
Standard on what questions are relevant, we were able to evaluate these approaches, giving us a precision of
70%, recall of 80% and accuracy of 66% for identifying requirements-relevant questions in an automatically
generated transcript using Speech Act classification and TF-IDF on our context document, as seen in SQ3.
Finally, by training on the reason of relevance, we were able to train models to classify these reasons, using
Machine Learning, Transfer Learning and Zero-Shot Learning. None of these classifiers showed significant
results, due to the lack of data, but Machine Learning performed best.

By using showing the requirements-relevant questions asked in the transcript, we can give a quick and
concise overview of the transcript, since this is only 20% of the conversation. By allowing the user to have
a drop-down view on the question, revealing an answer would enable the user to be able to quickly traverse
the transcript and get the information they need.

6 DISCUSSION 77

6.3 Limitations

This research has a number of limitations, which we present according to four categories: conclusion
validity, internal validity, construct validity and external validity [111].

6.3.1 Conclusion validity

Conclusion validity is concerned with the relationship between the treatment and the outcome, according
to Wohlin et al. [111]. In order to draw conclusion correctly, we have compared our different approaches
to our golden standard. This golden standard was created by taggers, one pair of taggers per conversation.
However, this came along with some disagreements among these participants. Therefore, we did not only
compare our approaches to this golden standard, but also to the human performance on the tagging of the
conversations. For our learning approaches, we used a stratified k-fold for validating after which we tested on
each conversation. This made sure we did not draw any ungrounded conclusions on the results. Furthermore,
when comparing our approaches for classifying the reason of relevance, the human performance was able to
show us the over- or underpopulation of certain categories. This allowed us to get an insight into why our
classifiers took a certain decision. Next to that, for the evaluation of our approaches while we looked at the
human performance, we also turned to metrics such as precision, recall and f1-score. However, in order to
measure how useful this tool can be in practice, other experiments have to be done.

6.3.2 Internal validity

Threats to the relationship between the treatment and the outcome fall under internal validity [111]. In
the final version of the tagging scheme that was used for the golden standard tagging, it was known that the
list of reasons for why something is considered requirements-relevant was non-exhaustive. Therefore, some
questions and answers will be misclassified, as the taggers could not find a fitting category according to the
list of reasons. The results showed that the taggers often did not agree on the reason of relevance. It can be
said that the relevance of a question was often determined by different factors and perhaps the participants
determined the relevance because of different factors.

Furthermore, the location of the requirements-relevant information could be chosen for different reasons;
either/both the question could be answered with requirements-relevant information or/and the answer con-
tained requirements-relevant information. This allows the taggers to agree on the requirements-relevance for
different reasons, as they do not indicate where in this question or answer they can find the requirements-
relevant information indicators.

Next to that, the quality of the automatic transcription played a role in the output of our approaches
and the outcome of this research. By creating the golden standard, a lot of manual adjustments have been
made in order to make the transcript understandable for the taggers. This understandability of the transcript
played a big role in the outcome of the tagging. These adjustments most likely also played a big role in the
ability for our approaches to classify the questions and answers, requirements-relevance and reason correctly.

Finally, the taggers were shown different questions in chronological order, allowing them to build up
knowledge on the domain as they progressed through the questions. This allowed for external reasoning,
next to the context that is provided. This external reasoning would influence our outcome without a visible
cause.

6.3.3 Construct validity

When it comes to the relationship between the theory and observations, we talk about construct validity
[111]. As our literature research showed, there is not a lot of research that of requirements engineering that
focuses on transcripts of conversations. Therefore, it is unclear how the theory translated to our observations.

More specifically, we focused on requirements elicitation interviews that have a system description. This
was one very specific type of conversation, where the interviewers had nothing but the knowledge that could
be gathered from the system description.

The amount of data that was used for our learning approaches and the validation of our heuristics was
limited. This makes the reflection of the outcome on the effect debatable.

However, the conclusion still holds that we can summarize the transcript using our approach for finding
relevant questions.

6 DISCUSSION 78

6.3.4 External validity

The external validity concerns the generalization of the treatment [111]. When investing the usage of
Natural Language Processing for identifying questions, it became clear that the quality of the transcript can
determine how well the approach performs. We were able to cope with the missing question marks, but some
of the manual adjustments made to the transcript an algorithm would not have been able to tackle. These
transcription errors varied from severity to the outcome, but more of these errors will worsen the outcome.

Furthermore, we have tested our algorithms on a dataset containing recordings of requirements elicitation
interviews from a Requirements engineering course , given at Utrecht University. These interviews were
conducted by students, who were taught according to the guidelines of the course to conduct this interview.
How this translates into real-world cases is to be seen.

The generalization of the reason categorization is debatable as well. On one hand, the categories are
very road and we train our classifier on different domains, but this training data influences the outcome.
Therefore, a completely different domain could be classified completely wrong. Hopefully, with an enlarged
set of tagged conversations on different domains, the classifier will instead of recognizing specific words, start
recognizing patterns in the text. Such as ‘the system should’ could refer to a functionality, and ‘privileges’
could refer to system users. Words like ‘currently’ could refer to the current process and ‘speed’ or ‘security’
could mean it has something to do with non-functionalities. However, in the current stage of the tool, with
the current set of conversations to train on, the generalization of this categorization is debatable.

6.4 Future work

While this thesis presents an approach for highlighting requirements from elicitation interviews, our scope
was fairly narrow. It would be interesting to investigate other ways of exploring such a transcript, as not
much work has been done on transcriptions. Challenges rely on the quality of the transcription, the avail-
ability of data and the quality of the conversation.

Furthermore, real-world scenario’s should be tested and evaluated. Applying the tool in the process of
Requirements Engineering and evaluating the effectiveness by for example A/B-testing or surveying the use-
fulness after usage of the tool.

Next to that, there is much to be investigated about this artifact of transcriptions. As we turn into a
digital era, more and more effective communication will be held online, which will be recorded and can be
transcribed. Even outside of the scope of Requirements Engineering, there are most likely a lot of useful
tools to be designed.

When it comes to the use of Artificial Intelligence for categorizing speakerturns in transcripts, based on
tagged data, we have seen that more data is required. It would be interesting to see if with more data these
approaches can outperform the heuristic approaches and at what amount of data this would happen.

Work can be done on highlighting where miscommunication takes place. Perhaps focus sing on detecting
ambiguity or misunderstandings can help requirements engineers improve their interviewing techniques, as
there is often no timely feedback to the elicitation interviews.

A FEATURE MATRICES FOR AUTOMATED DEMARCATION 79

A Feature matrices for automated demarcation

ID
F
ea
tu
re

(T
y
p
e)

D
es
cr
ip
ti
o
n
(D

)
&

In
tu
it
io
n
(I
)

(a
)

T
ok
en
-

b
as
ed

fe
at
u
re
s

T
ok

1
n
u
m
T
ok

en
s
(N

u
m
er
ic
)

(D
)
N
u
m
b
er

o
f
to
k
en
s
in

a
re
q
u
ir
em

en
t
ca
n
d
id
a
te
.
(I
)
A

re
q
u
ir
em

en
t
ca
n
-

d
id
a
te

th
a
t
is

to
o
lo
n
g
o
r
to
o
sh
o
rt

co
u
ld

in
d
ic
a
te

a
n
o
n
-r
eq
u
ir
em

en
t.

T
ok

2
n
u
m
A
lp
h
ab

et
ic
s

(N
u
-

m
er
ic
)

(D
)
N
u
m
b
er

o
f
a
lp
h
a
b
et
ic
w
o
rd
s
in

a
re
q
u
ir
em

en
t
ca
n
d
id
a
te
.
(I
)
F
ew

a
lp
h
a
-

b
et
ic

w
o
rd
s
in

a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

co
u
ld

in
d
ic
a
te

a
n
o
n
-r
eq
u
ir
em

en
t.

T
ok

3
n
u
m
O
n
eC

h
ar
T
ok

en
s

(N
u
m
er
ic
)

(D
)
N
u
m
b
er

o
f
o
n
e-
ch
a
ra
ct
er

to
ke
n
s
in

a
re
q
u
ir
em

en
t
ca
n
d
id
a
te
.
(I
)
T
o
o

m
a
n
y
o
n
e-
ch
a
ra
ct
er

to
ke
n
s
in

a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

co
u
ld

in
d
ic
a
te

a
n
o
n
-

re
q
u
ir
em

en
t,

e.
g
.,
se
ct
io
n
h
ea
d
in
g
s.

T
ok

4
st
ar
ts
W

it
h
Id

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

st
a
rt
s
w
it
h

a
n

a
lp
h
a
n
u
m
er
ic

se
g
-

m
en
t
co
n
ta
in
in
g
sp
ec
ia
l
ch
a
ra
ct
er
s
su
ch

a
s
p
er
io
d
s
a
n
d
h
y
p
h
en
s,

o
th
er
w
is
e

F
A
L
S
E
.
(I
)
A
lp
h
a
n
u
m
er
ic

se
g
m
en
ts

w
it
h
sp
ec
ia
l
ch
a
ra
ct
er
s
co
u
ld

in
d
ic
a
te

id
en
ti
fi
er
s
fo
r
re
q
u
ir
em

en
ts
.

