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Abstract

The recent discovery of a large class of generalized global symmetries has significantly im-
pacted our understanding of many phenomena in quantum field theory, ranging from anoma-
lies to confinement with applications to both low- and high-energy physics. It is widely
believed however, that exact global symmetries are forbidden in consistent theories of quan-
tum gravity. By studying how generalized global symmetries are avoided in string theory, we
may discover mechanisms which turn out to be general features of quantum gravity.

In this thesis we will follow this approach and apply it to a large class of effective field
theories obtained from Calabi-Yau compactification of type IIB string theory. After a review
of these effective theories, we give an accessible introduction to generalized global symmetries
with a focus on their role in the swampland program. Using asymptotic Hodge theory we
then extract the most general limiting form of the action near boundaries in the complex
structure moduli space. With these in hand, we enumerate the global symmetries that may
emerge in these limits and explore how they are broken by stringy effects.
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Introduction

Few ideas have been as consequential to the way we think about nature as the idea of sym-
metry in physics. From snowflakes to honeycombs, from crystals to molecules, symmetries
are ubiquitous in nature. In each case, the physical system is invariant under some transfor-
mation such as a rotation or a translation, and recognizing the symmetries of a system has
long proven to be an indispensable tool for physicists. It allows us to reduce our description
of the problem, rendering solvable that which would otherwise be intractable. However, it
would not be until the twentieth century that symmetries would begin to take their rightful
place, at the heart of the formulation of our physical laws.

Indeed, it is by demanding invariance not just of an object or system, but of physical laws
themselves that the full extent of their significance becomes apparent. It is precisely this
thinking that led Einstein to his celebrated general theory of relativity, to this day our most
successful theory of gravity. Later, the advent of quantum theory brought along new ways
we use symmetries. With quantum states now vectors in a Hilbert space, the mathematical
ideas of representation theory would make symmetries the essential building blocks of our
physical theories, leading eventually to our modern framework of quantum field theory.

One of the central problems of modern high energy physics has been the mending of these
two pillars. General relativity is a classical field theory, and its prediction of, yet failure to
describe black holes has been an important clue that this theory is incomplete. Nevertheless,
naive attempts to embed it into the QFT framework along with the other forces of nature fail
dramatically. The resulting theory is plagued by infinities of the kind not readily amenable
to standard renormalization methods. These problems all point towards the fact that our
modern theories of physics should eventually be subsumed in a new framework of quantum
gravity.

Enter String Theory

String theory is one of the most promising candidates for such a fully-fledged theory of quan-
tum gravity. It proposes to replace the point-particles of conventional quantum mechanics
by extended strings as the basic excitations of the theory. The extended nature of these
strings regulates the short-distance singularities that are so common in ordinary quantum
field theory, rendering the theory “UV-complete”. Despite springing from such a humble
idea, string theory has since proven to be one of the richest physical theories we know of.
Its spectrum naturally includes fermions, gauge fields and chirality, each of which constitute
major hurdles for alternative theories of quantum gravity.

These remarkable features of string theory come with their own baggage, however. Most
people familiar with string theory will have heard of its predictions of extra dimensions.
These arise as a consistency condition for the stability of the string theory vacuum. Indeed,
despite, or rather because of its richness, string theory is a deeply constrained theory. Its
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promise of being a UV-complete theory means that it has nowhere to hide its flaws, so that
the constraints posed by mathematical consistency weigh much heavier than for its low-
energy counterparts. While we know of several consistent string theory constructions, there
are ample clues to suggest that these correspond to different weakly coupled descriptions of
a single unified theory.

Nevertheless, despite the apparent elegance of a uniquely determined fundamental theory,
we must eventually come to grips with the fact that our world is four-dimensional. Though
methods exist to extract from a higher-dimensional theory a lower-dimensional one in the
infrared, they bring with them a tremendous amount of ambiguity. The resulting low-energy
degrees of freedom propagate on a background painted by the frozen high-energy modes. The
many parameters that define a given quantum field theory must be determined by such a
choice of background, but the number of choices is huge and without a systematic way of
rooting out the good from the bad, it seems hopeless to pick out our universe from the vast
landscape of string theory vacua.

The Landscape and the Swampland

What all of this means is that a truly realistic string-theoretic description of nature has
remained out of reach. The failure of such a top-down approach to quantum gravity has
led physicists to consider more bottom-up approaches. These efforts have culminated in
what is known as the swampland program [1]. In its most basic form it is an attempt at
bridging the massive gap between the infrared physics we probe and the extreme ultraviolet
where quantum gravity steps in. The idea is that although quantum gravity will not be
probed directly in the foreseeable future, the constraints imposed by self-consistency in the
UV should still leave their mark on the physics in the IR. Uncovering the structures that
underlie these imprints may give us clues into the true nature of string theory, and guide us
forward in our search for physics beyond the standard model.

More concretely, these proposed consistency conditions are formulated in terms so-called
swampland conjectures, which range from constraints on the infrared spectrum, to bounds on
the cosmological constant. A recurring theme and important organizing principle has been
the role of symmetries. Perhaps the purest manifestation of this is the No Global Symmetry
conjecture, which states that global symmetries are forbidden in any consistent theory of
quantum gravity, thus recognizing the centrality of gauge symmetries in fundamental physics.
Viewed through this lens, several swampland conjectures can be thought of as manifestations
of this idea and providing concrete ways quantum gravity avoids global symmetries.

While it has long been realized that global symmetries play a central role in guiding
swampland conjectures, recent years have seen a revolution in our understanding of such
symmetries. A key step was the discovery that our usual notions of global symmetries are
really a special case of an enlarged class of generalized global symmetries [2]. From the
point of view of traditional quantum field theory, they provide us with a unifying perspective
on many phenomena in gauge theories ranging from anomalies to confinement. Since this
seminal work, an extensive literature has been built up trying to understand theories which
exhibit such generalized global symmetries and their broad range of application has made
them a thriving topic of research.

Their relevance has been observed crucially within the swampland program, where de-
manding their absence has led to new and interesting connections between various swampland
conjectures. A fruitful line of attack has been to study low-energy theories and asking how
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their global symmetries are broken in the UV. However, the focus has often been either on
field theory constructions, or higher-dimensional string theory setups where the theories are
often far more constrained. The goal of this thesis will be to push these efforts into the
four-dimensional domain. To this aim, we will study the generalized global symmetries that
could appear in four-dimensional theories which are explicitly realized in string theory. In
particular, we will investigate a specific corner of the string landscape, namely Calabi-Yau
compactifications of the type IIB superstring. In the end, we find that these theories manage
to avoid global symmetries through a delicate interplay of non-trivial EFT couplings and
charged objects.

Outline of this Thesis

To set the stage for our later discussions, we begin in chapter 1 by discussing some elementary
string theory. In particular, we will make the journey from ten dimensions down to the
four-dimensional world we see around us, through a procedure known as compactification.
In particular, by assuming that the extra dimensions of string theory are very small, we
may derive an effective description that is four-dimensional. The resulting effective theory
depends strongly on the geometry of these extra dimensions for which we consider a well-
studied class of six-dimensional spaces known as Calabi-Yau manifolds. As a manifestation
of the ambiguity associated with this reduction, we arrive at a low-energy theory with a
proliferation of so-called moduli fields which live in a moduli space. These parameterize the
shape and size of the Calabi-Yau manifold and control the coupling constants of the low-
energy theory. Though we focus only on a particular sub-sector of this theory, we will see
that even this sub-sector admits a remarkable degree of structure and the final part of this
chapter is dedicated to understanding this structure.

Having firmly established our setting, we then turn to the meat of this thesis in chapter 2,
namely generalized global symmetries in the swampland program. We begin our discussion
with a tour of the swampland, with a particular focus on the role of global symmetries. While
we cover only a small corner of the web of swampland conjectures, the conjectures we consider
here form the backbone of the program. Understanding how they intertwine forms a key step
to disentangling this web and our exposition emphasizes the role global of symmetries. After
our first encounter with the swampland, we will switch gears and give an introduction to the
new notions of global symmetry alluded to earlier. After a brief review of ordinary global
symmetries in QFT, we recast these familiar ideas in a more modern language which will
form the starting point for further generalizations. The bulk of this chapter is dedicated to
developing generalized symmetries by means of various examples, largely from a field theory
perspective. These provide us with a controlled setting in which we can begin to phrase the
sorts of questions which we wish to eventually answer in a string theory context. Armed
with these new concepts, we then revisit the swampland to see how they have led to new
connections and new conjectures.

Chapter 3 is dedicated to introducing the mathematical framework on which the main
results of this thesis rely. Despite only focusing on a very particular class of four-dimensional
theories, these are often still too complicated to be studied in full generality. It turns out
however, that by restricting our attention to special limits in the moduli space certain univer-
sal structures emerge. These are described in terms of a variation of Hodge structure, which
allows us to track the essential geometric properties of the Calabi-Yau as we move around
the moduli space. The special limits occur whenever the Calabi-Yau develops a singularity.
Crucial mathematical results that allow us to study these limits include the Nilpotent Orbit
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Theorem and the SL(2)-Orbit Theorem [3]. It turns out that for Calabi-Yau that are de-
scribed by a single modulus, we have sufficient control over the limiting structures to write
down the most general form of the action near these singularities. Compared to previous
investigations we will be careful to keep track of the quantization of charges and fluxes so as
to retain full control over the resulting low-energy action.

Finally, in chapter 4, we will study the global symmetries that arise in the effective theories
we derived in the previous chapter. Our discussion is largely exploratory, as the question
of how global symmetries are broken in a given theory is a broad one. After enumerating
the global symmetries that could be arise in each of the examples we consider, we explore
how stringy ingredients can be used to break them, preventing inconsistency with the no
global symmetry conjecture. Moreover, we investigate what happens to these symmetries as
we approach the singularity in the moduli space. Along the way we highlight connections to
different swampland conjectures, and present bottom-up interpretations of their effects.



Chapter 1

Type IIB Compactification

At the most basic level, string theory starts from the action of a propagating relativistic string
which is then quantized using relatively standard quantization procedures. Nevertheless, the
truth is that for many applications of string theory, phenomenological ones in particular, the
real starting point is the result of a series of approximations to this basic picture.

To set the stage for our discussion of global symmetries in string theory, we will begin this
chapter in section 1.1 with a bird’s-eye view of the chain of approximations that leads us to
the starting point of our investigation, the type IIB low energy effective action, as laid out in
section 1.2. In the process we will encounter one of the most famous facts about string theory,
namely that it requires our universe to be ten-dimensional. Resolving the apparent tension
of this prediction with our observed four-dimensional universe will require a procedure called
compactification, which will allow us to extract an effective four-dimensional description from
the higher dimensional string theory. The basic idea is to assume that the extra dimensions
are real, but small. As we discuss in section 1.3 by means of some basic examples, the
specific geometry of these small extra dimensions determines the physics of the effective four-
dimensional theory. Phenomenological and technical constraints on this effective theory will
lead us to a special class of spaces known as Calabi-Yau manifolds, which are discussed in
section 1.4. Finally, in section 1.5, we perform the compactification of type IIB string theory
to obtain the basic four-dimensional theory studied in this work, whose properties we go on
to discuss in some detail in section 1.6.

1.1 From Strings to Fields

For string theory to make contact with phenomenologically relevant applications we require
a reduction of the basic picture of scattering and propagating strings to a low energy effective
field theory in line with more typical particle physics models. Conceptually, this reduction is
possible when the extended nature of the strings, as quantified by the string-scale ls, becomes
negligible compared to the energy scales being probed. In this case, their description reduces
to one of point-particles and the framework of local quantum field theory becomes relevant
again. A key step is to identify the nature and interactions of the resulting particles, which
is then summarized in a low energy effective action of the string theory.
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Figure 1.1: As we take the string-scale to zero the strings are well-approximated by point-
particles, described by ordinary quantum fields. Their properties depend on the vibrational
mode of the string.

1.1.1 Strings and the Worldsheet

The starting point for this program is the action for a propagating relativistic string. Whereas
point-particles trace out one-dimensional world-lines in the ambient spacetime through which
they propagate, strings trace out two-dimensional world-sheets. The action describing this
propagation is a generalization of the analogous action for the particle, and is precisely given
by the invariant area which this world-sheet sweeps out.

In practice however, we adopt a slightly different perspective of this action. Measuring
the area of a world-sheet involves an integral over that world-sheet. This naturally gives the
action an interpretation as a field theory on the world-sheet. The fields of this field theory
are nothing but the embedding coordinates of the world-sheet into spacetime, and it enjoys
a number of gauge symmetries. Upon quantizing this theory we have to demand that this
gauge symmetry is respected, which in practice fixes the dimension of the spacetime through
which our string propagates. Indeed, the requirement of vanishing gauge anomalies is the
origin of the famous result that d = 10 in string theory!

The actual quantization of the world-sheet theory can be done through any one of the
standard methods, i.e. path integral quantization or canonical quantization. A proper treat-
ment of the quantized degrees of freedom of the string reveals an expansion in terms of
oscillator modes of the string. The masses of these excited states are proportional to the
string scale, and once we take the low energy limit where this becomes negligible we can
ignore the massive excitations of the string. Among the modes predicted by the basic string
theory sketched above is a tachyonic particle, i.e. a particle with negative mass-squared.
This signals an instability of the vacuum, which although not technically fatal, often poses
enough technical difficulties for people to discard the theory. Superstring theory provides a
cure by including fermionic fields on the worldsheet theory. In one fell swoop this removes the
tachyonic instability of the bosonic string, while also introducing fermions into the picture,
something obviously necessary from a phenomenological perspective.

Once supersymmetry is included, and the dust has settled, one is left with five types of
superstring theories. Of particular interest to us will be the type IIB superstring, whose
low energy effective action describing the interactions of the massless modes of this string
theory will be introduced explicitly in section 1.2. While we will not consider the details of
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how to derive this action, we note that its equations of motion are precisely the consistency
conditions that ensure gauge invariance of the world-sheet theory. Indeed, this is often how
these equations are derived in the first place. A more formal way of deriving the effective
action is to compute explicit string scattering amplitudes for various in- and out-going excited
states of the string and reverse engineering the low-energy action that reproduces them.
Computing such scattering amplitudes is a difficult task and in general can only be performed
for strings propagating through very special ambient spacetimes. In practice we typically
assume spacetime curvature to be sufficiently small that our theory is well-approximated by
the effective action derived in a flat background.

1.1.2 Branes

In our lightning review of string theory we have only focused on strings. However, despite
what the name would suggest string theory is more than just a theory of propagating strings.
Our first indication of this fact comes from the existence of open strings. The world-sheet
theory for these strings will necessarily involve boundaries and should therefore be supple-
mented by a set of boundary conditions for the fields that live on the world-sheet. These
boundary conditions can schematically be summarized by specifying whether the string end-
points are fixed or free to move in the ambient spacetime. In general, one can fix their
end-points onto some sub-manifold of spacetime, and these sub-manifolds define what are
known as D-branes.

Though one might not guess it from their definition, D-branes are in fact dynamical
objects in string theory, on equal footing with the fundamental strings. Nevertheless, their
tension is non-perturbative in the string coupling, so that at weak string coupling, where a
perturbative, diagrammatic expansion in scattering strings is appropriate, branes are heavy
solitonic objects. This means that we will primarily view them as part of the background
through which our strings, and eventually our fields propagate.

1.2 Type IIB Effective Action

Of the five types of string theory, the work in this thesis will focus only on one of these five
types, namely type IIB string theory. We therefore begin by reviewing the effective action
for type IIB string theory. It turns out that this is one of the two unique N = 2 supergravity
theories in ten dimensions (the other being the low energy effective action of type IIA string
theory).

1.2.1 Bulk Theory

To begin with, let us first familiarize ourselves with the players, that is, the massless bosonic
fields in our theory. In the NS-NS sector we have a set of universal fields common to all
string theories, given by

• A symmetric, traceless tensor gµν . It is interpreted as the metric tensor, or more
specifically, the fluctuations of the metric tensor around a background value. These
fluctuations decompose into spin-2 particles, which by definition, are gravitons.

• An anti-symmetric tensor Bµν , i.e. a 2-form.

• A scalar ϕ. It is called the dilaton and it has a rather special interpretation in 10D. Its
expectation value is precisely the string coupling constant that controls the strength of
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string-string scattering processes.

In addition to these fields, there are the bosonic fields in the superstring R-R sector.

• A set of anti-symmetric tensors (Cp)µ1...µp , i.e. p-forms, for p = 0, 2, 4.

All of the p-form fields, including the 2-form B-field, have the interpretation of generalized
gauge fields whose gauge parameters are now (p−1)-forms rather than the typical 0-forms of
ordinary Maxwell theory. As in the case of Maxwell theory, the action is therefore expressed
in terms of their associated field strengths, which are given by1

Fp+1 = dCp, H3 = dB2. (1.1)

In a marked deviation from ordinary gauge theory however, the gauge transformations of the
lower-degree gauge fields also affect those of higher degree. The meaning of these mixed gauge
transformations will be the subject of subsequent chapters, albeit in a somewhat different
context. For the time being we only list the full set of gauge transformations here

B2 → B2 + dζ1, C4 → C4 +
1

2
dC2 ∧ ζ1,

C2 → C2 + dΛ1, C4 → C4 −
1

2
dB2 ∧ Λ1,

C4 → C4 + dΛ3, C0 → C0 + 1.

(1.2)

It is then convenient to re-define the following field strengths

F3 → F3 = dC2 − C0dB2, F5 → F5 = dC4 +
1

2
(C2 ∧H3 −B2 ∧ F3) . (1.3)

The low-energy action describing the dynamics of these fields (or in other words, the action
that reproduces the relevant string scattering amplitudes) is given by [4]

SIIB =
1

2κ2
10

∫ (
R ∗ 1− 1

2
dϕ ∧ ∗dϕ− 1

2
e−ϕH3 ∧ ∗H3 −

1

2
e2ϕF1 ∧ ∗F1 −

1

2
eϕF3 ∧ ∗F3

−1

4
F5 ∧ ∗F5 −

1

2
C4 ∧H3 ∧ F3

)
,

(1.4)

with κ2
10 the gravitational coupling, given in terms of the string scale by 1

4π
(4π2l2s)

4.

The 4-form gauge field is somewhat special as a proper string theory computation shows
that it should have the degrees of freedom of a self-dual gauge field. That is to say that
on-shell its field strength should satisfy ∗F5 = F5. This carries with it the problem that
when this is imposed off-shell, the canonical kinetic term for such a field vanishes by virtue of
the fact that the wedge product is anti-symmetric for 5-forms. The action (1.4) is therefore a
pseudo-action whose equations of motion are to be supplemented by an auxiliary self-duality
constraint for the 5-form field strength. The extra factor of 1

2
in the relevant kinetic term

compensates for the fact that off-shell it has twice the number of degrees of freedom.

1.2.2 Brane Action

As mentioned, string theory also contains dynamical objects known as branes. Their masses
are inversely proportional to the string coupling so that they are non-perturbative objects.

1Throughout this thesis we will employ a differential form notation. We refer to appendix A for a summary
of our conventions and some useful identities regarding such forms.
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Despite their large mass, they do have low energy dynamics described by the brane effective
action. This action captures the dynamics of massless deformations of the brane2, as well as
its coupling to the (closed string) bulk fields. In particular, branes carry Ramond-Ramond
charge and therefore couple to the p-form fields via their world-volumeWp+1. This is captured
by the Chern-Simons action, whose leading contribution is given by

SCS ⊃ µp

∫
Wp+1

Cp+1. (1.5)

The factor that sits out front is the charge of the brane, which is equal to its tension µp = Tp =
2π
lps
. Our treatment of these branes will largely be semi-classical, viewing them as sources for

the RR-fields, while otherwise ignoring any spacetime curvature they induce. Indeed, this will
be the main role the branes will play in our story so that we do not go into the details of the
corresponding brane action. A good analog to keep in mind is a black hole, whose formation
nor core can be described within GR, but whose effect on the fields outside is well-understood
(in fact, depending on their dimension, branes sometimes are black holes).

