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Summary

Section 1 motivates the reader to read this thesis by introducing topological data analysis (TDA). This
thesis studies a particular problem in TDA, and motivation for the research and exact content is given.
Related works are discussed together with remarks about the methods used.

Section 2 introduces the reader to simplicial complexes’ geometric and combinatorial nature. Images and
discussion is provided for readers not familiar with the topic.

Section 3 defines the main example complexes of interest: the Čech, Čechr(X), Delaunay, Delr(X), and
E-selective Delaunay, Delr(X,E), complexes. Figures show a few examples and an equivalent method
to compute the complexes. This method is defined at the hand of minimal spheres called MEES.

Section 4 dives into the computation of MEES, which are equivalent to solving a quadratic optimisation
problem. A theorem turns this quadratic optimisation into an affine combination problem with con-
straints. The implications for the MEES are discussed.

Section 5 describes a method to reduce the size of a simplicial complex while retaining the (simple)
homotopy type. Such a reduction is called a collapse. The collapses are characterised in the existence of
specific acylic pairings of elements in the complex called a discrete vector field.

Section 6 shows an example of reducing a selective Delaunay complex into a smaller one using a discrete
vector field. Afterwards, the main theorem, stating that this procedure can be done more generally, is
proven. A corollary is that the Čech complex collapses into the Delaunay complex.

Section 7 repeats the theory of the previous sections 2 to 5, specialised in the symmetric/equivariant case.

Section 8 is the symmetric/equivariant analogue of section 6. An example is showcased of how the gen-
eral proving structure works, and the equivariant version of the main theorem is proven.

Section 9 shows corollaries of the main theorem and describes an example calculation of the persistent ho-
mology types of Delaunay complexes in a simple configuration. A question is raised about non-symmetric
data which have a proper symmetric subset.
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1

Introduction

1.1 Topological Data Analysis: intuitively
Extraction of information from large data sets that are incomplete and noisy is generally challenging.
Topological data analysis (TDA) provides a general framework to analyze data in a manner that is robust
to noise. As the observed data is not random, it is reasonable to assume that the data inherits some
notion of shape.

An example of TDA

Figure 1: T he Čech method

In Fig. 1 there are seven data points. It looks like the points have the shape of a circle, how can we make
that concrete? By enlarging the size of the points, visualised as ’thickening’, the resulting collection of
disks looks like a thick circle. When two disks start to overlap, indicate this by a line. If three disks
overlap, draw a triangle. The resulting shape is a collection of lines and triangles which approximately
look like a version of the circle. Intuitively, it might be apparent that moving the points slightly, leads
to a slightly different construction. This slight change makes the method robust to noise in the data.

Topology
One determinant of a shape is the number of its holes. In topology, this determinant is abstractly cap-
tured by the homotopy type [1] Chapter 4. The homotopy type is preserved when we allow the shape to be
continuously deformed into another shape. In this sense, the disk and a point are considered equivalent,
as the disk can be continuously shrunk into its centre. These deformations allow the shapes associated
with data, to be shrunk into, or at least approximated by, simpler more tractable forms. These shapes
consist of combinations of vertices, edges, triangles, tetrahedra and higher dimensional analogues, see
Fig. 1. There are multiple approaches to connecting points with edges and triangles. In figure Fig. 1,
the Čech approach is illustrated. The arising shape is called the Čech complex. The Čech complex is
straightforward to compute but the downside is its size. However, there exists another similar complex,
called the Delaunay complex, which negates the size issue of the Čech complex if the data satisfies some
general position requirements.

5



The Delaunay approach

Figure 2: Figure is taken from [2] Fig. 2

Consider the three points in Fig. 2 which have been ’thickened’ to create three disks similar to Fig. 1.
This time, a restriction is put on the area of each disk; the disk cannot pass the line in between points.
A blue edge is drawn if two restricted disks intersect. This is the Delaunay approach, where the disks
are restricted/truncated, and the resulting figure is the Delaunay complex. This is different from the
Čech complex because all three points have intersecting balls, but no triangle appears as the restricted
disks do not intersect. Therefore, the Delaunay complex is smaller.

Topological equivalence

Surprisingly, the Čech and Delaunay approach, see Fig. 1 and Fig. 2 respectively, always result in the
same number of holes. The first part of the thesis proves this by showing that the Čech complex can
be deformed into the Delaunay complex while preserving the number of holes. The second part of this
thesis is that this is also true if the points have symmetry.

1.2 Motivation for research
Topological data analysis: applications
The topic of this thesis is closely related to the field of Topological Data Analysis (TDA). It connects
data analysis, algebraic topology and discrete geometry. An introduction can be found in [3]. The field
has widespread applications in biology, chemistry, physics, psychology and many more. For example,
consider that flocking of birds can be described as collective motion. These bird flocks have complicated
3D shapes which can be investigated using TDA [4].

Topological data analysis: theoretical tools
The theoretical most precise tool to find holes is to compute the homotopy groups, as in [1] chapter
4. These homotopy groups can be complicated to compute for high dimensional objects. Especially for
the first homotopy group it is in general undecidable whether any given representation is isomorphic
to another representation as it is equivalent to the group isomorphism problem, which is undecidable.
Another way of detecting holes is through homology theory [1] Chapter 2. The homology theory can be
quite abstract but is significantly simplified for CW and simplicial complexes. This simplification also
leads to much easier computational implementations.
Unfortunately, the homology type of a particular complex is often unstable under perturbation and noise.
A sequence of complexes T1 ⊂ T2 ⊂ . . . ordered by inclusion at the hand of parameter r = 1, 2, . . . can
capture the changes in homology instead.1 This is much more stable and called the persistent homology
type [3] Chapter 5. The persistent homology (if finite) can be displayed in a canonical way, called the
barcode [5] Theorem 1.2. In practice, having more parameters i, j allows more flexibility. The resulting
persistent homology type is, unsurprisingly, called multi-parameter persistent homology. The downside

1One such example is seen in Fig. 1, where the black arrows indicate an inclusion.
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is that these are not necessarily displayable in a canonical way, see [6] Chapter 4 for an introduction and
overview.

Reduction in computation time
The computation time that algorithms take to compute persistent homology scales with the size of the
complex. Therefore, since the Čech is much larger than the Delaunay complex it could help to first reduce
the Čech complex to the Delaunay complex for computing persistent homology. This reduction has to
be done in a way that does not change the persistent homology type. One way to reduce complexes is to
sequentially remove pairs of simplices, called collapsing, in a specific manner that retains the homotopy
type. That the Čech complex can be collapsed to the Delaunay complex is a result found in [7] Theorem
5.10. However, the result requires that the data is in ’General position’, explained below.

’General position’ assumptions
Often preconditions of the data are assumed when proving that theoretical methods work. In practice,
these requirements are mild in the sense that the data is at most an arbitrarily small perturbation away
from satisfying the requirements of general position. For example, points in a concyclic configuration
are a small perturbation away of being not concyclic see Theorem 4.1 [8]. The generic name of these
assumptions is ’general position’ where the exact meaning of the term depends on the context. In our
situation of data in Euclidean space Rp, it means the following.

Definition 1.1. A set X ⊂ Rp is in general position if for at most p+1 points {p0, . . . , pn} = P ⊂ X.

• No Concyclicity: The minimal circumsphere of P contains no points of X − P .

• No affine dependence: P ′ = {p1 − p0, . . . , pn − p0} is linearly independent.

In the plane, the first condition translates into circumcircles and the second into no colinearity. A non-
example for points in the plane is seen in Figure Fig. 3. However, deciding whether there is a subset D
of X in R2 with at least k points that satisfies the second condition is NP-complete, see Theorem 1 [9].
This signifies that the problem is at least as hard to solve computationally as other NP-hard problems.

Figure 3: The points abc have the circumcircle which goes through e. Therefore, abce is not in general position.
Furthermore, bcd all lie on the same line. Therefore, they are affinely dependent. This is therefore a
point set very much not in general position.

General position and symmetry
General position, particularly the second condition of concyclicity, excludes the case of possible rotational
symmetry in the data. For example, it excludes a point set in a perfect square configuration, the orbit
of a rotation group of 4 elements. Symmetrical configurations appear in applied areas, usually because
of energy minimising properties. For example, fullerene is a carbon configuration which is symmetrical,
whose topology and geometry have been studied at the hand of measurement data [10].
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1.3 Extensions and contribution to the existing the-
ory

The result for collapsing the Čech complex into the Delaunay complex is extended in this thesis by han-
dling the case of non general position. The extension provides an affirmative answer to an open question
posed in [7] on page 19.

Extension. Let X ⊂ Rn be finite and r non-negative. Then there exists a collapse

Čechr(X) ↘ Delr(X)

The approach used is similar as in [7] and consists of finding a discrete Morse function that induces the
collapse, see Corollary 6.9.1 for the proof.
Unfortunately, if X has rotational or reflection symmetries, basic examples of data in non-general po-
sition, then the collapse is in general not symmetrical itself. To accommodate, the specific case of
orthogonally symmetric planar data X ⊂ R2 is considered to show that the collapse can be symmetrical
as well. The proof relies on a symmetric, more precisely equivariant, version of discrete Morse theory as
discussed by [11].

Contribution. Let G be a finite group acting orthogonally, i.e. reflections and rotation, on R2. Let X
be a finite G-set in R2 and r non-negative. Then there exists a G equivariant collapse

Čechr(X) ↘G Delr(X)

This statement is proven in Corollary 8.19.1.2
We do not explore higher dimensions than the planar case. A complication, but not necessarily an ob-
struction in higher dimensions, is the much larger number of Euclidean symmetries that can appear.

Similar to [7] Theorem 5.9, both theorems arise as corollaries proving a similar result holds for complexes
in between the Delaunay and Čech complexes. These complexes are called E selective Delaunay com-
plexes, denoted as Delr(X,E) where E ⊂ X. A corollary of these statements, as noted in [7] page 18, is
an inclusion-like map between two Delaunay complexes with different point clouds X ⊂ Y . Specifically,
we have the following commutative diagram.

Delr(X) Delr(Y,X)

Delr(Y )
∼

This map is natural in r, which also indicates that there is an induced map of filtrations and, hence, on
the persistent homology and thus on the barcode.

A barcode decomposition for equivariant Delaunay complexes are computed. The decomposition is com-
pared to the decomposition induced by the representation of the group on homology. The resulting group
representation is reducible but indecomposable.

We end with a question on whether persistent homology data of a symmetrical set X is captured in a
set X ⊂ Y which is not symmetric.

1.4 Related Work
This thesis is mainly focused on extending results of [7]. The methods are similar, and, therefore,
this thesis is similar. Another thesis describing Theorem 5.10 in [7] is found at [12]. The method of
background exposition in chapters 1,2 and 4 of [12] and chapters 2 and 4 of [13] served as inspiration for
the exposition in this thesis.

2The notation in Corollary 8.19.1 is different but logically equivalent.
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Related complexes
To study the topology of data, a collection of hypothetical spaces is constructed out of the data. In short,
the general TDA pipeline is: obtain data, construct a simplicial complex (or general space) out of data
and then compute (multi-parameter) persistent homology. Focusing on the second step, there are many
simplicial complexes that can be constructed out of data. A non-exhaustive list of well-known examples
are the Čech, Delaunay (or alpha shape), Vietoris Rips, Witness complex [14] and Wrap complex [15].
Applications and introductions of the Čech, Vietoris Rips, and Witness complex can be found in Chapter
2 of [16]. There is also a notion of selective Delaunay complex, which lies in between the large Čech and
smaller Delaunay complex, as introduced by [7] on page 7 and further generalised in Definition 2.21 in
[12]. In practise, there is no ’best’ complex, it all depends on the situation at hand. We expect that
most discussion of this thesis translates well to the general version of the complexes defined in Definition
2.21 [12], although no claim is made that this is the case.

In this thesis, the most important complexes are the Čech and Delaunay complex. Both complexes
accurately capture the homotopy type of the union of balls of a fixed radius around points. This result
follows from a version of the nerve lemma, Theorem 3.1 in [17]; or, for the Delaunay complex, directly if
X is in general position, see Theorem 3.2 in [18]. Between the Čech and Delaunay complex, the Delaunay
complex has better properties if the points are in general position; it is bounded by the dimension of Rn

[19] and it automatically provides a triangulation of the space. Both facts are often far from true for the
Čech complex.

The Delaunay and Čech complexes are homotopy equivalent at a single radius r, Corollary 5.1.1. However,
to conclude that their persistent homology types are isomorphic requires a particular identification to
stay consistent with different choices of r. Such an explicit homotopy equivalence, in the case of general
position, is found in [7] Corollary 6.1.

Discrete Morse theory
Discrete Morse theory can be used to shrink a simplicial complex into a smaller one while retaining the
homotopy type. Specifically, it posits that certain functions, called discrete Morse functions, characterise
when a CW/simplicial complex can be shrunk into a sub-complex via special deformation retractions.
The special retractions are called collapses. These are retractions which remove a pair of cells/simplices
such that the lower dimensional cell/simplex is not contained in any other cell/simplex. The homotopy
type is retained as a collapse encodes a deformation retract.

Discrete Morse theory was first extensively introduced in [20] for CW complexes, and an accessible intro-
duction is found in [21]. The "Morse" part comes from its analogy from the smooth case [22]. Therefore,
many definitions find their name counterparts in smooth/continuous theory. Whereas a smooth Morse
function turns a smooth manifold into a CW/simplicial complex, a discrete Morse function collapses a
CW/simplicial complex into a sub-complex. Because algorithms that compute homology depend on the
size of the complex, this theory substantially reduces overhead by first reducing the complex size [23].
This gives another way to view the main result of the thesis. Indeed, the Čech is much larger than the
Delaunay complex, and, when computing homology type, overhead can be avoided by first collapsing to
the Delaunay complex.

Actually, a collapse preserves another invariant, called the simple homotopy type. The study of the simple
homotopy type is related to the question whether every complex that is contractible has a contraction
induced by a series of elementary/simple retracts. The answer is negative, the Dunce hat [24] is a
counter-example of a contractible simplicial complex which has no collapse. The study of the simple
homotopy type for complexes was first (extensively) done in [25]. For more reading on simple homotopy
theory, see [26] and [27].
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2

Simplicial Complexes

In the previous section, motivation is given to study spaces that arise out of finite data X in Rn. A
straightforward approach is to consider collections of edges, triangles, tetrahedra, etc that connect points
in X. These are called simplicial complexes.

Overview
This section discusses simplicial complexes with two important interpretations: geometrical and abstract.
The advantage is that the abstract simplicial complex inherits a natural notion of topology via its geo-
metric realisation. This section discusses literature, such as chapter 2 in [13], or section 3 in [28], and
can be skipped if the reader is familiar with abstract simplicial complexes and their geometric realisation.

Figures supplement the discussion to make the reasoning more accessible.

Notation and assumptions
Every simplicial complex in this thesis is finite. Furthermore, a set finite set of points such as {a, b, c}, is
denoted by abc. Lastly, we use the notation Q+ x to denote Q ∪ {x} and the notation Q− x to denote
the set of elements in Q with x removed. Note that sometimes Q+ x = Q and Q− x = Q.

2.1 Geometric simplicial complex
Geometric simplicial complexes arise as generalisations of polyhedra glued together. We first describe
figures such as points, edges, triangles, tetraedra etc, see Fig. 4.

Figure 4: The geometric 0,1,2-simplices are drawn respectively from left to right. The simplices are created out
of taking all convex combinations, i.e. the convex hull, of {a}, {a, b} and {a, b, c} respectively. Higher
n-simplices can be constructed by adding a point in a linearly independent manner. A 3-simplex is a
tetraeder and can not be embedded in R2 as 4 points can not be affinely independent in R2.

A set B = {v0, . . . , vn} ⊂ Rp is said to be an affine basis if {v1 −v0, . . . , vn −v0} is linearly independent.
The convex hull of a set X ⊂ Rn, denoted by hull(X), is the following set of combinations of elements
in X.

hull(X) = {
∑
x∈X

λxx|λx ≥ 0,
∑
x∈X

λx = 1}
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A geometrical p-simplex Q is the convex hull of an affine basis of p+ 1 points P in Rp. This simplex
has the subset topology of Rp. A face of Q is the convex hull of any subset F of the points P . Notice
that a 2-simplex implicitly has three 1-simplices as faces and three 0-simplices as faces.

A collection of geometrical simplices defines a geometric simplicial complex as follows.

Definition 2.1. Let K be a collection of geometrical simplices in Rd. Suppose further that

• If Q is a simplex and D a face, then D ∈ K, i.e. K is closed under taking faces.

• The intersection of two geometrical simplices in K is either a face of both simplices or empty.

Then K is called a geometrical simplicial complex

Fig. 5 illustrates an example of a geometrical simplicial complex in R2, while Fig. 6 provides a non
example of a geometrical simplicial complex.

Figure 5: The geometric simplicial complex here contains one 2-simplex {abc}, four 1 simplices {ab,ac,bc,bd}
and five 0-simplices {a, b, c, d, e}. This geometric simplicial complex is drawn in the plane, and each
set of 3 vertices is affinely independent.

Figure 6: The simplex {bc} and {de} intersect at a point halfway through {bc}. If the collection of simplices
was a geometric simplicial complex, then this point has to be included in the complex. Therefore,
this is not a depiction of a geometric simplicial complex in R2. However, if we imagine {de} to point
outwards of the paper, then this defines a geometric simplicial complex in R3.

If K is a geometric simplicial complex, then |K| is the union of its simplices. Note that |K| inherits the
subset topology from Rm. The set of n-simplices in a simplicial complex K is called the n-skeleton of
K and is denoted by Kn. The 0 skeleton K0 is also called the vertex set.

Notice that a geometric p-simplex defines a geometric simplicial complex canonically. This is the stan-
dard p-simplex, denoted as ∆p.3

Remark 2.2. Geometric simplicial complexes are generalised by CW complexes, see [1] Chapter 0 for
more information on CW complexes. Part of the theory in Section 5 and Section 7 generalises to CW
complexes. However, this thesis, does not consider the more general theory of CW complexes. If necessary
to state a result, we occasionally refer to CW complexes.

3A geometrical simplicial complex K can be realised be seen as the result of an series of gluing operations of simplices.
More precisely, let K be a geometric simplicial complex with vertex set K0 ⊂ Rm. We can construct the n-skeleton Kn

out of n − 1 skeleton Kn−1, by gluing all the n-simplices. Consider a single n-simplex P ∈ Kn. Suppose P is determined
by {p0, . . . , pn} and identify these with the vertices of ∆n. Notice that |∆n

n−1| ⊂ |∆n|. By our identification of P with
the vertices of ∆n we see that ∆n ⊂ Rm. Thus, ∆n

n−1 ⊂ ∆n ⊂ Rm and by our identification we see that ∆n
n−1 ⊂ Kn−1.

Defining Kn−1 ∪∆n shows how to glue the n simplex P into K along its boundary. After repeated glueings, all n-simplices
are added such that the new complex is the n-skeleton Kn
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2.2 Abstract simplicial complex
If just the relations between the vertices is important, i.e. which vertices define a simplex, then the
following definition is appropriate.

Definition 2.3. Given a finite set X, then an abstract simplicial complex K is a collection of subsets
of X which is closed under taking subsets.

Example 1. An example of an abstract simplicial complex on X = {a, b, c, d, e} is the following
collection.

K = {a, b, c, d, e, {a, b}, {b, c}, {a, c}, {b, d}, {a, b, c}}

Notice that this abstract simplicial complex describes the relations between vertices in Fig. 5.

Similar to geometric simplicial complexes, an element P ∈ K is a p-simplex, where p = |P | − 1 is called
its dimension. If D ⊂ P , then D is a face of P and P is a coface of D. The dimension of an abstract
simplicial complex is the same as the largest dimension of all of its p-simplices. A 0-simplex is called a
vertex. The set of all 0-simplices is called the vertex set and denoted by K0.

Structure of abstract simplicial complexes
Abstract simplicial complexes are related to each other via certain maps which preserve their simplex
structure.

Definition 2.4. A simplicial morphism f : K → K′ between two abstract simplicial complexes K,K′

is a map between the vertex set f0 : K0 → K′
0 such that f0(P ) ∈ K′ if P ∈ K.4

An abstract simplicial complex K is a partially ordered set or poset for short. The partial order is
induced by inclusion, i.e. D ≤ P iff D ⊂ P . This poset structure can be drawn as a diagram, called the
Hasse diagram H(K). The diagram is a directed graph whose vertices are simplices in K, and there is
a directed edge from a p-simplex to each of its p− 1 faces, see Fig. 7. This thesis identifies an abstract
simplicial complex and its Hasse diagram.

abc

ab bc ac bd

a b c d

Figure 7: The Hasse diagram of the abstract simplicial complex in Example 1 is shown. Note that the size of
the graph explodes quickly as we add larger n-simplices. The pointed arrow between a and ac, and bd
and b are dotted to indicate that this graph is not planar. There are no intersections between any of
the arrows.

2.3 Translating between the abstract and geometric
Geometry to combinatorial
Loosely speaking, a geometrical simplicial complex is an abstract complex by forgetting the geometry.
More precisely, let K be a geometrical simplicial complex. Define the abstract simplicial complex K as
all P ⊂ K0 such that the convex hull of P is in K.

4Abstract simplicial complexes and simplicial morphisms define a category, called ASC. Formally, the fact that every
simplicial complex has an induced poset structure is represented as a functor between the category of simplicial complexes
and the category of posets. There is also another more general structure of simplicial sets at play.
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Combinatorial to geometrical
The machinery to translate an abstract simplicial complex into a geometrical one is non-trivial, but not
complicated. Suppose f : K0 → Rm is a map of vertices into the Euclidean space Rm. The convex hull
of the image of P ∈ K under f might have intersections of simplices that are not faces of either, see
Fig. 6. This is an example of what can go wrong for the simplicial K in Fig. 7.

Definition 2.5. A geometric realisation |K| of an abstract simplicial complex K is any geometric
simplicial complex whose associated abstract simplicial complex is simplicially isomorphic to K.

The following theorem shows how to construct a geometrical simplicial complex out of an abstract one,
see [13] page 33 for more information.

Theorem 2.6 (Geometric realisation). let K be an abstract simplicial complex. Then there exists a
geometric realisation |K|. 5

Proof. Consider the Euclidean space RK0 , generated on the vertices of K. Identify K0 with its image in
R|K0| = Rm under the map p 7→ ep. Define K as the collection of geometric simplices which are the convex
hull of P ∈ K under this identification. More precisely, let f : K → PRm, where P(Rm) is the powerset,
denote the map that sends a simplex P = {p0, . . . , pn} in K to the convex hull of {p0, . . . , pn} ⊂ Rm.
Define K as the image of the map f .
Note that each simplex in K has an associated simplex in K which maps to it. Let P,D be two simplices
in K and their associated simplices P ′, D′ in K. Then the intersection P ∩D is precisely the convex hull
of the points P ′ ∩D′. This is the image of P ′ ∩D′ ∈ K under f by definition. Therefore K is a geometric
simplicial complex. By construction, its associated abstract simplicial complex is isomorphic to K. This
completes the proof.

Nomenclature
From this point, any abstract simplicial complex is called a simplicial complex, i.e. the word "abstract"
is left out. We might refer to a simplicial complex, as just a complex. Other ’types’ of complexes, such
as CW complexes, will be explicitly called CW complexes.

5Note that the appropriate space Rm should at least be as large as the dimension of K. Otherwise, any simplex
associated with this dimension has vertices which cannot form an affine basis of the space. However, the dimension in
which the realization lies can be significantly smaller. It is only required that there is a map f0 : K → Rm such that every
set of d + 1 vertices is affinely independent. This can always be achieved in R2d+1, where d is the dimension of K.
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3

Euclidean Data Complexes

The previous section introduced simplicial complexes, both abstract and geometrical. In particular, it
was shown that all abstract simplicial complexes have an associated topology induced by their geometric
realisation.

Overview

In this section, the complexes, called Čech, Delaunay, and E selective Delaunay, are defined using data
X ⊂ Rn via the nerve method. The section shows that the Delaunay complex is often smaller than
the Čech complex if X satisfies a non-degeneracy condition. Complexes, called E selective Delaunay
complexes, that lie between the Čech and Delaunay complexes are introduced. The rest of the sections
almost exclusively studies the E selective Delaunay complexes. In the next section, an alternative way
to characterise these complexes is discussed, see Lemma 4.6.

Pictures and images supplement the discussion to ensure the reader can visualise the complexes. The
first part of this section can be skipped if one is familiar with section 3 of [28], and the latter part can be
skipped if one is familiar with the complexes in [7]. The notion of general position is as in [7] Definition
4.2, and notation is derived from that paper.

Notation and assumption
We assume that the data X ⊂ Rm is finite and fixed throughout sections 3 to 6 unless otherwise
stated. Furthermore, r is assumed to be some non-negative real number. Lastly, we denote the standard
Euclidean distance as d(−,−) : Rn × Rn → R≥0, where d(x, y) =

√∑n
i=1(xi − yi)2.

3.1 The nerve construction
First, we discuss nerves of covers as all complexes of interest arise in this way.

Covers
The following notion formalises the notion of ’covering’ a topological space with sets.

Definition 3.1. Let T be a topological space and U a collection of closed sets in T . If T ⊂
⋃

U∈U U ,
then U is called a cover of T .

Covers provide a method to understand topological spaces by first understanding small patches U , then
the overlaps U ∩ V and then patching them together.6 7

6The van Kampen theorem is an example of this [1] Theorem 1.20.
7In turn, this approach can become difficult if the patches U or the overlaps are complicated. For that reason, some

assumptions on the cover are usually made to ensure that the overlaps are better understood.

14



Remark 3.2. As mentioned in the introduction, we can construct many spaces/simplicial complexes from
the data X. One example, the main one of interest, arises from the union of (closed) balls around the
points of a fixed radius. The balls themselves are subspaces which make up the union.

