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Abstract

The development of machine learning algorithms has greatly influenced decision-
making at various levels. However, these algorithms tend to incorporate biases.
Racial profiling in legal and financial systems are the best-known examples of in-
equality stemming from algorithm decisions. Previous research has shown that one of
the reasons for racial bias is imbalanced data. This research will focus on generating
synthetic data using Generative Adversarial Networks (GANs) to reduce bias. In-
spired by GANs, this paper proposes the Intag framework. This framework contains
a modified version of Pate-GAN for synthetic data generation. The main modifi-
cation from the original Pate-GAN is that the hard privacy constraint is dropped.
Other changes, such as changing the architecture of the network, such that a number
of hidden layers depends on the dimension of input data. Moreover, the framework
will incorporate undersampling techniques to ensure that the synthetic data samples
are of the highest quality. The framework’s performance is evaluated on the basis
of machine learning utility by checking the quality of the synthetic data generated
by different methods. It is shown that the modified Pate-GAN achieves the best
results. Furthermore, the framework improves the values of statistical parity and dis-
parate impact, the two measures of fairness used in this study. We conclude that our
proposed modification to Pate-GAN, and the framework in general, can be used for
synthetic data generation. Moreover, it could be used as an aid for data generation
to improve fairness in the case of an imbalanced dataset.

Keywords: Synthetic Data, Data Oversampling, Generative Adversarial Networks
(GANs), Algorithmic Fairness
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Chapter 1

Introduction

Currently, we collect a huge amount of data that could be used to support decision
makers. Such data usage can affect society directly or indirectly. For instance, in big
chain grocery stores, where data is collected, the process and underlying structure of
most products bought together are used to decide which products should be placed
next to each other and which products should go on promotion [1]. Another example
is from the logistics of the food sector, where Amazon aims to predict what fresh
products should be sold at the store to improve customer satisfaction [8]. However,
in many classification problems where a decision needs to be taken between a lim-
ited number of options, the collected data might yield misleading outcomes because
records from one class appear more frequently than others. This problem is known
as the imbalanced data problem. Due to this problem, the classifier will learn more
about the patterns of one class than about the others.

Several techniques can ensure the equality of representation of different classes
in the dataset, solving the imbalanced data problem. One of the most prominent
approaches to solving the problem is based on generating more examples from the
under-represented class. There are multiple techniques that can be used to generate
synthetic examples that can inherit the characteristics of actual examples in the
dataset. The first technique is based on observing and determining the statistical
properties of the data and then replicating those properties in a set of generated
records [19]. Another technique uses agent-based models. In these, the created model
can reproduce random samples that mimic the patterns in the original data [36].
The last technique mentioned here is based on training a deep learning model using
the existing data and generating more examples by predicting what the value for
each attribute should be [37]. The quality of the generated data would significantly
affect the outcomes of machine learning (ML) models that are trained using this
data. Hence, it is important to ensure that the generated data records are close to
and reflect the patterns in the original data records. In this research, we propose a
framework for generating more realistic synthetic data that can be used to improve
the performance of ML models.

Besides improving the prediction accuracy of the ML model, synthetic data gen-
eration can also be used to mitigate data bias. This would lead to a significant im-
provement in the ML model’s fairness. An example of a widely-used product that has
been shown to be biased is COMPAS.1 This tool helps assess if a recently-convicted
person has a high chance of becoming a recidivist. The COMPAS tool is biased
against black people, especially black males [24, 51]. With synthetic data generation,
synthetic records can be generated to increase the number of black people who receive
the favorable class label, so the ML model will learn from the new data and will show
less bias against black people.

1https://www.equivant.com/practitioners-guide-to-compas-core/
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Synthetic data generation can also have applications to privacy, where the deci-
sions that are made might be influenced by sensitive information about individuals.
For example, using the medical history information of individuals might create em-
ployment discrimination against individuals with a history of cancer treatments [45].
Dwork proposed the concept of Differential Privacy [28]. She argues that systems used
or shared publicly should not contain patterns about individuals. In other words, it
should not be possible to track an individual within any dataset. Generating synthetic
data would help to train ML models that do not consider an individual’s background
when making decisions. The creation of generated records from the minority class
(such as people with extensive medical history) would make the process of identifying
individuals harder.

1.1 Motivation
Data is commonly used to train decision-making algorithms. An example of such an
algorithm is the aforementioned COMPAS, used in the US judicial system. COM-
PAS is an aid in choice resolution for judges. It aims to identify whether or not a
criminal defendant is likely to become a recidivist. However, the underlying dataset
is imbalanced. This imbalance then influences the decision-making process, causing
people from the misrepresented groups to be treated unfairly. One way to solve such
misrepresentation would be to even out the imbalance in the underlying dataset by
producing enough data samples. However, such produced data should still be of high
quality, meaning that it must be close enough to the original data records and reflect
the patterns of the original data (more realistic records). Producing synthetic data
samples of high quality has proven to be a problem, even though many methods have
been developed.

In this thesis project, we consider two classes of synthetic data generation tech-
niques. The first technique used in this thesis is SMOTE, which chooses a random
record and finds its k random neighbors and generates synthetic examples by linear
interpolation of the selected example and one of its k nearest neighbors.

The second approach is to uses deep learning techniques such as Generative Adver-
sarial Networks (GANs) [37]. This approach is based on creating two neural networks
that compete in a zero-sum game. The first neural network, called the generator,
learns how to generate realistic examples, and the second network, called the discrim-
inator, learns how to classify the generated example as fake or real. This approach is
currently one of the most distinguished approaches to synthetic data generation [36].
However, empirical studies show that the accuracy of the generator in generating re-
alistic synthetic data does not exceed 50%. Different network architectures have been
proposed to improve the quality of the generated data, such as CTGAN [113]. This
is a variation of GANs, training the model on real data. However, when it generates
the samples, it is possible to force it to generate samples from chosen classes. This is
done by changing the representation of the data being passed onto the network. Then
the additional encoded vector is concatenated such that the condition is enforced on
the data generation.

Another example is Pate-GAN [50]. In Pate-GAN, the architecture of the network
is changed to have three main layers of neural networks: i) A generator network
that learns to generate synthetic examples; ii) a set of teachers, which classifies the
generated examples as fake or real. Their decisions are then aggregated and provided
to the student network (discriminator); iii) a student (discriminator), which takes a
final decision if an example is fake or real.
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No previous methods have succeeded in generating high-quality synthetic datasets.
The implication is that the generated data cannot always be used in the field or as
a substitute for the original data. Moreover, previous studies show that imbalanced
data is one of the main reasons for discrimination in the decisions of ML models.
However, if the synthetic data generation methods are imperfect, it is very hard for
machine learning algorithms to discover hidden patterns within the data. The class
imbalance could be reduced using GANs to produce more realistic data, leading to
fairer ML predictions.

The goal of this thesis is to create a framework that will generate high-quality
synthetic data. This has many applications in cases in which datasets are imperfect,
especially when the aim is to reduce imbalance.

1.2 Research Questions
The main goal of this thesis is to develop a tool that will be proficient at synthetic
data generation. Thus the research will focus on the following:

Research question: How can Pate-GAN improve synthetic data quality by 5%
over known methods such as CTGAN or SMOTE?
To answer the main question, the following sub-questions will be answered:

1. What would be the best metrics of the quality of synthetic data?

2. How can Dwork’s approach be modified to generate better examples to improve
classification accuracy?

3. How can algorithmic fairness be affected by generating synthetic data examples?

1.3 Thesis Structure
This thesis will contain seven chapters. The remaining chapters will be structured as
follows: starting with related work, then the theoretical background, following with
the introduction of the framework, experiments, results and conclusion.

The related work chapter will provide relevant research on the main problem
and current state-of-the-art methods for this problem. Next, it will dive into the
theoretical background, which will introduce the problem statement and the methods
that will be used in this thesis, namely SMOTE, CTGAN, and Pate-GAN. Following
that, the Intag framework will be introduced. This chapter will provide a detailed
explanation of the framework’s various components. The next two chapters then
introduce experiments and their results.

Finally, in the conclusion and future work chapter, the thesis will be summarized.
It will also elaborate on the main findings, limitations of the framework, and directions
on how to improve the Intag framework further.
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Chapter 2

Related Work

This chapter will discuss related work connected to this thesis. It will start by dis-
cussing bias and its different types, followed by how bias impacts imbalanced datasets
and machine learning algorithms. Then it will discuss solutions to this problem, such
as oversampling and undersampling. And lastly, this chapter will discuss fairness, its
connection to the imbalanced data problem, what the current state of the field is, as
well as what fairness means and how it is evaluated.

2.1 Bias
The spread of machine learning is inevitable. Unfortunately, this tool is not perfect.
The main danger identified by the field is that the decisions achieved with the help
of algorithms will carry on bias [65]. There are many types of biases, and different
kinds surface during distinct stages of algorithm creation.

Mehrabi et al. [65] distinguish three main types of biases in machine learning:

• Data to Algorithm

• Algorithm to User

• User to Data

Data to algorithm is a concept where the bias is already contained in the data
passed to the algorithm. Examples of this include how the data is measured and
reported in the dataset [98]. Another example is when data omits variables with
crucial predictive power [23]. In that case, when the data samples are passed on it is
not representative because of a lack of diversity [98].

Algorithm to user biases occur when the algorithm introduces bias, but it is
not present in the data itself [86]. This can occur when the findings of algorithms
are misinterpreted or the results are presented in a flawed way. This could be the
case, for instance, when not all obtained information is given [86]. Another way
algorithms shape prejudice is when ranking is included. This occurs, for instance,
when displaying the results from search engines [47].

User to Data bias is created when users add to the bias, reflecting user choices.
An example of this is historical bias, where the prejudice is already present in the
real world, and is transferred into the data used in ML algorithms [98]. Generated
datasets tend to be non-representative: for instance, when gathering data about one
type of user, it is not possible to draw general conclusions about every type of user
[41].

This research will focus on data to algorithm bias, where the data passed to
the algorithm is imbalanced. To solve this, it will concentrate on synthetic data
generation. By extension, it aims to correct bias in the dataset, not in the algorithms.
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2.2 Imbalanced Data
Real-world data is not perfect. Many issues influence the quality of data. There is a
direct link between the quality of data and the performance of the predictions based
on that data [75]. There might be several reasons why the data is not satisfactory.

The first reason might be the inaccuracy of data. Depending on how data is used,
inaccuracy might play a critical role. For instance, in healthcare, the accuracy of the
data plays a crucial role. If the datasets are not accurate, this might lead to wrong
conclusions [12]. An example is a study on self-reported energy intake to estimate
actual energy intake. Because of the external errors and the design of the study, in
which humans prone to error had to self-report data, the study gathered invalid data,
resulting in poor estimates [27].

This closely connects to another reason why data can be imperfect. Sometimes,
data is not shared entirely. There might be different reasons for this, from privacy to
intellectual property. Although the validity of the reasons might differ, missing data
will have an impact on predictions. Some variable associations that might be valid
in sensitive research areas might not be found.

Another problem is data inconsistency. There are many types of inconsistencies,
for which this research will not go into detail. However, this has an impact on research
and the outcomes that cannot be omitted [118].

