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Abstract—Deep learning-based approaches have seen a 
lot of success in the space of Magnetic Resonance Imaging 
from segmentation to real-time registration. However, these 
methods often fail to generalize to different domains, that is 
to say scans from different scanners, sequences or 
populations. We review two classes of approaches to 
counteract these so-called domain shifts in deep learning 
for MRI data: data harmonization and domain 
generalization, and discuss their pros and cons. Data 
harmonization removes domain-specific information from 
MR images themselves, whereas domain generalization 
trains a neural network to be robust to a wide variety of 
input images from different domains. Five papers were 
found for data harmonization and sixteen papers for 
domain generalization. Based on these papers, we 
conclude that both data harmonization and domain 
generalization are viable for small expected domain shifts. 
In practice, the extent of domain shifts will often be 
unknown prior to deployment of the neural network or will 
be too large. In this more realistic case, we determine that 
domain generalization offers better generalization 
capabilities than data harmonization. On the other hand, 
data harmonization can be used to remove domain-specific 
information from new data, making it possible to use 
already trained task networks (e.g. a segmentation network) 
without having to retrain on the new domain or requiring 
labelled data from this domain. Both methods therefore 
have useful applications in different scenarios. 

 
Index Terms—Data harmonization, deep learning, 

domain generalization,  domain shift, MRI 

I. INTRODUCTION 

EDICAL imaging modalities like Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT), Positron 

Emission Tomography, X-rays and ultrasound allow 

radiologists to analyse the structure and/or function of e.g. 

internal organs and the musculoskeletal system. A lot of data is 

generated using these modalities, especially with MRI, which 

allows for the acquisition of 3D volumes with different 

contrasts capable of highlighting certain pathologies or 

abnormalities. These data are subsequently viewed and 

analysed by radiologists in clinical practice or analysed for 

research purposes. 

The processing and analysis of large amounts of data in the 

clinic or for research is labour- and time-intensive. A promising 

approach for time-efficient and powerful processing and 

analysis of this data is deep learning (DL). DL concerns the 

training of neural networks, often convolutional neural 
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networks (CNNs) in the medical imaging domain, which are 

capable of learning useful features from input imaging data and 

subsequently using these to produce a target output. Training a 

network to produce a target output from a given input is called 

supervised learning, which is what most DL approaches use [1]. 

An example of this could be a network that is trained to 

reproduce segmentation maps of tumours, which could 

subsequently be used for automatic tumour detection and/or 

volumetric analysis. Other examples of DL applications beyond 

segmentation include: 

• Image synthesis; e.g. to balance a dataset to include 

more healthy/pathological cases or to create additional 

useful images, like generating synthetic CT images 

from MR images 

• Image registration; allowing for real-time affine 

and/or deformable registration of images for e.g. 

motion correction 

• Image reconstruction; allowing for MR image 

reconstruction from fewer k-space samples 

• Image super resolution; creating higher resolution 

images   

• Classification; classifying images into e.g. healthy vs. 

pathological cases [1]. 

 

An assumption is often made that the unseen/test data that 

the trained network is applied to is similar to the training data. 

In practice, however, this assumption limits the application of 

DL-based methods, because they only perform well on test data 

similar to the training data. Once a so-called domain shift 

occurs in the test domain, meaning that the statistics of the test 

data are different from the ones of the training data, DL-based 

methods often fail to generalize, which is detrimental to the 

wide-scale application of DL-based technologies [2]. Domain 

shifts within MRI can result from different factors, e.g.: 

• Differences in sequence parameters like repetition 

time, echo time, flip angle, resolution, and the type of 

sequence used (e.g. spin echo or gradient echo) 

• Differences between scanner hardware and software, 

e.g. 1.5 T field strength vs. 3 T or Siemens vs. Philips 

[3] 

• Differences in subject/patient populations’ 

distributions of sex, age, and pathology (or absence 

thereof) [2].  

In this review a domain is defined as (data from) a 
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combination of a specific sequence type, scanner type and 

population. Two domains are considered different if one or 

more of these three variables are different, resulting in a domain 

shift. Multiple methods exist to alleviate the performance drop 

resulting from a domain shift. One such method is transfer 

learning, in which a network is trained on the training data and 

subsequently finetuned/retrained on a smaller dataset from the 

test domain. Transfer learning is often done by freezing part of 

the network’s parameters and only training a subset of them on 

a small dataset of labelled data from the test domain [4]. 

Labelled data in this context could refer to e.g. segmentation 

maps paired with the corresponding MR images, or CT scans 

corresponding to MR images to train a network for synthetic 

CT generation. Although transfer learning only requires a small 

amount of labelled data from the test domain, it is still 

suboptimal in practice, because it requires each site that wants 

to deploy the neural network to retrain the network and to 

acquire additional labelled data. 

Other methods also exist, which avoid adapting the neural 

network to each test domain: data harmonization (DH) and 

domain generalization (DG), which are discussed in the 

following paragraphs. DH seeks to reduce sources of variability 

between different domains. More specifically, most DH 

methods in the space of MR imaging focus on a post-processing 

step in which the MR images are altered to remove domain-

dependent features. Older methods were based on 

histograms/global image statistics, but these do not address 

local domain-specific variations in the images [5]. More 

advanced techniques that can take local information into 

account are DL-based methods, which often learn an image-to-

image mapping from multiple domains to a single reference 

domain. This mapping can be learned by a CNN in a supervised 

manner, where a group of subjects is scanned with different 

scanners and/or with different sequences. By removing domain-

specific information using the trained harmonization CNN to 

map from multiple domains to a reference domain, a second 

CNN (e.g. for segmentation) trained on the reference domain 

can theoretically be applied to an arbitrary number of domains, 

provided that the harmonization network has been trained to 

translate these to the reference domain. DH methods also exist 

that do not require a dataset with overlap. This is called 

unsupervised DH and will be the only type of DH considered in 

this study, as acquiring images with an overlap cohort is often 

impractical [6]. 

DH could be beneficial for removing site/scanner-specific 

features in multi-centre studies, which allow for a much larger 

dataset to be constructed with more statistical power [7]. 

Removing site/scanner-specific features is necessary, because 

the site at which a subject is scanned can greatly influence 

metrics derived from the images [8]. 

Finally, robustness to domain shifts can also be achieved 

using DG, which differs from DH, because it does not require a 

harmonization network to bring images to a reference domain, 

but instead tries to generalize the task network itself to multiple 

domains.  

DG can be achieved in two ways: 1) by training a network in 

such a way that it learns domain-independent features and 2) by 

increasing the diversity of the data (either by augmentations or 

data synthesis) during training. The main differences between 

these two are that the second method does not change anything 

about the training itself and only implicitly forces the network 

to learn domain-independent features, whereas the first method 

explicitly forces the network to learn domain-independent 

features by using advanced training techniques. The latter can 

be achieved with domain adversarial learning or meta-learning, 

which are two advanced training methods aimed at forcing the 

network to learn domain-independent features. A high level 

overview of DH and the different DG methods is given in Fig. 

1 along with the sections in which they are discussed, where 

different domains are indicated with different colours. 

 

This review will discuss data harmonization and domain 

generalization applied to structural MRI to investigate the 

potential of these methods to counteract the domain shift 

problem. We focus on structural MRI, in which images reflect 

differences in tissue parameters (T1, T2, ρ), as these images are 

acquired most often in the clinic.  The goal is to give an 

overview of the different methods that have been applied in this 

context and to discuss pros and cons of each method.  
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Fig. 1. High level overview of DH and the different DG methods during training of the network and when used for inference. The different colours 

of the circles represent different domains. 

 

I. A. Selection criteria 

To find relevant literature Google Scholar was used with the 

search terms “MRI harmonization”, “MRI domain 

generalization” and “MRI domain shift”. The exclusion criteria 

were:  

 

• Papers that required labelled data for the unseen 

domain (as in transfer learning) or rescans of the 

same subjects at different sites, as this type of data 

is often absent or impractical to acquire 

• Papers that applied to diffusion weighted imaging 

(DWI), because DWI data is quite different from the 

more often clinically acquired structural MRI and 

therefore lends itself to harmonization techniques 

not applicable to structural MRI 

• Papers with zero citations, unless they were 

published in the past six months 

• Papers that did not use MRI data 

• Papers that did not employ DH or DG 

 

If papers mentioned other DG or DH methods, these were also 

checked against the exclusion criteria and included if relevant. 