Nerves
The intersection data of sets in the cover can be described using a simplicial complex. Indeed, closeness
can be quantified by calling a set of points is close if their associated neighbourhoods in the cover inter-
sect. If two points are close, draw a 1-simplex, i.e. edge, between the points. For three points, if every
pair is close, then this produces three 1-simples between them, which is an empty triangle. If all three
points are close, then the 2-simplex is added, i.e. the triangle is filled in. Continuing this process gives
a simplicial complex and motivates the following definition.

Definition 3.3. Let T be a topological space and U = {Ui|i ∈ I} a cover. Then the nerve, N (U) of
this cover is the following simplicial complex.

N (U) = {J ⊂ I|
⋂
j∈J

Uj ̸= ∅}

The complexes considered in this section arise as the nerves of covers of the same topological space as
we shall see.

Remark 3.4. In effect, discrete data is transformed into continuous data using covers and then into com-
binatorial data using the nerve. Note that there is no guarantee (yet) that the topology of the simplicial
complex in any way captures the topology induced by the cover. In a later section, a theorem is stated
which shows that the homotopy type is captured under certain conditions Theorem 5.1. These conditions
are satisfied for all the complexes relevant to the discussion. Furthermore, note that computers handle
combinatorics well. Therefore, nerves allow us to turn a topological problem into a task suitable for
computers.

3.2 Čech and Delaunay complexes
Čech complex
Denote by Br(x) the (closed) ball of radius r around x ∈ Rn, i.e. Br(x) = {y ∈ Rn|d(x, y) ≤ r}. For
the set X ⊂ Rn, the collection of balls of radius r is denoted as Br = {Br(x)|x ∈ X}. The union of the
collection of balls defines a topological space T =

⋃
x∈X Br(x). The collection Br is a cover for T . The

nerve of this cover is defined as follows.

Definition 3.5. The Čech complex (at radius r) is the following simplicial complex.

Čechr(X) = {Q ⊂ X|
⋂

x∈Q

Br(x) ̸= ∅}

Fig. 8 depicts an example of the Čechr(X) complex. Note that Čechr(X) is often a ’proper’ abstract
simplicial complex. Indeed, Fig. 8 shows that the complex is not a geometrical simplicial complex even if
X is small. Fortunately, the Čech complex is relatively straightforward to define and to conceptualise.8

8Historically, Čech, after which the complex is named, studied how covers of topological spaces can be used to determine
their cohomology. The arising construction is called the Čech cohomology. Formally, this cohomology can be defined as the
categorical colimit of refinements of covers. Informally, this method determines which spaces are allowed to be approximated
by a cover of open sets. The Čech complex we use is defined by a cover of a set. A reference of Čech’s work can be found
in [29].
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Figure 8: The Čech complex is drawn on the right out of the nerve of the cover of circles. Note that the disc
defined by the four top points intersect at a common point. Hence, the 3-simplex is added to the
complex. Note that this Čech complex is not a geometrical simplicial complex as depicted in the
plane, see Definition 2.1

Voronoi diagram
The following definition captures the notion of the area closest to a point with respect to other points.

Definition 3.6. Then the Voronoi cell, V or(x,X) of x ∈ X is defined as

V or(x,X) = {y ∈ Rm|d(x, y) ≤ d(z, y), ∀z ∈ X}

Fig. 9 depicts some examples of Voronoi cells, such as the one in light blue. Note that every Voronoi
cell is closed and convex. The Voronoi cell of x is precisely the region around x that consist of all points
closest to x with respect to other points in X. In this sense, the Voronoi cell of x is the closest area
associated to x.

To compute V or(x,X), first compute an affine hyperplane Hz = {y|d(y, x) = d(y, z)} for each point
z ∈ X. An hyperplane Hz defines two half-spaces. The positive hyperplane consists of all the points
y such that d(y, x) ≤ d(y, z). The Voronoi cell of x is then the intersection of all positive hyperplanes
around x. In Fig. 9, segments of the hyperplanes which lie on the intersection of two or more Voronoi
cells are depicted as black lines between the points.

Definition 3.7. The collection of all Voronoi cells {V or(x,X)|x ∈ X} is called the Voronoi diagram

Fig. 9 depicts a Voronoi diagram.

Figure 9: Of the 5 points in the plane, the Voronoi cell of the centre-left point is coloured light blue. The other
Voronoi cells are depicted in white. Since all the Voronoi cells have been drawn, this depicts the
Voronoi diagram of the points. All Voronoi cells are convex and closed. Although the Voronoi cells
do not have to be bounded, for explanatory purposes, the Voronoi diagram is restricted to the box.

Delaunay complex

The dimension of the Čech complex is equal to the cardinality minus one, |X| − 1, of X as r → ∞. In-
deed, as r → ∞, the intersection

⋂
x∈X Br(x) is never empty if X ̸= ∅. Therefore, X ⊂ Čechr(X) which

implies that the dimension is |X| − 1. This is also the maximal dimension it can obtain. Furthermore,
|X| − 1 bounds all Čechr′(X) for each r′ since Čechr′(X) ⊂ Čechr(X) for r′ ≤ r.

By truncating the balls at their Voronoi cells, intersections can be avoided. This motivates the following
definition.
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Definition 3.8. The Voronoi cell (at radius r) is the following set.

V orr(x,X) = B(r, x) ∩ V or(x,X)

Fig. 10 depicts an example of a Voronoi cell at radius r in light blue. The radius is the same as the
circles in Fig. 8.

Figure 10: The intersection of each Voronoi cell with a ball of radius r is depicted by a green circle. The
Voronoi cell at radius r for the centre-left point is highlighted in light blue. The intersections define
the Delaunay complex on the right via the nerve construction. Note that the Delaunay complex is
smaller and included in the Čech complex at the same radius, see Fig. 8 .

Denote the collection of Voronoi cells at radius r with Vr = {V orr(x,X)|x ∈ X}. Their union defines
a subspace T of Rn. Therefore, Vr defines a cover of that space. Similar to the Čech complex, see
Definition 3.5, this construction defines a simplicial complex by taking the nerve.

Definition 3.9. The Delaunay complex (at radius r) 9, Delr(X), is the following simplicial complex.

Delr(X) = {Q ⊂ X|
⋂

x∈Q

V orr(x,X) ̸= ∅}

In other words, the Delaunay complex at radius r is the nerve of the cover Vr. Fig. 10 illustrates the
image of a Delaunay complex at a radius r where r is the same radius as in Fig. 1.

Remark 3.10. In the literature, the Delaunay complex Delr(X) is sometimes called the Alpha-shape or
alpha complex, see Definition 4.12 in [12] or Chapter 3.4 in [28]. This thesis follows the convention as in
[7]. The reason is that the Čechr(X) and Delr(X) complexes are regarded as special cases of the more
general ’selective Delaunay complexes’, see Definition 3.15.

Notice that the Delaunay complex, Delr(X), depicted in Fig. 10 is significantly smaller then the Čech
complex at the same radius. This is not by accident. Indeed, the dimension of the Delaunay complex is
bounded by the dimension of the ambient space Rn [19] (or prop 2.10 [12]) if X has a non-degeneracy
condition called general position.

3.3 General position
General position for Delaunay complexes is motivated at the hand of an example. Recall that the largest
dimension any simplicial complex with vertices X can have is |X|−1. This dimension is always obtained
by Čechr(X) if r → ∞, and it can also be obtained by Delr(X) in the following situation.

9We often leave out the "at radius r" part. However, in the literature such as in Chapter 3.3 in [28], the Delaunay
complex, Del(X), refers to the complex we obtain if we take the nerve of V instead of the nerve of Vr. A reader with the
necessary background should be aware that this thesis considers Del(X) as a special case of Delr(X) for r → ∞ (as X is
finite).
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Example 2. Let S1 ⊂ R2 be a circle in the plane and X ⊂ S1 a collection of 4 points on the
circle as in Fig. 11. The centre z of the circle has the same distance from every point. Thus, all
Voronoi cells intersect at the centre z. This implies that X ∈ Delr(X) if r is large enough. Such
a Delaunay complex is drawn in Fig. 11. Notice that, in this case, Delr(X) = Čechr(X), and,
that, in particular, Delr(X) is not a geometrical simplicial complex in the plane as depicted.

This example can be generalised to higher dimensions Rn by considering the Sn−1 sphere with
radius δ with points X on it. If δ ≤ r and |X| > n + 1, then the Delaunay complex is not
geometrical in Rn.

Figure 11: The Delaunay complex, Delr(X), is depicted for X the 4 corner points of the square, which lie on
the same circumsphere. The Delaunay complex contains the 3 simplex. The Delaunay complex is
not a geometrical simplicial complex in the plane as depicted. This is in contrast to Fig. 10. If one
point is removed, then it forms a geometric simplicial complex in R2 again. This is also the case if
we had added another point inside the circle. Note that the Delaunay complex in this figure is equal
to the Čech complex.

If X is assumed to have no set of at most n+ 1 points on the same circumsphere, then, at least, the situ-
ation depicted in Example 2 is excluded. This motivates the following condition for X when considering
Delaunay complexes.

Definition 3.11. A set X ⊂ Rn is in general position if for at most n+ 1 points P

• The minimal circumsphere of P contains no points of X − P .

• P is affinely independent. 10

Remark 3.12. Note that this condition is very mild. Already an arbitrarily small perturbation of the
point set X can put the points in a configuration that satisfies the first condition of Definition 3.11, see
Theorem 4.1 [8].

In principle, only the first condition is necessary to bound [19] (or proposition 2.10 [12]) the dimension
of the Delaunay complex. Specifically, the bound on the dimension is n, where X ⊂ Rn. In this thesis,
no general position assumption is assumed on X.

3.4 Selective Delaunay complexes
The difference between the sets in the covers associated with the Čech and Del complex is that the latter
consists of truncated balls. Specifically, the balls were truncated with the Voronoi cells. The Voronoi
cells were defined by the constraints d(x, y) ≤ d(z, y) for each z ∈ X. However, in principle, we could
require that only d(x, y) ≤ d(z, y) for some E ⊂ X. This motivates the following definition.

10For a given set X of points in the plane, deciding whether there is a subset D of cardinality at least k ∈ N that satisfies
the second condition of general position, i.e. no three points colinear, is NP-hard, see theorem 1 in [9].
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Definition 3.13. Let E be a subset of X, then the E selective Voronoi cell, V or(x,E), of x ∈ X, is
defined as the following set.

V or(x,E) = {y ∈ Rn|d(y, x) ≤ d(y, z) ∀z ∈ E}

Fig. 12 illustrates a few selective Voronoi cells.

Figure 12: The E-selective Voronoi diagram is drawn for E as the red point. For the upper and rightmost
point, the E-selective Voronoi cells are coloured green and light blue respectively. On the right is the
selective Delaunay complex obtained by the nerve construction.

Similar to the Voronoi diagram, we define the selective Voronoi balls (at radius r), V orr(x,E), by
intersecting the selective Voronoi cell of x by a ball of radius r around x, i.e.

V orr(x,E) = V or(x,E) ∩Br(x)

The union of these selective Voronoi balls form a space with the selective Voronoi balls as a cover,
Vr(E) = {V orr(x,E)|x ∈ X}. This space is the same as the union of balls of radius r as shown in the
following lemma.

Lemma 3.14. Given E ⊂ X, then
⋃

x∈X V orr(x,E) =
⋃

x∈X B(x, r).

Proof. Notice that a point y in
⋃

x∈X B(x, r) lies in a (or multiple) selective Voronoi cell V or(x,E).
Indeed, X is finite, so {d(y, z)|z ∈ E} is a finite set and thus has a minimum, say, at x. Therefore,
y ∈ V orr(x,E) and thus y ∈

⋃
x∈X V orr(x,E). The converse implication follows trivially as each

V orr(x,E) is defined as a subset of Br(x).

Similar to the Čechr(X) and Delr(X) complex, the following definition is the nerve associated to the
cover Vr(E).

Definition 3.15. For E ⊂ X the E selective Delaunay complex (at radius r), Delr(X,E), is the
following simplicial complex.

Delr(X,E) = {Q ⊂ X|
⋂

x∈Q

V orr(x,E) ̸= ∅}

Fig. 13 provides an illustration of an E selective Delaunay complex where E is the red point.
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Figure 13: The E-selective Voronoi cells at radius r for E the red point are drawn as green circles. The E-
selective Voronoi cells at radius r for the centre, upper and rightmost points are drawn in red, green
and light-blue, respectively. Notice that the Voronoi cell at radius r of the red dot is the ball, as
there are no constraints for its radius r selective Voronoi cell other than the radius.

Note that the selective Delaunay complex is smaller than the Čech complex Fig. 8 and (larger or) equal
to the Delaunay complex Fig. 10.

Remark 3.16. In this thesis, the subset E is also called the constraint set. Section 4 further motivates
why this nomenclature is chosen.

The E selective Delaunay complexes generalise both the Čech and Delaunay complex. Indeed, for E = ∅
we have that Delr(X, ∅) = Čechr(X), while for E = X, we have that Delr(X,X) = Delr(X).

Notation and Nomenclature
This thesis mainly considers E-selective Delaunay complexes. If the E is clear from context, then it is
left out of the "E selective Delaunay complex". Furthermore, if it is clear from the context that the
complex referred to is a selective Delaunay complex then the word "selective" is left out. Therefore, the
reader should be aware that a Delaunay complex can refer to both an E-selective Delaunay complex and
a ’regular’ Delaunay complex. If a reference to the ’regular’ Delaunay complex is made, then this is
made explicit in the text and in notation expressed as Delr(X).
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4

Computing selective Delaunay simplices as
constrained minimal enclosing spheres

In the previous section, the Čech, Delaunay and selective Delaunay complexes are introduced using the
nerve construction. Equivalently, each of these complexes are associated to a type of minimal sphere.
The last observation is crucial for the main theorem.

Overview
This section first introduces notation and terminology to handle constrained minimal spheres. After that,
it is shown that minimal spheres that include sets Q and exclude sets E are an equivalent way to describe
Delaunay complexes. The section then shows that computing certain constrained affine combinations
is, in some sense, equivalent to computing these minimal spheres. Afterwards, the degeneracy of these
affine combinations and notation is discussed. The theory is due to [7], and the content of this section is
similar to their discussion.

4.1 Minimal Enclosing Exluding Spheres (MEES)
A sphere S with centre z and radius r is identified with the pair (z, r), i.e. S = (z, r).

Definition 4.1. Let S be some sphere in Rn with centre z and radius r, and x ∈ Rn.

• x is included if d(x, z) ≤ r.

• x is excluded if d(x, z) ≥ r.

• x is on if d(x, z) = r, e.g. it is both included and excluded.

The sets of these points are denoted by incl(S), excl(S) and on(S) respectively.

Definition 4.2. If S is a sphere in Rn, then a point x is strictly included if x ∈ incl(S) − excl(S). It
is strictly excluded if x ∈ excl(S) − incl(S).

A minimal sphere enclosing a set of points is unique [30] if the set is bounded. With a compactness ar-
gument in Rn and a computation of the intersection of spheres, a similar result holds when additionally
a set E needs to be excluded.11

Lemma 4.3. Let Q,E ⊂ Rn be finite sets. Suppose that the set of spheres which encloses Q and excludes
E, S, is non-empty. Under this condition, a sphere with minimal radius exists in S. Additionally, this
sphere is unique.

Proof. See Lemma A.1 for existence and Lemma A.2 for uniqueness respectively in the appendix.

Of course, there might be no sphere which encloses Q and excludes E. The following function formalises
this notion.

11No reference has been found with a proof that the solution is unique if it exists. With additional conditions, the
quadratic minimization problem is known to have a unique solution, but these conditions are not necessary.
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Definition 4.4. Let Q,E be finite subsets of Rn, then the Minimal Enclosing Excluding Sphere
(MEES)12 of the pair (Q,E), is the minimal Sn−1 sphere S = (z, r) ∈ Rn × R such that

Q ⊂ incl(S) E ⊂ excl(S)

This sphere is denoted as S(Q,E). If no sphere is exists, then S(Q,E) = (∅,∞) by convention.

Notice that S(Q,E) exists if and only if the following quadratic optimisation program of (z, r) ∈ Rn×R≥0
has a solution.

min(z,r) r2

s.t. d(q, z)2 ≤ r2 q ∈ Q
d(e, z)2 ≥ r2 e ∈ E

(1)

Suppose that Q′ ⊂ Q, E′ ⊂ E and S(Q,E) exists. Then S(Q′, E′) also exists. Indeed, S(Q,E) includes
Q′ and excludes E′, and s(Q′, E′) ≤ s(Q,E). This shows the structure of a simplicial complex, where a
simplex Q is included if all its faces Q′ are.

Alternative definition of the Delaunay complex as MEESs
The radius of the MEES, i.e. the second component of S(Q,E), is of particular importance to us.

Definition 4.5. The second component of the MEES function S(−,−) is called the minimal enclosing
excluding sphere radius. This function is denoted by s(−,−).

Notice that the convention that S(Q,E) = (∅,∞), if the MEES of the pair (Q,E) does not exist, implies
that s(Q,E) = ∞. The importance of this radius function is due to the following lemma.

Lemma 4.6. A simplex Q is in Delr(X,E) if and only if s(Q,E) ≤ r2.

Proof. See [7] Lemma 3.1.

All in all, Lemma 4.6 gives us a translation tool to transform the language of simplices Q ∈ Delr(X,E)
to radii s(Q,E) of MEES in Rn. This alternative characterisation of the Delaunay complex also has the
following immediate corollary.

Corollary 4.6.1. For E ⊂ X, and x ∈ X, the following relation.

Delr(X,E + x) ⊂ Delr(X,E)

Proof. By Lemma 4.6, we may write

Delr(X,E) = {Q ⊂ X|s(Q,E) ≤ r}

and
Delr(X,E + x) = {Q ⊂ X|s(Q,E + x) ≤ r}

Since s(Q,E) ≤ s(Q,E + x), it follows that Delr(X,E + x) ⊂ Delr(X,E).

The following examples 3, 4 and 5 for the Čech, Delaunay (Delr(X)) and then E selective Delaunay
complex respectively illustrate in what manner the simplices in the Delaunay complexes Delr(X,E) are
computed as MEES, see Lemma 4.6.

Example 3. Notice that the intersection of balls
⋂

x∈Q Br(x) is not empty if and only if there is some
point z such that d(z, x) ≤ r for all x ∈ Q. In other words, Q ∈ Čechr(X) is equivalent to the existence
of a sphere of radius less than r which encloses Q. In turn, a sphere that encloses Q exists if and only
if such a sphere with minimum radius exists 13. Thus, computing whether a simplex Q is in Čechr(X)
is equivalent to computing the radius of the Minimal Enclosing Sphere (MES) of Q. Fig. 14 illustrates
this alternative way of computing the Čech complex in Fig. 1.

12The Minimal Enclosing Excluding Sphere (MEES), generalises the notion of Minimal Eclosing Circle (MEC), respec-
tively. Solving MEC’s can be arithmetically formulated as a quadratic minimization problem [31]. Since 1900, much
research has been done to quickly find an approximate solution. Applications of MEC’s are plentiful. For example, in
the military, bombs have a circular detonation zone. The challenge is to swiftly find a point such that the bomb destroys
as many targets as possible. To exclude unwanted collateral damage, however, such as civilian centers, we would need to
compute the MEES.

13Actually, it is only necessary that Q is bounded, and not necessarily that it is finite [30]
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Figure 14: The Čech complex, Čechr(X), on the right is also constructed by computing enclosing circles whose
radius cannot exceed the radius r. The upper four points are enclosed by a circle whose radius is no
larger then r. Therefore, the corresponding 3 simplex is added in the complex. The same holds for
the four left-most points.

Example 4. Similar to the Čech complex in Example 3, the intersection of Voronoi cells
⋂

x∈Q V orr(x,X)
is not empty if and only if there is a z ∈

⋂
x∈Q V orr(x,X) such that the following three criteria are sat-

isfied.

• z is equidistant from all points in Q, i.e. d(z,−) is constant on Q.

• z is not strictly contained in the interior of any Voronoi cell, i.e. d(z, q) ≤ d(z, x) for all x ∈ X and
q ∈ Q

• z is no further then r from Q, i.e. d(z, q) ≤ r for all q ∈ Q.

These criteria imply that d(z, q) = δ ≤ r for all q ∈ Q. Therefore, the existence of z is equivalent to the
existence of a sphere (z, δ) with centre z and radius δ ≤ r such that Q lies on the sphere and X −Q is
excluded. Fig. 15 illustrates this alternative way of computing Delr(X) in Fig. 10.

Figure 15: The Delaunay complex, Delr(X), on the right is constructed by computing circum-circles whose
radius cannot exceed r. The upper four points do not have such a circle, therefore this 3 simplex is
not added in the complex. This is in contrast to Fig. 14, where this 3 simplex is added in the Čech
complex.

Example 5. Similar to Čech and Delaunay complexes in Example 3 and Example 4 respectively, the
intersection of selective Voronoi cells

⋂
x∈Q V orr(x,E) is nonempty if and only if there exists a point z

such that d(z, q) ≤ r and d(z, q) ≤ d(z, e) for all q ∈ Q and e ∈ E. The point z defines a sphere S with
radius δ ≤ r such that Q is contained in the sphere and E is excluded from the sphere. Furthermore, such
a sphere exists if and only if a minimal sphere exists, see Lemma 4.3. Fig. 16 illustrates an alternative
computation of Delr(X,E) in Fig. 13.

4.2 Solving minimal spheres by affine combinations
Intuitively, to compute S(Q,E), the centre of the sphere should be be as close as possible to the included
points. At the same time, the centre should be as far as possible from the excluded points. Lastly,
only the points on the boundary should have influence. Indeed, otherwise, there is still room to move
the MEES around without violating included/excluded conditions. This is formalised by Theorem 4.7,
which is Theorem 4.1 in [7].

Theorem 4.7 (Special KKT Conditions). Let Q,E ⊂ X be finite sets and S a sphere with centre
z. Then S is the MEES including Q and excluding E, i.e. S = S(Q,E), if and only if z is an affine
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Figure 16: The enclosing circles that include points and exclude the red point are drawn on the left. This
corresponds to the E-selective Delaunay complex at radius r for E the red point. The red circles are
too large and therefore their corresponding simplices are not added to the complex.

combination of points in Q ∪ E,

z =
∑

x∈Q∪E

λxx &
∑

x∈Q∪E

λx = 1

with the condition that

• λx ≥ 0 if x ∈ Q− E

• λx ≤ 0 if x ∈ E −Q

• λx = 0 if x ̸∈ on(S)

Proof. See Theorem 4.1 in [7]. 14

Together, Theorem 4.7 and Lemma 4.6 imply that Q ∈ Delr(X,E) if and only if there exists an affine
combination of the points

∑
x∈Q∪E λxx = z, such that λx ≥ 0 if x is not excluded, λx ≤ 0 if x is not

included and λx = 0 if x is not included and excluded. Lastly, the coefficients should sum to 1.

If X is in general position, then the affine combination of Theorem 4.7 is unique. The uniqueness is not
true if X is not in general position; see Example 6 below.

14Informally, one takes the derivative of the quadratic optimisation problem Eq. (1). This results in an affine problem.
Such a derivative is formalised by the Karush-Kahn-Tucker (KKT) conditions, which are a generalisation of Lagrange
multipliers. See Chapter 5.5.3 in [32] for more details on KKT conditions.
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Example 6. Let Q = E = X = {a, b, c, d}, where a, b, c, d are the corner points of a square
labelled in an counter clockwise manner shown below Example 6. The circumsphere of the
square is S = (z, r) where z = 1

4 (a+ b+ c+ d). This affine combination satisfies the special KKT
conditions, Theorem 4.7, and thus S = S(Q,E).

However, there are 4 variables λa, λb, λc, λd and only 3 equations. Specifically, 2 equations come
from z =

∑
x∈Q∪E λxx and 1 equation is from

∑
x∈Q∪E λx = 1. Since Q = E, there are no other

conditions on the coefficients. Therefore, there is one free variable and, hence, an infinite number
of solutions. We conclude that the affine combination of points as in Theorem 4.7 need not to
be unique, in contrast to when general position is assumed as in [7].

a b

cd

Figure 17: Four points depict a situation of non-general position. The centre of the circumcircle is an
affine combination of the corner points in an infinite number of ways.

The previous discussion motivates us to introduce notation to keep track of different possible affine com-
binations satisfying Theorem 4.7. The following convention is introduced.

Definition 4.8. Suppose that S(Q,E) exists with centre z, then denote by SQ,E = {λx|x ∈ Q ∪ E}
any set of coefficients which satisfies the conditions of Theorem 4.7 for S(Q,E). Such a set is called a
solution.

Notice that SQ,E is a convention on how to denote solutions, as the object SQ,E is not unique. For-
tunately, this convention helps us to develop a kind of ’calculus’ in Section 6. For this ’calculus’ only
statements about a particular SQ,E or all SQ,E are relevant for that discussion.

Recall that the special KKT conditions formalise the idea that we move closer to points to be included
and further from points to be excluded. This gives motivation for the following naming convention.

Definition 4.9. Suppose that SQ,E is a solution, then

front(SQ,E) = {λx > 0|λx ∈ SQ,E}

back(SQ,E) = {λx < 0|λx ∈ SQ,E}

This convention is the same as used in [7] page 11 and the front is always contained in the included set,
while the back is contained in the exclude set.

Remark 4.10. If S(Q,E) exists and SQ,E is a solution, then there is a bijection between coefficients in
SQ,E and elements in Q ∪E. More exactly, the correspondence λx 7→ x for λx ∈ SQ,E and x ∈ Q ∪E is
a bijection. Therefore, the notation SQ,E ⊂ D denotes the statement that, for all λx ∈ SQ,E we know
that x ∈ D. Similar convention is used for the front(SQ,E) and back(SQ,E).

Lemma 4.11. Suppose S(Q,E) exists with solution SQ,E . If λx ∈ front(SQ,E), then x ∈ Q.

Proof. Since λx ∈ SQ,E , it follows that x ∈ Q ∪ E. If x ∈ E − Q, then λx ≤ 0 by condition 2 of
Theorem 4.7. This is a contradiction as λx > 0. Therefore, x ∈ Q, which proves the statement.

