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ABSTRACT 

The Dutch coastal dunes house a rich and dynamic ecosystem with a large variation in habitats. However, 

they are currently threatened by geomorphological stabilization and subsequent encroachment of shrubs 

and tall grasses, which overtake valuable grey dune grassland. To understand such vegetation dynamics 

at larger scales, vegetation maps are key. While traditionally, constructing these maps from field surveys 

is very time- and cost-intensive, an alternative approach can be taken by training a machine learning 

model to classify vegetation from remote sensing data. A particularly promising model is the 

Convolutional Neural Network (CNN), a type of deep learning model specifically designed for pattern 

recognition, which has been proven highly accurate in mapping vegetation in various ecosystems. 

However, no vegetation mapping CNNs have been developed for coastal dune ecosystems yet. 

In this thesis I present a CNN capable of mapping coastal dune vegetation on a plant community scale 

with an overall accuracy of 75%. The CNN has a U-net architecture and is trained for RGB orthophoto tiles 

with spatial dimensions of 10 by 10 m. First, a vegetation survey of the study site was conducted to better 

understand its vegetation, as well as an Uncrewed Aerial Vehicle survey to obtain an orthophoto and 

additional elevation data of the study site. The CNN was trained using 112,500 m2 of manually classified 

vegetation maps as reference data. It was found that CNN performance per class is positively related to 

the surface area of that class in the reference data. Furthermore, increasing the input tile size was shown 

to increase overall CNN accuracy. Conversely, including elevation data as additional input information was 

not found to make a significant difference in CNN performance. These findings can contribute to 

improving the CNN further in the future. 

The results of this thesis demonstrate that it is possible to use a CNN for mapping coastal dune vegetation, 

obtaining a vegetation map that is ecologically relevant and can be compared to other vegetation studies 

that use Natura 2000 habitat types. Although this CNN must still be optimized further, it could potentially 

be used for long-time and large-scale vegetation mapping, which could greatly improve our understanding 

of vegetation dynamics in coastal dune ecosystems. 
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1. INTRODUCTION 

The Dutch coastal dunes stretch out over 350 

km along the coastline of the Netherlands, from 

the sandy beaches of the North Sea to up to a 

few kilometers inland (Fig. 1). The dunes, which 

are typically between 10 and 50 m high (Arens, 

Slings, et al., 2013), house a rich and dynamic 

ecosystem and have high societal relevance. 

Since approximately 9 million people in the 

Netherlands live in regions that lie below sea 

level (Mulder et al., 2011), water safety is one of 

the main priorities of Dutch water management, 

and the dunes are a major part of the primary 

coastal defense (Rijksoverheid, 2021). The 

dunes also offer a space for recreation and 

tourism, and are used to supply drinkwater to 

the densely populated areas beyond the dunes 

(Grootjans et al., 2004). 

Besides these important services, the coastal 

dunes also have a large ecological value. They 

contain a wide range of different habitat types, 

including  white and grey dune, heather, shrub, 

dune slacks and woodlands (Doing, 1995), which 

results in high biodiversity as well. Although the dunes cover only ca. 1% of the total surface area in the 

Netherlands, over half of all vascular plant species present in the Netherlands can be found in the dunes 

(Heslenfeld et al., 2008). They are also home to many (endangered) Red List species (e.g. Grootjans et al., 

2004). 

1.1. Coastal dune habitat zonation 
The Dutch coastal dune ecosystem is characterized by strong coast-to-inland gradients in abiotic factors 

such as wind strength, sand burial, soil salinity and nutrient availability, which result in a clear zonation in 

dune vegetation (Marcenò et al., 2018). The zonation results in different habitats along a successional 

gradient, schematically represented in Fig. 2. It should be noted that in reality, the abiotic and ecological 

gradients are mostly found in non-linear, small-scale patterns (Doing, 1995), creating a varied patchwork 

of microhabitats. The main coastal dune habitats are also included in the Natura 2000 network, a 

European Union-wide network of protected nature areas (see e.g. Evans, 2012). 

Close to the shoreline, the environmental conditions are too harsh for plants. When moving from the 

shoreline inwards, the first vegetation can be found on the backshore in places where washed up organic 

material (driftwood, macroalgae) provides nutrients. Only a few specialized halophytes, such as Cakile 

maritima and Elymus farctus subsp. boreo-atlanticus, are adapted to withstand the local increased salinity 

 

Figure 1: Coastal dune distribution in the Netherlands (blue). 

The red dot marks the location of the study site. 
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and instability due to water and sand dynamics (Clausing et al., 2000). In the Natura 2000 network, this 

habitat is referred to as the ‘embryonic shifting dunes’ (H2110). 

Beyond the beach lies the foredune, typically covered with the pioneer grass marram (Calamagrostis 

arenaria1). In the Natura 2000 network, this habitat is referred to as the ‘young’ or ‘white’ dunes (H2120). 

The high burial rates due to aeolian sand deposition, and increased salinity due to salt spray, cause this 

habitat to be quite poor in species as well. For marram, however, sand burial stimulates growth, and 

hereby increases marram’s capacity to capture the deposited sand and stabilize the dune (Maun, 1998; 

Zarnetske et al., 2012). In this way, the foredune is shaped through a feedback mechanism between the 

geomorphic conditions and ‘dune-building’ vegetation. In other words: the coastal dune landscape is a 

biogeomorphic ecosystem (Corenblit et al., 2007, 2015). While vegetation growing seaward of the 

foredune is generally adapted to withstand burial, and captures sand simply by forming an obstacle for 

aeolian sand transport, marram is especially efficient at capturing sand (Zarnetske et al., 2012).  

Further inland, where sand accumulation rates are lower, grey dunes (H2130) can develop. This habitat 

type has a very high species richness, with several associated vegetation communities consisting mainly 

of herbs, mosses and (particularly in lime-poor areas) lichen, alternated by patches of bare sand 

(Isermann, 2011). The high plant richness leads to a high overall biodiversity, with many characteristic 

butterflies, grasshoppers and other insects which are, in turn, a source of food for higher trophic levels 

(e.g. Van Til & Kooijman, 2007). According to the European Habitats Directive, the grey dunes are a priority 

habitat type (Council of the European Commission, 1992).  

The grey dunes are sustained by disturbances such as burial and rabbit activities, which keep the 

landscape open (e.g. Isermann et al., 2010). If those disturbances disappear, the dunes stabilize further, 

and encroachment of grasses like Carex arenaria and Calamagrostis epigejos and shrubs like Hippophae 

rhamnoides (sea buckthorn) can take place. Although dunes with Hippophae rhamnoides (H2160) are a 

 
1 In this thesis, species names of vascular plants are based on Heukels’ Flora van Nederland 24th edition (Duistermaat, 
2020). In previous editions of this flora, and in much of the scientific literature, marram is referred to as Ammophila 
arenaria. 

 
 Embryonic shifting 

dunes 
White dunes Dunes with Hippophae 

rhamnoides 
Grey dunes Grass 

encroachment 
      
 

Figure 2: Schematic of successive vegetation phases in dry dunes with a continuous foredune. Note that these are not true 

proportions. Aeolian sand transport from the beach is indicated with an arrow.  
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valuable habitat type in their own right, offering shelter and berries for birds breeding in the dunes 

(Verstrael, 1996), expansion of buckthorn can cause a decrease in species richness that includes the loss 

of rare taxa of grey dune species (Isermann et al., 2007). Similarly, grass encroachment is also associated 

with low species diversity and richness (Veer & Kooijman, 1997). 

1.2. Acceleration of encroachment 
Up to the 1980s, most of the Dutch coastal dunes were fully geomorphologically stabilized and covered 

by vegetation. This resulted in pioneer stages becoming increasingly rare and grass and shrub 

encroachment increasing, threatening the high dune biodiversity (Arens, Mulder, et al., 2013). This 

development was caused by a number of factors amplifying each other. 

First of all, due to the low elevation of most of the Netherlands, the coastal dunes have been strengthened 

so much that the foredunes began to resemble dikes: tall, stable and continuous. Records of marram 

planting to stabilize and strengthen the foredune go back to the 14th century (Oost et al., 2012). As a 

result, aeolian sand transport from the beach to beyond the foredune ceased entirely in many places (e.g. 

Arens, Mulder, et al., 2013; Ruessink et al., 2018).  

Additionally, two viral epidemics in European rabbits (Oryctolagus cuniculus),  myxomatosis in the 1950s 

and rabbit hemorrhagic disease (RHD) in the 1990s, nearly eradicated rabbits in Europe. Together, they 

caused a decrease of over 90% in population (Drees, 2004; Provoost et al., 2011). Directly after the 

myxomatosis outbreak, grass and shrub encroachment accelerated: there were barely any rabbits left to 

destabilize the landscape (Provoost et al., 2011; van der Hagen et al., 2020).  

On top of that, atmospheric nitrogen (N) began to accumulate in the dunes. Deposited atmospheric 

nitrogen consists mainly of nitrogen oxides (NOx) from the burning of fossil fuel and ammonia (NH4) from 

agriculture (Kooijman et al., 2021). Different habitats have different thresholds for nitrogen, above which 

the habitat deteriorates. Grey dunes in particular are highly sensitive to nitrogen deposition (van Dobben 

et al., 2014), which has been found to further accelerate grass encroachment (e.g. Kooijman et al., 2017; 

Veer, 1997). 

1.3. Restoring dynamics 
In the 1980s, a paradigm shift in how coastal defense and the coastal dune ecosystem should be managed 

took place. As dunes were overgrown by shrubs and grasses, dynamical dunes became the new ecological 

aspiration. Instead of strengthening the foredune with marram, coastal defense started focusing on sand 

supply, through large-scale beach and shoreface nourishments. As a result, foredunes began accreting 

more sand, and previous retreat of the coastline stopped (Arens, Slings, et al., 2013). At the same time, 

experiments with new management strategies started to restore aeolian dynamics and combat grass and 

shrub encroachment. 

A first strategy to combat encroachment was the removal of grass and shrubs through mowing, topsoil 

removal or shallow sod cutting, to create space for grey dune vegetation to return. Van Til & Kooijman 

(2007) found that shallow sod cutting, where ca. 5 cm of top soil is removed, was very effective in restoring 

the grey dune landscape. In a field experiment in the Amsterdam Water Supply Dunes, they found that 

cut areas developed into a diverse habitat, with bare sand, herbaceous vegetation and moss patches, 

within a few years. Furthermore, they found that these areas also attracted rabbits, butterflies and 

grasshoppers, including several characteristic or Red List species (Van Til & Kooijman, 2007). 
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In combination with mechanical vegetation removal, steps to increase grazing pressure were taken as 

well. Several studies have shown the positive effects of grazing on grey dune vegetation richness (Hewett, 

1985), mitigation of grass and shrub encroachment (Lamoot et al., 2005) and butterfly populations 

(WallisDeVries & Raemakers, 2001). Complimenting the introduction of great grazers like cattle and 

horses to the dunes, rabbit populations have been recovering naturally since 2003, when resistance 

against RHD began to rise (IJzer et al., 2016).  

A final measure to promote aeolian dune dynamics is the creation of artificial blowouts (Schwarz et al., 

2019). In dynamic coastal dunes, blowouts are a naturally occurring erosional feature. There are two main 

types, saucer and trough blowouts. Both types consist of a deflation basin with erosional walls, where 

sand is removed, and a depositional lobe, where sand accumulates (Hesp, 2002). Trough blowouts in the 

foredune are wind-driven and connect the beach to the backdunes, forming a passage for aeolian sand 

transport beyond the foredune. On the other hand, saucer blowouts develop on dune crests and are 

mainly governed by the availability of bare sand (Schwarz et al., 2019). 