Google Scholar gave on the order of 10,000-100,000 results per 

search term. The search was stopped if 40 results in a row did 

not employ DH (for the search terms “MRI harmonization -

diffusion” and “MRI domain shift”) or DG (for the search terms 

“MRI domain generalization” and “MRI domain shift”) under 

the assumption that more relevant results come first in the 

search. Using these selection criteria five papers focusing on 

DH and sixteen papers that studied DG were found. An 

overview of all 21 methods is given in Table A1, which the 

reader can refer to for a general overview or to see which 

network architecture was used in each paper, which is often 

omitted in the main text for brevity.  

The following sections are structured as follows: section II 

reviews relevant literature about DH and section III discusses 

DG. Both methods and their subcategories are discussed and 

compared in section IV, with a final conclusion in section V. 
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II. DATA HARMONIZATION 

The following subsection describes two ways of training CNNs 

for DH: using Generative Adversarial Networks (GANs) and 

encoder-decoder architectures. 

II. A. GAN-based harmonization 

This subsection describes two examples of methods that 

performed DH using GANs, though more examples exist. 

GANs employ two types of networks, a generator and a 

discriminator [9]. Given a random noise vector or input image, 

the generator tries to generate a realistic image to fool the 

discriminator, which tries to discriminate between real images 

and fake images generated by the generator. The generator is 

optimized to maximize the probability that the discriminator 

assigns the generated image as being real, while the 

discriminator is optimized to minimize this same probability 

and to maximize the probability of predicting a real image as 

being real.  

This idea is expanded upon in CycleGAN [10], which 

employs two generators and two discriminators to cycle 

between two types of images (e.g. T1-weighted to T2-weighted 

images) and enforces a cycle consistency, where mapping from 

e.g. a T1-weighted (T1w) image to a T2-weighted (T2w) image 

using the first generator and mapping back to the T1w image 

using the second generator should result in the same image 

being reconstructed. Due to its cyclic nature, CycleGAN does 

not need paired data. 

The authors of the papers in this subsection trained a network 

for the segmentation of brain structures [11] and age estimation 

based on brain scans [2], respectively. In brain age estimation, 

the age of a subject is estimated based on a scan of their brain. 

This age estimation functions as a biomarker of brain pathology 

if significantly different from biological age [2]. The authors of 

these two papers subsequently trained a GAN variant, 

CycleGAN in [11] and StarGAN v2 in [2], to harmonize scans 

acquired with different scanners and similar sequences (and 

from a different population in [11]) to the training domain so 

they could apply their segmentation/age estimation networks. 

The next paragraphs discuss these two papers in more detail. 

In [11] the authors trained a CNN to segment (subregions of) 

the amygdala from 14 healthy subjects aged 8.5–43.4 years 

(mean of 28.9 years) scanned with a 3D inversion-recovery 

prepared fast gradient-echo T1-weighted sequence. After 

training their segmentation CNN, they tested its generalizability 

to scans of children/adolescents aged 9-18 years scanned with 

relatively similar T1w protocols, but scanned at 13 sites with 

different 3 T MRI scanners. Additionally, these subjects 

suffered a traumatic brain injury (TBI) 1-2 years before 

scanning, giving very heterogeneous data.  

To bridge this domain shift resulting from differences in age 

range, type of scanner, sequence used and pathology they used 

a CycleGAN to learn a transformation to the domain of the data 

that the segmentation CNN was trained on. A limitation of the 

study is that it is unclear if they used separate 

generators/discriminators for each of the 13 sites, but it seems 

they consider all of the TBI scans as one domain and the 

training domain as the reference domain.  

After applying the generator that transforms the images to the 

reference domain they directly applied the segmentation 

network trained on the reference domain data and achieved a 

Dice Similarity Coefficient (DSC) of 0.755±0.067 for 

amygdala segmentation compared to 0.428±0.218 on the 

unharmonized data and 0.760±0.096 when the segmentation 

network was trained exclusively on the TBI scans with 7-fold 

cross-validation.  

Therefore, they showed that in this case transforming data to 

a different reference domain on which a CNN was trained 

versus training on the data itself can lead to similar results. Note 

that the similarity in performance is related to the TBI data 

being much more heterogeneous than the data of the healthy 

subjects. This seems to make it harder for the network to learn 

from the TBI data, which is indicated by the fact that training 

and evaluating on the reference dataset of healthy subject with 

cross-validation gave a much higher DSC of 0.906±0.019. 

The authors of the second paper trained a CNN for brain 

image-based age estimation [2]. The authors trained this 

network on a reference domain of T1w Magnetization Prepared  

Rapid Gradient Echo (MPRAGE) images scanned using a 1.5 

T Siemens scanner. To apply this network to five other domains 

consisting of T1w MPRAGE and Spoiled Gradient Echo 

(SPGR) sequences scanned using different scanners from 

Siemens, GE and Philips at either 1.5 T or 3 T field strength, 

they used a GAN called StarGAN v2 (henceforth referred to as 

StarGAN) [12].  

In contrast to CycleGAN, StarGAN does not need to train 

𝑁(𝑁 − 1) generators to translate between 𝑁 different domains, 

but uses a shared generator to translate between all 𝑁 domains. 

Another difference compared to CycleGAN is that StarGAN  

explicitly separates image content from the image domain. 

Conceptually, this means that e.g. two T1w images of the same 

patient and same anatomy acquired with different scanners 

should result in the same image content, but two distinct domain 

encodings. The domain encoder is a separate trainable network 

along with the discriminator and generator. By extracting the 

domain encoding of an image from the reference domain and 

supplying this to the generator along with the image content of 

an image from a different domain, harmonization to the 

reference domain can be achieved. 

The generator and domain encoder were used at inference 

time to harmonize the five other domains to the reference 

domain. Harmonization was achieved by inputting the images 

from these five domains to the generator and applying the 

reference domain code, which was extracted by the encoder 

from images from the reference domain. An example of 

harmonizing from one of the five domains to the reference 

domain is shown in Fig. 2. The figure shows a few slices of two 

different subjects at similar locations in the brain and the 

corresponding Mean Absolute Error (MAE) for age estimation 

of this dataset before and after harmonization. 
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Fig. 2. Examples of harmonizing from one domain (Dataset 2) to a 

reference domain (Dataset 1) with the corresponding Mean Absolute 

Error (mean ± standard deviation) for brain age estimation of Dataset 2 

without and with harmonization. Adapted from [2]. 

 

The harmonization of all five domains resulted in a Mean 

Absolute Error (MAE) of 7.21 years and Pearson correlation 

coefficient (PCC) of 0.779 between predicted- and real age 

compared to MAE’s and PCC’s of 11.86 years/0.341 and 15.81 

years/0.299 for the histogram matched- and unharmonized 

images, respectively. The authors therefore demonstrated a 

large performance increase compared to traditional histogram 

matching when using DL-based harmonization methods and 

showed the even larger benefit of using this technique 

compared to using no harmonization. 

II. B. Encoder-decoder-based harmonization 

All three methods in this subsection use basic components of 

autoencoders (AEs), in which an encoder is tasked with creating 

a (lower dimensional) representation of the input, which is 

subsequently reconstructed by a decoder. Both the encoder and 

decoder are often CNNs. Table I gives a short overview of 

which anatomy was used in each study, across what domains 

the authors harmonized images and if a downstream task was 

applied to the images for extra validation of the harmonization 

performance. As opposed to the previous two papers the three 

papers of this subsection focused mostly on the harmonization 

itself, with only one using a non-DL downstream task for 

validation. 

 
TABLE I 

OVERVIEW OF METHODS IN THIS SUBSECTION, WHAT ANATOMY THEY 

STUDIED, WHICH DOMAINS THEY HARMONIZED ACROSS AND IF A 

DOWNSTREAM TASK WAS EVALUATED FOR VALIDATION 

Ref. Anatomy Domains Downstream 

task 

[13] Brain 
Population, scanner 

and sequence 
No 

[14] Brain Scanner and sequence No 

[15] Brain Scanner Yes 

 

 

 In [13] the authors trained a network to translate between  

T1w and T2w brain images from three different scanners and 

sites, with healthy- and multiple sclerosis subjects. Similarly to  

[2] they explicitly separated image content (anatomical 

features) from domain (sequence and scanner type). This was 

achieved by forcing the encoder network to output an 

anatomical feature map and a contrast component. The 

anatomical feature maps had the same height and width as the 

input image, but with five channels approximating a one-hot 

encoded feature map. The one-hot encoding means that one of 

the channels has a value of approximately 1, while the other 

four have a value of approximately 0, encoding the presence (1) 

or absence (0) of the feature encoded by each channel. A 

Straight-Through Gumbel-Softmax layer enforced the 

approximation of a one-hot encoded feature map such that the 

network could learn five relevant features. By constraining 

these feature maps to be one-hot encoded with only five 

channels the authors tried to prevent the network from encoding 

domain-specific information in the anatomical feature maps. 