A similar statement with analogous proof holds for λx ∈ back(SQ,E) implies x ∈ E.

Lemma 4.12. Suppose S(Q,E) exists with solution SQ,E . If λx ∈ back(SQ,E), then x ∈ E.
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The solutions are useful to measure which simplices have the same MEES as the following lemma states.

Lemma 4.13. If S = S(Q,E) exists with solution SQ,E and front(SQ,E) ⊂ Q′ and back(SQ,E) ⊂ E′,
then S(Q′, E′) = S(Q,E)

Proof. Suppose that SQ,E = {λx|x ∈ Q ∪ E} is a solution for S(Q,E) as in the premise. Define the
set SQ′,E′ as {λx ∈ SQ,E |x ∈ Q′ ∪ E′}, i.e. SQ′,E′ consists of the coefficients in SQ,E which belong to
elements in Q′ ∪E′. The centre z of S is an affine combination of points in Q′ ∪E′, where the coefficient of
x ∈ Q′ ∪E′ is λx in SQ′,E′ . Furthermore, the coefficients in SQ′,E′ satisfy the conditions of Theorem 4.7.
Therefore, SQ′,E′ is a solution. By Theorem 4.7, we conclude that S is the MEES of the pair (Q′, E′),
i.e. S = S(Q′, E′).

Lemma 4.13 can be better explained at the hand of Example 6 in the following example.

Example 7. For the points Q = E = X = {a, b, c, d} as in Example 6, take the solution SQ,E

defined by the coefficients λa = λc = 1
2 and λd = λb = 0. Let Q′ = {a, c} and E′ = ∅. To check

whether S(Q,E) = S(Q′, E′), it is sufficient to know that the centre z = 1
4 (a+b+c+d) is an affine

combination of points in SQ′,E′ := SQ,E − {λb, λd} such that the conditions in Theorem 4.7 are
satisfied. In this case, the coefficients SQ′,E′ define a solution for the MEES S(Q′, E′). Therefore,
we can conclude that S(Q,E) = S(Q′, E′).

Remark 4.14. If z =
∑

x∈Q∪E λxx and λy = 0, then z =
∑

x∈Q∪E, x ̸=y λxx. This implies that the
coefficients in the solution SQ,E still affinely sum to z even if the zero coefficients have been removed.
In Lemma 6.2 and Lemma 6.3, this observation is crucial as it indicates that a MEES changes only if
points get positive or negative coefficients for every new solution (or the MEES does not exist).
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5

Discrete Morse theory

In the previous sections, the E selective Delaunay complex for E ⊂ X was introduced as a simplicial
complex from the nerve construction of the cover of E selective Voronoi cells. Furthermore, there was an
inclusion Delr(X,E + x) ↪→ Delr(X,E) which was directly seen from the alternative characterisation of
these complexes as the radius of Minimal Enclosing Excluding Spheres (MEES). This inclusion implies
that Delr(X,E + x) can be seen as a subspace of Delr(X,E).

Overview
This section introduces the notion of a collapse of simplicial complexes by showing how they encode a
deformation retract on the geometric realisation. Thereafter, discrete Morse theory is introduced which
characterises collapses at the hand of a special partition. This characterisation is used to find special
partitions on the Delaunay complex Delr(X,E) such that the main theorem can be proven in the next
section Theorem 6.9. Lastly, a few lemmas help us to find these special partitions.

This section is supplemented with figures to motivate definitions. This section can be skipped if one is
familiar with discrete Morse theory for simplicial complexes such as in Chapter 4 of [13].

5.1 Homotopy theory
More information on homotopy theory and deformation retracts can be found in [1] Chapter 4 and
Chapter 0, respectively. We briefly discuss theory necessary to be able to state what an homotopy
equivalence is.

Homotopies
An homotopy H between two continous maps f, g : M → N is a continuous map H : [0, 1] × M → N
such that H(0,−) = f(−) : M → N while H(1,−) = g(−) : M → N . If such a homotopy exists, then f
and g are called homotopic.

Deformation retracts
A basic type of continuous deformation of a space is one that shrinks the space. Such a continuous
deformation can be formalised as follows. Let T be a space and Y a subspace, then an homotopy H
such that H(0, z) = z for all z ∈ T , H(1, z) ∈ Y , and such that Y is fixed by H, i.e. H(t, y) = y for all
t ∈ [0, 1] is called a deformation retract of T into Y . The map H(1,−) : T → Y , which arises from a
deformation retract, is called a retract. Fig. 18 depicts a deformation retract for a triangle.

Homotopy equivalence
Two spaces M,N are called homotopy equivalent if there are two maps f : M → N and g : N → M
such that f ◦ g is homotopic to the identity on N and g ◦f is homotopic to the identity on M . The maps
f, g are called homotopy equivalences. A retract is a homotopy equivalence between a space and a
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Figure 18: A deformation retraction is visualised as pushing a larger space into a smaller subspace. This specific
deformation retract is called a collapse resulting from pushing the 1-simplex {bc} into {abc} along
the arrow. The 1-simplex {bc} is called a free face of the 2-simplex as it is not the face of any other
simplex in the complex.

subspace. Homotopy equivalent spaces have isomorphic homotopy and homology groups induced by the
homotopy equivalence.

Nerve lemma
As seen in Lemma 3.14 each Delaunay complex Delr(X,E) is the nerve of a cover of the same space, i.e.
the union of balls of radius r. The following theorem provides a sufficient condition for the geometric
realisations of the Delaunay complexes to be homotopy equivalent.

Theorem 5.1. [Nerve lemma] Let C = (Ci)i∈I be a finite collection of compact and convex subsets of
Rd, and let T be their union. Then the geometric realisation of C is homotopy equivalent to T .

Proof. See [17] Theorem 3.1

The following corollary is proven by showing that the cover defining the Delr(X,E) for different E ⊂ X
satisfy the conditions in Theorem 5.1.

Corollary 5.1.1. The geometric realisations of the complexes Delr(X,E) and Delr(X,F ) are homotopy
equivalent for E,F ⊂ X.

Proof. Recall the definition of Delr(X,E), Definition 3.15, as the nerve of the selective Voronoi cells of
radius r, V orr(x,E). As proven in Lemma 3.14, the collection of E selective Voronoi cells at radius
r, denoted as Vr(E), is equal to the union of balls at radius r. Therefore, it is sufficient to prove that
| Delr(X,E)| and | Delr(X,F )| are homotopy equivalent to the union of balls T =

⋃
x∈X Br(x).

Furthermore, both a selective Voronoi cell and a ball of radius r are closed convex sets, therefore their
finite intersection is also a closed convex set. Since a ball of radius r is bounded, so is a selective Voronoi
cell at radius r. Therefore, a selective Voronoi cell at radius r is a convex closed bounded set of Rn,
and, hence, convex and compact. The nerve lemma 5.1 then implies that | Delr(X,E)| and | Delr(X,F )|
are homotopy equivalent to the union of balls at radius r. This proves that geometric realisations of
Delr(X,E) and Delr(X,E + x) are homotopy equivalent.

Encoding retracts as collapses
The geometrical realisation associates a complex with a topology. A retract reduces a topological space
into a smaller sub-space. However, not every deformation retract on the geometric realisation |K| guar-
antees that the resulting subspace is a geometrical simplicial complex corresponding to a sub-complex
K′ of K. First, we consider a single 2-simplex where we investigate how to encode a deformation retract
as the removal of simplices in the complex.

First, consider an example where this is the case.

28



Figure 19: A retract of the geometric 2-simplex abc on the left into the complex on the right is shown.

Example 8. Denote the standard 2-simplex on vertices X = {a, b, c} by K. A geometric realisa-
tion |K| is depicted in Fig. 19.
Consider the face Q = {b, c} and the deformation retract which pushes the interior of |Q|
into the (topological) interior of |P |. To visualise this, imagine that the green part is a sheet
supported by the stick bc. If the support is removed, then the sheet falls. The resulting re-
tract maps |K| into |K′| = |K|−(int(|Q|)∪int(|P |)), where int(−) denotes the topological interior.

The simplicial complex associated with |K′| is the following complex.

K′ = {a, b, c, {a, b}, {a, c}}

Thus the impact of the retract on the complex K is the removal of the pair {a, b, c} and {b, c}
from K. This pair is highlighted red in the following Hasse diagram of K and K′. The arrow
K ↘ K′ denotes the removal of this pair of simplices.

abc

ab bc ac = K ↘ K′ = ab ac

a b c a b c

Figure 20: The diagram exemplifies the removal of a pair of K induced by the retract of Fig. 19.
In general, consider the n simplicial complex, denoted by ∆n, and a n − 1 face Q. There is a
deformation retract of |∆n| into |∆n| − (int(|∆n|) ∪ int(|D|)) similar to the case above. That
this is true is not formally proven in this section as it follows from a more general discussion in
Section 7, specifically, Lemma 7.13.

Since a complex is simply a collection of simplices, we expect to be able to iteratively apply the collapse
in Example 8, see for example Fig. 21.

Figure 21: Repeated application of the collapse depicted in Fig. 19 is illustrated.

However, we need to be careful as we cannot expect that every removal of simplices corresponds to a
correct deformation retract, see for example Fig. 22. To avoid this, we need to ensure that, of the pair
{Q,P} which is to be removed, Q is not attached to another simplex besides P .

Definition 5.2. If K is a complex, then Q < P is called a free face of P in K if Q is not the face of
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Figure 22: The homotopy which pushes the line segment into the triangle as depicted is a valid continuous map.
However, the resulting space is not a simplicial complex, as it is not a collection of simplices.

another simplex, i.e. Q < D implies D = P .15

The following definition states in what way the existence of a retract of a geometrical simplex in a
geometrical simplicial complex is encoded in the associated abstract simplicial complex.

Definition 5.3. Suppose K has a n simplex P with a free n − 1 face Q, then K has an elementary
collapse into K′ = K − {P,D}; we denote this as K ↘ K′.

An elementary collapse was depicted in Example 8. As illustrated in Fig. 21, we can iteratively apply
elementary collapses.

Definition 5.4. A collapse between K and a subcomplex K′, denoted K ↘ K′ is a sequence of elemen-
tary collapses K ↘ . . . ↘ K′.

Simple homotopy theory
Although a collapse preserves the homotopy type, not all homotopy equivalences are induced via collapse.
One example is the Dunce hat [24]. It has no free face, but it is contractible to a point. The collapses do
preserve another notion called the simple homotopy group. This is first (extensively) introduced in
[25]. If two spaces are related via a sequence of collapses and expansions, then they are simple homotopy
equivalent. Therefore, Corollary 6.9.1 implies that the complexes are also simple homotopy equivalent.
See [27] and [26] for more information in simple homotopy theory.

5.2 Characterising collapses
Discrete vector fields
An elementary collapse is the removal of a free pair of simplices. In a collapse, no pair can be removed
twice. This motivates encoding a collapse with a partition such that every class is either a singleton or
a pair of two adjacent nodes.

Definition 5.5. If P is a poset, then a partition ∼ is called a (partial) matching if it consists of
singletons and pairs of adjacent nodes.

Since a collapse is an ordered sequence of elementary collapses, the matching should have no ambiguity
in which order the pairs should be removed. This motivates the following notion.

Definition 5.6. A partition ∼ of a poset P is acyclic if the quotient P/ ∼, with the inherited pre-order,
is a poset.

To keep the geometric intuition of the collapse encoding a sequence of retracts depicted by arrows as in
Fig. 21, we define the following.

Definition 5.7. An acyclic matching V is called a discrete (gradient) vector field. The paired
simplices are called non-critical, and the others are critical

15Occasionally we say that the pair {Q, P } is free since both Q and P are free if and only if Q is free
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Remark 5.8. A matched pair {Q,P} with Q < P in a discrete vector field can be visualised in a geometric
realisation by arrows pointing from the "midpoint", formally called the barycentre, of Q to P . The retract
in Fig. 19 and Fig. 18 is indicated by such an arrow. Being a partition means that no simplex is the
head or tail of two arrows. Acyclicity means that every sequence of arrows and faces can never form a
cycle.

The following theorem shows that discrete vector fields can, indeed, encode collapses. The theorem is
also found in [12] as Theorem 4.12 and it is a simplicial version of Theorem 3.5 in [20].

Theorem 5.9 (Discrete Morse theorem). Suppose that K is a simplicial complex with a discrete vector
field ∼ whose set of critical simplices is a sub-complex K′, then K ↘ K′.

Proof. It suffices to prove that there exists a pair {Q,P} in ∼ such that Q is a free face of P in K.
Indeed, then K ↘ K − {Q,P} is an elementary collapse to a sub-complex. The discrete vector field ∼
induces a new discrete vector field ∼′ whose critical simplices form the sub-complex K′ in K − {Q,P}.
Therefore, we can iteratively apply such elementary collapses. This implies that K ↘ K′.

To see that such a pair exists, consider that there is some pair {Q,P} of non-critical simplices which is
maximal in the poset K/ ∼. If no such maximal pair exists, then K = K′ and we are done. We claim that
Q is free. Suppose in contrary that Q is not free, i.e. that Q < D for some D ∈ K. Then {Q,P} < [D]
in K/ ∼ and either [D] is critical or non-critical. Because {Q,P} is maximal, it follows that D must be
critical. However, the set of critical simplices K′ is a subcomplex. Therefore, since Q < D, it follows
that Q ∈ K′. This is a contradiction since Q is non-critical. It follows that Q is a free face of P in K
which implies the theorem as argued before.

Remark 5.10. Finding a discrete vector field is not necessarily hard, but finding one whose set of critical
simplices is minimal is. Therefore, sometimes random algorithms are employed to reduce the memory
storage of a simplicial complex [33].

Discrete Morse functions
Discrete vector fields can be characterised by the existence of monotone decreasing functions which attest
to their acyclicity. This holds for each acyclic partition and is the content of the following lemma.

Lemma 5.11. Let K be a simplicial complex. A partition ∼ is acyclic iff there exists a poset P and an
order-preserving function f : K → P such that f is constant on equivalence classes.

Proof. =⇒ Define P := K/ ∼ and f : K → P as the projection map. This satisfies the lemma.

⇐= Suppose that [a] > [b] > [a] for equivalence classes [a], [b] in K/ ∼. Then f(a) = f([a]) >
f(b) = f([b]) > f([a]) = f(a) because f is order preserving. However, P is a poset set and thus this
a contradiction. Therefore, the induced pre-order on K/ ∼ is anti symmetric, and is thus a partial
order.

Any partially ordered set P can always be linearly extended. Because K is finite, K/ ∼ is finite. Since
the P from the lemma is K/ ∼, its linear extension is finite. This implies that P can be embedded in
R via an order preserving function. Therefore, without loss of generality, we may assume that P = R.
A discrete vector field is thus equivalent to the existence of a real-valued function f : K/ ∼→ R by
Lemma 5.11. Any such associated order preserving function f is called a discrete Morse function
(DMF) with discrete gradient V .

Refining acyclic partitions
To find discrete vector fields, it helps to first search for large acyclic partitions and then refine them into
smaller partitions. The following lemma guarantees that such an approach works.16

16In the literature, this is a well known result called the cluster lemma. A proof for acyclic matchings can be found in
Lemma 4.2 in [13].
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Lemma 5.12 (Cluster lemma). Let K be a simplicial complex and ∼ an acyclic partition on K. Let
∼[k] be an acyclic partition on each equivalence class [k]. Then ∼′=

⋃
k ∼[k] is an acyclic partition on

K.

Proof. The relation ∼′ is a partition. Denote the order-preserving function of ∼ with f . Each ∼[k] defines
an order preserving function fk : [k] → Pk. We define the set P ′ =

⊔
[k]∈K/∼ Pk. Let x ∈ [k], y ∈ [k]′, then

define the order <′ on P ′ as x <′ y if [k] ̸= [k]′ and f(x) < f(y). If [k] = [k]′, then x <′ y if fk(x) < fk(y).
Then the function f ′ = ⊔fk is order-preserving by construction and constant on equivalence classes of
∼′.

Let the intersection ∼ of two partitions ∼1,∼2 be the partition x ∼ y if x ∼1 y and x ∼2 y. This
intersection preserves acyclicity by the following lemma.

Lemma 5.13. If ∼1,∼2 are two acyclic partitions on K, then their intersection is acyclic also.

The proof is straightforward.
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6

Collapsing theorems

The previous sections explained how Voronoi balls define Delaunay complexes via the nerve construction.
The existence of simplices Q in the Delaunay complex Delr(X,E) is equivalent to solving the Minimal
Enclosing Excluding Sphere (MEES) of the pair (Q,E). These MEES give rise to an affine optimisation
problem. The corresponding solutions are unique if the points are in general position, but not necessarily
otherwise. Furthermore, it was shown that Delr(X,E + x) ⊂ Delr(X,E). A characterisation of when a
complex collapses into a sub-complex was proven in Theorem 5.9.

Overview
This section shows that the Delaunay complex Delr(X,E) collapses into Delr(X,E+x), i.e. Delr(X,E+
x) ↘ Delr(X,E) for finite sets E ⊂ X ⊂ Rn. The proof consists of finding a discrete vector field such
that Delr(X,E + x) is the set of critical simplices. Specifically, a pairing lemma states that a simplex
Q ∈ Delr(X,E) is removed in Delr(X,E + x) if and only if this also holds for Q+ x and Q− x. Pairing
Q− x with Q+ x defines a discrete vector field which induces the collapse. A corollary is that the Čech
complex collapses into the Delaunay complex.

Remark 6.1. The proof of this statement for X in general position is due to [7] Theorem 5.10. The proof
of the non-general position case in this section is almost identical and is supplemented with an example.

Notation
From this point onwards, we fix sets E ⊂ X ⊂ Rn, an x ∈ X, and a non-negative r ∈ R≥0 unless
otherwise specified. Often a simplex Q = {a, b, c} is denoted as the letter combination abc. Furthermore,
we use the notation Q + x = Q ∪ {x} and denote with Q − x the set Q with x removed. Lastly, the
notation Q± x refers to the fact that the statement holds for both Q+ x as Q− x.

6.1 Example of collapse
Let X = {a, b, c, d, e} in R2 as indicated in Fig. 23. Notice that X is not in general position as the
points a, b, c, e lie on the same circle, e.g. are concyclic, while the points bcd lie on one line, e.g. are not
affinely independent. We remind the reader of notation and conventions used for computing MEES, see
Definition 4.4.

Figure 23: A configuration of points in the plane not in general position.
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Computing Delr(X, ∅)
To calculate Delr(X, ∅), the MEES S(Q, ∅) of the subsets Q ⊂ X are drawn in Fig. 24. The circles in
green are those considered to have a radius δ smaller or equal to r. Therefore, bcde, bcd and abc are
included in the complex Delr(X, ∅).

Figure 24: The MEES S(Q, ∅) are drawn in green for subsets Q of X = {a, b, c, d, e}. The MEES S(ae, ∅) and
S(ad, ∅) are not drawn since their radius is considered too large. Thus ad and ae are not in Delr(X, ∅).

The complex Delr(X, ∅) is drawn in the plane in Fig. 25. This visualisation is similar to the manner
used before, see Fig. 6.

Figure 25: The complex Delr(X, ∅).

We recall to the reader the definition of a geometrical simplicial complex, see Definition 2.1. The complex
Delr(X, ∅) is not drawn as a geometrical simplicial complex in Fig. 25. Indeed, both bcd and bcde are
simplices whose vertices are not affinely independent. A geometric realisation of Delr(X, ∅) is drawn in
Fig. 26. Suddenly, the simplex bcd becomes visible. The 3-simplex bcde is in the complex and therefore
the complex is 3 dimensional.

Figure 26: A geometric realisation of Delr(X, ∅) is visualised in R3. Specifically, the 3-simplex, i.e. tetraeder,
abce is drawn together with the 2 simplex, i.e. triangle, abc, in R3.
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Computing Delr(X, c)
Since Delr(X, c) is a subcomplex of Delr(X, ∅), see Corollary 4.6.1, it suffices to calculate the MEES
S(Q, c) for each Q ∈ Delr(X, ∅). This is shown in Fig. 27. The green circles indicate simplices in
Delr(X, c). The red circle denotes that s(bce, ∅) ≤ r < s(bce, c) < ∞. Note that also s(be, ∅) ≤ r <
s(be, c). In other words, the simplices bce and be are included in Del(X, ∅) but not present in Delr(X, c).
The purple circles similarly point out that s(bd, ∅) ≤ r < s(bd, c), but additionally that s(bd, c) = ∞.
Since s(bd, c) is a lower bound for s(bde, c), s(bcd, c) and s(bcde, c), those are also infinite. Therefore, the
simplices bd, bde, bcd and bcde are in Delr(X, ∅), but they are not present in Del(X, c). Simplices that
are included in Delr(X, c) are abc and cde, as indicated by the green circles.

Figure 27: The MEES S(Q, c) are drawn in green, red and purple for Q ⊂ X such that Q ∈ Delr(X, c),
Q ̸∈ Delr(X, c) and Q ̸∈ Del(X, c) respectively. Notice that the simplices corresponding to the red
and purple MEES come in pairs Q ± c.

The complex Delr(X, c) is drawn in Fig. 28. The complex is defined by the simplices abc and cde, and
is smaller than Delr(X, ∅).

Figure 28: Depicting the complex Delr(X, c) in the plane defines a geometric simplicial complex, in contrast to
Delr(X, ∅) which is not a geometric simplicial complex in the plane.

Constructing discrete vector field
Now that the complexes Delr(X, ∅) and Delr(X, c) are determined, the difference can be collapsed at the
hand of a discrete vector field.

A discrete vector field can be constructed by observing that a simplex Q ∈ Delr(X, ∅) − Delr(X, c) if
and only if Q ± c ∈ Delr(X, ∅) − Delr(X, c). This can be measured by the radius of their MEES. For
example, notice that

s(bde, ∅) = s(bcde, ∅) ≤ r < s(bde, c) = s(bcde, c)

The observation that simplices in Delr(X, ∅) − Delr(X, c) come in pairs {Q − c,Q + c} is of a more
general nature and formally proven in by the pairing lemma, Lemma 6.6. The pairing {Q− c,Q+ c} is
represented in the following diagram, where a dotted line between simplices indicates paired simplices.
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bcde

abc bce bde bcd cde

ab be bd de

Note that this pairing is acyclic. That this pairing is acyclic in general follows from Lemma 6.7. Notice
also that not all simplices present in Delr(X, ∅) are drawn to ensure the Hasse diagram is not too large.

This acyclic pairing defines a discrete vector field. By the discrete Morse theorem, Theorem 5.9, the
discrete vector field induces a collapse from Delr(X, ∅) into the complex Delr(X, c). This collapse is
indicated in Fig. 29. The simplices which need to be removed are coloured red, while the subcomplex
Delr(X, c) is visualised in grey. Note that bcde and bde are paired, and the arrow indicates this at the
midpoint of bde which points inwards bcde.

Figure 29: A collapse of Delr(X, ∅) into Delr(X, c) is shown.

The collapsing theorem, Theorem 6.9, is proven by showing that the procedure in this example can
always be applied.

6.2 Preparatory lemmas
From our example, it seemed natural to consider pairs of the form {Q− x,Q+ x} to induce the collapse
Delr(X,E) ↘ Delr(X,E + x). An essential observation is that simplices had to be removed in pairs.
Essentially, the general reason that this pairing occurs is that a sphere S(Q,E) has s(Q,E) < s(Q,E+x)
if and only if x ∈ onS(Q,E+x) (or it does not exist). To prove that s(Q,E) < s(Q,E+x) implies that
x ∈ onS(Q,E + x) (if it exists) is precisely the reason that Theorem 4.7 has been introduced.

6.2.1 Same sphere lemmas
We refer the reader to the definition of a MEES S(Q,E), see Definition 4.4, and of solutions SQ,E , see
Definition 4.8 for their definition and notation conventions. Specifically, a solution SQ,E is used to denote
any set of coefficients {λx|x ∈ Q ∪ E} satisfying Theorem 4.7 for the MEES S(Q,E). The following
lemma is the more general version of Lemma 5.4 [7] with the same name.

Lemma 6.2 (Same sphere lemma). Let Q ∈ Del(X,E) and x ∈ X, then

S(Q,E) = S(Q− x,E) = S(Q+ x,E)

if and only if there exists some solution SQ+x,E for S(Q+ x,E) such that λx ̸∈ front(SQ+x,E).
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An example of this lemma is found in Example 7.

Proof. =⇒
If S = S(Q − x,E) = S(Q + x,E), then S(Q − x,E) exists since Q ∈ Del(X,E). Therefore, there is a
solution SQ−x,E . There are two cases, either x ∈ Q− x ∪ E, or x ̸∈ Q− x ∪ E.
Case 1
Suppose that x ∈ Q−x∪E, and, thus, λx ∈ SQ−x,E . Since the solution SQ−x,E satisfies Theorem 4.7 for
the pair (Q− x,E) and x ̸∈ Q− x, it holds that λx ≤ 0 by condition 2 of Theorem 4.7. Because λx ≤ 0,
it follows that λx ̸∈ front(SQ−x,E). Furthermore, because S(Q − x,E) = S(Q + x,E), it holds that
SQ+x,E := SQ−x,E is a solution for S(Q+ x,E). Indeed, it defines an affine combination for the centre
of S(Q+ x,E) whose coefficients satisfies Theorem 4.7. Therefore, SQ+x,E is a solution to S(Q+ x,E)
such that λx ̸∈ front(SQ+x,E).
Case 2
Suppose that x ̸∈ Q − x ∪ E, and, thus, SQ−x,E contains no coefficient λx. Define λx := 0 and let
SQ+x,E denote the set of coefficients of SQ−x,E with λx added, i.e. SQ+x,E := SQ−x,E ∪ λx. Note,
SQ+x,E is a solution for S(Q+ x,E). Indeed, Q+ x is included by S(Q− x,E) and λx = 0 satisfies the
conditions of Theorem 4.7 in addition to the other coefficients of SQ−x,E . Furthermore, λx = 0 implies
that λx ̸∈ front(SQ+x,E).

In both cases it follows that there exists a solution SQ+x,E such that λx ̸∈ frontSQ+x,E .