One of the main issues in classification carried by data is the imbalance of classes
within data. This occurs when one class has much more representation in the dataset.
This class is called the majority class. On the other hand, there is a minority class,
which has less representation within the dataset. This has an impact on classification
algorithms because methods tend to achieve high accuracy for majority classes and
very low accuracy for minority classes [112]. Therefore, imbalanced datasets often
have high overall accuracy [18]. This general behaviour is shown in Figure 2.1.

There are two main categories of imbalanced datasets. Firstly, the inter-class
category refers to a case where one of the classes has many more positive examples
than the other. The ratio between the majority and minority classes represents the
degree of imbalance [71]. The other type of class imbalance occurs when there is
inequality within the class itself. This occurs when the class consists of a few sub-
concepts within which there is asymmetry [48]. Because the impact of imbalanced
data is tremendous and can be found in many domains, it is essential to eliminate the
imbalance. There are four main ways of solving the imbalance of datasets: collecting
more data, oversampling, undersampling, and synthetic data generation.

2.2.1 Solutions for Imbalanced Data

There are different solutions for imbalanced datasets. Each of these solutions works
on a different level of application.

1. Data level Solutions

(a) Oversampling
(b) Undersampling

2. Algorithmic Level Solutions

3. Other methods

(a) Ensemble learning
(b) Cost-effective algorithms
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Figure 2.1: An example of how an imbalanced dataset affects classi-
fication. Suppose there is a significant difference between the classes’
distribution. In that case, classification algorithms will mostly consider
the majority class, and minority classes will not have a consequential

impact on overall accuracy [18]

Each of these categories is divided into more subcategories. They will be discussed
in the upcoming sections, which follow Figure 2.2.

2.2.1.1 Data-level solutions

Data-level solutions try to solve the imbalance at the level of the data. They focus
mainly on the reparation of the database itself. There are three ways in which data
inequalities can be solved. Additional data collection is the first and most obvious
way to decrease dataset imbalance. As the name suggests, the idea is to collect more
data. There are many ways of doing that. Depending on the type of data one wants
to gather, different techniques can be used. The best methods for qualitative or
non-numerical data are interviews, focus groups, record keeping, observations, and
case studies [46]. Generally, quantitative data is easier to gather and add to existing
databases. Unfortunately, all techniques require a lot of time and skill, which may
influence the quality of data.

There are many ways to collect quantitative or numerical data. The first of those
is by gathering the results of experiments. Another way is to create simulated data.
Moreover, it is also possible to collect data from companies, banks, or mobile phones.
Although there are many ways to do it, there are disadvantages. First, adding more
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Figure 2.2: Different levels of approach for data imbalance

data to an existing dataset is unusual. Data may have changed; the outlets might have
changed as well. Moreover, datasets should be consistent, and collecting additional
data at a later stage might harm this consistency [34].

2.2.1.2 Oversampling and Synthetic Data Generation

Oversampling is a technique to modify the datasets to prevent data from being im-
balanced. It is based on adding extra data examples from existing ones or generating
synthetic examples.
Random Oversampling (ROS): this is a method that randomly replicates exam-
ples from the minority class [32]. Random samples are chosen, copied, and added to
the dataset. This is known as sampling with replacement. Because the replication
process is random, there is a possibility that the replicated samples will not cause
any information gain. Moreover, the classifier might be more prone to create rules
that are only accurate for the replicated samples. Hence, the algorithm may overfit.
Synthetic Data Generation: the second technique generates more examples by
interpolating available examples or adding some noise to existing ones. Chwala et
al. created the famous algorithm for oversampling called Synthetic Minority Over-
sampling TEchnique (SMOTE) [19]. The idea is to introduce artificial examples to
the dataset. However, this method does not produce random samples. The idea is as
follows: a random point from the minority class is chosen, along with its k neighbors.
Between these points, at a random distance, a point is created. Finally, n of the k
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instances are chosen to be added to the dataset. The main shortcoming of SMOTE
is that this tool is impractical for high-dimensional data. It can also introduce more
noise to the data. This method will be discussed in more detail in section 3.1.

Because SMOTE had a significant impact on the field, many different methods
based on SMOTE were developed.

The first example of a variation of SMOTE is called borderline-SMOTE [39]. This
predictor aims to learn the boundaries of the data. In borderline-SMOTE, however,
the classifier chooses minority points to replicate near the boundary instead of learning
the boundaries. Moreover, it also creates samples from the majority class. By doing
this, the algorithm strengthens the boundary between the classes. Unfortunately, this
method is susceptible to outliers.

Another extension to SMOTE was invented by Bunkhumpornpat et al., called
safe-level-SMOTE. The main change of this extension involves adding a new variable
to the dataset [15]. When artificial points are created along the lines between chosen
points, the safe-level is calculated for each. The safe-level is defined for each point
as a number of k nearest neighbors in the minority class. Next, the ratio (SLR)
between the safe-level for each point is determined. The algorithm will decide if the
artificial data point should be created based on the SLR. Because of this mechanism,
the algorithm will not create noisy data. The main problem with this method is that
it creates densely-concentrated samples of the minority class. Another technique
based on SMOTE was again proposed by Bunkhumpornpat et al. [14]. Instead of
creating a more safe-levels approach, they build upon a borderline-SMOTE tool called
DBSMOTE. This algorithm clusters the minority and then generates random samples
between the centroids of the clusters. The main disadvantage of borderline-SMOTE
is that it does not operate well with outliers. Because DBSMOTE works on a cluster
of the data, not single points, it overcomes this weakness. Unfortunately, as with all
of the SMOTE-based methods, it tends to create noisy data.

SMOTE was one of the first techniques that proved to have a positive effect on
the imbalanced data problem, revolutionizing the field. It was extended many times
and other methods based on SMOTE were introduced. But this was not the only
approach. There are other methods of synthetic data generation.

An example of such an algorithm is ADASYN - Adaptive Synthetic Sampling
Approach [44]. First, this algorithm calculates the degree of imbalance, represented
as a ratio between the majority and the minority class. This is used to determine how
many samples should be generated to correct the class imbalance. For each of the
minority points, the ratio between the minority and majority neighboring points is
determined. For each of the minority points that dominate the major class examples,
classification is harder to obtain near this point. Therefore those are harder to learn.
For each neighbor, the number of samples that need to be added to the data is
determined. The neighborhoods that are harder to learn will obtain more points
to rebalance the dataset. Artificial points are created between the minority points
within each of the neighborhoods.

This simple tool is very powerful. First, it generates the points in parts of the data
where the classifier will have problems with learning. It also automatically decides
on the number of points that needs to be generated. However, because it generates
the data in the proximity of high amounts of majority data, it might happen that the
generated data will be similar to the majority data. Hence, it will generate a lot of
many false positive examples.

Menardi et al. introduced another approach for synthetic data generation called
Random OverSampling Examples (ROSE) [66]. This method uses a smoothed boot-
strap approach, which adds noise to each data point selected for replication [103].
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It handles continuous and categorical data by generating synthetic examples from a
conditional density estimate of the two classes.

Another approach uses Bayesian networks, where synthetic data is generated with
inherited dependencies between the variables [36]. Li et al. propose a method for
tabular data generation that is based on a distribution of the data and dependencies
between variables with the Gaussian copula [60]. This way, the synthetic data mimics
the properties of the actual data.

The approach by Park et al. uses a Markov chain with Monte Carlo based on
obtaining approximate values from a specific distribution [78]. This methodology also
uses the original dataset’s distribution and other statistical properties to sample the
synthetic data.

The most prominent machine learning method used for synthetic data generation
is Generative Adversarial Networks (GANs) [36]. GANs were introduced by Good-
fellow [37]. This architecture relies on two competing networks, a generator G and a
discriminator D. Both networks compete in a zero-sum game between each other. As
such, if one gains, the other loses.

More details on how GANs work can be found in section 3.2. Choi et al. proposed
using GANs to generate data on Electronic Heart Records [21]. This was done by
using GANs with an auto-encoder of the data. As an advantage, they showed that
the model could reproduce realistic results. The main downside was that because the
data was so specific and used auto-encoding, it is only possible to apply this method
to Electronic Heart Records.

The widely-known variation on GANs was developed by Arjovsky et al.[4]. This
architecture is called Wasserstein GANs. This extension of original GANs tries to
approximate the underlying data distribution by using a novel way of generator model
training. The discriminator is replaced by a critic that scores the sample to be
authentic or fake. They show that Wasserstein GAN can potentially solve some issues
with GANs. This approach is extended with synthetic data generation with privacy
constraints [83]. In this thesis, the model’s training is split into two phases. The first
phase generates the synthetic data, and the second phase extends the generation by
adding privacy and fairness constraints. The main problem with Wasserstein GANs
is that it is harder to balance the generator and discriminator. Moreover, as with all
GANs, it is possible that it will not converge [56].

Another variation was proposed by Xie et al., who added privacy constraints to the
discriminator training [110]. Moreover, they enforce Wasserstein’s loss by applying
Lipschitz’s constraint on the discriminator. Because privacy constraints are added, it
is harder to optimize the hyperparameters in training [38].

Because of that, Cheng et al. proposed that the privacy constraints should be
enforced with the generator instead of the discriminator [20]. This will ensure that
the hyperparameter optimization will not be as complex as in the case of the research
of Xie et al. [110].

Furthermore, Xu et al. proposed another solution to improve GANs. They added
three novel additions to the model [113]. They allowed the generator to learn the
underlying distributions of the minority class better and, by extension, produce more
realistic samples. Moreover, they also introduced special normalization techniques for
the data that make learning complex numerical distributions easier. Unfortunately,
this model is not perfect and it cannot handle missing values. This methodology is
examined more closely in section 3.2.1.

Pate-GAN is another variation of the GANs network [76]. The main difference is
that Pate-GAN used the Pate framework for data generation. The Pate framework
is Private Aggregation of Teacher Ensembles, creating a teacher-student role while
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learning. The idea begins that teacher models are used to train sensitive data, which
does not have to be public. Therefore it allows a student to derive knowledge from
the teacher model. The main disadvantage is that the student discriminator is only
trained on the fake data, which might impact the accuracy. Pate-GANs will be used
in this research, and more information on the methodology is in section 3.2.2.

2.2.1.3 Undersampling

Undersampling of the data is preserving all the minority classes and reducing the
number of major instances [71]. Random Undersampling is the first and most straight-
forward method, which randomly removes entries from the dataset [69]. Because of
its randomness, this approach tends to lead to a vast loss of information and data
patterns that could have been deduced [43]. In order to improve the random sampling
method, Tahir et al. constructed a method called Inversed Random Under Sampling
(IRUS) [101]. This method makes it possible to randomly choose the deleted sample,
but this method should not balance the majority and minority classes [100]. The
primary dataset is split into r ways in such a way that the majority class becomes a
minority. For each of the splits, a base classifier is trained. The combination of the
base classifiers’ outcomes allows for the construction of a boundary between the two
classes.

In order to overcome the shortcomings of eliminating random entries, researchers
found a way to eliminate neighboring entries instead. An algorithm called Condensed
Nearest Neighbor (CNN) was proposed by Hart et al. [42]. CNN is an algorithm that
takes into account the underlying data and its properties. The algorithm constructs
a subset of the original data so that there is no information loss during the removal
of samples. It creates a minimum consistent set. This is achieved by adding all the
samples to the subset if they cannot be classified by the samples already in the set
itself. Therefore, the algorithm will add all minority class samples while successfully
removing the majority class samples. Therefore, CNN can remove instances from the
dataset that do not add to the borderline cases, possibly adding noise to the dataset.