1.3 Compactification

The framework used to reduce a ten-dimensional string theory to a four-dimensional one is
based on an old idea called Kaluza-Klein compactification. Although originally proposed as
a way of unifying gravity and gauge theory in the 1920’s [5, 6], it has since resurfaced as a
convenient way of reducing the unwanted number of dimensions predicted by string theory.
The basic idea is that although the theory is defined in ten dimensions, only four of these are
extended while the six extra dimensions are assumed to be compact so that they can be at-
tributed a well-defined “size”. As the radius of these extra directions decreases, the minimum
wavelength for fluctuations in these directions shrinks as well, increasing their energy. After
integrating out these suppressed fluctuations, one is left with an effective four-dimensional
description of a theory that lives in ten dimensions. The goal of this subsection will be to
make this idea more precise by means of some simple examples, before subsequently applying
it to the effective ten-dimensional supergravity description of type IIB string theory.

Here we should make a crucial distinction distinction however, between theories which
couple to gravity and those that do not. Indeed, because compactification involves imposing
a non-trivial geometry for the space on which our theory is defined, the story plays out rather
differently for theories where this geometry is dynamical compared to those where it is not.
We will start by considering an example where gravity decouples which will introduce us to
the first key concept of this section, which is the notion of zero-modes. Afterwards, we will
consider a gravitational theory, where we will have our first encounter with moduli fields. We
round up our discussion of Kaluza-Klein compactification with a more general example that
will set the stage for our discussion of Calabi-Yau compactifications in section 1.5 and close
with some remarks about how stringy effects affect the compactification procedure.

1.3.1 Massless Scalar Field

Let us start by being more specific about how we impose the compactification on our space-
time manifold M5. The key assumption will be that M5 decomposes as a direct product

2These include the translational degrees of freedom of the brane in the directions transverse to its world-
volume. They appear as massless scalar fields living on the brane world-volume and can be interpreted as
the Goldstone bosons associated with broken translational invariance.
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into a non-compact “external” piece, typically taken to be some maximally symmetric space-
time, such as Minkowski space R1,3, and a compact “internal” piece X1. We therefore write
M5 = R1,3 ×X1 and implement this ansatz3 by writing the metric tensor as

GMN(x
M) =

(
gµν(x

µ) 0
0 gmn(y)

)
. (1.6)

For our first example we will consider a five-dimensional spacetime where X1 = S1 such that
the metric can be written as

ds2 = GMNdx
MdxN = ηµνdx

µdxν +R2dθ2, (1.7)

where we have denoted the compact circle coordinate y = θ and R denotes the radius of the
circle. On this background geometry we place a massless scalar field whose action is given
by

S = −
∫

d5x
√
−GGMN∂Mφ∂Nφ. (1.8)

The equations of motion of this action, evaluated for the metric (1.7), are then given by

∂µ∂
µφ+R−2∂2

θφ = 0. (1.9)

We can solve these equations of motion by performing a mode expansion in the compact
dimension, which in our case simply corresponds to a Fourier series in θ

φ(x, θ) =
1√
2πR

∑
n

φn(x)e
inθ. (1.10)

Inserting this into equation (1.9) and using the orthogonality properties of the Fourier modes,
we find that the equations of motion for the different modes decouple(

∂µ∂
µ − n2

R2

)
φn(x) = 0. (1.11)

What this tells us is that the single five-dimensional scalar decomposes into an infinite tower
of four-dimensional scalars called Kaluza-Klein (KK) modes, which in turn obey a Klein-
Gordon equation with mass n/R. The mode with n = 0 is of particular interest, as it is the
only mode whose mass remains small as we reduce the circle radius to zero. In this limit,
the low energy dynamics of our theory will be dominated by this massless mode. We can
therefore obtain a low energy description of the theory by integrating out the massive KK
modes keeping only the massless zero-mode. Indeed, inserting the expansion (1.10) into the
action and using the orthogonality of the Fourier modes to perform the integral over the
compact space, the action (1.8) reduces to

S = −
∑
m,n

∫
d4x

∫
Rdθ

(
ηµν∂µφm∂νφn −

mn

R2
φmφn

) ei(n+m)θ

2πR

= −
∑
n≥0

∫
d4x

(
ηµν |∂µφn|2 +

n2

R2
|φn|2

)
,

(1.12)

3For some string theory applications one should allow a more general ansatz whereby the external metric
is allowed to depend on the internal coordinates through a so-called warp-factor. These will however not be
important to us and all ansatze will essentially be of the form (1.6).
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where we have imposed the reality condition φ−n = φ̄n. At energy scales much smaller than
R−1 we can obtain an effective theory by integrating out all the massive modes as their lowest
lying excitations are beyond the cutoff. Because the modes are completely decoupled, we can
simply discard these excited modes such that the action (1.12) reduces to a four-dimensional
action of a single massless scalar field φ0.

What this toy example shows is that the geometry of the compact space, here captured
by the radius R, affects the physics in the lower dimensional theory. Before taking the limit
R → 0, it controls the masses of the tower of states that appears when the theory is placed
on a circle. Moreover, we found that the states in this tower corresponded to eigenfunctions
of the Laplace operator on the internal space. Once we took the limit R → 0, we therefore
found that the field-content of the low energy theory was dictated by the zero-modes of this
internal Laplacian. This concept of zero-modes carries over directly to the more complicated
cases we will consider in subsequent sections, where the low energy four-dimensional field
content will be given by the zero-modes of generalized differential operators on the compact
space. We therefore close this section with the following general message

The topology of the compactification manifold determines the low-energy field content
of the compactified theory. Compactification introduces an infinite tower of massive
modes whose masses depend inversely on the compactification scale, and some number
of massless zero-modes.

1.3.2 Gravitational Theories and Moduli

While the previous example highlights the role of the geometry of the compactification space,
it ignores the fact that the geometry, and by extension the radius R, are dynamical in a theory
of gravity. A proper treatment of the compactification of a gravitational theory requires us
to consider the Einstein-Hilbert term, whose action is given by

S = M3
P

∫
d5x

√
−GR(5), (1.13)

where we have explicitly included the Planck mass to ensure the action is dimensionless,
while the superscript on R emphasizes that this is the 5-dimensional Ricci scalar. When
we compactify the gravitational theory, the metric ansatz (1.6) has the interpretation of a
background around which we expand the now-dynamical metric field. Indeed, the compact-
ification procedure can in principle be performed around any vacuum expectation value for
the fields, including the scalar φ, as long as this background is consistent with the equations
of motion. In case we set the vev for the non-metric fields to zero this simply reduces to the
condition that the background metric should be Ricci-flat.

Let us illustrate this using the simple case of a circle compactification of the action (1.13).
In the following, we will consider variations of the metric GMN around the background (1.7),
which we point out is Ricci-flat

GMN = ḠMN + hMN . (1.14)

Just as we have decomposed the background metric into internal and external parts, we can
do the same for the variations around it. This leads to the following decomposition of the
metric variations

hMN =

(
hµν hµθ

hµθ hθθ

)
. (1.15)
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Based on their index structure, we can see that from a four-dimensional perspective these
components have the interpretation of a tensor, a vector and a scalar. The linearized Einstein
equations can now be shown to take the form of a simple Laplace equation for each of these
components, so that we may again perform a Fourier expansion

hMN(x, θ) =
1√
2πR

∑
n

h
(n)
MN(x)e

inθ, (1.16)

The massless fields then correspond to variations which are constant with respect to the
compact coordinate θ. We can thus parameterize these massless deformations by allowing the
background metric to depend on the non-compact coordinates. We then choose to decompose
the resulting metric as4

ds2 = GMN(x)dx
MdxN = ϕ−1/3(x)

(
gµν(x)dx

µdxν + ϕ(x)(Aµ(x)dx
µ +R0dθ)

2
)
. (1.17)

Written this way the four-dimensional fields gµν(x), ϕ(x) and Aµ(x) admit natural inter-
pretations. The tensor part is simply the dynamical metric of the dimensionally-reduced
four-dimensional gravity, while the off-diagonal components descend to gauge fields, which
as we shall see below indeed reproduce electromagnetism. In fact, the appearance of this
gauge field was the original motivation for Kaluza and Klein to consider a five-dimensional
theory of gravity as a way of unifying gravity with electromagnetism. Most relevant for us
however, is the scalar part which now has the interpretation of a varying compactification
radius! Indeed, computing the compact radius using this metric we obtain∫ 2π

0

√
Gθθ dθ = R0

∫ 2π

0

ϕ1/3(x) dθ = 2πϕ1/3(x)R0 ≡ 2πR(x). (1.18)

This is our first example of a modulus and they play a very important role in the compactified
theory. In general, such parameters that control the size and shape of the compact manifold
show up as massless scalar fields in the compactified theory. In our case, we can see this
explicitly by inserting the ansatz (1.17) into the action and expanding the Ricci scalar,
yielding the well-known result

M3
P

∫
d5x

√
−GR(5) = 2πRM3

P

∫
d4x

√
−g

(
R(4) − 1

6
ϕ−2∂µϕ∂

µϕ− 1

4
ϕFµνF

µν

)
. (1.19)

Here, R(4) denotes the four-dimensional Ricci scalar which is computed from the four-
dimensional metric gµν . We see that the modulus ϕ indeed appears as a massless scalar field
in the theory, but equation (1.19) shows us that we can in fact say more. Indeed, the action
for the massless scalar takes the form of a non-linear sigma model with a field-space metric
given by 1

3
ϕ−2. This field space is precisely the moduli space of the circle. We will encounter

more examples of such spaces in later sections and we will see that one can assign a canonical
metric to such moduli spaces, which, in the case of the circle modulus is precisely given by
the field space metric 1

3
ϕ−2. We therefore close this section with the following general message

4While this ansatz may appear somewhat odd, we point out that the choice (1.17) gives the vector field Aµ

parameterizing the off-diagonal metric variations hµθ a natural interpretation as a gauge field. Indeed, we see
that for the five-dimensional metric to be invariant under general coordinate transformations of the compact
space θ → θ + ξ(x), the gauge field should undergo the compensating transformation Aµ → Aµ + ∂µξ. The
overall factor of ϕ−1/3 is present to obtain the correct normalization in 4D.
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Geometric moduli that control the size and shape of the compactification space show
up as massless fields in the compactified theory. Their field-space corresponds to the
geometric moduli space. More generally, we refer to any massless scalar fields in an
EFT as (physical) moduli.

1.3.3 Compactification in the General Case

The simple example of a circle compactification highlights the key lessons that we will carry
with us to the next sections. Nevertheless, its simplicity hides some of the details that will
become important when we consider actual string theory compactifications. Indeed, our toy
model contained only two types of field, a scalar and a metric, but in situations relevant
to string theory we also encounter p-form gauge fields. Moreover, the simple geometry of
the circle resulted in a compactification that bordered on triviality. We will ameliorate both
issues by considering the compactification of a p-form gauge field on a generic background
manifold. This will allow us to simultaneously illustrate the compactification procedure for
this important class of fields, while also highlighting what more general zero-modes may look
like. Meanwhile, we postpone a more general discussion of moduli and moduli spaces to the
next section.

To illustrate how the compactification procedure goes through for a p-form on a general
background manifold, consider a (non-gravitational) theory of a massless p-form gauge field
on a D = de + di dimensional spacetime (assuming d ≥ p)∫

M

(
−1

2
Fp+1 ∧ ∗Fp+1

)
, (1.20)

where we have switched back to a differential form notation. In general, the equations of
motion and Bianchi identity for this action are given by

d ∗ Fp+1 = 0, dFp+1 = 0, (1.21)

Next, we wish to identify the zero-modes of the gauge field Ap. We should be careful to
exclude modes which are pure gauge, which we do by performing a gauge fixing. A suitable
gauge fixing condition is given by ∗d ∗ Ap = 0 (generally called Harmonic gauge), in which
case we can rewrite the equation of motion for Ap as

0 = ∗d ∗ Fp+1 = ∗d ∗ dAp = (∗d ∗ d+ d ∗ d∗)Ap ≡ ∆Ap. (1.22)

The operator that acts on Ap on the right is called the Laplacian, which generalizes the
usual Laplacian we encountered in the circle compactification. If the metric, which enters
the problem through the Hodge star, decomposes into a product structure, the Laplacian
similarly splits into an internal and external part, and the equations of motion for the gauge
field become a direct generalization of the free-field equation for the scalar

(∆ext +∆int)Ap = 0. (1.23)

Identifying the zero-modes of Ap now corresponds to finding the zero-modes of the inter-
nal Laplacian ∆int. Such p-forms are called Harmonic forms and the Hodge decomposition
theorem tells us that such Harmonic forms are in 1-to-1 correspondence to the generators
elements of Hp(X). What this means is that if we denote by {αr

i}i=1,...,br a basis of the r’th
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cohomology of X where br is the rank of Hr(X) (also called the Betti number), then the first
terms in a mode expansion for Ap are given by

Ap = Âp +
br∑
i=1

p∑
r=1

Ai
p−r ∧ αr

i . (1.24)

A more explicit way of seeing how the lower-form modes Ai
p−r come about is by performing

a similar tensor-decomposition as we did for the metric. That is to say,

Ap = (Ap)µ1...µp ⊕ (Ap)µ1...µp−1mp ⊕ . . .⊕ (Ap)m1...mp . (1.25)

The terms in this decomposition correspond from left-to-right to zero through p-forms on the
internal manifold. To summarize, we close this sub-section with the following general lesson

Zero-modes of p-form fields are in one-to-one correspondence with the elements of
cohomology groups Hr≤p(X) of the compactification manifold.

1.3.4 Compactification in String Theory

While the previous sub-sections serve to illustrate the most relevant aspects of Kaluza-Klein
compactification, the astute reader may wonder what happens when we go beyond the field
theory approximation of string theory. Indeed, the field theory approximation from section
1.2 relied crucially on the assumption that the string scale ls was negligible, so that we
are justified in taking the point-particle limit. However, when the radius of curvature of
the compactification manifold becomes of the order of the string scale we have to contend
with the fact that strings probe this internal geometry rather differently than point particles
do. Once the field theory approximation breaks down we are forced to consider strings
propagating through different backgrounds, which can only be studied explicitly for very
special examples.

One such example is that of a circle-compactified string theory. One of the most striking
effects is the appearance of a second tower of states, called winding modes, whose masses
are proportional to the compactification radius R. These modes have a natural physical
interpretation: in addition to the momentum modes around the compact dimensions, strings
can also non-trivially wrap around the compact directions of the background manifold. As
we shall see, these modes play a crucial role in the swampland program, but from a practical
perspective they mean that we only have control over the compactification whenever R ≫ ls.
Simultaneously however, the compactification radius cannot become too large, as otherwise
the Kaluza-Klein modes with MKK ∼ 1

R
become important at our energy scale of interest.

Hence, for a given momentum scale p, we obtain a hierarchy

ls ≪ R ≪ p−1, (1.26)

which is required for the Kaluza-Klein compactification to be valid. More generally, such
“winding” states may arise whenever the compactification manifold has non-trivial cycles
for the string to wrap around. In this more general context such states are referred to as
worldsheet instantons. They lead to corrections to physical quantities which are suppressed
so long as the (appropriately generalized) hierarchy (1.26) is satisfied.
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More generally still, we may also consider branes that wrap non-trivial cycles on the
background geometry. Indeed, while we again may not be able to produce these states at
low energy, branes wrapping non-contractible cycles are stable. A (p + 1)-dimensional Dp-
brane wrapped in a q-cycle then leads to a (p− q + 1)-dimensional state, charged under the
dimensionally reduced Ramond-Ramond fields. Of particular interest to us will be the case
p = q = 3, which are the so-called D3-particles, to be introduced in section 1.5.2.

1.4 Calabi-Yau Compactification

Though simple, the examples in the previous section illustrate how the geometry of the
compactification manifold is crucial for understanding the lower-dimensional physics. This
begs the question of what a suitable compactification manifold for string theory should look
like. The key to answering this question lies in an aspect of string theory that we have
mostly sidestepped until now, namely, supersymmetry. Indeed, just as compactification
affects the bosonic field content of a theory, so too does it affect the fermionic field content
and, by extension, the degree of supersymmetry enjoyed by the compactified theory. Highly
symmetric spaces such as the circle, torus or their higher dimensional generalizations tend
to leave unbroken all supersymmetry generators present in the higher dimensional theory.
This leads to a four-dimensional theory with so much supersymmetry that it constrains the
effective action beyond the point of being interesting, let alone realistic.

Nevertheless, for both practical and phenomenological reasons, preserving some degree of
supersymmetry is desirable. From a practical perspective, the presence of supersymmetry
gives us a great deal of control over the resulting field theories. This is especially crucial in the
context of string theory, where it oftentimes allows us to even extract some non-perturbative
information. As a general rule of thumb, introducing more supercharges leads to a a more
constrained (and thus more controlled) theory.5

On the phenomenological side of things, minimal supersymmetry has traditionally been
viewed as a natural candidate for physics beyond the standard model. Indeed, it offers a nat-
ural cure to the hierarchy problem, generically includes dark matter candidates and recovers
exact gauge coupling unification in the UV. Nevertheless, while these phenomenological rea-
sons may be powerful drivers for the study of supersymmetric theories, the non-detection of
supersymmetry at the LHC has gradually increased the scale at which it is spontaneously
broken, which poses challenges for realistic model building in string theory.

In light of these challenges, our motivations for considering supersymmetric theories are
more humble. As will be discussed at length in chapter 2, swampland ideas have made
investigations into consistent QGs, supersymmetric or otherwise relevant in their own right.
From this point of view, much work has already been done for theories with more than eight
super-charges, where exact results are often provable. The next step down in this hierarchy
concerns theories with exactly eight super-charges, which correspond to four-dimensional
theories with N = 2 supersymmetry. The aim of this section will be to show how we can
obtain such theories from type IIB supergravity.

5In fact, we already encountered this fact in section 1.2, where we mentioned that there are only two
N = 2 supergravity theories in ten dimensions. Since supersymmetry is a fermionic symmetry, its generators
are spinors which have more components in higher dimensions. Hence, we can introduce more supercharges
either by adding generators (i.e. increasing N ), or by increasing the dimension. Consequently, there is only
one unique supergravity theory in 11D!
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1.4.1 Calabi-Yau Manifolds And Supersymmetry

The question we should answer therefore is exactly how the compactification manifold de-
termines the supersymmetry of the lower-dimensional theory. The relevant mechanism is
equivalent to spontaneous symmetry breaking in gauge theories, i.e. the Higgs mechanism.
Indeed, in supergravity, supersymmetry is a gauge symmetry and it may occur that the
chosen background is not invariant under some, or all, of the symmetry generators. The re-
sulting theory may then be a supergravity theory with fewer supercharges than the original,
uncompactified theory. To identify the degree of supersymmetry preserved by the vacuum,
we should therefore consider the supersymmetry variations of the background ansatz for our
Kaluza-Klein reduction.

For the compactifications we consider in this thesis, we will set the background for all
fields other than the metric to zero. In this case, the only non-trivial supersymmetry trans-
formations of type IIB supergravity are those of the two gravitinos

δϵΨ
A
M = ∇MϵA

!
= 0, M = 0, . . . , 9, A = 1, 2. (1.27)

Here, M is the 10-dimensional vector index carried by the spin-3/2 gravitino, while ∇ is
the covariant derivative with respect to the (Levi-Civita) spin-connection of the background
metric. In much the same way that p-forms were decomposed in section 1.3.3, the diagonal
split of the metric induces a similar split of the spin-bundles over spacetime. Avoiding the
details of this decomposition, the internal part of equation 1.27 boils down to the existence
of a covariantly constant six-dimensional spinor on the compactification manifold X6

∇mϵi = 0, m = 1, . . . , 6. (1.28)

Every such spinor will correspond to two supersymmetry generators ϵAi (x, y) ∼ ϵA4 (x)⊗ ϵi(y)
in the four-dimensional theory. In this way we have reduced the determination of the lower-
dimensional supersymmetry to a similar zero-mode counting problem as in the previous
section. In particular, if we are interested in N = 2 supersymmetry in 4D, we require the
existence of exactly one covariantly constant spinor ϵi on X6.