⇐=
Conversely, suppose λx ̸∈ front(SQ+x,E). Notice that SQ+x,E is a solution for S(Q + x,E) implicitly
assumes that S(Q + x,E) exists. Furthermore, because front(SQ+x,E) ⊂ Q + x by Lemma 4.11, we
conclude front(SQ+x,E) ⊂ Q− x. Now, either λx = 0 or λx < 0.
Case 1
If λx = 0, then the affine combination induced by SQ+x,E for z, the centre of S(Q+ x,E), still satisfies
the conditions of Theorem 4.7 without x. Therefore, SQ−x,E := SQ+x,E − λx defines a solution for
S(Q− x,E). This implies that S(Q− x,E) = S(Q+ x,E).
Case 2
If λx < 0, then x ∈ E by Lemma 4.12. Define SQ−x,E to be equal to SQ+x,E . Note that SQ−x,E consists
of coefficients in Q − x ∪ E such that the affine combination is z, the centre of S(Q + x,E), and they
satisfy Theorem 4.7 for the pair (Q− x,E). Therefore, SQ−x,E is a solution to S(Q− x,E).

By Theorem 4.7, we conclude that in both cases S(Q,E) = S(Q− x,E) = S(Q+ x,E).

A similar lemma regarding the constraint set is analogously proven.

Lemma 6.3. Let Q ∈ Del(X,E) and x ∈ X, then

S(Q,E) = S(Q,E − x) = S(Q,E + x)

if and only if there exists some solution SQ,E+x for S(Q,E + x) such that λx ̸∈ back(SQ,E+x).

Remark 6.4. Informally speaking, a MEES S(Q,E) the MEES of the pair (Q−x,E) if there is a solution
SQ,E that does not require the coefficient λx to be positive. In this sense, there is some freedom in the
choice of the solution SQ,E . This freedom of choice means that multiple solutions can yield the same
MEES. Therefore, some points can be removed from the constraints without changing the MEES, as
another affine combination still exists that satisfies Theorem 4.7.

6.2.2 Pairing lemma
If x is excluded by S(Q,E), then S(Q,E) is also the MEES of the pair S(Q,E + x). If x is strictly
included, then, necessarily, s(Q,E) < s(Q,E + x). The same sphere lemma, Lemma 6.3 then states
that λx ∈ back(SQ,E+x) for all solutions of SQ,E+x (assuming it exists). In particular, this implies that
x ∈ onS(Q,E + x). Therefore, S(Q,E + x) is also the MEES of the pair (Q+ x,E + x). This indicates
that S(Q,E) = S(Q ± x,E) and S(Q,E + x) = S(Q ± x,E + x), see Fig. 30. However, pre-caution is
required as the MEES S(Q,E + x) may not exist. The pairing lemma, Lemma 6.6, with the same name
as Lemmas 5.5 and 5.7 in [7], formalises that S(Q,E) = S(Q±x,E) and S(Q,E+x) = S(Q±x,E+x)
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Figure 30: The pairing lemma is illustrated with an example of three points. Note that {abc, ac} have constant
MEES for both constraint sets E = ∅ and E = {b}. Such a pair hints at creating a discrete vector
field which induces the collapse.

Remark 6.5. If x ̸∈ excl(S(Q,E)) (or x ̸∈ incl(S(Q,E))), then in particular x ̸∈ on(S), hence λx ̸∈
front(SQ,E) ∪ back(SQ,E) for every solution SQ,E by Theorem 4.7.

Lemma 6.6 (Pairing lemma). Suppose that Q ∈ Del(X,E) and x is strictly included by S(Q,E), then

s(Q,E) = s(Q± x,E) (2)
s(Q,E + x) = s(Q± x,E + x) (3)

Proof. Because S(Q,E) includes x, the MEES S(Q+ x,E) exists. Therefore, a solution SQ+x,E exists.
Because x is strictly included, in particular, x ∈ incl(S(Q + x,E)) − front(SQ+x,E) for every solution
SQ+x,E . By Lemma 6.2 for the solution SQ+x,E , the equality S(Q,E) = S(Q± x,E) holds. This proves
the first statement.

If s(Q,E + x) ≥ s(Q − x,E + x) = ∞ then we are done. Suppose that s(Q − x,E + x) < s(Q,E + x).
Then, in particular, S(Q−x,E+x) exists and it strictly excludes x. Therefore, x ̸∈ on(S(Q−x,E+x)),
and, in particular, λx ̸∈ back(SQ−x,E+x) for all solutions SQ−x,E+x. Since S(Q − x,E + x) exists,
there is a solution SQ−x,E+x. By Lemma 6.3, we can conclude that S(Q − x,E + x) = S(Q − x,E).
Because the spheres are equal, the latter sphere also strictly excludes x. In the first part, we con-
cluded that s(Q − x,E) = s(Q + x,E). The latter sphere includes x and the former sphere strictly
excludes x. However, the spheres are equal, and, therefore, this is a contradiction. We conclude that
s(Q,E + x) = s(Q− x,E + x).

Note that s(Q,E + x) ≤ s(Q + x,E + x). If s(Q,E + x) = ∞, then s(Q + x,E + x) = ∞ and equality
follows.
If s(Q+ x,E + x) > s(Q,E + x), then the sphere S(Q,E + x) exists and strictly excludes x. Since, by
assumption, s(Q,E) < s(Q,E + x), it follows that S(Q,E + x) has λx ∈ back(SQ,E+x) for all solutions
SQ,E+x. Indeed, otherwise S(Q,E) = S(Q,E+x) by Lemma 6.3. It follows that x ∈ on(S(Q,E+x)) ⊂
incl(S(Q,E+x)). However, S(Q,E+x) both strictly excludes x and includes x. This is a contradiction,
and, therefore, S(Q,E + x) = S(Q+ x,E + x).

We conclude that s(Q,E + x) = s(Q± x,E + x).

For Delaunay complexes, the pairing lemma, Lemma 6.6, has the following corollary.
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Corollary 6.6.1. For E ⊂ X ⊂ Rn finite and x ∈ X, then

Q+ x ∈ Delr(X,E) − Delr(X,E + x)

if and only if
Q− x ∈ Delr(X,E) − Delr(X,E + x)

Remember that the notation Q ± x refers to the statement Q + x and Q − x. In this sense, both
implications are given at the same time in the following proof.

Proof. By Lemma 4.6, Q± x ∈ Delr(X,E) − Delr(X,E + x) translates into

s(Q± x,E) ≤ r < s(Q± x,E + x)

This means that s(Q± x,E) < s(Q± x,E + x). In turn, this implies that S(Q± x,E) strictly includes
x. By the pairing lemma, Lemma 6.6, we can conclude that s(Q ∓ x,E) = s(Q ± x,E) ≤ r and
r < s(Q± x,E + x) = (Q∓ x,E + x). This proves the corollary.

From this corollary, we obtain a partition of Delr(X,E) − Delr(X,E + x) into pairs {Q+ x,Q− x}. If
we can prove that the collection of these pairs is acyclic, then these pairs define a discrete vector field
that induces the collapse Delr(X,E) ↘ Delr(X,E + x).

6.2.3 Vertex refinement
Notice that {x−x, x} = {∅, x} is not a pair in any Delaunay complex as ∅ is not in a Delaunay complex.
However, since the vertex set is in every Delaunay complex, this is not relevant for any of the discrete
vector fields that are examined in this thesis.

Lemma 6.7 (vertex refinement). Let P(X) be the powerset of X. Then the partition into pairs {Q −
x,Q+ x|Q ∈ P(X)} is acyclic.

Proof. If {Z−x, Z+x} > {Q−x,Q+x} in the quotient with the induced pre-order, then Z+x > Q−x.
Either Z + x > Q+ x or Q+ x and Z + x are incomparable. In the former case, there exists some y ̸= x
in Z + x which is not in Q + x. This y must also be in Z − z and not in Q − x. We conclude that
|Z − x| > |Q− x|.

In the latter case, there is at least one y ̸= x in Z + x which is not in Q− x, which implies that y is in
Z − x. We conclude again that |Z − x| > |Q− x|.

We conclude that the function {Z − x, Z + x} 7→ |Z − x| strictly decreases along the pre-order. This
implies that the pre-order is a partial order; hence the partition is acyclic.

Remark 6.8. In principle, x in Lemma 6.7 can be replaced by any nonempty subset Y ⊂ X. This is done
in Lemma 8.1 later.

6.3 Proof of collapsing theorem
We now prove the collapse of Delr(X,E) into Delr(X,E + x). The collapsing theorem, Corollary 6.9.1,
follows from successive applications of these collapses.

For this proof, we use the following notation.

{Q+ x,Q− x}r = {Q+ x,Q− x} ∩ Delr(X,E)

Theorem 6.9. For E ⊂ X ⊂ Rn finite point clouds and r non negative, then

Delr(X,E) ↘ Delr(X,E + x)
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Proof. Construct the partition {{Q + x,Q − x}r|Q ∈ Delr(X,E)}. The partition is acyclic due to
Lemma 6.7. Therefore, due to the cluster lemma, Lemma 5.12, it suffices to prove that each of the
{Q+ x,Q− x}r has an acyclic partition such that the pairs are in Delr(X,E) − Delr(X,E + x) and the
singletons in Delr(X,E + x).

Corollary 6.6.1 shows that Q ∈ Delr(X,E) − Delr(X,E + x) is equivalent to Q ± x ∈ Delr(X,E) −
Delr(X,E + x).

This gives two cases: either {Q + x,Q − x}r = {Q + x,Q − x} ⊂ Delr(X,E) − Delr(X,E + x), or
{Q+ x,Q− x}r ⊂ Delr(X,E + x)

In the former case, define {Q+ x,Q− x}r as an equivalence class in the partition.
In the latter case, partition {Q + x,Q − x}r into singletons. Such a (trivial) partition has the usual
pre-order and is acyclic.

The classes of the defined acyclic partitions on the {Q − x,Q + x}r are singletons or pairs and, hence,
form an acyclic matching. As argued before, the resulting partition on Delr(X,E), by taking unions
of the partitions on the {Q − x,Q + x}r, defines a discrete vector field. Furthermore, the non-critical
simplices precisely make up Delr(X,E) − Delr(X,E + x). We can conclude that the partition is a
discrete vector field whose set of critical simplices is Delr(X,E + x). By Theorem 5.9 it follows that
Delr(X,E) ↘ Delr(X,E + x). This was what had to be proven.

The following corollary is obtained by iteratively applying the collapsing theorem.

Corollary 6.9.1 (Delaunay collapsing theorem). Let ∅ ≤ x1 ≤ . . . ≤ xn be some chosen order, then

Cechr(X) = Delr(X, ∅) ↘ Delr(X,x1) ↘ . . . ↘ Delr(X,X) = Delr(X)

Remark 6.10. Note, adding more points at a time, i.e. collapsing Delr(X,E) ↘ Delr(X,F ) with E ⊂ F ,
can also be done by choosing an order of E − F and applying Theorem 6.9 iteratively.

40



7

Specialisation to symmetric data

The previous sections introduced selective Delaunay complexes Delr(X,E) for E ⊂ X ⊂ Rn whose sim-
plices can be computed in terms of Minimal Enclosing Excluding Spheres, see Definition 4.4. Further, a
series of collapses, induced by discrete vector fields, existed between two selective Delaunay complexes.
This implied the collapsing theorem, see Corollary 6.9.1.

Overview
In this section, the nomenclature is introduced to formally capture what is meant by ’symmetry’. There-
after, the theory of Section 3 and Section 5 is repeated for the special case of a symmetrical data set X.
The symmetry considered is ’geometrical’ in the sense that it is a symmetry of Rn of which X is a subset.
At the end of this section, equivariant discrete Morse theory characterises collapses that are symmetrical.

7.1 Nomenclature
A symmetry on any set A is formalised by a group G acting on A. This means that there is a group
homomorphism ρ : G → Aut(A), where Aut(A) is the group of automorphisms, i.e. bijective functions,
of A. The latter is a group via function composition f ◦h. The action ρ is implicit and understood from
the context. In this sense, we identify G with its image ρ(G) in ⊂ Aut(A), i.e. we say G ⊂ Aut(A). In
this thesis, only finite groups are considered.

Not all actions preserve structures present in the set A. Actions which preserve structure are often given
special names. In the following definitions, we define a few names.

Definitions
Definition 7.1. If A is set and there is an action ρ : G → Aut(A), the bijective functions of A, then A
is called a G set.

Note that a simplicial morphism f : K → K′, see Definition 2.4, is a map f0 between their vertices such
that f sends simplices in K to simplices in K′. The simplicial automorphism group of the simplicial
complex K, denoted by S −Aut(A) consists of all simplicial morphisms f : K → K whose vertex map f0
is bijective and the inverse also defines a simplicial morphism.

Definition 7.2. A simplicial complex K is a simplicial G complex if there is an action ρ : G →
S −Aut(A).

Furthermore, recall from linear algebra that the set of invertible linear maps on a vector space V is called
the general linear group, denoted as GL(V ). In other words, the ’linear versions’ of automorphisms
are the general linear maps.

Definition 7.3. If V is a finite dimensional vector space over a field k, then an action ρ : G → GL(V )
is called a (linear) representation of G over V .
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Remark 7.4. For the current and following section, the field k used is the set of real numbers, R. This
makes all representations real representations. When studying barcodes in a later section, we use a
different field, specifically, the field F2.

Notice that a simplicial G complex and a vector space V with a linear representation are both, in par-
ticular, G sets.

If X is a G-set, then the orbit of x ∈ X, denoted by Gx, is the set of all y such that g(x) = y for some
g ∈ G. If g(Q) = Q for any Q ⊂ X then g is said to fix Q. For Q ⊂ X, the notation GQ denotes the set
of all g ∈ G such that g(Q) = Q, i.e. the set of group elements fixing Q. The set is called the stabiliser
subgroup of Q (with respect to G).

Symmetrical data
Recall that the Delaunay complex Delr(X,E) is defined by the ambient space Rn, where X ⊂ Rn. There-
fore, we expect it to be a simplicial G complex if there is a linear representation on Rn of G such that X is
symmetric under this representation. However, not all linear representations preserve MEES/Euclidean
metric. Since Delr(X,E) is defined by the standard Euclidean metric, we restrict ourselves to represen-
tations which preserve the Euclidean metric. More exactly, we require that the representation ρ of G
restricts to the linear orthogonal group, i.e. ρ : G → O(n). Indeed, linear maps in O(n) preserve the
standard Euclidean metric.
The terminology has been introduced to consider in what way X is considered to be ’symmetric’.

Definition 7.5. A finite set X ⊂ Rn is said to be G symmetric, with respect to group G, if there is a
representation ρ : G → O(n) such that the induced action on X makes X into a G-subset of Rn.

Since an action g preserves the euclidean metric of Rd, such actions are isometries. Notice that a G
symmetric set X, in the sense of Definition 7.5, is (usually) not in general position, see Definition 3.11.
For example, the four points in Fig. 11 form a G symmetric set where G acts as rotation by 1/2π. In
general, this is due to the action preserving MEES whose centre is fixed under the action, see Lemma 7.11.

A few of these types of symmetrical data sets X are considered in [34]. In the paper, a perturbation
method, which puts symmetrical sets in general position, is shown to be biased towards providing certain
Delaunay triangulations over others. Furthermore, the most common type of triangulations might not
be ’nice looking’, i.e. they might contain many small triangles. It is unknown to me whether other
perturbation methods, such as Theorem 4.1 [8], have the same bias behaviour. Delaunay triangulations
are, however, outside of the scope of this thesis and more information can be found in [35] Section 5.5
and 5.6.

The natural notion of a ’symmetry preserving’ function f : X → Y between G sets X and Y , is a
function that transforms the symmetry on X into the symmetry of Y . More exactly, the function should
commute with the actions g ∈ G.

Definition 7.6. Let G be a group, X and Y both G sets, and f : X → Y a function. The function f is
G-equivariant if gf(x) = f(gx) for all g ∈ G and x ∈ X.

Remark 7.7. In categorical language, any category in which all maps are invertible is called a groupoid.
A group G then is defined as a groupoid category with a single object. A homomorphism is a functor
F : G → C such that the only object is sent to X. In this language, the previous definitions turn into
the following.

• If C = Set, then X is a G-set.

• If C = Simp, the category of simplicial complexes, then X is a simplicial G complex.

• If C = V ectk, then F is called a representation of G.

Assumption
Throughout this and the following section, we assume that there is a representation ρ : G → O(n)
of a finite group G. If X is a G-set, then it is G symmetric set with respect to this representation.
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Furthermore, unless noted otherwise, it is assumed that E and X are G symmetrical subsets of Rn and
E ⊂ X.

7.2 Equivariant Delaunay complex
The following lemma proves that the Delaunay complex Delr(X,E) is a simplicial G complex, if both X
and E are G symmetric.

Lemma 7.8. The Delaunay complex Delr(X,E) is a simplicial G complex.

Proof. The vertices of Delr(X,E) is X which is a G − set. Let Q be some simplex in Delr(X,E) and
g ∈ G, then

gV or(x,E) = g{y ∈ Rn|d(x, y) ≤ d(y, z)∀z ∈ E} (4)
= {y ∈ Rn|d(gx, y) ≤ d(y, z)∀z ∈ E} = V or(gx,E) (5)

This equality holds since gE = E, gRn = Rn and implies that g : V or(x,E) 7→ V or(gx,E) permutes the
Voronoi balls.

For any simplex Q ∈ Delr(X,E), by definition,
⋂

x∈Q V orr(x,E) ̸= ∅. Since each of the g is a bijection
and g(V or(x,E)) = V or(gx,E), we can conclude that

g(
⋂

x∈Q

V orr(x,E)) =
⋂

x∈Q

V orr(g(x), E) ̸= ∅

Thus, g(Q) = {g(q1), . . . , g(qn)} ∈ Delr(X,E), which means that Delr(X,E) is a simplicial G complex.

The structure of how an element g ∈ G permutes simplices is reminiscent of equivariance of functions,
i.e. gf(x) = f(gx). This motivates the following name.

Definition 7.9. If Delr(X,E) is a simplicial G-complex, then it is called the equivariant Delaunay
complex.

7.3 MEES and G-actions
A Delaunay complex is equivalently described at the hand of the MEES, Lemma 4.6, and see Definition 4.4
for the definition of a MEES. Not surprisingly, the MEES function is equivariant, that is, gS(Q,E) =
S(gQ, gE). This is the content of the following lemma.

Lemma 7.10. The MEES function is equivariant, i.e. gS(Q,E) = S(gQ,E) for all g ∈ G.

Proof. Since Delr(X,E) is a simplicial G complex, a simplex Q is in Delr(X,E) if and only if gQ is in
Delr(X,E) for all g ∈ G. In particular, this implies that S(gQ,E) exists. Furthermore, since each g ∈ G
is an isometry, it preserves spheres. Let S(Q,E) = (z, r), then each q ∈ Q has d(q, z) ≤ r and so gS(Q,E)
has d(gq, gz) = d(q, z) ≤ r. Therefore, gS(Q,E) includes gQ and excludes E. If s(Q,E) < s(gQ,E), then
g−1S(gQ,E) includes Q, excludes E and has strictly smaller radius then S(Q,E). This is a contradiction
and we conclude that gS(Q,E) = S(gQ,E). Thus the MEES function is equivariant.

Another simple observation is that for any sphere S, incl(S), excl(S) and on(S) are also equivariant.

Lemma 7.11. Let S be a sphere in Rn, then

g incl(S) = incl(gS) (6)
g excl(S) = excl(gS) (7)
g on(S) = on(gS) (8)

Proof. This follows directly from the definition and the fact that g acts as an isometry.
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7.4 Equivariant discrete Morse theory
The symmetric specialisation of discrete Morse theory, called equivariant discrete Morse theory, was first
introduced in [11]. An equivariant collapse between two simplicial G complexes encodes an equivariant
deformation retract similar to a ’regular’ collapse. In turn, equivariant discrete Morse theory charac-
terises equivariant collapses between simplicial G complexes.

7.4.1 Equivariant homotopy equivalences
Recall that a homotopy equivalence between X,Y are two maps f : X → Y, g : Y → X such that f ◦ g
and g◦f are homotopic to the identity. If this map is G equivariant in the sense that gH(x, t) = H(gx, t)
for all g ∈ G, then the homotopy equivalence is called G equivariant. Furthermore, we remind the reader
of a nerve, see Definition 3.3. There is an G equivariant homotopy equivalence between Delr(X,E) and
Delr(X,E + Gx). Such a result can be concluded from an equivariant version of the nerve lemma [36]
Lemma 2.5.

Lemma 7.12. Let K be a simplicial G complex and let U = {Ui|i ∈ I} be a G-invariant covering of
K. If every nonempty finite intersection ∩i∈QUi for Q ⊂ I, is GQ-contractible, then |K| and the nerve
N ({Ui|i ∈ I}) are G-homotopy equivalent, i.e. |K| ∼G N (U)

Proof. See Lemma 2.5 in [36].

Here G-equivariant covering means that the induced action of G on the cover permutes the sets of the
cover. In other words, I is a G-set. The good covering is satisfied for closed convex subsets of R2. The
notion of GQ -contractible means that the homotopy H of the deformation retraction is equivariant with
respect to GQ.

Corollary 7.12.1. Let E ⊂ X ⊂ Rn be G symmetrical, x ∈ X and r ∈ R≥0. Then the complex
Delr(X,E) is G-equivariantly homotopy equivalent to Delr(X,E +Gx), i.e.

Delr(X,E) ≃G Delr(X,E +Gx)

Proof. Note that Delr(X,E) and Delr(X,E + Gx) are both the nerve of the union of Voronoi balls
V orr(y,E) and V orr(y,E + x) of radius r around points y ∈ X respectively. The union of Voronoi balls
is independent of the excluded set E by Lemma 3.14. Therefore, if we can prove that Delr(X,E) ≃G⋃

x∈X Br(x) ≃G Delr(X,E + Gx), then we are done. The equivariant nerve lemma, see Lemma 7.12,
implies the wanted equivalence.

Note that G permutes the Voronoi balls by Lemma 7.8, i.e. the cover is G invariant. It remains to prove
that the intersection, U = ∩y∈QV orr(y,E) corresponding to a simplex Q is equivariantly contractible
with respect to GQ.

Since the intersection of convex sets is convex, U is convex. Let q ∈ U and construct the following
fixed point z = 1

|GQ|
∑

g∈GQ g(q). This point is fixed under GQ and lies inside U since it is a convex
combination of points in U . Define the linear homotopy H(x, t) = (1 − t)x+ tz. Since H(x, t) is, for all
x, t a convex combination of points in U , it is a homotopy in U . It defines an homotopy between the
identity and the constant map x 7→ y. The homotopy is also equivariant since gH(x, t) = (1−t)gx+tgz =
(1 − t)gx + tz = H(gx, t). We conclude that U is GQ contractible. By Lemma 7.12 the proof can be
concluded.

This approach has similar downsides as the nerve lemma in the non-equivariant case: It is unclear
whether this homotopy equivalence is stable under the radius and whether it is induced by collapses.
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7.4.2 Geometrical equivariant collapse
The main theorem Corollary 8.19.1 relies on an equivariant version of discrete Morse theory. This is the
work of [11]. Therefore, similar nomenclature to that work is chosen in this thesis.

For a geometric n-simplex W and a face D, let PW (D) denote the union of all n − 1 faces of W that
contain D. Furthermore, define the dual of D in W , denoted as D∗, to be the set of vertices of W not
contained in D, i.e. D∗ = W0 −D0.

Lemma 7.13. If W is a geometric n-simplex and D is a face, then W retracts into PW (D∗). Moreover,
if g is a permutation of W0 such that g(D0) = D0, then the retract H : W × I → W can be chosen
equivariant with respect to g, i.e. gH(x, t) = H(gx, t) for all x, t.

Proof. See proposition 4.1 [11]

This lemma is best supplemented by Fig. 31, similar to Figure 4 in [11].

Figure 31: The 3-simplex, i.e. tetrahedron, on the left is retracted into the complex consisting of two triangles
abd and abc. If g is the reflection of the hyperplane through the centre of cd and ab which sends a to
b and c to d, then this retract can be done equivariantly. The retraction can be imagined as pushing
the centre of cd, the green dot, into the centre of ab, and the rest into the triangles defined by abd
and abc. This is indicated by the red arrow. The simplices which need to be collapsed are coloured
red.

From Fig. 31 can be seen that the resulting abstract simplicial complex is precisely K−[cd, abcd]. In other
words, an interval has been removed. This suggests replacing acyclic matchings by acyclic partitions of
intervals.

7.4.3 Simplicial equivariant collapse
Lemma 7.13 motivates to consider acyclic partitions of intervals, similar to acyclic matching, as a way
to encode equivariant collapses.

A simplex W in a complex K is an interval free face of Q if it is only a face of simplices in [W,Q].
Furthermore, a complex K is said to have an elementary interval collapse to a subcomplex K′ if
K′ = K − [W,Q] where W is an interval free face of Q. To extend collapses to be equivariant, notice
that the subcomplex K is only a G subcomplex if all intervals in the orbit G[W,Q] are removed. This
motivates the following definition.

Definition 7.14. A G complex K has a G equivariant elementary collapse to a G subcomplex K′,
if K′ = K −G[W,Q] where W is an interval free face of Q.

Remark 7.15. An G equivariant elementary collapse K to K′ models a G equivariant retract between the
geometric realisations |K| and |K′| by Lemma 7.13. Therefore, the spaces |K| and |K′| are G homotopy
equivalent.

45



Similar to non-equivariant case, a G equivariant collapse is simply a sequence of elementary equivariant
interval collapses.

Definition 7.16. A simplicial G complex K is said to G equivariantly collapse into a simplicial G
subcomplex K′ if there is a sequence of G equivariant elementary collapses of K into K′, i.e.

K ↘G . . . ↘G K′

Such a collapse is denoted by K ↘G K′.

The notion of matching is generalised in the following definition.

Definition 7.17. A partition ∼ of a poset P is a generalised matching if the equivalence classes
consist of intervals [Q,D] where Q,D ∈ P .