As a result, Ivan Tomek introduced a modification to the CNN [104]. This modi-
fication is called Tomek links. Instead of dealing with the nearest neighbors, it looks
at a pair of instances from the majority and minority classes that are very close to-
gether. The algorithms then remove the majority of instances of such a pair. This
ensures that the boundary between instances will be preserved and emphasized in
most cases. Removal of the majority of instances can shift the decision boundary in
the wrong direction.

Devi et al. tried to eliminate the shortcoming of Tomek-links by removing the
noisy data, outliers, and the Tomek-links such that the removal of an instance only
has a minor impact on the overall prediction power [26].

Another method for undersampling is called EUS, Evolutionary Prototype Selec-
tion. This method was developed by Garcia et al. [35]. Here, a genetic algorithm
approach is used to determine which samples should be preserved in the dataset.

Another approach to undersampling is to extensively use clustering techniques to
correctly decide upon entry removal. Yen and Lee propose a solution where under-
sampling is based on clustering [114]. The main idea is to create several data clusters
with distinctive characteristics. For each cluster, the number of individuals from the
minority class and the majority class is then determined. If the cluster consists of
majority class examples, it will behave as such. Therefore, it will be possible to ob-
tain the sample that clusters the data and is the most representative. As shown by
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Rahman et al., this approach can be helpful in medical research [82], where the clus-
tering is beneficial to overall prediction accuracy. Another extension of the clustering
method is Fast-CBUS, proposed by Ofek et al. [74]. This method divides the data
into K clusters. Each cluster contains data with an equal number of majority and
minority classes. Because of that, researchers want to create an algorithm that does
not discriminate and decreases the classification time. A classification algorithm is
trained for each of the clusters. If the data instance cannot be assigned to any cluster,
it is considered a majority class. Otherwise, it is classified accordingly to the cluster
classification. Because of that unique idea, this approach is not prone to information
loss. On the other hand, splitting the initial data into a defined number of clusters
might be challenging.

Many other methods for data undersampling were invented, especially as a com-
bination of clustering with already-known algorithms such as CUSBoost (clustering
+ AdaBoost)[85] or Fuzzy outlier clustering (Fuzzy C-Means + clustering [107],[108].

Because undersampling is based on discarding data, it is prone to information
loss. This method of solving inequality is preferred with large datasets, so the lost
information data is irrelevant. Moreover, this method is preferred when the data has
a slight imbalance, so that the information loss is relatively small [26].

2.2.1.4 Algorithmic approach

An algorithmic approach to imbalanced data assumes that the imbalance will be
solved within the classification. The idea is to choose an appropriate inductive bias.

Decision trees are known classifiers that will also be used later in this study.
A few techniques will make it possible to use a decision tree on imbalanced data.
The first is to make sure that while creating the leafs for decision making is to
adjust the leaf’s probabilistic estimate [81]. This can be done, for instance, by using
a method of pattern recognition such as Predictive Association Rules [115], where
the greedy algorithm is adapted to create association rules from the training data.
Moreover, another approach is to adjust pruning in the decision trees. Zadrozny et al.
argued that with imbalanced data, it is best to leave unpruned trees [117]. Instead of
transforming obtained scores to class membership probability, the general argument
for that was supported by Bradford et al. [11].

Another approach uses Bayesian classification, which infers data structure and
properties from the underlying graph structure. Such a graph consists of nodes that
represent the variables and edges that represent conditional dependencies between
the nodes [80]. The idea is to find the network that displays and matches the internal
data structure. Learning the most common patterns will ensure that the model does
not overfit the data. As the main problem is that the patterns inferred from the
minority class might not have a significant impact on the overall model; hence there
is a possibility of being misclassified [57]. Different variations of the Bayesian network
have been introduced. Klein et al. develop a network where data weights have been
introduced that favour the minority class [54]. Moreover, different variations of the
Bayesian network can be found in natural language processing [72].

One of the most-used algorithms with imbalanced data is Support Vector Machines
(SVM). The general idea of SVM is to separate the data in higher-dimensional space,
creating a rigid boundary between the samples. It has been proved that SVM is
not affected by class imbalance more than other algorithms [49]. A main limitation
of SVM is that it can contribute towards the bias of the minority class because it
provides a hard boundary between the data. It also does not perform well with skewed
datasets [3].
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Liu et al. enhance SVM through novel use of the sampling method to be used
in classification [62]. The authors used Ant Colony Optimization, where the algo-
rithm eliminates noisy data and chooses the data that displays common behavior
in the dataset. As a primary downside, the authors mention that this method is
very expensive, both computationally and in terms of storage. SVM proved to be
an excellent tool for imbalanced data prediction, but researchers started to combine
SVM with different algorithms to obtain better results because of its shortcoming.
An example is to combine it with the k-nearest neighbor (k-NN) algorithm. Majid
et al. showed that combining two classifiers on balanced data works and has a high
prediction accuracy [64]. Authors oversample the data using a method called MTD.
It calculates statistical properties and uses it to create artificial samples [59] Beyan
et al. propose a method for hierarchical decomposition of the data [9]. This method
makes it possible to cluster the data based on the pairwise distance between variables.
When the data is clustered, an algorithm looks for outliers within the clusters and
segregates them into minority and majority clusters. This is applied to each level
of feature selection. Therefore this method can correctly identify the correct classes.
Unfortunately, the complexity of this method is very high. However, this is not the
only approach of clustering that can be found for imbalanced data; many clustering
methods have been used in undersampling.

2.2.1.5 Other Methods

Besides the methods working on data and algorithmic level, there are two other
trends with imbalanced data. The first of them is cost-sensitive learning. In it, the
model considers the mistakes of classification while training. An example of that
is where a cost-sensitive objective is added to the predictor model [17]. Moreover,
it is shown that cost-sensitive methods often tend to perform very well concerning
precision and recall. Mienye and Sun showed that cost-sensitive learning with medical
data outperforms oversampling and undersampling methods [68].

The second is ensembles learning, where multiple learning algorithms are com-
bined to obtain the best results. This step often means combining the oversampling
or undersampling methods with appropriate classification algorithms. An example of
that is a combination of the cost-sensitive approach introduced by Fan et al. [30].
AdaCost is a merge of the AdaBoost algorithm, where the main change is that for
each weight update, the penalty for misclassification is more significant than in the
original AdaBoost.

2.3 Evaluation of synthetic data quality
For the evaluation of synthetic data, there are three different methods, which are:

1. Machine Learning Utility

2. Statistical Similarity

3. Privacy Preservability

2.3.1 Machine Learning Utility

Machine Learning Utility (MLU) is a method where various classifiers and the accu-
racy are compared [113]. This is done by training the classifier after and before the
synthetic data is added. The classifiers should be optimized. MLU is achieved with
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Figure 2.3: Steps of Machine Learning Utility measures for synthetic
data generation as an evaluation step

the following steps in Figure 2.3. This is used to determine if the synthetic data can
be used as a good proxy of the original data.

For synthetic data evaluation, this research will use different techniques. First,
this thesis will use F1 score as it is said to be one of the best metrics to evaluate
imbalanced data [116]. Moreover, it closely connects to the fairness measures,as it
uses values from the confusion matrix, that is also used in various fairness definitions,
more of that is described in 2.4.

If the data is imbalanced, the accuracy of the classifier as a whole will not reflect
the accuracy for the minority class, as shown in Figure 2.1.

In order to make sure that the minority class is taken into account, other metrics
will be used. An example of such a metric is Receiver Operating Characteristic
(ROC) [99]. This metric is a graphical curve representing the trade-off between the
True Positive Rate and the False Positive Rate. In the ideal scenario, the ROC curve
would have a value of 1 for the True Positive Rate and 0 for the False Positive Rate.
Because ROC is a curve plotted against the X and Y axis, where X is a Rate of
False Positive and Y is a Rate of True Positive, the bigger the Area Under the Curve
(AUC), the better the classification is. This represents the trade-off and shows that
the True and False Positive rates change together.

In order to compare different classifiers, the AUC can be used. The AUC can be
interpreted as the probability that the model ranks a random variable that is positive
higher than a random instance that belongs to the negative class [32]. The value
for such a score is always between 0 to 1. Moreover, AUC is not biased toward the
model’s performance on the majority or minority class, which makes this measure
more appropriate when dealing with imbalanced data [116].

It is possible to obtain precision and recall from the confusion matrix, as shown
in equation 2.3.1.

Precision = TruePositive

TruePositive + FalsePositive

Because of how it is defined, precision concentrates on measuring the probability of
accurate classification of positive instances. Precision is not affected by imbalanced
data because it relies on the number of true positive and false positive samples [13].
Moreover, it is possible to obtain recall, defined as:

Recall = TruePositive

TruePositive + FalseNegative

In the classification recall indicates the fraction of the data that has been classified
successfully.
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Furthermore, by combining the two, we can obtain the PR-curve, where the Y-axis
is Precision and X is Recall. It has been said that the PR-curve is more informative for
imbalanced datasets than the ROC-curve [88]. Because the PR-curve is designed to
detect rare events, it will show how well the classifier can perform on the imbalanced
data. It will be able to detect the performance on the minority class [13].

Another metric that is often used with imbalanced data is F-score, as below:

F − score = 2 · Precision · Recall

Precision + Recall

The equation shows that it is the harmonic mean of precision and recall. This will
evaluate the model and balance between precision and recall. It is less likely to be
biased toward the majority or minority class [13].

2.3.2 Statistical Similarity

Another metric is Statistical Similarity. This metric determines if the data generated
can be used as a proxy for the original data. It checks if the original data and the
synthetic data have similar statistical properties [36].

One of the first metrics used for statistical similarity is Kullback-Leibler (KL)
divergence, which is computed on the pair of real and synthetic marginal probability
mass functions (PMF) [36]. It compares two variables and shows how much infor-
mation is lost when the two distributions are analyzed. If KL divergences are 0, the
distributions are the same. The increase in the KL value implies that the difference
between the distributions is more significant. This concept comes from information
theory. It quantifies how much information was lost.

Jensen-Shannon (JS) divergence is an extension of KL [61]. This metric also
measures the PMF between the variables. This method provides a smoothed and
normalized version of KL divergence. The values always vary between 0 to 1, where
1 means that the variables are could not be more different. Therefore, the results of
JD divergence are easier to interpret.

Another metric that evaluates the synthetic data is Wasserstein distance [84]. In
a similar manner as KD and JS divergence, it measure the difference between the
distributions.

Pairwise Correlation Difference (PCD) is a measure that shows how much corre-
lation there is between the variables [36]. It takes the absolute value of the difference
in correlation of two variables. PCD measures the difference in the Frobennius norm
of the Pearson correlation matrices computed from real and synthetic datasets.

2.3.3 Privacy

The last measure concerns privacy and how well the privacy between the original
and synthetic datasets is preserved. Unfortunately, this metric is not as widely used.
Researchers tend to either focus on the privacy aspect, such as Park et al. [77], or
completely omit the topic like Xu et al. [113].

One of the metrics that measures this is Distance to Closest Record (DCR) [77].
This measure the Euclidean distance between an instance of the original dataset and
the closest instance of synthetic data. The higher value of DCR, the better privacy
is contained, and there is less risk of privacy preservation.