The contrast code on the other hand was a single learnable 

scalar, determined by the network. For example, T1w scans 

from Site A were attributed a mean scalar value of -2300, T1w 

scans from Site B a mean value of -3700 and T2w scans from 

Site A a mean value of -400 by the network.  

The encoder was a U-Net architecture [16], which gave the 

anatomical feature map and contrast code. The decoder was 

also a U-Net, which took in the contrast component and 

anatomical feature maps and was tasked with reconstructing the 

anatomical information with the requested contrast. More 

specifically, the networks were tasked with encoding and 

reconstructing both the T1w and T2w images of the same 

patient, where the encoded anatomical information from both 

scans could be combined with the encoded contrast code of both 

scans for a total of four combinations. These combinations 

resulted in two images that were compared to the T1w image 

and two that were compared to the T2w image with a Mean 

Square Error loss. Additionally, they enforced a cosine 

similarity on the anatomical feature representations, which 

should be the same for the T1w- and T2w images. 

 After training the networks, T1w images of multiple sclerosis 

subjects that were scanned at two of the sites were harmonized 

from one site to the other by encoding the anatomical 

information from scans at site A and taking the average contrast 

encoding value of scans from site B and supplying these to the 

decoder. After harmonization of these twelve subjects the mean 

structural similarity index between the images from the two 

sites went up from 0.845 to 0.923.  

 The same research group proposed a follow-up to the 

aforementioned paper in [14] with three key differences. 

Firstly, the contrast encoding was performed on a different slice 

than the anatomical information encoding, such that it was 

impossible for the network to encode anatomical information in 

the contrast component. Secondly, they applied a discriminator 

to the anatomical information encoding, where the 

discriminator was tasked with learning if the anatomical 

information came from a single site A or not. They trained the 
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encoder in an adversarial fashion such that its outputs did not 

contain information about the input’s site. This component was 

added, because in the previous setup from [13], the network 

would still theoretically be able to encode which site the data 

came from. This is because enforcing the cosine similarity 

between the anatomical features from two scans of the same 

patient scanned at a single site only discourages the network 

from encoding domain-specific information (e.g. T1w vs. T2w) 

within each site and not across sites. Finally, two completely 

separate encoders were used to encode the anatomical 

information and contrast as opposed to using one encoder to 

encode both components. 

 Harmonization of brain scans was tested between four 

different domains consisting of scans from either 1.5 T or 3T 

Siemens scanners scanned using slightly different sequence 

parameters in each of the four domains. The method 

significantly outperformed CycleGAN, their older method from 

[13], and histogram matching in a majority of the metrics, 

which were Peak Signal to Noise Ratio (PSNR) and Structural 

Similarity Index Measure (SSIM) for a test set of T1w- and T2w 

brain scans of subjects scanned at multiple sites.  

The aforementioned results were achieved on domains that 

were used during training of the harmonization network. On the 

other hand, the authors also showed a method to generalize their 

harmonization to new domains not seen during training by 

finetuning small parts of the network. To demonstrate this they 

trained a new harmonization network with T1w- and T2w brain 

scans from two sites using the same 3 T Philips scanner, but 

different sequence parameters. They then applied this trained 

network to a third domain consisting of T1w brain scans 

obtained with a different 3 T Philips scanner and different 

sequence parameters.  

To finetune the trained networks to the new domain they 

froze all network parameters except the last few layers of the 

anatomical information encoder. These were trained using the 

frozen anatomical information discriminator to bring the 

anatomical information distribution closer to that seen during 

training to remove site-specific information. The authors 

showed that this finetuning improved PSNR and SSIM 

compared to applying the network without finetuning, while 

only requiring unlabelled data from the test domain. 

 The final paper discussed in this subsection, which also used 

an encoder-decoder-based architecture and a discriminator, is 

[15]. To evaluate their approach they used healthy brain scans 

from six different domains using scanners from GE, Philips and 

Siemens operating at either 1.5 T or 3 T field strength scanned 

using either a 3D T1w MPRAGE (Philips and Siemens) or T1w 

SPGR (GE). They derived radiomic features from all scans and 

because all scans were of healthy subjects they expected a 

reduction in statistical differences between domains after 

harmonization. 

The authors argued that training a network using paired T1w- 

and T2w data from the same scanner like in [13] and [14] and 

subsequently using this trained network to harmonize between 

scanners is not ideal as it requires paired data and assumes that 

intra- (e.g. T1w vs. T2w) and inter-scanner (e.g. 1.5 T vs. 3 T) 

differences are interchangeable. By dropping this assumption 

and the need for paired data, they could not use the separate 

anatomical feature maps and contrast components as in [13] and 

[14]. This leads to the following two key differences between 

this method and the previous two methods: 1) it mostly 

concerns domain differences resulting from different types of 

scanners with sequences more closely aligned across scanners 

(all T1w instead of T1w and T2w) and 2) it does not explicitly 

separate anatomical information from contrast.  

Instead, the images were encoded into a latent space without 

a separation between anatomical information and contrast, on 

which a discriminator acted to learn which domain the latent 

space represents, while the encoder tried to maximally confuse 

the discriminator. The purpose of this setup was that the 

encoder learned to encode domain-agnostic information only.  

The authors of [15] also criticized the use of image-level 

discriminators, which were used in e.g. [2] and [11], because 

these risk changes in content and feature hallucination [17]. To 

show the benefit of foregoing an image-level discriminator they 

quantified the change in/loss of content by translating from one 

of the six domains to another using the harmonization network 

and then plugging the output back into the network to 

harmonize back to the original domain. The expectation was 

that if content was lost/changed, this would not be recoverable 

in the translation back to the original domain. 

To quantify this, they calculated the SSIM between the 

original image of each domain and the same image auto-

encoded (translated to its own domain) and the SSIM between 

the original image and the same image after cycling through a 

different domain and back to the original domain. The 

difference between these two SSIMs should then be 0 if no 

content is lost. The authors showed that this difference was 

0.0021 without an image-level discriminator and three times 

higher at 0.0062 with an image-level discriminator, confirming 

that content is lost to a greater degree when an image-level 

discriminator is used. 

 To validate their harmonization method they measured 

statistical differences in five types of textural radiomic features 

(e.g. grey-level co-occurrence matrix and grey-tone difference 

matrix) derived from the images of different domains and found 

that these differed much less statistically after harmonization 

with their approach compared to a histogram-based 

normalization approach and no harmonization. They also found 

no significant differences in these difference reductions 

between the five domains that were part of training and the 

held-out test domain, achieving zero-shot harmonization 

(without retraining). However, one caveat was that the test 

domain was quite similar to the training domains. 
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III. DOMAIN GENERALIZATION 

Most DG approaches fall into two categories: they either 

directly enforce a network to learn domain-independent 

features using e.g. an adversarial loss component, or they 

increase data diversity using data synthesis/data augmentations, 

which indirectly forces a network to learn domain-independent 

features. The following two subsections will discuss both of 

these approaches and their applications in MRI. 

III. A. Domain-independent feature learning 

Domain-independent feature learning explicitly forces neural 

networks to learn domain-independent features using advanced 

training strategies, such that a trained network could in theory 

be applied to domains not seen during training. Five out of the 

six methods in this subsection use an adversarial loss to achieve 

this, whereas the sixth method employs meta-learning, which 

will be discussed last.  

The adversarial loss implementations in this subsection are 

similar to those of the two previously discussed DH methods 

[14], [15]. The main difference is that instead of being built into 

a harmonization network, the domain-independent features are 

enforced in the task network itself. Fig. 3 shows a diagram of 

the general structure of these approaches. The task network—

often consisting of an encoder and decoder—predicts the output 

𝑦̂ from the input 𝑥, which is subsequently compared to the 

ground-truth 𝑦 via a task-specific loss (e.g. segmentation or 

classification). Additionally, a domain discriminator is trained 

to recognize which domain the input came from based on a 

combination of feature maps from the task network, often the 

lowest resolution feature maps and/or the final feature maps 

before the output layer. The discriminator is optimized to 

minimize the adversarial loss, which could for example be the 

cross-entropy between the predicted domain and actual domain. 