T
ok

5
st
ar
ts
W

it
h
T
ri
gg
er
W
or
d

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

b
eg
in
s
w
it
h
a
tr
ig
g
er

w
o
rd

(“
N
o
te
”
,

“R
a
ti
o
n
a
le
”
,
“
C
o
m
m
en
t”
),

o
th
er
w
is
e
F
A
L
S
E
.
(I
)
A

tr
ig
g
er

w
o
rd

a
t
th
e

b
eg
in
n
in
g

o
f
a

re
q
u
ir
em

en
t
ca
n
d
id
a
te

is
a

st
ro
n
g

in
d
ic
a
to
r
fo
r
a

n
o
n
-

re
q
u
ir
em

en
t.

T
ok

6
h
as
U
n
it
s
(B

o
ol
ea
n
)

(D
)
T
R
U
E
if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

co
n
ta
in
s
so
m
e
m
ea
su
re
m
en
t
u
n
it
,
o
th
-

er
w
is
e
F
A
L
S
E
.
(I
)
A
cc
o
rd
in
g
to

se
ve
ra
l
d
o
m
a
in

ex
p
er
ts

co
n
su
lt
ed

th
ro
u
g
h
-

ou
t
o
u
r
w
o
rk
,
th
e
p
re
se
n
ce

o
f
m
ea
su
re
m
en
t
u
n
it
s
in
cr
ea
se
s
th
e
li
k
el
ih
o
o
d
o
f

a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

b
ei
n
g
a
re
q
u
ir
em

en
t.

(b
)

S
y
n
ta
ct
ic

F
ea
tu
re
s

S
y
n
1

h
as
V
er
b
(B

o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

h
a
s
a
ve
rb

p
er

P
O
S
ta
g
s,

o
th
er
w
is
e

F
A
L
S
E
.
(I
)
A

re
q
u
ir
em

en
t
ca
n
d
id
a
te

w
it
h
ou

t
a
ve
rb

is
u
n
li
ke
ly

to
b
e
a

re
q
u
ir
em

en
t.

S
y
n
2

h
as
M
o
d
al
V
er
b

(B
o
ol
ea
n
)

(D
)
T
R
U
E
if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

h
a
s
a
m
o
d
a
l
ve
rb
,
o
th
er
w
is
e
F
A
L
S
E
.

(I
)
T
h
e
p
re
se
n
ce

o
f
a
m
o
d
a
l
ve
rb

is
a
g
o
o
d

in
d
ic
a
to
r
fo
r
a
re
q
u
ir
em

en
t

ca
n
d
id
a
te

b
ei
n
g
a
re
q
u
ir
em

en
t.

S
y
n
3

h
as
N
P
M
o
d
al
V
P

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

co
n
ta
in
s
a
se
q
u
en
ce

co
m
p
o
se
d
o
f
a

N
o
u
n
P
h
ra
se

(N
P
)
fo
ll
ow

ed
b
y
a
V
er
b
P
h
as
e
(V

P
)
th
a
t
in
cl
u
d
es

a
m
o
d
a
l

ve
rb
,
o
th
er
w
is
e
F
A
L
S
E
.
(I
)
T
h
e
in
tu
it
io
n
is
th
e
sa
m
e
a
s
th
a
t
fo
r
S
y
n
2
.
S
y
n
3

go
es

b
ey
o
n
d
S
y
n
2
b
y
ca
p
tu
ri
n
g
th
e
p
re
se
n
ce

o
f
th
e
N
P

p
re
ce
d
in
g
a
m
o
d
a
l

V
P
.
T
h
is

N
P

ty
p
ic
a
ll
y
a
ct
s
a
s
a
su
b
je
ct

fo
r
th
e
V
P
.

S
y
n
4

st
ar
ts
W

it
h
D
et
V
er
b

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te
,
ex
cl
u
d
in
g
h
ea
d
a
lp
h
a
n
u
m
er
ic

p
a
t-

te
rn
s
/
tr
ig
g
er

w
o
rd
s,

b
eg
in
s
w
it
h
a
p
ro
n
o
u
n
o
r
d
et
er
m
in
er

fo
ll
ow

ed
b
y
a

ve
rb
,
o
th
er
w
is
e
F
A
L
S
E
.
(I
)
T
h
is
is
a
co
m
m
o
n
n
a
tu
ra
l-
la
n
g
u
a
g
e
co
n
st
ru
ct

fo
r

ju
st
ifi
ca
ti
o
n
a
n
d
ex
p
la
n
a
ti
o
n
,
a
n
d
th
u
s
co
u
ld

in
d
ic
a
te

a
n
o
n
-r
eq
u
ir
em

en
t.

Table 17: Features for learning in the paper by Abualhaija et al. [49]

A FEATURE MATRICES FOR AUTOMATED DEMARCATION 80

ID
F
ea
tu
re

(T
y
p
e)

D
es
cr
ip
ti
o
n
(D

)
&

In
tu
it
io
n
(I
)

(b
)

S
y
n
ta
ct
ic

F
ea
tu
re
s

S
y
n
5

h
as
C
o
n
d
it
io
n
al
s

(B
o
ol
ea
n
)

(D
)
T
R
U
E
if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

h
a
s
a
co
n
d
it
io
n
a
l
cl
a
u
se
,
o
th
er
w
is
e
F
A
L
S
E
.
(I
)
C
o
n
d
it
io
n
a
l
cl
a
u
se
s

ar
e
m
or
e
li
ke
ly

to
a
p
p
ea
r
in

re
q
u
ir
em

en
ts

th
a
n
n
o
n
-r
eq
u
ir
em

en
ts
.

S
y
n
6

h
as
P
as
si
ve
V
oi
ce

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

h
a
s
p
a
ss
iv
e
v
o
ic
e
th
ro
u
g
h
so
m
e
d
ep

en
d
en
cy

re
la
ti
o
n
,
o
th
er
w
is
e

F
A
L
S
E
.
(I
)
R
eq
u
ir
em

en
ts

n
o
t
co
n
ta
in
in
g
m
o
d
a
l
ve
rb
s
m
ay

b
e
sp
ec
ifi
ed

in
p
a
ss
iv
e
vo
ic
e.

S
y
n
7

h
as
V
B
T
oB

eA
d
j

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
,
in

re
q
u
ir
em

en
t
ca
n
d
id
a
te
,
th
er
e
is

so
m
e
fo
rm

o
f
th
e
v
er
b
“
to

b
e”

a
p
p
ea
ri
n
g
a
s
ro
o
t
v
er
b

fo
ll
ow

ed
b
y
a
n
a
d
je
ct
iv
e,

o
th
er
w
is
e
F
A
L
S
E
.
(I
)
T
h
e
p
a
tt
er
n
d
es
cr
ib
ed

is
m
o
re

li
ke
ly

to
a
p
p
ea
r
in

re
q
u
ir
e-

m
en
ts
.

S
y
n
8

is
P
re
se
n
tT

en
se

(B
o
ol
ea
n
)

(D
)
T
R
U
E
if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

h
a
s
so
m
e
ro
o
t
ve
rb

w
h
ic
h
is
in

p
re
se
n
t
te
n
se
,
o
th
er
w
is
e
F
A
L
S
E
.
(I
)

S
om

et
im

es
,
re
q
u
ir
em

en
ts

a
re

w
ri
tt
en

in
p
re
se
n
t
te
n
se

ra
th
er

th
a
n
w
it
h
m
o
d
a
l
ve
rb
s.

(c
)

S
em

an
ti
c

F
ea
tu
re
s

S
em

1
h
as
C
og
n
it
io
n
V
er
b

(B
o
ol
ea
n
)

(D
)
T
R
U
E
if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

h
a
s
so
m
e
ve
rb

co
n
v
ey
in
g
re
a
so
n
in
g
o
r
in
te
n
ti
o
n
,
o
th
er
w
is
e
F
A
L
S
E
.

(I
)
R
ea
so
n
in
g
a
n
d
in
te
n
ti
o
n
a
re

a
co
m
m
o
n
ch
a
ra
ct
er
is
ti
c
fo
r
n
o
n
-r
eq
u
ir
em

en
ts
.

S
em

2
h
as
A
ct
io
n
V
er
b

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

h
a
s
so
m
e
v
er
b
co
n
ve
y
in
g
m
o
ti
o
n
o
r
ch
a
n
g
e
o
f
st
a
tu
s,

o
th
er
w
is
e

F
A
L
S
E
.
(I
)
A
ct
io
n
ve
rb
s
a
re

co
m
m
o
n
in

re
q
u
ir
em

en
ts

fo
r
d
es
cr
ib
in
g
b
eh
av
io
rs

a
n
d
st
a
te

ch
a
n
g
es
.