Particularly the creation of artificial foredune blowouts have proved to be an effective and sustainable 

measure in restoring dune dynamics (Schwarz et al., 2019). One successful implementation can be found 

in National Park Zuid-Kennemerland (NPZK) near Bloemendaal, where five foredune notches were 

excavated in 2012 and 2013 to increase habitat diversity and mitigate biodiversity loss inwards of the 

foredunes (Fig. 3) (Kuipers et al., 2016). In the following years, Ruessink et al. (2018) observed sand 

deposition over 100 m inlands of the blowout complex, indicating their large-scale geomorphological 

impact. Since the excavation, ca. 75% of all wind-transported sand has been deposited beyond the  

foredune, while before that time all sand remained seawards of the foredune. This shows the high 

effectiveness of the blowout complex in facilitating aeolian transport into the backdunes (Ruessink et al., 

2018). 

The ecological impact of blowouts has not been extensively studied yet. Hesp stated in 1991 that the 

stress blowouts impart on the surrounding landscape can increase the abundance of pioneer species of 

early successional stages. He also noted that when a blowout is eroded down to the water table and 

erosion ceases, a species-rich dune slack could develop (Hesp, 1991). A study by Van Boxel et al. (1997) 

found that in the three years after the creation of a number of artificial saucer blowouts in the Midden 

Heerenduin dunes near Haarlem, the species composition of moss patches in the deposition area shifted 

from the burial-intolerant  Campylopus introflexus and Hypnum cupressiforme towards the burial-tolerant 

Hypnum cupressiforme. They did not observe any indications that shrubs or marram were (negatively) 

 

Figure 3: The foredune notches of the Bloemendaal blowout complex, seen from the beach. Photo taken in March 2022. 
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affected by the blowouts’ deposition (Van Boxel et al., 1997). Finally, in a study by Laporte-Fauret et al. 

(2021) focusing on two artificial foredune notches in southwest France during one year, found a positive 

relation between disturbance through sand deposit and species richness, contradicting theoretical 

ecology models. The authors hypothesized that the increase in species richness was due to an increase in 

ruderal plant species while stress-tolerant pre-blowout vegetation was still surviving burial, and they 

expected that over longer timescales, species richness would decrease again (Laporte-Fauret et al., 2021). 

1.4. A bird’s-eye view on vegetation 
Although these studies offer some insight, much is still unknown about the large-scale response of coastal 

dune vegetation dynamics to abrupt changes in the abiotic environment, such as artificial blowout 

creation. For a good scientific understanding of these vegetation dynamics, as well as good dune 

management, it is important to monitor the distribution and surface area of the different coastal dune 

habitats. To do so, vegetation maps are an invaluable tool, since they can provide an overview of the 

habitat composition of an entire landscape at a glance. Well-known vegetation maps for the Dutch coastal 

dunes includes the 1:50,000 vegetation map for the entire Dutch coast by Doing (1988), compiled over a 

period of ca. 13 years, and the Dutch Natura 2000 habitat type map, assembled from over 100 smaller-

scale maps by AERIUS (part of the RIVM, the Dutch National Institute for Public Health and the 

Environment). The latter vegetation map is updated regularly and is used to compute nitrogen deposition 

excesses in Natura 2000 regions. 

Traditionally, the vegetation data required to create such vegetation maps is obtained by surveying the 

target area’s vegetation in the field (Pedrotti, 2012). However, this method is both time-consuming and 

expensive, which limits its use in monitoring areas on longer timescales and at larger scales. In recent 

years, advancements in remote sensing technology and machine learning algorithms have given rise to 

more efficient methods of creating vegetation maps, in which self-learning algorithms are trained to 

classify vegetation from remote sensing data (Xie et al., 2008). These methods eliminate the need for 

extensive field surveys. 

For coastal dune ecosystems, such methods have yielded high classification accuracies for vegetation 

classification using a maximum likelihood classification algorithm (Suo et al., 2019) and a Support Vector 

Machine (Medina Machín et al., 2019), with overall accuracies of respectively 78% and 88%. However, 

these results were achieved using multispectral UAV-data, which requires specialistic sensors to obtain – 

as such, data collection is more expensive and not much multispectral aerial imagery is publicly available, 

limiting the applicability of these methods. On the contrary, high resolution RGB (red, green and blue) 

aerial imagery is both less expensive to collect, because there are no extra sensors required, and often 

already accessible. For example, annual RGB orthophotos of the entire Netherlands with a resolution of 

25 by 25 cm (since 2016) and 8 by 8 cm (since 2021) are publicly available via PDOK (pdok.nl). 

1.5. Classification with Convolutional Neural Networks 
One promising technique in vegetation classification is the use of a Convolutional Neural Network (CNN), 

a type of artificial intelligence capable of analyzing patterns in images and hereby recognizing individual 

plant species and communities (Kattenborn et al., 2021). In short, a CNN can be trained to map vegetation 

by showing it input data (like an orthophoto) along with the desired output data (a vegetation map). Once 

it has learned to produce accurate vegetation maps itself, it can be used in further applications.  

Due to hardware memory restrictions, orthophotos of larger regions are typically divided into small tiles, 

which the CNN can process separately. Previous studies have found that increasing tile size can improve 
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CNN performance (Kattenborn et al., 2020; Nevavuori et al., 2019). Furthermore, in addition to the 

orthophoto, extra information can be included in the input data as well. Specifically, several studies have 

included elevation in their CNN’s input data, with mixed results: some studies observed no clear 

improvement in CNN performance when including elevation (Kattenborn et al., 2020; Nezami et al., 2020), 

whereas Sothe et al. (2020) found that including elevation significantly increased CNN performance. This 

could indicate that the effectiveness of including elevation to increase CNN performance depends on the 

specific conditions and methods of a study. 

Vegetation-aimed CNNs have been applied successfully in a wide range of landscapes, such as forests, 

glacier foreland, rice paddies, wetlands, urban areas, and farmland with crops (Kattenborn et al., 2021). 

Several studies have shown that CNNs outperform common shallow learning approaches such as Random 

Forest, Support Vector Machine and XGBoost for remote sensing vegetation classification tasks  (e.g. 

Ayrey & Hayes, 2018; Barbosa et al., 2020; Guidici et al., 2017; Hartling et al., 2019; Knauer et al., 2019; 

Liao et al., 2020; Rezaee et al., 2018; Zhang et al., 2018; Zhong et al., 2019). Additionally, high quality CNN-

based vegetation classification can be performed with only RGB orthoimagery, without requiring 

multispectral or hyperspectral data (Kattenborn et al., 2021). 

To my knowledge, CNN has not yet been applied successfully to classify vegetation in coastal ecosystems. 

A study on land cover classification set in the San Francisco Bay Area (USA) by Guidici et al. (2017) included 

‘dune vegetation’ as class, but their CNN yielded a class accuracy of 0.0%. A similar study, conducted in 

the Danube Delta (Romania) by Niculescu et al. (2018), included ‘dunes (sand)’ and ‘dunes (vegetation)’ 

as classes. For these classes their CCN yielded F-scores of respectively 0.32 and 0.22 on a scale from 0 

(worst) to 1 (best). Both studies were focused on a larger area than just coastal dunes, which could explain 

the low CNN performance. Neither of them attempted to differentiate between different coastal dune 

vegetation types (Guidici et al., 2017; Niculescu et al., 2018). 

1.6. CNN classification of coastal dune vegetation 
In order to gain a better understanding of large-scale and long-term vegetation responses to abrupt 

disturbances such as blowout excavation and to assess the effectiveness of coastal dune management 

measures, vegetation monitoring is essential. To monitor this response, vegetation maps should be 

generated for multiple years to track vegetation development over time. However, traditional methods 

of obtaining these maps are time- and cost-expensive, making them unsuitable for this purpose. 

Therefore, a CNN is considered as faster and more accessible option. 

This thesis’ aim is to develop a CNN able to classify coastal dune vegetation from high-resolution aerial 

RGB imagery. The Bloemendaal blowout complex has been selected as study site, because of the 

blowouts’ geomorphological importance and the availability of high resolution orthophotos for each year 

since 2013. The study consists of a vegetation survey, to gain an understanding of the ecosystem at the 

species- and community level, a UAV-survey to obtain recent high resolution aerial imagery and the 

development of a CNN able to classify the vegetation from this imagery. To better understand the 

vegetation of the study site, and to assess to what extent a CNN is able to classify this vegetation, four 

research questions will be answered: 

• Which vegetation classes can be distinguished in a coastal dune ecosystem, and how well does a 

CNN distinguish these? 

• To what extent does inclusion of elevation data as extra input data affect CNN performance? 

• To what extent does the input of different orthophoto tile dimensions affect CNN performance? 
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• Which factors affect the CNN classification performance of different coastal dune vegetation 

classes? 

In the next chapter, an overview of CNNs and their inner workings will be given. Next, in the Methods 

chapter, the study site will be introduced, as well as the methodology of the vegetation survey and CNN 

development. The findings of this thesis will then be presented in the Results chapter, including the 

vegetation map obtained by CNN classification from aerial imagery. The results will be discussed and put 

in a wider context in the Discussion. Finally, the Conclusion will review what was achieved in this thesis 

and provide an outlook for further research. 
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2. THEORY OF CONVOLUTIONAL NEURAL NETWORKS 

A CNN is a special type of Artificial Neural Network (ANN), a digital network modelled after the nervous 

system’s natural neural network. The strength of these ANNs is that, when faced with a problem, they are 

able to learn how to solve that problem through training (Shrestha & Mahmood, 2019). In that way, they 

behave similar to a mammalian brain – albeit much, much simpler (for now). There are many different 

types of ANN, for a wide range of applications: for instance, image and speech recognition, translation, 

question answering and predicting drug molecule activity (Lecun et al., 2015). However, despite the high 

number of different specializations, the basis of these ANNs is often quite similar. 

2.1. Basic ANN structure 
The most basic unit in an ANN is the node, or neuron (Fig. 4). Nodes work similar to mathematical 

functions: they take one or multiple inputs, perform some type of computation and then return one or 

multiple outputs. After the node operation, a non-linear activation function is performed that determines 

whether the node is switched on or off, by transforming the output into a given range. The non-linearity 

of activation functions allows for learning complex patterns. One of the most common activation functions 

is a ReLU (Rectified Linear Unit) which can be expressed as follows (Lin & Shen, 2018): 

𝑓(𝑥) = {
𝑥, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

 

A neural network is built up of interconnected nodes, with nodes performing the same operation grouped 

together in layers. The first ANNs had an architecture, or internal node structure, consisting of one layer. 

More recently, ‘deep learning’ neural networks were conceived, networks with hidden layers between 

the input and output layer to enable them to perform more complex analyses on the original input (Lecun 

et al., 2015). In a feedforward neural network, such as the one used in this thesis, information can only 

flow in one direction from input to output, without looping back to previous layers (see Fig. 4) (Shrestha 

& Mahmood, 2019). 
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Figure 4: Basic structure of a single neuron (node) and an artificial neural network. 
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There are multiple ways to connect the network’s layers: for instance, one could choose a ‘fully-

connected’ approach and connect all nodes in a layer to all nodes of a previous layer (as shown in the 

schematic ANN in Fig. 4). The downside of this approach is its inefficiency and its proneness to overfitting 

(LeCun et al., 1990). 