Similar to the non-equivariant case, for a collapse K ↘G K′, the orbit G[W,Q] is only removed once in
a collapse. This motivates to encode such a collapse via a partition.

Definition 7.18. Let ∼ be a partition on a G-set X. The partition is equivariant if B ∈∼ if and only
if g(B) ∈∼ for all g ∈ G where g(B) = {g(b)|b ∈ B}.

Furthermore, the sequence of elementary G equivariant collapses forms a partition of intervals of the
difference K − K′. Equivariant discrete Morse theory encodes the existence of a collapse K ↘G K′ by a
G equivariant acyclic partition of intervals.

Definition 7.19. If ∼ is an acyclic partition of intervals on a simplicial complex K such that the
singletons form a subcomplex, then ∼ is a generalised Morse matching.

Similar to a matching, the singleton classes are called critical and others are non-critical.

Remark 7.20. In contrast to a discrete vector field, the nomenclature generalised Morse matching is
chosen to stay in line with [11]. Alternatively, we could have chosen the name of a G equivariant
generalised discrete vector field.

Remark 7.21. An example of an equivariant interval in P(X), the powerset of X, is [P −GPx, P +GPx]
for GP , the stabiliser subgroup of P . This interval reappears in the equivariant version of the pairing
lemma, Lemma 8.5.

Theorem 7.22 below is a straightforward corollary of the proof of Theorem 4.2 in [11] for CW complexes.

Theorem 7.22 (Equivariant simplicial Morse lemma). Let K be a simplicial G complex and K′ a
simplicial G sub-complex. Let ∼ be an G equivariant generalised Morse matching such that K′ is the
set of critical simplices, then

K ↘G K′

Proof. Similar to Theorem 5.9, let I = [W,Q] be a maximal non-critical interval in ∼. If no such I exists
K′ = K and we are done. Suppose instead that W is not an interval free face of Q, i.e. there exists a
P > W such that P ̸∈ [W,Q]. If P is critical, then W is too because K′ is a subcomplex. This is a
contradiction. The other possibility is that P is non-critical and contained in an interval I ′ ∈∼. This
implies that I ′ > I, and, therefore, I is not maximal in ∼. We conclude that W is an interval free face
of Q. Because gI is also a non-critical interval for all g ∈ G since ∼ is equivariant, it follows that K−GI
is an equivariant elementary interval collapse.

Since K −GI is another G complex with subcomplex K′ and ∼ is still an equivariant generalised Morse
matching such that K′ is critical, it follows that the previous steps can be reapplied. Therefore, we
conclude that K ↘G K′.
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8

Equivariant collapsing theorem

The previous sections introduced and proved a collapsing theorem between the Čech and Delaunay
complex for X ⊂ Rn. Afterwards, the theory to prove Corollary 6.9.1 was specialised to the symmet-
ric/equivariant version where X ⊂ Rn is symmetric, see Definition 7.5. In particular, equivariant discrete
Morse theory was discussed which characterised symmetric collapses by equivariant acyclic partitions of
intervals.

Overview
This section specialises the approach used to prove the Delaunay collapsing theorem 6.9.1 to the case
where X ⊂ R2 is symmetric, see Definition 7.5. Notice that this is only the planar case, as symmetries
in higher dimensions severely complicate the approach used. A partial computation of an example case
is drawn to indicate how the proof works. Unfortunately, in contrast to the non-equivariant case, non-
trivial examples drawn on paper happen to explode in size very quickly. This necessitates a more abstract
discussion of the simplicial G structure first rather than directly calculating the complexes.

Assumptions and notation
We call in the following list all the notation that is used in this section.

• G is a finite group with a real representation ρ : G → O(2) on R2.

• E ⊂ X ⊂ R2 are finite and G symmetric, while x ∈ X.

• r is a non-negative (radius) real number.

• For Q ⊂ X and G a group, the notation GQ denotes all g ∈ G such that g(Q) = Q. It is called the
stabiliser subgroup of G (with respect to Q).

• All groups in this section, often denoted as H, are subgroups of G. These have corresponding
representations, ρ|H : H → O(2), inherited from G. Note that this implies that Z is an H-set if Z
is a G-set and H ⊂ G is a subgroup.

• For an interval I, e.g. I = [Q,Q+Gx], the notation Ir denotes I ∩ Delr(X,E).

• The notation Q+ x denotes Q ∪ {x} and Q− x denotes the set Q with x removed.

The section explicitly states where it deviates from these assumptions.

8.1 Preparatory lemmas
8.1.1 Common Vertex Refinement
First, consider the non-equivariant collapsing theorem, Theorem 6.9, where Delr(X,E) ↘ Delr(X,E+A)
for A ⊂ X arose as a sequence Delr(X,E) ↘ . . . ↘ Delr(X,E +A). Critical simplices are never paired,
and every non-critical simplex Q is matched to Q ± x for some x ∈ A. Thus, a priori, the Q is paired
inside the interval [Q − A,Q + A]. Fortunately, the collection of sets of the form [Q − A,Q + A] is an
acyclic partition. Therefore, in general, it suffices to search for an acyclic matching within [Q−A,Q+A]
by Lemma 5.12. The following lemma generalises Lemma 6.7.

47



Lemma 8.1 (Common vertex refinement). Suppose X is a (not necessarily symmetrical) set and Y ⊂ X.
Then

{[Q− Y,Q+ Y ]|Q ∈ P(X)}

is an acyclic partition of intervals of P(X), the power set of X.

Proof. For Q ∈ P(X), Q ∈ [Q− Y,Q+ Y ] by definition, hence the intervals cover P(X).

If Q− Y ⊂ H ⊂ Q+ Y for some simplex H, then H − (Q− Y ) ⊂ Y , because, (Q+ Y ) − (Q− Y ) = Y .
Therefore, the difference between H and Q − Y lies precisely in Y , i.e. H − Y = Q − Y . By anal-
ogous argument, also H + Y = Q + Y holds. We conclude that H ∈ [Q − Y,Q + Y ] implies that
[H − Y,H + Y ] = [Q− Y,Q+ Y ].

It follows that two intervals I1, I2 are equal if they overlap. Indeed, if H ∈ I1 ∩ I2, then both
I1 = [H − Y,H + Y ] = I2 by the earlier argument. Therefore, the intervals are disjoint. We con-
clude that the intervals define a partition. We give this partition the symbol ∼.

Let IQ = [Q− Y,Q+ Y ] < [P − Y, P + Y ] = IP in the quotient P (X)/ ∼ with induced pre-order. The
inequality implies that P + Y > Q− Y . We know that some x ∈ (P + Y ) − (Q− Y ) with x ̸∈ Y exists.
Indeed, otherwise, Q− Y + Y = P + Y and this is a contradiction as IQ ̸= IP .

Note that Q−Y ⊂ P −Y and x ∈ P −Y but not in Q−Y . Therefore, |P −Y | > |Q−Y |. We conclude
that the function f(IP ) = |P − Y | strictly decreases on equivalence classes. Therefore, ∼ is acyclic.

Example 9. The common vertex refinement can be drawn as a ladder-like diagram. This is done below
for X = abcdef and Y = ef . Even if we can freely move between simplices connected by dotted lines,
there is no cycle.

abcdef

acdef abcde abcdf bcdef

acde acdf abcd bcde bcdf

acd bcd

Figure 32: An example of a Common vertex refinement, Lemma 8.1, for X = abcdef and Y = ef . Simplices
that are connected by a dotted lines are identified in the quotient P(X)/ ∼.

Remark 8.2. Any generalised matching can be refined into a standard matching using the common vertex
refinement, Lemma 8.1, and the cluster lemma, Lemma 5.12. More exactly, if I = [Q,P ] is an interval,
then using Lemma 8.1 for Y = {x} ⊂ P −Q gives an acyclic matching.

8.1.2 Equivariant pairing lemma
Informally, the (non equivariant) pairing lemma, Lemma 6.6, essentially depended on the statement that,
for simplex Q ∈ Delr(X,E), s(Q,E) < s(Q,E + x) implies that x ∈ onS(Q − x,E + x) (if the MEES
exists). However, when more than one constraint is added, i.e. s(Q,E) < s(Q,E + Y ) for Y ⊂ X, then,
generally speaking, we can only conclude that some y ∈ Y lies on S(Q,E + Y ).

To accommodate, observe that, if Y = Gx, then gy ∈ on(S(Q,E + Gx)) for all g such that gQ = Q.
Remember that GQ denotes the set of g such that g(Q) = Q. The observation implies that GQy ⊂
on(S(Q,E +Gx)) for at least some y. Note that GQy is not necessarily equal to Gx.

Remember that it is assumed that X is assumed to be G symmetric.
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Definition 8.3. Let H ⊂ G be a subgroup. Then X/H := {Hx1, . . . ,Hxm} denotes the collection of
disjoint H orbits of elements in X. If m = 1, then the action of H is called transitive on X.

Remark 8.4. Even if H is a proper subgroup of G it can happen that X/H = X/G.

We can now state and prove the equivariant version of the pairing lemma.

Lemma 8.5 (Equivariant pairing lemma). Let H be a subgroup of G. Suppose E ⊂ X are H symmetric,
and Q ∈ Delr(X,E) − Delr(X,E + Hx). Furthermore, assume that Y1 < . . . < Ym is some ordering of
Hx/HQ. Then there exists a Y = Yj such that s(−, E) is constant on [Q−Y,Q+Y ] and s(−, E+Hx) > r
on [Q− Y,Q+ Y ].

The proof is similar to Lemma 6.6 and Lemma 5.7 in [7].

Proof. Let FQ = exclS(Q,E)∩(E+Hx) be all elements of E+Hx already excluded by S(Q,E). Notice
that, by construction, S(Q,E) = S(Q,FQ). Define Aj , for 1 ≤ j ≤ m, as the following set.

Aj = FQ +
⋃
i≤j

Yi

Both FQ and Yi are HQ symmetric. Therefore, Aj is also HQ symmetric. There must exist some smallest
j such that s(Q,Aj) > r ≥ s(Q,Aj−1). This implies that Q ∈ Delr(X,Aj−1) − Delr(X,Aj). We show
that Y = Yj satisfies the conclusion as in the lemma.

Notice that Y lies in the complement of FP by construction. Because FP are all the points in E + Hx
that are excluded by S(Q,E), it follows that Y is strictly included by S(Q,E). Therefore, S(−, E) is
constant on [Q−Y,Q+Y ]. More exactly, this follows by repeated applying Lemma 6.2 as every coefficient
λy for y ∈ Y is zero in every solution for the sphere SQ+Y,E . We conclude the first part.

By Lemma 6.3, there exists at least one y ∈ Y that is strictly included in S(Q,Aj−1). Furthermore, HQ

preserves the sphere S(Q,Aj−1) as Q and Aj−1 are HQ symmetric. It follows that hy is strictly included
by S(Q,Aj−1) for each h ∈ HQ. By definition, Y is an orbit of HQ. We conclude that Y is strictly
included by S(Q,Aj−1). Therefore, SAj−1 is constant on [Q− Y,Q+ Y ].

Suppose that s(Q − Y,E + Hx) ≤ r. Then, by monotonicity of s(−,−), it follows that s(Q − Y,Aj) ≤
r < s(Q,Aj). This implies that some z ∈ Y is strictly excluded by S(Q − Y,Aj). Notice that Q − Y
and Aj are HQ symmetric. Thus, hz is strictly excluded by S(Q − Y,Aj) for all h ∈ HQ. There-
fore, Y is strictly excluded by S(Q − Y,Aj). By repeated application of Lemma 6.3, we conclude that
S(Q− Y,Aj) = S(Q− Y,Aj−1). Indeed, the former sphere already strictly excludes Y .

The argued equalities put together to form the following equality.
S(Q− Y,Aj) = S(Q− Y,Aj−1) = S(Q+ Y,Aj−1)

The first sphere strictly excluded Y , whereas the latter sphere includes Y . This is a contradiction.

Hence, we conclude that s(Q− Y,E +Hx) > r. It follows that s(−, E +Hx) > r on [Q− Y,Q+ Y ] by
monotonicity of s(−, E +Hx). This proves the second statement.

This proves the lemma.

Remark 8.6. Notice that the equivariant pairing lemma 8.5 is also for n ̸= 2, i.e. E ⊂ X ⊂ Rn. Indeed,
nowhere in the proof is a reference to specific properties of the plane made. However, this generality is
not necessary for this thesis and therefore not proven.

Remark 8.7. If G had no nontrivial subgroups, then the Y as in the equivariant pairing lemma is unique.
An example of such a case is when G is a cyclic prime group, i.e. isomorphic to Z/pZ for p a prime.

Remark 8.8. Notice that simplices Q such that GQ = G can exist. Namely, pick x ∈ X with the smallest
norm. The sphere (0, ∥x∥) is a candidate for the MEES of S(Gx,E) for all E, since it excludes X
by construction. Therefore, S(Gx,E) exists and Gx ∈ Delr(X,E) if r ≥ ∥x∥. The simplex Gx has
GGx = G.
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8.1.3 Intermediate partition lemma
In general, while an Y for the equivariant pairing Lemma, 8.5, exists for any fixed simplex Q (locally).
It is unclear how to consistently select Y for all Q (globally). The unclear choice suggests building the
partition step-wise. The construction of intermediate steps is reflected in the following lemma.

Lemma 8.9 (Intermediate partition lemma). Let H ⊂ G be a subgroup. Suppose that E′ ⊂ E are H
symmetric. Define A by the equality

A = (E′ − E)/H = {Hx1 > . . . > Hxn}

for some ordering of H orbits. Denote by Ā the set A ∪ {∞} where ∞ is the maximal element of Ā.
Further, write Ei for E +

⋃
j≤i Hxj .

There exists an order preserving H-equivariant function ψ : Delr(X,E) → Ā such that

• ψ−1(Hxi) = Delr(X,Ei−1) − Delr(X,Ei) for all i.

• ψ−1(∞) = Delr(X,E′).

Proof. The lemma already prescribes the conditions for the function. Let ψ be the following map.

• ψ : Q 7→ Hxi if Q ∈ Delr(X,Ei−1) − Delr(X,Ei)

• ψ : Q 7→ ∞ if Q ∈ Delr(X,E′)

This map is H-equivariant since Delr(X,Ei) are H complexes. We need to show it is order-preserving.

If Q < D, then s(Q,Ei) ≤ s(D,Ei) for each i as s(−, Ei) is increasing. Therefore, if Hxi = ψ(Q) >
ψ(D) = Hxj for j > i, then s(Q,Ei) > r ≥ s(D,Ei). This is a contradiction and so ψ is order-preserving.
We conclude the lemma.

Remark 8.10. The function of Lemma 8.9 gives rise to a H equivariant partition on Delr(X,E) whose
classes consist of subsets of Delr(X,E) − Delr(X,E +Hx) or are Delr(X,E +Hx).

8.1.4 Orbit lemmas
Suppose that Q ∈ Delr(X,E) such that GQ is transitive on Gx and Q ̸∈ Delr(X,E + Gx). Then, the
equivariant pairing lemma, Lemma 8.5, implies that

Q ∈ Delr(X,E) − Delr(X,E +Gx)

only if
[Q−Gx,Q+Gx] ⊂ Delr(X,E) − Delr(X,E +Gx)

In contrast to the non-equivariant case Corollary 6.9.1, there is no reason to assume that the converse
holds, i.e. that some P ∈ [Q − Gx,Q + Gx] such that P ∈ Delr(X,E) − Delr(X,E + Hx) implies that
Q has the same property. It can happen that only a proper subset of [Q − Gx,Q + Gx] lies outside
Delr(X,E + Gx). In such a case, the orbit lemma, Lemma 8.16, provides a desired partition in this
case on [Q − Gx,Q + Gx]. The proof of the orbit lemma can be done in two cases. The first case is
Lemma 8.11 where we assume that |Hx| ≤ 2, the second case is Lemma 8.15 where we assume that
|Hx| ≥ 3.

The case where |GQx| ≤ 2, the situation above does reduce to the if and only if statement.

Remember that for any interval I, such as [Q,Q+Hx], Ir denotes the following.

Ir = I ∩ Delr(X,E)

Lemma 8.11 (Small orbit lemma). Suppose H is a subgroup of G, and E ⊂ X are H symmetric,
and |Hx| ≤ 2. Suppose that Q ∈ Delr(X,E) where Q = Q − Hx, and HQ acts transitively on Hx.
Then there exists a HQ-equivariant acyclic generalised matching on [Q,Q+Hx]r such that the critical
intervals lie in Delr(X,E +Hx) and the non critical intervals in Delr(X,E) − Delr(X,E +Hx).
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Proof. First, suppose |Hx| = 1, i.e. Hx = {x}. This means [Q,Q+Hx]r = {Q−x,Q+x}r = {Q,Q+x}r

since Q = Q − Hx. The proof of the (non-equivariant) collapsing theorem, Corollary 6.9.1, implies
the existence of a acyclic generalised matching on {Q,Q + x}r. Furthermore, every h ∈ HQ has
h[Q,Q + x]r = [Q,Q + x]r as h(x) = x by assumption. Therefore, the partition on {Q,Q + x}r is
HQ-equivariant. This proves the case |Hx| = 1.

Now, suppose |Hx| = 2, i.e. Hx = {x, y}. Denote by D1 and D2 the complexes Delr(X,E) and
Delr(X,E + Hx) respectively. If [Q,Q + Hx]r ⊂ D2, then take the partition of singletons. If Q or
Q+Hx lie in D1 −D2, then the equivariant pairing lemma, Lemma 8.5, can be applied. Indeed, HQ acts
transitively on Hx, and E is H symmetric which implies that [Q,Q+Hx]r = [Q,Q+Hx] ⊂ D1 −D2.
In this case, [Q,Q+Hx] is an interval for the partition that is HQ-equivariant.

The remaining case is that there exists a P ∈ [Q,Q+Hx]r such that P ̸= Q,Q+Hx and P ∈ D1 −D2.
Impose the order x < y in Hx. By Corollary 6.6.1, there exists some z ∈ Hx such that {P − z, P + z} ⊂
D1 − D2. Either P contains z, in which case P + z = P and P − z = Q, or P does not contain z, in
which case P − z = P and P + z = Q+Hx. In both cases, it follows that Q or Q+Hx lies in D1 −D2.
Both cases have already been solved by the prior argument.

By construction, every simplex P such that P ∈ D1 −D2 is in a non singleton interval of the partition.
Furthermore, the set of critical simplices lies in D2.

Remark 8.12. Notice that this lemma does not use any properties of the plane R2. Therefore, this lemma
also holds for X ⊂ Rn. However, this is not proven nor used in this thesis.

In contrast to Lemma 8.11, the proof of Lemma 8.16 is rather long. Therefore, it is supplemented with
Example 10. This should help navigate the special case of one orbit Gx = X.

Lemma 8.13 (Big orbit lemma). Suppose H is a subgroup of G, and E ⊂ X are H symmetric, and
|Hx| ≥ 3. Suppose that Q ∈ Delr(X,E) where Q = Q − Hx, and HQ acts transitively on Hx. Then
there exists a HQ-equivariant acyclic generalised matching on [Q,Q+Hx]r such that the critical intervals
lie in Delr(X,E +Hx) and the non critical intervals in Delr(X,E) − Delr(X,E +Hx).

Example proof of the big orbit lemma
The proof of the big orbit lemma, Lemma 8.15, is not very insightful and also long. Therefore, an
example case of a single orbit is provided below in Example 10.

Example 10. The quadruplet of figures, Fig. 33, Fig. 34, Fig. 35 and Fig. 36, help to illustrate the big
orbit lemma, Lemma 8.15, for the case G = H = D8, X = Gx, and E = ∅ and [Q,Q+Hx]r = (∅, Hx]r.
That is, we consider only a single orbit (which corresponds in notation) to the case [∅, Hx]r, i.e. Q = ∅.
Here, D8 refers to the dihedral group of order eight, which we represent as the is the symmetry group of
the 8-gon. More exactly, the group D8 with generators r, i is represented algebraically as

D8 =< r, i|r8 = e, i2 = e, rni = ir−n >

The representation ρ : G → O(2) sends the rotation generator r to a rotation of 1/4π and the reflection
generator i to a reflection through the vertical axis. This representation makes G into the symmetry
group of the 8-gon. The orbit of the vector (0, 1), denoted 1, is depicted in Fig. 33. The orbit G1 is the
set X, i.e. X = G1.

The example is structured in the following way:

• Compute a few simplices Q in Delr(X, ∅) by computing the MEES S(Q, ∅).

• Compute Delr(X,Gx) = Delr(X,X) by computing the MEES S(Q,Gx).

• Find a collapse/generalised Morse matching on the few simplices Q computed for Delr(X, ∅).

• Define the G-equivariant generalised Morse matching that induces the collapse.
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Computing Delr(X, ∅)
The MEES of S({1, i}, ∅), for i = 2, 3, 4, 5, are depicted in Fig. 33 in black, blue, green and red, respec-
tively.

Figure 33: For G the Dihedral group of order 8, a single orbit of points numbered 1 to 8 is drawn G1 = X.
The MEES of S({Wi}, ∅) for Wi = {1, i} with i = 2, 3, 4, 5 is depicted in black, blue, green, red,
respectively.

Secondly, we should indicate what radius r to choose as to make the example interesting. To do this,
note that S({1, 5}, ∅) = S(Gx, ∅) = S(Gx,Gx), which is the red circle in Fig. 33. Therefore, if r is large
enough such that s({1, 5}, ∅) ≤ r, then Delr(X, ∅) = P(X) − ∅ = Delr(X,Gx), where P(X) is the power
set. Therefore, the radius r should be smaller as the example is otherwise trivial. The radius r is selected
such that s({1, 4}, ∅) ≤ r, the green circle in Fig. 33, while r < s({1, 5}, ∅).

Notice that, by Lemma 6.2, if s(Q,E) < s(Q + x,E), then x ∈ onS(Q + x,E) if it exists. If
V = {a, b, c} ⊂ G1 is such that s(V, ∅) > s(Y, ∅) for every proper subset Y of V , then, by repeated
application of Lemma 6.2, we know that V ⊂ onS(V, ∅). Because no three points in G1 are colinear, in
particular, V is not colinear. Therefore, V ⊂ onS(V, ∅) implies that S(V, ∅) is the circumcircle of V . The
circumcircle of V is the same as G1 as G1 is concyclic by construction. Therefore, S(V, ∅) = S(Gx, ∅)
and as such, V ̸∈ Delr(X, ∅). A concrete example of such a simplex V is V = {1, 4, 6}.

The simplices which are included in Delr(X, ∅) are those whose points are included in the MEES of
S({1, i}, ∅) for i = 2, 3, 4. Let us denote Wi = {1, i} for i = 2, 3, 4, 5. Note that S(Wi, ∅) includes Wj for
1 ≤ j ≤ i.

Computing Delr(X, G1)
Notice that all simplices Wi for i ̸= 2 are not in Delr(X,G1). Indeed, because j is strictly included
in S(Wi, ∅) for 1 < j < i, there must be some j such that j ∈ onS(Wi, G1) as s(Wi, ∅) < s(Wi, G1).
Furthermore, Wi ⊂ onS(Wi, G1) by definition as Wi ⊂ G1 and therefore V = Wi ∪ {j} ⊂ onS(Wi, G1).
By our earlier argument, it follows that S(Wi, G1) is the circumsphere of G1. This sphere had radius
strictly bigger then r. We conclude that Wi is in Delr(X,G1) only if i = 2. The complex Delr(X,G1),
thus, only consists of the edges {1, 2}, {2, 3}, . . . , {1, 8} as depicted black in Fig. 34.

Computing a few collapses
BecauseWi satisfiesWi ∈ Delr(X, ∅)−Delr(X,Gx) for i = 3, 4, this is also true for all P ∈ [Wi, incl(S(Wi, ∅))].
To simplify notation, denote by AWi , for i = 3, 4, all the points included in the MEES S(Wi, ∅). The
simplices AWi

are depicted in Fig. 34 in blue and green, respectively. Therefore, the generalised matching
that we choose should contain these as non singleton intervals.
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Figure 34: The simplices AWi = incl(S(Wi, ∅) have been drawn for i = 1, 2 in black, i = 3 in blue and i = 4 in
green. Additionally the simplices {2, 3, 4}, {2, 3} and {3, 4} have been drawn.

Define the partition ∼ of intervals {[Wi, AWi
]|i = 3, 4} and the other simplices are singletons. Note that

this partition is acyclic as s(Wj , ∅) < s(Wi, ∅) for j < i and s(−, ∅) is constant on the interval [Wi, AWi
].

The resulting collapse is indicated in Fig. 35. Notice that the arrows point outwards from the centre
towards the black edges.

Figure 35: The generalised acylic matching is drawn for the intervals [Wi, AWi ].

The generalised matching
Define the partition consisting of the intervals g[Wi, AWi ] for each g ∈ G and each i = 3, 4. The resulting
partition is well-defined since

gAWi = g incl(S(Wi, ∅)) = incl(S(gWi, ∅)) = AgWi

Furthermore, the partition is acyclic. Indeed, two elements P,Q in intervals I, J respectively have Q < P
if s(Q, ∅) < s(P, ∅) by construction. This implies that s(−, ∅) is a decreasing function on the intervals.
Furthermore, the partition consists of intervals. Lastly, the partition is G equivariant by construction.
The resulting collapse is depicted in Fig. 36.

This ends the example.

8.1.5 Proof of the big orbit lemma
To prove that the big orbit lemma works, we need to ensure that the simplex Q+x is critical if and only
if Q is assuming the action is transitive.

Lemma 8.14. Suppose H is a subgroup of G, and E ⊂ X are H symmetric. Suppose that Q ∈
Delr(X,E + Hx) with Q = Q − Hx and HQ acts transitively on Hx. Then Q + x ∈ Delr(X,E + Hx)
also.
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Figure 36: The equivariant generalised Morse matching is depicted that induces the collapse of Delr(X, ∅) ↘G

Delr(X, Gx).