The condition that such spinors exist imposes very strong constraints on the space X6. On
the one hand, it can be shown that equation 1.28 implies that the manifold X6 is Ricci-flat.
This is consistent with the fact that the background manifold should obey the string equations
of motion, which for vanishing background fields simply reduce to Ricci-flatness. In fact, the
observation that supersymmetric backgrounds satisfy the string equations of motion holds
quite generally, which greatly simplifies the analysis for more complicated backgrounds.

Meanwhile, the existence of a spinor that is merely non-vanishing is already a non-trivial
condition, related to the structure group of the spin-bundle on our manifold. Indeed, spinors
are sections of the spin-bundle so that if this bundle is non-trivial the best we can do is define
these spinors locally, with transition functions relating spinors on overlaps of local patches.
Nevertheless, if these transition functions are such that they leave some non-zero spinors
invariant, then these locally-defined spinors can be consistently patched together into a global
section. A minimal condition that allows for this is to demand that the transition functions
on X6 are restricted to SU(3), in which case we say that our manifold has SU(3)-structure.
In particular, this ensures the existence of exactly one globally-defined non-vanishing spinor,
while we would need to further restrict our structure group if we demand multiple such
spinors.

While SU(3)-structure is sufficient to ensure that we at least have one candidate-spinor,
it is not enough to ensure that it is covariantly constant. Given this spinor, equation 1.28
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can be viewed as a condition on the spin-connection on our manifold. A convenient way
of phrasing this condition is in terms of the parallel transport induced by this connection.
In particular, for non-flat spin-bundles over X6, parallel transport along loops will induce a
non-trivial holonomy transformation on the transported spinor6. For a connected manifold,
these holonomy transformations form a group H called the holonomy group of X6

7, and the
condition 1.28 is equivalent to the condition that H acts trivially on ϵi. Much as invariance
under transition functions demanded SU(3)-structure, invariance under the holonomy group
requires the holonomy group of the connection to be SU(3). Likewise, the existence of more
than one covariantly constant spinor requires us to further restrict our holonomy group,
while we will refer to manifolds with H precisely equal to SU(3) as manifolds with SU(3)-
holonomy. With that, we are now finally in a position to define the central object of study
for the remainder of this section

A compact, 2n-dimensional Riemannian manifold with SU(n)-holonomy is called a
Calabi-Yau manifold.

1.4.2 Calabi-Yau Geometry

While the discussion in the previous section has emphasized the connection between Calabi-
Yau manifolds and supersymmetry, the definition in terms of SU(3)-holonomy is rather ab-
stract for the purposes of Kaluza-Klein compactification. This sub-section aims to bridge this
gap by introducing some of the additional structures present on Calabi-Yau manifolds. We
will necessarily lean rather heavily on some basic results in complex and Kahler geometry,
for which we refer to the textbooks [7, 8].

The first property that will allow us to get a handle on these manifolds is the fact that
manifolds with SU(n)-holonomy are Kahler manifolds. Hence, Calabi-Yau manifolds are
complex manifolds of complex dimension n, whose Hermitian metric defines a real, closed
Kahler form

K =
i

2
gij̄dx

i ∧ dx̄j̄, i, j̄ = 1, . . . , n. (1.29)

In particular, this Kahler form endows X with a symplectic structure which is compatible
with the metric. Closedness of K implies that the metric can locally be obtained from a
Kahler potential K via

gij̄ = ∂i∂̄j̄K. (1.30)

Just as the Hermitian metric defines a closed (1,1)-form, so too does the associated Ricci-
tensor

R = iRij̄dx
i ∧ dx̄j̄, (1.31)

which for the special class of Kahler manifolds with SU(n)-holonomy vanishes by virtue of
Ricci-flatness. One can show that the first Chern class of any Kahler manifold is represented
by 1

2π
R, which implies that those Kahler manifolds with SU(n)-holonomy also have vanishing

first Chern class. The converse statement is generically false however, and true only if X is
simply-connected. Nevertheless, a useful result known as Yau’s theorem, whose precise state-
ment we do not give, ensures that for compact Kahler manifolds with vanishing Chern class,

6Note that although X6 is necessarily Ricci-flat, it need not be flat. In the latter case, the Levi-Civita spin-
connection is automatically flat as well and we can only have non-trivial holonomy around non-contractible
cycles.

7More precisely, H is the holonomy group of the connection on X6, but it is understood that this refers
to the Levi-Civita connection when we discuss Riemannian manifolds (as we do in this thesis).
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there always exists a Ricci-flat Kahler metric whose Kahler form is unique in its cohomology
class [K].

In addition to the Kahler form, which is present for Kahler manifolds in general, Calabi-
Yau manifolds also admit another important globally defined differential form. In particular,
it can be shown that there exists a no-where vanishing holomorphic (n, 0)-form, usually
denoted Ω8. Any Ω with these properties is unique up to constant re-scaling so that we will
usually refer to this form as the unique holomorphic (n, 0)-form. The significance of this form
will become clear in later sections where we will see that it encodes the complex structure
on X. Moreover, it follows from the properties of Kahler manifolds that any holomorphic
(n, 0)-form is also harmonic, which by the Hodge theorem implies that it is a representative
of Hn(X).

This brings us to the final topic of interest, namely the cohomology classes of Calabi-Yau
manifolds. Just as the complex structure on X can be used to decompose differential forms
by their (p, q)-type, so too can we use it to decompose the cohomology classes of X by their
type. This leads to the Hodge decomposition

Hk(X,C) =
⊕

p+q=k

Hp,q(X). (1.32)

The dimensions of the (p, q)-components of the cohomology groups define the so-called Hodge
numbers

hp,q := dimCH
p,q(X). (1.33)

These Hodge numbers assemble into a Hodge diamond which classifies the topology of the
underlying manifold. The properties of Calabi-Yau manifolds mean that not all hp,q are
independent and in fact, for Calabi-Yau 3-folds h1,1 and h2,1 completely determine the cor-
responding Hodge diamond

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

. (1.34)

Of the remaining non-zero entries above, h3,3 and h0,0 correspond to the volume form and
constant function on X, respectively. Meanwhile, we saw that the holomorphic (3, 0)-form
represents a class in H3(X), which we can now refine to a class in H3,0(X). Its uniqueness
implies that h3,0 = 1 and its complex conjugate Ω̄ is a anti-holomorphic (0, 3)-form that
spans H0,3.

1.4.3 Calabi-Yau Moduli Spaces

Having discussed some basic properties of Calabi-Yau manifolds, the next matter to discuss
is the moduli space of Calabi-Yau manifolds. We have argued in section 1.3.2 that param-
eters controlling the size and shape of the compactification manifold show up as massless

8As a an aside we also remark that Ω is a trivializing section for the canonical bundle ∧nT ∗1,0(X). In fact,
one can and commonly does define Calabi-Yau manifolds as compact Kahler manifolds with trivial canonical
bundle.
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fields in the compactified theory. In general they correspond to deformations of the metric
on the compact space, but for the simple circle compactification we found that these could
be adequately described by allowing for a internal metric that depends on the external co-
ordinates. In the more complicated case of Calabi-Yau compactifications the relevant metric
deformations will generically depend on the internal coordinates so that we will need to more
careful about identifying the zero-modes.

To do so, we again consider variations h of the metric on X6 and consider how they affect
the equations of motion. If we again set any non-metric fields to zero, the gravitational part
of the equations of motion of type IIB supergravity are simply given by the Einstein field
equations in a vacuum. The massless deformations h are then precisely those that solve the
internal part of these equations of motion, i.e. those that leave X6 Ricci-flat [9]

Rmn(g + h) = 0. (1.35)

This fact serves to highlight the relationship between physical and geometric moduli. In
particular, we find that variations h that satisfy the physical condition (1.35) are precisely
those that preserve the Calabi-Yau property of the background metric on X6 and so the
deformations h can be interpreted as parameterizing all possible Calabi-Yau manifolds. As
we saw in section 1.3.3 however, we have to be careful not to over-count modes that arise
from gauge transformations as these do not lead to physically distinct configurations. For the
metric tensor, these arise from general coordinate transformations on X6 and we can account
for these by performing a gauge fixing by imposing

∇mhmn = 0, m, n = 1, . . . , 6, (1.36)

where ∇ is the Levi-Civita connection of the background metric g. By expanding equation
1.35 to linear order in h and combining with equation 1.36, it can be shown that both
conditions reduce to the so-called Lichnerowicz equation

∇k∇khmn + 2R k l
m n hkl = 0. (1.37)

So far we have treated X6 as a real manifold, but it is of course natural to decompose hmn

according to the index-decomposition induced by the complex structure on X6. These lead
to two types of deformations, hij̄ and hij, which by virtue of a similar decomposition for
the Riemann tensor separately satisfy equation 1.37. Their solutions lead to two classes of
moduli which we separately discuss in the following.

Kahler Moduli

The first set of deformations are those with an index structure matching that of the metric, i.e.
hij̄. These moduli carry the name of Kahler moduli because they parameterize deformations
of the Kahler form on X6. Indeed, like the metric, the deformations hij̄ can be viewed as the
components of a (1, 1)-form h on X6

h :=
i

2
hij̄dx

i ∧ dx̄j̄. (1.38)

In this way they can exactly be interpreted as deformations of the Kahler form K. The
Lichnerowicz equation can then be shown to be equivalent to

∆h = 0. (1.39)
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We find that deformations of the Kahler form which satisfy equation 1.37 are in one-to-one
correspondence to harmonic (1, 1)-forms on X6, which are in turn enumerated by h1,1. These
are precisely the deformations of the Kahler form which change the cohomology class of J , and
Yau’s theorem then tells us that there exists a unique new Ricci-flat metric with the deformed
J as its Kahler form. Turning this on its head we can also use Yau’s theorem to deduce that
non-trivial deformations of the Kahler metric which leave it Ricci-flat are precisely those that
change the cohomology class of the associated Kahler form, as the original Kahler metric is
unique in its Kahler class. This means that our conclusions are valid beyond the infinitesimal
analysis which led to equation 1.37. We can parameterize this space by expanding h in terms
of a real basis {ωα}α=1,...,h1,1 for H1,1 as

h =
h1,1∑
α=1

vαωα, vα ∈ R, (1.40)

and identify the Kahler moduli with the expansion coefficients vα. It should be noted here
that not all values of va correspond to valid transformations of the metric. Indeed, the
resulting metric should still be positive-definite which restricts vα to a subset of Rh1,1

called
the Kahler cone. While we have included them here for the sake of completeness, the Kahler
moduli will mostly not be of interest to us in this thesis.

Complex Structure Moduli

In addition to the Kahler moduli, deformations with an index structure of the form hij will
generate additional moduli called complex structure moduli. As the name suggests, these will
indeed parametrize the complex structure of the Calabi-Yau manifold. To see this, note that
deforming the metric by hij will add off-diagonal terms that break the Hermitian structure of
the metric g. For the resulting manifold to again be Kahler we need to change the complex
structure that controls the index structure of the metric. Identifying those deformations
that also leave the resulting manifold Ricci-flat is not as straight-forward as for the Kahler
moduli, but it turns out that there is still a way of reducing the Lichnerowicz equation to
a cohomology problem9. In this case, we can use hij to define a complex (2, 1)-form by
contracting with the holomorphic (3, 0)-form Ω [9]

1

2
Ωij

l̄hk̄l̄dx
i ∧ dxj ∧ dx̄k̄. (1.41)

One can show that the Lichnerowicz equation implies that this form is harmonic, so that these
deformations correspond to elements of the cohomology groupH2,1(X6). We can expand these
in a basis of harmonic (2, 1)-forms {χa

ijk̄
}a=1,...,h2,1

−1

2
Ωij

l̄hk̄l̄ =
h2,1∑
a=1

zaχ
a
ijk̄, za ∈ C, (1.42)

which, because Ωijk is non-vanishing, we can invert to obtain an expansion for the variations
hij themselves

hij = − 1

∥Ω∥2
h2,1∑
a=1

z̄a(χ̄a)ik̄l̄Ω
k̄l̄
j ≡

h2,1∑
a=1

z̄ā(b̄ā)ij, (1.43)

9Once one realizes that the hij correspond to changes in complex structure, one could also reason directly
in terms of deformations of the associated map and demanding that the resulting almost complex structure
is again integrable.
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Cohomology Group Dimension Basis

H1,1 = H2 h1,1 ωα

H2,2 = H4 h1,1 ω̃β

H2,1 ⊂ H3 h2,1 χa

H3 2h2,1 + 2 (αI , β
I)

Table 1.1: Bases of Harmonic forms on X6 used to decompose the ten-dimensional p-forms
into zero modes.

where we have defined

(b̄ā)ij :=
1

∥Ω∥2
(χa)ik̄l̄Ω

k̄l̄
j, ∥Ω∥2 := 1

3!
ΩijkΩ̄

ijk. (1.44)

Here, hij can be interpreted as an element of H1(X6, T
(1,0)X6) via hijdz

j.10 Note that unlike
the Kahler moduli however, it is not obvious that the infinitesimal deformations that satisfy
the Lichnerowicz equation actually integrate to finite changes of complex structure. Never-
theless, it is possible to show that this is indeed the case [10]. As we shall see, the geometry
of this moduli space will be of particular importance, and we will encounter it from several
perspectives throughout this thesis. In the present chapter, we will mainly consider these
spaces from a more physical perspective, in terms of field spaces of massless scalar fields.
However, the correspondence of these moduli spaces to the geometrical notion of a moduli
space allows for the application of many powerful mathematical techniques and this is the
view that we will take in chapter 3.

1.5 Calabi-Yau compactification of Type IIB

At last it is time to put the pieces together and perform the Calabi-Yau compactification of
the type IIB supergravity action from section 1.2 [11]. We will start this section by discussing
the field-content of the four-dimensional theory using our results from sections 1.3 and 1.4.
Because the resulting theory (by construction) enjoys N = 2 supersymmetry, it is natural
to assemble the low-energy field content into irreducible multiplets. This will allow us to
write down the most general four-dimensional N = 2 supergravity action and finally give the
Kaluza-Klein reduced action in this form.

1.5.1 Field Content

The field content of the lower-dimensional theory is determined by the zero-modes of the
relevant differential operators. As discussed at length in the previous section, the massless
modes that descend from the metric are precisely the moduli introduced in section 1.4.3. The
ten-dimensional metric can be decomposed in terms of these moduli according to

ds2 = gµν(x)dx
µdxν+gij̄(y)dy

idȳj̄+vα(x)(ωα)ij̄(y)dy
idȳj̄+z̄ā(x)(b̄ā)ij(y)dy

idyj+c.c., (1.45)

where the background Calabi-Yau metric gij̄(y) is fixed. Meanwhile, the scalar dilaton ϕ̂

and the 0-form Ĉ0 simply reduce to four-dimensional scalars which do not depend on the

10Indeed, this is the appropriate cohomology to consider. A more formal treatment of the complex structure
deformations would involve the Kodaira-Spencer map which relates the tangent space of the Moduli space
(more precisely deformation space) to the cohomology group H1(X6, T

(1,0)X6). For Calabi-Yau 3-folds, the
holomorphic (3, 0)-form yields an isomorphism H1(X6, T

(1,0)X6) ∼= H2,1(X6) via equation 1.41.
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compact coordinates. Note that throughout this section we use hats to distinguish ten- and
four-dimensional objects. The remaining p-form fields are more involved however, as they
admit non-trivial zero-modes corresponding to various cohomology classes of the Calabi-Yau.
We encountered the non-trivial cohomology classes of Calabi-Yau manifolds in section 1.4.2.
To perform an expansion as in equation 1.24 we assign bases for these cohomology groups
which are listed in table 1.1. Note that we choose two sets of bases for H3 and H2,1 ⊂ H3

as we require the latter sub-set for the expansion of the metric, while we need the full third
cohomology to expand the Ĉ4-field. For reasons that will become clear shortly, we choose to
split the basis for H3 into two sets of h2,1 + 1 elements. Putting everything together we find
the following decomposition for the non-metric fields fields

ϕ̂(x, y) = ϕ(x), B̂2(x, y) = B2(x) + bα(x)ωα(y),

Ĉ0(x, y) = C0(x), Ĉ2(x, y) = C2(x) + cα(x)ωα(y),

Ĉ4(x, y) = C4(x) +Dα
2 (x) ∧ ωα(y) + ρβ(x)ω̃

β(y)

+ AI(x) ∧ αI(y)− VI(x) ∧ βI(y).

(1.46)

Together with the four-dimensional metric/graviton field gµν(x) and moduli fields vi, za, these
constitute the basic field content of the compactified four-dimensional supergravity action.
Before we proceed however, three remarks are in order.

• Firstly, recall that the dynamics of the four-form gauge field are not fixed by the
action, since we should supplement the resulting equations of motion by the self-duality
constraint ∗F̂ 5 = F̂ 5. This condition descends to a set of relations between the lower-
dimensional components of Ĉ4, which similarly should be imposed at the level of the
(four-dimensional) equations of motion. However, unlike for the ten-dimensional action
we will find that the four-dimensional theory allows us to impose this condition at
the level of the action, because the condition now relates two different sets of fields.
Consequently it is possible to eliminate half of the degrees of freedom coming from the
pair (ρa, D

a
2) and likewise for (AI , VI), which is why we chose a split basis for H3. In

our discussion of SUSY multiplets we will assume that this has been done and keep
only the first set of fields in each pair (although this particular choice is arbitrary).

• Unrelated to the self-duality constraint we also emphasize here that while the expansion
of Ĉ4(x, y) also allows for a four-dimensional 4-form C4(x), this 4-form has no degrees
of freedom in four dimensions so that we drop it in the following.

• Lastly, we would like to highlight that the off-diagonal metric components do not gener-
ate additional vector fields, because Calabi-Yau three-folds have trivial first cohomology
H1.

Supersymmetry Multiplets

To organize the subsequent discussion of the action describing the dynamics of these fields, we
next discuss how they organize into so-called supersymmetry multiplets. Restricting to fields
of spin ≤ 2, four-dimensional N = 2 supergravity has four such multiplets. These are called
the gravity, vector, hyper- and tensor multiplets. Their bosonic field content is summarized
in table 1.2 and we spend a few words describing them to establish some nomenclature.

Firstly, it should be clear from the table that the names of these multiplets refer to the
highest-spin bosonic field content. The gravity multiplet is a universal multiplet present for
any supergravity theory and contains a graviton and a gauge field called the graviphoton.
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Multiplet # Fields

Gravity 1 (gµν , A
0)

Vector h2,1 (Aa, za)
Hyper h1,1 (vα, bα, cα, ρα)
Tensor 1 (B2, C2, ϕ, C0)

Table 1.2: Assignment of the four-dimensional fields to their respective supersymmetry mul-
tiplets

The others are optional and may or may not be present in a consistent supergravity theory.
Moreover, note that despite their ostensibly different field contents, the tensor and hyper-
multiplets have the same spin content. In fact, it is possible to reduce a theory containing
both hypermultiplets and tensor multiplets to one containing only hypermultiplets through
a procedure called dualization which we will discuss at some length in subsequent sections.
For the time being we simply assume that this procedure has been performed and include
only hypermultiplets in the theory.

The basic N = 2 supersymmetric action we will consider using these multiplets is given
by

S =

∫ (
1

2
R ∗ 1− huvdq

u ∧ ∗dqv −Kab̄dz
a ∧ ∗dz̄b̄ + 1

2
ImNIJF

I ∧ ∗F J +
1

2
ReNIJF

I ∧ F J

)
,

a, b = 1, . . . nV , I = 0, . . . nV , u, v = 1, . . . , 4nH .