2.2. Introducing CNN 
In 1990, LeCun et al. presented the first CNN: 

a new type of neural network, able to 

recognize handwritten digits from zip codes 

on envelopes. Instead of a fully-connected 

network, this network was locally connected: 

since it was developed especially for pattern 

recognition in images ‘shortcuts’ were used 

for a better performance. More specific, the 

network could extract local feature 

information to classify the digits. For example, 

a 1, 4 and 7 all contain a diagonal line slanted 

forwards in some location, and a 2, 4, 5 and 7 

all contain a vertical line. The network detects 

these types of local features using convolution; the base operation in all CNNs (LeCun et al., 1990). 

An example of convolution is shown in Fig. 5. For a convolution, specific features in the input data are 

detected using a kernel, or filter, and then stored in a feature map. In this case, the input is the a 4 × 4 

matrix that represents the letter J. The kernel is a 3 × 3 matrix that contains a weight in each cell. In this 

case, the weights are chosen such that the kernel can detect vertical lines in the input data. For an 𝑛 × 𝑛 

input matrix, the output feature map has a size of (𝑛 − 2) × (𝑛 − 2). 

During the convolution, the kernel is superimposed on the input matrix, and the dot product of the kernel 

and the kernel-‘covered’ part of the input matrix is calculated. The resulting value is stored in the feature 

map at the kernel location. The process is repeated for each possible kernel position on the input matrix, 

filling the feature map. In Fig. 5, the feature map indicates the presence and position of vertical lines in 

the input matrix: there is a vertical line in the top right. A feature map for a specific feature can be used 

as input in another convolution layer, allowing for ‘deeper’ pattern recognition.  

Besides convolution layers, information can be ‘downsampled’ by being passed through pooling layers, 

which reduce the spatial dimensions of the information. The most common type of pooling operation is 

max pooling. In this thesis, 2 × 2 max pooling with 

stride 2 is used, as shown in Fig. 6: a 2 × 2-sized part 

of the input matrix is selected, starting in a corner; 

for this part, the highest value is stored in an output 

matrix. The selection shifts two cells (stride 2) to the 

right and the process is repeated. At the end of the 

row, the selection shifts two cells down and the 

process is repeated for another row, until the entire 

input matrix has been pooled into the output layer. 
 

Figure 6: Example of max pooling operation with stride 2. 

 

Figure 5: Example of a convolution operation. Note that although 

in this example only 0s and 1s are used for simplicity, this does not 

need to be the case in real CNNs. The bold squares indicate the 

kernel location on the input matrix and the corresponding cell in 

the output feature map. 
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The benefit of pooling layers is that through reducing the resolution of the input information, convolution 

layers can detect higher-level features. For example, consider applying a 3 × 3 convolution to the photo 

of a cat shown in Fig. 7 in different resolutions. At a resolution of 128 by 128 pixels, a 3 × 3 convolution 

can detect small-scale features, such as whiskers. By reducing the image’s resolution, a 3 × 3 convolution 

can detect larger features such as triangular ears. By combining the features from different levels, the 

CNN can make a more accurate classification. 

2.3. Classification per pixel 
The first CNNs all returned one classification per image, e.g. “cat” if the image showed a cat. For vegetation 

classification from aerial imagery, however, one image can contain multiple classes (e.g. “sand”, “water” 

and “trees”), and therefore one classification per image becomes insufficient. In 2015, Ronneberger et al. 

presented a solution for this: the U-net architecture, which enables  segmentation: classification per pixel 

instead of per image. 

In this thesis, a U-net architecture is used, shown in Fig. 8. Rectangles represent feature maps, and arrows 

represent layer operations. The spatial dimensions of the feature maps are displayed at their sides, the 

number of (feature) channels is displayed above the feature maps. The input for the U-net (top left) is an 

 

Figure 7: Photo of a cat with different pixel resolutions. 

 

Figure 8: Schematic view of the U-net architecture (Ronneberger et al., 2015). Each rectangle represents a feature map, with 

spatial dimensions indicated at the side and number of channels indicated above the rectangle. Layer operations are indicated 

with colored arrows. The input (top left) is an RGB orthophoto tile of 128 by 128 pixels and 3 channels (RGB). The output (top 

right) has the same spatial dimensions as the input, but has 6 channels, one for each class. 
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RGB image (3 channels) of 128 by 128 pixels. The 

output has the same spatial dimensions, but has a 

channel for each class the CNN aims to detect – in this 

case 6 channels. The layers of the U-net architecture 

are arranged in a contracting path (downwards) and an 

expansive path (upwards), making the full architecture 

U-shaped (Ronneberger et al., 2015).  

In the contracting path, features are extracted from the 

input at increasingly high levels by repeated 3 × 3 

convolutions followed by a ReLU, and downsampling 

through 2 × 2 max pooling layers with stride 2. In the expansive path, localization is implemented through 

‘up-convolution’ which essentially maps features to pixels.  An up-convolution combines ‘upsampling’ (Fig. 

9), where spatial dimensions are increased again, with a 2 × 2 convolution halving the number of feature 

channels. This feature map is then concatenated with the corresponding feature map from the contractive 

path, to combine features at different levels. For pixels close to the border, missing input data required 

for max pooling is retrieved by mirroring (Ronneberger et al., 2015). 

The last layer of the network performs a 1 × 1 convolution, which serves to transform the information 

from the feature channels into a classification for each class. An output activation function is applied to 

transform the output into a specific range for further analysis (Ronneberger et al., 2015). 

2.4. Training the CNN 
CNNs are trained through ‘supervised learning’, where the network is trained using a dataset of input data 

combined with pre-classified reference data (Alloghani et al., 2020). During the training phase, the weights 

of the convolution kernels are optimized to minimize the difference between the model’s classification 

and the reference data, expressed in a ‘loss function’. This is achieved with a backpropagation learning 

algorithm (Mizutani, 1994). To minimize the loss function, several optimizer algorithms can be used, all 

with their own strengths and applications (Kingma & Lei Ba, 2015). 

For the training of the model, the reference dataset is typically split in three parts: a training set, a testing 

set and an evaluation set. The evaluation set is put aside and 

not used for training, to be able to evaluate the CNN with 

unfamiliar data. The training and testing set are both used for 

training: weight optimization is performed using the training 

set, and the testing set is used to evaluate how the model 

performs on unfamiliar data for each pass of the full training 

set through the CNN (‘epoch’). If the CNN is trained for too 

many epochs, or if the training dataset is too small, the model 

can start overfitting (Fig. 10): the accuracy for the training 

dataset keeps increasing because the model learns features 

highly specific to the training dataset, but as a result the 

accuracy for the testing dataset decreases. 

Typically, the training data is passed through the model in 

‘batches’ instead of all data at once. After each batch, model 

parameters are updated. Small batches require less system 

 

Figure 10: Schematic model of training set 

accuracy (blue) and test set accuracy (red) 

during CNN training. The dashed line indicates 

the optimal number of epochs – beyond that 

number, the model starts to overfit. 
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Figure 9: Example of upsampling of a 𝟐 × 𝟐 matrix. 
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memory, an important limitation for large datasets, and since the model parameters are updated more 

frequently the model learns faster. However, small batch sizes do lead to a longer computation time per 

epoch, and because data in small batches can be uneven the model does, so to speak, not always learn in 

the right direction. 

While the CNN’s parameters, such as the kernel weights of the convolution operations, are altered by 

training, the CNN also has intrinsic settings that remain unchanged throughout the training process. These 

settings, such as the used loss function, optimizer, number of epochs and batch size, are called ‘hyper-

parameters’. 

2.5. CNN evaluation 
Before applying the trained CNN to real-life problems, its performance should be evaluated on the 

evaluation set not used during training. There are several common metrics to assess CNN performance, 

as discussed by Kattenborn et al. (2021). For this thesis overall accuracy was used to evaluate full CNNs, 

and F-scores to evaluate the performance of one CNN for different classes. 

The overall accuracy is the ratio of true classifications over the total number of classifications. For 

multiclass classification, only true positives (TP) need to be considered, because a true positive for one 

class automatically corresponds to true negatives for the other classes. The total number of classifications 

is then equal to the sum of true positives and false negatives (FN). 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 

The F-score of a class 𝑖 is computed by taking the harmonic mean of its precision and recall. Precision 

indicates how many positive classifications per class are actually true positives (as opposed to false 

positives, FP), whereas recall indicates how many true positives were positively classified. Because an F-

score uses both these values, it is sensitive to both underestimation and overestimation (Kattenborn et 

al., 2021). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 

𝐹𝑖 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑖
 

To my knowledge, there is no confidence interval associated with the F-score, and vegetation mapping 

studies do not tend to define acceptable lower limits of accuracy, precision, recall or F-score. At the 

minimum, the CNN should perform better than a ‘baseline model’ such as the ZeroR classifier, which 

predicts the most-frequent class (e.g. Osco et al., 2020; Wani et al., 2022). Additionally, in many studies 

the CNN performance is compared to the performance of a simpler model, such as RF or SVM, to ascertain 

that using a more complex model does in fact improve model performance (e.g. Barbosa et al., 2020; 

Guidici et al., 2017; Rezaee et al., 2018; Zhang et al., 2018). 
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3. METHODS 

The methodology consisted of two main parts. First, a vegetation survey was conducted to study  the 

coastal dune vegetation in the Bloemendaal blowout complex on the species level, and analyze the 

composition of different vegetation communities. Following the vegetation survey, a CNN was developed 

and trained to map coastal dune vegetation communities from high-resolution orthophotos, using aerial 

imagery from the Bloemendaal blowout complex. These two sections will be discussed separately, after a 

short introduction of the study site. 

3.1. Study site 
This study was conducted in the Bloemendaal blowout complex, shown in Fig. 11 (52°25'35"N, 4°33'35"E). 

It is located in the Netherlands between Bloemendaal and IJmuiden between the regional 

RijksStrandpalen beach poles indicating 59.25 and 60.25 km (see Fig. 1). The study site stretches ca. 950 

m along the North Sea coast, from the coastline to 550 m inlands. It covers the beach, foredune (ca. 20 m 

in height) with trough blowouts, and part of the grey dunes beyond the foredunes. The dunes in this 

region are young and contain high concentrations of CaCO3 (Eisma, 1968). The study site is part of National 

Park Kennemerland-Zuid (NPKZ), which is managed by drinkwater company PWN. Since 2004, it is also a 

Natura 2000-area.  

Figure 11: Orthophoto (a) and elevation map (b) of the study site. In (a), the five notches in the foredune of the blowout 

complex are indicated with blue arrows. The scale of (a) and (b) is the same. The orthophoto was assembled from the March 

2nd 2022 UAV survey, the elevation map shows the DEM generated from this survey. 
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The blowout complex in the study site was created to return sand dynamics beyond the foredune. It is 

part of the Noordwest Natuurkern project, a collaboration of PWN, Natuurmonumenten and 

Hoogheemraadschap van Rijnland. In the winter of 2012 - 2013, five troughs were dug in the foredune, 

100 to 150 m wide and ca. 12 m deep. In total, 120,000 m3 of sand were removed (Kuipers et al., 2016). 

Over the years, the blowout complex has evolved considerably. The alongshore profile of the notches 

changed from V- to U-shaped troughs (visible in Fig. 3). The notches deepened as well, although they are 

still above the limit for coastal safety of 6 m above mean sea level (Ruessink et al., 2018). 