S
em

3
h
as
S
ta
ti
ve
V
er
b

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

h
a
s
so
m
e
st
a
ti
ve

ve
rb
,
o
th
er
w
is
e
F
A
L
S
E
.
(I
)
S
ta
ti
ve

v
er
b
s
a
re

co
m
m
on

in
re
q
u
ir
em

en
ts

fo
r
d
es
cr
ib
in
g
sy
st
em

p
ro
p
er
ti
es
.

(d
)
F
re
q
u
en
cy
-

b
as
ed

F
ea
tu
re
s

F
rq
1

id
P
at
te
rn
F
re
q
u
en
cy

(E
n
u
m
er
at
io
n
)

(D
)
M
ax

im
u
m

fr
eq
u
en
cy

le
ve
l
(h
ig
h
,
m
ed
iu
m
,
lo
w
)
a
ss
o
ci
a
te
d
w
it
h
th
e
id
en
ti
fi
er

p
a
tt
er
n
w
it
h
w
h
ic
h
a

gi
ve
n

re
q
u
ir
em

en
t
ca
n
d
id
a
te

st
a
rt
s.

If
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

d
o
es

n
o
t
st
a
rt

w
it
h

a
n

a
lp
h
a
n
u
m
er
ic

p
at
te
rn
,
th
e
re
tu
rn
ed

va
lu
e
is

N
A

(n
o
t
a
p
p
li
ca
b
le
).

(I
)
A

fr
eq
u
en
t
id

p
a
tt
er
n
in

a
re
q
u
ir
em

en
t
ca
n
d
i-

d
at
e
is

li
k
el
y
to

si
g
n
if
y
a
re
q
u
ir
em

en
t.

T
h
is

is
b
ec
a
u
se

a
lp
h
a
n
u
m
er
ic

a
re

p
re
va
le
n
tl
y
u
se
d
fo
r
m
a
rk
in
g

re
q
u
ir
em

en
ts
.

F
rq
2

h
as
M
F
M
o
d
al
V
er
b

(B
o
ol
ea
n
)

(D
)
T
R
U
E
if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

co
n
ta
in
s
th
e
m
o
st

fr
eq
u
en
t
m
o
d
a
l
ve
rb

o
f
th
e
R
S
,
o
th
er
w
is
e
F
A
L
S
E
.

(I
)
W

h
il
e
a
co
n
si
st
en
t
a
p
p
li
ca
ti
o
n
o
f
m
o
d
a
l
ve
rb
s
ca
n
n
o
t
b
e
g
u
a
ra
n
te
ed
,
th
e
m
o
st

fr
eq
u
en
t
m
o
d
a
l
v
er
b
is

a
st
ro
n
g
in
d
ic
a
to
r
fo
r
re
q
u
ir
em

en
ts
.

F
rq
3

h
as
H
F
N
P

(B
o
ol
ea
n
)

(D
)
T
R
U
E

if
a
re
q
u
ir
em

en
t
ca
n
d
id
a
te

co
n
ta
in
s
a
h
ig
h
ly

fr
eq
u
en
t
(t
o
p

1
%
)
N
P

in
th
e
R
S
,
o
th
er
w
is
e

F
A
L
S
E
.
(I
)
H
ig
h
ly

fr
eq
u
en
t
N
P
s
(a
ft
er

st
o
p
w
o
rd

re
m
ov
a
l)

o
ft
en

si
g
n
if
y
co
re

co
n
ce
p
ts
,
e.
g
.,
th
e
sy
st
em

an
d
it
s
m
a
in

co
m
p
o
n
en
ts
.
T
h
es
e
co
n
ce
p
ts

a
re

m
o
re

li
ke
ly

to
a
p
p
ea
r
in

re
q
u
ir
em

en
ts
.

Table 18: Features for learning in the paper by Abualhaija et al. [49]

B SYSTEM DESCRIPTIONS 81

B System descriptions

REQUIREMENTS ENGINEERING 2019/2020: SYSTEM A

INTERNATIONAL FOOTBALL ASSOCIATION (IFA) PORTAL

ORGANIZATION
The International Football Association (IFA) aims at managing the various leagues, scheduling the games and the referees,

controlling and auditing the teams' budget, notifying the many stakeholders including fans, IFA administration, teams,

and referees about important events, and providing statistics on games, players, teams, coaches, etc. To increase the

level of service with respect to the issues mentioned above, the IFA decided to re-structure its core information systems.

The IFA has decided to develop a new operational and analytics system to better serve the stakeholders. Your company

is asked to consider the development of such a system. You need to go and talk to Mr. Sturm, the chief information officer

of the IFA who is in charge of leading the entire reform.

AS-IS SITUATION
The current operational systems do not well support many of the values the IFA would like to promote. These include the

following: (1) transparency, mainly when referring to budget auditing; (2) automation in scheduling, mainly to avoid

biases; (3) better support for the fans that are actually the driving force beyond the IFA; (4) unauthorized data collection

of the events occur in the games; and (5) communication with the various stakeholders is inefficient as it is done using

irrelevant media (e.g., notify referees about the cancelation of the game over a phone call and notify the same for the

fans over radio broadcasts).

Indeed, the IFA manages its operation by various means, including several systems that are isolated and thus caused

inconsistencies and redundant data, which lead to problems in achieving the IFA goals. For example, the teams manage

their own systems and deliver written reports to the IFA, thus limiting the auditing capabilities of the IFA. Currently, the

IFA does not support real time notifications and updates that are required for the fans. In addition, referees are notified

about their schedule without considering their constraints and thus re-scheduling occur regularly. Nowadays, the entire

operation is done by the IFA administration and consume much of their time, limiting the IFA expansion.

VISION
It is clear to the IFA management and the CIO that there is a need for a complete change to the operational systems and

infrastructure of the IFA, so to move its entire operation into the digital era. The goal of this infrastructure is to better

engage the stakeholders into the IFA activities. For that purpose, the user experience using the new facilities for each of

the stakeholders should tremendously be improved. It is expected that 50,000 people could access the system at any

time and the response time should be fast. Furthermore, the infrastructure should serve people around the globe.

Furthermore, the infrastructure should allow the support for variability in many aspects such as rules for budget

management and policies for determine the teams' placement within the league. The IFA is fully aware on its low ability

to maintain and operate that infrastructure, as it is not a software company, and thus requires the infrastructure to cope

with that constraint.

The system should delegate responsibilities for each of the stakeholders. For example, teams will need to manage their

own resources: stadiums, players, coaches, budget, transaction, etc. This will be, of course, monitored by the IFA

administration. Referees will write the game report using the system, preferably in real-time, using the appropriate

technologies. Fans are usually information consumers, yet they will be able to add comments, photos, and articles about

the teams, players, etc. The leagues status should be available at any time.

Mr. Sturm is willing to provide you with additional information through a skype or hangouts interview. He has some ideas

himself that he would like to share too; he is certain that his ideas can help you shape the system to be built.

REQUIREMENTS ENGINEERING 2019/2020: SYSTEM B

URBAN MOBILITY SIMULATOR

ORGANIZATION
The Municipality of Wonderland (MoW) is facing serious problems with traffic congestions within the city, both in the

city center and in the city ring. This is leading to increasing dissatisfied citizens, who are confronted with endless lines to

reach their destination, especially during peak hours. Furthermore, to make things more difficult, activists started arguing

about the adverse effects of traffic congestions on the environment. MoW’s urban mobility department has decided to

purchase an urban mobility simulator to investigate and improve the situation, and the company you are working has

been contracted to build the system. First things first: you need to go talk to Mr. Dalpiaz first, the head of their urban

planning department.

AS-IS SITUATION
Mr. Dalpiaz has already provided you with a high-level overview of how the department is currently deciding on the traffic

planning. He wrote that they continuously experiment with micro-level management: whenever a problem is

encountered, the department opens a project that focuses on improving that problem. For example, recently, the

Northern section of the ring, which surrounds the entire city, had a serious issue during the peak hours, and they have

decided to introduce adaptive traffic lights to reduce the inflow of cars from the North West entrances of the ring. This

decision was taken via a focus group with three citizens, two police officers, a professor from a technical university, an

urban mobility planner from a nearby city of approximately the same size of Wonderland, the vice-mayor, and four

members of the department itself. During the workshop, they have evaluated different solutions that were proposed by

the various people who were involved in the focus group. In case of urgencies, instead, the decisions are typically taken

internally by the department, and the major source of inspiration consists of replicating solutions that the people in the

department have seen in other towns or cities.

Unfortunately, it seems like the effectiveness of these techniques is low and there seems to be no easy way out. The

department, however, has equipped the city with a whole number of sensors, and there is now a knowledge base that

represents traffic flows for around three weeks. The department has recruited two smart mathematical modeling people.