(1.47)

Here, nV and nH denote the number of hyper- and vector multiplets, respectively. The
scalars in these multiplets are described by non-linear sigma models. Their target manifolds
are constrained to be of a special type to be discussed at length in the next section. Moreover,
F I are the field strengths of the vector fields in the vector and gravity multiplets. Note that
because there is always one gravity multiplet, there is also always one vector which is why the
index I starts at zero. Lastly, the coupling matrices for the gauge fields generically depend
on the scalars in the vector multiplets in a non-trivial way and their properties are linked to
the scalar manifold geometry via supersymmetry.

1.5.2 Performing the Reduction

We are now finally in a position to perform the dimensional reduction of the type IIB action
to 4D. Upon inserting the expansion (1.46) into the IIB action and performing the integral
over the internal manifold, we obtain the compactified action. Because the resulting the-
ory has N = 2 supersymmetry we expect the final result to take the general form (1.47).
Indeed, it can be shown that it does and table 1.2 shows how the four-dimensional field
content assembles into the four-dimensional supersymmetry multiplets. As alluded to in the
introduction, this work will mainly be concerned with the dynamics of the resulting vector
multiplets which as we can see include the complex structure moduli. Because these fields
will be so central to our discussion in later chapters we explicitly perform the dimensional
reduction for the fields in these multiplets, while we do not give any details, nor state the
result, for the hypermultiplets.

The fields in the vector multiplets descend from the ten-dimensional metric, which supplies
the scalars, and the four-form RR field, which provides the vector fields, and the relevant
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terms in the ten-dimensional action are given by

Svector =

∫ (
1

2
R̂ ∗ 1− 1

4
F̂5 ∧ ∗F̂5

)
. (1.48)

Note that the gauge fields for F̂5 also enter the ten-dimensional action through the Chern-
Simons term in equation 1.4, but the non-zero terms that descend from this upon compactifi-
cation only include the scalar part ρa in the expansion (1.46) and hence, does not contribute
to the vector sector of the theory. In the following, we will compactify both of these terms,
starting with the second as it is simpler. We will not try to give all the details but choose to
highlight some intermediate results which will provide us with the necessary insights.

Compactification of the Gauge Fields

In order to discuss the compactification of the gauge kinetic term in equation 1.48, we should
start by being more concrete about the basis (αI , β

I). So far its main purpose has been
to define a split that allows us to identify the physical modes of the self-dual 4-form Ĉ4.
However, for the purposes of the dimensional reduction that follows, there exists a useful
canonical choice for this basis. To define it, let us note that we can define a natural anti-
symmetric pairing on the vector space H3, defined by

⟨α, β⟩ :=
∫
X6

α ∧ β. (1.49)

We call this the intersection form11 and it defines an alternating non-degenerate bi-linear (i.e.
symplectic) form on the vector space H3(X,C). This fact will be very important to us later
when we discuss the geometry of four-dimensional N = 2 supergravity, but for now the most
important thing it allows us to do is to define a real symplectic basis (αI , β

I)12 for H3(X6,C)
which satisfies

ηIJ := ⟨αI , αJ⟩ = 0 = ⟨βI , βJ⟩ =: ηIJ , ηJI := ⟨αI , β
J⟩ = δJI . (1.50)

Explicitly, this allows us to write the symplectic pairing (1.49) as a matrix with respect to
the basis (αI , β

I), which has the canonical form

η =

(
0 1nV +1

−1nV +1 0

)
, (1.51)

where we point out that this basis is unique up to basis transformations that preserve this
form of η, i.e. transformations in Sp(2nV +2,R). We can also use these properties to extract
the components of a general element Q ∈ H3 with respect to the symplectic basis using the
intersection form

Q := pIαI − qIβ
I ⇒ pI = ⟨Q, βI⟩ ≡

∫
BI

Q, qI = ⟨Q,αI⟩ ≡
∫
AI

Q, (1.52)

where we have introduced a poincare dual Homology basis (AI , B
I). In the following we

assume that the basis used to expand Ĉ4 is such a symplectic basis.

With these preliminaries out of the way, we turn to expanding the gauge kinetic term in
equation 1.48 using the expansion (1.46) for Ĉ4. We note that we only need to keep the part

11Under Poincare duality it maps to the intersection product in homology.
12Note that any symplectic vector space admits a symplectic basis, defined by the properties (1.50).
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valued in H3, as it can be checked that the mixed vector-hypermultiplet terms all vanish.
The result is given by∫

X6

F̂5 ∧ ∗10F̂5 =

∫
X6

(F I ∧ αI −GI ∧ βI) ∧ ∗10(F I ∧ αI −GI ∧ βI) + Hypermultiplet Terms

=

(∫
X6

αI ∧ ∗6αJ

)
F I ∧ ∗4F J − 2

(∫
X6

αI ∧ ∗6βJ

)
F I ∧ ∗4GJ +

(∫
X6

βI ∧ ∗6βJ

)
GI ∧ ∗4GJ .

(1.53)

To arrive at the second line we have used the following general identity, valid for product
manifolds of the form we consider

∗10(A(4)
p ∧B(6)

q ) = (−1)pq(∗4A(4)
p ) ∧ (∗6B(6)

q ), (1.54)

with A
(4)
p and B

(6)
q four- and six-dimensional differential forms, respectively, while ∗4 and ∗6

denote the Hodge star with respect to the external and internal metrics, respectively. We
see that the gauge couplings between the four-dimensional fields F I and GI are determined
by the components of the Hodge star of the Calabi-Yau acting on the basis elements for H3.
To simplify the notation in the following, we write this in matrix-form as

(Mαα)IJ =

∫
X6

αI ∧ ∗6αJ , (Mαβ)
J
I =

∫
X6

αI ∧ ∗6βJ , (Mββ)
IJ =

∫
X6

βI ∧ ∗6βJ , (1.55)

which we assemble into a matrix M

M =

(∫
X6

αI ∧ ∗6αJ

∫
X6

αI ∧ ∗6βJ∫
X6

βI ∧ ∗6αJ

∫
X6

βI ∧ ∗6βJ

)
≡
(
(Mαα)IJ (Mαβ)

J
I

(Mβα)
I
J (Mββ)

IJ

)
. (1.56)

As discussed at the end of section 1.5.1, we still have to impose the self-duality constraint
on F̂5. Inserting the expansion of F̂5 in terms of F I and GI into the self-duality constraint
∗F̂5 = F̂5 and using the identity (1.54), we find after integrating over X6 that the former
reads

∗GI = ((Mαα)IJ − (Mαβ)
K
I (M−1

ββ )KL(Mαβ)
L
J )F

J + (M−1
ββ )IJ(Mαβ)

J
K ∗ FK . (1.57)

Next, we note that the symmetry properties of M along with the fact that ∗2 = −1 for three-
forms (in six dimensions) allow us to derive the following relationship between its blocks13

(M−1
ββ )IJ = ((Mαα)IJ − (Mαβ)

K
I (M−1

ββ )KL(Mαβ)
L
J ), (1.58)

simplifying (1.57) to

∗GI = (M−1
ββ )IJF

J + (M−1
ββ )IJ(Mαβ)

J
K ∗ FK . (1.59)

As promised, this can be imposed at the level of the action by including a total derivative
term∫

M4

(
−1

4
(Mαα)IJF

I ∧ ∗4F J +
1

2
(Mαβ)

J
IF

I ∧ ∗4GJ − 1

4
(Mββ)

IJGI ∧ ∗4GJ +
1

2
F I ∧GI

)
.

(1.60)

13More precisely, it is easy to show that the Hodge star, viewed as a matrix acting on H3 is symplectic
with respect to the pairing η. The former is given in terms of M as −ηM and enforcing that the latter is
symplectic yields the given relation.
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Indeed, it can be checked that the equation of motion for GI one derives from this action
is precisely the self-duality constraint (1.59). At this point one may integrate out the field
GI imposing its equations of motion on the action, which yields the final four-dimensional
action

S4 =

∫
M4

(
−1

2
(M−1

ββ )IJF
I ∧ ∗F J +

1

2
(Mαβ)

K
I (M−1

ββ )KJF
I ∧ F J

)
. (1.61)

Comparing to the action (1.47) we identify the gauge kinetic functions in terms of the matrix
M as

ImNIJ = −(M−1
ββ )IJ , ReNIJ = (Mαβ)

K
I (M−1

ββ )KJ . (1.62)

We see that the kinetic functions are defined in terms of the matrix elements of the Hodge
star acting on the middle cohomology, which, as we as we shall see in chapter 4, depends
explicitly on the complex structure on X6. For both emphasis and future reference, we also
invert equation 1.62 (using (1.58)) to give an expression for M in terms of N

M =

(
−ImN − ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN −(ImN )−1

)
. (1.63)

Compactification of the Ricci Scalar

The second term that contributes to the vector multiplet sector is the Einstein-Hilbert term
in equation 1.48. Its compactification is a rather involved exercise so we do not include it
here, instead referring to e.g. [12, 13] for details. The upshot of the computation is that the
Ricci scalar decomposes according to∫

M4×X6

1

2
R̂ ∗ 1 =

∫
M4

(
1

2
R ∗ 1−Kab̄dz

a ∧ ∗dz̄b̄ +Kahler Moduli

)
, (1.64)

where Kaā is given by

Kab̄ =
1

4V

∫
X6

(ba)
ij(b̄b̄)ji ∗6 1, (1.65)

with V the volume of the background CY manifold14. Equation 1.65 now gives an explicit
expression for the metric on the complex structure moduli space. If we recall the definition
of the ba in equation 1.44, we see that after some rearranging this metric can be written as

Kab̄ = −
∫
X6

χa ∧ χ̄b̄∫
X6

Ω ∧ Ω̄
. (1.66)

It turns out that this metric on the moduli space in fact is itself Kahler! To see this, we
show how it can be obtained from a Kahler potential. In the process we can begin to see
the relationship between the complex structure and the holomorphic three-form Ω. Under
changes of complex structure we have that Ω, which starts out life as a (3, 0)-form, will
generally not remain of type (3, 0). Instead, if we decompose Ω with respect to the new
complex structure we generically expect it to have components along other parts of the new
Hodge decomposition of H3. Turning this on its head, we find that the holomorphic (3, 0)-
form will have to change inside H3 if it wishes to remain of type (3, 0) under changes of
complex structure. These ideas are quantified by the so-called Kodaira formula15

∂taΩ = kaΩ + χa, ka = ka(t
a), χa ∈ H2,1, (1.67)

14Intuitively, this appears because of the integral over the compact manifold in the term R(4) ∧ ∗616.
15As we shall see shortly, the holomorphic (3, 0)-form can be interpreted as a section of a line bundle

over the moduli space. Viewed in this light, the somewhat heuristic equation 1.67 should be interpreted as
evaluating the canonical connection on that bundle in a given frame.
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where ka is a function of the moduli and χa are moduli-independent elements of H2,1. As a
corollary of the proof of equation 1.67, one can also show that the χa correspond precisely
to the basis elements of H2,1 used also in (1.42). Using these facts, it is easy to show that
equation 1.66 can be obtained from the Kahler potential

K := − log

(
i

∫
Ω ∧ Ω̄

)
= − log

(
i⟨Ω, Ω̄⟩

)
, (1.68)

where we have used the symplectic pairing (1.49) to rewrite our result. Moreover, evaluating
the derivative ∂taK we also readily make the identification that ka = −∂taK. This way of
viewing Ω as a function of the moduli will be essential in the next section and will be worked
out further in chapter 3.

Branes Wrapping Cycles

As we mentioned briefly in section 1.3.4, string theory compactifications may also involve
branes. Although these states may be too heavy to be produced at low energies, the UV-
complete theory contains them and once present they will appear as sources for the p-form
gauge fields of the theory. Similarly, their dimensionally reduced counterparts will appear as
sources for the dimensionally reduced gauge fields. Of particular interest to us will be the
D3-branes. These couple directly to the Ĉ4 R-R field in 10D, from which the fields in the
four-dimensional vector sector descend.

In particular, a D3-brane wrapping a 3-cycle will span a one-dimensional curve in the
non-compact space. This curve can then be interpreted as the world-line of a particle or a
black hole which is charged under the gauge fields in (1.61). Let us assume that the world-
volume splits according to the W4 = C1 × L3 for L3 ⊂ X6 a homologically non-trivial cycle
in the Calabi-Yau and C1 ⊂ M4 the particle world-line. The resulting charges depend only
on the homology class of L3 which we may represent by its Poincare dual 3-form. Expanding
the latter with respect to the symplectic cohomology basis (1.50) we therefore schematically
write L3 ∼ pIαI − qIβ

I , where q := (pI ,−qI)
T is the so-called charge vector. We can then

dimensionally reduce the Chern-Simons term∫
C1×L3

Ĉ4 =

∫
C1

∫
L3

(
AI ∧ αI − VI ∧ βI

)
=

∫
C1

∫
X6

(
AI ∧ αI − VI ∧ βI

)
∧
(
pIαI − qIβ

I
)

=

∫
C1

pIVI − AIqI =

∫
C1

(AI ,−VI)η(p
I ,−qI)

T .

(1.69)

This derivation should be taken with a grain of salt. The reason is the self-duality of Ĉ4,
which means that half of the degrees of freedom above are redundant. However, the self-
duality relation becomes a non-local integral relation on the gauge fields AI and VI so that
we cannot impose it at the level of the action here. In the next section we will see that the
fields F I and GI correspond to electric and magnetic fields, so that a D3-particle with charge
vector (pI ,−qI)

T has electric charge qI and magnetic charge pI (see also appendix A).

A final very important property of these wrapped branes is that their mass depends on
the volume of the cycle they wrap. Intuitively, this can be understood by noting that the
resulting mass is obtained by integrating the brane tension over the world-volume of the
brane. This can be made precise by explicitly performing the dimensional reduction for
the brane action, which we have omitted here. Unlike their charge however, this is not a
topological property, in that it depends on the particular representative the brane wraps
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in its homology class. Nevertheless, for so-called special Lagrangian cycles [14, 15], which
minimize the volume in their respective homology class, the resulting volume, and hence
particle mass, can be computed explicitly and is given by [16]

M2 =

∣∣∫
L3 Ω

∣∣2∫
X6

Ω ∧ Ω̄
= eK

∣∣∣∣∫
L3

Ω

∣∣∣∣2 = eK |⟨Ω,q⟩|2, (1.70)

from which we explicitly see that the mass depends on the moduli za.16 More generally,
this expression is a lower bound on the mass of a D3-particle. These states are special for
another reason. Like the branes they descend from, they are BPS states, meaning that they
preserve half of the supersymmetry of the EFT (equivalently are annihilated by half of the
supersymmetry generators). While a thorough discussion of such BPS states is beyond the
scope of this thesis, this does allow us to import various supergravity results and apply them
to our D3-particles, something which we will do in chapter 4.

1.6 Vectors, Duality, and Special Geometry

So far we have mostly considered the scalar and vector parts of the action separately. Nev-
ertheless, it should not come as a surprise that these sectors are deeply intertwined through
supersymmetry. In particular, the structure of the gauge sector imposes constraints on the
scalar manifold. While we have already seen that the latter is Kahler, it turns out that we can
in fact say more and the resulting geometry is known as special Kahler geometry. To define
it we will first introduce the notion of electric-magnetic duality, specifically in the context of
the N = 2 vector sector, and highlight the underlying symplectic structure of the theory. We
then define special geometry in a way that highlights the role of this symplectic structure.
To emphasize the bottom-up approach we take in later chapters, the material in this section
will take a more general supergravity perspective, in that we do not specialize the discussion
to theories obtained from Calabi-Yau compactifications. We will however comment on how
these structures emerge in this particular setting.

1.6.1 Electric-Magnetic Duality

Electric magnetic duality is a powerful and rather general feature of gauge theories. In
its simplest form it is an observation about the symmetries of Maxwell’s equations under
interchange of electric and magnetic fields. Indeed, given the basic Maxwell action

S =

∫ (
− 1

2e2
F2 ∧ ∗F2

)
, (1.71)

the Maxwell equations (without sources) read17

d

(
1

e2
∗ F2

)
= 0,

1

2π
dF2 = 0. (1.72)

16Let us take this opportunity to make an important general remark regarding the Planck mass. Eventually
we will be interested in D3-particles which become light relative to the Planck mass. Just as in the circle
compactification examples, the four-dimensional Planck mass depends on the over-all volume of the Calabi-
Yau. In type IIB Calabi-Yau compactifications, this is determined by the Kahler moduli, which decouple
from the vector sector we consider. As such, we are free to assume the Planck mass to be fixed as we vary
the complex structure moduli and it suffices to study the mass (1.70).

17Although this factor will not play a role in this section, we include a normalizing factor of 2π to match
the conventions of chapter 2. See also A for our conventions on flux quantization.
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These Bianchi identities tell us that F2 is closed and hence, by Poincaré’s Lemma, locally
exact18. This is nothing more than the statement that we can introduce a gauge field F2 = dA1

which, up to gauge redundancy, describes the true dynamical degrees of freedom of the theory.
However, in absence of electric sources, the same is true about 1

e2
∗ F2. One may therefore

be tempted to introduce a “dual” field strength

G2 :=
2π

e2
∗ F2, (1.73)

which therefore satisfies its own Bianchi identity so that it can be written in terms of a
“dual” gauge field G2 = dV1. The resulting symmetry of the equations of motion under
the exchange of G2 ↔ F2 suggests the possibility of a dual description where G2 assumes
the role of the fundamental electromagnetic field strength. Indeed, we can explicitly obtain
such a dual description by what is essentially a Legendre transform. To this aim, we forget
the Bianchi identity for F2 so that it becomes an arbitrary 2-form field and reinstating it
via a Lagrange multiplier V1 (this should be reminiscent of the manipulations we performed
between equations 1.59-1.61)

S =

∫ (
− 1

2e2
F2 ∧ ∗F2 −

1

2π
dF2 ∧ V1

)
. (1.74)

Integrating out V1 can be done exactly, both classically as well as quantum mechanically: V1

enters algebraically and is hence non-dynamical. Performing the path integral over V1 yields
a delta-function that enforces dF2 = 0, which simply takes us back to our original theory
where F2 can be expressed in terms of a dynamical gauge field A1. Alternatively, one may
choose to integrate out F2 instead. Notice that in this case, the Lagrange multiplier may
be integrated by parts to read

∫
F2 ∧ dV1. We find that like V1 did before, F2 now enters

algebraically and moreover quadratically in the action. Just as we could integrate out V1

exactly, we can also perform the Gaussian integral over F2 exactly. For future reference we
note that this is equivalent to solving the equations of motion for F2 (note that we consider
variations of F2 rather than the non-existent gauge field A1)

F2 = − e2

2π
∗ dV1, (1.75)

and inserting this into the action to obtain

S =

∫ (
− 1

2ẽ2
G̃2 ∧ G̃2

)
, (1.76)

where we have introduced the field strength G̃2 = dV1 for V1 and the “dual” gauge coupling
ẽ = 2π/e. As promised, we have obtained a dual description of the original Maxwell theory
in terms of the dual field strength (1.73). Indeed, solving equation 1.75 for G̃2, we find that
it coincides exactly with the dual field strength G2 introduced above.

Interestingly, we find that the dual description has a coupling constant related to the
original by e → 2π/e. In particular, this means that it interchanges strongly and weakly
coupled descriptions of the theory. This makes it an example of a so-called S-duality (with

18We emphasize the importance of the word locally here. As we shall explore at length in chapter 2, many
of the most interesting phenomena in gauge theory exist only on backgrounds with non-trivial topology, be
it due to the presence of charges or due to the intrinsic spacetime geometry, where closedness of F2 does not
imply exactness. This is particularly true of abelian gauge theories, whose “field space” has a particularly
simple topology.



30 1. Type IIB Compactification

the S referring to strong in strong coupling). While this duality was rather easily shown to
be exact for free Maxwell theory, it is a highly non-trivial fact about supersymmetric gauge
theories that they often admit such dualities even for interacting non-abelian theories. In line
with our general rule that supersymmetric theories are generally under greater computational
control, exact dualities are often only provable for theories with enough supercharges. In fact,
the conjectural Seiberg duality in four-dimensional N = 1 Yang-Mills theory does not even
claim to be an exact duality, but rather states that both theories flow to the same theory
in their respective infrared limits. Nevertheless, having a weakly coupled description of a
strongly coupled interacting gauge theory is an incredibly powerful tool to have and it is one
of the primary motivations for studying such supersymmetric gauge theories.