Proof. Suppose that Q+x ̸∈ Delr(X,E+Hx). Because Hx = HQx, it follows that Q+y ̸∈ Delr(X,E+
Hx) for all y ∈ Hx. Choose a total order on Hx = {x1 < . . . < xn}. By the proof of the (non equivariant)
collapsing theorem, Corollary 6.9.1, there exists an acyclic matching that pairs Q + x. Specifically, the
matching pairs elements Q + y to elements in (Q,Q + Hx]r, since Q is in Delr(X,E + Hx). By our
earlier argument, all Q+ y need to be matched. Let f : Hx → Hx be the bijection such that f(xi) has
that Q + xi is matched to Q + xi + f(xi). Thus, there are matched pairs {Q + xi, Q + xi + f(xi)}, for
i = 1, . . . , n. Then observe the following sequence of inequalities in the quotient by the partition

{Q+ x1, Q+ x1 + f(x1)} > {Q+ f(x1), Q+ f(x1) + ff(x1)} > . . .

Because Hx is finite and f is a bijection, there is some m ∈ N such that fm(x1) = x1. In other words,
the sequence repeats. This implies that ∼ is not acyclic. We conclude a contradiction, and therefore
Q+ x ∈ Delr(X,E +Hx) and the statement holds.

Notice that circle is uniquely determined by 3 points on its boundary if the points are not colinear.
Furthermore, any orthogonal action g preserves a circle S around zero, i.e. gS = S. This implies that
an orbit of points from an orthogonal action always lie on the same circle around zero. No three points
on the circle are colinear, and, therefore, if the orbit consists of three points, the points are not colinear.
The previous two observations are the reason why only the plane is considered for the equivariant case.
It is also the reason why the case |Hx| ≥ 3 works for Lemma 8.15.

Recall that Ir, for an interval I, denotes the set I ∩ Delr(X,E).

Lemma 8.15 (Big orbit lemma). Suppose H is a subgroup of G and E ⊂ X are H symmetrical, and
|Hx| ≥ 3. Suppose further that Q ∈ Delr(X,E) where Q = Q − Hx, and HQ acts transitively on Hx.
Then there exists a HQ-equivariant acyclic generalised matching on [Q,Q+Hx]r such that the critical
intervals lie in Delr(X,E +Hx) and the non critical intervals in Delr(X,E) − Delr(X,E +Hx).

Proof structure
This proof rests on examining whether simplices of the form Q,Q+Hx,Q+y,Q+{y, z} or Q+{h, y, z}
lie in D1, D2 or D1 − D2 where y, z, h ∈ Hx. In the end, we shall see that the only relevant case is
Q+ {y, z}. This is also indicated in Example 10 by the AWi

.

Proof. Denote by D1 and D2 the complexes Delr(X,E) and Delr(X,E +Hx) respectively.

Case Q,Q+Hx
Notice that Q ̸∈ D1 implies that [Q,Q+Hx]r = ∅, so this is a trivial case. If either Q+Hx or Q lie in
D1 −D2 then the entire interval has this property by Lemma 8.5. Specifically, the lemma can be applied
and Hx = HQx as HQ acts transitively on Hx by assumption. Therefore, [Q,Q+Hx]r = [Q,Q+Hx] ⊂
D1 −D2. Taking the entire interval [Q,Q+Hx] defines an HQ equivariant acyclic generalised matching
satisfying the conclusion. So, assume that Q,Q+Hx ̸∈ D1 −D2.
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If Q+Hx ∈ D2, then the entire interval is in D2 since s(P,E +Hx) ≤ s(Q+Hx,E +Hx) ≤ r for all
P ∈ [Q,Q+Hx]r. In this case, the partition of singleton intervals defines a trivial acyclic H-equivariant
partition. So assume that Q+Hx ̸∈ D2.

Since Q + Hx ̸∈ D1 − D2 it follows that Q + Hx ̸∈ D1 since Q + Hx ̸∈ D2 by assumption. Listing the
assumptions so far shows that Q ∈ D2 and Q+Hx ̸∈ D1, or, equivalently,

s(Q,E) ≤ s(Q,E +Hx) ≤ r < s(Q+Hx,E)

Notice that this implies that s(Q,E) < s(Q + y,E) for some y ∈ Hx. Because h ∈ HQ satisfies
hs(Q,E) = s(Q,E) < hs(Q + y,E) = s(Q + hy,E) and HQ acts transitively on Hx, it follows that
s(Q,E) < s(Q + y,E) for all y ∈ Hx. Lastly, note that, in the following proof, the interval [∅, Hx]r is
simply the interval (∅, Hx]r. Therefore, this case is also examined.

Case Q+y
If Q+ y ̸∈ D1 for any y ∈ Hx. Then, since the action HQ is transitive on Hx, it follows that Q+ y ̸∈ D1
for all y ∈ Hx. Therefore, [Q,Q+Hx]r is the singleton {Q}. A singleton partitions the interval trivially.
Thus, this case is solved.

Assume that Q+ y ∈ D1. By Lemma 8.14 it follows that Q+ y ∈ D2 because Q ∈ D2.

Case Q+{y,z,h}
Let V = {y, z, h} denote three distinct points in Hx. If S(Q+V,E+Hx) does not exist, then Q+V ̸∈ D2.
Suppose then that S(Q+ V,E +Hx) exists. Observe that V ⊂ onS(Q+ V,E +Hx). Since V consists
of three non colinear points, we know that S(Hx,Hx) = S(Q+ V,E +Hx), as the MEES must be the
circumsphere of Hx. Furthermore, the only fixed point of H is 0 as it is not just a reflection in a line
since |Hx| ≥ 3. It follows that S(Hx,Hx) = (0, ∥x∥) and this MEES exists. If S(Hx,Hx) included Q,
excluded E, and s(Hx,Hx) ≤ r, then S(Hx,Hx) = S(Q+Hx,E +Hx) and thus Q+Hx ∈ D2. This
is a contradiction as, by assumption, Q + Hx ̸∈ D2, and therefore S(Hx,Hx) does not include Q, or
exclude E or s(Hx,Hx) > r. We conclude that Q + V ̸∈ D2, as S(Q + V,E + Hx) should include Q,
exclude E or have radius less then r. Since s(−, E) is monotonically increasing, the same conclusion
holds for any set V ′ of more than three distinct points.

Furthermore, if V ⊂ V ′ ⊂ Hx, then Q+ V ′ ̸∈ D2 since s(−,−) is increasing.

Now, S(Q + V,E) is determined by two points, i.e. S(Q + V,E) = S(Q + W,E) for |W | ≤ 2, or
Q + V ̸∈ D1 (these cases are not exclusive). Indeed, if there is no W ⊂ V with |W | = 2 such that
s(Q + W,E) = s(Q + V,E), then s(Q + W,E) < s(Q + V,E) for all W ⊂ V . This implies that
V ⊂ onS(Q + V,E). Again, it follows that S(Q + V,E) = S(Hx,Hx). As argued before, the sphere
S(Hx,Hx) does not include Q or exclude E or have s(Hx,Hx) ≤ r (it can be one or more of these
options). Since S(Q+V,E) has to satisfy all three conditions if Q+V ∈ D1, we conclude that Q+V ̸∈ D1.

Case Q+{y,z}
The remaining cases to consider is for simplices of the form Q + W where |W | = 2, and those sim-
plices B such that S(B,E) = S(Q + W,E). Once these cases have been investigated, we shall end
up with non-singleton intervals contained in D1 − D − 2 of the form [Q + W,B], where the B is
incl(S(Q + W,E)). First, we consider simplices Q + W where |W | = 2. The following argument shows
that S(Q+W,E) = S(Q+W,E +W ).

Let W = {y, z} ⊂ Hx, then we shall show that W onS(Q + W,E). There are two cases, either
s(Q+ y,E) = s(Q+W,E) or s(Q+ y,E) < s(Q+W,E).
Suppose, first, that s(Q + y,E) = s(Q + W,E) holds. Let h ∈ HQ be such that h(y) = z. The h
exists as HQ acts transitively on Hx. It follows that hs(Q + y,E) = s(Q + z, E) which implies that
s(Q+ z, E) = s(Q+W,E). Because s(Q,E) < s(Q+ y,E), we know that y ∈ onS(Q+ y,E). Similarly,
this holds for z, i.e. z ∈ onS(Q + z, E). Since S(Q + y,E) = S(Q + W,E) = S(Q + z, E) the sphere
S(Q+W,E) has y and z on it, and, therefore, W ⊂ onS(Q+W,E).
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Suppose now that s(Q+ y,E) < s(Q+W,E) holds. We can already conclude that z ∈ onS(Q+W,E).
Because s(Q+z, E) = s(Q+y,E) by similar argument as in the case above for s(Q+y,E) = s(Q+W,E),
it follows that y ∈ onS(Q+W,E). This means that W ⊂ onS(Q+W,E).

In both cases, we can conclude that S(Q+W,E) = S(Q+W,E+W ) as W is excluded by S(Q+W,E).

If S(Q+W,E) excludes Hx, then Q+W is in D2. Otherwise, s(Q+W,E+W ) < s(Q+W,E+Hx) and
there is some h ∈ Hx−W that is not excluded by S(Q+W,E+W ). In this case, the set L := {h} ∪W
has L ⊂ onS(Q+W,E+W +Hx). By the argument presented for the case Q+ {y, z, h}, it follows that
S(Q+W,E +W +Hx) must be the circumsphere S(Hx,Hx) which implies that Q+W ̸∈ D2.

Construction of generalised matching
From our previous discussion, the only simplices B that can satisfy B ∈ D1 − D2 are those such that
S(B,E) = S(Q + W,E) for |W | = 2. Let Q + W ∈ D1 − D2, then, denote by AW all the simplices in
[Q,Q + Hx]r that are included in inclS(Q + W,E), i.e. AW = [Q,Q + Hx]r ∩ inclS(Q + W,E). Such
intervals are not singletons as we saw that Q+W ∈ D1 −D2 implies that there exists an h ∈ Hx−W
which is strictly included in S(Q+W,E). We shall prove that {[Q+W,AW ]||W | = 2, Q+W ∈ D1 −D2}
is the wanted partition.

Notice that each [Q+W,AW ] is contained in a distinct pre-image of S(−, E). Therefore, together with
the singletons sets, these intervals [Q + W,AW ] define a partition ∼. Furthermore, notice that, in the
quotient D1/ ∼, if two intervals are related as [Q+W,AW ] < [Q+W ′, AW ′ ], then s([Q+W,AW ], E) <
s([Q + W ′, AW ′ ], E) by construction. This implies acyclicity of the partition. The HQ equivariance
follows from the following equation, where h ∈ HQ is arbitrary.

h[Q+W,AW ] = [hQ+ hW, hAW ] = [Q+ hW,AhW ]

This concludes the proof as the partition defined is an HQ equivariant generalised matching as in the
conclusion of the lemma.

The big and small orbit lemma, Lemma 8.15 and Lemma 8.11 respectively provide the general case.

Lemma 8.16 (Orbit lemma). Suppose H is a subgroup of G and E ⊂ X are H symmetrical. Suppose
further that Q ∈ Delr(X,E) where Q = Q − Hx, and HQ acts transitively on Hx. Then there exists
a HQ-equivariant acyclic generalised matching on [Q,Q + Hx]r such that the critical intervals lie in
Delr(X,E +Hx) and the non critical intervals in Delr(X,E) − Delr(X,E +Hx).

This lemma provides the case for the Delaunay collapsing theorem as long as the action GQ acts transi-
tively on Gx for every Q ∈ Delr(X,E). A direct corollary is the case where the group G is cyclic prime,
i.e. has no nontrivial subgroups.

Corollary 8.16.1. Let E ⊂ X be G-sets and x ∈ X. If G is a cyclic prime group, i.e. G = Z/pZ, then
there exists a G-equivariant collapse

Delr(X,E) ↘G Delr(X,E +Gx)

Proof. Consider the partition {[Q,Q + Gx]r|Q = Q − Gx} of Delr(X,E). The partition is acyclic
due to Lemma 8.1. Pick from each orbit class of [Q,Q + Gx]r a representative (such as [Q,Q + Gx]r
itself). By the orbit lemma, Lemma 8.16, there is a GQ equivariant acyclic generalised matching on
[Q,Q + Gx]r such that the critical intervals lie in Delr(X,E + Hx) and the non critical intervals in
Delr(X,E) − Delr(X,E +Hx). Denote this partition by ∼Q and let [Q′, Q′ +Gx]r be another element
in the orbit of [Q,Q+Gx]r. Since G has no non-trivial subgroups, there is exactly one g ∈ G such that
g(Q) = Q′. Therefore, if we define the GQ′ equivariant partition ∼g(Q) on [Q′, Q′ +Gx]r as the partition
of sets g(L) where L ∈∼Q. Then each interval in the orbit class of [Q,Q+Gx]r has an acyclic partition.
The constructed partition is a G equivariant partition of intervals. Furthermore, the partition is acyclic
by the Lemma 5.12. We conclude that there is an G equivariant generalised Morse matching such that
critical simplices lie in Delr(X,E +Gx) and the non critical simplices in Delr(X,E) − Delr(X,E +Gx).
By Theorem 7.22, we conclude that the statement holds.

56



However, in general, there is no reason to assume that HQ acts transitively on Gx for some simplex
Q ∈ Delr(X,E). The orbit reduction lemma Lemma 8.18 reduces the problem recursively such that the
orbit lemma, Lemma 8.16, can be applied.

8.2 Example of the solution structure
The example focuses on exemplifying the orbit lemma, Lemma 8.16, that reduces the problem into
smaller chunks.

Example setup
Example 11. Similar to Example 10, the group G is the dihedral group D8 of order 8. The group is
represented in the following way.

G = D8 =< r, i|r8 = e, i2 = e, rni = ir−n >

The group is the symmetry group of the 8-gon. In Fig. 37, two orbits of points under the group action G
are drawn. We denote by 1 the point (0, 1). The outer 8 red points, denoted as G1, and the inner black
and blue eight points. The element i acts by reflection in the vertical axis, which is the line through 1, 5.
The element r acts as a counter-clockwise rotation by 1/4π sending 1 to 2 to 3, etc. Further assume that
E = ∅.

The simplex Q denotes the four black points {a, b, c, d}. The stabiliser subgroup of Q in G is isomorphic
to D4, the symmetry of the square. More precisely, GQ = G = D8 =< r2, i|r8 = e, i2 = e, rni = ir−n >
is the representation of GQ. The simplex Q′ define the four blue points. The simplices Q and Q′ are
chosen such that a rotation r ∈ G has r(Q) = Q′.

Figure 37: Two orbits of points with symmetry group G = D8 are drawn. The orbit G1 is drawn and numbered
from 1 to 8.

Remark 8.17. The number of points in this example might seem unnecessarily large. However, at
minimum two orbits are required to distinguish this from the Example 10. Furthermore, the order of G
needs to be high enough, e.g. greater than eight, to ensure that subtle arguments involving non-trivial
stabilizer subgroups become clear.

The structure of this example is as follows:

1. Formulate what is sufficient to prove.

2. Reduce the problem.

3. Repeat steps 1 and 2.

4. General remark on how to iteratively apply steps.

57



Problem
Find G equivariant generalised Morse matching on Delr(X,E) such that the non singleton intervals lie
in Delr(X,E) − Delr(X,E +G1).

Problem reduction
Remember that [Q,Q + Gx]r denotes [Q,Q + Gx]r = [Q,Q + Gx] ∩ Delr(X, ∅). Notice that the set
(∅, G1]r can be done by the orbit lemma, Lemma 8.16. More details on this precise case are given in
Example 10.

We expect that partitions can be found in sets of the form [Q,Q+Gx]r where Q = Q−Gx. Indeed, any
acyclic matching from the non-equivariant version of the collapsing theorem, Theorem 6.9, suggests as
much. Due to Lemma 8.1, it is also sufficient to find appropriate partitions in [Q,Q + Gx]r. However,
it makes no sense to find a G-equivariant partition on [Q,Q + Gx]r, as r[Q,Q + Gx]r = [Q′, Q′ + Gx],
which is a different set. Instead, we should attempt to find an appropriate GQ-equivariant partition on
[Q,Q+Gx]r. Fortunately, as the following argument shows, this suffices.

Suppose that ∼Q is a GQ equivariant partition on [Q,Q+Gx]r. Then, this partition can be translated
to one on [Q′, Q′ +Gx]r by [r] ∈ G/GQ, the cosets of G under GQ. Indeed, define ∼Q′ to be the partition
r(I) ∈∼Q′ if and only if I ∈∼Q. If instead of r, the action r3 was taken, then r3r1(I) = r4(I) ∈∼Q since
∼Q is GQ equivariant and r4 ∈ GQ. In other words, the action r3 simply permutes the classes in ∼Q′ .
Therefore, the problem restricts to finding a GQ equivariant matching on [Q,Q+Gx]r with the required
properties.

New problem
Find GQ equivariant generalised matching on [Q,Q + Gx]r such that the non singleton intervals lie in
Delr(X,E) − Delr(X,E +G1).

Problem reduction
The orbit GQ2 and GQ1 can be seen in Fig. 38. Unfortunately, GQ does not act transitively on G1, i.e.
GQ2 = {2, 4, 6, 8} ≠ G1. Therefore, the orbit lemma, Lemma 8.16, cannot be applied directly.

Figure 38: The orbits of 1 and 2 under GQ is depicted in yellow and red respectively.

However, if, instead, there exists two GQ equivariant generalised matchings such that the first has non-
singleton intervals in Delr(X,E) − Delr(X,E +GQ1) and the second has non-singleton intervals in

Delr(X,E +GQ1) − Delr(X,E +GQ1 +GQ2) = Delr(X,E +GQ1) − Delr(X,E +Gx)

Then they are acyclic due to Lemma 8.9. Furthermore, they can be combined to create a larger GQ

equivariant generalized matching due to Lemma 5.12. Therefore, we can focus on finding a GQ equiv-
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ariant generalized matching whose critical simplices are Delr(X,E +GQ1), as the other case is similar.

New problem
Find GQ equivariant acyclic generalised matching on [Q,Q+Gx]r such that the non singleton intervals
lie in Delr(X,E) − Delr(X,E +GQ1).

Problem reduction
Notice that the problem is similar to how this example started. Instead of partitioning [Q,Q + Gx]r
directly, the set [Q,Q+Gx]r can be partitioned into sets of the form [B,B+GQ1]r where B = B−GQ1.
This is acyclic due to Lemma 8.1. Notice that, finally, the orbit lemma, Lemma 8.16, can be applied
to [Q,Q + GQ1]r. We only need to consider the remaining sets [B,B + GQ1]r where B ̸= Q. To avoid
overusing the + symbol, we denote by QJ the set Q+ J .

Consider, for example, the set [B,B + GQ1]r = [Q24, Q24 + GQ1]r, where Q24 = Q + {2, 4}, for which
GQ24 =< r4, i|r8 = e, i2 = e, ir4 = r4i >, see Fig. 39. This stabiliser subgroup is isomorphic to the Klein
group Z/2 × Z/2 as it is abelian with two generators of order 2.

Note that GQ241 = {1, 5}, GQ243 = {3}, GQ247 = {7}. Since GQ1 ̸= GQ241, the orbit lemma,

Figure 39: The black dots represent Q24. The red points are the orbit GQ1. The orbit of GQ24
on GQ1 is not

transitive. Indeed, GQ1 consists of the orbits GQ24
1, GQ24

3 and GQ24
7 respectively.

Lemma 8.16, cannot be applied. However, similar to the case for Q and Q′, any GQ24-equivariant parti-
tion on [Q24, Q24 +GQ1]r defines, via a reflection i, an GQ68 -equivariant partition on [Q68, Q68 +GQ1]r.
This is well defined similar to the previous argument for [Q,Q+Gx]r and [Q′, Q′ +Gx]r.

New Problem

Find a GQ24 equivariant acyclic generalised matching on [GQ24
, GQ24 +GQ1]r such that the non singleton

intervals are in Delr(X,E +GQ1).

Solution structure
The previous steps can be re-applied to this new problem. Specifically, construct an acyclic generalised
matching on Delr(X,E)−Delr(X,E+GQ243), then on Delr(X,E+GQ243)−Delr(X,E+GQ243+GQ247)
and then on Delr(X,E +GQ243 +GQ247) − Delr(X,E +GQ1).

This process must be finite, as the size of the orbit G1, GQ1, GQ241 is reduced every time. Therefore,
eventually, the orbit lemma, Lemma 8.16, can be applied. That this procedure works in general is for-
mally proven in the orbit reduction lemma, Lemma 8.18.
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8.2.1 Orbit reduction lemma
Lemma 8.18 (Orbit reduction lemma). Suppose H is a subgroup of G and E ⊂ X are H symmetrical.
If Q ∈ Delr(X,E) with Q = Q − Hx, Then there exists a HQ-equivariant acyclic generalised matching
on [Q,Q+Hx]r such that the critical intervals lie in Delr(X,E +Hx) and the non critical intervals in
Delr(X,E) − Delr(X,E +Hx).

Because recursion is applied in the following proof, we need to distinguish between the ’current’ and
’next level’ in the recursion. This is done by adding a ′ to the relevant notation.

Proof. Denote by D1 and D2 the complexes Delr(X,E) and Delr(X,E + Hx) respectively. Further,
let Hx/HQ = {HQx1 < . . . < HQxm} be an ordering. If m = 1, then HQ acts transitively on Hx.
Therefore, the conditions of the orbit lemma, Lemma 8.16, are satisfied. The orbit lemma supplies the
wanted generalised matching.

If m > 1, then denote by Ei the union of orbits HQxj for j ≤ i, i.e. Ei =
⋃

j≤i H
Qxi. By Lemma 8.9,

for HQ sets E,E + Hx, there is an acyclic HQ equivariant partition on [Q,Q + Hx]r such that the
classes are contained in Delr(X,E+Hx) or in Delr(X,Ei−1)−Delr(X,Ei) for some i. Therefore, due to
Lemma 5.12, it suffices to provide an HQ equivariant acyclic generalised matching on [Q,Q+Hx]r such
that every non-trivial class is in some Delr(X,Ei−1)−Delr(X,Ei) and the singleton classes in Delr(X,Ei).
Indeed, the wanted partition on D1 then consists of all the non-singleton intervals of the partitions on the
Delr(X,Ei−1)−Delr(X,Ei), for all i, where the singleton intervals consist of Delr(X,E+Hx). For every
1 ≤ i ≤ m, we construct an HQ equivariant acyclic generalised matching on [Q,Q+Hx]r such that the
non singleton intervals lie inside Delr(X,Ei−1)−Delr(X,Ei) and the critical intervals inside Delr(X,Ei).

First, define the following notation.
D′

1 = Delr(X,Ei−1), D′
2 = Delr(X,Ei), E′ = Ei−1, x′ = xi

Further, denote by [B,B +HQx′]r′ , for B ∈ [Q,Q+Hx]r, the simplices in [B,B +HQx′] ∩D′
1, i.e.

[B,B +HQx′]r′ = [B,B +HQx′] ∩D′
1

Notice that [B,B +HQx′]r′ ⊂ [Q,Q+Hx]r by construction.

Consider the following partition, which we denote by ∼, of [Q,Q+Hx]r ∩D1.
{[B,B +HQx′]r′ |B ∈ [Q,Q+Hx]r, B = B −HQx′}

This partition is acyclic due to Lemma 8.1 where Y = HQx′. Notice that HQ acts on the partition ∼.
Indeed, for h ∈ HQ, h[B,B +HQx′] = [h(B), h(B) +HQx′] and h(B) = h(B) −HQx′ by construction.
Let [B,B + HQx]r′ be a representative of its orbit class of ∼ under the action HQ. Suppose there is
an HB equivariant partition, denoted ∼B , on [B,B + HQx]r′ . Then we can define an HB′ -equivariant
partition on any of the intervals [B′, B′ + HQx′] in its orbit. Indeed, for h ∈ HQ, define ∼hB as the
partition of sets h(L) where L ∈∼B . Notice that ∼hB=∼B if h ∈ HB since ∼B is HB-equivariant.
Therefore, the choice of h depends only on its class in HQ/HB . Furthermore, for two elements h, g with
different classes in HQ/HB , we note that h(B) ̸= g(B), for otherwise h−1g ∈ HB . Therefore, defining
∼hB as ∼B is well defined irrespective of choice of element h ∈ HQ such that h(B) = B′.

Therefore, for providing a HQ-equivariant generalised matching on [Q,Q+Hx]r such that non-trivial in-
tervals lie in D′

1 −D′
2, it is sufficient to define an HB-equivariant generalised matching on [B,B+HQx]r′

such that the non-trivial intervals lie in D′
1 −D′

2 and the singleton intervals in D′
2 for one representative

of every orbit class in ∼.

Notice, however, the above steps can be applied again. Indeed, E′ is HQ symmetric, x′ ∈ X, and B
is in Delr(X,E′) with B = B − HQx′, which is similar to the situation where the proof started. More
exactly, redefine H := HQ, E := E′, x := x′, Q := B, D1 := D′

1 and D2 := D′
2, then apply the steps

above again.

Therefore, this process can be iteratively applied. However, this process is finite as each step reduces
the orbit size |HQx| < |Hx|. We conclude that the lemma holds.
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8.3 Proof of equivariant collapsing theorem
The equivariant Delaunay collapsing theorem, Corollary 8.19.1, can now be proven.

Theorem 8.19 (Equivariant Delaunay collapsing theorem). Let E ⊂ X be G symmetric and x ∈ X.
Then there exists a G-equivariant collapse

Delr(X,E) ↘G Delr(X,E +Gx)

Proof. By Theorem 7.22 it suffices to prove there is a G equivariant generalised Morse matching on
Delr(X,E) whose non singleton intervals are Delr(X,E) − Delr(X,E + Gx). Let {[Q,Q + Gx]r|Q ∈
Delr(X,E), Q = Q−Gx} be the acyclic partition induced by Lemma 8.1 of Delr(X,E). This partition
is G equivariant. Choose a representative [Q,Q+Gx]r of each equivalence class under the G orbit. By
Lemma 8.18 there exists an GQ equivariant generalised matching on [Q,Q + Gx]r such that the non
singleton intervals are in Delr(X,E) − Delr(X,E + Gx). Similar to the proof in Lemma 8.18, the
matching on [Q,Q+Gx]r can be defined uniquely on each of the intervals in its orbit class under G. Due
to Lemma 5.12, the union of the partitions is acyclic. Therefore, this defines a G-equivariant generalised
Morse matching on Delr(X,E) whose non critical simplices are in Delr(X,E) − Delr(X,E +Gx) while
the critical simplices are in Delr(X,E + Gx). This implies the theorem as argued at the beginning of
the proof.