They created some models that seem to be able to reduce traffic congestions, at least in theory. However, there are

serious doubts on the environmental friendliness of the proposals that were made.

VISION
After a thorough discussion with these mathematical modelers, it became clear that their models work well to improve

flows, but they are not geared toward reducing pollution, noise, and they do not provide a fair treatment to all the areas

of the city. A more interactive solution is necessary. Mr. Dalpiaz was told to look into urban traffic simulators, which seem

to be much more powerful, customizable, and easier to use by the urban mobility planners. He said he would like a

reliable system; he can’t afford, financially, to pay for the construction of a system from scratch. However, he has heard

that several platforms exist, although they do not readily support the creation of alternative scenarios and the

identification of solutions that minimize pollution levels and keep noise levels under control. He would like a platform

that can be operated independently by the people in the department, without the necessity of asking an expert to

execute a simulation. Furthermore, he wants this simulator to execute on premise, for cloud-based solutions are not

allowed by the municipality regulations. Finally, the simulator should have a simple way to embed real-time data to make

sure the executed simulation regards the current situation in the city, and not an old one. However, it should also be

possible to take snapshots of specific days, or parts of the day, and to execute simulations against those scenarios.

Mr. Dalpiaz is willing to provide you with additional information through a face-to-face interview in his office. He has

some ideas himself that he would like to share too; he is certain that his ideas can help you shape the system to be built.

REQUIREMENTS ENGINEERING 2019/2020: SYSTEM C

HOSPITAL MANAGEMENT SYSTEM

ORGANIZATION
The University Hospital of Pediatric Excellence (UHOPE) is the main hospital in the city of Medz and is affiliated with the

Medz University. Since the foundation of the university in 1612, an academic hospital has existed in various forms. Today,

UHOPE Medz comprises an academic hospital, the faculty of Medicine, and the children’s hospital. With approximately

7,600 employees, UHOPE is one of the biggest employers in the region. Patient safety is UHOPES number one priority. To

keep track of its day-to-day activities and patient records, the hospital uses more than 32 different management systems

that were implemented independently during the last decades, confronting the hospital with various challenges. In

addition, rising costs and mounting privacy issues add to these challenges. In order to ensure the highest level of patient

safety and to keep up with the ever-evolving digitalization of healthcare, the hospital administration decided to invest in

a new hospital management system. The company you are working for has been contracted to implement a new hospital

management system to integrate a majority of the components currently provided by over 32 different systems.

AS-IS SITUATION
UHOPE consists of many different departments, including Emergency, Pediatrics, Anesthetics, Laboratory, Neurology,

Pathology, Human Resources, etc. Furthermore, a variety of stakeholders are to be considered in a hospital. Next to the

doctors there are nurses, receptionists, administration employees, janitors, researchers, and the patients. As described

above, the hospital currently uses various different systems for appointment scheduling, room scheduling, administration

of hospital staff, patient data management, laboratory, and so on. In addition, a lot of things are still done on paper, i.e.,

writing prescriptions or transferals. This makes hospital management not only very expensive and discontinuous but also

highly prone to errors. For example, the reception is equipped with a simple appointment scheduling system that requires

patients to call or physically appear for scheduling their appointments. Furthermore, patient data is stored in a local

database for each of the departments. A referral to another department requires to manually transfer the patient’s

medical record, causing inconsistencies and redundancies that can affect physicians’ productivity and, ultimately, patient

safety.

Healthcare is a traditionally slow adapting industry, process- and paper-heavy, and resistant to change. Furthermore,

most stakeholders are not IT experts. Therefore, the hospital is looking for a user-friendly, integrated solution of a central

hospital management system to increase interoperability and efficiency of patient care with the ultimate goal of

maintaining the highest level of patient safety.

VISION
The hospital’s enterprise architect Ms. Gieske was assigned to take over the project management of implementing the

core hospital management system. With her enthusiasm for leveraging ubiquitous technology within healthcare her focus

is on 1) providing a continuous, interoperable management system facilitating the electronic exchange of information

across departments and beyond, 2) allowing data collection for both prescriptive as well as predictive analytics of clinical

data, 3) empowering the patients by including them in their healthcare management, 4) ensuring privacy, data security,

and compliance to regulatory processes, and 5) fostering the integration of mobile devices into the core management

system.

There is no need to create a system from scratch since there are various hospital management systems available on the

market. Instead, the challenge is to find a system that can be tailored to UHOPE’s unique requirements and needs. Ms.

Gieske is willing to provide you with additional information through a face-to-face interview in her office.

C SPEECH ACTS 85

C Speech Acts

For the approach for finding questions using Speech Acts, we were able to use 28 out of 38 available tags.
Examples of the identified tags in the transcripts can be found in Table 19. Furthermore, Table 20 contains
the example usage of the tags there were not identified in our transcripts.

Tag Conversational Example
Statement-non-opinion And it was also mentioned that these sensors, they are not able

to or they are not an environmentally friendly solution.
Acknowledge (Backchannel) Yeah. Indeed.
Statement-opinion It’s not so bad.
Agree/Accept Yes, absolutely.
Appreciation Yes. Mhm.
Yes-No-Question Is there is there already some data that can be gathered

from the existing systems that can already be put in The
new one or is there no,

Yes answers Um Yes.
Conventional-closing Thank you. Thank you very much.
Wh-Question I’m gonna ask you, how long does it take for that person

to analyze the situation and uh monitor a certain road
or urban traffic situations.

No answers Oh no no no no.
Hedge Oh yes, I don’t know how but that is so important.
Declarative Yes-No-Question So it so it would be a manual change, not a new iteration

of the automated schedule.
Other Okay.
Backchannel in question form Um, this should also be made available I imagine during

a match for instance, the score of the match should be
updated immediately once it’s changed. Right?

Quotation Okay that’s not a priority.
Summarize/reformulate Okay. Okay. So basically the referees have constraint and these

have to be taken as input (...)
Affirmative non-yes answers Yeah as little as possible.
Action-directive Go ahead. Go ahead.
Collaborative Completion Building maintainers. Janitors?
Repeat-phrase Yeah. Janitors!
Open-Question What do you mean with local I. F. A. ?
Rhetorical-Questions Okay, so the idea is, how do I get the first event that

occurs during the game, for example? (...)
Hold before answer/agreement Yeah I think other than that let me just recap.
Negative non-no answers Mm Not necessarily, no.
Signal-non-understanding Sorry?
Conventional-opening Oh good morning, good morning, good morning, how are you?

Hello,
Or-Clause So you you think there should be the same rights for

every user of the system? Or do you think that one user
should have less rights capable?

Self-talk Um what else they can do.

Table 19: Example usage of the all of the Speech Act Tags that were found in our transcripts.

D TRANSCRIPTION ERRORS 86

TAG EXAMPLE
Uninterpretable But, uh, yeah
Response Acknowledgement Oh, okay.
Dispreferred answers Well, not so much that.
3rd-party-talk My goodness, Diane, get down from there.
Offers, Options Commits I’ll have to check that out
Downplayer That’s all right.
Maybe/Accept-part Something like that
Tag-Question Right?
Declarative Wh-Question You are what kind of buff?
Thanking Hey thanks a lot

Table 20: Example usage of the Speech Act Tags from https://github.com/bhavitvyamalik/DialogTag

that were not found in our transcripts.

D Transcription Errors

Interviewee : I think it’s fine if it is just on a
mobile version in terms of you access it via
the browser. Okay,

Interviewer : so web base is the

Interviewee : reference. Yeah. We’re not
putting the focus yet on Absolutely per-
fect. But maybe if that’s possible. I mean if
there’s an option for it. So in the future we
might consider developing an app that will
be great if we can somehow make it possi-
ble that this is a possible extension. Okay.
Yeah.

(a) An example of a part of a transcript where the
speakerturns are not ending properly.

Interviewee : I think it’s fine if it is just on a
mobile version in terms of you access it via
the browser.

Interviewer : Okay, so web base is the
preference?

Interviewee : Yeah. We’re not putting the fo-
cus yet on apps. But maybe if that’s pos-
sible. I mean if there’s an option for it. So
in the future we might consider developing
an app that will be great if we can some-
how make it possible that this is a possible
extension.

(b) After manually adjusting the endings of the
speakerturn, the transcript looks like this.

Figure 4.62: Adjusting the ending of a speakerturn

For our algorithms to correctly identify the questions, we need the questions to be in one single speakerturn
and not overlap with different speakerturns as is the case in the example in Figure 4.62. When this is not
the case, we would miss out on this question and not have this information available to the requirements
engineer.

Interviewee : Um Are you referring to the
predictive

Interviewer : and the analysis

Interviewee : part? Um I would not put a
focus on this.

(a) An example of a part of a transcript the speaker-
turn is ended, but shouldn’t be. ’Um Are you refer-
ring to the predictive and the analysis part?’ should
be one question from the interviewee.