In the following sub-section, we will see how electric-magnetic dualities play out for the
vector multiplet sector of four-dimensional N = 2 supergravity. Indeed, just as in the case of
Maxwell theory, the gauge fields admit a similar duality structure. However, unlike in non-
abelian gauge theory, its main purpose is not to probe the strongly coupled physics of the
theory. Instead, the power of electric-magnetic duality comes from the fact that the gauge
couplings are now functions of the scalars in the theory. A full duality transformation should
account for this fact and consequently intertwines the geometry of the scalar manifold with
the duality structure of the gauge vectors. Understanding the resulting duality structure will
serve us well when we come to discuss the symmetries of these theories in chapter 4.

1.6.2 Duality in Supergravity

Recall from section 1.5.2 that the action for the vector fields in N = 2 supergravity is given
by

S =

∫ (
1

2
ImNIJF

I ∧ ∗F J +
1

2
ReNIJF

I ∧ F J

)
. (1.77)

The detailed properties of the coupling matrix N will not be important to us here, but
we emphasize that it should be symmetric with negative-definite imaginary part and may
generically depend on the complex structure moduli zi. The equations of motion for this
action are given by

d(ImNIJ ∗ F J +ReNIJF
J) = 0, dF I = 0. (1.78)

In our discussion of duality in Maxwell theory we restricted our attention to the basic Z2

duality that exchanged the electric and magnetic fields. It turns out however, that the story is
slightly richer [17]. Making the full extent of this structure explicit, requires the introduction
of some auxiliary fields. Following [18,19], let us start by splitting the degrees of freedom of
the gauge fields into imaginary (anti-)self-dual parts as follows

F I
± =

1

2
(F I ± i ∗ F I), ∗F I

± = ∓iF I
±, F I = F I

+ + F I
−. (1.79)

The action can then be rewritten as follows

S =

∫ (
1

2
NIJF

I
− ∧ F J

− +
1

2
N̄IJF

I
+ ∧ F J

+

)
=

∫
Re
(
NIJF

I
− ∧ F J

−
)
.

(1.80)

Next, we will introduce the dual field strength GI , whose closedness will correspond to the
equation of motion for AI . Let us therefore define

G−
I :=

δS[F−, F+]

δF I
−

= NIJF
J
−, G+

I :=
δS[F−, F+]

δF I
+

= N̄IJF
J
+. (1.81)
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By (anti-)self-duality of F I
±, these fields can again be thought of as the (anti-)self-dual parts

of a dual field strength GI , given by

GI = G−
I +G+

I = 2ReG−
I = 2ReNIJF

J
− = ImNIJ ∗ F J +ReNIJF

J . (1.82)

As promised, we see that we can identify the equations of motion of F I with a Bianchi
identity for the dual field GI . The action can now be rewritten entirely in terms of the
self-dual components F I

−, G
−
I as

Svec =

∫
Re
(
F I
− ∧G−

I

)
, (1.83)

however we stress that F− and G− are not independent but strictly related via (1.81). The
equations of motion can similarly be rewritten as

d(ReG−
I ) = 0, d(ReF I

−) = 0. (1.84)

As an aside we note that the same equations hold for the anti-self-dual fields F+ and G+.
Written in this way it is clear that it may be possible to rotate the two fields F− and G−

into each other while preserving the equations of motion of the theory. We formalize this by
introducing the a vector (F−,−G−)T and subjecting it to general rotations as(

F ′
−

−G
′−

)
= S

(
F−
−G−

)
=

(
A B
C D

)(
F−
−G−

)
=

(
A B
C D

)(
F−

−NF−

)
=

(
(A−BN )F−
(C −DN )F−

)
,

(1.85)
where we have used the relationship 1.81 to rewrite G− in terms of F−. It is clear that
for any real, constant, invertible matrix S ∈ GLn(2n,R), the transformed vector satisfies
equivalent equations of motion as the old one (i.e. the transformation (1.85) maps solutions
to solutions). This is only part of the story, however. Firstly, we should recall that the actual
equations of motion of the system were given by equation 1.78. The equations

d(ImNIJ ∗ F J +ReNIJF
J) = 0 ⇔ dGI = 2d(ReG−

I ) = 0, (1.86)

were only equivalent because of the relationship (1.81) between F− and G−. However, ap-
plying a generic rotation of the form (1.85) to the action (1.80) need not lead to a similar
relationship between the transformed vectors F ′

− and G
′−. It then follows that for the trans-

formed equations of motion to actually be the same as the old, the transformed fields should
exhibit this same relationship. To see when this is the case, we consider how the action
transforms under arbitrary transformations (1.85). Note that because we are looking for a
duality rather than a symmetry, we should allow for a non-trivial transformation of the gauge
kinetic matrix N → N ′, just as we transformed e2 → 1/e2 in the case of Maxwell theory.
This leads to

S → S ′ =

∫ (
1

2
N ′

IJF
′I
− ∧ F

′J
− +

1

2
N̄ ′

IJF
′I
+ ∧ F

′J
+

)
=

∫ (
1

2
N ′

IJ((A−BN )F−)
I ∧ ((A−BN )F−)

J +
1

2
N̄ ′

IJ((A−BN̄ )F+)
I ∧ ((A−BN̄ )F+)

J

)
(1.87)

We then demand that we obtain G′− by varying with respect to F
′I
− . Using the transformation

(1.85) for G
′−, we then obtain the condition that

G′− = −(C −DN )F−
!
=

δS ′[F ′
−, F

′
+]

δF ′
−

= N ′(A−BN )F−. (1.88)
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From this we conclude that the kinetic matrix N must transform as

N → N ′ = −(C −DN )(A−BN )−1. (1.89)

Note that in order to derive the variation 1.88 we assumed that the matrix N ′ was again
symmetric. This is non-trivial and indeed restricts the form of S we can allow. A brief
computation reveals that we require

ATC = CTA, DTB = BTD, ATD − CTB = 1. (1.90)

Matrices of the form above define an element of the symplectic group Sp(2nV + 2,R). In
principle, this is the duality group for the vector fields in nV vector multiplets. There is
a further restriction, however, related to the scalar fields in the vector multiplets. Indeed,
unlike in the simple Maxwell theory considered above, we are not free to arbitrarily transform
the kinetic matrix N as it depends on the scalar fields. For the new theory to be equivalent
to the old we then demand that the transformation of N above is induced by an appropriate
transformation of the scalars. In particular, we require the new theory to again have N = 2
supersymmetry, which means that the transformed scalar action should again be of the form∫

Kab̄dz
a ∧ ∗dz̄b̄. (1.91)

These transformations are nothing but the diffeomorphisms of the scalar manifold. Hence,
for the a given S ∈ Sp(2nV + 2,R) to be a duality of the full theory, we require that the
corresponding transformation of the kinetic functions is induced by a diffeomorphism of the
scalar manifold. More precisely, we should have a homomorphism

ι : Diff(M) → Sp(2nV + 2,R), (1.92)

such that for a given diffeomorphism ξ : M → M, the vector sector transforms covariantly
according to [18]

za → ξ(za),

V → ι(ξ)V,

N (za) → N ′(za) = N (ξ(za)),

(1.93)

with N ′ given by (1.89).

Duality from Calabi-Yau Compactification

In the following sub-section we will show how these covariance properties are encoded in the
geometry of the scalar manifold M. In particular, we will see that the existence of certain
compatible structures on M, required by supersymmetry, will allow us to lift the action of ξ
to the full vector multiplet sector of N = 2 supergravity. Before we do so however, let us first
briefly discuss how the duality structure is realized in the Calabi-Yau compactification we
performed in section 1.5.2. In fact, while the origin of the symplectic duality transformations
is somewhat subtle in the more general supergravity setting, they become rather obvious in
the Calabi-Yau setting. Indeed, recall that in section 1.5.1, we defined the fields F I and GI

as the Kaluza-Klein zero-modes of the ten-dimensional field strength F̂5

F̂5 = F I ∧ αI −GI ∧ βI + . . . . (1.94)

The self-duality of the latter gave us a relationship between these two field strengths, which
we used to obtain a description only in terms of F I . Notice however, that the very definition
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of the fields F I and GI depends on the symplectic basis (αI , β
I) we choose for H3(X,C). This

choice is essentially arbitrary however, and any other symplectic basis would have given us
a perfectly equivalent lower-dimensional theory. The duality structure which we deduced by
studying the equations of motion then follow readily by considering how the low-energy action
transforms under symplectic transformations of this basis. In particular, the non-trivial du-
ality transformation (1.89) of the kinetic matrix NIJ follows directly from the transformation
properties of the matrix (1.56) under symplectic changes of basis.

1.6.3 Special Kahler Geometry

As we have seen in section 1.5.2, the scalar manifold of the scalars in the vector multiplets
we obtained from Calabi-Yau compactification was a Kahler manifold. It turns out that
this is a general fact about four-dimensional theories with eight supercharges, irrespective of
whether we derive it from a Calabi-Yau compactification. In fact, supersymmetry places much
stronger conditions onM than this. Indeed, it is well-known that supersymmetry requires the
scalar field spaces of four-dimensional N = 2 supersymmetric theories to be special Kahler.
The aim of this section is to introduce this notion and show how it leads to the construction
from equation 1.93. There are many equivalent definitions, each of which emphasize different
aspects. The traditional definition is in terms of a so-called pre-potential. It states that
the Kahler manifold M comes equipped with a set of homogeneous coordinates19 XI(zi) for
I = 0, . . . , nV and a holomorphic pre-potential F (XI), that is homogeneous of degree 2 in
the XI , such that the Kahler potential on M is locally given by

K(z, z̄) = − log i
(
X̄ Ī∂IF (X)−XI∂ĪF̄ (X̄)

)
. (1.95)

It is a well-known fact that the existence of a pre-potential is in fact not a frame independent
notion, that is, it depends on the duality frame we choose for a given theory. Instead, we
choose to give a more geometric definition [20], which we will in the end relate back to the pre-
potential formulation given above. Let us emphasize that the goal here is not a full top-down
derivation of special Kahler geometry, but rather cast the definition in its natural geometric
setting, and show how it leads to the duality structure of the vector multiplets.

Before we can define what a special Kahler manifold is we need one preliminary definition.
A Kahler manifold M is a Hodge manifold if and only if there exists a holomorphic line
bundle L → M such that its first Chern class equals the cohomology class of the Kahler
2-form K := i

2π
∂∂̄K

c1(L) = [K]. (1.96)

The condition that the scalar manifold M be Hodge is easiest to understand from the per-
spective of N = 1 supergravity. In this context, the significance of this bundle comes from
the fact that the N = 1 supergravity action is uniquely fixed by specifying a globally defined
holomorphic section of this line bundle, which is referred to as the superpotential of the the-
ory. While a discussion of N = 1 supergravity is beyond the scope of this thesis, we point out
that any N = 2 supergravity theory should be consistent with all constraints arising from
the N = 1 theory as we can obtain the latter by simply ignoring half of the supercharges.
Hence we should demand that our scalar manifolds are also Hodge. For our present purposes
however, this property encodes the geometry of M (via the Kahler form K) in the bundle
L. In particular, L carries a canonical connection ∂K = ∂aKdza whose curvature is just the
Kahler form on M representing its first Chern class.

19Recall that homogeneous coordinates on a projective space of dimension n are a set of n+1 coordinates,
which are defined up to an over-all rescaling by a non-vanishing constant.
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The second ingredient of special Kahler geometry is the symplectic structure required by
the duality structure of the vector sector. The natural language to lift scalar diffeomorphisms
to symplectic transformations is to view them as arising from transition functions of a sym-
plectic bundle over the moduli space M. The fact that the transition functions are constant
(with respect to the moduli) means that we have a flat vector bundle. Hence we demand
that the moduli space admits such a rank 2nV + 2, flat vector bundle V → M. The map
ι from equation 1.93 is then obtained by pulling back the frame of this bundle by ξ, which
induces a symplectic transformation on the fiber. Moreover, we have that it is endowed with
a canonical symplectic pairing which is preserved by the structure group. By analogy with
equation 1.49, we denote this pairing ⟨·, ·⟩.

Special geometry arises when we simultaneously consider both of these structures. To
this aim, we consider the tensor product bundle H = V ⊗ L whose sections can generically
be written as

Π =

(
XI

−FI

)
, I = 0, . . . , nV . (1.97)

The transition functions between two local trivializations Ui, Uj ⊂ M of L and V respectively
take values in

efij(z) ∈ C, Sij(z) = Sij ∈ Sp(2nV + 2,R), (1.98)

where we emphasize that L is holomorphic, while the transition functions on the flat bundle
V are constant. Sections of H then transform as

Πi(z) = efij(z,z̄)SijΠb(z). (1.99)

The definition of special Kahler geometry is now phrased in terms of the compatibility of
these two structures.

A Hodge-Kahler manifold M is called special Kahler if the bundle H admits a globally
defined holomorphic section Π(za) that satisfies

⟨Π,∇aΠ⟩ = ⟨Π, ∂aΠ⟩ = 0, K = − log
(
i⟨Π, Π̄⟩

)
, (1.100)

where ∇iΠ denotes the covariant derivative with respect to the canonical connection
on L

∇aΠ := (∂a + ∂aK)Π =

(
∇aX

J

−∇aFJ

)
, (1.101)

and the first equality in equation 1.100 follows from the anti-symmetry of the symplectic
pairing.

Let us start by presenting a few remarks

• Firstly, note that K is manifestly invariant under transition functions of the symplectic
bundle.

• Conversely, we have that transition functions in L correspond precisely to Kahler trans-
formations of M. Indeed, under Π → e−fΠ, it follows that

K(z, z̄) → K ′(z, z̄) = − log(i⟨Π, Π̄⟩e−f−f̄ ) = K(z, z̄) + f(z) + f̄(z̄). (1.102)

• A number of other useful identities follow readily from equation 1.100, of which we only
give the relationship of Π to the Kahler metric on M

Kab̄ = −i⟨∇aΠ,∇b̄Π̄⟩eK . (1.103)
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• While for our purposes, the section Π will allow us to derive a manifestly covariant
kinetic matrix N , it should be noted that the special geometry, as defined above, can
equivalently and more directly be obtained as a condition imposed directly on the
Kahler metric and its derived curvature/Weyl tensors [16]

Rab̄cd̄ = Kab̄Kcd̄ +Kad̄Kcb̄ − CacēC̄b̄d̄ēK
eē. (1.104)

It can be shown that this equation follows from the holomorphic section Π(za) and
equation 1.103.

Special Kahler Geometry from Calabi-Yau Compactification

The structures encountered above arise naturally in Calabi-Yau compactifications. We will
revisit the geometry of Calabi-Yau moduli spaces in chapter 3, but we can already comment
on the relevant identifications here. In particular, we shall see that the middle cohomology
H3(X6,C) becomes the fiber of a flat symplectic vector bundle over the moduli space which
inherits its symplectic structure from the pairing (1.49). From our discussion around equation
1.67 it follows that the harmonic (3, 0)-form Ω depends on the moduli and can be viewed as
a section of this bundle. The transition functions on this bundle naturally capture the fact
that Ω is defined only up to rescaling. Its span inside H3 traces out a line bundle L. When
expanded with respect to a symplectic 3-form basis the components of Ω define the so-called
period vector

Π(z) :=

( ∫
AI

Ω

−
∫
BI Ω

)
≡
(

XI

−FI

)
, (1.105)

which corresponds to the holomorphic section required by special geometry. The condition
that the Chern class of L is represented by the Kahler form on M can be viewed as the
definition of the latter, and one checks that this yields the metric from section 1.5.2.

Duality from Special Kahler Geometry

As promised, the holomorphic section Π will allow us to construct a kinetic matrix N that
transforms according to (1.85) for S ∈ Sp(2nV + 2,R). To this aim, we define a (2nV + 2)×
(nV + 1) matrix (

X̄I DaX
I

−F̄I −DaFI

)
, (1.106)

whose columns manifestly transform as symplectic vectors. Indeed, by virtue of the fact
that Π was a section of the symplectic bundle V , the covariant derivatives DiΠ are likewise
sections of this bundle. If we further assume that

(
X̄I DaX

I
)
is invertible, we can define

the gauge kinetic matrix as

N̄IJ =
(
F̄I DaFI

) (
X̄J DbX

J
)−1

, (1.107)

which manifestly transforms as (1.89) under diffeomorphisms of the scalar manifold.20 Though
it is clear that (1.107) transforms appropriately, it is not at all obvious that it is a well-defined

20While the equation above clearly has the desired properties, its definition in terms of a frame may
be unsatisfactory. For a more global perspective [21], we note that any choice of N is defined by a map
µ : MSK → Sp(2nV + 2,R)/U(nV + 1). In the Calabi-Yau setting, this essentially corresponds to the
fact that N is determined by the matrix −ηM (1.63), which we noted is Sp(2nV + 2,R)-valued. This
correspondence is not unique and N is invariant under an appropriate U(nV + 1)-action on M. Moreover,
the map µ is uniquely obtained from the so-called period map, which for our purposes encodes the period
vector discussed here (but see also chapter 3, or [3]).
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kinetic matrix. In particular, it is not obvious that it is symmetric with negative-definite
imaginary part, nor is it obvious that

(
X̄I DaX

I
)
is invertible. Nevertheless, all three of

these facts follow directly from equations 1.100 and 1.103 and ultimately boil down to the
statement that the Kahler metric is positive-definite and symmetric [19]. Finally, although
we do not show it here, one can use the Kodaira formula (1.67) and the properties of the
Hodge star on Kahler manifolds to show that evaluating equation 1.107 with the period
vector (1.105) leads to the same kinetic function we derived in section 1.5.2.

Special Coordinates

Finally, we would like to close this sub-section by discussing a special set of coordinates on the
scalar manifold M which allow us to make contact with the more conventional pre-potential
formulation mentioned earlier. Recall that the transition functions on L act homogeneously
on Π, such that in particular XI → e−f(z)XI , where e−f(z) is nowhere vanishing. By analogy
with the homogeneous coordinates found on projective spaces, we can then view the XI as a
set of nV + 1 homogeneous coordinates on the nV -dimensional space M, provided that the
vielbein

eji (z) = ∂i(X
j/X0), i, j = 1, . . . , nV , (1.108)

is invertible. In this case we can write FJ(z) = FJ(X(z)). Expanding the first part of
equation 1.100 into components, it follows that

0 = ⟨Π, ∂iΠ⟩ = XI∂iFJ − FJ∂iX
I = 0. (1.109)

Combining these two facts, we obtain that

XI∂IFJ(z) = FJ(X). (1.110)

The most general solution to this equation is that FJ(X) is the derivative of some homoge-
neous function of degree 2, i.e.

FJ(X) ≡ ∂JF(X). (1.111)

It follows that given this function, the Kahler potential is given by

K = − log i
(
X̄I∂IF(X)−XI∂ĪF̄(X̄)

)
, (1.112)

as promised in the introduction to this section. It can then be shown that equation (1.107)
can be expressed in terms of the pre-potential as

NIJ = F̄IJ + 2i
ImFIKX

KImFJLX
L

ImFMNXMXN
. (1.113)

1.6.4 Symmetries and Charges

So far we have discussed the duality structure of N = 2 supergravity. This is to be distin-
guished from the symmetries of these theories. Indeed, while the combined transformation
(1.93) preserves the equations of motion, it generically need not leave the action itself invari-
ant. The sub-set of the transformations (1.93) that do leave the action invariant are genuine
global symmetries of the theory.

To identify such symmetries, let us first consider the vector part of the action. Under
symplectic transformations, we find that the action (1.83) transforms as

S → S ′ =

∫
Re
[
(ATD − CTB)I

J
F I
− ∧G−

J − (ATC)IJF
I
− ∧ F J

−

+ 2(CTB)JIF
I
− ∧G−

J − (BTD)IJG−
I ∧G−

J

]
.