The encoder-decoder network on the other hand is optimized to 

maximize this loss, giving rise to the domain-adversarial 

training.  

Using this training style the idea is that the domain 

discriminator becomes better and better at recognizing what 

domain the input data came from, whereas the encoder-decoder 

network becomes better at fooling the domain discriminator. If 

the encoder-decoder network manages to maximally confuse 

the domain discriminator, the feature maps that are fed into the 

domain discriminator should theoretically be domain-

independent. If the final feature maps are domain-independent, 

the output is also domain-independent. If only the lowest 

resolution feature maps are domain-independent, the output is 

only fully domain-independent if the network does not employ 

skip connections that concatenate feature maps from the 

encoder to those of the decoder. 

This basic idea was used in [18] for disorder identification 

and disease progression prediction for brain images, in [19] for 

segmentation of brain images, in [20] for knee image 

segmentation and in [21], [22] for cardiac image segmentation.  

The authors of the first two papers [18], [19] focused on the 

scenario in which data from both the training and testing 

domain are available, with labels for the training domain only. 

In this setting both ℒadversarial and ℒtask are computed and 

optimized with data from the training domain, whereas only 

ℒadversarial is optimized for data from the testing domain. The 

other papers address the more realistic scenario in which the test 

domain is unseen during training. 

 

 

 
 Fig. 3. Overview of the adversarial loss and domain discriminator 
often used for domain generalization. An input 𝑥 is forward propagated 
through the network and a prediction 𝑦̂ is compared to a ground-truth 𝑦 

via the task loss, while the predicted domain 𝑑̂ is compared to the real 
domain 𝑑 via the adversarial loss. 
 

 The authors of the third paper [20] trained a network on two 

different domains with sagittal 3D double echo steady state MR 

images of the knee from two different scanners and with 

slightly differing sequence parameters, of which only one 

domain was labelled. They trained the network in the same way 

as outlined in the previous paragraph on these two domains for 

the segmentation of femoral and tibial cartilage tissues. The 

trained network was subsequently applied to a third unseen 

domain, consisting of the same scanner and protocol as the 

unlabelled domain, but with different patient populations.  

 Interestingly, the authors of [20] implemented a second 

generalization technique called mixup, proposed in [23]. Mixup 

functions as a type of data augmentation and takes random 

linear interpolations between two inputs and the two 

corresponding target outputs and feeds these to the network. A 

classic example would be an image classifier which is fed a 

linear interpolation between an image of a dog (weighting of 

e.g. 0.3) and a cat (weighting of e.g. 0.7) and the loss is 

calculated with a target output of probabilities 0.3 for the dog 

class and 0.7 for the cat class. By training in this way, the 

network is forced to behave linearly between samples. Using 

these linear interpolations a greater input space is explored. 

Linear behaviour (i.e. a linear interpolation in the input leads to 

a linear interpolation of the outputs) between samples was 

thought to be beneficial for generalization from the perspective 

of Occam’s razor, because it is one of the simplest types of 

behaviours. It was also shown to lead to much smoother 

decision boundaries in the input space, instead of the sharp 

decision boundaries from training without mixup [20]. 

The authors showed that mixup and domain-adversarial 

learning perform similarly, with domain-adversarial learning 

sacrificing some performance on the training domain (with 

labels) for better generalization to the test domain and vice 

versa for mixup. They argued that mixup is preferable over 

domain-adversarial learning because it requires less 

hyperparameter tuning and has a lower computational load [20]. 

This is because mixup only requires interpolation between 
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samples, a slight adjustment to the loss calculation, and the 

choice of a single hyperparameter, which determines how the 

random interpolations are sampled. For domain-adversarial 

learning on the other hand, a second network needs to be 

implemented, requiring a heavier computational load than 

interpolating data. Domain adversarial learning also requires 

choosing an optimal domain discriminator network 

architecture, a potentially different learning rate for the domain 

discriminator, a choice of the weighting of the adversarial loss 

component etc. 

 The last two papers that used domain-adversarial learning are 

[21], [22], which were both part of a challenge for segmentation 

of heart structures in data from different scanner types, sites and 

disease types [24]. Each participant got data from three 

different sites, of which two were labelled with the final site’s 

data only being available to the challenge organizers. 

Sequences with relatively similar contrasts were used across 

sites. The authors of [21], [22] placed #6 and #10 out of 14 

submissions. No definite conclusion can be drawn about 

domain-adversarial learning versus other methods from this, 

however, because too many other contributing factors like 

different network architectures, loss functions, the use of 

ensembles versus single networks, etc. also played into the 

performance differences. These large differences in methods 

resulted from the fact that the challenge did not focus strictly on 

DG and gave participants too much freedom in their approach 

to be able to draw strong conclusions about the DG methods in 

isolation. The submission that placed first in this challenge is 

[25], which will be discussed in the next subsection on data 

augmentation. 

 Lastly, a different approach to learn domain-independent 

features is meta-learning, as proposed in [26], which was used 

in [27] to train a network to segment the prostate from images 

from five domains consisting of different sequences and 

scanner types (field strength and vendor), such that the network 

generalized to a sixth unseen domain.  

In meta-learning the training dataset consists of multiple 

domains, which are randomly split up into a meta-training set 

and meta-test set. The meta-training set is used to compute the 

task-specific loss and the network parameters are temporarily 

updated according to the loss. Then, the meta-test set is used to 

compute the task-specific loss again and the corresponding 

gradient is used to actually update the network’s parameters 

with respect to the parameters before the temporary update. 

This training process simulates domain shift and aids with 

generalization to unseen domains.  

 Although their method outperformed all other methods they 

compared to (four DG methods, among which were two 

regularization methods, one meta-learning and one 

augmentation) with 6-fold cross-validation, this was mostly a 

result of task-specific loss functions which do not generalize to 

tasks outside (prostate) segmentation. They also measured the 

performance of their method with plain meta-learning and 

showed that it performs similarly to an elaborate data 

augmentation scheme proposed in [28], which will be discussed 

in detail in the next section. 

III. B. Increasing data diversity 

This section describes the second method of achieving DG, 

which is increasing data diversity, with a total of ten papers 

discussed. This is often achieved using either augmentations 

(five papers) or by creating synthetic images (five papers). 

Synthetic images are generally used to generate either a wide 

variety of realistic MR images or to create images with an even 

larger variety that go beyond realistic MR contrasts. The former 

uses signal equations and quantitative maps (T1, T2, ρ) to 

generate data (two papers), whereas the latter uses 

segmentations of anatomical structures (three papers). A brief 

overview of these ten methods is given in Table II.  

 
TABLE II 

OVERVIEW OF METHODS IN THIS SUBSECTION, WHAT ANATOMY THEY 

STUDIED, ACROSS WHICH DOMAINS THEY TRIED TO GENERALIZE AND WHAT 

METHOD THEY USED FOR THIS 

Ref. Anatomy Domains 

Domain 

generalization 

method 

[25] Heart 
Population and 

scanner 

Augmentation 

[28] 
Heart and 

prostate 

Scanner and 

sequence 

[29] Breast 
Scanner and 

sequence 

[30] Heart Population 

[31] 
Heart and 

prostate 

Scanner and 

sequence 

[32]  Brain 
Scanner and 

sequence Synthesis 

(quantitative maps) 
[33] Brain Sequence 

[34] 
Brain and 

heart 

Scanner and 

sequence 

Synthesis 

(segmentations) 
[35] Brain 

Scanner and 

sequence 

[36] Brain 

Population, 

scanner and 

sequence 

 

Note that all papers focused on training a network for image 

segmentation, with the exception of [35], which focused on 

registration. 

1) Augmentations 
All five methods in this section use a set of basic augmentations 

from the possibilities shown in Table III. Here, brightness (B) 

refers to linear transformations of the image intensity and the 

gamma transformation (G) is a transformation that changes the 

image contrast by exponentiating each intensity by a random 

number γ, giving a non-linear intensity transformation (after 

normalization to the range 0-1). On top of these basic 

augmentations, additional (advanced) augmentations are also 

used in the last three papers of this section.
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TABLE III 
OVERVIEW OF THE TYPES OF AUGMENTATION USED IN THIS SUBSECTION PER REFERENCE: ROTATION (R), FLIPPING (F), SCALING (S), NON-LINEAR DEFORMATION 

(ND), GAUSSIAN NOISE (GN), BRIGHTNESS (B), GAMMA TRANSFORMATION (G), SHARPENING/BLURRING (S/B) AND ADDITIONAL AUGMENTATIONS. 