Similar to Corollary 6.9.1, by iteratively applying Theorem 6.9 the equivariant Delaunay collapsing
theorem follows.

Corollary 8.19.1. Let X ⊂ R2 be G symmetric, then there exists a G equivariant collapse between the
Čechr(X) and Delr(X) complex, i.e.

Čechr(X) ↘G Delr(X)
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9

A corollary of the equivariant collapsing theorem

In the previous chapters, Delaunay complexes were introduced and using discrete Morse theory, a col-
lapsing theorem between them was proven. All theory was specialised to the equivariant case where the
data X ⊂ R2 was assumed to be symmetric with respect to an orthogonal action of a finite group G.

Overview
In this section, the definitions relevant to persistent homology are recalled and corollaries of the main
theorem are discussed. Specifically, two corollaries, Corollary 6.1 and the diagram on page 18 found in
[7], of isomorphic persistent homology and a map Delr(X) → Delr(Y ) for X ⊂ Y , are repeated for the
equivariant case. An overview of discrete Morse theory for computations of persistent homology can be
found in [23]. Furthermore, two simple examples illustrate the computation of the barcode decomposition
of an equivariant Delaunay complex. This decomposition is not invariant under symmetry. The last part
poses two questions about equivariant persistent homology and persistent homology of non-symmetric
data sets Y which have a symmetrical subset X.

The section assumes that the reader is familiar with (simplicial) homology, found in, for example, Chapter
3 of [13] or general homology theory, see Chapter 2 of [1].

Notation
For this section, we assume that k is some field. Furthermore, X ⊂ Rn unless it is clear from the context
that X is G symmetric, see Definition 7.5, for some finite group G. In that case, it is assumed that
X ⊂ R2. Furthermore, this section assumes that E ⊂ X and r ≥ 0.

9.1 Persistent homology of Delaunay complexes
If the discussion is too abstract, the reader is advised to first skip to the example below, see Section 9.2.

Homology of Delaunay complexes
Similar to [13] section 3, denote the n-th homology group over a field k of a simplicial complex K as
Hn(K; k). Recall that a collapse between Delr(X,E) ↘ Delr(X,E+F ) implies that there exists a series of
deformation retracts between their geometric realisations, i.e. | Delr(X,E +F )| ↪→ | Delr(X,E)| is a ho-
motopy equivalence. This fact implies, in particular, that the homology of Delr(X,E) and Delr(X,E+F )
are isomorphic.

The equivariant collapsing theorem 8.19.1 states that the deformation retracts can be chosen to be G
equivariant if X ⊂ R2 is G symmetric. This implies that the homologies are isomorphic as representations
of G. Diagrammatically, this is captured in the following commutative diagram where the horizontal
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maps are the homotopy equivalences.

| Delr(X,E + F )| | Delr(X,E)|

| Delr(X,E + F )| | Delr(X,E)|

g

≃

g

≃

More algebraically, the diagram denotes the fact that the inclusion i : | Delr(X,E + F )| ↪→ | Delr(X,E)|
commutes with every g, i.e. i ◦ g = g ◦ i.

However, we can conclude an even stronger result, as there is an equivalence between their persistent
homologies, discussed below.

Persistent homology
To measure how homology ’persists through time’, a notion of a ’sequence of topological spaces’ is
required.

Definition 9.1. A filtration 17 is a collection of topological spaces F = (Fr)r∈R≥0 such that

Fr ⊂ Fr′ , r ≤ r′

Example 12. All simplicial complexes introduced this far are part of a filtration. Indeed,
Delr(X,E) ⊂ Delr′(X,E) for every r ≤ r′. In particular, the Čechr(X) = Delr(X, ∅) and
Delaunay Delr(X) = Delr(X,X) complexes are part of filtrations.

Furthermore, these filtrations are discrete, in the sense that there is a finite set {r1, . . . , rn} such
that Delri(X,E) is equal to Delr′(X,E) for all r′ < ri+1 and not otherwise. The reason for this
is that X is finite.

A map between filtrations µ : F → L is a map µr : Ft → Lt at each t, such that it stays ’the same’ map
on the subspace Ft ⊂ Ft′ for t ≤ t′. This is the following definition.

Definition 9.2. A natural transformation of two filtrations (Fi)t∈T and (Li)t∈T is a collection of
maps (µt)t∈T such that

Xr Yr

Xr′ Yr′

µr

µt′

where the vertical maps are inclusions.

Example 13. The following diagram illustrates that the inclusion induces a natural transforma-
tion between Del∗(X,E + F ) and Del∗(X,E).

Delr(X,E + F ) Delr(X,E)

Delr′(X,E + F ) Delr′(X,E)

Remember that the homology H∗(K; k) is a vector space.

17A more general definition to enable multi-parameter persistence homology is to consider directed graphs for T , called
quivers. See [37] for more information.
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Definition 9.3. The homology of a filtration H∗(F ; k) is called the persistent homology, denoted
PH(F ; k), of that filtration. The inclusion maps Fr ↪→ F ′

r induce linear maps

H∗(Fr; k) H∗(Fr′(X); k)fr′
r

where fr′′

r′ ◦ fr′

r = fr′′

r

The persistent homology is an example of a persistence module.

Definition 9.4. A persistence module18 V is a sequence of vector spaces over k, (Vr)r≥0 with a linear
maps fr→r′ : Vr → Vr′ such that fr′′

r′ ◦ fr′

r = fr′′

r .

Example 14. Let I = [a, b) be an interval in R ∪ {∞}, that is, we consider [a,∞) a valid
interval. A basic example of an persistence module is when Vr = 0 if r ̸∈ I, and Vr = k otherwise.
Furthermore, the linear maps are identities fr′

r = id for [r, r′) ⊂ I and zero otherwise. Such a
persistence module is called an interval module and denoted by I [a,b).

The notion of a map between persistence modules is similar to the natural transformation of filtrations.

Definition 9.5. A map of persistence modules γ : V → W is a collection of linear maps γr : Vr → Wr

such that the following diagram commutes for all fr′

r and gr′

r .

Vr Wr

Vr′ Wr′

fr′
r

γr

gr′
r

γr′

If the horizontal maps γr are isomorphisms, then the persistence modules are said to be isomorphic.

Isomorphic persistent homology of Delaunay complexes
A natural transformation between filtrations F and L induces a map, via homology, between their
persistent homology. The Delaunay collapsing theorem 6.9 implies that there is a retract | Delr(X,E)|
into | Delr(X,E + F )|, where the latter complex is seen as a subspace of the former complex. In turn,
this implies that the inclusion | Delr(X,E+F )| ↪→ | Delr(X,E)| is a homotopy equivalence. Now observe
the following diagram, in which the horizontal maps are inclusions and thus homotopy equivalences by
the previous observation.

| Delr(X,E + F )| | Delr(X,E)|

| Delr′(X,E + F )| | Delr′(X,E)|

≃

≃

This diagram is commutative, and is thus a map of persistence modules, as it consists of the inclu-
sion of subspaces into (a subspace of) | Delr′(X,E)|. Since the horizontal maps are (simple) homotopy
equivalences, these maps are isomorphisms in the persistence homology. This implies that the persistent
homologies are naturally isomorphic. This is stated as the following corollary.

Corollary 9.5.1. For all E,F ⊂ X ⊂ Rm, the persistent homology of Delr(X,E) and Delr(X,E + F )
are isomorphic, in particular, this holds for Delr(X) and Čechr(X).

If there is a finite group G and X ⊂ R2 is symmetric in the sense of Definition 7.5, then the persistence
homologies are additionally isomorphic as representations of G as a corollary of Corollary 8.19.1. Indeed,
consider the following cubical-shaped diagram where Delr(X,E + F ) and Delr(X,E) are denoted by
Vr,Wr, respectively.

18The "module" refers to the fact that the theory can be done more generally with modules over a Principal Ideal
Domain (PID) such as Z instead of a field k. However, for non-field coefficients, torsion can be encountered in the
persistent homology, see [38]. This thesis only considers coefficients in a field as it is relevant for the barcode defined later.
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Vr Wr

Vr Vr′ Wr Wr′

Vr′ Wr′

g g

g

g

The diagram is again commutative as the complex Delr(X,E + F ) is a G subcomplex of Delr′(X,E)
at every radius r ≤ r′. Corollary 8.19.1 implies that there are G equivariant deformation retracts of
Delr(X,E) into Delr(X,E+F ) for each r, and therefore, the horizontal maps are G equivariant homotopy
equivalences. Furthermore, the commutativity implies that the natural transformation Del∗(X,E + F )
to Del∗(X,E) commutes with the action of G. Thus, the homology of Delr(X,E) and Delr(X,E + F )
are isomorphic as representations over G at any fixed r.

Remark 9.6. Categorically, a filtration is functor F : P → Top, where P is a poset, such that the mor-
phisms become mono-morphisms F (i → j) = F (i) ↪→ F (j). A functor F : P → V ectk of a poset P to
vector spaces over k is then called a persistence module. Recall that homology, H(−; k), is a functor
from Top → V ectk. Therefore, composing a filtration with homology gives a persistence module. All the
drawn diagrams above state that the corresponding constructions are functorial.

The barcode
Two persistence modules V,W can be composed as a direct sum in the usual way V ⊕i W = Vi ⊕ Wi

where the maps are the induced maps from the individual modules. The following theorem states a
converse results, i.e. is a decomposition theorem for persistent homology.

Corollary 9.6.1. If V is a persistence module such that dim(Vr) < ∞ for all r ∈ T , then the persistence
module decomposes into a direct sum of interval modules.

Proof. See Theorem 1.2 in [5]

Note that the interval modules might contain repeats of the same interval. To correctly index the
intervals, the notion of a multiset is handy.

Definition 9.7. A multiset is a set with multiplicity; elements can be repeated.

Example 15. The multiset {1, 2, 3, 3, 3} is not equal to the multiset {1, 2, 3} even though they
both define the same set.

If the persistence module is the persistent homology of a filtration F , then the decomposition, unique to
reordering, is called the barcode of F . The decomposition is written in the following way.

PH(F ) = ⊕[a,b)]∈BI
[a,b)

Here, B = {[a1, b1), . . . , [am, bm)} is a multiset of intervals.

Remark 9.8. To compute the barcode, we can choose generators of the homology at each filtration
parameter r such that the ’oldest’ homology generator is preserved if possible. This preference is called
the elder rule, as found in Chapter 7.1 in [28]. For a more comprehensive overview on the computation
of persistent homology see [38].
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9.2 Example of persistent homology of equivariant
Delaunay complex

The Delaunay complexes Delr(X,E) are simplicial G complexes if X is G symmetric as in Definition 7.5
and G is finite. The homology of the complex also has an action of G by linear maps. Remember that
a linear action of G into a vector space is called a group representation of G over V . Similar to the
barcode, group representations also have a notion of decomposability.

Group representation theory
Two basic notions in group representation theory are decomposability and reducibility [39]. The former
asks the question: "Do the G-invariant subspaces decompose as a direct sum?". The latter asks the
question: "Are there subspaces which are G-invariant?".

More exactly, a representation ρ : G → Aut(V ) over a vector space V has a sub-representation
ρ′ : G → Aut(W ) over a subspace W , if W ⊂ V is a proper non-zero subspace and ρ restricted on the
codomain to GL(W ) is ρ′, i.e. ρ(g)|W = ρ′(g) for all g ∈ G.

If ρ can be written as the direct sum of two sub-representations, i.e. ρ(G) = ρ0(G) ⊕ ρ1(G), then ρ is
called decomposable.

Decomposability is equivalent to finding a basis such that every action g is in the same diagonal block
form (with diagonal entries being square matrices). In other words, every g has the following form in
this basis. A1 . . . 0

... . . . ...
0 . . . Am


Here, A1, . . . Am are square matrices of possibly different sizes. This, in turn, corresponds to every action
working on a direct sum of spaces.

If ρ has a sub-representation, then ρ is called reducible. Reducibility is equivalent to finding a basis
such that each action g is represented in upper triangular form with (possibly) matrix entries.

Remark 9.9. Decomposable implies reducible, and the converse holds if k = C [39].

Example computation of barcode of equivariant Delaunay complexes
We have seen that the persistent homology of the filtration defined by the Delaunay complex Del∗(X,E)
has a decomposition into barcodes. Such a decomposition gives a basis for the homology H(Delr(X,E); k)
at every r. If Delr(X,E) is a simplicial G complex, then the homology H(Delr(X,E); k) also has a notion
of decomposability with respect to the G action. In the example below, it is shown that the represen-
tation induced by the decomposition into barcodes need not make the action of G on the homology
decomposable.

In this example, the barcode decomposition of the first persistent homology for a Delaunay complex with
a G action using the elder rule (see Remark 9.8), i.e. we compute PH1(Delr(X),F2).19

19The choice of the field k = F2 is not unusual for persistent homology computations. See [40] for more information on
the consequences of the choice of a field.

66



Consider a slightly deformed square of 4 points a, b, c, d in R2, see Example 16.

a = (0, 1) (9)
b = (ϵ, ϵ) (10)
c = (1, 0) (11)
d = (1 − ϵ, 1 − ϵ) (12)

where 1 >> ϵ > 0. Computing the distances for d(a, b), d(b, d) and d(a, c) respectively shows that

• d(a, b) =
√

(1 − ϵ)2 + ϵ2 =
√

1 − 2ϵ+ 2ϵ2

• d(b, d) =
√

(1 − 2ϵ)2 + (1 − 2ϵ)2 =
√

2|1 − 2ϵ|

• d(a, c) =
√

2

Notice that the d(a, b) = d(a, d) = d(b, c) = d(c, d) equalities hold by construction. Lastly, the inequali-
ties d(a, b) < d(b, d) < d(a, c) also hold for ϵ small enough.

Remark 9.10. Notice that two points q, p in the Čech complex Čechr(X) define a 1-simplex if d(q, p) ≤ 2r.
Indeed, then the balls Br(p) ∩Br(q) intersect in at least 1

2 (p+ q).

If we compute the Delaunay complex at radius 2r = d(a, b), then we obtain the following Figure 16.

Example 16.

a

b

c

d

Furthermore, consider an action of G = Z/2Z by reflection in the line spanned by bd. Hence, on the
vertices, this action permutes a and c.

The simplicial complex is homotopic to S1 and therefore has the same homology type. A generator for
the homology H1 is ab+ bc+ cd+ad. Therefore H1(Delr(X);F2) ∼= F2. The induced action on homology
sends the generator to itself.

If a ball around b intersects the ball around d at precisely one point, then this is the midpoint between
b, d. The midpoint between b and d is (0.5, 0.5), which is also the midpoint of a and c. At radius
r′ = 1

2d(b, d), the balls Br′(b) and Br′(d) intersect precisely at 0. However, the balls of a, c respectively
do not intersect at zero at that radius since 2r′ <

√
2 = d(a, c). Therefore, there is no triple intersection

of balls around a, b, d at radius r′ = d(b, d), but the balls of b and d do intersect. This means that the
Delaunay complex at radius r = d(b, d) is given by the edges of the triangles abd and bcd.

Example 17.

a

b

c

d

This space is homotopic to the wedge of two circles. Therefore, the first homology is H1(Delr′(X);F2) =
F2 ⊕F2. The elder rules suggests keeping ab+ bc+ cd+ ad as a generator. The other generator is chosen
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as ab+ bc+ ac.

The next step at which the filtration changes, is when r is large enough such that there is a triple in-
tersection of balls around abd and bcd. The resulting space is convex and thus contractible to a point.
Therefore, the homology is trivial.

We conclude that the first persistent homology is isomorphic to the following persistence module.

PH1(Delr(X);F2) ∼= F2 → F2 ⊕ F2

The generators that were chosen induce the following barcode decomposition.

F2 F2 ⊕ F2

(
1
0

)

On the homology, the g action fixes ab + bc + cd + ad, and permutes ab + bc + ac with bc + bd + bd.
In terms of the basis from the barcode decomposition, bc + bd + bd is represented as (1, 1) in F2 ⊕ F2.
Therefore, g : F2 ⊕ F2 → F2 ⊕ F2 acts on the second term F2 ⊕ F2 of the persistence module as follows.

g =
(

1 1
0 1

)
The barcode together with the g action is summarised in the following diagram.

F2 F2 ⊕ F2

F2 F2 ⊕ F2

(
1
0

)
id

(
11
01

)(
1
0

)

The diagram implies that the subspace generated by ab + bc + cd + ad is invariant under g, that is
g(ab+ bc+ cd+ ad) = ab+ bc+ cd+ ad. Therefore, the representation is reducible.

However, the representation is not decomposable. If the representation was decomposable, then there
exist two coefficients λ1, λ2 ∈ F2 such that the following holds for some invertible matrix B.

B−1gB =
(
λ1 0
0 λ2

)
Since g is invertible, the matrix on the right-hand side is also invertible. This implies that λi = 1, for
i = 1, 2, which is the only invertible element in F2. However, this implies that g = id as both B and
B−1 can be taken to the right-hand side.

We conclude that the barcode decomposition of the persistent homology induces a reducible indecompos-
able representation of G. In this sense, the notions of barcode decomposition and group representation
decomposition do not coincide.

To ensure that the representation as in Example 16 is decomposable, a different choice of the coefficient
field would suffice. Indeed, if k = C, then a reducible representation is decomposable [39]. Therefore,
the representation discussed would be decomposable. However, the field C is not finite, which makes it
less usable for computational purposes.

We wonder whether persistent homology can be adapted to the equivariant case to ensure that the decom-
position of the barcode is also a decomposition of the representation even if the field is not C. One such
direction could be an equivariant version of persistent homology, where the homology itself is equivariant.
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9.3 A question for properties induced map of persis-
tent homology

Induced map of Delaunay complexes
As noted in [7] page 18, the collapsing theorem 6.9.1 induces an inclusion-like map between the geometric
realisation of two Delaunay complexes with different point clouds X ⊂ Y . The map follows from the
following commutative diagram, where the map from | Delr(Y,X)| to | Delr(Y, Y )| is the retract induced
by Theorem 6.9.

|Delr(X,X)| |Delr(Y,X)|

|Delr(Y, Y )|
≃

This map induces a map from Delr(X,X) to Delr(Y, Y ). For equivariant Delaunay complexes where
X,Y are G sets, we know that the retract can be chosen to be equivariant by Theorem 8.19. The in-
duced map on persistent homology is also equivariant.

However, suppose that Y is not symmetric, but X is symmetric. Does the map Delr(X,X) → Delr(Y, Y )
map capture some notion of symmetry of the persistent homology of Y ?

This is relevant because it could happen that only subsets of data is symmetrical, even if the whole data
is not. In particular, this might help with clustering algorithms, which deal with local clumps of data,
although no claim is made on the topic.
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A

Existence and uniqueness of a Minimal Enclosing
Excluding Sphere (MEES)

Suppose that Q,E are two finite sets in Rn. This appendix proves the claim that there is none or exactly
one sphere Sρ which encloses Q and excludes E whereby ρ is minimal. Note that, if Q is a point, then
{Q} is considered a minimal enclosing sphere.

First, we show that a minimal sphere exists if there exists at least one. Afterwards, we shall show that
the minimal sphere is unique.

Existence of minimal sphere
Lemma A.1. Let Q,E ⊂ Rn be finite sets. Suppose that the set of spheres which encloses Q and
excludes E, S, is non-empty. Under this condition, a sphere with minimal radius exists in S.

Proof. Let R be the set {r ∈ R≥0|∃(z, r) = S ∈ S}, and δ the infimum of R in R. There is a sphere
(zm, rm) ∈ S with radius arbitrarily close to δ, i.e. rm ∈ [δ, δ + 1/m], for each m. By construction it
holds that ∥zm − q∥ ≤ rn ≤ δ + 2 for some q ∈ Q. This implies that the sequence (zm)n∈N is bounded,
since ∥zm∥ − ∥q∥ ≤ ∥zm − q∥ ≤ δ + 2. Therefore, the sequence (zm)m∈N has a convergent subsequence
with limit z. We shall show that the sphere (z, δ) encloses Q and excludes E.

Suppose that (z, δ) does not enclose a point q ∈ Q, i.e. δ < d(z, q). Then the following inequality holds
for all (zm, rm).

δ < d(z, q) ≤ d(z, zm) + d(zm, q) ≤ d(z, zm) + rm

However, d(z, zm) + rm converges to δ by construction. This implies that there exists some (zN , rN ), for
N ∈ N large, such that q is not enclosed by (zN , rN ). This is a contradiction.

Suppose that (z, δ) does not include a point e ∈ E, i.e. δ > d(z, e). Then an analogous proof follows
from the following inequality.

δ > d(z, e) ≥ d(zm, e) − d(z, zm) ≥ rm − d(z, zm)

Here, rm − d(z, zm) converges to δ. We conclude that (z, δ) is in S. Therefore, there exists a minimal
sphere in S.

Uniqueness of minimal sphere
Consider two different spheres SR and Sr with radius R, r respectively. Suppose that both spheres in-
clude Q and exclude E. We will construct a sphere Sρ with a strictly smaller radius r,R > ρ such that
all points of Q are included and of E are excluded by Sρ. Notice that this implies that a minimal sphere
that includes Q and excludes E must be unique. The proof is based on algebraic manipulation, and the
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line of reasoning is from [41].

First we construct a new sphere, then we show that this new sphere has the required properties. 20

Construction of a new sphere
Lemma A.2. Suppose SR and Sr are two spheres in Rn with radius R and r respectively, which both
include Q and exclude E for finite sets Q and E. Then there exists a sphere Sρ that includes Q, excludes
E and ρ is strictly smaller than both r and R.

Proof. Notice that any sphere S = (z, r) with centre z and radius r uniquely defines the ball Br(z) with
centre z and radius r. In this proof, we shall provide a construction of a ball Bρ from the two balls BR

and Br defined by SR, Sr respectively that defines a sphere Sρ which fulfils the criteria of the lemma.

By rotation and transformation, we can choose a convenient coordinates. Let the two balls of radii R
and r be located along the x1-axis centered at (0, . . . , 0) and (d, 0, . . . , 0), respectively. Without loss of
generality, we can assume that r ≤ R and d > 0.
By construction, it is clear that BR ∩Br = ∅ if R < d− r, and if R = d− r, then both balls only share
one common point (R, 0, . . . , 0).
By Pythagoras, if d2 + r2 ≤ R2 then the ball Br is contained in the ball BR and hence smaller. If there
is no other n-dimensional ball such that all points of Q are enclosed and of E are excluded, then Br and
thus Sr is unique. The only case left to consider is when R2 < d2 + r2.

The equations of the two corresponding boundary spheres SR and Sr are

x2
1 + x2

2 + . . .+ x2
n = R2

(x1 − d)2 + x2
2 + . . .+ x2

n = r2.
(13)

We can write x2
2 + . . .+ x2

n = R2 − x2
1 and combine this with the second equation to get

(x1 − d)2 + (R2 − x2
1) = r2. Solving for x1 gives x1 = 1

2d (d2 − r2 + R2). Let’s denote this point in
the x1-axis with c. Note that by construction 0 < c < d. Indeed, since R2 < d2 + r2 we infer that
−r2 +R2 < d2 from which it follows that 2dc = d2 − r2 +R2 < 2d2.

Plugging c back into Eq. (13) gives

x2
2 + . . .+ x2

n = R2 − c2 = R2 −
( 1

2d (d2 − r2 +R2)
)2 = 1

4d2

(
4d2R2 − (d2 − r2 +R2)2)

(14)

which is the equation of a n-1 sphere with radius

ρ = 1
2d

√
(2dR)2 − (d2 − r2 +R2)2 (15)

and centre (c, 0, . . . , 0).
By the symmetry of the construction it holds that ρ = 1

2d

√
(2dr)2 − (d2 + r2 −R2)2. From a geomet-

rical perspective, ρ is smaller than r, and thus R. This follows also algebraically from the fact that
4d2(r2 − ρ2) = (d2 + r2 −R2)2 > 0.

This Sn−1 sphere defines an n ball Bρ via the condition (x1 − c)2 + x2
2 + . . . + x2

n ≤ ρ2. Note that the
dimension n does not play a role in describing the characteristics

(
(c, 0, . . . , 0), ρ

)
of the new ball.

We shall now prove that this ball satisfies the properties as the lemma claims.

20We remark that, for the purposes of proving that the minimal sphere is unique, we can assume that r = R. However,
we prove the more general case where R ≥ r is allowed.
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Properties of Bρ

If Bρ is contained in the union of the two balls with radius R and r respectively, then E ⊂ excl(BR∪Br) ⊂
excl(Bρ). If the intersection of both spheres is in Bρ, then Q ⊂ incl(Br ∩BR) ⊂ incl(Bρ).

We shall prove that Bρ is contained in the union of the two balls and contains their intersection. First,
observe that a point x = (c, x2, . . . , xn) which satisfies Eq. (13), i.e. x lies in the intersection of SR and
Sr, implies the following equalities for ρ.

c2 + x2
2 + . . .+ x2

n = c2 + ρ2 = R2

(c− d)2 + x2 + . . .+ x2
n = (c− d)2 + ρ2 = r2

Union
Let p = (p1, . . . , pn) be a point on the boundary of the new ball Bρ, i.e. p ∈ Sρ. The question is whether
p2

1 + p2
2 + . . .+ p2

n ≤ R2 or (p1 −d)2 + p2
2 + . . .+ p2

n ≤ r2 ? We show that these cases correspond to p1 ≤ c
and p1 ≥ c, respectively.

Suppose that p1 ≤ c. From (p1 −c)2 +p2
2 + . . .+p2

n ≤ ρ2, it follows that p2
1 −2cp1 +c2 +p2

2 + . . .+p2
n ≤ ρ2.