Before the blowout complex was excavated, the site consisted of one continuous, dike-like foredune 

covered with marram, and a hinterland with open dune grassland (grey dunes and dune slacks), grass-

encroached areas and buckthorn thickets (Everts et al., 2005). Like many Dutch coastal dune areas, NPKZ 

is negatively affected by excessive nitrogen deposition and subsequent grass encroachment and loss of 

biodiversity. Besides the creation of the blowout complex, PWN has introduced Scottish Highland cows, 

Konik and Shetland Ponies to the landscape to increase grazing pressure. NPKZ also houses rabbits, roe 

deer (Capreolus capreolus) and fallow deer (Dama dama) (Valdés-Correcher et al., 2018).  

3.2. Vegetation survey 

3.2.1. Fieldwork 
A vegetation survey was performed to determine the vegetation composition in the study area and 

prepare for the visual identification of vegetation on aerial photos. 56 points were selected with a random 

stratified sampling method (Parsons, 2017), using Normalized Difference Vegetation Index (NDVI) data 

from the Copernicus Sentinel-2 satellites. 4 strata were used to cover the successional stages from bare 

sand to fully vegetated. In total, 4 bare sand points were selected, 8 sand/early pioneer vegetation points, 

20 pioneer vegetation points and 24 fully vegetated points, to account for increasing species diversity in 

later successional stages. The points were obtained in ArcGIS Pro (Esri, USA) by reclassifying the NDVI map 

into 4 strata, transforming the resulting map into polygons and computing the number of samples per 

strata per polygon using this formula: 

𝑃𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 =
𝑝𝑜𝑙𝑦𝑔𝑜𝑛 𝑎𝑟𝑒𝑎

𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑟𝑎𝑡𝑎 𝑎𝑟𝑒𝑎
× 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑠𝑡𝑟𝑎𝑡𝑎 

The random points were then created using the ‘Create Random Points’ function in ArcGIS. 

Between February 22nd and March 7th in 2022, 44 of the selected points were surveyed (Fig. 12). The other 

points could not be accessed in time before bird nesting season started and access to the study site 

became restricted. At each point, a plot of 4 by 4 meter was set out. The exact location of the plots was 

measured with a differential global positioning system (DGPS). In the plots, the coverage of each plant 

species present was recorded. A vegetation expert assisted with identifying the dune flora. Scientific 

vegetation nomenclature followed Heukels’ Flora van Nederland 24th edition (Duistermaat, 2020) for 

vascular plants, and De Nederlandse Bladmossen (Touw & Rubers, 1989) for mosses.  Due to difficulties 

differentiating between species of small grasses (<10 cm in height), they were excluded from the data 

analysis entirely. In June, a return trip to the site was made to assess seasonal changes and confirm shrub 

identities (which had no leaves during the vegetation survey). 
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3.2.2. Statistical analysis 
Statistical analysis of the vegetation data was performed to 

differentiate between the different coastal dune vegetation 

communities. All analyses were done in an R environment 

(version 4.0.0, R Core Team (2020)), using the packages vegan 

(Oksanen et al., 2022) and isopam ( Schmidtlein et al., 2010). 

First, the plots were clustered into vegetation classes based on 

plant occurrence and coverage using the Isopam classification 

algorithm (Schmidtlein et al., 2010, isopam function isopam), 

excluding plants occurring in one plot only and plots without 

vegetation. The classes were named based on their 

characteristic species and correspondence to known vegetation 

classes from literature.  

Furthermore, total observation cover and observed species 

richness (including all observed plants) per plot were computed 

for each vegetation class. Additionally, elevation, measured 

with the DGPS (3-4 cm error in z-direction), was used to 

determine plot elevations for each vegetation class. Finally, 

non-metric multidimensional scaling (NMDS) with Bray-Curtis 

dissimilarity coefficients was performed on the plots and plant 

species, using vegan’s function metaMDS, to assess the 

variation between the classes.  

3.3. Developing the vegetation-mapping CNN 
The development of a CNN able to map vegetation from aerial imagery was divided in seven steps, as 

described in this section. First, a UAV survey was conducted to obtain orthoimagery and elevation data of 

the study site. Next, reference data for the CNN training was obtained by manually mapping the 

vegetation in part of the orthophoto. Using this reference data, the training and evaluation datasets were 

generated. Next, the CNN architecture with chosen hyper-parameters was initiated. Next, several CNNs 

were trained and then evaluated, given the research questions, using the orthoimagery, elevation data 

and reference data obtained previously. Finally, a vegetation map of the full study site was generated 

using the best-performing CNN. 

3.3.1. UAV survey 
On March 2nd, 2022, a UAV survey was conducted to collect aerial imagery of the study site. Using a DJI 

Phantom 4 RTK UAV, 2481 images were collected. During the survey, the UAV kept a constant flight height 

between 55 and 65 m above mean sea level, without following the terrain. 

To generate an orthophoto and a Digital Elevation Model (DEM) from the UAV images, a workflow 

presented by Over et al. (2021) was followed. This workflow was specifically developed for processing 

coastal UAV imagery with Structure from Motion analysis in in Agisoft Metashape Professional Edition 

(version 1.6), the software used. First, a 3-dimensional point cloud was generated from the aerial imagery. 

The point cloud was then georeferenced using 10 Ground Control Points (GCPs, see Fig. 13), whose 

locations were measured with a DGPS. This resulted in root mean square errors (RMSE) of respectively 

0.96 cm, 0.60 cm and 1.58 cm in the x, y and z-direction, yielding a total RMSE of 1.94 cm. 

Figure 12: Locations of the plots (cyan points), 

the areas for which vegetation maps were 

generated (black squares) and the coastline 

defined to compute the plots’ distances from 

the coastline (blue line). 
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The orthophoto was generated with a resolution 

of 5 by 5 cm per pixel, high enough to recognize 

small-scale features such as individual tussocks of 

grasses, branches and footsteps in the sand. This 

made it possible to visually identify different 

types of vegetation. The DEM, generated to 

provide additional terrain information to the 

CNN, had a resolution of 1 by 1 m per pixel. The 

DEM was not corrected for vegetation heights. 

3.3.2. Reference data generation 
Reference data to train the CNN with was 

generated by manually classifying and mapping 

the vegetation in the March 2nd orthophoto of 

the study site using ArcGIS Pro. The area of the 

vegetation maps was limited to five squares of 

150 by 150 m, shown in Fig. 12, for a total mapped area of 112,500 m2. In reference to the classes 

previously distinguished in the vegetation survey analysis, five classes were defined: ‘sand’, ‘marram’, 

‘buckthorn’, ‘grey dune’ and ‘privet’. All classes were well-recognizable in the orthophoto. Anything not 

belonging to one of these classes, such as dune slacks and man-made objects, was grouped in a sixth 

category, ‘other’. A description of all classes with visual examples can be found in Table 1. 

To make the vegetation maps, the vegetation belonging to each class was marked with polygons. The 

classification was based on visual identification, aided by brightness adjustments of the orthomosaic for 

the most shaded areas. Since each pixel can only belong to one class for the CNN to work, any overlap 

between polygons was removed. Finally, the polygons were transformed into a raster map where each 

pixel was classified. 

  

 

Figure 13: A GCP (black and white square) visible in the final 

orthophoto, together with the UAV operators. The real 

dimensions of the GCP are 50 by 50 cm. 
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Table 1: The vegetation classes distinguished in the vegetation maps. All examples are cutouts of 10 by 10 m in the orthophoto. 

Note that the specific class may not cover the entire image. 

Class Description  Examples 

Sand Bare sand without vegetation. Can contain 
shell/rubble fragments. 

 

 
Marram Calamagrostis arenaria-covered area. 

Includes areas where bare sand is visible in 
between tussocks, excludes marram present 
in grey dune vegetation. 

 

 
Buckthorn Hippophae rhamnoides-covered area.  

 
Grey dune Grey dune vegetation, recognizable by high 

moss coverage. Typically individual plants 
were too small to be distinguished. In some 
places, marram tussocks were present. 

 

 
Privet Wild privet (Ligustrum vulgare) shrubs.  

 
Other All other terrain. Both other vegetation 

types and man-made objects. The example 
on the left contains a dune slack in the 
bottom half. 
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3.3.3. Preparation of the CNN training and evaluation dataset 
Preparation of the CNN training dataset, 

training and evaluation of the models and 

subsequent data analysis was done in an 

R environment (version 4.0.0, R Core 

Team (2020)) with the Keras API (Allaire 

& Chollet, 2022) and TensorFlow backend 

(Allaire & Tang, 2022). To work with the 

geospatial data, the R packages sf 

(Pebesma, 2018), meteo (Kilibarda et al., 

2015) and raster (Hijmans, 2022) were 

used. R scripts of the code will be made 

available alongside this thesis. 

To train and evaluate the CNN models, 

datasets including both input data 

(orthophoto and DEM) and desired 

output data (vegetation map) were prepared. For these datasets, the data had to be divided into smaller 

tiles, to avoid exceeding available computer memory space. To test the effect of tile size on CNN 

performance, two datasets were assembled, one with tiles covering 5 by 5 m of the study site, and one 

with tiles covering 10 by 10 m. It was expected that increasing the tile size would give the CNN more 

context and improve its accuracy. 

To make the datasets, first the orthophoto, vegetation maps and DEM were imported in R. The DEM was 

rescaled so that its values ranged from 0 to 255. Next, the orthophoto, vegetation maps and DEM were 

cropped into tiles using meteo’s tiling function. This yielded 4500 tiles of 5 by 5 m, and 1125 tiles of 10 by 

10 m. The tiles were stored as .jpg images (orthophoto) or .png images (vegetation maps and DEM) of 200 

by 200 pixels. The vegetation map tiles were stored as six separate images, one for each class. In each 

image, pixels were either black (0, class absent) or white (1, class present), as shown in Fig. 14. The 

separation of the classes in different images facilitated the division of one class per channel further in the 

preparation process (‘one-hot encoding’). 

3.3.4. The CNN architecture and hyperparameters 
For the CNNs, the U-net architecture (Ronneberger et al., 2015) was implemented using the unet function 

in the unet package. The U-net architecture has a characteristic U-shape and returns output with the same 

spatial dimensions as the input, so that each pixel is classified individually. The full architecture is shown 

in Fig. 8 and further discussed in the Theory, Section 2.3. The CNNs’ input is either 3 channels (RGB) or 4 

channels (RGB and DEM). Their output is 6 channels, one per class. 

The hyper-parameters of the model are listed in Table 2. As output activation function, the softmax 

function was chosen. This function transforms the output so that each value is scaled to range between 0 

to 1, such that the sum of values of all channels (representing classes) is 1 for each pixel. Therefore, the 

values can be interpreted as probabilities of the pixel belonging to each class. As loss function, categorical 

cross-entropy was chosen, which is very suitable for the multi-class classification of the CNNs in this thesis 

(e.g. Chen et al., 2020). Finally, the Adam optimization algorithm (Kingma & Lei Ba, 2015) was selected as 

optimizer because it has low memory requirements and high computational efficiency, and because it is 

well-suited for large datasets. 

 

Figure 14: Example of one-hot encoding of a vegetation map tile (left): 

each class has its own image (right) with black or white pixels. When the 

six images are decoded and merged into one tensor with six channels, 

each pixel will contain one 1 value, and five 0 values. 
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3.3.5. Training the CNNs 
With the reference datasets and the untrained CNNs, 

the CNNs were trained. In the training workflow (Fig. 