(1.114)
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The first term above reduces to the original action by virtue of the fact that ATD−CTB = 1.
The fate of the second term depends on whether one considers a classical theory or a quantum
theory. In case of the former, we simply have to note that ReF I

− ∧ F J
− = 1

2
F I ∧ F J , which

is a total derivative and can therefore be discarded (ignoring possible boundary effects).
Quantum mechanically, the situation is more subtle and we will revisit it shortly when we
consider the role of charges.

As for the other two terms however, they in general vanish only if B = 0. Moreover, while
every symplectic matrix with B = 0 leaves the vector action invariant, the scalar diffeomor-
phism that induces it need not leave the scalar action invariant. In particular, we find that in
order to leave the scalar sigma-model invariant, we require that this diffeomorphism is in fact
a isometry of the Kahler metric. Based on this, we can identify the classical global symmetry
group as a sub-group of the maximal duality-group Sp(2n,R) defined by the conditions that
B = 0 and that it is generated by an isometry of the scalar manifold M, i.e.

Sp(2nV + 2,R)|B=0 ∩ ι(Iso(M)) ⊂ Sp(2nV + 2,R), (1.115)

with ι the homomorphism (1.93).

Charges

As mentioned, the question of which dualities survive to the full quantum theory is more
subtle. The problem lies in the combination of Dirac quantization and the path integral.
While we will revisit this point in later chapters, we can already introduce the main idea. In
its simplest form, Dirac quantization states that in a theory with both electric and magnetic
charges, these charges should satisfy the so-called Dirac quantization condition. In particular,
for a single U(1) gauge field, with electric and magnetic charges ne and nm, we have that

nenm = 2πZ. (1.116)

More generally, these charges are measured by the flux integrals∫
S2

(
F I

GI

)
=

(
nI
m

ne
I

)
, (1.117)

whose quantization is preserved under symplectic transformations with integral entries. If we
wish for the dualities discussed above to be dualities, or even symmetries of the full theory,
we therefore find that the discussion of the preceding sections should really be restricted to
the discrete sub-group Sp(2nV + 2,Z) ⊂ Sp(2nV + 2,R).



Chapter 2

Generalized Global Symmetries and
the Swampland

In our endeavor to connect string theory to phenomenologically relevant four-dimensional
physics we were able to catch a glimpse of the vast landscape of string theory vacua. Indeed,
despite string theory being essentially unique in the UV, the journey down to the IR intro-
duces an enormous amount of freedom for low-energy model building. The latter typically
involves an expansion around a consistent background, but as we have seen such a choice is
far from unique.

While the choice for a Calabi-Yau background constrains the space of possibilities, there
remain a huge number of different Calabi-Yau manifolds. Moreover, we saw that any partic-
ular choice of Calabi-Yau manifold typically introduces a large number of moduli fields, i.e.
massless scalar fields. Physically, such fields would lead to new long-range forces which have
not been observed so that any realistic string theory model should include a mechanism which
stabilizes these moduli. This is typically done by turning on non-trivial background fluxes for
the other fields in the theory, which generically induces a potential for the moduli fields. For
a particular choice of Calabi-Yau one is then left with a discrete set of so-called “flux vacua”
and estimates for the number of such vacua for a typical Calabi-Yau compactification run
into the order of 10500 [22]. These along with other observations were some of the original
motivations for string theorists to embark on the swampland program. In this chapter we
will begin to explore concretely some of these ideas, by giving an overview of some of the
most important swampland conjectures.

The goal of this chapter will be two-fold. The first will be to develop some familiarity with
the most important swampland ideas, which will be the topic of section 2.1. The second is
to give a reasonably self-contained introduction to generalized global symmetries. Our focus
will be rather narrow in this respect, focusing in particular on so-called higher-form global
symmetries in abelian gauge theories. These will be most relevant to us, but also provide
a relatively simple setting in which to illustrate the basic ideas. Starting in section 2.2,
we will first review ordinary global symmetries in quantum field theory from a perspective
more amenable to generalization. In section 2.3, we will then introduce higher-form global
symmetries by means of various (suggestive) examples which will serve to illustrate the basic
ideas. In section 2.4, we discuss further generalizations to this theme, though not at the same
level of detail as before. Finally, in section 2.5, we will revisit the swampland and discuss how
generalized global symmetries have made an impact in this area, eventually setting up for our
own application of these ideas in the type IIB EFTs introduced in the previous chapter.



2.1 A Tour of the Swampland 39

2.1 A Tour of the Swampland

Up until now we have spoken of low-energy theories rather loosely, but to fully understand
what the swampland program is about, we should make this idea more precise. As discussed,
the modern view of quantum field theories is as effective field theories (EFTs) for a more
fundamental UV theory. In particular, a quantum field theory is not complete without
specifying a so-called cut-off scale ΛEFT, up to which the theory remains valid. It follows
that two theories with different cut-offs, but which are otherwise indistinguishable (same
fields, coupling constants etc.), are to be viewed as distinct. Of course, this is familiar even
in the more traditional view, as the renormalization group tells us that coupling constants
depend on the energy scale (e.g. the cut-off).

This “bottom-up” view of EFTs is to be distinguished from the “top-down” perspective.
Here one starts with a more fundamental UV-complete theory and successively integrates
out modes to lower the cut-off. In this case it is clear that if we increase the cut-off, we
somehow need to integrate these modes back in to remain consistent with the UV theory.
This is precisely the perspective we adopted in chapter 1, where we derived a low-energy
theory starting from string theory. Over the years, people have noticed that all effective
theories derived in this way satisfy certain commonalities which suggests that despite the
vastness of the string landscape, not every consistent quantum field theory can be obtained
in this way.

These considerations lead us to make the following distinction

The Swampland is the set of apparently consistent EFTs that cannot be embedded
in a consistent theory of quantum gravity. The Landscape are those that can.

The goal of the swampland program is to formulate a set of principles that allow us to
distinguish whether an effective theory belongs to the swampland or the landscape. These
are formulated in so-called swampland conjectures. Such conjectures typically involve, either
implicitly or explicitly, the introduction of an additional energy scale Λswamp, at which point
consistency with quantum gravity requires some modification of the theory. As we move
towards the UV and the EFT cut-off approaches and surpasses the scale Λswamp, one finds that
swampland conjectures become increasingly restrictive. This is illustrated in the figure 2.1.
It is important to emphasize the role of gravity here. In particular, swampland constraints
should disappear as the Planck mass Mpl (i.e. the energy scale of gravity) is sent to infinity.
For a typical swampland conjecture we then have that Λswamp → ∞ as Mpl → ∞. This
means that without coupling to gravity, swampland constraints need not apply.

In the rest of this section we will encounter some of the most important swampland
conjectures. The goal is not just to familiarize the reader with the conjectures that are out
there, but also to highlight how the conjectures fit together into an interconnected web.

2.1.1 No Global Symmetries

Perhaps the most well-established swampland principle is the No Global Symmetries (NGS)
conjecture, which states that
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Figure 2.1: Cartoon of the landscape, sitting inside the swampland. While a theory with a
given cut-off Λ0 may lie in the landscape, we cannot arbitrarily increase this cut-off without
modifying the theory. In this way, swampland constraints become stronger as we increase
the cut-off.

No Global Symmetries Conjecture: A consistent theory of quantum gravity can-
not have exact global symmetries.

It arguably predates much of the swampland program and simply cements the primacy
of gauge symmetries in nature. However, also from a swampland perspective do there ex-
ist compelling arguments for why global symmetries cannot occur in a quantum theory of
gravity. These arguments are bolstered by the fact that they can be made without com-
mitting to any particular UV completion, that is, independent of string theory. Indeed, one
can see the problem with exact global symmetries making only a few assumptions about
semi-classical phenomenology of any given theory of QG. The standard argument proceeds
as follows [23].

Let us assume that there exists some exact continuous global symmetry. The first part of
the argument aims to show that any such global symmetry can lead to so-called remnants,
stable left-overs of evaporated black holes. Indeed, given a global symmetry, we can construct
a black hole carrying some non-zero charge under the global symmetry by colliding charged
particles. Once formed, the black hole will emit Hawking radiation, thereby losing mass.
Hawking’s calculation shows that it will decay to some remnant black hole of O(Mpl) mass
without losing its global charge (more precisely, the radiation will on average be neutral).
We can construct remnants in arbitrarily many representations of the symmetry group by
colliding different numbers of charged particles, thus leading to an infinite number of distinct
stable charged states, all of mass below the Planck mass.

The second part of the argument seeks to show why this is a problem. Of course, having
an infinite number of states below the Planck mass sounds problematic, and indeed may
reasonably be assumed to be inconsistent, but showing that something goes wrong is rather
non-trivial. One of the strongest arguments is based on entropy considerations, and in fact it
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is possible to phrase the entire argument in terms of black hole entropy. Indeed, the no hair
theorem states that a black hole can be completely characterized in terms of its mass, angular
momentum and gauge charge. Notably, this does not include its global charge, so that an
outside observer has an infinite degree of uncertainty with respect to the microstate of the
black hole. Hence we may associate an infinite entropy to the black hole which contradicts
various entropy bounds, most notably the Bekenstein-Hawking formula [24]

SBH =
Area

4L2
P

, (2.1)

which states that the entropy should be proportional to the horizon area (i.e. finite). The
infinite entropy of the charged black holes can also be phrased in terms of the infinite rem-
nants, but the remnant argument loses some credibility as the final stages of evaporation
are likely to be strongly quantum gravitational, and hence not amenable to semi-classical
reasoning. This is a generic problem with black hole arguments, but entropy bounds provide
the most credible probe of this sort of trans-Planckian physics.

Importantly, the argument above holds only for continuous global symmetries where the
machinery of Noether’s theorem applies directly. Motivating an analogous statement about
discrete symmetries has proven more difficult. Strikingly however, it has been observed in
all manner of string theory constructions that any apparent discrete global symmetries are
in fact gauge redundancies. Moreover, the absence of discrete global symmetries is attractive
also because it allows one to connect various swampland conjectures, which is a theme we
will return to throughout this chapter.

While the NGS conjecture may appear to be a strong condition on consistent QGs, a
moments thought reveals that its IR implications are rather weak. Indeed, global symmetries
are perfectly fine at low energies, as long as they are either approximate and somehow broken
in the UV. One therefore requires full knowledge about the UV theory for one to be able to
make statements about its consistency. Many swampland conjectures can be interpreted as
a way of extending the NGS conjecture to a statement that applies directly to the IR, hence
emphasizing a bottom-up perspective of swampland constraints.

2.1.2 Completeness Hypothesis

The second pillar of the swampland program is the completeness hypothesis. In contrast with
the NGS conjecture, it is a statement about gauge symmetries. Its formulation goes back at
least to Polchinski [25] and is in part motivated by the existence of D-branes in string theory.
Its exact statement is

Completeness Hypothesis: A theory with a gauge symmetry, coupled to gravity,
must have states of all possible charges (consistent with Dirac quantization) under the
gauge symmetry.

We wish to emphasize that the fact that one can probe gauge charge from outside a black
hole means that there is no tension with the remnant argument presented above.

From a top-down perspective, with the realization that D-branes carry R-R charge came
the observation that they in fact complete the spectrum of charges for these gauge fields in
precisely the way the completeness hypothesis predicts. Moreover, this is a feature preserved
by compactification. Indeed, as we have seen, compactification of p-form gauge fields leads
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to lower-degree gauge fields, which couple to branes wrapped on cycles1. Crucially, this
conjecture includes gauge symmetries associated to higher-form gauge fields, which will be
an important observation once we come to consider generalized global symmetries in section
2.3.

With the completeness and NGS conjectures in hand we can illustrate how the swampland
conjectures interweave and combine to give new statements. Indeed, when we combine the
two conjectures, we can obtain the compactness conjecture, which states

Compactness Conjecture: All continuous gauge groups must be compact.

For instance, applied to the abelian case, it states that the gauge group can be U(1)
but not R (viewed as an additive group). The distinction between these may be somewhat
unfamiliar. The key point is that writing down the action for the gauge field only requires us
to specify the Lie algebra of the gauge group. Since U(1) and R have isomorphic Lie algebras,
one would then expect them to be described by the same action. It turns out however, that
specifying the action is not enough and a prescription for a gauge theory is only complete
once we specify the allowed charges2. For U(1) gauge theory (and compact theories more
generally) it follows that the charges are all quantized. For non-compact groups such as R
however, we can consider arbitrary irrational electric charges. Since there is no way for an
irrationally charged particle to decay into rationally charged ones, we find that a theory with
gauge group R exhibits a super-selection rule on the spectrum, which is characteristic of a
global symmetry. By the NGS conjecture, this is forbidden.

The argument above suggests another, somewhat more heuristic argument in favour of
this conjecture, which is to wonder how one could arrive at an incomplete spectrum. In
the QFT context, we can always take the masses of particles of a given charge to infinity,
decoupling them from the theory and leaving us with an incomplete, but consistent, spectrum.
In quantum gravity, this procedure will necessarily produce a black hole, which, because the
theory contains gravity, remains part of the spectrum. Of course, we may imagine a theory
where such charges were never present to begin with. However, by the argument above, this
amounts to a modification of the definition of the gauge group. In particular, a U(1) gauge
theory is defined by the existence of observables called Wilson lines

Wn(γ
1) = exp

(
in

∫
γ1

A1

)
, (2.2)

which, as we discuss in section 2.3.1, can be interpreted as infinitely massive particles that
probe the response of the gauge theory. In quantum gravity, these probe particles also
automatically probe gravity through the integral ∼

∫ √
−g, so that their inclusion (which is

likewise automatic!) will lead to the existence of charged (finitely massive) black hole states
which carry the ”missing” charge, even if we neglected to include such a charge as a field in
the theory.

The relationship between the completeness hypothesis and the absence of global symme-
tries goes much further than this however. Indeed, as we will explore in section 2.5.1, it

1While absent in the case of Calabi-Yau compactification, one might wonder what happens to e.g. gauge
fields deriving from off-diagonal metric components. Here, higher-dimensional gravitational configurations
exist [26] that appear as singular monopole solutions upon compactification. These so-called Kaluza-Klein
monopoles admit an interpretation as charged solitons which fill out the spectrum of charges.

2The interested reader may wish to consult the discussion in [23] for a more detailed review of this rather
technical fact and its swampland consequences, discussed in the next paragraph. We will briefly revisit it in
section 2.4.2.
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can sometimes be argued that the former follows from the latter. However, to understand
this, we should better understand the notion of a generalized global symmetry, which will be
developed in section 2.3.

While almost as well-established as the NGS conjecture, the completeness hypothesis need
also not lead to low-energy bounds on the theory as it makes no statement about the masses
of the charged states. These could in principle be arbitrarily heavy, in which case one would
need to have a description of the full QG theory to check its validity. To actually constrain
the spectrum of an EFT, one requires a non-trivial bound on the masses of these charges.
Indeed, this is exactly what the next conjecture does for us.

2.1.3 Weak Gravity Conjecture

The weak gravity conjecture [27] is our first example of a conjecture that serves a bottom-up
purpose. While the previous two conjectures are in a sense more so principles of quantum
gravity, this conjecture is our first true swampland conjecture in the sense that it seeks to
distinguish the (IR) swampland from the landscape. In particular, it imposes a bound on
the mass of some of the states predicted by the completeness hypothesis. However, as is
to be expected, this is intimately related to the NGS conjecture. Indeed, consider a four-
dimensional U(1) gauge theory, coupled to gravity, given by

S =

∫
X

(
M2

p

2
R ∗ 1− 1

2e2
F2 ∧ ∗F2 + . . .

)
, (2.3)

where we have made the Planck mass explicit. We implicitly fix the normalization of the
gauge fields such that their coupling to charges is controlled by integral charges (e.g. the
covariant derivative of a charged scalar is given by d+ iqA1 for q ∈ Z). Let us now consider
what happens as we take the gauge coupling e to zero. Recall that we argued that the
completeness conjecture is consistent with the black hole remnant argument by virtue of the
fact that we can measure the gauge charge of a black hole from outside its horizon. This
ceases to be the case when we take e to zero as the flux lines become weaker and weaker,
eventually vanishing completely. In this case, the argument against global symmetries kicks
in which tells us that this limit should be forbidden.

This behaviour can in fact explicitly be understood as the emergence of a global symmetry
in the limit e → 0, either as an un-gauging of the global symmetry the gauge fields once
gauged, or in terms of higher-form global symmetries, to be discussed in later sections.
These limits should therefore be forbidden, which is precisely what the second part of the
weak gravity conjecture states. With this background in mind, let us now give the statement
of the WGC, quoted from [28]

Weak Gravity Conjecture: Consider a theory, coupled to gravity, with a U(1) gauge
symmetry with gauge coupling e.

• (Electric WGC) There exists a particle in the theory with mass m and charge q
satisfying the inequality

m ≲ eqMp. (2.4)

• (Magnetic WGC) The cutoff scale Λ of the effective theory is bounded from above
approximately by the gauge coupling

Λ ≲ eMp. (2.5)
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Let us start by discussing the second part. Indeed, in light of our previous discussion,
it is the magnetic version that protects us in the limit of e → 0, as here the cut-off goes
to zero and the EFT description breaks down. Alternatively, it is a precise bound on just
how approximate we can make a global symmetry at a given cut-off Λ. As a microscopic
motivation for why the cut-off should appear in this expression, we present the following
non-rigorous argument, which emphasizes some points about EFTs and dualities which we
feel complement the theme of this thesis. To this aim, let us assume the electric WGC and
dualize to a magnetic frame. Then the electric WGC becomes a statement about the masses
mmag of the magnetic charges in the original theory, which should therefore satisfy

mmag ≲ Mp q/e, (2.6)

where we have used the dualization relation e → 1/e. By completeness of the spectrum we
may assume that q = 1. The electromagnetic field of a point-like monopole is divergent at the
location of the monopole. The EFT cut-off Λ then shields us from this region, which is likely
to be described by some UV-complete theory, so that the effective radius of the monopole is
set by R ∼ Λ−1. Computing the energy stored in the field outside this radius, one obtains

mmag ∼
Λ

e2
, (2.7)

which upon insertion in (2.6) leads to the magnetic WGC.

As for the electric part of this statement, it can most readily be understood microscopically
in terms of extremal black holes. In particular, charged black holes generically admit two
event horizons. The extremality bound tells us when these horizons coincide

MBH ≥ eqMp, (2.8)

where MBH is the mass of the black hole and q its charge. Black holes which violate this
bound have naked singularities, so that the electric WGC follows immediately from the cosmic
censorship hypothesis which forbids these.

The weak gravity conjecture, as stated above applies only to the very limited context of
a single U(1) gauge field. It admits many generalizations and refinements which attempt to
extend these observations to more complicated setups. One which is of particular interest
to us is the generalization applicable to the gauge fields encountered in the vector sector of
N = 2 supergravity. To state it, let us first generalize the notion of the physical charge of a
particle. A particle that couples to multiple gauge fields as e.g. the D3 particles introduced in
section 1.5.2 should satisfy the weak gravity conjecture with respect to its combined charge
under the gauge fields [29]. To make this precise, let us consider a particle with charge
vector q = (pI ,−qI)

T as in section 1.5.2. To construct a frame-independent expression for
the strength of its coupling to the gauge fields, let us introduce the following matrix

M =

(
−ImN − ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN −(ImN )−1

)
. (2.9)

Which we recall, corresponds to the Hodge star matrix when it is obtained from a Calabi-Yau
compactification. The physical charge of the particle is then defined as

Q2
q :=

1

2
qTMq. (2.10)

The weak gravity conjecture in this case then states that [29]
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WGC for Multiple Gauge Fields: There should exist a particle with mass m and
physical charge Q, such that

Q2M2
p ≥ m2. (2.11)

2.1.4 Swampland Distance Conjecture

The swampland distance conjecture [30] is of a somewhat different flavour from the ones
discussed so far. In particular, it is a statement about the moduli spaces one can encounter in
any EFT obtained from quantum gravity. Nevertheless, as we shall see it can be understood as
a statement about the way in which global symmetries are avoided in quantum gravitational
EFTs. The precise statement, quoted from [28], is the following.