Interviewee : Um Are you referring to the
predictive and the analysis part?

Interviewer : Yeah yeah.

Interviewee : Um I would not put a focus on
this.

(b) After manually adjusting the this erroneous
change of the speakerturns, the transcript looks like
this.

Figure 4.63: Adjusting a erroneous change of speakerturns

https://github.com/bhavitvyamalik/DialogTag

D TRANSCRIPTION ERRORS 87

Similar to the example in Figure 4.62, the question in the example in Figure 4.63 is separated over three
speakerturns as well, making us most likely miss the entire question. In this case, it is due to a change of
speakerturns that was not necessary, the interviewee keeps talking during the entire part that was transcribed.
This error is probably due to the “Yeah yeah.” that the interviewer said.

Interviewer : The referees mainly can
look at the game. Is scheduling too?
Uh huh. Uh Can report on the events dur-
ing the game.

(a) An example of a part of a transcript where the
sentence is ended at a wrong point. Here the part of
the speakerturn ’The referee mainly can look at the
the game. Is scheduling too?’ should be one sentence,
while it is transcribed as two different ones here, even
the last being a question.

Interviewer : The referees mainly can
look at the game they are scheduled
to. Uh huh. Uh Can report on the events
during the game.

(b) After manually adjusting the sentence being split
in the speakerturn, it looks like this.

Figure 4.64: Adjusting a sentence that was erroneously split into two sentences.

In the example in Figure 4.64 a sentence is erroneously split. This can be an issue when a question mark
is placed after a sentence that was not meant to be questioning. Therefore this could be identified wrongly as
a question, creating a false positive for our algorithm. Furthermore, this makes the sentence understandable
to the reader and allows us to tag the sentences accordingly.

Interviewee : So this is like yeah this brings
us to the next question which is what is
what do you expect the types of inputs and
outputs you expect the system to have like
okay a medical record is what type of in-
put you want to be able to add it to have
your own vision of the client or the patients
record. So what could also be possibly
another input to the system.

(a) In this speakerturn, the final sentence is a ques-
tion, but the question mark is omitted in the tran-
script.

Interviewee : So this is like yeah this brings
us to the next question which is what is
what do you expect the types of inputs and
outputs you expect the system to have like
okay a medical record is what type of in-
put you want to be able to add it to have
your own vision of the client or the patients
record. So what could also be possibly
another input to the system?

(b) After adding the question, it would look like this.

Figure 4.65: Adjusting a sentence that omitted its question mark.

More often than not, a question mark can be missing in the automatically generated transcript. Figure
4.65 shows an example of where a question mark is missing. Although our algorithms described in section
5.1 can handle this, it is important for our taggers that it is clear what sentence is a question or not.

D TRANSCRIPTION ERRORS 88

Interviewer : and what should be the assign-
ment trigger if you for example should the
system automatically know that a patient
got assigned to a doctor through a book-
ing. So for example if you call and have a
booking, does that automatically mean
that she got assigned to a specific doc-
tor

Interviewee : the patient’s file? You should
have doctors that are assigned to that pa-
tient. So if it’s for example a new patient
then um within the booking or scheduling
they can either pick a doctor or assigned
a doctor or depends on whether they call
or whether they do it online themselves,
whether they care or they say I I don’t care
what doctor I’m going to whoever is avail-
able and that way you already have the link.

(a) An example of a part of a transcript where in the
first speakerturn, the interviewer asks a question, but
the next speakerturn takes this question mark.

Interviewer : Okay, and what should be the
assignment trigger? If you for example
should the system automatically know that
a patient got assigned to a doctor through
a booking. So for example if you call and
have a booking, does that automatically
mean that she got assigned to a spe-
cific doctor?

Interviewee : Yeah so in the patient’s file,
you should have doctors that are assigned
to that patient. So if it’s for example a
new patient then um within the booking
or scheduling they can either pick a doctor
or assigned a doctor or depends on whether
they call or whether they do it online them-
selves, whether they care or they say I I
don’t care what doctor I’m going to who-
ever is available and that way you already
have the link.

(b) When we move the question mark to the inter-
viewer’s speakerturn, and fix the sentence, it looks
like the following.

Figure 4.66: Adjusting a question mark in that was moved into the wrong speakerturn.

As seen in the previous examples, often a sentence is ended incorrectly and moved to the next speakerturn.
This can also be the case with a questioning sentence, but the question gets moved into the next speakerturn.
As an example, in Figure 4.66 this is the case. For our tagging this would make us focus on the wrong
speakerturn when finding the speakerturn that asks the question.

Interviewer : it’s sort of rescheduling
from yesterday?

(a) An example of a part of a sentence in the tran-
script that should not be a question.

Interviewer : Thanks for the rescheduling
from yesterday.

(b) Instead, the sentence should look like this.

Figure 4.67: Adjusting a a sentence that was not a question.

In some cases, such as the example in Figure 4.67, a sentence is not actually a question, but still contains
a question mark. This is due to an error in the automated transcription, where the speaker is misheard or
misunderstood. In our case, this would make a false positive.

E TAGGING GUIDE 89

Interviewer : No

Interviewee : So right now you only get infor-
mation when you come to an appointment
from the doctor verbally um and you have
to call or walk into schedule an appoint-
ment and that’s basically it. Um Only on
request you can request to be sent like your
your file but then in a printed version other
than that they are not included so

Interviewer : far. No. Okay. Um where do
you think they should be involved in the
health care management?

(a) Here, the interviewer has a speakerturn that also
contains part of a speakerturn by the interviewee.
This can be seen because they are saying ’No’ to noth-
ing in particular.

Interviewee : No. So right now you only get
information when you come to an appoint-
ment from the doctor verbally um and you
have to call or walk into schedule an ap-
pointment and that’s basically it. Um Only
on request you can request to be sent like
your your file but then in a printed version
other than that they are not included so
far.

Interviewer : So no digital versions being
sent?

Interviewee : No.

Interviewer : Okay. Um where do you think
they should be involved in the health care
management?

(b) After manually adjusting the omitted change of
speakerturn and transcribing the part that was not
included in the automated transcription, the final
part of the transcript looks like this.

Figure 4.68: Adjusting an omitted change of speakerturn

Finally, in the example in Figure 4.68, we see that sometimes information can be omitted. Here a change
of speakerturn was missed and allowed us to miss out on a question that was asked, in this case asking if
there are no digital versions being sent. We would miss out on this information which can be crucial to the
requirements engineer.

E Tagging guide

RE-Lab, Utrecht University

Designing an approach for highlighting requirements from elicitation
interviews - Tagging Guide

Xavier de Bondt (6221033)

June 20, 2022

Problem statement

The design of software systems generally start out with a conversation to understand the current situation
and achieve a shared understanding. An important aspect of such a conversation between a practitioner and
customers or stakeholders is gathering requirements. This so-called requirements elicitation (Zowghi and Coulin,
2005) , is a complex process that can introduce a certain bias (Ferrari et al., 2016) from the practitioner, because
of their background knowledge or an ambiguity in the conversation. Next to that, requirements elicitation can
introduce risk of missing a requirement or misinterpreting a requirement.
To aid the identification of these requirements, it is possible to conceive a tool that is able to highlight

requirements-relevant transcript segments, to improve the quality of the resulting process. Moreover, this could
be used to validate the resulting output, based on the conversation.
As we started designing approaches to perform this task, we noted the role questions take in these inter-

views. To test our approaches we need a golden standard for what questions could bring requirements-relevant
information, which is information that is relevant for requirements engineers.
To help us reach this golden standard, you will be asked to tag the speakerturns1 in our conversations. This

entails that you will answer two questions, namely “What type of requirements-relevant information can be found
here?” and “Where is this requirements-relevant information located?”.
You will be shown a a part of the transcript, which is a sequence of three speakerturns, chronological in order:

• The previous speakerturn
This speakerturn serves as context. It is there for your understanding of the conversation, but this should
not be tagged or analyzed.

• The current speakerturn
This is the speakerturn that we focus on and contains a question. This question will be marked in bold.

• The next speakerturn
The following speakerturn, that possibly includes an answer to the question asked.

Here, we indicate which speaker says what. There are two roles here, interviewer and interviewee. The inter-
viewer(s) ask questions about the system while the interviewee tries to answer these.

Categorization of the requirements-relevant information

In order to determine if there is any requirements-relevant information in this part of the transcript, we ask you
to categorize the requirements-relevant information. This is done by selecting one or more from the following
categories:

• Functional requirement
Functionality. The speakerturn refers to functionality that the software system has to exhibit. For example,
register users, schedule events, calculate something or allow messaging.

• Non functional requirement
Software quality or non-functional requirement. The speakerturn refers to qualities that the system should
provide while delivering its functionalities, e.g. speed, security, capacity, compatibility, reliability, usability,
portability.