Ref. R F S ND GN B G S/B Additional 

[25] ✓ ✓ ✓ ✓ ✓ ✓ ✓   

[28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  

[29] ✓  ✓      ✓ 

[30] ✓ ✓ ✓ ✓  ✓   ✓ 

[31] ✓   ✓ ✓ ✓ ✓  ✓ 

 

The authors of [25] devised an augmentation method for the 

segmentation of heart structures such that they could generalize 

to different scanners, populations and sequences. They placed 

first in the previously mentioned heart segmentation challenge 

[24]. Their method is relatively simple, because the authors 

argue that the domain shift resulting from differences in 

scanners, populations and sequences in cardiac MR images is 

actually rather small compared to what is seen in other areas of 

deep learning, where a network has to recognize e.g. a dog from 

a painting as well as from a picture. The augmentations they 

used are shown in Table III. 

 A large number of augmentations were also used in [28], 

which used these to train a network for whole prostate 

segmentation and a network for left atrial segmentation with 

generalization in mind. The augmentations were relatively 

similar to those used in [25] as can be seen in Table III. Four 

different domains were considered in [28] for the prostate scans 

and three for the heart scans, with the domains spanning 

multiple types of scanners and sequences. One of these domains 

was used to train a segmentation network for each of the tasks, 

while the rest were used for testing. 

To compare their method they also trained a CycleGAN to 

harmonize images to the source domain that the network was 

trained on, which was always one domain out of four/three, for 

the prostate and heart datasets, respectively. They found that on 

both left atrial- and prostate segmentation, their method 

significantly outperformed CycleGAN-based harmonization. 

This is promising, because the CycleGAN-based approach 

requires training on data from the unseen domain, which is not 

always possible, whereas the data augmentation strategy does 

not. Augmentations are also easier to implement, because they 

are often part of standard DL libraries and do not require a 

second harmonization network and training/hyperparameter 

tuning of this second network. This is also the only example of 

a direct quantitative comparison of DG versus DH that was 

found in this review, showing that DG performs better in this 

case. 

In [29] a smaller set of augmentations was used than the 

previous two methods (see Table III), but here the authors tested 

two different intensity transformations to generalize a whole-

breast segmentation network trained on T1w images to unseen 

T2w images. On top of simple spatial augmentations consisting 

of rotations and scaling, they used intensity remapping and 

style-based augmentation. The first technique remapped each 

pixel value to a random value using a remapping function that 

consisted of a linear function with added random noise. The 

second technique used a pretrained style transfer network, 

which takes in an image and a style embedding to transfer any 

style to an input image. The network embeds the image domain 

as the style in this case. The style transfer network is also able 

to embed the domain of the input image, which was mixed with 

a random domain embedding and subsequently fed into the 

network to apply a random domain to the images, while not 

straying too far from the original image domain. 

By training the network on T1w data augmented with either 

intensity remapping or style augmentation the authors achieved 

a performance on the T2w data that was comparable to training 

and evaluating on the T2w data. Both intensity augmentations 

performed similarly, but since style transfer is much slower to 

apply on the fly and harder to implement, intensity remapping 

is probably preferable. The authors did mention that the 

intensity remapping function required a lot of finetuning to get 

right, so a gamma transformation might be preferable as used 

in [25], [28], because this is also an intensity remapping, but it 

requires less finetuning. 

So far the previous three methods have focused on randomly 

selected augmentations, which may or may not challenge the 

network on a given iteration. The authors of [30] used a more 

advanced augmentation method to train a network for the 

segmentation of the left ventricular myocardium from cardiac 

MR images of healthy subjects that could generalize to MR 

images of patient groups with four different pathologies (e.g. 

dilated cardiomyopathy and abnormal right ventricle). To do so, 

they employed an augmentation step designed to create 

challenging examples for the network. 

More specifically, the authors focused on adversarial data 

augmentation, which is a method of creating augmentations that 

strongly perturb the output of the network and often comes in 

the form of additive noise. Instead of this local perturbation 

with random noise, the authors proposed the use of more global 

adversarial bias fields, which simulate the smoothly varying 

bias fields often seen in MR images due to magnetic field 

inhomogeneities. The bias fields were constructed such that 

they created a large distance between the predicted output and 

the newly predicted output after bias field multiplication by 

maximizing the Kullback-Leibler divergence (KL divergence) 

between these two outputs. 

The authors of [30] used adversarial additive noise combined 

with random augmentations similar to those of [25], [28] (see 

Table III) as a baseline along with mixup + random 

augmentations and just random augmentations. They trained 

their network on data from healthy subjects and tested the 



10  

 

network on data from four populations with different cardiac 

pathologies using these different augmentation methods. The 

data of all five populations was obtained with similar sequences 

using two different Siemens scanners operating at 1.5 T and 3 

T. They found that overall their method generalized better to 

the four pathological populations than the other three 

augmentation methods, while performing better than or 

comparably to the other methods on the training domain of 

healthy subjects. 

 The final method discussed in this section used advanced 

random augmentations and compares their method to that of 

[30] and also some of the basic random augmentations used in 

[25], [28] to train a cardiac segmentation network and a prostate 

segmentation network [31]. 

 The first component of their method is a non-linear intensity 

transformation achieved by applying a shallow CNN initialized 

with random weights to the data. A random linear interpolation 

between the output of this CNN and the original image was 

subsequently constructed to form the augmented image. The 

second component is the removal of spurious correlations used 

by the network for its predictions. An example of this could be 

a network trained for the segmentation of the kidneys, which 

makes use of the fact that the spleen has a similar intensity as 

the kidneys and is always located next to the left kidney to 

determine which kidney is which. This spurious correlation 

could break in the presence of a strong bias field, pathologies in 

either the left kidney or spleen or a different type of 

sequence/scanner, making it an undesirable feature to learn for 

the network from a generalization standpoint. 

 The non-linear intensity transformation in and of itself is not 

enough to remove the spurious correlation in this example, 

because the intensities are quite similar and the transformation 

is spatially invariant. Therefore, the second component is 

added, which relies on the creation of two augmented images 

with the non-linear intensity transformation and subsequently 

randomly mixes these two images in a spatially varying manner 

to create two different images. The entire workflow is given 

schematically in Fig. 4. To enforce the network to learn domain 

invariant features a KL divergence term between the two 

predicted segmentations was used together with a segmentation 

loss. 

To test the generalization capabilities of their method, the 

authors trained a network for cardiac segmentation on data 

acquired using a balanced steady-state free precession (bSSFP) 

sequence and applied it to data acquired using a late gadolinium 

enhanced bSSFP sequence (with different sequence 

parameters) and they trained a network for the segmentation of 

the prostate on data from one scanner and sequence and applied 

it to data from five other sites using different scanners and 

sequences. They compared against six other methods for 

domain generalisation, among which were random 

augmentations (see Table III) and random augmentations + 

adversarial bias fields as proposed in [30]. Note that random 

augmentations were applied in all six methods and their own. 

On both the cardiac and prostate segmentation tasks their 

method outperformed all six other DG methods for the 

segmentation of three cardiac structures and whole-prostate, 

respectively in terms of DSC. However, they saw a decrease in 

DSC using their method compared to random augmentations on 

the training domain for the prostate dataset. This indicates that 

the better generalization capabilities sacrificed some 

performance on the training domain. 

 

 
Fig. 4. Overview of the augmentation approach from [31], which takes in a single image and applies two different non-linear intensity 

transformations, the results of which are subsequently mixed in a spatially varying manner before being fed to the segmentation network. Adapted 
from [31]. 
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2) Quantitative-map-based synthesis 
The three methods in this subsection create highly varied data 

like in data augmentation methods, but using MR signal 

equations instead, simulating a wide variety of possible 

contrasts acquired during a normal acquisition. 