Swampland Distance Conjecture: Consider a theory, coupled to gravity, with a
(physical) moduli space M which is parameterized by the expectation values of some
field zi which have no potential.

• Starting from any point p ∈ M there exists another point q∞ ∈ M such that the
geodesic distance between p and q∞, denoted d(p, q∞), is infinite.

• There exists an infinite tower of states, with an associated mass scale M , that
becomes exponentially light at any infinite distance limit in field space

M(q) ∼ M(p)e−αd(p,q), as d(p, q) → ∞ (2.12)

where α is some positive constant.

The first part of this conjecture can be thought of as the statement that the moduli space is
always non-compact, i.e. there always exist infinite distance limits. The second part describes
what happens as we approach such limits. In particular, it predicts an eventual breakdown
of the EFT as we can never describe an infinite number of massless particles within an EFT3.
This prediction should again be understood as arising strictly from quantum gravitational
consistency. Indeed, from a quantum field theory perspective, there is nothing wrong with
infinite distance limits, which although unreachable certainly need not necessarily lead to a
breakdown of the EFT as they are approached.

Of course, we have already encountered a manifestation of this conjecture in the context
of Kaluza-Klein compactification in section 1.3.2. There we discovered a modulus ϕ parame-
terizing the compactification radius. We found that its field space metric was given by 1

3
ϕ−2

so that the geodesic distance from the reference point ϕ = 1 to the point ϕ = ∞, computed
by

d(1,∞) =

∫ ∞

1

√
1

3
ϕ−2 dϕ =

1√
3
log(∞) (2.13)

is infinite4, hence satisfying the first part of the conjecture. Moreover, recall that the mass
of the KK modes was inversely proportional to the radius-squared, which is given by R2

0ϕ
2/3.

3This intuition is made precise by the species bound [31], which we do not discuss here. Rather we take
for granted the fact that the SDC predicts a breakdown of the EFT.

4As a word of caution, we remark that only in this simple one-dimensional moduli space are we able to
readily identify the relevant geodesic to show that the distance to ϕ = ∞ is infinite along any path. In
general, identifying points of infinite distance is much more difficult as it is essentially a statement about all
paths to a given point.
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Thus we have that for the mass-scale of the Kaluza-Klein tower

MKK(ϕ) ∼
1

R2(ϕ)
∼ 1

R2(1)ϕ2/3
∼ MKK(1)ϕ

−2/3 ∼ MKK(1)e
− 2√

3
d(1,ϕ)

, (2.14)

where we see that the exponential scaling emerges due to the non-trivial field space metric
1
3
ϕ−2.

The computation above also reveals a second point of infinite distance, namely that at ϕ =
0, corresponding to a vanishing compactification radius. In this limit, the Kaluza-Klein states
become infinitely massive. This illustrates how the distance conjecture is really a statement
about quantum gravity. It is clear that from a quantum field theory perspective, there is
no reason to suspect any sort of EFT breakdown as we approach ϕ → 0, rather we simply
approach a strictly four-dimensional theory. However, had we obtained this theory from string
theory we would have encountered a second tower of massless modes, which are precisely the
winding modes discussed in section 1.3.4. In fact, for a simple circle compactification it is
not hard to show that the resulting modes in fact become exponentially light in the field
distance, as predicted by equation 2.12. Indeed, this is the deeper evidence in favour of the
SDC as framed above.

As promised, we now illustrate how the SDC can be viewed as a way of protecting a QG-
consistent EFT from the emergence of global symmetries. Indeed, consider the behaviour of
the scalar kinetic term ∫ (

−1

6
ϕ−2dϕ ∧ ∗dϕ

)
, (2.15)

as we approach the limit ϕ → ∞. Were it not for the non-trivial field-space metric, this theory
would have a shift-symmetry ϕ → ϕ+ c for constant c. However, the factor of ϕ−2 explicitly
breaks this symmetry. Nevertheless, as we take the background value ϕ0 to be larger and
larger, the metric approaches a constant and becomes insensitive to small variations around
ϕ0

1

(ϕ0 + δϕ)2
∼ ϕ−2

0 −O(ϕ−3
0 ). (2.16)

We see that the theory develops an approximate global shift symmetry which becomes exact
in the limit ϕ → ∞. The SDC prevents this by shielding us from such regions of field space.
In fact, there is a second manifestation of this effect in the Kaluza-Klein model. Although
we did not discuss it in much detail, we saw that the Kaluza-Klein gauge field had a kinetic
term of the form ∫ (

−1

2
ϕF2 ∧ ∗F2

)
. (2.17)

By comparison to the standard form we therefore identify the gauge coupling e2 = ϕ−1 which
we observe is now moduli-dependent. In particular, the limit ϕ → ∞ corresponds to the
weak coupling limit, which by our discussion of the WGC is similarly forbidden. In this case,
the SDC gives us the particular mechanism by which the WGC is satisfied.

2.1.5 The Swampland: Outlook

While this concludes our first tour of the swampland, the conjectures discussed here only
scratch the surface of the swampland program. In particular we have emphasized conjectures
which we will most directly encounter in later sections. Necessarily omitted were whole
classes of conjectures that e.g. generalize and refine the conjectures presented here, but also
those that make statements about the properties of individual string vacua. In section 2.5,
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we will revisit the swampland, armed with the notion of generalized global symmetries which
we develop in the following sections. While we will expand somewhat our discussion from
the previous section, we refer the interested reader to the excellent review articles in [28]
and [32].

2.2 Global Symmetries

In the following sections we will begin to explore various generalized notions of global sym-
metries, most important of which are the so-called higher-form global symmetries. In fact, we
have already encountered a clue that such symmetries should exist: the p-form gauge fields
in supergravity enjoy higher-form gauge symmetries, whose gauge parameters were (p − 1)-
forms. It would seem only natural then that a global analog of these should exist as well.
Nevertheless, despite higher-form gauge symmetries being part and parcel of string theory
and gauge theory more generally, our understanding of higher-form global symmetries took
far longer to mature [2]. At least part of the reason for this was likewise hinted at by the
construction of higher-form gauge symmetries. Indeed, while the objects charged under or-
dinary global symmetries are the familiar point particles, whose one-dimensional world-lines
act as sources for ordinary gauge fields

q

∫
C(1)

A1, (2.18)

the natural sources for higher-form gauge symmetries are the strings and branes of string
theory (cf. equation 1.5). In the latter case the p-form gauge fields provide us with a proxy
to study the gauged version of these symmetries. However, when discussing the global case we
do not have this crutch and we should look for a more direct representation of such symmetries
on the objects in question5. This is precisely what quantum field theory does for us: particles
are the quanta of local quantum fields, which in turn carry the mathematical representation
of the symmetry group. The analog for higher-form global symmetries would be a field theory
on the space of e.g. loops, whose fundamental fields create strings in the theory. While there
have been attempts at constructing such theories, most notably in the context of string field
theory (but see also [33]), our understanding of them remains unsatisfactory for developing
these ideas.

Fortunately for us however, there is another way of talking about extended objects that
does not involve promoting them to the fundamental quanta of our theory. Instead, sticking
with the framework of local quantum field theory, we can construct such objects as composite
operators out of the usual local ones. If these objects are to be the true degrees of freedom
of our theory, we should expect some redundancy in our description of them in terms of local
quantum fields. This should smell an awful lot like gauge theory and indeed, gauge theory
will be our most important tool to study generalized global symmetries. In particular, the
canonical example of extended operators will be the Wilson lines in U(1) (or more general)
gauge theories, which are the gauge invariant (i.e. physical) degrees of freedom built out of
the local gauge field A1, but we will see more examples below.

In order to discuss generalizations of global symmetries, we should begin by formulating
exactly what we mean by ordinary global symmetries in quantum field theory. The modern
perspective on global symmetries is phrased in terms of the existence of certain topological

5Even when a global symmetry is not gauged it can still be instructive to study the theory coupled to
background gauge fields for that symmetry. This is an alternative approach to studying higher-form gauge
symmetries which we also briefly discuss later.
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operators. The goal of this sub-section is to introduce this perspective starting from the more
familiar notions of symmetries in both classical and quantum mechanics. The material in
this sub-section in particular will be largely standard, but we present it here in hopes that it
will provide useful context to make the ideas presented later more intuitive.

2.2.1 Classical Symmetries

Let us start by recalling some basic features of global symmetries in classical field theory.
Of course, one of the hallmarks of continuous global symmetries in ordinary field theory
is the existence of an associated conserved current. Given a (finite dimensional) connected
Lie group G with lie algebra g, the classical Noether’s theorem gives us a recipe to identify
such currents by considering the infinitesimal action on the fields in the action, schematically
denoted Φi with i enumerating the fields

Φi → Φ′
i = Φi + αaδaΦi, a = 1, . . . , dim g. (2.19)

The fact that this defines a classical symmetry means that it leaves the action invariant up to
a possible total derivative term (which we ignore). If we now allow for spacetime varying Lie
algebra parameters αa(x), the transformation (2.19) will generically no longer be a symmetry
of the action. Nevertheless, the induced variation should vanish once we restrict to constant
αa so that to leading order, this variation will be proportional to ∂µα

a(x). Hence it is always
possible to cast the corresponding variation of the action in the following form

S[Φi] → S[Φi]−
∫

ddx Jµ
a (Φi(x), ∂µΦi(x), . . .) ∂µα

a(x), (2.20)

for some local function Jµ
a of the fields. Finally, we note that any on-shell field configuration is

a stationary point of the action, so that the action is in fact invariant under any infinitesimal
variation of the fields and we conclude that when evaluated on-shell

∂µJ
µ
a = 0. (2.21)

Associated to this conserved current is a conserved charge which is usually given in terms of
an integral over a constant-time slice of the time-like component of this current

Qa(t) =

∫
dd−1xJ0

a(x, t), (2.22)

which may generically be time-dependent. Its conservation follows immediately from the
conservation law of the current via

∂0Qa =

∫
dd−1x ∂0J

0
a =

∫
dd−1x ∂iJ

i
a =

∫
dd−2xniJ

i
a = 0, (2.23)

where in the last step we used Stokes’ theorem and assumed that the fields vanish at infin-
ity.

As usual when working in curved spacetime, these results are most naturally expressed
in terms of the covariant differential form notation employed in the previous chapter. In this
case, the conserved current Jµ

a now defines the components of a Lie algebra-valued 1-form
∗Jd−1 (we suppress the Lie-algebra indices in the following). The conservation law (2.21) is
equivalent to the statement that this form is closed, i.e. it obeys

dJd−1 = 0, (2.24)
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which is now true also for curved spacetime. To define the conserved charge we performed
an integral over a constant-time slice of spacetime. It is clear that the natural generalization
is to integrate the (d− 1)-form Jd−1 over a (d− 1)-dimensional sub-manifold. Hence we can
define the (Lie algebra-valued) conserved charge as

Q(Σd−1) =

∫
Σd−1

Jd−1. (2.25)

We see that rather than being time-dependent, the conserved charge is associated to the
sub-manifold Σd−1. If we choose Σd−1 to be a Cauchy surface6, we can always choose a time
direction such that we recover our old expression in some appropriate set of coordinates on
spacetime. More naturally however, we can also express charge conservation directly in terms
of the dependence of Q on Σd−1. Indeed, Q is invariant under continuous deformations of
Σd−1. Given any two such surfaces Σd−1

1 and Σd−1
2 that together bound a volume Σd, we

compute

Q(Σd−1
2 )−Q(Σd−1

1 ) =

∫
Σd−1

2

Jd−1 −
∫
Σd−1

1

Jd−1 =

∫
∂Σd

∗J1 =
∫
Σd

dJd−1 = 0. (2.26)

2.2.2 Quantum Symmetries

The path integral versions of these statements are captured by Ward-Takahashi identities,
which we quickly review here. In the Euclidean path integral formalism, a continuous global
symmetry can be defined as a transformation of the fields as in (2.19), such that

DΦie
−S[Φi] = DΦ′

ie
−S[Φ′

i], (2.27)

where we now also have to consider the transformation of the functional measure. For
symmetries which act linearly the latter transformation is trivial, but this generally need
not be the case. To derive the quantum analog of equation (2.24), we now consider how
the path integral transforms under (2.19) if we again allow for spacetime varying Lie algebra
parameters α. In general, neither the measure nor the action will be invariant, but the
resulting variation is again expected to be proportional to dα

Z → Z ′ =

∫
DΦ′

i e
−S[Φ′

i]

=

∫
DΦi e

−S[Φi]

(
1 +

∫
M

Jd−1(Φi, dΦi, . . .) ∧ dα

)
= Z

(
1 +

∫
M
⟨Jd−1(Φi, dΦi, . . .)⟩ ∧ dα

)
.

(2.28)

The Ward identity follows by realizing that when both measure and action are transformed
appropriately, the transformation (2.19) is just a change of dummy variable in the path
integral, such that Z = Z ′ for any choice of parameter α(x). We conclude that the extra
term vanishes, again for arbitrary functions α, which upon integrating by parts leads to the
identity

⟨dJd−1⟩ = 0. (2.29)

Note that if the measure transforms trivially for all choices of α, the current Jd−1 coincides
exactly with that obtained in the classical case. The argument above goes through largely

6For our purposes, we can think of this as an appropriate generalization of a constant-time slice. Impor-
tantly, we have that M is diffeomorphic to Σd−1×R for any (smooth) Cauchy surface Σd−1, which effectively
restricts the spacetime geometries we consider.
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unchanged if instead of the partition function we consider correlation functions of arbitrary
local operator insertions

Oi := Oi(Φj(xi), ∂µΦj(xi), . . .), (2.30)

whose dependence on the fields Φi may lead them to transform non-trivially under the sym-
metry

Oi1 → O′
i1
= Oi1 + α(xi1)δOi1 . (2.31)

We then consider a correlation function

⟨Oi1Oi2 . . .⟩ :=
1

Z

∫
DΦie

−S[Φi(x)] Oi1Oi2 . . . , (2.32)

which by construction are automatically time-ordered (so that for bosonic operators, ev-
erything inside the correlation function commutes). We then evaluate the variation of this
correlation function as

⟨O′
i1
O′

i2
. . .⟩′ : = 1

Z ′

∫
DΦ′

ie
−S[Φ′

i(x)] O′
i1
O′

i2
. . .

=

〈(
1 +

∫
M

Jd−1 ∧ dα

)
(Oi1 + α(xi1)δOi1) (Oi2 + α(xi2)δOi2) . . .

〉
.

(2.33)

Using again that the effected transformation is a change of dummy variable and keeping only
leading order terms, we arrive at the Ward identity∫

M
α ⟨dJd−1Oi1Oi2 . . .⟩ =

∑
n

α(xin)⟨δaOinOi1Oi2 . . .⟩, (2.34)

where we have integrated by parts7. If we assume that none of the other operator insertionsOi

coincide, we can extract more detailed information by judiciously choosing our transformation
parameters α(x) to have support on some sub-manifold (with boundary) Σd

n ⊂ M containing
only the point xi corresponding to the insertion Oi (e.g. by taking it to be constant on Σd

n

and zero outside). The sum on the right-hand side then picks out only the term involving
the insertions inside Σd

n so that we obtain∫
Σd

n

⟨dJd−1Oi . . .⟩ = ⟨δOi . . .⟩. (2.35)

This equation is the path integral representation of the familiar fact that conserved charges
act as the generators of the symmetry on the local operators in the theory. Indeed, using
Stokes’ theorem, it can be rewritten in terms of the charges (2.25)

⟨δOi . . .⟩ =
∫
Σd

n

⟨dJd−1Oi . . .⟩

=

∫
∂Σd

n

⟨Jd−1Oi . . .⟩

=:
〈
Q(Σd−1

n )Oi . . .
〉
,

(2.36)

where Σd−1
i ≡ ∂Σd

i and it is again assumed that only xi ∈ Σd
i . The last step should be

viewed as a definition of the operator Q(Σd−1
i ) in terms of how its insertion affects correlation

functions. The previous derivation also makes evident the topological nature of the operators
Q(Σd−1

i ). The “master equation” (2.34) is valid for any choice of α. Hence, equation 2.35
and those that descend from it are valid for any choice of volume Σd, provided that we
do not deform it to include any other local operator insertions present in the correlation
function.

7Strictly speaking, the derivative acts on the whole correlation function. However, it only does so via the
dependence on the insertion location of J1, so that we write dJd−1 as a short-hand.
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Basic Example

To break up the rather dry discussion, and to highlight the physical meaning of the operator
Q(Σd−1), let us consider a very simple example: a complex scalar field

S =

∫
M

dϕ† ∧ ∗dϕ. (2.37)

It enjoys a global U(1) symmetry given by phase rotations ϕ → eiαϕ, whose infinitesimal
action on the fields is given by

ϕ → ϕ+ iαϕ, ϕ† → ϕ† − iαϕ†, (2.38)

where we identify δϕ = iϕ. Evaluating the variation of the action for spacetime varying α,
we obtain after a brief computation that

δS =

∫
M

J3 ∧ dα, J3 := i ∗
(
ϕ†dϕ− ϕ dϕ†) , (2.39)

from which it follows that ⟨dJ3⟩ = 0. Let us now consider the following correlation function

⟨ϕq(x)⟩ :=
∫

Dϕe−Sϕq(x), (2.40)

and apply the procedure laid out above. In particular, we perform a variation with spacetime
varying α

⟨(ϕq)′(x)⟩′ =
〈(

1 +

∫
M

J3 ∧ dα

)
(ϕq(t, x) + iqα(x)ϕ(x))

〉
= ⟨ϕq(x)⟩, (2.41)

from which we conclude that〈(∫
M

αdJ3

)
ϕ(x)

〉
= iq ⟨α(x)ϕ(x)⟩ . (2.42)

If we now choose our α(x) to have support in a neighbourhood Σ4
x of the point x and apply

Stokes’ theorem, we obtain〈(∫
∂Σ4

x

J3

)
ϕ(x)

〉
≡ ⟨Q(∂Σ4

x)ϕ
q(x)⟩ = iq⟨ϕq(x)⟩, (2.43)

where we now explicitly see the action of the charge operator on the field ϕ(x). If we specialize
further by choosing our spacetime to be of the form M = Rt ×Σ3 and choose x = (t, y) and
Σ4 = (−∞, t0]× Σ3, we obtain

⟨Q(Σd−1
t0

)ϕq(t, x)⟩ = iq⟨ϕq(t, x)⟩, for t < t0. (2.44)

This equation has a nice interpretation: the operator ϕq(t, x) creates q particles with unit
charge at time t, which then propagate and cross the slice Σd−1

t0 at a time t0. The charge
operator counts the number of world-lines that cross its volume.
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Figure 2.2: The operator ϕq(x) creates a particle of charge q which then propagates and
crosses the charge operator. Its insertion counts the charge passing through the surface.