1A speakerturn is the part in which a certain speaker is speaking, thus containing only the parts that are spoken by one single
speaker.

RE-Lab, Utrecht University

• System Users
This talks about the users of the system, also include other stakeholders here that do not use the system.

• Current Process understanding
This is information about the current process or system as-is, this can be about the current problems they
are facing.

• Within or outside of the scope
Any direct discussion of elements that should be in the system to-be or not. This discussed boundaries to
the scope of the system.

• There is no requirements-relevant information
Some questions asked in the transcript and answers to that question do not contain any requirements-
relevant information. In other words, none of the other categories apply to this part of the transcript.

Locating requirements-relevant information

The final question that will be asked for each piece of transcript is “Where is this requirements-relevant informa-
tion located?”, if the previous question was not answered with ’There is no requirements-relevant information.
Here, we give you the two options, to be answered yes or no (checked or unchecked):

• Do you expect the question in the current speakerturn to be answered with requirements-relevant infor-
mation?
For example, the interviewer asks a question that that is most likely answered with requirements-relevant
information, since it is prompting information about the current situation.

Current Speakerturn (Interviewer) : Okay. We’re not during, during the season. You should not
change any policies. Yeah. Okay. That’s good for the scheduling. And then the third value is better
support for the fans. And that was um, can you, first of all in the as-is situation, can you
explain some of the how are the fans able to, what kind of support is there for the fans
at the moment?

• Does the next speakerturn (after the question) contain requirements-relevant information?
In this example, the interviewer asks a question that will be answered with requirements-relevant informa-
tion, after which the interviewee gives that requirements-relevant information in their answer.

Current Speakerturn (Interviewer) : Okay. And then if we go to the referees, what kind of
things should the referees be able to manage in the system?

Next Speakerturn (Interviewee) : The referees mainly can look at the game they are scheduled to.
Uh huh. Uh Can report on the events during the game.

The next speakerturn should be marked to contain requirements-relevant information, since it explicitly
describes what the referees can do. Next to that, the current speakerturn also contains a question that will
be answered with requirements-relevant information, so actually both options should be taken here.

Tagging instructions

In this activity, you will be asked what type of requirements-relevant information can be found in piece of
transcript that is shown. Here we ask you to disregard the previous speakerturn, only focusing on the current
and the next speakerturn. If the option ’There is no requirements-relevant information’ is not selected, there
will be a followup question. This asks ’Where is this requirements-relevant information located?’.

References

Ferrari, A., Spoletini, P., and Gnesi, S. (2016). Ambiguity and tacit knowledge in requirements elicitation
interviews. Requirements Engineering, 21.

Zowghi, D. and Coulin, C. (2005). Requirements elicitation: A survey of techniques, approaches, and tools. In
Engineering and managing software requirements, pages 19–46. Springer.

REFERENCES I

References

[1] Axel Van Lamsweerde. Requirements engineering: From system goals to UML models to software.
Vol. 10. Chichester, UK: John Wiley & Sons, 2009.

[2] A Smith, D Bieg, and T Cabrey. “PMI’s Pulse of the Profession® In-Depth Report: Requirements
Management–A Core Competency for Project and Program Success”. In: Project Management Insti-
tute, Newtown Square, PA (2014).

[3] Didar Zowghi and Chad Coulin. “Requirements elicitation: A survey of techniques, approaches, and
tools”. In: Engineering and managing software requirements. Springer, 2005, pp. 19–46.

[4] Dante Carrizo, Oscar Dieste, and Natalia Juristo. “Systematizing requirements elicitation technique
selection”. In: Information and Software Technology 56.6 (2014), pp. 644–669.

[5] Muneera Bano et al. “Learning from mistakes: An empirical study of elicitation interviews performed
by novices”. In: 2018 IEEE 26th International Requirements Engineering Conference (RE). IEEE.
2018, pp. 182–193.

[6] Alistair Sutcliffe and Pete Sawyer. “Requirements elicitation: Towards the unknown unknowns”. In:
2013 21st IEEE International Requirements Engineering Conference (RE). IEEE. 2013, pp. 92–104.

[7] Julia Hirschberg and Christopher D Manning. “Advances in natural language processing”. In: Science
349.6245 (2015), pp. 261–266.

[8] Liping Zhao et al. “Natural language processing (NLP) for requirements engineering: A systematic
mapping study”. In: arXiv preprint arXiv:2004.01099 (2020).

[9] Piet den Blanken. ICT’ers Werken Vaakst Vanuit Huis Tijdens Coronacrisis. Aug. 2020. url: https:
//www.cbs.nl/nl- nl/nieuws/2020/33/ict- ers- werken- vaakst- vanuit- huis- tijdens-

coronacrisis.

[10] OSIRIS Student Mobile. “Requirements engineering (INFOMRE)”. In: (2021). url: https://osiris-
student . uu . nl / # / onderwijscatalogus / extern / cursus ? cursuscode = INFOMRE & taal = nl &

collegejaar=2021.

[11] Roel J Wieringa. Design science methodology for information systems and software engineering.
Springer, 2014.

[12] David E Avison et al. “Action research”. In: Communications of the ACM 42.1 (1999), pp. 94–97.

[13] Scott WH Young. “Improving library user experience with A/B testing: Principles and process”. In:
Weave: Journal of Library User Experience 1.1 (2014).

[14] Sebastian Ruder. Transfer Learning - Machine Learning’s Next Frontier. http://ruder.io/transfer-
learning/. 2017.

[15] Martin Glinz et al. “Handbook for the CPRE Foundation Level according to the IREB Standard”.
In: (2020).

[16] Orlena Gotel and Anthony Finkelstein. “Modelling the contribution structure underlying require-
ments”. In: Auflage Aachen: Verlag der Augustinus Buchhandlung. 1994.

[17] O Gotel and ACW Finkelstein. An Analysis of the Requirements Engineering Traceability Problem.
Tech. rep. Tech. Rep., Imperial College, Department of Computing, TR-93-41, 1993.

[18] Charles L Briggs. Learning how to ask: A sociolinguistic appraisal of the role of the interview in social
science research. 1. Cambridge university press, 1986.

[19] Vincenzo Gervasi et al. “Unpacking tacit knowledge for requirements engineering”. In: Managing
requirements knowledge. Springer, 2013, pp. 23–47.

[20] Alessio Ferrari et al. SaPeer and ReverseSaPeer Approaches for Training Students in Requirements
Elicitation Interviews— Educational Material. Version 2.0. Apr. 2020. doi: 10.5281/zenodo.3765214.
url: https://doi.org/10.5281/zenodo.3765214.

[21] Mike Cohn. User stories applied: For agile software development. Addison-Wesley Professional, 2004.

[22] Bill Wake. “INVEST in good stories, and SMART tasks”. In: (2003).

https://www.cbs.nl/nl-nl/nieuws/2020/33/ict-ers-werken-vaakst-vanuit-huis-tijdens-coronacrisis
https://www.cbs.nl/nl-nl/nieuws/2020/33/ict-ers-werken-vaakst-vanuit-huis-tijdens-coronacrisis
https://www.cbs.nl/nl-nl/nieuws/2020/33/ict-ers-werken-vaakst-vanuit-huis-tijdens-coronacrisis
https://osiris-student.uu.nl/#/onderwijscatalogus/extern/cursus?cursuscode=INFOMRE&taal=nl&collegejaar=2021
https://osiris-student.uu.nl/#/onderwijscatalogus/extern/cursus?cursuscode=INFOMRE&taal=nl&collegejaar=2021
https://osiris-student.uu.nl/#/onderwijscatalogus/extern/cursus?cursuscode=INFOMRE&taal=nl&collegejaar=2021
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
https://doi.org/10.5281/zenodo.3765214
https://doi.org/10.5281/zenodo.3765214

REFERENCES II

[23] Garm Lucassen et al. “Improving agile requirements: the quality user story framework and tool”. In:
Requirements engineering 21.3 (2016), pp. 383–403.

[24] Matt Wynne, Aslak Hellesoy, and Steve Tooke. The cucumber book: behaviour-driven development for
testers and developers. Pragmatic Bookshelf, 2017.

[25] What is ”given - when - then”? Mar. 2021. url: https://www.agilealliance.org/glossary/gwt/.

[26] L Mich, M Franch, and P Novi Inverardi. “Requirements analysis using linguistic tools: Results of an
on-line survey”. In: Requirements Engineering Journal 2 (2003).

[27] Daniel M Berry et al. “From contract drafting to software specification: Linguistic sources of ambiguity-
a handbook version 1.0”. In: (2000).

[28] John Lyons and Lyons John. Linguistic semantics: An introduction. Cambridge University Press, 1995.

[29] Graeme Hirst. Semantic interpretation and the resolution of ambiguity. Cambridge University Press,
1992.

[30] James Allen. Natural language understanding. Benjamin-Cummings Publishing Co., Inc., 1988.