15), the full datasets were first split in evaluation and 

training datasets, containing respectively one and two 

thirds of the tiles. For the 5 by 5 m tile dataset, this 

resulted in 1500 evaluation tiles and 3000 training 

tiles, for the 10 by 10 m tile dataset respectively 375 

and 750 tiles. The evaluation tiles were not used in the 

training process. 

For each training session, the tiles used for training 

were split at random in a training and testing set, 

respectively containing 80% and 20% of the tiles. This 

was done with the initial_split function in the rsample 

package (Silge et al., 2021). To ensure that the CNN 

could ‘read’ the data, the image tiles were converted 

to tensors, one for input (with 3 or 4 channels for RGB 

and DEM) and one for output (with a channel per 

class, 6 in total). To keep the spatial resolution the 

same, the 5 by 5 m tiles were resized to 128 by 128 

pixels, and the 10 by 10 m tiles to 256 by 256 pixels. 

To prevent the emergence of grey pixels in the 

vegetation map tiles, the resizing was done using 

nearest neighbor interpolation. The tiles in the 

training set were shuffled and augmented by flipping 

them at random (50% chance of flipping) and rotating 

them randomly in increments of 90 degrees. This was 

done to prevent the CNN from ‘learning’ to classify the 

vegetation based on arbitrary patterns such as the 

direction of shadows. 

CNN types were named for their input tile dimensions (5x5 or 10x10) and whether their input included 

DEM (RGB or RGB-DEM). In total, four different types of CNNs were trained: 5x5 RGB, 5x5 RGB-DEM, 

10x10 RGB and 10x10 RGB-DEM. For each type, 5 CNNs were trained to assess the effect of chance (in 

splitting, shuffling and augmentation of the dataset) on the CNNs’ final accuracy.  

 

Figure 15: Workflow to train and evaluate the CNNs. 

Processes are indicated with rounded rectangles. 

Table 2: Hyper-parameters of the CNNs. 

Hyper-parameter Value 

Input channels 3 (RGB) or 4 (RGB-DEM) 

Activation function Softmax 

Optimizer Adam 

Loss function Categorical cross-entropy 

Batch size 8 (5x5) or 1 (10x10) 

Number of epochs 15 (5x5) or 50 (10x10) 

 



 
 

26 
 

The actual training was performed on a computer with a CUDA-compatible NVIDIA GPU (NVIDIA GeForce 

RTX 3060). The batch sizes (how many tiles the CNN is presented with at a time) and epochs (how many 

times the full training set is repeated) were chosen to obtain optimal accuracy within the limits of available 

memory. These considerations are also discussed in Section 2.4. For the 5x5 CNNs it was possible to have 

a batch size of 8. These CNNs were trained for 15 epochs, when the accuracy of the test dataset stopped 

increasing. Due to memory restrictions, the 10x10 CNNs were trained in batch sizes of 1. These took longer 

to reach their optimum test accuracy in training, and were therefore trained for 50 epochs. 

3.3.6. Evaluating the CNNs 
The models were evaluated with the evaluation tiles not used in training. To compare the 20 trained CNNs, 

overall accuracy was used as performance metric (Section 2.5). Performance differences between model 

types were analyzed using a Welch two-sample t-test, with differences being considered significant if p < 

0.05. 

The CNN with the highest overall accuracy was analyzed further to assess its accuracy per class. To do so, 

the CNN was used to classify each pixel in each tile in the evaluation dataset, counting the true positives, 

false positives and false negatives per class, as well as the total numbers of pixels per class in the reference 

data. From these values, the F-score and overestimation per class were computed. Furthermore, a 

confusion matrix was computed by counting all predicted classifications for each true class (from the 

reference data). Lastly, to understand the spatial patterns of misclassifications better, a misclassification 

heatmap was generated by summing the misclassifications per pixel of all the evaluation tiles. 

3.3.7. Using the CNN to make vegetation maps 
In the final step, the CNN with the highest overall accuracy, one of the 10x10 RGB CNNs, was used to 

classify the vegetation of the entire study site. To do so, the orthophoto was divided into 5 sections in 

ArcGIS, to prevent overloading the computer’s memory. The orthophoto sections were then imported 

into R. Each section was divided into tiles of 10 by 10 m, using meteo’s tiling function, which were 

converted into tensors with 3 channels (RGB) and 256 by 256 pixels for the CNN. The preprocessed tiles 

were used as input for the CNN, which returned a classified tile, with one channel per class. For each 

channel/class, the classified tile was converted into a raster with geospatial data (from the original tile), 

using raster’s raster and setExtent functions. 

Finally, all raster tiles for the same class were merged, for all 5 sections, using raster’s merge function. 

This resulted in 6 maps of the study area, one for each class, showing the probability of a class being 

present for each pixel. These 6 maps were exported into ArcGIS. In ArcGIS, a vegetation map was 

constructed, with pixels classified as the class with the highest probability for that pixel. Additionally, a 

probability map was constructed, showing the highest probability per pixel as measure of the CNN’s 

confidence in its classification. 
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4. RESULTS 

4.1. Vegetation survey 
Between February 22nd and March 7th 2022, 44 plots in 

the Bloemendaal blowout complex were surveyed to 

analyze the ecosystem’s vegetation composition. Five of 

the plots were bare, without any vegetation, and were 

therefore excluded from the vegetation analysis. In the 

other 39 plots, a total of 34 plant species were observed 

(excluding short grasses, <10 cm). Most frequently 

observed were Calamagrostis arenaria (marram, in 30 

plots), Hippophae rhamnoides (sea buckthorn, in 25 

plots) and Rubus caesius (European dewberry, in 19 

plots). The full list of observed species and their 

occurrence frequencies can be found in Appendix A. 

Clustering of the vegetated plots using the Isopam 

classification algorithm yielded four distinct vegetation 

classes. Examples of these classes, as well as bare sand, 

are shown in Fig. 16. The classes are characterized as 

follows: 

• Marram-dominated vegetation (14 plots): This class 

was characterized by high marram cover, which was 

present in each plot. Other species occurring 

frequently were Rubus caesius and to a lesser extent 

Hippophae rhamnoides.  

• Buckthorn-dominated vegetation (11 plots): 

Characteristic species for this class were Hippophae 

rhamnoides, which was present in all plots, and the 

tall grass Calamagrostis epigejos. 

• Grey dune vegetation (8 plots): This class had a high 

number of characteristic species: mosses (Hypnum 

cupressiforme, Syntrichia ruralis and Tortella 

flavovirens), a fern (Polypodium vulgare) and several 

herbs (Jacobaea vulgaris, Cerastium 

semidecandrum, Geranium molle, Erodium 

cicutarium, Cardamine hirsuta, Myosotis 

ramosissima, Saxifraga tridactylites and Fragaria vesca). 

• Transition/other vegetation (6 plots): The last class, named ‘transition/other vegetation’, included 

both grass-encroached plots (with as characteristic species Carex arenaria) and plots on a border or 

gradient between grey dune or marram-dominated vegetation and buckthorn-dominated vegetation. 

 

Figure 16: Examples of plots with the vegetation 

classes assigned by the Isopam algorithm. (a) bare 

sand (excluded from vegetation analysis), (b) 

transition/other vegetation, (c) marram-dominated 

vegetation, (d) buckthorn-dominated vegetation, (e) 

grey dune vegetation. Photographs taken during the 

vegetation survey in February-March 2022. 
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Other characteristic species were Rubus caesius, present in all 6 plots, and Viola tricolor, present in 2 

plots. 

The different classes showed clear differences in vegetation cover (Fig. 17a) and observed species richness 

(Fig. 17b) per plot. The transition/other class has a wide range in both observed species richness (median 

of 6.5) and vegetation cover (median of 65%). The marram-dominated class has the lowest observed 

species richness, with a median of 3, and together with the transition/other class the lowest vegetation 

cover (median of 65%) as well. The marram-dominated class also covers plots containing embryonal 

dunes, which could be one of the causes for the relatively low vegetation cover and species richness. The 

buckthorn-dominated class had a higher median vegetation cover (80%) and observed species richness 

(4) than the marram-dominated class, although for both these classes variation between plots was high. 

The grey dune class, lastly, has a median species richness of 13, indicating its biodiversity is far higher than 

for the other classes. It also has a median vegetation cover of 92.5%, very dense compared to the other 

classes. Both cover and species richness have a much narrower range as well, indicating stronger 

delineated boundaries of this vegetation class. 

Comparison of plot elevation for bare sand and the different vegetation classes (Fig. 17c) shows strong 

variation and large overlap between the classes, indicating that they occupy the same elevation range. 

Overall, sand plots had the lowest elevation (median of 11.3 m, mean of 9.2 m), and buckthorn plots the 

highest (median of 14.7 m, mean of 13.4 m). All elevations were measured from ground height, so 

vegetation height is excluded from the total elevation. 

 

Figure 17: Boxplots of vegetation cover (a), observed species richness (b) and elevation (c) per plot during the vegetation 

survey in February-March 2022, grouped by vegetation class as assigned by the Isopam clustering algorithm. Small grasses 

(<10 cm) were included in the vegetation cover estimations, but excluded from the observed species count. Elevation was 

derived from the March 2nd DEM. 
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To study the variation between and within the vegetation classes further, a NMDS computation of the 

plots and species was performed. The resulting NMDS (Fig. 18) shows the plots arranged in a triangular 

pattern, with plots of marram-dominated vegetation, buckthorn-dominated vegetation and grey dune 

vegetation each occupying one corner of the triangle. The plots of the class previously dubbed 

‘Transition/other vegetation’ are, indeed, in the center of the triangle, in between the other three classes. 

One notable aspect of the NMDS plot distribution is the lack of clear boundaries between classes: some 

plots assigned to different classes were similar enough to overlap. Although the grey dune plots are 

grouped close together, indicating relatively high homogeneity within this class, the other plots are more 

scattered. The NMDS also shows a gradient in species richness from left to right: on the left, Calamagrostis 

arenaria is the only species present, in line with the low species richness observed in the marram-

dominated plots. On the right the density of species is high, with a clear cluster of grey dune-specific 

species including mosses and small herbs. In the top of the NMDS, where the buckthorn-dominated plots 

are located, Hippophae rhamnoides is clustered together with the tall grasses Carex arenaria (sand sedge) 

and Calamagrostis epigejos (wood small-reed). Rubus caesius (European dewberry) and Ligustrum vulgare 

 

Figure 18: NMDS of the plots surveyed in the vegetation survey (colored by vegetation class as assigned by the 

Isopam algorithm) and observed species (dark blue points). Points that are closer together in the plot co-occur 

more often in the survey. For reading clarity, names of species occurring in less than five plots are not shown in 

the plot. 
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(wild privet) are located in the middle of the triangle, in the transition space, suggesting they are not 

strongly bound to one specific class. 

4.2. CNN performance for different input data types 
The 20 CNNs that were trained all achieved overall accuracies within a range of 67-76%. The highest 

overall accuracy was 75.8%, achieved by one of the 10x10 RGB models. This model was selected for the 

CNN-based vegetation classification of the entire study site. Furthermore, for this model the performance 

was evaluated for each class separately as well. A summary of the overall accuracies for each CNN type is 

listed in Table 3. 

The inclusion of additional elevation data as CNN input was not found to affect model performance. 

Although there were differences between the mean RGB and RGB-DEM overall accuracies, the difference 

was not significant for either the 5x5 tiles (p = 0.968) or the 10x10 tiles (p = 0.122). The results did seem 

to suggest that DEM inclusion lead to a lower variance of the models (i.e. a lower standard deviation), but 

this was not investigated further. 