 In [32] quantitative maps (T1, T2, ρ) were used to simulate 

three different sequence types with the corresponding signal 

equations to generalize a brain segmentation network to scans 

from different scanners/sequences. The network was tasked 

with segmenting 13 brain structures. Each training batch 

contained a real T1w MPRAGE and synthetic T1w SPGR, T2w 

3D Turbo Spin Echo and T1w MPRAGE to make the network 

robust to these three sequence types. Because their 

segmentation dataset did not contain quantitative maps, these 

were estimated from the T1w MPRAGE scans using three 

CNN’s trained for T1-, T2- and ρ-map synthesis on a separate 

dataset containing T1w MPRAGE scans and quantitative maps.  

Their method performed comparably or better than two non-

DL methods (SAMSEG and multi-atlas registration and label 

fusion) on segmentation of the brain structures from real T1w 

SPGR data. They also showed that their method had the lowest 

variation in nine out of the 13 brain structure volumes across 

four different scans of 13 subjects created using different 

sequences and scanners. 

The authors of [33] (a direct follow-up to their older method 

[37], which they outperformed) used a similar strategy to train 

a white- and grey matter segmentation network that could 

generalize to unseen domains of different sequences. Instead of 

predicting quantitative maps using CNN’s they used real 

quantitative maps. Additionally, the authors provided the 

network with the signal equation parameters (e.g. repetition 

time, flip angle) to condition its output on the type of simulated 

input image. 

They trained networks with simulated images that were 

similar to what was expected in the testing data by constraining 

for example the repetition- and echo times to a certain range. 

They showed that their method performed better on slightly 

different scans than a CNN trained on a single contrast, but also 

noted that the injection of signal equation parameters into the 

network did not give much of a performance boost. 

3) Segmentation-based synthesis 
The three methods discussed in this section all came from the 

same research group and made use of synthetic images to create 

diverse data for robustness to a wide range of inputs/domain 

shifts. Synthetic images were created using segmentations and 

this technique was first proposed in [38] for joint super 

resolution and image synthesis from arbitrary contrasts. This 

subsection focuses on the three follow-up papers, which 

included comparisons to other (DG) methods, in contrast to 

[38]. These three methods used similar synthesis strategies to 

train a generalizable network to: 

• segment brain- and cardiac structures [34],  

• register brain images [35] and 

• perform skull-stripping (whole-brain segmentation) 

[36]. 

Before discussing their results a short overview of the 

synthesis strategy of these three papers is given, illustrated in 

Fig. 5. First, high resolution segmentations (created from real 

MR images) of the relevant anatomy are sampled from a small 

training set and spatially transformed with an affine and non-

linear transformation followed by nearest-neighbour 

interpolation (Fig. 5a, 5b). Random intensities are then sampled 

for each of the segmentation labels using a Gaussian Mixture 

Model (GMM) conditioned on the label (Fig. 5c). The image is 

subsequently multiplied with a simulated bias field followed by 

a gamma transformation (Fig. 5d). To make the networks robust 

to images of different resolutions, a slice spacing and slice 

thickness are simulated using blurring and downsampling, 

followed by an upsampling back to the resolution of the original 

segmentations (Fig. 5e, 5f). 

 

 

 

Fig. 5. Overview of the synthetic image creation of [34]–[36]. Adapted from [34]. 

 

Notice that the random spatial transformation, simulated bias 

field and gamma transformation are also often used as 

augmentations (see Table III). The difference between 

synthesizing images  versus augmenting existing images are 
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two-fold in the case of segmentation: 1) because the images are 

synthesized from the segmentation maps, the images and 

corresponding labels are always completely aligned as opposed 

to augmented images, for which the correspondence between 

the images and labels depend on the method used for 

segmentation (e.g. labelled by a radiologist) and will almost 

always be lower. 2) The image intensities in the augmentation 

of existing data are more restricted than those of the synthetic 

images even with the use of gamma transformations and bias 

field simulation. 

The methods of this section performed domain 

randomisation. which entails training a network on a far larger 

variety of images than would be encountered in reality. Domain 

randomisation ensures that the training data encompasses this 

smaller subset of realistic images, effectively making the 

network resilient to domain shifts larger than realistically 

possible for e.g. MR images [34]. These large domain shifts are 

particularly useful for segmentation, where global shape is 

important in determining which class a tissue belongs to, 

because CNN’s typically focus on local structure and 

texture/intensity instead of global shape [39]. By varying these 

local features using random intensities, intensity 

transformations and non-linear spatial transformations the 

network is forced to learn more global shape features, because 

these are mostly preserved.  

In [34] domain randomisation/data synthesis was used to train 

a network for the segmentation of brain structures. The network 

was evaluated on seven MRI domains spanning multiple 

sequences (T1w, T2w, proton density-weighted, Fluid-

Attenuated Inversion Recovery) and scanners. Although the 

trained network had never seen real MRI  data, it significantly 

outperformed two domain adaptation methods (test-time 

adaptation and SIFA; not discussed in this review) trained on a 

single source domain of T1w images in terms of DSC and 95% 

surface distance (SD95) on six of the seven MRI domains. It 

also outperformed a state-of-the-art non-DL segmentation 

method, SAMSEG on these six domains in terms of DSC and 

SD95. 

The authors of [34] applied the same approach using 

segmentations of cardiac MR images instead to show that their 

method is not just limited to brain images, but they did not 

compare to other methods for this second task. They achieved 

DSC’s of around 0.86 on both an MRI dataset and a CT dataset 

with seven labelled structures and comparable performance 

between the two datasets. 

Although the segmentation map-based synthesis approach is 

most obviously applicable to segmentation tasks, it is also 

useable for learning image registration as shown in [35], where 

it was used to train a network for the registration of brain image 

pairs. The segmentations were used to measure the overlap 

between the images after application of the predicted 

transformation by the network using a DSC loss. 

Brain segmentation maps were used for training, significantly 

outperforming two DL-based approaches using the same 

network (VoxelMorph [40] trained with either normalized 

mutual information or normalized cross correlation as the 

image similarity loss) in terms of DSC and surface distance on 

the domain that these networks were trained on and even more 

so on the domains that these networks were not trained on. 

Furthermore, their network managed to outperform two non-

DL registration methods, NiftyReg and ANTS. They thereby 

showed that learning (global) shape features is not only 

beneficial for segmentation, but also for registration. 

Finally, the authors applied roughly the same approach as the 

previous two papers in [36] for the learning of skull-

stripping/whole-brain segmentation. They compared their 

method to five non-DL-based skull-stripping methods (e.g. 

ROBEX, BET, 3dSkullStrip) and one DL-based method. The 

non-DL-based methods were chosen based on popularity 

(citations) and effectiveness as shown in previous literature 

[36]. The DL-based method was the only top cited DL-based 

method that agreed to share their network, with others not 

making their network available.  

The authors of  [36] evaluated their method and the other 

methods on 15 MRI datasets spanning 15 sequences and 

multiple scanners. The mean surface distance (MSD) between 

the predicted and ground truth brain segmentation was 

calculated for all 15 datasets for the six baseline methods, 

resulting in 90 MSD values. By comparing the MSD’s achieved 

by their own method to these values for each dataset, this gave 

90 total comparisons between their method and the baselines. 

Out of these, their method significantly outperformed the 

baseline methods in 87 out of 90 comparisons in terms of MSD. 

Furthermore, their method achieved the highest DSC and 

lowest MSD on 80% of all test images, followed by 10% for the 

second best method (BET). 

IV. DISCUSSION 

In this review an overview of five DH- and sixteen DG methods 

has been given, which aimed to counteract the adverse effects 

of domain shifts in MRI data on the performance of DL-based 

approaches. An overview of all 21 methods is given in the 

appendix in Table A1. The next subsections first discuss the 

pros and cons of these methods starting with a high-level 

overview and delving into the individual methods later on. 

Afterwards, the strengths and limitations of the papers in 

general and of this review are discussed, followed by 

suggestions for future research. 

IV. A. Pros and cons 

DH-based and DG-based methods approach domain shifts in 

different ways and are therefore applicable in different 

scenarios. DH maps data from different domains to one domain 

to remove domain-specific information, whereas DG trains 

networks to be robust to input coming from different domains. 

 DH can be used in two ways in the space of DL. It can be 

used to harmonize data to the training domain of a trained task 

network such that this network can still be applied to new data 

from different domains, or it can be used to harmonize data to 

a reference domain such that a task network can be trained on 

the harmonized data. In the second case, the act of creating 

domain-independent features and actually learning the task are 

split up across the harmonization- and task networks.  