[31] Douglas Walton. Fallacies arising from ambiguity. Vol. 1. Springer Science & Business Media, 2013.

[32] Gayane Hakobyan. “Elliptical Structures in Newspaper Discourse”. In: (June 2016). doi: 10.13140/
RG.2.1.3854.0403.

[33] Catherine Anderson. 10.4 deixis: Meaning that depends on context. Mar. 2018. url: https : / /

ecampusontario.pressbooks.pub/essentialsoflinguistics/chapter/10-4-deixis-meaning-

that-depends-on-context/.

[34] Colette Rolland and Christophe Proix. “A natural language approach for requirements engineering”.
In: International Conference on Advanced Information Systems Engineering. Springer. 1992, pp. 257–
277.

[35] Kevin Ryan. “The role of natural language in requirements engineering”. In: [1993] Proceedings of the
IEEE International Symposium on Requirements Engineering. IEEE. 1993, pp. 240–242.

[36] Russell J Abbott and DK Moorhead. “Software requirements and specifications: A survey of needs
and languages”. In: Journal of Systems and Software 2.4 (1981), pp. 297–316.

[37] Fabiano Dalpiaz et al. “Natural language processing for requirements engineering: The best is yet to
come”. In: IEEE software 35.5 (2018), pp. 115–119.

[38] Alessio Ferrari et al. “Natural Language Requirements Processing: A 4D Vision.” In: IEEE Softw.
34.6 (2017), pp. 28–35.

[39] Saurabh Tiwaria et al. “A Report on the First Workshop on Natural Language Processing Advance-
ments for Software Engineering (NLPaSE) co-located with APSEC 2020”. In: (2020).

[40] “Message from the NLP-SEA 2020 Chairs”. In: 2020 35th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW). Los Alamitos, CA, USA: IEEE Computer
Society, Sept. 2020, pp. 14–14. doi: 10 . 1109 / ASEW50548 . 2020 . 00005. url: https : / / doi .

ieeecomputersociety.org/10.1109/ASEW50548.2020.00005.

[41] Agustin Casamayor, Daniela Godoy, and Marcelo Campo. “Identification of non-functional require-
ments in textual specifications: A semi-supervised learning approach”. In: Information and Software
Technology 52.4 (2010), pp. 436–445.

[42] Alessio Ferrari et al. “Detecting requirements defects with NLP patterns: an industrial experience in
the railway domain”. In: Empirical Software Engineering 23.6 (2018), pp. 3684–3733.

[43] Henning Femmer et al. “Rapid quality assurance with requirements smells”. In: Journal of Systems
and Software 123 (2017), pp. 190–213.

[44] Davide Falessi, Giovanni Cantone, and Gerardo Canfora. “Empirical principles and an industrial case
study in retrieving equivalent requirements via natural language processing techniques”. In: IEEE
Transactions on Software Engineering 39.1 (2011), pp. 18–44.

[45] Chetan Arora et al. “Automated extraction and clustering of requirements glossary terms”. In: IEEE
Transactions on Software Engineering 43.10 (2016), pp. 918–945.

https://www.agilealliance.org/glossary/gwt/
https://doi.org/10.13140/RG.2.1.3854.0403
https://doi.org/10.13140/RG.2.1.3854.0403
https://ecampusontario.pressbooks.pub/essentialsoflinguistics/chapter/10-4-deixis-meaning-that-depends-on-context/
https://ecampusontario.pressbooks.pub/essentialsoflinguistics/chapter/10-4-deixis-meaning-that-depends-on-context/
https://ecampusontario.pressbooks.pub/essentialsoflinguistics/chapter/10-4-deixis-meaning-that-depends-on-context/
https://doi.org/10.1109/ASEW50548.2020.00005
https://doi.ieeecomputersociety.org/10.1109/ASEW50548.2020.00005
https://doi.ieeecomputersociety.org/10.1109/ASEW50548.2020.00005

REFERENCES III

[46] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Semantically enhanced software traceability using
deep learning techniques”. In: 2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE). IEEE. 2017, pp. 3–14.

[47] Marcel Robeer et al. “Automated extraction of conceptual models from user stories via NLP”. In:
2016 IEEE 24th international requirements engineering conference (RE). IEEE. 2016, pp. 196–205.

[48] Travis Breaux and Annie Antón. “Analyzing regulatory rules for privacy and security requirements”.
In: IEEE transactions on software engineering 34.1 (2008), pp. 5–20.

[49] Sallam Abualhaija et al. “Automated demarcation of requirements in textual specifications: a machine
learning-based approach”. In: Empirical Software Engineering 25.6 (2020), pp. 5454–5497.

[50] Tjerk Spijkman et al. “Concept Extraction in Requirements Elicitation Session Recordings: Prototype
and Experimentation”. In: Joint Proceedings of REFSQ 2021 Workshops, OpenRE, Poster and Tools
Track, and Doctoral Symposium co-located with the 27th International Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ 2021), Essen, Germany, April 12, 2021. Ed.
by Fatma Basak Aydemir et al. Vol. 2857. CEUR Workshop Proceedings. CEUR-WS.org, 2021. url:
http://ceur-ws.org/Vol-2857/nlp4re5.pdf.

[51] Elizabeth D Liddy. “Natural language processing”. In: (2001).

[52] Gobinda G Chowdhury. “Natural language processing”. In: Annual review of information science and
technology 37.1 (2003), pp. 51–89.

[53] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. “Natural language processing:
an introduction”. In: Journal of the American Medical Informatics Association 18.5 (2011), pp. 544–
551.

[54] Dan Jurafsky and James H Martin. “Speech and language processing. Vol. 3”. In: US: Prentice Hall
(2014).

[55] Joakim Nivre et al. “Universal Dependencies v1: A Multilingual Treebank Collection”. In: Proceedings
of the Tenth International Conference on Language Resources and Evaluation (LREC’16). Portorož,
Slovenia: European Language Resources Association (ELRA), May 2016, pp. 1659–1666. url: https:
//aclanthology.org/L16-1262.

[56] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building a Large Annotated
Corpus of English: The Penn Treebank”. In: Computational Linguistics 19.2 (1993), pp. 313–330. url:
https://aclanthology.org/J93-2004.

[57] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

[58] Tom Mitchell. “Machine learning”. In: (1997).

[59] Hal Daumé. A course in machine learning. Hal Daumé III, 2017.

[60] Gareth James et al. An introduction to statistical learning. Vol. 112. Springer, 2013.

[61] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[62] Xiaojin Zhu and Andrew B Goldberg. “Introduction to semi-supervised learning”. In: Synthesis lectures
on artificial intelligence and machine learning 3.1 (2009), pp. 1–130.

[63] Xiao Liu et al. “Self-supervised learning: Generative or contrastive”. In: IEEE Transactions on Knowl-
edge and Data Engineering (2021).

[64] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.Deep Learning. http://www.deeplearningbook.
org. MIT Press, 2016.

[65] Tom Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters 27.8 (2006), pp. 861–
874.

[66] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. “A survey of transfer learning”. In: Journal
of Big data 3.1 (2016), pp. 1–40.

[67] Jeremy Howard and Sebastian Ruder. “Universal language model fine-tuning for text classification”.
In: arXiv preprint arXiv:1801.06146 (2018).

http://ceur-ws.org/Vol-2857/nlp4re5.pdf
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://aclanthology.org/J93-2004
http://www.deeplearningbook.org
http://www.deeplearningbook.org

REFERENCES IV

[68] Sinno Jialin Pan and Qiang Yang. “A survey on transfer learning”. In: IEEE Transactions on knowledge
and data engineering 22.10 (2009), pp. 1345–1359.

[69] Daniel S Kermany et al. “Identifying medical diagnoses and treatable diseases by image-based deep
learning”. In: Cell 172.5 (2018), pp. 1122–1131.

[70] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE conference on
computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[71] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep convolu-
tional neural networks”. In: Advances in neural information processing systems 25 (2012), pp. 1097–
1105.

[72] Bernardino Romera-Paredes and Philip Torr. “An embarrassingly simple approach to zero-shot learn-
ing”. In: International conference on machine learning. PMLR. 2015, pp. 2152–2161.

[73] Pushpankar Kumar Pushp and Muktabh Mayank Srivastava. “Train once, test anywhere: Zero-shot
learning for text classification”. In: arXiv preprint arXiv:1712.05972 (2017).

[74] Wenpeng Yin, Jamaal Hay, and Dan Roth. “Benchmarking zero-shot text classification: Datasets,
evaluation and entailment approach”. In: arXiv preprint arXiv:1909.00161 (2019).

[75] Omer Sagi and Lior Rokach. “Ensemble learning: A survey”. In: Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 8.4 (2018), e1249.

[76] Yann LeCun, Yoshua Bengio, et al. “The handbook of brain theory and neural networks”. In: (1998).