The tile size, however, did have a significant impact on model performance. The mean overall accuracy of 

the 10x10 RGB-DEM models was 4.3 percentage points higher than that of the 5x5 RGB-DEM models, a 

significant difference with p = 0.004. The difference in tile size for the RGB models was not significant (p 

= 0.093).  

Table 3: Evaluation of CNN performance for each type of CNN. For all types, n = 5. 

CNN type Mean accuracy (st. dev.) (%) Maximum accuracy (%) 

5x5, RGB 70.6 (2.27) 73.1 

5x5, RGB-DEM 70.7 (1.72) 73.2 

10x10, RGB 73.2 (2.04) 75.8 

10x10, RGB-DEM 75.0 (0.47) 75.6 

4.3. Class-based and spatial patterns in CNN performance 
As stated previously, the best-performing 10x10 RGB model was selected for further performance analysis 

and to map the vegetation of the full study site. For the CNN classes (see Table 1 for examples), the classes 

bare sand, marram-dominated vegetation, buckthorn-dominated vegetation and grey dune vegetation 

were adapted from the vegetation survey. The class ‘privet’ (Ligustrum vulgare) was added to distinguish 

privet and buckthorn shrubs (see Section 5.2.2 in the Discussion). Vegetation previously grouped in the 

vegetation class ‘transition/other’ was either split in the relevant classes when it was on a transition 

between two main vegetation classes, or grouped under ‘other’ if it was a different vegetation type (such 

as grass-encroached terrain). 

The evaluation per class, summarized in Table 4, shows strong differences in performance between the 

six different classes. For sand, grey dune, marram and buckthorn, the model achieved F-scores between 

0.74 and 0.90, showing that the model could recognize and distinguish them very well. Privet and other 

scored significantly lower, with F-scores of respectively 0.30 and 0.50. For most classes, the total surface 

area as classified by the CNN was in good agreement with the class’s surface area in the reference data, 

with less than ±5% overestimation (Table 4). The two exceptions were sand, with an overestimation of 

7.5%, and privet, with an underestimation of 67.8%. 
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The F-score of a class appears to be positively 

correlated with the class’s relative surface area in 

the reference data (Fig. 19, 𝑅2 =  0.579): sand has 

both the highest surface area and F-score, and 

conversely privet has both low surface area and F-

score. Grey dune, however, achieved a higher F-

score than would expected from its relative 

surface area (10.5%) alone. 

To further analyze the CNN’s misclassifications, a 

confusion matrix was computed (Fig. 20), showing 

the CNN’s classifications for each class. On the 

diagonal lie the true positive classification 

fractions, where the predicted class matches the 

true class. These true positive fractions are highest 

for sand (93%) and grey dune (78%), and lowest for 

privet (20%) and other (49%) – in line with the 

overall F-scores listed in Table 4.  

Overall, the CNN performed worst for privet, which was only correctly identified for 20% of the true privet 

pixels. Privet was most often misclassified as buckthorn (28%) and ‘other’ (18%). Although privet had a 

high number of false negatives, there were barely any false positives, indicating a high precision: if the 

CNN classifies a pixel as privet, it probably is privet. Besides privet, the CNN appeared to have difficulties 

 

Figure 19: F-score per class as function of relative surface 

area. 

 

Figure 20: Confusion matrix for the best-performing CNN, listing the fractions of CNN-

predicted classes for each true class (based on the reference data). The colors (blue = low, red 

= high) were added for readability. 

Table 4: Evaluation of the best-performing CNN per class. 

Class Area in reference data (%) F-score Overestimation (%) 

Sand 33.1 0.90 + 7.5 

Marram 20.7 0.76 + 3.2 

Buckthorn 16.6 0.74 + 0.7 

Grey 10.5 0.79 - 1.5 

Privet 4.3 0.30 - 67.8 

Other 14.8 0.50 -3.2 
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with the ‘other’ class, yielding high numbers of 

both false positives and false negatives. With 

exception of sand, for all other classes over 10% 

of the pixels was misclassified as ‘other’. On the 

other hand, pixels of class ‘other’ were often 

misclassified as sand (22%) or marram (16%). 

Finally, to gain a better understanding of how the 

errors were distributed spatially on the input tiles, 

a heatmap was generated of the distribution of 

misclassified pixels. For this, the full evaluation 

dataset was used, containing 375 tiles of 10 by 10 

m (256 by 256 pixels). The highest number of 

misclassifications per pixel was 129 (34.4% of the 

total classifications), the lowest number 63 

(16.8%). The misclassification heatmap (Fig. 21) is 

quite uneven, indicating that the randomness of 

spatial patterns in the input tile contents is a 

significant factor in the misclassification heatmap. However, in the heatmap it is clear that 

misclassifications occur more often close to the edges and particularly the corners of the tiles. 

Additionally, there is also a ‘hotspot’ just south of the tile center. 

4.4. CCN-based vegetation classification of the full study area 
Using the best-performing CNN, a vegetation map of the full study area was generated based on the 

March 2nd 2022 orthophoto (Fig. 22a and b). The full-size version of this map is included as attachment to 

this thesis, because of its large size (A2, scale 1:2,000).  

The vegetation map (Fig. 22b) clearly shows the beach (bare sand) and marram-covered foredune ridge, 

interspersed by the five blowouts. The blowouts’ depositional lobes, angled towards the northeast, reach 

lengths of over 400 m landwards. The vegetation bordering the depositional lobes mainly consists of 

marram. Further away from the bare sand, marram is succeeded by sea buckthorn shrubs and grey dune 

grassland. The vegetation here appears varied, with small-scale patches of buckthorn, grey dune, privet 

and ‘other’ vegetation. 

The dominant vegetation classes (excluding bare sand) in the Bloemendaal blowout complex are marram, 

buckthorn and grey dune. These three seem balanced, without one class clearly overpowering the others. 

There are also some privet thickets present in the blowout complex (see also the close-up in Fig. 23a), but 

they did not cover large areas and were not recognized well by the CNN (Fig. 23b). There are also some 

areas labeled as ‘other’ in the vegetation map (Fig. 22b), which could be other vegetation types (like dune 

slack vegetation or tall grass-encroached areas), misclassified marram, buckthorn, grey dune or privet, or 

something artificial such as the bicycle track in the south of the blowout complex. However, the ‘other’ 

surface area is quite low compared to the surface area of sand, marram, buckthorn and grey dune. 

 

 

Figure 21: Spatial distribution of misclassifications in the 375 

evaluation data tiles. The tiles are 256 by 256 pixels and 

represent 10 by 10 m. 
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Figure 22: The March 2nd orthophoto (a), corresponding CNN-classified vegetation map (b) and classification probability 

map (c) of the Bloemendaal blowout complex. The black square in the maps indicates the location of the close-ups 

shown in Fig. 23. 
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One feature the CNN did not handle well is the water of the dune slacks in the northeast of the study site 

(Fig. 22a), which was not included in the CNN training dataset. The CNN classified the water areas primarily 

as either grey dune or buckthorn, whereas the correct classification would be ‘other’. Furthermore, 

particularly in the regions with more varied vegetation further inlands, an edge effect has occurred: 

classification patterns clearly show the tile edges as borders between different classes (Fig. 23b).  

Besides the vegetation map, a corresponding probability map was also generated (Fig. 22c). This map 

gives the probability of each pixel classification being true (according to the CNN) and gives an indication 

of the CNN’s confidence. The probabilities per pixel ranged between 0.20 and 1, with a mean probability 

of 0.88. Generally, the bare sand on the beach and in the blowouts and deposition lobes had the highest 

probability, whereas in vegetated areas probabilities were lower (Fig. 22c). Zooming in, it appears that 

probabilities are lowest at boundaries between different classes, in particular in areas where different 

vegetation classes form small patches (Fig. 23c).  

 

Figure 23: Close-up of the orthophoto (a), vegetation map (b) and probability map (c). The close-up is 40 by 40 m in size, and its 

location in the blowout complex is indicated in Fig. 22. The legends of the vegetation map and probability map are the same as 

in Fig. 22.  
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5. DISCUSSION 

5.1. Mapping coastal dune vegetation with CNN 
The results of this thesis show that using a CNN in combination with remote sensing data is a promising 

method for coastal dune vegetation mapping, achieving an overall classification accuracy of 75.8%. The 

best-performing CNN was a multiclass CNN trained on RGB input data with tile dimensions of 10 by 10 m. 

Although there are still a number of improvements that must be made before the CNN can be used in 

practice, this overall accuracy of 75.8% is already comparable to those achieved in vegetation mapping 

studies with similar use of remote sensing data and machine learning. 

While there has not been much focus yet on coastal dune ecosystems in the field of CNN vegetation 

mapping, the CNN presented in this thesis can be compared to CNNs trained for other ecosystems. For 

example, Kattenborn et al. (2019) achieved accuracies between 84% and 90% for classification of species 

and communities in forests and glacial foreland. These significantly higher accuracies could in part be due 

to their study sites being less dynamic in terms of vegetation burial by sand, which complicated 

classification. Another possible factor is that they trained CNNs to detect one specific species or 

community, instead of classifying all vegetation types in the study area. This would make the classification 

task less complex, which could improve overall accuracy. 

Compared to coastal dune vegetation mapping studies, the overall accuracy of 75.8% achieved in this 

thesis is comparable to the ones obtained by Suo et al. (2019), who used a maximum likelihood 

classification algorithm using either RGB or multispectral data and obtained overall accuracies of 

respectively 68.5% and 78.2%. Conversely, (Medina Machín et al., 2019) obtained a significantly higher 

overall accuracy of 88.03% with a Support Vector Machine using multispectral data and texture 

information. Potentially, improvements of the CNN (which will be discussed further below) could lead to 

accuracies approaching or even surpassing the ones obtained using multispectral data. This could be a 

very worthwhile endeavor, as it would eliminate the need for relatively inaccessible and expensive 

multispectral data to create vegetation maps from remote sensing data. 

5.2. The coastal dune vegetation in the Bloemendaal blowout complex 

5.2.1. The main vegetation classes 
The main vegetation classes found during the vegetation survey (Fig. 16) were marram-dominated 

vegetation, buckthorn-dominated vegetation and grey dunes. Additionally, some of the plots were 

unvegetated (bare sand), and some plots were grass-encroached or on a boundary between two of the 

main vegetation classes (transition/other vegetation). Within the main vegetation classes, biodiversity in 

vegetation (measured as observed species richness, Fig. 17b) increased from marram-dominated 

vegetation, with a species richness median of 3, via buckthorn-dominated vegetation to grey dunes, with 

a species richness median of 13. 

The main vegetation classes found during the vegetation survey are comparable to the habitat types in 

the Natura 2000 framework for dry coastal dune ecosystems discussed in the Introduction (Section 1.1): 

marram-dominated vegetation with ‘white dunes’ (H2120), buckthorn-dominated vegetation with ‘dunes 

with Hippophae rhamnoides’ (H2160) and grey dune with ‘grey dunes’ (H2130). The similarity of the 
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vegetation survey classes and Natura 2000 habitats indicates that no important vegetation classes were 

missed during the survey.  

Because of limited access to the study site during the bird nesting season, the vegetation survey was 

conducted in late February and early March, when most plants were not blooming yet. Nevertheless, with 

assistance from a dune vegetation specialist all but one plant species could be identified to the genus or 

species level, except for the small grasses. The unidentified small grasses mainly occurred in the grey dune 

vegetation, which could indicate that grey dune biodiversity was actually underestimated in the 

vegetation survey. 