Because DH is often performed using neural networks, the 

same considerations with regards to domain shift have to be 

taken into account. If a harmonization network is trained to 

harmonize T1w scans from different scanners and populations 

to a reference domain of one type of scanner and population, it 
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will not generalize to T2w scans for example. Therefore, DH is 

mostly applicable in the case where 1) data from all the domains 

that we wish to harmonize are available or 2) the domain shifts 

between the data that the harmonization network was trained on 

and that it will be later applied to for harmonization are small.  

If larger domain shifts are expected to occur during 

deployment of the network, the harmonization network itself 

will need to be robust to domain shifts. This could be achieved 

using DG as in e.g. [14], [15], which used domain-adversarial 

learning. The question then is if it is better to train a 

harmonization network using DG and train a task network on 

harmonized data or if it is better to train a task network directly 

with DG. Conceptually, it is easier to split the process up into 

removing domain-specific information and learning a task 

using a harmonization network and task network, respectively. 

On the other hand, training a task network with DG aims to 

remove domain-specific information and learn a task at the 

same time.  

Although DH approaches allow for the splitting of these two 

seemingly separate objectives, it runs into two issues. Firstly, 

this type of approach forces one to choose a particular reference 

domain to harmonize all other domains towards. The question 

is how this reference domain should be chosen and if this is 

actually gives the optimal representation of the underlying 

anatomy. Secondly, the task network is at the mercy of the 

harmonization network. If the harmonization network removes 

important features or adds features that should not be there 

during harmonization, there is no way for the task network to 

reverse this error, leading to possible errors in the final output. 

This is especially true when using GANs, which have a higher 

risk of this type of behaviour [17]. This might be part of the 

reason why CycleGAN-based harmonization was outperformed 

by augmentation strategies in [28] for both heart- and prostate 

segmentation generalization, even though the CycleGAN-based 

harmonization had the benefit of training on the test domain, 

which was not the case for the augmentation approach. 

Training a task network directly with DG solves both of the 

aforementioned problems in theory. The first problem is solved 

by allowing a network to create its own internal domain-

independent representation of the data, which will be optimized 

directly using the task-specific loss function. This internal 

representation is probably more optimal than simply choosing 

a reference domain from the available domains in the training 

data, because it is not restricted to a relatively small set of 

representations as in the DH case. The second problem is 

alleviated because the task network performs both the task and 

removal of domain-specific information itself, no longer 

relying on another network’s harmonization performance. 

 In conclusion, DH approaches are mostly applicable if no 

domain shifts are expected during deployment of the 

harmonization network or if they are expected to be small. 

Outside of DL-based methods, however, DH could also be 

useful for harmonization towards domains which certain non-

DL approaches work better on, because these can also suffer 

from performance loss under domain shift, albeit to a smaller 

degree than DL-based approaches [36]. Finally, DH has the 

benefit of not requiring any labelled data/retraining for the 

downstream task. In the case that a trained task network already 

exists, but there is no (or not enough) labelled data to retrain 

this network such that it generalizes to new unseen domains, 

DH could be used to still be able to apply this network to new 

domains. In most other cases, such as when large domain shifts 

are expected during deployment or the extent of the domain 

shifts is unknown, training a task network with DG directly 

would be more practical as discussed before. Therefore, DG is 

preferable over DH if the option of training a network for a task 

from scratch exists. This is because DG is more  applicable 

when the aim is to train a neural network that can be applied to 

data that is acquired at a later time without having to know what 

these domains will be or requiring data from these new 

domains. 

1) Data harmonization 
Section II. A and II. B reviewed GAN-based and encoder-

decoder-based DH. In general, the use of image-level 

discriminators seems to be disadvantageous, because these risk 

feature hallucination [17]. The disadvantage of image-level 

discriminators as used in GANs was shown indirectly in [14], 

which used an encoder-decoder-based method with an 

adversarial loss on the latent space, outperforming CycleGAN 

in terms of image similarity after harmonization. More direct 

evidence of the disadvantage of using image-level 

discriminators was shown in [15], which showed that cycling 

from one domain to another and back to the original domain 

gave a much larger quantitative and qualitative difference in 

image similarity when an image-level discriminator was used 

during training, indicating the removal/addition of features. 

 Therefore, non-GAN approaches should arguably be 

preferred  over GAN-based approaches. Of these, [14] and [15] 

have the most potential, because [14] allows for finetuning on 

unseen domains in an unsupervised fashion, whereas [15]‘s 

method showed that zero-shot harmonization of an unseen 

domain was possible, albeit from a similar domain to the 

training domains. 

2) Domain generalization 
As the DG section spans a large range of papers, this subsection 

first focuses on those that provide quantitative comparisons 

with other methods to draw conclusions. The authors of [31] 

showed that their advanced augmentations with random non-

linear intensity transformations and removal of spurious 

correlations (combined with basic augmentations, see Table III 

for details) outperformed adversarial bias field augmentation 

[30] (also combined with basic augmentations) and pure basic 

augmentations, showing the strength of their approach in the 

augmentation-based DG methods. Because some of these 

methods that the authors of [31] compared to were also used as 

comparisons in other DG papers, this allows for the comparison 

of these papers to the three aforementioned methods as well, 

albeit across different tasks. 

 The authors of [30] showed that their method of creating 

adversarial bias fields (+ basic augmentations) outperformed 

mixup (+ basic augmentations) for the generalization of heart 

segmentation to unseen populations. This allows us to connect 

their findings to those of [20], which compared domain 

adversarial learning to mixup for the generalization of knee 

segmentation to unseen populations, both combined with a 

small set of basic augmentations (spatial transformations, 

gamma transformation and smoothing). In [20] domain 
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adversarial learning and mixup were found to perform equally 

well, even though the test domain was similar to one of the 

training domains on which the adversarial learning was 

performed. One caveat with this finding is that the authors of 

[20] trained both the domain discriminator and task network 

jointly from the start, which might have impeded performance.  

 By training the domain discriminator and task network 

jointly immediately, the latter is provided with noisy gradients, 

because the domain discriminator has not learned to 

discriminate the domains yet as the latent representation of the 

task network is still mostly random noise, leading to unstable 

training. Instead, a more optimal training scheme should have 

been used, like in [18], [19], [21], to achieve a better 

performance. The authors of [18], [19], [21] first trained the 

task network separately from the domain discriminator 

(optionally also separately training the domain discriminator as 

in [19], [21]) with no adversarial loss maximization for the task 

network until a certain point (often a fixed number of epochs) 

after which both networks were trained jointly.  

 Although training in this more stable manner might have 

improved the performance of domain adversarial training in 

[20], the fact still stands that this approach had access to an 

unlabelled dataset that was similar to the test set during training, 

but performed similarly to mixup, which did not have this 

advantage. 

Furthermore, the authors of [30] showed that mixup + basic 

augmentations and basic augmentations performed similarly, 

which allows us to compare these two against meta-learning as 

used in [27]. The authors of [27] showed that meta-learning and 

basic augmentations as proposed in [28] performed similarly, 

indicating that basic augmentations, mixup + basic 

augmentations and meta-learning might offer similar 

performance boosts. The main difference between meta-

learning versus the other two methods is that meta-learning 

requires multiple domains to be available during training to 

simulate domain shift, whereas augmentations/mixup can be 

applied to data from a single domain and still give good 

generalization as demonstrated in [28]. 

 It is not possible to definitively conclude which method is 

better than which, because they were used across different tasks 

(all segmentation, but different domains, anatomies and basic 

augmentations). However, assuming that the results across the 

different tasks generalize to other tasks, the following ranking 

from best to worst DG method can be constructed: 

 

1. Advanced augmentations with removal of spurious 

correlations + basic augmentations [31] 

2. Advanced augmentations with adversarial bias fields 

+ basic augmentations [30] 

3. Mixup + basic augmentations [20],  

domain adversarial learning + basic augmentations 

[20], 

basic augmentations [28], 

meta-learning [27]. 

 Domain adversarial learning and meta-learning have a large 

dependence on the data used for training and the magnitude of 

domain shifts inside the training data. For example, a network 

trained on datasets of T1w scans from different scanners with 

domain adversarial learning/meta-learning will not generalize 

well to T2w data, because the domain shift is much larger than 

what is seen during training. These two methods might 

therefore work well in the case where the training data contains 

domain shifts equal to/larger than what is expected to be 

encountered during deployment of the network, for example 

when a network is trained to be applied to T1w scans with 

similar sequences from different scanners only. 