[77] Robi Polikar. “Ensemble based systems in decision making”. In: IEEE Circuits and systems magazine
6.3 (2006), pp. 21–45.

[78] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830.

[79] Tjerk Spijkman, Fabiano Dalpiaz, and Sjaak Brinkkemper. “Requirements Elicitation via Fit-Gap
Analysis: A View Through the Grounded Theory Lens”. In: Advanced Information Systems Engineer-
ing - 33rd International Conference, CAiSE 2021, Melbourne, VIC, Australia, June 28 - July 2, 2021,
Proceedings. Ed. by Marcello La Rosa, Shazia W. Sadiq, and Ernest Teniente. Vol. 12751. Lecture
Notes in Computer Science. Springer, 2021, pp. 363–380. doi: 10.1007/978-3-030-79382-1_22.
url: https://doi.org/10.1007/978-3-030-79382-1%5C_22.

[80] George Blick, Thomas Gulledge, and Rainer Sommer. “Defining business process requirements for
large scale public sector ERP implementations: A case study”. In: ECIS 2000 Proceedings (2000),
p. 157.

[81] Janis Grabis. “Optimization of Gaps Resolution Strategy in Implementation of ERP Systems.” In:
ICEIS (1). 2019, pp. 84–92.

[82] Thomas R Gulledge. “ERP gap-fit analysis from a business process orientation”. In: International
Journal of Services and Standards 2.4 (2006), pp. 339–348.

[83] Tsai Chi Kuo. “Mass customization and personalization software development: a case study eco-design
product service system”. In: Journal of Intelligent Manufacturing 24.5 (2013), pp. 1019–1031.

[84] Ben Light. “The maintenance implications of the customization of ERP software”. In: Journal of
software maintenance and evolution: research and practice 13.6 (2001), pp. 415–429.

[85] Sven Apel et al. Feature-oriented software product lines. Springer, 2016.

[86] Daniel Berry et al. “The case for dumb requirements engineering tools”. In: International Working
Conference on Requirements Engineering: Foundation for Software Quality. Springer. 2012, pp. 211–
217.

[87] Zijad Kurtanović and Walid Maalej. “Automatically classifying functional and non-functional require-
ments using supervised machine learning”. In: 2017 IEEE 25th International Requirements Engineer-
ing Conference (RE). Ieee. 2017, pp. 490–495.

[88] Tobias Hey et al. “NoRBERT: Transfer learning for requirements classification”. In: 2020 IEEE 28th
International Requirements Engineering Conference (RE). IEEE. 2020, pp. 169–179.

https://doi.org/10.1007/978-3-030-79382-1_22
https://doi.org/10.1007/978-3-030-79382-1%5C_22

REFERENCES V

[89] Fabiano Dalpiaz et al. “Requirements classification with interpretable machine learning and depen-
dency parsing”. In: 2019 IEEE 27th International Requirements Engineering Conference (RE). IEEE.
2019, pp. 142–152.

[90] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva. “Using linguistic knowledge to classify non-
functional requirements in SRS documents”. In: International Conference on Application of Natural
Language to Information Systems. Springer. 2008, pp. 287–298.

[91] Edna Dias Canedo and Bruno Cordeiro Mendes. “Software Requirements Classification Using Machine
Learning Algorithms”. In: Entropy 22.9 (2020), p. 1057.

[92] Zahra Shakeri Hossein Abad et al. “What works better? A study of classifying requirements”. In: 2017
IEEE 25th International Requirements Engineering Conference (RE). IEEE. 2017, pp. 496–501.

[93] Han van der Aa et al. “Extracting Declarative Process Models from Natural Language”. In: CAiSE.
Ed. by Paolo Giorgini and Barbara Weber. 2019, pp. 365–382. doi: 10.1007/978-3-030-21290-2_23.

[94] Efstathios Stamatatos. “A survey of modern authorship attribution methods”. In: Journal of the
American Society for information Science and Technology 60.3 (2009), pp. 538–556.

[95] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language understanding”.
In: arXiv preprint arXiv:1810.04805 (2018).

[96] Stephen A White. “Introduction to BPMN”. In: Ibm Cooperation 2.0 (2004).

[97] Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. “Knowledge-intensive processes: charac-
teristics, requirements and analysis of contemporary approaches”. In: Journal on Data Semantics 4.1
(2015), pp. 29–57.

[98] Wil MP van Der Aalst, Maja Pesic, and Helen Schonenberg. “Declarative workflows: Balancing be-
tween flexibility and support”. In: Computer Science-Research and Development 23.2 (2009), pp. 99–
113.

[99] Matthew B Dwyer, George S Avrunin, and James C Corbett. “Patterns in property specifications for
finite-state verification”. In: Proceedings of the 21st international conference on Software engineering.
1999, pp. 411–420.

[100] Claudio Di Ciccio et al. “Resolving inconsistencies and redundancies in declarative process models”.
In: Information Systems 64 (2017), pp. 425–446.

[101] Fabian Friedrich, Jan Mendling, and Frank Puhlmann. “Process model generation from natural lan-
guage text”. In: International Conference on Advanced Information Systems Engineering. Springer.
2011, pp. 482–496.

[102] Marie-Catherine De Marneffe and Christopher D Manning. “The Stanford typed dependencies repre-
sentation”. In: Coling 2008: proceedings of the workshop on cross-framework and cross-domain parser
evaluation. 2008, pp. 1–8.

[103] Owen Doody and Maria Noonan. “Preparing and conducting interviews to collect data”. In: Nurse
researcher 20.5 (2013).

[104] Wendy Hollway and Tony Jefferson. “Eliciting narrative through the in-depth interview”. In: Quali-
tative inquiry 3.1 (1997), pp. 53–70.

[105] Ann Bies et al. “Bracketing guidelines for Treebank II style Penn Treebank project”. In: University
of Pennsylvania 97 (1995), p. 100.

[106] Edward Holliman John J. Godfrey. Switchboard-1 Release 2. 1993. doi: 10.35111/sw3h-rw02. url:
https://doi.org/10.35111/sw3h-rw02.

[107] Mikhail Galkin and Valentin Malykh. Wikipedia TF-IDF Dataset Release. Version v1.0. Jan. 2020.
doi: 10.5281/zenodo.3631674. url: https://doi.org/10.5281/zenodo.3631674.

[108] Kai Ming Ting. “Confusion matrix.” In: Encyclopedia of machine learning and data mining 260 (2017).

[109] Yinhan Liu et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: arXiv preprint
arXiv:1907.11692 (2019).

https://doi.org/10.1007/978-3-030-21290-2_23
https://doi.org/10.35111/sw3h-rw02
https://doi.org/10.35111/sw3h-rw02
https://doi.org/10.5281/zenodo.3631674
https://doi.org/10.5281/zenodo.3631674

REFERENCES VI

[110] Adina Williams, Nikita Nangia, and Samuel Bowman. “A Broad-Coverage Challenge Corpus for Sen-
tence Understanding through Inference”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). New Orleans, Louisiana: Association for Computational Linguistics, 2018, pp. 1112–
1122. url: http://aclweb.org/anthology/N18-1101.

[111] Claes Wohlin et al. Experimentation in software engineering. Springer Science & Business Media, 2012.

http://aclweb.org/anthology/N18-1101

	Introduction
	Problem statement
	Research Objective and Questions
	Thesis outline

	Research
	Structure
	Goal
	Challenges

	Background
	Requirements Engineering
	Interviews
	User stories
	INVEST
	QUS

	Acceptance criteria
	Ambiguity
	Natural Language Processing
	Part of Speech (POS) tagging
	Named Entity Recognition (NER)

	Machine Learning
	Model selection
	Transfer Learning
	Zero-shot learning
	Ensemble learning

	Related work
	Conceptual works
	Fit-Gap Analysis
	Concept Extraction

	Related techniques
	Automated demarcation
	Requirement Classification
	Extracting Declarative Process Models from Natural Language

	Approach development
	Questions and answers
	Iteration 1 - POS tagging for finding questions
	Iteration 2 - Speech Act Classification for finding questions

	Relevance
	Iteration 1 - Relevant questions
	Fixing the transcripts
	Iteration 2 - Relevant parts of the speakerturn
	Iteration 3 - Questions that can be answered with requirements-relevant information
	Iteration 4 - Tagging the requirements-relevant data
	Creating a golden standard

	Identifying requirements-relevant question
	Iteration 1 - Context Document
	Iteration 2 - Wikipedia
	Automated requirements-relevant questions
	Comparing approaches for finding questions
	Comparing approaches for finding relevant questions
	Comparing 'learning' approaches for finding relevant questions

	Classifying the reason of requirements relevance

	Discussion
	Answering the sub research questions
	Answering the main research question
	Limitations
	Conclusion validity
	Internal validity
	Construct validity
	External validity

	Future work

	Feature matrices for automated demarcation
	System descriptions
	Speech Acts
	Transcription Errors
	Tagging guide
	References