Another metric that can determine privacy preservation is called Nearest Neighbor
Distance Ratio (NNDR) [63]. This method takes the two closest neighbors of a
synthetic instance and measures the ratio of Euclidean distance between them. The
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value of this ratio is always between 0 and 1. The closer the ratio is to 1, the better
privacy is preserved.

2.4 Fairness
Very often, outcomes of algorithms are discussed in terms of fairness. Unfortunately,
there is no one definition of fairness widely accepted by the community. Such def-
initions are usually heavily influenced by the culture one is surrounded. Hence, it
is challenging to come to one definition [92]. One commonly used definition is that
fairness can be perceived as a lack of any prejudice with similar and simultaneous
treatment of similar individuals or different groups [28].

Because fairness is a complex topic, different work uses different approaches and
paradigms. First of all, we can distinguish Fairness Through Unawareness versus
Fairness Through Awareness; the second one is the "What You See Is What You Get"
(WYSIWYG) vs "We Are All Equal" (WAE).

Fairness Through Unawareness is a simple idea, where we do not include all the
variables in the prediction process [33]. The unawareness is achieved by omitting the
variable from the protected classes; hence those will not be used in the final product.
This ensures that any method will not rely on the sensitive attributes. If one would
compare two similar individuals, different protected attributes would not influence the
prediction outcome [105]. There are downsides to this approach. First of all, other
variables used in the algorithm’s training, so-called -quasi-identifiers can be used to
identify the sensitive attributes. An example of this is where simple demographic
data can be used to identify a person [47]. Another disadvantage of this approach is
that the excluded variables can often be helpful in research. An example of this is
race. Researchers claim that the multidimensionality of the concept of race can be
helpful in sociological or medical research [40].

On the other hand, Fairness Through Awareness does not exclude protected vari-
ables. It calls for understating that data and the sensitive attributes. The idea of
fairness through awareness is simple - mapping of the outcomes should map similar
people. For example, Dwork et al. use Lipschitz continuity mapping, where the dis-
tance between two individuals is mapped over the outcomes in the space of probability
distribution. Lipschitz continuity is used as a hard constraint, where the distance be-
tween probability distributions cannot be greater than the output distance. This
approach prevents explicit discrimination, reverse redlining, self-fulfilling prophecies,
and reverse tokenism [29].

On the other hand, there is WYSIWYG and WAE. WYSIWYG states that the
real world and obtained datasets are the same within a small threshold error. There-
fore, the collected data represents real-life statistical properties and features. The
implication is that all the differences present in the datasets are also present in the
real world. WAE states that there are no major differences between the distinctive
groups. If bias appears in the dataset, this suggests an inherent problem with the
dataset and data collection. Therefore, it does not represent the real world.

Fairness measures can be applied at different stages in the development of pre-
dictive algorithms. First, it can be applied in the pre-processing stage, where its
primary focus is the dataset fed to the algorithm. It can also be applied to the post-
proceeding stage, where they are used on the outcomes of the predictive tool. The
simplest measures of fairness are called the statistical measures of fairness. This type
of metric uses a confusion matrix, shown below:
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From this confusion matrix, one can construct many measures used in the lit-
erature, for instance positive predictive value (PPV). This calculates all properly-
classified corrected cases over all positively-classified cases. Very often, PPV is re-
garded as precision and shows the probability of an individual belonging to a positive
class [105]. There are many more measures that rely on the confusion matrix, such
as false discovery rate (FDR), negative predictive value (NPV), true positive rate
(TPR), and false positive rate (FPR). Very often, more advanced fairness measures
are based on these definitions.

There are two ways we can categorize the statistical definitions:

1. Based on the predicted outcome.

2. Based on the predicted and actual outcome.

The most popular measure that is based on the predicted outcome is statistical
parity [29]. This is also called group fairness. The groups are an unprivileged group
(Upr), which are the class that is discriminated against, and a privileged group (Pr),
which is a primary group with positive classification outcomes [87]. These metrics
assess the probability of being assigned to the positive group from both privileged
and unprivileged groups [119], [95],[29],[33]. This measure on its own does not detect
any discrimination. For instance, it does not say how or why the privileged groups
have been classified as positive.

Statistical parity definition can be extended in such a way that it is permitted
to use a set of attributes to calculate the value. This is called conditional statistical
parity [25]. This checks if attributes have any power over the algorithm’s outcome.

On the other hand, we have metrics that are based not only on the prediction but
also on their actual outcome. The first discussed measure of this type is predictive
parity, also known as the outcome test. This definition uses PPV and states that both
groups - privileged and unprivileged - have the same value of PPV [105]. Therefore,
both groups should have an equal probability of truly being classified positively.

Another metric of fairness is called disparate impact. It compares the proportion
of people who get a positive result between two groups: the non-privileged group and
the privileged group. It is calculated as the proportion of positive results received by
the unprivileged group divided by the proportion of positive results received by the
privileged group [105].

Unfortunately, it is not possible to satisfy all the statistical measures at once [55],
[91]. Because of that limitation, researchers use more elaborate techniques to intro-
duce fairness into algorithms. One of their focuses with this is Individual Fairness.

Individual Fairness measures mainly focus on the outcomes for each individual.
Similar individuals should be treated similarly [28]. In order to satisfy this constraint,
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the notion of fairness through unawareness was proposed. Another fairness measure
for an individual was proposed by Joseph et al., where they used fairness in the
context of a multi-armed bandit problem. The proposed metric assumes that an
individual should always be classified positive if the conditions are met, regardless of
the sensitive attributes. Authors ensure this outcome by a regret bound imposed on
an algorithm. Therefore, it cannot favor any individual over another. Unfortunately,
this approach assumes that whatever strong relations are implemented in algorithmic
computations will also be held in real-life settings.

Another individual fairness measure is introduced by Lahoti et al., by the name
of iFair [58]. This approach focuses on the fair representation of data. The authors
treat fairness as a property of the dataset. Therefore, it is possible to achieve some
level of fairness by pre-processing. The data is transformed so that the cost function
minimizes fairness and information data loss. In one of the examples of transformation
models, there is a trade-off between the degree of transformation and the effect that
it has on the predictor’s performance [31].

A final branch of fairness focuses on causal reasoning. Causal reasoning is a
process of identification of underlying relationships between variables. By applying
this causal reasoning, one can find underlying connections in the data [79]. Such
relations can be derived from a proxy attribute, from which it is possible to assume
one of the sensitive attributes. One of the fairness measures that deals with causality
is counterfactual fairness. This method tests if there are any proxy attributes. If
the decision depends on them, counterfactual fairness is not satisfied. This definition
can be extended to no proxy discrimination, a framework proposed by Kilbertus et
al.[53]. They developed a procedure to remove proxy discrimination if the causal
graph constructed on the data has no paths from the protected variables to proxy
variables.

The main shortcoming of the causal fairness framework is that it is tough to
construct such a graph, as well as to identify the correct sensitive, protected, and
proxy variables.

2.4.1 Fairness Frameworks

One of the reasons bias and lack of fairness are created is the lack of a balanced
dataset. Therefore, by creating more artificial data, one will solve the lack of repre-
sentation of minority classes.

Many tools try to achieve that. One of the most prominent ones was created by
IBM, and it is called AIF360 [7]. It was created to unify the approaches to fairness
and provide a standard network for industrial use. The tool aims to detect any biases
and unfairness that datasets might include. It includes extensive metrics that can be
used to test for biases as well as adding an explanation of what it implies.

Furthermore, it provides solutions and different bias mitigation algorithms that
can be applied to data to increase fairness. It can be applied to pre-processing,
in-processing and post-processing. The main limitation is that it is currently only
limited to a web interface with limited datasets and limited classification tools.

Another tool was developed for Microsoft by Bird et al. and is called FairLearn
[10]. This toolkit was created to assess and help mitigate the bias within AI tech-
niques. It provides interactive visualization and mitigation algorithms. Unfortu-
nately, this tool has a very limited number of algorithms applied to the dataset.

FairVis was developed by Cabrera et al. [16]. This tool is a different example of
a framework developed to help with bias and unfairness. It also tries to unify the
fairness definition. It proposes the visualization of data with its biases. It focuses
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on fairness and subgroup fairness. It allows its users to visualize the differences and
drill into details of differences between the distinct subgroups. Such differences can
be discovered thanks to a novel approach that clusters the subgroups and applies
fairness measures within the clusters. The main disadvantage is that this tool does
not include bias mitigation techniques.

The framework proposed by Bantilan called Themis-ml is another approach for
Fairness and its applications [5]. This framework was developed to unify different
approaches to fairness and bring attention to the misconception that algorithms are
categorically objective. This tool contains a few fairness metrics, as well as different
solutions for bias. A simple classification ML pipeline consists of five steps: data
ingestion, data pre-processing, model training, model evaluation, and prediction gen-
eration on new examples. Moreover, it is possible to use prepared datasets to explore
the tool. Uniquely, the author also provides a discussion and solutions for the trade-
off between the fairness and the accuracy of classifiers. Unfortunately, this tool is
still limited with respect to the definitions of fairness, its purposes, and the solutions
that can be obtained because of it.

The last tool discussed will be DiscriLens, developed by Wang et al. [106]. This is
an interactive visualization tool that makes it possible to display the data differently.
In order to show detailed data facts, it uses causal modelling with classification mining
rules to identify potential variables that cause discrimination. Moreover, it explains
discrimination in the dataset. Unfortunately, this tool does not provide any solution
for unfairness but only focuses on detecting it.

There are more tools available currently, such as TensorFlow, Fairness Indicator
[111], Aequitas [89], What-If [109], FairSight [2]. However, those tools are not as
widely known, and they present only a fraction of usefulness because they do not
offer any solutions for unfair data, just like DiscriLens provides the explanation and
bias detection.
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Chapter 3

Theoretical background

Problem statement
Synthetic data generation is a very hard task. Many different attempts have been
made to create data of sufficient quality. A lot of datasets do not include enough
samples to create models that will lead to good results. Datasets may also lack balance
between samples. Finally, datasets might include information that is sensitive and
should not be used directly in classification problems. Because of the aforementioned
problems, it is not always possible to use the original dataset. One of the solutions
to these problems might be synthetic data. Unfortunately, this is a very complex
problem, for which no perfect solution has been found. During this research, the
following problems will be tackled:

• Increasing synthetic data quality.

• Quantification of data quality.

• Identification of the problems with synthetic data techniques.

• Development of a framework that will be able to avoid the limitations of other
synthetic data generation models.

• Empirical analysis of the proposed framework with different methods while
assessing the quality of the produced synthetic data.

• Framework evaluation based on the application to fairness.

This research will focus on achieving these goals. In order to do so, it will create a
framework with different methods. This thesis will use oversampling as well as un-
dersampling methods. For synthetic data generation, this research will use SMOTE,
CTGAN, Pate-GAN, and a modified version of Pate-GAN that was developed specif-
ically for this thesis. For undersampling, this thesis used Condensed Nearest Neigh-
bor. This will be applied to the synthetic data generated by the other methods. This
chapter will describe these methods.