 In the case where the network needs to be robust to a larger 

range of inputs, the augmentation methods seem more 

appropriate as they allow the network to become robust to a 

wider variety of images than could be acquired by real scanners. 

This might also be the reason why the advanced augmentation 

methods seem to perform better than e.g. domain-adversarial- 

and meta-learning. This same principle holds for the synthetic 

images based on segmentations, which we argue are preferable 

to those constructed using quantitative maps. [34]–[36] show 

the large benefit of creating a wide range of images, which is 

much harder to achieve using quantitative maps, because this 

would entail the use of many carefully chosen signal equations 

and sequence parameters to cover all bases. Note that it is 

important to cover a large variety of inputs, such that the 

possible MR contrasts are a subset of the inputs seen during 

training. If the synthetic/augmented data is not varied enough, 

this is not guaranteed and could lead to worse generalization. 

 As discussed before, the segmentation-based synthesis 

allows for the creation of more varied data than the 

augmentation-based methods—with the possible exception of 

[31]—while guaranteeing a one-to-one correspondence 

between the segmentation and input image, which might give 

this method an edge over the augmentation-based methods. 

IV. B.  Limitations 

All data augmentation/synthesis methods that have been 

reviewed were applied to segmentation specifically, with the 

exception of [35]. As mentioned before, the large variety of data 

forces the network to focus more on global shapes than local 

shape, texture and intensities. This is intuitively useful for 

segmentation (and registration), because global shape should 

remain relatively unchanged across different domains. The 

question remains if this more shape-focused learning is also 

beneficial for e.g. classification and synthesis or for the 

segmentation of small structures that are only present in a small 

number of voxels. 

Additionally, some pathologies might only be clearly visible 

using certain image contrasts. In that case, should e.g. a 

classification network really be generalizable to a large number 

of contrasts? It could be argued that generalizability to a small 

range of contrasts that adequately show the pathology (and 

generalizability to all scanners) would be more beneficial in this 

case. However, just because the testing data will probably be 

restricted to a small set of image contrasts, this might not be 

necessary during training as demonstrated in [34]–[36]. It could 

also be the case that training on a wider variety of training data 

using advanced augmentations/data synthesis might allow the 

network to better capture relevant features. The trained network 

could then be applied to those scans that show the pathology 

well.  

As for quantitative comparisons between methods, there 

were not many papers that compared more than two DH/DG 
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methods all at once. More results could have been found by 

searching for e.g. “multi-site MRI challenge”, which are 

valuable because these challenges often withhold some of the 

data from one or multiple sites (often with different sequences 

and scanners per site) from the participants for testing purposes, 

giving a way of quantitatively comparing multiple methods of 

countering domain shifts on a single challenge. These 

challenges might have been missed with the keywords “data 

harmonization”, “domain generalization” or “domain shift” if 

these were not explicitly mentioned in the challenge paper. 

However, as in [24] challenges are not always strict enough 

about the solutions that can be sent in, leading to large 

variations in approaches beyond the methods used for 

robustness to domain shifts. 

IV. C.  Future research 

For future research ideally more restrictive challenges should 

be organized, where the participants are provided with e.g. a 

baseline network architecture and loss function to be used with 

the restriction that components can only be added to improve 

robustness to domain shift, e.g. data augmentation or an 

adversarial loss component and domain discriminator for 

domain-adversarial learning.  

 The role of augmentation/synthesis should also be studied 

more in-depth for tasks other than segmentation/registration. 

For augmentation methods this would be straightforward, but 

especially for the segmentation-based synthesis this becomes a 

bit more difficult. The latter shows a lot of potential in 

extracting domain-independent features and could be 

interesting to explore for tasks other than segmentation, because 

its training data is of high quality due to the built-in one-to-one 

correspondence between input- and target output data. One way 

this approach might be used for e.g. classification is to first train 

a network for segmentation as in [34]–[36], leading to a 

network that gives domain-independent features in the final 

feature maps. The trained network could then be frozen and 

used as a feature extractor, supplying the final feature maps and 

optionally the segmentation map to a second smaller network 

(as most of the feature extraction has been performed already), 

which could then be trained for classification. 

 Finally, an interesting property of the methods trained with 

heavy data augmentation or the segmentation-based synthetic 

data is that they can be applied to a wide variety of contrasts. 

Because multiple contrasts are acquired in most MRI 

examinations in the clinic, these networks could be applied to 

all of the images acquired in a single examination and give a 

more robust prediction.  

 Because not all contrasts highlight certain pathologies of 

interest as well, a weighting would have to be given to each of 

the acquired images to take this into account when combining 

the images. This could be a heuristic weighting or it could be 

informed by e.g. a second neural network, tasked with mixing 

the outputs to match a final target output, conditioned on the 

types of inputs used. 

V. CONCLUSION 

In this review we have discussed DH and DG methods, 

concluding that DH and DG are both viable if the expected 

domain shifts during deployment of a neural network are small. 

In the more likely case of unknown/larger expected domain 

shifts, DG seems to be the more practical option. Increasing the 

diversity of the training data beyond realistic MR contrasts 

seems to be the most promising direction in DG using either 

augmentations or synthetic data. Finally, if a trained task 

network already exists and data from an unseen domain is 

acquired without labels, DH gives the option of harmonizing 

these data to the training domain such that the trained task 

network can be applied without retraining it on the new domain. 

Therefore, both DH and DG have their own unique use cases. 
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Appendix 
TABLE A1 

OVERVIEW OF ALL DATA HARMONIZATION/DOMAIN GENERALIZATION PAPERS DISCUSSED, WHICH METHOD THEY USED, WHAT ANATOMY THEY STUDIED, WHICH 

TASK THEY EVALUATED THE GENERALIZATION CAPABILITIES WITH, ACROSS WHICH DOMAINS THEY TRIED TO GENERALIZE AND WHICH NETWORK ARCHITECTURE 

THEY USED FOR THIS. IN THE CASE OF DATA HARMONIZATION, THE HARMONIZATION NETWORK ARCHITECTURE IS GIVEN. 

Ref. Method Anatomy Task Domains Network 

[2] 

DH: GAN-based 

Brain Age estimation 
Scanner and 

sequence 
StarGAN v2 [12] 

[11] Brain Amygdala segmentation 
Population, scanner 

and sequence 
CycleGAN [10] 

[13] 

DH: encoder-

decoder-based 

Brain N.A. 
Population, scanner 

and sequence 
U-Net [16] 

[14] Brain N.A. 
Scanner and 

sequence 
U-Net 

[15] Brain Radiomic features Scanner MUNIT [41] 

[18] 

DG: domain-

independent 

feature learning 

 

Brain 
Disorder identification and 

disease progression prediction 

Population, scanner 

and sequence 
Own design 

[19] Brain Brain lesion segmentation 
Scanner and 

sequence 
Own design 

[20] Knee 
Femoral and tibial cartilage 

tissue segmentation 
Population U-Net 

[21] 
Heart 

Left and right ventricle cavities 

and left ventricle myocardium 

segmentation 

Population and 

scanner 
U-Net 

[22] 

[27] Prostate Whole prostate segmentation 
Scanner and 

sequence 

Mix-residual-U-Net 

[42] 

[25] 

DG: augmentation 

Heart 

Left and right ventricular cavities 

and left ventricular myocardium 

segmentation 

Population and 

scanner 
nnU-Net [43] 

[28] 
Heart and 

prostate 

Left atrial and prostate 

segmentation 

Scanner and 

sequence 
AH-Net [44] 

[29] Breast Whole breast segmentation 
Scanner and 

sequence 
U-Net 

[30] Heart 
Left ventricular myocardium 

segmentation 
Population U-Net 

[31] 
Heart and 

prostate 

Left and right ventricle and 

myocardium 

Scanner and 

sequence 
U-Net 

[32] DG: quantitative-

map-based 

synthesis 

Brain 
Segmentation of thirteen brain 

structures 

Scanner and 

sequence 
U-Net 

[33] Brain 
White- and grey matter 

segmentation 
Sequence nnU-Net 

[34] 

DG: 

segmentation-

based synthesis 

Brain and 

heart 

Segmentation of fourteen brain- 

and seven heart structures 

Scanner and 

sequence 
U-Net 

[35] Brain Registration 
Scanner and 

sequence 
U-Net 

[36] Brain Whole brain segmentation 
Population, scanner 

and sequence 
U-Net 

 