Additionally, the time of surveying could have influenced the observed species richness and coverage 

values. For example, the annual plants found during the vegetation survey were mainly winter annuals 

blooming in early spring, while summer annuals had not sprouted yet. Other, perennial plants, did not 

have leaves during the vegetation survey (e.g. Rubus caesius), which strongly limited their relative 

vegetation cover. However, even though exact species composition and characteristics might vary 

between seasons, the return visit in June and the literature on coastal dune ecology (as reviewed in 

Section 1.1) both indicate that the general vegetation class characteristics observed in the vegetation 

survey are reliable. 

5.2.2. Translation from vegetation to CNN classes 
The main vegetation classes found in the vegetation survey could be effectively translated into classes for 

the CNN because they were well-distinguishable by eye on the high-resolution orthophoto of the blowout 

complex (see Table 1 for examples). Besides the classes sand, marram, buckthorn and grey dune, the 

classes ‘privet’ and ‘other’ were added as CNN classes. The shrub privet (Ligustrum vulgare) was chosen 

because, while it is a shrub just like buckthorn, it could potentially be interesting to distinguish between 

the two: buckthorn is a pioneer shrub associated with primary succession, whereas privet only establishes 

in areas with further soil development in later succession stages (Provoost & Declerck, 2020). Additionally, 

grazing patterns on privet and buckthorn differ (Valdés-Correcher et al., 2018), which could have 

implications on the introduction of grazers to the coastal dune landscape as measure against shrub 

encroachment. The class ‘other’ was added because for a multiclass CNN such as the one in this thesis, all 

pixels must be classified. 

One difference between the vegetation classes in the vegetation survey and the CNN classes were their 

spatial boundaries: whereas in the survey multiple plots were found on a transition between two main 

vegetation classes (such as between buckthorn and grey dune vegetation), in the CNN reference data 

boundaries were often drawn at a higher resolution (the level of individual shrubs), removing these 

‘transition’ vegetation types. Furthermore, grass-encroached (non-marram) areas were included in the 

class ‘other’. Besides these differences, the CNN classes were very similar to the vegetation classes from 

the vegetation survey. 

Additionally, the CNN classes can be translated into the habitat types in the Natura 2000 framework for 

dry coastal dune ecosystems. This is particularly relevant because it allows for comparison of the CNN’s 

results with other studies, which also often use the Natura 2000 habitats. In the future, the CNN could be 

used for vegetation studies in Natura 2000 regions, for better ecological understanding and better nature 

management.  
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5.2.3. The blowout complex’ vegetation map and vegetation distribution 
In the CNN-generated vegetation map of the Bloemendaal blowout complex (Fig. 22b) a clear sea-inland 

successive gradient of the main vegetation classes can be seen, for example in the southernmost area. 

The beach, where conditions are too harsh for vegetation to grow, consists of bare sand. The foredune is 

covered with marram, a pioneer which thrives on sand burial. Further landward, marram is succeeded by 

buckthorn and then grey dunes. This succession in vegetation classes also indicates that the species 

richness increases along the sea-inland gradient, in line with a global  trend in species richness in coastal 

dune ecosystems (Tordoni et al., 2021).  

The clear successional gradient, with linear zonation of vegetation along the coastline, is strongly 

disrupted by the five blowouts. Their depositional lobes reach hundreds of meters inland, and bordering 

is pioneer vegetation – marram, one of the earliest successional stages. This implies that the creation of 

the artificial blowout complex was effective in ‘resetting’ the vegetation to earlier successional stages – 

also 9 years after creation. There is not one clearly dominant vegetation type, although there would 

presumably be far less marram present without the blowouts increasing sand dynamics inland of the 

foredune. Not much privet can be seen, assigned partially to the CNN’s difficulties recognizing privet, and 

partially because these dunes are not old enough yet for a strong privet presence. 

To analyze the effect of the blowout complex on the vegetation further more knowledge on the vegetation 

distribution before the excavation of the blowouts is required. For this, the 1:5,000 vegetation map of the 

Kennemer dunes published in Everts et al. (2005)2 was compared to the 1:2,000 CNN-classified vegetation 

map. The 2005 map shows the continuous marram-covered foredune and backdunes that are almost 

entirely vegetated, with barely any patches of bare sand – rather different from the current situation. The 

vegetation in the backdunes in 2005 showed a patchwork of different vegetation types, just like the 

present-day and also reported by Doing in 1988. Generally, the vegetation classes were the same in both 

maps, although Everts et al. (2005) distinguished far more specific subclasses (>20 in the study site) and 

also included dune slack vegetation, which was not included in this thesis’ vegetation classes since the 

vegetation close to dune slacks was not surveyed. 

In 2005, the vegetation appeared to be dominated by buckthorn and other shrubbery like wild privet, 

European dewberry (Rubus caesius) and common hawthorn (Crataegus monogyna), and additionally 

some areas were fully encroached by tall grasses, such as sand sedge (Carex arenaria). Although there 

were some grey dune areas present in 2005, all grey dune area was classified as ‘poorly developed’.  

Particularly in the southmost part of the study site, grey dune area has increased significantly from 2005 

to 2022. This could indicate that the blowout complex is effective in promoting grey dune vegetation, a 

very promising sign considering the high ecological value and priority habitat status of grey dune 

grasslands (Council of the European Commission, 1992). However, more research must be conducted to 

separate the blowout complex’ influence from that of other measures such as introduction of great 

grazers and manual buckthorn removal. Either way, this change shows that it is possible to recover grey 

dune areas in shrub- and grass-encroached coastal dune areas. 

 
2 A pdf of this report (in Dutch) can be accessed at https://eco-on-site.nl/mirrors/pwn-puur-
natuur/pdfs/vegetatiekartering_kennemerduinen_2005_everts_ea,_2006.pdf. The vegetation map covering the 
study site is on page 135. 

https://eco-on-site.nl/mirrors/pwn-puur-natuur/pdfs/vegetatiekartering_kennemerduinen_2005_everts_ea,_2006.pdf
https://eco-on-site.nl/mirrors/pwn-puur-natuur/pdfs/vegetatiekartering_kennemerduinen_2005_everts_ea,_2006.pdf
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5.3.  Effects of additional input data on CNN performance 

5.3.1. Elevation data as extra information 
The overall accuracies of the 20 CNNs trained with or without additional elevation data (Table 3) do not 

show a significant improvement obtained by the inclusion of elevation data. This is in line with the 

elevation of the plots of different vegetation classes in the vegetation survey (Fig. 17c), which showed 

strong overlap between the classes. This indicates elevation would be unhelpful in distinguishing between 

them. Inclusion of elevation data in other CNN vegetation mapping studies have led to mixed results: 

Kattenborn et al. (2020) and Nezami et al. (2020) did not find significant improvements of elevation data 

on CNN performance, similar to the findings in this thesis. On the other hand, a study by Sothe et al. (2020) 

found that inclusion of elevation data significantly increased CNN performance. 

A potential option to use elevation data for improved CNN performance would be to use elevation data 

with higher spatial resolution. The DEM used in this thesis was not corrected for vegetation height and 

had a resolution of 1 by 1 m per pixel. By increasing the resolution, to for example to the same resolution 

as the orthophoto (5 by 5 cm), the DEM could aid in recognizing borders of vegetation. For example, the 

edge of a buckthorn or privet shrub in a grey dune area could be recognized by the height difference of 

the two classes. If effective, this would be particularly useful because the CNN’s confidence (measured as 

highest probability) was lowest at borders between classes (Fig. 23c). 

5.3.2. Alternatively: cross-shore distance data as extra information 
An alternative type of additional CNN input data could be 

the distance from the coastline, or cross-shore distance. 

Since the coastal dune ecosystem is characterized by sea-

land vegetation gradients and linear zonation, distance from 

coastline could be a better indicator of which vegetation is 

found on what location. To test this, an additional 

vegetation analysis was performed by computing distance 

from a pre-defined coastline (shown in Fig. 12) for each plot 

in ArcGIS, and processing this data in the same way as the 

elevation data (discussed in Section 3.2.2). The resulting 

boxplot is shown in Fig. 24. It shows that sand is generally 

closer to the coastline than the other classes and grey dune 

further, but also that there is a lot of overlap between 

transition/other, marram- and buckthorn-dominated 

vegetation. Since the classes sand and grey dune are already 

distinguished relatively well by the CNN (Table 4), it is 

unclear if additional cross-shore distance information would 

have made a significant difference on CNN performance. 

However, the relationship between vegetation type and 

distance from coastline might be more pronounced in 

coastal dune systems with a continuous foredune, without 

blowouts that disrupt the linear vegetation zonation. This 

would require further study. If inclusion of distance from 

coastline did improve CNN performance in more linear dune 

systems, however, it might unintentionally create a bias 

 

Figure 24: Boxplot of distance from coastline 

(cross-shore distance) per plot, grouped by 

vegetation class as assigned by the Isopam 

clustering algorithm. 
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against vegetation in the ‘wrong’ location, such as the marram meadows in the blowout complex that 

stretch out into the backdunes. Perhaps a better course of action would be to improve the CNN’s ability 

to classify vegetation based on RGB information only, so that additional information would not be 

required either way. 

5.4. Effects of input tile size on CNN performance 
Comparison of the performances of the CNNs using either 5 by 5 m or 10 by 10 m input tile size shows 

that doubling the input tile dimension significantly improves CNN performance (Table 3). This is in 

accordance with other studies by (Nevavuori et al., 2019) and (Kattenborn et al., 2020), which found that 

CNN performance significantly improved when increasing tile size respectively from 10 to 40 m and 2 to 

5 m. The improvement at larger tile size could be due to the relatively smaller number of pixels located 

close to the tile edges and corners, which have less spatial ‘context’ provided by surrounded pixels. These 

pixels must be classified with less available information, and are therefore more prone to be misclassified 

(as seen in  Fig. 21). This explanation implies that, if computer memory limitations would allow it, 

increasing the tile size further could improve the CNN’s performance even more. 

The difficulties of classification edge and corner pixels relate to the edge effect visible in Fig. 23b, where 

the straight lines and right angles of the tile edges are visible. This effect is quite common in CNN mapping 

studies. To prevent it, an effective approach is to generate the vegetation map twice or thrice, with shifted 

origin positions, so that the tile borders of the multiple maps overlap. These overlapping maps can then 

be averaged to obtain an edge-less vegetation map (T. Kattenborn, personal communication, June 24, 

2022). 

5.5. CNN performance per class 

5.5.1. General remarks 
The analysis of performance (measured as F-score) per class showed that the CNN’s performance varied 

strongly for the different vegetation classes (Table 4). Sand and grey dune were recognized best, with F-

scores of respectively 0.90 and 0.79, whereas privet and other were recognized worst, with F-scores of 

respectively 0.30 and 0.50. Overall, F-score was found to be positively related to total surface area in the 

reference dataset (Fig. 19). This can be explained by the fact that if the CNN is trained on more data from 

a certain class, it has more examples to learn how to recognize that class. Additionally, if the area fraction 

of a class is higher in the reference data, misclassification of that class will have a larger penalty during 

the training, so correctly classifying that class becomes more rewarding.  