Sampling methods

3.1 SMOTE
In order to generate synthetic data, many approaches can be used. Chawala et al.
[19] created a tool that used oversampling of the data to create artificially-generated
information, called Synthetic Minority Over-sampling Technique (SMOTE). The al-
gorithm chooses a point from the minority class. From that point, n nearest neighbors
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are chosen. Between the first point and the n neighboring points, straight lines are
created. Along these lines, synthetic data points are generated. This process is vi-
sualized in Figure 3.1. In this figure, the first minority point is coloured in black
and created synthetic data is shown in red. Depending upon the amount of oversam-
pling required, neighbors from the k nearest neighbors are randomly chosen. If 200%
oversampling is needed to generate sufficient data, 2 out of 5 randomly generated
are further selected to be added to the data. Moreover, these 2 samples out of 5 are
chosen randomly.

Figure 3.1: An example of how SMOTE operates. The first random
point with its n nearest neighbors is chosen. Then, the algorithm
creates artificial data points along the lines between the points, as

shown by the red dot [93].

SMOTE operates by creating data points based on the distance between the
variables, or group of variables. Depending on the variable type, it can be done easily
(as, for example, a difference between ages). The algorithm measures the distance
between the variables as the Euclidean distance between the two variables x,y, as
follows:

d(x, y) =

√√√√ z∑
i

= (xi = yi)2 (3.1)

Where z is the number of features for each point, and i is the current index variable.
The distance is obtained by obtaining the difference, then squaring it and summing
for the z variables. Because the sample is created along the line of the Euclidean
distance, this causes the selection to be aligned with the line segment between the
chosen points. The new data point will be created for each chosen neighbor. Such
data points will lie on the line between the points with random proximity. Therefore,
for two points x and y, between which a new point will be created, this applies:

NewPoint(x, y) = x + r · |(x − y)|, where : r ≤ 0 ≤ 1 (3.2)

The value of r is chosen with a random probability. Therefore, it is responsible
for the proximity of the newly-generated data to the original point. Because of how
SMOTE operates, it is a very powerful synthetic data generator. The most significant
advantage of this method is that the algorithm does not duplicate the entries. It
creates new data points similar to the one in the original dataset. On the other
hand, such a method is prone to oversampling the uninformative or noisy data [97].
Moreover, it is hard to determine the perfect n for n nearest neighbors, as well as
which data points should be chosen in the first place.
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3.2 Generative Neural Networks

Artificial Neural Networks (NN) are computing systems made to imitate neural net-
works in human brains. They are a collection of units, called nodes, connected by
edges. Each edge carries a signal which is a real number. Outputs of each neuron are
computed by the sum of inputs, but each edge has a weight that helps the algorithm
to learn [73]. Different architectures of NN are good at different tasks. A novel ar-
chitecture of NN was introduced by Goodfellow et al., called Generative Adversarial
Networks (GANs) [37]. GANs consist of two networks. One is called the Genera-
tor, G, and the other is called the Discriminator D. The goal of the Generator is to
generate samples of data. In contrast, the goal of the Discriminator is to distinguish
between fake and real samples.

Figure 3.2: Simple scheme of GANs. Real data, as well as data from
the Generator, is fed to the Discriminator. It then decides if the data

is real or not, and based on the feedback network G learns.

Generator

The Generator aims to learn the probability P of all the variables in the sample space
Ω. This is achieved by using feedback from the Discriminator network. The objective
is to create samples from the given data and learn the function of mapping variables
to the sample space. This can be represented by G: A → Ω, in that A, is a vector
representation of the data. Moreover, because the Generator learns from the feedback
of the Discriminator, it is possible to determine non-linear mapping to the sample
space. Therefore, the objective is to maximize the value generated by the samples
with the highest possibility of being classified as real.

One of the best-known pitfalls of the Generator is a mode collapse. The Gener-
ator should produce a variety of data that are passed to the Discriminator network.
However, the Generator may get stuck in a local minimum and therefore produce the
same output each time [90]. Because of that, the Discriminator will not be able to
give any feedback to the Generator, and there is nothing more to learn.

Discriminator

The role of a Discriminator is to recognize whether the samples passed to the network
are samples from the original dataset or a sample generated by the Generator. For
each of the received samples, the Discriminator assigns a probability p of it being
fake or real. The objective is to create create a mapping from the received data
X, such that D: X→ [0, 1]. The main objective of the Discriminator is to correctly
recognize between samples generated artificially and ones from the original dataset.
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One of the pitfalls of the Discriminator might be a diminished gradient; when the
Discriminator always correctly predicts fake samples, then there is nothing to learn
for the Generator.

Zero-Sum Game

Because of the two main objectives of the networks in GANs, the networks are com-
peting with each other. The Generator has to maximize the value of the feedback
from the Discriminator. The Discriminator has to maximize the value of guessing
correctly if the image is real. This process resembles the known game theory concept
of a zero-sum game. Each side, G or D, can only gain if the other loses.

3.2.1 CTGAN

One of the most promising results in synthetic data generation was obtained with
conditional GANs (CTGAN) [113]. In order to overcome some drawbacks of normal
GANs, CTGANs start with different modelling of data representation. The data is
transformed with mode-specific normalization. Moreover, it contains three key novel
elements: the conditional vector, the generator loss, and the training by sampling
method.

The conditional vector generates samples from the conditional probability of the
data for the chosen categorical variable. All categorical variables are treated as a
one-hot encoded vector. For such, the mask is applied, where the given condition is
enforced. A conditional vector concatenates masks and results in a one-zero vector.
Generator loss ensures that the Generator is forced to produce variables from one
category. Given the condition for the Generator, it should output something similar,
such that the masks for the input and output data match. The cross-entropy is
calculated between the two masks. The added loss creates a constraint that forces
the Generator to generate samples according to the conditional vector. This can be
achieved thanks to training-by-sampling, where the data is sampled according to the
log-frequency of each category. Based on this, the conditional vector is chosen. These
three improvement criteria ensure that the data is sampled evenly, according to the
distribution of the original dataset.

One of the shortcomings of CTGANs is that small training datasets can have a
negative impact on the performance of the tool. Moreover, this methodology does not
perform well if missing values are present in the datasets. Therefore, this limitation
impacts real-life data application since existing data tends to be imperfect.

3.2.2 Pate-GAN

Pate-GAN is a variation of the GANs network. The main difference is that Pate-
GAN uses the Pate framework for data generation. The Pate framework is Private
Aggregation of Teacher Ensembles, creating a teacher-student role while learning and
training the network. The idea begins that teacher models are used to train sensitive
data, which does not have to be public. Therefore it allows transferring the knowledge
from teacher models to student models without directly accessing sensitive infractions
[76].

This idea is extended by Jordon et al., in which Generator G is the standard GAN
framework [50]. All the changes are introduced in Discriminator D, where the Pate-
scheme replaces it. As a consequence of this, the data is split into k smaller datasets,
and k teacher-discriminators are trained. Moreover, each is trained in the same way as
usual with GAN, changing the smaller part of the dataset. Furthermore, an ϵ value
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is added, which adds the noise to the model during training to create differential
privacy guarantees [6].

The main difference comes when this framework introduces a student-discriminator.
This part is trained on the output data from the teacher-discriminator [50]. An ex-
ample of how the networks look can be found in Figure 3.3.

Figure 3.3: Block diagram of the training procedure for the student-
discriminator and the generator. The student-discriminator is trained

using noisy teacher-labelled generated samples [50]
Source: [50]

The main limitation of this framework is that the student-discriminator is only
trained on the data passed from the teacher-discriminator. This data is ensured to be
deferentially private because of the additional condition that was added by the authors
as well as the original Pate mechanism. As a consequence, all the samples passed are
with added noise. This can be problematic since we want a student-discriminator to
become proficient in recognizing the samples as real or fake. Because the teacher-
generator relies on feedback from the student-generator, if the feedback is reliable nor
insightful, it might lead to the deterioration of the created sample quality.

Data Undersampling
The method used to undersample the data in this Framework is Condensed Nearest
Neighbor (CNN). This method seeks a collection of the data points that results in no
loss in the performance of the data, and this is referred to as a minimal consistent
set [42]. It identifies the borderline cases from the given dataset. This is feasible
because CNN evaluates each of the data samples and adds them to the final set if the
samples cannot be correctly classified by the current content of the final set. Such
that E is the original dataset, a subset Ei is created that contains all the positive
examples from the dataset and one randomly selected negative example. Then the
classification of k nearest neighbor is performed, and all the misclassified examples
are moved into Ei. This is repeated until there are no more data points to be added
to Ei. The procedure is illustrated in 3.4.

The main drawback of this method is that it is possible to retain the cases that
introduce noise to the data and do not contribute to the boundary.
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Figure 3.4: CNN algorithm [50]
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The Intag Framework

In this thesis, we propose the Intag1 framework to increase the quality of produced
data. The framework is available on GitHub 2. It consists of the following set of
components: Data pre-processing, generating, and post-processing. All of these will
be discussed in the following sections.

Figure 4.1: Framework visualisation

The framework consists of 3 parts. The first part takes the dataset as an input and
then pre-processes it. This processed data then enters the main part of the framework.
The main component of the framework consists of the following phases. It starts with
the Training Model. Then the synthetic data is generated. In the next step, the data
is undersampled. After this, the dataset is prepared for Post-Processing, after which
a classification model can be trained and evaluated.

4.1 Data Pre-processing
In order to ensure the quality and consistency of the datasets, each of the datasets
is cleaned of missing values. Moreover, the representation of the values is processed
through ordinal encoding. The reason for that is twofold: firstly, it has been shown

1from Arabic - to generate
2https : //github.com/qahtanaa/SynDataGenOla
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that ordinal encoding performs similarly to one-hot encoding but shortens training
time [22]; secondly, the main methodology of the framework is dependent on data
dimensions. Therefore, using one-hot encoding would not be beneficial to the frame-
work’s design.

A user is also able to specify the variables that are considered sensitive, but this
does not change anything in the Pre-Processing step.

4.2 Generator
The main component of this part of the framework starts with the model training.

Within the framework, it is possible to indicate which method of synthetic data
generation will be used 4.2. Each of the three methods is described in section 3. The
main method developed for this system is a modified version of Pate-GAN. A user is
able to specify a sensitive attribute, which in this thesis will be a minority class. This
will force CTGAN and SMOTE to produce more samples with that attribute. The
number of samples will be calculated in such a way that the number of produced data
samples generated will equal the imbalance between majority and minority classes.
If the sensitive attributes are not specified, all the methods will double the data that
has been input into the network.

Figure 4.2: Method choice for the dataset training

Modified Pate-GAN

Numerous changes were applied in order to improve this method. This section will
describe the changes that were made to the original Pate-GAN described above. A
series of modifications were made in order to improve the quality of the generated
synthetic data. The most significant changes were made to the network, such that the
Pate mechanism was preserved but the hard constraint on conditioning the generator
output was removed. This implies that the model still splits the data into k different
parts. The multiple teachers’ models were trained on the disjointed partitions of
the data. This preserves the privacy constraint but does not follow the model of
differential privacy proposed by Dwork [28] [76].

In line with this, the students were trained on the outputs from the teachers’
generators, such that the outputs were differentially private with regard to the original
dataset. As argued in [76], multiple teacher mechanisms were enough to achieve the
privacy constraint.

On the other hand, only the artificial data was passed to the student generator,
with minimal noise aggregation within.