The following equalities show that p ∈ BR.

p2
1 + . . .+ p2

n ≤ ρ2 + 2cp1 − c2

= (R2 − c2) + 2cp1 − c2

= R2 + 2c(p1 − c) ≤ R2

The last inequality uses the assumption p1 ≤ c. This proves that p lies inside BR.

Assume now that p1 ≥ c. Similar to the previous case, we know that (p1 − c)2 + p2
2 + . . . + p2

n = ρ2 =
r2 − (c− d)2. Furthermore, the following equality holds by expanding the square.

(p1 − d)2 + p2
2 + . . .+ p2

n = (p1 − c)2 + p2
2 + . . .+ p2

n + 2p1c− c2 − 2p1d+ d2

The following inequalities show that p ∈ Br.

(p1 − d)2 + p2
2 + . . .+ p2

n = (p1 − c)2 + p2
2 + . . .+ p2

n + 2p1c− c2 − 2p1d+ d2

= ρ2 + 2p1(c− d) − c2 + d2

≤ ρ2 + 2c(c− d) − c2 + d2

= r2 − (c− d)2 + c2 − 2cd+ d2

= r2

The inequality on the third line holds since c− d < 0 and p1 ≥ c ≥ 0.

This proves that Bρ is contained in the union BR ∪Br.

Intersection
Let p be a point in Br ∩BR, then:

(i) p2
1 + p2

2 + . . .+ p2
n ≤ R2, and

(ii) (p1 − d)2 + p2
2 + . . .+ p2

n ≤ r2.

From (i) we have (p1 − c)2 + p2
2 + . . .+ p2

n ≤ (p1 − c)2 +R2 − p2
1 = −2cp1 + c2 +R2 = −2cp1 + 2c2 + ρ2

as ρ2 = R2 − c2 by (2). If p1 ≥ c then p ∈ Bρ.

From (ii) we have

(p1 −c)2 +p2
2 + . . .+p2

n ≤ (p1 −c)2 +r2 −(p1 −d)2 = −2cp1 +c2 +r2 +2dp1 −d2 = 2(d−c)p1 +c2 +r2 −d2
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As ρ2 = R2 − c2, we get

2(d− c)p1 + c2 + r2 −d2 = ρ2 −R2 + 2(d− c)p1 + 2c2 + r2 −d2 = ρ2 −R2 + 2(d− c)(p1 − c) + 2dc+ r2 −d2

Recall that c is defined such that 2dc = d2 − r2 +R2, hence

(p1 − c)2 + p2
2 + . . .+ p2

n ≤ ρ2 −R2 + 2(d− c)(p1 − c) +R2 = ρ2 + 2(d− c)(p1 − c)

As d > c, we conclude that p ∈ Bρ if p1 ≤ c.

Conclusion
If there exist two different balls BR and Br in Rn such that all points of Q are included and of E are
excluded, then there exists a ball with a smaller radius with the same properties. Therefore, the minimal
ball with these properties is unique. We conclude that the Minimal Enclosing Excluding Sphere (MEES)
of the pair (Q,E) is unique.
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B

A descriptive explanation of the Minimal Enclosing
Excluding Sphere (MEES)

Most conclusions of the thesis, such as Lemma 6.2, depend on the algebraic properties of a solution SQ,E

of the Minimal Enclosing Excluding Sphere (MEES) S(Q,E) for the pair (Q,E), see Definition 4.8 and
Definition 4.4 respectively. Therefore, we provide some insights on how a solution is derived if it exists.
The Karush-Kahn-Tucker (KKT) conditions mentioned in section 4 have some subtle behaviour. In this
appendix a computation is made to show for a simple example that Theorem 4.7 is correct.

Finding the MEES is about solving linear and quadratic equations with boundary conditions (Quadratic
Programming, QP), and the theory described in this appendix is standard. That is why a limited ref-
erence is made to the accompanying literature [31], chapter 2. Relevant is the idea that Quadratic
Programming sometimes reduces to Linear Programming (LP).

Convex hull
Consider a finite data set Q in Rn. In geometry, the convex hull of a shape is the smallest convex set that
contains it. Algebraically, the convex hull of Q is the set Hull(Q) = {

∑
x∈Q λxx|λx ≥ 0,

∑
x∈Q λx = 1}.

For a convex hull, the vertices is the set of extreme points of the polytope. This is best indicated in
Fig. 41.

Figure 40: A finite set of points in R2.

Note that in this example the set of vertices is V = {(0.0, 1.0), (0.5, 2.0), (1.0, 0.0), (1.0, 2.5), (2.0, 3.0), (3.0, 1.0)}.

Minimal Enclosing Circle (MEC)
Any circle which encloses all points Q encloses also the convex hull of Q. A well-known result from
algebraic geometry is that the minimal enclosing sphere only depends on the vertexes of the convex hull
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Figure 41: Boundary of the convex hull of Q where the vertices that determine the convex hull, i.e. the corner
points of the polytope, are highlighted.

of Q. In other words, all other points of Q can be disregarded to determine the minimal enclosing sphere.

The minimal enclosing sphere can algebraically be formulated as a QP problem by minimizing the square
of the radius as already seen in Eq. (1).

min(z,r) r2

s.t. d(q, z)2 ≤ r2 q ∈ Q
(16)

Here a sphere S is identified with its centre z and radius r, i.e. S = (z, r). Given the set Q we get the
following visualisation of the Minimal Enclosed Circle (MEC).

Figure 42: Minimal Enclosed Circle of Q

Note that, in general, three points determine uniquely a circle. However, in this example we have a
fourth point of Q on the boundary, the points consist of {(0.0, 1.0), (1.0, 0.0), (2.0, 3.0), (3.0, 1.0)}.

There is another approach to determining the MEC. The center of minimal enclosing sphere z lies in
the convex hull of Q, and hence z can be written as a linear combination of the vertices z =

∑
I λivi

whereby ∀i λi ≥ 0 and
∑
λi = 1. Instead of minimizing r2, we can solve the dual problem expressed

whose objective is expressed in the coefficients λi.

75



maxλi

∑
i λid(vi, z)

s.t. λi ≥ 0 and
∑
λi = 1 (17)

According to Theorem 4.7, a property of the optimal solution is that the number of non-zero lambdas is
in general at most n+ 1. For a circle, we therefore would expect three positive lambda-values. However,
as there are four points on the minimal circle, there is extra freedom of choice for the coefficients λi.
In the table below, two sets of four lambdas, the sets denoted as {λ}1 and {λ}2 respectively, are shown
which describe the minimal including circle in Fig. 42. Note that only the second pair of lambdas consists
of two non-zero values. This demonstrates that n+ 1 is an upper bound.

vertex points
{λ}1 {λ}2 on the boundary

0.2802 0.0000 (0.0,1.0)
0.1638 0.5001 (1.0,0.0)
0.3318 0.4999 (2.0,3.0)
0.2242 0.0000 (3.0,1.0)

Note that the lambdas are positive, hence the center c =
∑

i λivi = (1.5, 1.5) lies in the convex hull of
Q, and their sum is equal to 1.0.

The example demonstrates that for calculating the optimal solution general position is not a requirement.
The general position condition only ensures that there is no freedom of choice for the lambdas.

Minimal Enclosing Excluding Sphere (MEES)
We now consider the case where we exclude one point denoted by x. There are four excluding possibilities:
the point x lies

i) outside the MES

ii) on the MES

iii) in the MES but not in the convex hull

iv) in the convex hull

There are three simple cases.
Ad i) If the point x is outside the MES, then the MEES is equal to the MES.
Ad ii) If the point x is on the MES, then also the MEES is equal to the MES.
Ad iv) If the point x is in the convex hull, no MEES exists as it always has to contain the convex hull.

The case that the point x lies in the MES but not in the convex hull is solvable. The geometrical
argument is that there is a hyperplane which separates the point x and the convex hull (hyperplane
separation theorem). Hence, we can start with a very large sphere from point x which encloses the MES,
and let the radius shrink until the sphere excludes point from Q.

In the following figure the red punt x = (0.5, 2.5) is excluded which is an example of case (iii).

The center has moved from (1.5, 1.5) to (1.75, 1.25). Note that in general the new center does not have
to lie in the convex hull of Q. For instance, as the point x approaches the edge of the enclosing polygon,
the MEES becomes larger and larger.
A fundamental observation is that in case (iii), the point x lies not in the convex hull, and hence by
definition, can only be written as x =

∑
i λivi if at least one of the coefficients lambda is negative. Note
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Figure 43: Minimal Enclosed Excluding Circle of Q, x

that there is no boundary on how negative a lambda parameter can be.

But there is also another crucial observation: the point x lies on the boundary of the MEES. It is a
well-know fact that from the points on the surface one can determine the center and radius of a circle.
For instance in R2 for points (x1, y1), (x2, y2), (x3, y3) , the circle equations are:

r2
1 = x2

1 + y2
1

r2
2 = x2

2 + y2
2

r2
3 = x2

3 + y2
3

A = x1(y2 − y3) − x1(x2 − x3) + x2y3 − x3y2
B = r2

1(y3 − y2) + r2
2(x1 − y3) + r2

3(y2 − x1)
C = r2

1(x2 − x3) + r2
2(x3 − x1) + r2

3(x1 − x2)
D = r2

1(x3y2 − x2y3) + r2
2(x1y3 − x3x1) + r2

3(x2x1 − x1y2)

If A ̸= 0 then using A,B,C we have

c = (−B
2A ,

−C
2A ) and r2 = B2 + C2 − 4AD

(2A)2 .

These points uniquely define (c, r) but they also uniquely define the non-zero lambdas. The reason is
that A ̸= 0 implies that the condition of general position holds, in which case the dual solution is unique.

If A = 0, then the three points (x1, y1), (x2, y2), (x3, y3) lie on a line. As only the vertices are relevant,
only two points uniquely define (c, r) via c = ( 1

2 (x1 +x2), 1
2 (y1 + y2) and r2 = 1

4
(
(x1 −x2)2 + (y1 − y2)2)

.
In this ’non-general position’ case, there are various possibilities for lambdas.

Because there is an explicit formula for how to calculate the circle parameters when the boundary points
are known, we have the following diagram with a one-to-one relation between the solution of the above
QP problem. As shown with an example, there can be many dual solutions (e.g feasible sets of lambdas)
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and at least one of the sets satisfies the conditions in Theorem 4.7.

Explicit formula (boundary points)

QP (c, r) DualQP (λi)

Conclusion
General position of the data points implies that the set of coefficients {λi|i ∈ Q} is unique to describe
the MEES. In the general case however, there are several sets possible to describe the MEES. Note that
the MEES is always unique, e.g. its center and radius, but the dual solution is not, as we demonstrated
by an example. However, in those cases there exists a solution as indicated in Theorem 4.7. If such a
solution would not exist, the original QP-solution in terms of (c, r) would also not exist.

78



References

[1] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002, pp. xii+544. isbn: 0-521-
79160-X.

[2] U. Bauer et al. “Čech–Delaunay gradient flow and homology inference for self-maps”. In: Journal
of Applied and Computational Topology. 4 (Aug. 2020), pp. 455–480. doi: 10.1007/s41468-020-
00058-8.

[3] Frédéric Chazal and Bertrand Michel. An introduction to Topological Data Analysis: fundamental
and practical aspects for data scientists. Feb. 2021. doi: 10.48550/ARXIV.1710.04019. url:
https://arxiv.org/abs/1710.04019.

[4] D. Bhaskar et al. “Analyzing collective motion with machine learning and topology”. In: Chaos:
An Interdisciplinary Journal of Nonlinear Science (2019). doi: https://doi.org/10.1063/1.
5125493. url: https://doi.org/10.1063/1.5125493.

[5] Magnus Bakke Botnan and William Crawley-Boevey. Decomposition of persistence modules. Oct.
2019. doi: 10.48550/ARXIV.1811.08946. url: https://arxiv.org/abs/1811.08946.

[6] Magnus Bakke Botnan and Michael Lesnick. An Introduction to Multiparameter Persistence. Mar.
2022. doi: 10.48550/ARXIV.2203.14289. url: https://arxiv.org/abs/2203.14289.

[7] Ulrich Bauer and Herbert Edelsbrunner. “The Morse theory of Č ech and Delaunay complexes”.
In: Transactions of the American Mathematical Society 369.5 (Dec. 2016), pp. 3741–3762. doi:
10.1090/tran/6991. url: https://doi.org/10.48550/arXiv.1312.1231.

[8] Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. “Delaunay stability via perturbations”.
In: International Journal of Computational Geometry & Applications & Applications 24.02 (June
2014), pp. 125–152. doi: 10 . 1142 / s021819591450006x. url: https : / / doi . org / 10 . 1142 /
s021819591450006x.

[9] Vincent Froese et al. “Finding Points in General Position”. In: (2015). doi: 10.48550/ARXIV.
1508.01097. url: https://arxiv.org/abs/1508.01097.

[10] Kelin Xia and Guo-Wei Wei. “Persistent homology analysis of protein structure, flexibility, and
folding”. In: International Journal for Numerical Methods in Biomedical Engineering 30.8 (June
2014), pp. 814–844. issn: 2040-7939. doi: 10.1002/cnm.2655. url: http://dx.doi.org/10.
1002/cnm.2655.

[11] Ragnar Freij. “Equivariant discrete Morse theory”. In: Discrete Mathematics 309.12 (2009), pp. 3821–
3829. issn: 0012-365X. doi: https://doi.org/10.1016/j.disc.2008.10.029. url: https:
//www.sciencedirect.com/science/article/pii/S0012365X08006201.

[12] Kristian Andre Jakobsen. Equivalent Euclidean Data Complexes. June 2021. url: https://hdl.
handle.net/11250/2761249.

[13] J. Jonsson. Simplicial Complexes of Graphs. Lecture Notes in Mathematics. Springer Berlin Heidel-
berg, 2007. isbn: 9783540758587. url: https://books.google.com.hk/books?id=VCdHp6zlmKYC.

[14] Vin Silva and Gunnar Carlsson. “Topological estimation using witness complexes”. In: Proc. Sym-
pos. Point-Based Graphics (June 2004). doi: 10.2312/SPBG/SPBG04/157-166.

[15] Herbert Edelsbrunner. “Surface Reconstruction by Wrapping Finite Sets in Space”. In: Discrete and
Computational Geometry: The Goodman-Pollack Festschrift. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 379–404. isbn: 978-3-642-55566-4. doi: 10.1007/978-3-642-55566-4_17.
url: https://doi.org/10.1007/978-3-642-55566-4_17.

[16] R. W. Ghrist. Elementary applied topology. ed. 1.0. 2014. isbn: 978-1502880857. url: https :
//www2.math.upenn.edu/~ghrist/notes.html.

[17] Ulrich Bauer et al. A Unified View on the Functorial Nerve Theorem and its Variations. 2022. doi:
10.48550/ARXIV.2203.03571. url: https://arxiv.org/abs/2203.03571.

79

https://doi.org/10.1007/s41468-020-00058-8
https://doi.org/10.1007/s41468-020-00058-8
https://doi.org/10.48550/ARXIV.1710.04019
https://arxiv.org/abs/1710.04019
https://doi.org/https://doi.org/10.1063/1.5125493
https://doi.org/https://doi.org/10.1063/1.5125493
https://doi.org/10.1063/1.5125493
https://doi.org/10.48550/ARXIV.1811.08946
https://arxiv.org/abs/1811.08946
https://doi.org/10.48550/ARXIV.2203.14289
https://arxiv.org/abs/2203.14289
https://doi.org/10.1090/tran/6991
https://doi.org/10.48550/arXiv.1312.1231
https://doi.org/10.1142/s021819591450006x
https://doi.org/10.1142/s021819591450006x
https://doi.org/10.1142/s021819591450006x
https://doi.org/10.48550/ARXIV.1508.01097
https://doi.org/10.48550/ARXIV.1508.01097
https://arxiv.org/abs/1508.01097
https://doi.org/10.1002/cnm.2655
http://dx.doi.org/10.1002/cnm.2655
http://dx.doi.org/10.1002/cnm.2655
https://doi.org/https://doi.org/10.1016/j.disc.2008.10.029
https://www.sciencedirect.com/science/article/pii/S0012365X08006201
https://www.sciencedirect.com/science/article/pii/S0012365X08006201
https://hdl.handle.net/11250/2761249
https://hdl.handle.net/11250/2761249
https://books.google.com.hk/books?id=VCdHp6zlmKYC
https://doi.org/10.2312/SPBG/SPBG04/157-166
https://doi.org/10.1007/978-3-642-55566-4_17
https://doi.org/10.1007/978-3-642-55566-4_17
https://www2.math.upenn.edu/~ghrist/notes.html
https://www2.math.upenn.edu/~ghrist/notes.html
https://doi.org/10.48550/ARXIV.2203.03571
https://arxiv.org/abs/2203.03571


[18] Herbert Edelsbrunner. “The Union of Balls and its Dual Shape”. In: (1993). doi: https://doi.
org/10.1007/BF02574053. url: https://link.springer.com/article/10.1007/BF02574053.

[19] Boris Delaunay et al. “Sur la sphere vide”. In: Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk 7.793-800 (1934), pp. 1–2.

[20] Robin Forman. “Morse Theory for Cell Complexes”. In: Advances in Mathematics 134.1 (1998),
pp. 90–145. issn: 0001-8708. doi: https://doi.org/10.1006/aima.1997.1650. url: https:
//www.sciencedirect.com/science/article/pii/S0001870897916509.

[21] Robin Forman. “A User’s Guide To Discrete Morse Theory”. In: Sém. Lothar. Combin. 48 (Dec.
2001).

[22] John Milnor. Morse Theory. (AM-51). Princeton University Press, 2016. isbn: 9781400881802. doi:
doi:10.1515/9781400881802. url: https://doi.org/10.1515/9781400881802.

[23] Konstantin Mischaikow and Vidit Nanda. “Morse Theory for Filtrations and Efficient Computation
of Persistent Homology”. In: Discrete & Computational Geometry (2013). doi: 10.1007/s00454-
013-9529-6. url: https://doi.org/10.1007/s00454-013-9529-6.

[24] E.C. Zeeman. “On the dunce hat”. In: Topology 2.4 (1963), pp. 341–358. issn: 0040-9383. doi:
https://doi.org/10.1016/0040-9383(63)90014-4. url: https://www.sciencedirect.com/
science/article/pii/0040938363900144.

[25] J. H. C. Whitehead. “Simple Homotopy Types”. In: American Journal of Mathematics 72.1 (1950),
pp. 1–57. issn: 00029327, 10806377. url: http://www.jstor.org/stable/2372133 (visited on
06/20/2022).

[26] Mazur B. “J. H. C. Whitehead’s concept: Simple homotopy type”. In: Publications Mathématiques
de l’Institut des Hautes Études Scientifiques 15 (Dec. 1963). doi: 10.1007/BF02684281. url:
https://doi.org/10.1007/BF02684281.

[27] Marshall M. Cohen. “A Geometric Approach to Homotopy Theory”. In: A Course in Simple-
Homotopy Theory. New York, NY: Springer New York, 1973, pp. 14–35. isbn: 978-1-4684-9372-6.
doi: 10.1007/978-1-4684-9372-6_2. url: https://doi.org/10.1007/978-1-4684-9372-6_2.

[28] Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. Publisher: Amer-
ican Mathematical Society, Jan. 2010. isbn: 978-0-8218-4925-5.

[29] Eduard Čech. “General Homology Theory in an Arbitrary Space”. In: The Mathematical Legacy of
Eduard Čech. Ed. by Miroslav Katětov and Petr Simon. Basel: Birkhäuser Basel, 1993, pp. 231–
255. isbn: 978-3-0348-7524-0. doi: 10.1007/978-3-0348-7524-0_20. url: https://doi.org/
10.1007/978-3-0348-7524-0_20.

[30] L. M. Blumenthal and G. E. Wahlin. “On the spherical surface of smallest radius enclosing a
bounded subset of n-dimensional euclidean space”. In: Bulletin of the American Mathematical
Society 47.10 (1941), pp. 771–777.

[31] Linus. Källberg. Minimum Enclosing Balls and Ellipsoids in General Dimensions. Diss. Mälardalen
University, 2019.

[32] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441.

[33] Bruno Benedetti and Frank Lutz. “Random Discrete Morse Theory and a New Library of Trian-
gulations”. In: Experimental Mathematics 23 (Mar. 2013). doi: 10.1080/10586458.2013.865281.

[34] Michael Khanimov and Micha Sharir. Delaunay Triangulations of Degenerate Point Sets. Oct. 2015.
doi: 10.48550/ARXIV.1510.04608. url: https://arxiv.org/abs/1510.04608.

[35] F. P. Preparata and M. I. Shamos. Computational geometry: An introduction. New York: Springer-
Verlag, 1985.

[36] Daniel Hess and Benjamin Hirsch. “On the topology of weakly and strongly separated set com-
plexes”. In: Topology and its Applications 160.2 (2013), pp. 328–336. issn: 0166-8641. doi: https:
//doi.org/10.1016/j.topol.2012.11.009. url: https://www.sciencedirect.com/science/
article/pii/S0166864112004592.

[37] S. Y. Oudot. Persistence theory: From quiver representations to data analysis. Providence (RI:
American Mathematical Society.), 2015. isbn: 978-1-4704-3443-4.

[38] Afra Zomorodian and Gunnar Carlsson. “Computing Persistent Homology”. In: Discrete & Com-
putational Geometry (2005). doi: 10.1007/s00454-004-1146-y. url: https://doi.org/10.
1007/s00454-004-1146-y.

80

https://doi.org/https://doi.org/10.1007/BF02574053
https://doi.org/https://doi.org/10.1007/BF02574053
https://link.springer.com/article/10.1007/BF02574053
https://doi.org/https://doi.org/10.1006/aima.1997.1650
https://www.sciencedirect.com/science/article/pii/S0001870897916509
https://www.sciencedirect.com/science/article/pii/S0001870897916509
https://doi.org/doi:10.1515/9781400881802
https://doi.org/10.1515/9781400881802
https://doi.org/10.1007/s00454-013-9529-6
https://doi.org/10.1007/s00454-013-9529-6
https://doi.org/10.1007/s00454-013-9529-6
https://doi.org/https://doi.org/10.1016/0040-9383(63)90014-4
https://www.sciencedirect.com/science/article/pii/0040938363900144
https://www.sciencedirect.com/science/article/pii/0040938363900144
http://www.jstor.org/stable/2372133
https://doi.org/10.1007/BF02684281
https://doi.org/10.1007/BF02684281
https://doi.org/10.1007/978-1-4684-9372-6_2
https://doi.org/10.1007/978-1-4684-9372-6_2
https://doi.org/10.1007/978-3-0348-7524-0_20
https://doi.org/10.1007/978-3-0348-7524-0_20
https://doi.org/10.1007/978-3-0348-7524-0_20
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1080/10586458.2013.865281
https://doi.org/10.48550/ARXIV.1510.04608
https://arxiv.org/abs/1510.04608
https://doi.org/https://doi.org/10.1016/j.topol.2012.11.009
https://doi.org/https://doi.org/10.1016/j.topol.2012.11.009
https://www.sciencedirect.com/science/article/pii/S0166864112004592
https://www.sciencedirect.com/science/article/pii/S0166864112004592
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1007/s00454-004-1146-y


[39] Jean Pierre. Serre. Linear representations of finite groups. Springer New York, NY, Jan. 1977.
isbn: 978-1-4684-9460-0. doi: https://doi.org/10.1007/978-1-4684-9458-7. url: https:
//doi.org/10.1007/978-1-4684-9458-7.

[40] Ippei Obayashi and Michio Yoshiwaki. Field choice problem in persistent homology. 2019. doi:
10.48550/ARXIV.1911.11350. url: https://arxiv.org/abs/1911.11350.

[41] Eric W. Weisstein. "Sphere-Sphere Intersection.". url: https : / / mathworld . wolfram . com /
Sphere-SphereIntersection.html.

81

https://doi.org/https://doi.org/10.1007/978-1-4684-9458-7
https://doi.org/10.1007/978-1-4684-9458-7
https://doi.org/10.1007/978-1-4684-9458-7
https://doi.org/10.48550/ARXIV.1911.11350
https://arxiv.org/abs/1911.11350
https://mathworld.wolfram.com/Sphere-SphereIntersection.html
https://mathworld.wolfram.com/Sphere-SphereIntersection.html

	Introduction
	Topological Data Analysis: intuitively
	Motivation for research
	Extensions and contribution to the existing theory
	Related Work

	Simplicial Complexes
	Geometric simplicial complex
	Abstract simplicial complex
	Translating between the abstract and geometric

	Euclidean Data Complexes
	The nerve construction
	Cech and Delaunay complexes
	General position
	Selective Delaunay complexes

	Computing selective Delaunay simplices as constrained minimal enclosing spheres
	Minimal Enclosing Exluding Spheres (MEES)
	Solving minimal spheres by affine combinations

	Discrete Morse theory
	Homotopy theory
	Characterising collapses

	Collapsing theorems
	Example of collapse
	Preparatory lemmas
	Same sphere lemmas
	Pairing lemma
	Vertex refinement

	Proof of collapsing theorem

	Specialisation to symmetric data
	Nomenclature
	Equivariant Delaunay complex
	MEES and G-actions
	Equivariant discrete Morse theory
	Equivariant homotopy equivalences
	Geometrical equivariant collapse
	Simplicial equivariant collapse


	Equivariant collapsing theorem
	Preparatory lemmas
	Common Vertex Refinement
	Equivariant pairing lemma
	Intermediate partition lemma
	Orbit lemmas
	Proof of the big orbit lemma

	Example of the solution structure
	Orbit reduction lemma

	Proof of equivariant collapsing theorem

	A corollary of the equivariant collapsing theorem
	Persistent homology of Delaunay complexes
	Example of persistent homology of equivariant Delaunay complex
	A question for properties induced map of persistent homology

	Existence and uniqueness of a Minimal Enclosing Excluding Sphere (MEES)
	A descriptive explanation of the Minimal Enclosing Excluding Sphere (MEES)