Besides the area in the reference data, the visual homogeneity of a class could also be a factor in how well 

the CNN recognizes it. Both grey dune and sand look relatively even, without much variation in patterns 

and colors, and particularly for grey dune (which covered 10.5% of the reference data) this could explain 

its relatively high F-score. 

The best-performing CNN’s overall accuracy of 75.8%, which means that a quarter of its classifications 

were misclassifications. Considering the confusion matrix (Fig. 21), most errors appear to be related to 

the ‘other’ class and privet class, as well as vegetation classes that tend to border each other in the coastal 

dune ecosystem. The latter could partially have been due to the reference vegetation maps being 

constructed out of polygons, which approximated the real vegetation borders but did not exactly follow 

them. 
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5.5.2. Privet 
As percentage, the class misclassified most 

often was privet, which was only correctly 

classified in 20% of the total classifications 

(Fig. 20). However, overall this did not have 

a great effect on the overall accuracy, since 

privet had a very low surface area (4.3%, 

Table 4). The low surface area can also 

explain why the CNN performed so poorly 

for this class. The confusion matrix showed 

that privet was most commonly 

misidentified as buckthorn (Fig. 20), 

presumably due to the visual similarity of 

the two shrubs.  

Besides including more privet in the 

reference data, a solution for the CNN’s 

poor performance for privet could be to merge the ‘buckthorn’ and ‘privet’ classes into a new class: 

‘thicket’, which could decrease the CNN’s specificness but potentially increase its overall accuracy. 

Alternatively, the CNN might distinguish privet and buckthorn better if an orthophoto from a different 

season was used for training. In the March 2nd orthophoto used in this thesis, neither buckthorn nor privet 

carried any leaves. During the return visit to the study site in June, both shrubs looked very different (see 

Fig. 25 for buckthorn). More generally, the CNN could be trained on reference data from summer or 

autumn, to learn how to distinguish vegetation in different seasonal stadia. Potentially, one CNN could be 

trained for all seasons so that it could be applied any time of the year. This approach has proven to be 

successful before, for instance for the land cover classification set in the San Francisco Bay Area (USA) by 

Guidici et al. (2017).  

5.5.3. Other vegetation and terrain types 
The ‘other’ class was also challenging for the CNN. Correctly classified in 49% of the total classifications, 

this class was also associated with a large amount of false positives, e.g. other classes were misclassified 

as ‘other’. Most misclassified ‘other’ pixels were classified as sand instead (22%), and to a lesser amount 

marram (16%). Confusion with sand can for example be seen in Fig. 23, where the bicycle road has for the 

most part been classified as sand. Additionally, three storms hit the Netherlands on February 16th, 18th, 

and 20th (named Dudley, Eunice and Franklin, see Mühr et al. (2022)), about two weeks before the UAV 

survey was conducted. This resulted in much vegetation, especially marram and buckthorn close to bare 

sand areas, being partially buried by sand. The resulting terrain was complicated to classify: not bare sand 

since the tips of marram blades were visible, but not convincingly marram either. Therefore, these areas 

were sometimes classified as ‘other’, but that might have caused confusion for the CNN. 

Additionally, the ‘other’ class was a highly diverse catch-all of any area not belonging to the other five 

classes, including other vegetation, ambiguous terrain and human-built objects. Such heterogeneity might 

complicate the identification of features characteristic for this class. To improve the CNN’s accuracy and 

increase the its specificness, the ‘other’ class could be divided in multiple classes, such as ‘artificial 

structures’, ‘grass-encroached area’, ‘buried vegetation’ and ‘dune slack vegetation’. This would require 

 

Figure 25: Buckthorn thickets in February (left) and in June (right). 
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more reference data to properly train the model, but could both increase overall accuracy and make the 

model more broadly applicable.  

One terrain type that occurred in the orthophoto but not in the reference dataset was water (Fig. 22a, 

northeast). The CNN incorrectly classified this as either grey dune or buckthorn, which leads to an 

overestimation to the total surface area covered by these vegetation classes. Since dune slacks are a 

frequent feature in coastal dune ecosystems (e.g. Doing, 1995; Grootjans et al., 2004), it is essential to 

include water in the CNN’s training process before it can be applied to a wider range of coastal dune 

regions. 

5.6. Outlook 

5.6.1. Combining CNN vegetation mapping with vegetation surveys in the field 
While CNN can offer a very good addition to large-scale vegetation studies, field surveys remain 

indispensable for monitoring and understanding vegetation dynamics on the species level. Although 

different habitats are well-recognizable on high resolution orthophotos, by eye and by CNN, individual 

plants cannot typically be discerned. Therefore, a combination of CNN-based vegetation mapping and 

vegetation surveys can be used to monitor different vegetation 

types and their composition and biodiversity over time. Although 

including vegetation surveys is more time-consuming, it could 

have a number of benefits in understanding vegetation 

dynamics. 

Firstly, single plants can easily be overlooked on large-scale 

orthophotos and resulting vegetation maps, even if their 

presence could give extra information on their local abiotic 

conditions. For instance, during the return visit to the study site 

in June 3rd 2022, the burial-dependent pioneer Cakile maritima 

was encountered at the back of one of the depositional lobes 

(Fig. 26). This plant typically lives seawards of the foredune (Davy 

et al., 2006), so its presence on the depositional lobe could 

indicate landward aeolian transport of C. maritima seeds via the 

blowout complex. 

Additionally, with vegetation surveys abundance of invasive 

species that affect coastal dune dynamics can be monitored. For 

example, in the vegetation survey the invasive exote Senecio inaequidens was found in 20.5% of the 

vegetated plots. S. inaequidens is burial-tolerant and was found both in the grey dunes and white dunes. 

A recent study on interactions between S. inaequidens and marram by Van De Walle et al. (2022) found 

that S. inaequidens promotes marram growth, suggesting an increase in S. inaequidens could accelerate 

coastal dune succession. Understanding such dynamics on a small scale could help in understanding them 

on a large scale. 

5.6.2. Potential further CNN applications 
The field of CNN vegetation mapping is rather new and is developing fast. It offers great potential for 

ecological surveys – after the time-intensive reference data generation and CNN training phases, the 

actual mapping of the study site took just a few hours. While the CNN with the highest accuracy in this 

 

Figure 26: Pioneer Cakile maritima found at 

the edge of a deposition lobe, landwards of 

the foredune. 
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thesis still must be optimized much more before it can be used for reliable vegetation mapping, there are 

many possible applications once it is ready for them. 

Firstly, the CNN can be employed on other orthophotos of the Bloemendaal blowout complex to create a 

time series of vegetation changes after the blowouts’ excavation. Orthoimagery collected in February and 

March is also available for 2015, 2017, 2019 and 2020, so without additional training for season-

dependent vegetation changes the vegetation could be tracked over a period of 7 years. Additionally, if 

the CNN was trained to recognize vegetation throughout different seasons, orthophotos going back to 

2013 with at least one per year could be used to follow vegetation changes starting right after the blowout 

complex was fully excavated. This would both benefit the scientific knowledge about large-scale coastal 

dune vegetation response to disturbances, and provide information for effective coastal dune 

management. 

Beyond Bloemendaal, the CNN could be applied to other Dutch coastal dune systems. Via PDOK 

(www.pdok.nl), annual RGB orthophotos of the Netherlands (including all coastal dune areas) with 

resolutions of 25 by 25 cm (since 2016) and 8 by 8 cm (since 2021) are publicly available. Although the 

CNN would need further training to recognize more different types of vegetation and dune slacks properly, 

in the future it could possibly be used to provide a vegetation map of the entire Dutch dune system. This 

could be used to distinguish country-wide vegetation patterns and trends depending on e.g. nitrogen 

deposition, grazing pressure, visitor counts or chemical sand composition. 

http://www.pdok.nl/
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6. CONCLUSION 

The main accomplishment in this thesis is the development of a CNN capable of classifying coastal dune 

vegetation from high-resolution RGB orthoimagery, achieving an overall accuracy of 75.8%. To my 

knowledge, this is the first CNN specifically developed for mapping coastal dune vegetation. The CNN is 

able to recognize the main vegetation classes found in the coastal dunes, corresponding to Natura 2000 

habitat types, which makes it potentially useful for ecological studies and nature management. Although 

this CNN’s overall accuracy should be optimized further to reduce the 24.2% misclassifications, a future 

CNN could be used for vegetation time-series and large-scale vegetation maps as well. This would make 

it a highly valuable tool in understanding coastal dune dynamics. 

To improve the CNN’s accuracy, the reference data could be expanded to include more classes, in 

particular the classes ‘water’ and ‘grass-encroached vegetation’ which were missing in the present CNN. 

On the other hand, elevation data can be excluded in future CNNs as it was not found to significantly 

improve CNN accuracy, presumably because there was no clear relationship between elevation and 

vegetation type. Furthermore, reference data could be adjusted to have a better balance between the 

different classes, as a positive relationship was found between a class’s surface area in the reference data 

and the CNN’s performance for that class. Finally, with better hardware, input tile size could be increased 

more, which was found to increase accuracy by reducing the CNN’s misclassifications that were observed 

mainly close to tile edges and borders. 

In general, the efficiency with which a CNN can map vegetation from relatively accessible RGB 

orthoimagery could have a large impact on the field of ecology. It is still a very young field, and 

developments are following each other up quickly. As coastal dune ecosystems are deteriorating under 

high levels of stress, and measures are taken to recover them, it is very important to understand how 

coastal dune vegetation responds to stress and disturbances, also on long timescales and over large areas. 

Hopefully, CNN will be able to help us understand this better in the future, and aid in restoring and 

protecting the coastal dune ecosystem from further threats. 
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APPENDIX 

Appendix A: List of species observed during the vegetation survey 
Species Family Frequency 

Bryophyta (mosses) 

Hypnum cupressiforme Hypnaceae 11 

Syntrichia ruralis Pottiaceae 10 

Tortella flavovirens Pottiaceae 2 

Polypodiopsida (ferns) 

Polypodium vulgare Polypodiaceae 2 

Angiosperms (flowering plants) 
Monocots (grasses and grass-like plants) 

Calam agrostis arenaria Poaceae 30 

Calamagrostis epigejos Poaceae 7 

Carex arenaria Cyperaceae 16 

Eudicots 
Shrubs 

Berberis vulgaris Berberidaceae 1 

Hippophae rhamnoides Elaeagnaceae 25 

Ligustrum vulgare Oleaceae 8 

Rubus caesius Rosaceae 19 

Herbs 

Anthriscus caucalis Apiaceae 1 

Cardamine hirsuta Brassicaceae 9 

Cerastium semidecandrum Caryophyllaceae 14 

Claytonia perfoliata Montiaceae 1 

Cynoglossum officinale Boraginaceae 1 

Erodium cicutarium Geraniaceae 8 

Fragaria vesca Rosaceae 2 

Galium sp. Rubiaceae 3 

Galium verum Rubiaceae 6 

Geranium molle Geraniaceae 7 

Glechoma hederacea Lamiaceae 3 

Jacobaea vulgaris Asteraceae 18 

Myosotis ramosissima Boraginaceae 8 

Plantago sp. Plantaginaceae 1 

Saxifraga tridactylites Saxifragaceae 4 

Senecio inaequidens Asteraceae 8 

Sonchus arvensis Asteraceae 1 

Stellaria media Caryophyllaceae 11 

Unidentified herb - 1 
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Species Family Frequency 

Urtica urens Urticaceae 1 

Veronica arvensis Plantaginaceae 4 

Vicia lathyroides Fabaceae 1 

Viola tricolor Violaceae 2 

 