Because the limitation of the original Pate-GAN was that the data was trained
on the samples that were restricted by the differential privacy constraint, the samples
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were not similar to the original samples. Because of this the differential privacy
constraint was dropped. This implies that the student discriminator is able to give
more meaningful feedback to the generator while still receiving only artificial samples.

Furthermore, there were multiple changes to the architecture of the network. The
model adapts the number of hidden layers depending on the input data. Choosing the
right number of hidden layers is tricky. It critically depends on the number of training
examples and the complexity of the classification the model is trying to learn [52]. If
the number of hidden layers is too big, the network might overfit; on the other hand,
if it is too small, it might not learn the data representation. Therefore, this method
uses a simple heuristic, based on which it decides how many hidden layers the network
will have. If the level of complexity within the data is small, the data dimension is
small. The network will then use one hidden layer. As the data complexity increases
with the number of attributes, the network will grow. However, in order to avoid an
overly-complex network, the network never uses more than three hidden layers. This
was changed from the original model, where the number of hidden layers was held
constant at one.

In order to ensure the stability of the method with the proposed changes, the
learning rate of GANs was changed. Mescheder et al. showed that GANs converge
more easily while the learning rate is small [67]. Therefore, the value of the learning
rate has been changed to λ = 10−5. Another small change was made on how the
network passes binary variables. In the original model, the entire dataset was scaled
to values between 0 and 1. In the proposed version, only categorical variables are
scaled.

Last but not least, changes were made to model evaluation. Within each iteration,
the model produces a set of artificial samples. Each of those sets is evaluated using
two measures, namely AUROC and AUPRC. In order to represent a real-life setting,
the improved model is not only evaluated on the previous setting but also on the
accuracy of its different predictions. The synthetic data is then returned.

More changes to the network were made, but the results were not promising.
These can be found in Appendix B.

Undersampling

The next step is to undersample the data. This is done with Condensed Nearest
Neighbor. This method was chosen to ensure data samples of high quality are re-
turned. Because of the way CNN works, it only returns the samples that create a
minimal consistent set. This implies that the samples chosen to be returned as final
synthetic data will be the ones that contribute to the boundary between the different
variables. In the undersampling step, the nearest neighbor is chosen to be k = 1.
There were two main reasons for choosing this number. First of all, the smaller k, the
lower the complexity of the algorithm. Because the framework is already complex,
there was no need for adding extra complexity that would increase execution time for
large datasets. Evidencing this, for the datasets used in this research, the accuracy
after simple regression classification is best using k = 1, or k = 3, as shown in 4.3.
Therefore it was not necessary to increase the complexity by increasing k.

4.3 Post-Processing
The last step in this framework is to post-process the data that was created. Because
the synthetic data that was generated is also ordinally encoded, this step will reverse
this. Therefore, the data that is numerical is changed to be assigned to the proper
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Figure 4.3: CNN with different k

categories. As such, the encoding is reversed. The synthetic data created uses the
exact structures and categorical variables as the original data fed into the network.
This synthetic data is then used for the experiments described in the next section.
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Experiments

This section will describe different experimental setups used in this study. All of
the experiments will be conducted on the datasets that are presented in 5.1. This
section will first introduce the datasets. Then it will introduce the experiments.
The main goal of the experimental setup is to discover if the developed method and
framework can increase the quality of the generated synthetic data. Moreover, the
aim is to analyse if the framework is suitable to improve fairness outcomes through
data generation and solve the imbalanced dataset problem.

All of the synthetic data will be evaluated using Machine Learning Utility with
three main methods: Decision Tree, Regression and Multi-layer Perceptron. More
details about this can be found in Appendix A.

5.1 Dataset
In order to make this research comparable to others in the field; it will use databases
that are widely-known and used in similar problems. The experiments will focus
on evaluating the generated synthetic data, as well as the direct application of the
developed framework to fairness. Because different experiments will be conducted,
different datasets will be used. The reason behind this is that if the imbalanced
dataset were to be used to check the quality of the generated synthetic data, the data
would carry a bias. The evaluation of the data would then be biased too. Therefore,
this section will be split into two. It will first describe the datasets that are used to
strictly evaluate the quality of the data and then the datasets that will be used in
fairness evaluation. All of the datasets will be used in the evaluation of the framework.

5.1.1 Pima Indians Diabetes Database

The National Institute of Diabetes and Digestive and Kidney Diseases is the source
of this dataset. Based on specific diagnostic metrics present in the dataset, the
dataset’s goal is to diagnostically forecast whether a patient has diabetes or not.
These instances were chosen from a bigger database under several restrictions. Mainly,
all patients at this facility are Pima Indian women who are at least 21 years old [96].

The dataset consists of one target variable, Outcome, and some medical predictor
variables. The patient’s BMI, insulin level, age, number of previous pregnancies, and
other factors are predictor variables. This is a relatively small dataset, which is always
a challenge for data replication techniques because there is less information that the
dataset carries within. This is an example of a dataset that is balanced, and it will
be used to evaluate the synthetic data generated by the framework.
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PIMA

Instances 769

Attributes 8

Table 5.1: Pima Indians Diabetes Database

NHANES

Instances 5515

Attributes 16

Table 5.2: NHANES Diabetes Dataset

5.1.2 NHANES Data

The National Health and Nutrition Examination Survey (NHANES) is a set of studies
designed to assess the health and nutritional status of adults and children in the
United States. This dataset can also be used to predict diabetes. The data consists
of 16 variables chosen by feature selection to help discover if a person has diabetes
[94]. This dataset is used for binary classification prediction.

This is an example of a dataset that is balanced, and it will be used to evaluate
the generated synthetic data.

5.1.3 Adult

The Adult dataset is built upon data from the US Census from 1994, and it is used
to predict if a given person has a yearly income that passes the threshold of 50,000.
The dataset consists of data on over 48,000 individuals described by 14 variables. It
is skewed towards individuals that do not pass the threshold of 50,000, which makes
it imbalanced.

Moreover, within the 14 variables presented in the dataset, we can find information
such as sex, race or age. All of these variables are considered to be protected variables.
Table 5.3 shows the measurements for the fairness variables.

5.1.4 German

Another benchmark dataset used in this research is the German dataset. This data
consists of only about 1,000 entries, with twenty descriptive variables. The German
dataset classifies if a given individual can repay a taken loan or not; therefore, it is a
risk-averse dataset.

The German dataset is an example of an imbalanced dataset, where only 30% of
the bank clients are categorized as good customers who would repay the loan. This
data is similar to previous datasets, but it has significantly fewer entries.

Within the twenty variables, at least two are considered protected variables, such
as sex, age, and whether or not the person is a foreign worker. Table 5.4 represents
the summary statistics of the data, as well as including the first fairness statistics.
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Adult Dataset

Instances 48842

Attributes 14

Male vs. Female 30527 vs. 14695

Disparate impact 0.29

Statistical parity -0.33

White vs. Non-White 38903 vs. 6319

Disparate impact 0.55

Statistical parity -0.18

Table 5.3: Adult Dataset

German Dataset

Instances 1000

Attributes 20

Male vs. Female 690 vs. 310

Disparate impact 0.97

Statistical parity -0.02

Old vs. Young vs.

Disparate impact 0.48

Statistical parity -0.3

Table 5.4: German Dataset

5.1.5 COMPAS

The Correctional Offender Management Profiling for Alternative Sanctions (COM-
PAS) dataset is taken from the very popular software, used in the American Judicial
System. This tool operates as a decision-making aid for judges in the United States.
It analyses a person that committed a crime and offers a score of how likely this per-
son would be to commit a crime again. It has been argued that COMPAS is biased
in favour of white people [51].

The database contains 28 variables, of which two are considered to be protected
attributes: sex and race. This dataset is processed as it was by ProPublica [24].
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Compas Dataset

Instances 6167

Attributes 28

Male vs. Female 4994 vs. 1173

Disparate impact 0.59

Statistical parity -0.36

White vs. Non-White 2100 vs.4067

Disparate impact 0.75

Statistical parity -0.18

Table 5.5: COMPAS Dataset

5.2 Experimental setup

5.2.1 Intag vs other methods

The first experiment will be conducted to compare the framework that used modified
Pate-GAN with other methods of synthetic data replication. Methods that this re-
search will compare are described in 3. The choice for that is as follows: SMOTE is
one of the best-known methods of oversampling, while GANs are becoming increas-
ingly widely-recognized in data oversampling.

The idea behind this experiment is simple: create synthetic data with the Intag
framework and then create alternative synthetic data using the methods mentioned
above. Then compare the quality of the data generated with Intag and other methods,
which will be measured by Machine Learning Utility.

This experiment will be performed on the datasets Pima Indians Diabetes Database
(Test I) and NHANES Diabetes Dataset (Test II), as those two datasets are made
up of balanced data. Moreover, those datasets are examples of real-life data used in
medicine.

5.2.2 Intag Framework learning setup

We introduce different training testing settings to empirically validate the quality
of the generated dataset by the Intag framework. This evaluation will check all the
methods that are available in the framework, namely modified Pate-GAN, Pate-GAN,
SMOTE, and CTGAN. This experiment will show how well the framework performs
on different datasets (balanced vs imbalanced). It is also designed to check how well
the framework can reproduce the statistical properties of the data. This will be done
by measuring the Machine Learning Utility with the synthetic datasets.

Three types of experimental setup will be conducted. Each of these is described
below.

• Learning from balanced data: the framework is tested on all five datasets with
different methods of synthetic data generation. The goal of this experiment is
to compare modified Pate-GAN to other synthetic data generation methods.
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• Learning with 50% synthetic data: in order to check if the framework can
replicate the statistical properties of the data, a different setting will be used.
First, the framework will run on the original data. Doing this, it will output the
first synthetic dataset. Next to the framework, Intag will run again. This time,
as an input, it will take a dataset that consists of 50% of the original dataset, as
well as 50% of synthetic data generated. This is called Hybrid Synthetic Data.
If the quality of the generated data is preserved, the Machine Learning Utility
measures will not change significantly.

• Learning using pure synthetic data: another way to check if the framework
can replicate the data and its properties is to feed it Fully Synthetic Data and
evaluate it. Therefore this third setting will focus on first creating a dataset of
synthetic data. After this, the synthetic data will be fed into the framework
again and then evaluated. If the quality of the generated data is preserved, the
Machine Learning Utility measures will not change significantly.

5.2.3 Application to Fairness

The last experiment in this thesis will test if the framework can be used as an aid
in fairness application. The framework will focus on data replication in the three
datasets that are imbalanced, namely German, Adult, and COMPAS. All of these
datasets carry a bias within because some of the classes are misrepresented, such that
there is an imbalance between samples. As discussed, a solution to this is to create
high-quality synthetic data that can even out the imbalance. Two main measures of
fairness will be used in this experiment: Statistical parity difference and Disparate
impact.

In this experiment, the framework with its different data replication techniques
will be used to create synthetic data, and then the aforementioned measures will be
compared against the original datasets.
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Results

This chapter will discuss and highlight the findings of the experiments of this thesis.
Moreover, it will discuss the strengths and weaknesses of the framework. Only the
most interesting experiments were presented in this thesis. More can be found in
Appendix. This chapter will be structured as follows: First part will present the
results of an experiment that compares the Intag framework against other methods.
The second section shows the results on how well the framework can replicate the
data and, by extension, how machine learning algorithms can learn from it. The last
section and the last experiment present the results of the Intag framework and its
application in fairness.

6.1 Intag vs other methods
The first experiment aims at evaluating the Intag framework with other methods
of data replication. Two datasets were used to evaluate this, namely PIMA and
NHANES. The results can be found in Tables 6.1 and 6.2.

As shown in Table 6.1, which evaluates the framework against other methods
of synthetic data generation for the PIMA dataset, the framework with modified
Pate performs the best in terms of accuracy of the synthetic data. The average
improvement upon other methods is an eight percentage points increase. Moreover,
it also performs best in terms of the F1 score, and there is a slight if the negligible
difference between the ROC curve score. The F1 score, as well as ROC curve averages,
indicate good classifier choices for the data.

Table 6.2 shows the results for the NHANES dataset. As with the results of the
previous experiment, there is an increase in accuracy regarding the framework. Intag
records an 11.33 percentage point increase in accuracy over other methods. Contrary
to the previous part of the experiment, the difference between ROC curve values is
not negligible. Specifically, the modified Pate framework performs much better than
the CTGAN method here.

Both datasets provide consistent results for this experiment. There is an increase
in accuracy over the alternative methods. The framework also shows the best results
for the F1 score.
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6.2 Learning with synthetic data

6.2.1 Learning from balanced data

This experiment aims to show and evaluate how well the framework performs with
different data replications methods. First Setting A: Original data is fed into the
framework, and then the synthetic data is evaluated. For this experiment, we tested
balanced as well as imbalanced datasets; this was done to see if the framework could
deal with flawed datasets. Five datasets were tested as part of this experiment.

Table 6.3 shows the results run on the German dataset. It shows that the modified
Pate-GAN framework performs best in terms of accuracy, as well as F1 measure and
ROC. This stands for all the datasets tested, as shown in 6.5, 6.4, 6.6, and 6.7. The
framework has a better performance on the datasets that are not imbalanced, which
are 6.6 and 6.7.

Moreover, all the results are consistent with the expectations of this research.
Modified Pate-GAN outperforms other methods. Furthermore, the framework per-
forms better when dealing with balanced datasets. As the undercutting method
within the framework ensures that fairness will be preserved at the cost of accuracy,
this is in line with expectations.
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6.2.2 Learning with 50% synthetic data

The aim of Setting B in this experiment is to use the framework with Hybrid Synthetic
Data, which is a mix of synthetic and original data. First, the framework generates
synthetic data (according to the method chosen), and then it will be mixed with the
original data. Finally, the results will be evaluated in the same way as in previous
settings. All of the experiments were conducted on the five aforementioned datasets,
and all of the results can be found below in Tables 6.8, 6.9, 6.10, 6.12 and 6.13.

The results are comparable to the findings of Experiment 2 Setting A. Modified
Pate-GAN outperforms other methods.
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6.2.3 Learning using pure synthetic data

The last experiment of this part has the same aim, to find how well the framework
can replicate data. The difference with previous setups is that here, it will evaluate
how well the framework can deal with data that is Fully Synthetic. This means that
the data will first be replicated with the framework; then, this fully synthetic data
will be replicated, and then all of it will be evaluated against the original data.

The experiment was conducted on the same five datasets. All results can be found
below in tables 6.14, 6.15, 6.16, 6.17 and 6.18.

The framework using modified Pate-GAN still performs the best compared to the
other methods. Again, the framework performs better on datasets that are balanced.

The most interesting development of this experiment is that the accuracy of the
original dataset increases, contrary to the other set of experiments. This holds for all
the datasets, but it is primarily with balanced data, where the accuracy can reach
60%. This is an interesting development. It shows that the pure synthetic data fed
to the network can be replicated very well after it goes into the framework with
undercutting.
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6.3 Application in Fairness

6.3.1 German

This experiment aims at evaluating if the framework has an application in fairness1.
Three datasets were evaluated in this experiment, namely German, Adult and

Compas. Each dataset has been replicated by the network with different synthetic
data replication methods. Moreover, each dataset has two sets of variables considered
protected attributes. The framework is forced to replicate this, especially by SMOTE
and CTGAN. If the network was not forced to replicate specific values, SMOTE
performance was poor, similar to the experiments before.

Two measures are used to indicate fairness in this research - statistical parity
difference and disparate impact.

Firstly, we will examine the framework and its performance on the German
dataset. The first protected attribute from the dataset is age, where the unprivi-
leged group is young people below 25 years of age. The results and the comparison
with the original can be found in table 6.19. The statistical parity for the original
dataset is -0.3, which implies bias in the data. The ideal value for this measure is 0.
The dataset is considered fair if the value is between -0.1 and 0.1. All of the data
replication methods in the framework are within the boundaries of fairness according
to statistical parity.

Another value that was measured to indicate the fairness after the synthetic data
is disparate impact. Table 6.19 shows that the value of that measure in the original
dataset is 0.48, which indicates bias. The ideal value of this metric is 1.0. A value <
1 implies a higher benefit for the privileged group, and a value >1 implies a higher
benefit for the unprivileged group. Within this metric, a dataset is considered fair if
the value is between 0.8 and 1.25. Based upon the results, the framework creates fair
data according to the disparate impact measure, except when using SMOTE.

Table 6.19: Fairness - German - Age, privileged: Old, unprivileged: Young

Original PATE PATEGAN SMOTE CTGAN

Fairness measure

Statistical parity
difference 1

-0.3 0.11 -0.0014 0.08 -0.015

Disparate impact 2 0.48 1.17 1.0 1.32 0.969
1 Fairness for this metric is between -0.1 and 0.1; with ideal value: 0.
2 Fairness for this metric is between 0.8 and 1.25; with ideal value : 1.0.

Regarding the other set of protected variables, female vs male, the original dataset
indicates bias with statistical parity difference. In the table 6.20, we present the
results of the dataset that was replicated by the framework.

Statistical parity difference decreased for all methods and is closer to its ideal
value of 0. It does show that the network added some bias using modified Pate and
SMOTE regarding disparate impact. Both of the values exceed the fairness values.
Because the value is bigger than 1, it shows a higher benefit for the unprivileged

1The experiment for fairness uses the AIF360 framework, which makes it possible to calculate the
scores used in this experiment.
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Table 6.20: Fairness - German - Gender -Sex, privileged: Male, unprivileged: Female

Original PATE PATEGAN SMOTE CTGAN

Fairness measure

Statistical parity
difference 1

-0.2 0.105 -0.0015 0.16 0.012

Disparate impact
2

0.97 1.34 0.98 1.53 1.04

1 Fairness for this metric is between -0.1 and 0.1; with ideal value: 0.
2 Fairness for this metric is between 0.8 and 1.25; with ideal value : 1.0.

group, in that case - females. Modified Pate-GAN and CTGAN remain close to the
ideal value of 1, however.

6.3.2 Adult

The Adult dataset has two sets of classes that are considered protected. In the Adult
dataset, we can see the results of the framework for the race class in table 6.21.

Besides SMOTE, all the methods score higher on both of the fairness measures.
Modified Pate and Pate-GAN are within the boundary of fairness, where disparate
impact is on the border, skewing towards a slight bias towards the unprivileged group.
As for CTGAN, the values also improve but not significantly enough to deem this
data fair.

Table 6.21: Fairness - Adult - Race, privileged: White, unprivileged: Non-white

Original PATE PATEGAN SMOTE CTGAN

Fairness measure

Statistical parity
difference 1

-0.18 0.051 0.031 0.4 -0.159

Disparate impact 2 0.55 1.18 1.19 0.42 0.72
1 Fairness for this metric is between -0.1 and 0.1; with ideal value: 0.
2 Fairness for this metric is between 0.8 and 1.25; with ideal value : 1.0.

The second variable that is considered protected in this dataset is gender. Table
6.22 show the results from the framework. Besides SMOTE, all of the methods show
an improvement in fairness. Moreover, modified Pate shows almost perfect scores
for fairness. However, CTGAN crosses the boundary of fair data when considering
disparate impact by a small margin of 0.03.

6.3.3 COMPAS

The last dataset that will be evaluated for fairness is COMPAS. This is one of the
most controversial datasets of the last few years. It is widely used in the US court



50 Chapter 6. Results

Table 6.22: Fairness - Adult - Sex, privileged: Male, unprivileged: Female

Original PATE PATEGAN SMOTE CTGAN

Fairness measure

Statistical parity
difference 1

-0.33 -0.016 -0.085 0.22 0.11

Disparate impact 2 0.29 1.025 0.904 1.62 1.28
1 Fairness for this metric is between -0.1 and 0.1; with ideal value: 0.
2 Fairness for this metric is between 0.8 and 1.25; with ideal value : 1.0.

system. As with the other datasets, there were two classes which were considered
protected and for which bias was indicated.

The first class is race, where the privileged group is Caucasian, and the unprivi-
leged group is non-Caucasian. In the original dataset, it is shown that the privileged
group has a higher benefit.

In table 6.23, we can see the results of the framework. The framework managed
to improve fairness measures with all of the data replication methods. Nonetheless,
as with the previous examples value of the disparate impact of CTGAN is on the
border of indication of bias. However, it changed from an indication of benefit for the
privileged group to the unprivileged group. This might be caused by the fact that the
Intag replicated the values that were explicitly given, such as unprivileged classes.

Table 6.23: Fairness - COMPAS - Race, privileged: Caucasian, unprivileged: Not Caucasian

Original PATE PATEGAN SMOTE CTGAN

Fairness measure

Statistical parity
difference

-0.18 -0.078 -0.093 -0.0006 0.084

Disparate impact 0.75 0.905 0.99 0.99 1.16
1 Fairness for this metric is between -0.1 and 0.1; with ideal value: 0.
2 Fairness for this metric is between 0.8 and 1.25; with ideal value : 1.0.

For the second protected variable in this dataset - gender, the results can be
found in table 6.24. As shown, the framework does improve fairness with all of the
replication methods within the framework.

It is worth mentioning that all the findings are consistent with the previous ex-
periments.



6.3. Application in Fairness 51

Table 6.24: Fairness - COMPAS - Sex, privileged: Female, unprivileged: Male

Original PATE PATEGAN SMOTE CTGAN

Fairness measure

Statistical parity
difference

-0.36 -0.0015 -0.07 0.076 0.10

Disparate impact 0.59 1.14 0.88 1.11 1.18
1 Fairness for this metric is between -0.1 and 0.1; with ideal value: 0.
2 Fairness for this metric is between 0.8 and 1.25; with ideal value : 1.0.



52

Chapter 7

Conclusion

This chapter will present a summary of this thesis. It will highlight the strengths and
weaknesses of the framework. Moreover, it will describe its limitations and outline
other ways to improve Intag.

7.1 Summary
Data is the source for decision-making algorithms, but it is not always perfect. Imbal-
anced datasets are a known problem. These datasets carry inherent bias, such as that
not all classes within the dataset are equally represented. Algorithms will replicate
the bias, leading to unfair decisions. One of the solutions for that unfairness would
be to change the data in such a way that the imbalance is reduced. Unfortunately,
this has proven to be a very difficult task.

This thesis has focused on the problems connected to data generation methods,
and the difficulties associated with creating data and measuring if synthetic data is
of high quality. Moreover, it checks if the replicated data can be used as an aid in
fairness problems with imbalanced datasets.

As a solution, it proposes the Intag framework, with a modified Pate-GAN devel-
oped for this thesis as the best performing method of data generation.

The framework consists of several steps. First, the data is fed into Intag. In the
pre-processing step, it is then encoded. Next, the Generator, the main part of this
framework, replicates the data.

The framework focuses on generating data from the specified data classes, which
can be the minority classes. In the next step, the synthetic data is subjected to
undersampling with Condensed Nearest Neighbor. Then the data is decoded in the
post-processing step.

Multiple experiments are conducted to measure and evaluate the performance of
the proposed framework. All the experiments conducted in this thesis showed that
modified Pate-GAN improves upon other methods of synthetic data generation. The
framework performs better on balanced datasets.

One of the most interesting findings from the conducted experiments is that if the
data is trained on pure synthetic data from the framework, it will return a dataset
that can achieve higher performance on the classifier trained on the original data.
This is due to the fact that the samples that did not add a lot of information were
undersampled by CNN.

Additionally, multiple experiments were conducted to check if the framework im-
proves the fairness within datasets. Three datasets were chosen, and all the experi-
ments consistently show that Intag improves the fairness within the datasets.

The main advantage of using the Intag Framework is that it is possible to choose
different methods of data generation and that these different methods will improve
the quality as well as fairness values of the underlying dataset. However, not all
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of the data generation methods performed very well, as empirically shown by the
experiments.

7.2 Answers to the research questions
To answer the main research question, it is possible to improve the synthetic data
quality upon CTGAN and SMOTE. The two primary data generation methods that
can achieve this are modified Pate-GAN and Pate-GAN, although it has been shown
in section 5 that the best method is the modified Pate-GAN. One of the other sub-
questions, which would be the best measure of synthetic data quality, is answered
in section 2.3. This thesis uses the most common ways to indicate the quality of
synthetic data. It uses Machine Learning Utility, one of the best ways to measure
data quality [114]. Otherwise, it is tough to show that the created dataset has been
improved.

As shown the Intag framework is able to improve the accuracy compared to other
known methods. The modified Pate-GAN created for that framework performs the
best of the various methods of data generation. The increase is stable at a 5 percentage
point increase. Moreover, the framework works well with three out of four methods
proposed within.

The most interesting finding is that the framework trained on pure synthetic data
is able to significantly increase the performance of the classifier trained on the original
data, with an increase on average between 5 datasets of 4 percentage points.

As for the last sub-question, the Intag framework did improve the fairness in
imbalanced datasets. As shown, Intag significantly improves fairness with three out
of four methods that are usable in the framework. Even though the framework forces
SMOTE to synthesise the values from the unprivileged class, it still does not improve
fairness measures in some cases.

7.3 Limitations
There are a few limitations of the Intag framework. The first limitation of the frame-
work is connected to synthetic data generation. The primary method, modified Pate-
GAN, usually works well with numerical data. Yet it could improve on categorical
data or textual data. If improved, it would be possible to use the framework on
more datasets, such as those where it is not possible to encode all the variables, for
instance, textual data such as Amazon Product Dataset [8].

One of the limitations of the framework is the way the data is undersampled using
CNN. It is possible that CNN undersampling will leave out samples that are noisy
and do not add to the boundary. Therefore, noisy samples could be included in the
generated synthetic data. This influences the accuracy of the classifiers as synthetic
data produced includes samples of lower quality.

7.4 Future work
There are multiple ways the Intag framework can be improved. The first and most
important one is to further develop the modified Pate-GAN method. One potential
avenue of further research is to investigate if the proposed architecture is optimal or
whether a different architecture would improve accuracy. Drawing on the framework’s
limitations, one way to improve the framework would be to make it possible for all
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types of data, including textual data, to be replicated. This would, for example, make
it possible to generate synthetic data for the Amazon Product Dataset.

Another improvement to the framework would be to change the undersampling of
CNN. For instance, this could be done by creating an algorithm that takes k nearest
neighbors and, based on the similarity score, decides if the sample is good. Never-
theless, this might be tricky for imbalanced datasets, so this should be implemented
in a careful manner.

It would also be possible to improve upon the CNN method. An example could
be to implement CNN with Tomek links or to choose another method that might
keep high-quality samples.

A way to improve the framework is to create boundaries of the classes and, based
on that, replicate the samples. Hard boundaries will be created between the samples,
so that all the new instances will be clustered within.

Concluding, this thesis sought to develop a new method of generating synthetic
data, which would increase the quality of the synthetic data over previously-developed
methods. While much work remains to be done, the framework proposed within this
thesis is a step forward. Among other applications, this framework may help mitigate
bias within data, leading to a significant improvement in the fairness of machine
learning models.
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Appendix A

Predictive algorithms

All different setups will be used to train three different predictive algorithms that are
used in this paper.

A.1 Regression
This research will use regression as a tool. Regression is a simple yet powerful pre-
dictor. Very often, it is used as a benchmark algorithm. The first algorithm will
be the easiest regression, usually used as a benchmark classification algorithm. In
regression, the aim is to obtain a value of a dependent variable based on the input of
independent variables. The relation between this is depicted as a linear equation:

y = Xβ + ϵ

Where y is a matrix of observed values, the dependent variable. X is a matrix
consisting of input variables, the independent variables. β represents the coefficient
of the estimated degree of change in the outcome concerning the dependent variable. ϵ
is called an error term, which calculates for the noise in data that are not captured but
the rest of the equation. The power of regression lies in its simplicity. This simple
model captures relationships and their magnitude between variables. Moreover, it
does not require nor makes any assumption about the underlying data. It can also be
used to determine the feature importance in a model. On the other hand, because of
its simplicity, the relationship that regression can capture are not complex. Therefore,
it assumes the linear relation between dependent and independent variables.

A.2 Decision Tree

Decision Tree (DT) is another simple yet powerful algorithm. The idea begins DT is
to derive an approximate target function that will be represented in a decision tree
form. Learned rules can be represented as a set of {if-else} rules to help the human
reader understand the decisions that predictor takes [70].

The primary mechanism of DT is to split attributes so that rules are derived.
There are many ways to measure the quality of the split; this research will use Gini
Index. Gini index of variables is a probability of this variable being incorrectly clas-
sified when selected randomly, where the value of it varies from 0 to 1 [70]. The
following equation calculates it:

GiniIndex = 1 −
n∑

i=1
(Pi)2
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A splitting attribute will be the smallest value of the Gini Index. The main advantage
of the decision trees lies in their human-readable form. Moreover, the data for the
classifier does not need to be perfect; a decision tree can deal with missing values.
On the other hand, this tool is very sensitive to changes in the data, as well as the
complexity of the decision trees can increase with the amount of data.

A.3 Multi-layer Perceptron

Multi-layer Perceptron (MLP) is a type of NN. The architecture of this network is
simple; it consists of at least three layers, one input layer, one output layer, and
at least one or more hidden layers. The input is passed through the network by
taking the dot product with the weights on edges between layers. Then this is passed
to nodes of a hidden layer. A weighted sum of all inputs is calculated, and if the
minimum threshold value is reached, the neuron in the hidden layer will be activated.
This process is repeated for each hidden layer until the output layer is reached. This
single pass of instance in the network does not derive any information. In order to
learn, MLP passes the values once more but backwards, and this process is called
Backpropagation.

Along with this process, weights in the network are adjusted. The process of
forwarding and backward pass of the data is repeated until there is nothing to update
between input-output or such that the model has converged.

The main advantage of this classifier lies in the ability to capture complex, non-
linear relations between the variables. Moreover, it also works with the large input
data, as well as with the smaller datasets. On the other hand, a multi-layer perceptron
is a fully connected and very complex network that requires much time to train.
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Appendix B

Unused changes to the network

Initialization Function

Another change that was tried in this paper, is changing the initialization function. As
the authors with the original paper indicate, the authors used Xavier initialization
function to initialize the parameters of the generator randomly. As argued by the
authors of the original paper used it to allow the model to reach deep into within.
The original Xavier initialization function presents as follows in B.1, where n, is the
data dimension

W = U ∼ [− 1√
n

,
1√
n

] (B.1)

The change version, where the data dimension is squared looks as follows in B.2:

W = U ∼ [− 1
√

n2

2

,
1

√
n2

2

] (B.2)

Because of that change the function is able to generate narrower bounds for the
values of the weights. As shown in the graph

Figure B.1: : Xavier Initialization function bounds and variation of
Xavier Initialization function bounds

And as well it will avoid a pitfall of becoming a value of 0 [102] to avoid poor
performance.

Moreover, the comparison between 3 standard functions and modified version that
is used in this papers, shows that the modified version still shows the smallest gener-
ated value, that is not a constant B.2. Unfortunately, all the experiments performed
with this changed showed that the network is stable with small dimension datasets,



58 Appendix B. Unused changes to the network

Figure B.2: :Initialization function bounds differences

whereas the datasets with higher dimension the accuracy dropped significantly below
30%.
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Appendix C

Additional experiments

C.1 Pearson statistical correlation experiment
Another way to check the quality of the generated data is to compare it with the
original one and run the Pearson correlation test, also known as Pairwise Correlation
Difference. This experiment will be shown for all of the dataset and how this changed
the association between the original dataset and the one generated by the Intag
framework with modified Pate-GAN. Moreover, the bigger the association the better
the synthetic data is.

German dataset

As shown in the Figures C.1,C.2,C.3 l for the synthetic data generated the association
becomes stronger. Therefore it shows that the framework with modified Pate-GAN
data generation it can replicate the properties of the original data.

Adult

As shown in Figures: C.4,C.5,C.6, the association between the figures shows that
there was indeed a small increase in the association.

Compas

As shown in Figures: C.7,C.8,C.9, the association between the figures shows that there
was indeed a small increase in the association, especially more some of variables.

Test I

As shown in Figures: C.10,C.11,C.12, the association between the figures shows that
there was significant increase for some of the variables.

Test II

As shown in Figures: C.13,C.14,C.15, the association between the figures shows that
there was indeed a small increase in the association.
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Figure C.1: Ger-
man dataset correlation
with the original data.

Figure C.2: Origi-
nal dataset correlation
with the synthetic data

generated.

Figure C.3: Differ-
ence between the asso-
ciation in the original
data and the original
data with the synthetic

data
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Figure C.4: Original
ataset correlation with

the original data.

Figure C.5: Origi-
nal dataset correlation
with the synthetic data

generated.

Figure C.6: Differ-
ence between the asso-
ciation in the original
data and the original
data with the synthetic

data
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Figure C.7: Original
ataset correlation with

the original data.

Figure C.8: Origi-
nal dataset correlation
with the synthetic data

generated.

Figure C.9: Differ-
ence between the asso-
ciation in the original
data and the original
data with the synthetic

data
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Figure C.10: Orig-
inal ataset correlation
with the original data.

Figure C.11: Origi-
nal dataset correlation
with the synthetic data

generated.

Figure C.12: Differ-
ence between the asso-
ciation in the original
data and the original
data with the synthetic

data
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Figure C.13: Orig-
inal ataset correlation
with the original data.

Figure C.14: Origi-
nal dataset correlation
with the synthetic data

generated.

Figure C.15: Differ-
ence between the asso-
ciation in the original
data and the original
data with the synthetic

data
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