Finite Transformations

Our considerations so far have all been infinitesimal, which in the continuous case encodes
the most detailed information about the symmetry. However, discrete symmetries need not
have currents and charges associated to them, in which case it is useful to talk about finite
transformations instead. In the continuous case, the generators Q(Σd−1) can be readily
exponentiated to yield operators which effect finite transformations of the charged fields

Ug(Σ
d−1) := exp(iαQ(Σd−1)), (2.45)

where g denotes the group element that corresponds to the Lie algebra parameters α. In
particular, suppose we have such an operator defined on a small sphere Sd−1 that encloses
a single charged local operator inserted at a point x. We then have a Ward identity that
tells us that it can be removed (by shrinking Sd−1)8 at the cost of an action of g in some
representation ROi

Ug(S
d−1)Oi(x) = ROi

(g)Oi(x), (2.46)

where this equation is to be understood as an operator equation valid inside correlation
functions and away from any other operator insertions. A special case is when spacetime is
non-compact, or has boundaries9. For instance, for a spacetime of the form Σd−1 × R with
Σd−1 either compact or non-compact, our operators can be evaluated for any constant-time
slice Σd−1

t . In this case, the Ward identities encode equal-time commutation relations

Ug(Σ
d−1
t+ε )Oi(x) = ROi

(g)Oi(x)Ug(Σ
d−1
t−ε ), x ∈ Σt, (2.47)

where we have made the relevant time-ordering explicit. Alternatively, keeping Ug(Σ
d−1)

fixed, we can think of its insertion as introducing a discontinuity, induced by the group
action, at Σd−1 as we move the other operator insertions across it. That is to say, for two
points x ∈ Σd−1, x′ = x+ ϵ ̸∈ Σd−1 and a charged operator O, we have for ϵ → 0

O(x′) = Ug(Σ
d−1)O(x′) ̸= Ug(Σ

d−1)O(x) = RO(g)O(x), (2.48)

which is illustrated in figure 2.3. Indeed, viewed as an abstract operator insertion, we can
interpret this as the definition of the operators Ug(Σ

d−1). Importantly, this perspective
remains valid even for discrete symmetries, which do not have an equivalent of equation
2.34.

8Here, and throughout this chapter we assume that the sphere Sd−1 is small enough that we may assume
that it is contractible (i.e. there are no topological obstructions in the spacetime).

9spacetimes with spatial lead to rather rich structure which we do not go into here.
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Figure 2.3: Two (equivalent) ways of thinking about the action of operator insertions
Ug(Σ

d−1). One can either consider deforming Σd−1 across another charged operator insertion,
yielding a group action on the latter, or move the defect across the local operator.

Using this definition, we can derive a number of other properties that these operators
satisfy. For example, one finds that two such operators supported on the same manifold Σd−1

will satisfy a group law

Ug(Σ
d−1)Ug′(Σ

d−1) = Ugg′(Σ
d−1). (2.49)

In terms of local operators crossing these insertions, we can imagine first cross the insertion
on the right, picking up a group action R(g′), followed by a second group action R(g).
Because Σd−1 is codimension one, we can always define a normal direction which specifies
the ordering, so that equation 2.49 makes sense even for non-abelian symmetry groups. The
inverse operators U−1

g (Σd−1) = Ug−1(Σd−1) can be obtained by inverting the orientation of
Σd−1. In the continuous case this can be traced back to the appearance of a relative minus-
sign in equation 2.36. For discrete symmetries we take this as part of the definition of what
constitutes a global symmetry.

These fusion rules can also be used to construct non-trivial junctions of topological op-
erators. For example, we can consider the insertion of three symmetry operators supported
on co-dimension 1 manifolds Σd−1

i which now share a single co-dimension 2 boundary. Such
a configuration is shown in figure 2.4. The result is a consistent path integral insertion,
provided the group elements on the components are related as in the figure. This follows e.g.
by following the group action picked up as we move a local operator insertion around the
configuration, and observing that it is path-independent (equivalently, the resulting configu-
ration is topological up to local insertions as we can collapse the junction to a single operator
Ug).

Before closing this section we would like to make some remarks about several important
topics in the study of ordinary global symmetries which will admit natural generalizations
once we consider generalized global symmetries in the next section.

• Gauge Symmetries Our discussion so far has not mentioned gauge symmetries at
all and for good reason. Indeed, given a gauge symmetry one could in principle define
topological operators Ug. A consistent gauge theory can, by definition, not have oper-
ators charged under that symmetry, so that the associated symmetry operators always
turn out to be trivial.

• Gauging Global Symmetries Given a global symmetry it is natural to wonder
whether or not one is allowed to gauge it. While the very meaning of ”gauging” a
discrete symmetry is somewhat subtle, in the continuous case this is always associated
to a gauge field for that symmetry. As an intermediate step to gauging a global sym-
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Figure 2.4: Junction of symmetry operators. The orientations of the operator follow the
circular arrow. It can also be viewed as a manifestation of the fusion law (2.49), where g and
h fuse to give g−1h. Figure based on [34].

metry one can imagine turning on a background (non-dynamical) gauge field for the
symmetry which couples (to linear order) to the conserved current as

δS =

∫
M

A1 ∧ Jd−1, (2.50)

such that the partition function becomes a function of the gauge field A1. Gauging
the symmetry then corresponds to performing a path integral over this background
gauge field. From this perspective, the intermediate partition function Z[A1] can be
used to detect obstructions to this gauging procedure. Indeed, the path integral over
A1 should be taken over equivalence classes of A1 related by gauge transformations so
that the integrand (in this case Z[A1]) must be invariant under gauge transformations
of the background connection A1. When this fails we say that the symmetry suffers
an ’t Hooft anomaly and these may sometimes be used to deduce properties of the UV
physics [35]. Even if such anomalies are present, it may still be possible to consistently
couple the theory to a background gauge field by including a so-called anomaly theory.
We do not pursue this rich topic here, but briefly give a taste in section 2.3.2.

More generally, a theory may admit mixed (’t Hooft) anomalies. In this case, a theory
has two global symmetries each of which is non-anomalous and hence may be gauged.
However, once we gauge one of them the other develops an anomaly. The classic
example of this is the chiral anomaly [36,37], whereby the path integral measure ceases
to be invariant under the axial symmetry of a chiral fermion once one couples it to
electromagnetism (i.e. gauge the U(1)-vector symmetry) [38].

• Gauging Discrete Symmetries For completeness, let us say a few words about
gauging discrete symmetries. As in the continuous case, we should couple the system
to a background connection. The first step is to specify a gauge bundle with structure
group G. Since G is discrete, this bundle is necessarily flat and since flat bundles carry
canonical connections, we need only specify the bundle. The latter is done by choosing
a contractible open cover (making sure higher overlaps are likewise contractible) and
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choosing transition functions on overlaps satisfying the usual cocycle condition. Since
the bundle is flat, these transition functions are simply group elements of G.10

This construction can equivalently be expressed by a network of Ug(Σ
d−1) symmetry

operators [2]. This is done by specifying a triangulation of the spacetime dual to the
open cover and inserting symmetry operators implementing the transition functions
on the (d− 1)-dimensional faces of the triangulation, which are joined at (d− 2)-triple
intersections via junctions of the type described above [34] (cf. figure 2.4). Gauging the
symmetry then corresponds to summing over all such operator networks. Dependence
of the partition function on the background connection signals an ’t Hooft anomaly.11

Though completely general, the construction above is often more involved than nec-
essary. For simple situations such as when the discrete gauge group is abelian (e.g.
Z), the relevant gauge symmetry often admits a more concrete representation in terms
of a 0-form gauge field. In this case, a particular bundle of the type described above
corresponds to a state with a topological defect that is charged under the 0-form gauge
field. We will see this explicitly below.

• Selection Rules The language of topological operators makes manifest another fun-
damental aspect associated to global symmetries, namely that they lead to selection
rules on correlation functions [2]. Let us illustrate this with a very basic example,
consider inserting a charged local operator O(x) on a spacetime with the topology of
a 2-sphere. If the operator O(x) is charged under a global symmetry, we can attempt
to compute the correlator Ug(S

1
x)O(x) for S1 a circle surrounding the point x. One

way is to contract the circle to a point, crossing the local operator x, in which case we
obtain a group action ROi

(g) on the local operator. Another is to contract the circle
S1
x along the other hemisphere, in which case the action of Ug(S

1
x) is trivial. To prevent

ambiguity, it follows that the operator O(x) must have zero charge. Physically, this is
just the familiar statement that the field lines emanating from x have nowhere to end
on the compact space S2.

• Spontaneously Broken Symmetries Although not particularly relevant to us, spon-
taneous symmetry breaking is typically regarded as one of the more important applica-
tions of global symmetries. Given a global symmetry, one may encounter a phase where
the vacuum of the theory is not invariant under the action of a symmetry of that same
theory. In this case there is typically a so-called order parameter whose expectation
value becomes non-vanishing in the spontaneously broken phase.

The classic example of this occurs when we include a U(1)-invariant potential to the
complex scalar field considered in equation 2.37, whose minimum is located at a non-
vanishing value of |ϕ|. In this case the vacuum expectation value ⟨ϕ(x)⟩ is the associated
order parameter which becomes non-vanishing in the spontaneously broken phase. The
symmetry operators connect vacua with different expectation values for the order pa-
rameter. In the continuous case, we can consider infinitesimal variations generated
by the charge operator Q. This leads to the emergence of a massless Goldstone boson
which enjoys a characteristic (global) continuous shift symmetry (e.g. φ(x) → φ(x)+c).
This example will be considered explicitly in section 2.3.2.

10Mathematically, this is essentially the construction of Cech cohomology, which tells us that such bundles
correspond to elements of Ĥ1(M,G). In practice, we will take a more pedestrian approach and identify them
with elements in H1

dR(M) with restricted holonomy.
11This construction can also be applied for continuous G, in which case we are only able to capture the

sub-set of flat backgrounds.
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2.3 Higher-Form Global Symmetries

While we have been rather explicit about introducing the notion that topological operators
are associated to symmetries, we now get to enjoy the fruits of our labour. Indeed, given
this perspective of global symmetries, it is in principle a straight-forward matter to gen-
eralize ordinary symmetries in various directions. The most natural (and indeed the first)
generalization of this paradigm is to consider topological operators that are supported on
more general (d − p − 1)-dimensional manifolds Σd−p−1. Recall that we defined topological
operators supported on (d − 1)-dimensional manifolds via their effect on local operators in-
side correlation functions. We could do so precisely because we had a well-defined notion of
Σd−1 enclosing local operator insertions. Preventing this sort of ambiguity means that local
operators can only be charged under the usual (d−1)-dimensional symmetry operators.

This leads to the natural observation that the operators charged under (d − p − 1)-
dimensional symmetry operators should themselves be p-dimensional! In slightly more math-
ematical terms, this is the statement that the linking number can be defined for manifolds
whose dimensions add up to d− 1. While we post-pone a more concrete description of such
charged extended operators to later sections, we can already give an abstract description of
the corresponding topological symmetry operators. These can explicitly be defined in terms
of their Ward identities. Given a p-form global symmetry with charged operators O(Cp)
supported on p-dimensional manifolds Cp, the analog of equation 2.46 is obtained for a small
sphere Sd−p−1 linking Cp exactly once

Ug(S
d−p−1)O(Cp) = RO(g)O(Cp), (2.51)

which should be interpreted as shrinking Σd−p−1 to a point, crossing Cp in the process.
Such generalized operators satisfy many of the same properties as their (d− 1)-dimensional
counterparts, including a fusion law of the form

Ug(Σ
d−p−1)Ug′(Σ

d−p−1) = Ugg′(Σ
d−p−1). (2.52)

A crucial distinction however, is that there is no natural ordering on the left-hand side.
Indeed, two codimension p+1 operators (for p > 0) can always be deformed past each other
without crossing so that the notion of time-ordering breaks down (one can compare this to the
0-form case, where the operators will always cross). Hence, the higher-form global symmetry
group is necessarily abelian. In the continuous case, this means that the group is either U(1)
or R, whose representations are all one-dimensional and are labeled by the charge q of the
operator (which is integer or real, respectively). The factor RO(g) then represents the phase
picked up by the charged operator, so that the most general Ward identity is given by

Ueiα(Σ
d−p−1)Oq(Cp) = eiqα I(Cp,Σd−p−1)Oq(Cp), (2.53)

where we account for the possibility that Σd−p−1 and Cp link more than once by including
the intersection number I

(
Cp,Σd−p−1

)
. Just as in the 0-form case, continuous p-form sym-

metries are associated to conserved currents which define local operators in the theory. In
the generalized case however, these now define (d− p− 1)-form currents whose conservation
law is the natural generalization of equation 2.29

dJd−p−1 = 0. (2.54)

These currents are integrated over (d−p−1)-dimensional manifolds and the associated charge
operators measure the the flux passing through this manifold

Q(Σd−p−1) =

∫
Σd−p−1

Jd−p−1. (2.55)
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A charge q operator will produce q units of flux which is measured

Ueiα(Σ
d−p−1) = eiαQ(Σd−p−1) (2.56)

Although much more could be said about these symmetries by reasoning abstractly at the
level of topological operators, we choose to keep this introductory discussion short. Instead,
we will introduce these higher-form global symmetries by means of several examples, each of
which will serve to illustrate different aspects of p-form global symmetries. Since the focus of
this thesis will eventually be the vector sector of N = 2 supergravity, the examples discussed
here focus on generalized global symmetries appearing in abelian gauge theories. Despite
the symmetries themselves being constrained to be abelian by equation (2.52), they may
nonetheless appear in theories with non-abelian gauge groups. We briefly comment on this
case occasionally, but leave this rich subject otherwise untouched. Finally, we emphasize
that these examples run in increasing order of relevance to our eventual applications, with
the first two being included to better illustrate the concepts involved.

2.3.1 Example: Maxwell Theory

The prototypical example of a theory exhibiting a higher-form global symmetry is Maxwell
theory in four dimensions

S =

∫
X

(
− 1

2e2
F2 ∧ ∗F2

)
. (2.57)

Electric Symmetries and Wilson Lines

This theory has a so-called electric 1-form symmetry with conserved 2-form current

Je =
1

e2
∗ F 2, (2.58)

whose conservation law simply corresponds to the equations of motion. The associated con-
served charge is given by

Q(1)
e =

1

e2

∫
S2

∗F2, (2.59)

which, when expanded into electric and magnetic fields, measures precisely the electric flux
passing through the surface S2 (equivalently, the electric charge enclosed by S2). In absence
of any matter fields (we will discuss matter fields shortly), gauge field configurations with
non-zero charge (2.59) are created by operator insertions known as Wilson loops (or lines).
They modify the path integral by introducing a source which enforces the presence of a charge
along a given curve, or equivalently a flux through a surface linking that curve. We can define
them by the curve γ1 on which they are supported as well as their charge n

Wn(γ
1) = exp

(
in

∫
γ1

A1

)
. (2.60)

In a theory without charged matter fields, it is these operators rather than the gauge fields
A1, which are the gauge invariant observables in the theory, provided the curve γ1 is either
closed or ends at infinity. If this curve extends along the time direction we can interpret it
as the world-line of an infinitely massive probe charge.12 Alternatively, we can localize this

12This is is completely analogous to how we use scalar sources to probe a scalar field theory by defining a
generating function Z[J ].
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curve on a constant-time slice, in which case we can view these operator as creating a loop
of flux. The distinction between these cases fades somewhat in Euclidean field theory and
we will not keep track of it in the following, for now focusing on Wilson loops rather than
lines.13

For another perspective on Wilson loops, recall that in U(1) gauge theory, the gauge field
A1 is the connection form on a U(1)-bundle. In general, such a connection is determined
completely by its holonomy (i.e. parallel transport around loops), so that in principle it
should be possible to describe the dynamics of A1 in terms of a map that assigns to a given
loop γ1 the U(1)-valued holonomy of A1 around that loop. Of course, this is precisely what
the Wilson loops (2.60) do for us. From this perspective it is clear that if we could write down
a theory on loop-space, the fundamental quantum fields would be the Wilson loops and we
would not have to make reference to any local gauge field A1.

14 In lieu of such a description
however, the gauge field A1 gives us a useful, albeit redundant description of the degrees of
freedom of the theory. For our purposes, it gives an explicit description of the electric 1-form
global symmetry in terms of its action on the local field A1. In particular, it acts according
to

A1 → A1 + Λ1, (2.61)

where Λ1 is a closed 1-form so that it leaves F2 invariant. Let us say a few words about the
interpretation of equation 2.61 as a global symmetry. Indeed, one usually thinks of global
symmetries as transformations whose transformation parameters are constant over spacetime,
the prototypical example being a global shift symmetry ϕ(x) → ϕ(x) + c. It may therefore
be surprising that the form Λ1 is generically not constant. One way to think about this is
again in terms of the holonomy perspective put forward above. Indeed, if the gauge bundle
is trivial, we can view Λ1 as the connection form of a flat connection (i.e. with vanishing
curvature). Its holonomy is non-trivial only around non-contractible loops, and moreover its
holonomy depends only on the homotopy type of the loop. These statements are equivalent
to saying that the symmetry (2.61) is locally constant on loop space. Compare this to the
0-form case, where the transformation parameters are only required to be locally constant
on spacetime, that is, constant on each connected component of X, which are counted by
the zeroth cohomology of X. Similarly, the symmetry parameters Λ1 take values in the first
cohomology group.

The complementary perspective is to view the Wilson loops as the fundamental objects
charged under the symmetry. We can use the explicit transformation (2.61) to exhibit the
transformation properties of these operators

Wn(γ
1) → W ′

n(γ
1) = exp

(
in

∮
γ1

Λ1

)
exp

(
in

∮
γ1

A1

)
= einα exp

(
in

∮
γ1

A1

)
, (2.62)

where we wrote α =
∫
γ1 Λ1 for the period of Λ1 around the cycle. This can can be non-zero

whenever γ1 defines a non-trivial homology class and moreover, depends only on the homology
class of γ1. By analogy with the global U(1) charge of a complex scalar field, the integer
n multiplies the phase acquired by the charged object under transformations by g = eiα so
that we can indeed interpret it as the charge of Wn(γ

1) under the 1-form symmetry. We see

13Non-compact spacetimes (or more generally spacetimes with boundaries) admit a number of interesting
phenomena related to the non-trivial topology induced by the boundary. We will not cover these effects in
detail but refer to e.g. [39] for more details.

14If one views gravity as a gauge theory, the analogous objects could also be treated as the fundamental de-
grees of freedom. Indeed, this is the approach taken by loop quantum gravity, one of the primary alternatives
to string theory as a theory of quantum gravity.
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that Λ1 ∈ H1(X,R/2πZ) as Λ1 that satisfy
∫
γ1 Λ1 ∈ 2πZ act trivially on all operators in the

theory. These are therefore understood to define additional gauge redundancies of A1.

Based on these observations, we can now readily derive the Ward identity associated to
the symmetry (2.61). Indeed, following the Noether procedure from section 2.2.2, we now
introduce a spacetime dependent transformation parameter ϵ(x) (to distinguish from the
phase α)

A1 → A1 + ϵ(x)Λ1 (2.63)

and compute the infinitesimal variation of the Wilson line expectation value

⟨W ′
n(γ

1)⟩′ =
〈(

1− i

∫
M

Je
2 ∧ dϵ ∧ Λ1

)(
Wn(γ

1) + in

(∫
γ1

ϵΛ1

)
Wn(γ

1)

)〉
!
= ⟨Wn(γ

1)⟩.

(2.64)
If we now take ϵ to have support only in a neighbourhood15 γ1 ×Σ3 with boundary γ1 ×Σ2,
we obtain

i

〈(∫
γ1×Σ2

Je
2 ∧ Λ1

)
Wn(γ

1)

〉
= iα

〈(∫
Σ2

Je
2

)
Wn(γ

1)

〉
(2.64)
= inα

〈
Wn(γ

1)
〉
. (2.65)

Identifying the charge operator Q
(1)
e (Σ2) as in (2.59), we find the infinitesimal version of the

integrated Ward identity associated to the electric 1-form symmetry

Ueiα(S
2)Wn(γ

1) = exp

(
iα

e2

∫
S2

∗F2

)
exp

(
in

∮
γ1

A1

)
=einα exp

(
in

∮
γ1

A1

)
.

(2.66)

Importantly, this perspective remains valid even when the global symmetry does not admit
a simple action on the local fields in the theory.

Magnetic Symmetries and ’t Hooft Lines

In fact, the simple Maxwell theory already contains a second 1-form symmetry that allows us
to illustrate this phenomenon. Indeed, the Bianchi identities dF2 = 0 suggest the existence of
a second conserved current Jm = 1

2π
F2 to which we may associate a second set of topological

operators. The associated conserved charge

Q(1)
m (S2) =

1

2π

∫
S2

F2, (2.67)

physically measures the magnetic flux passing through the surface S2. While possibly less
familiar, the operators that create such configurations are well-known and are given by ’t
Hooft lines Tm(γ

1). They too are line operators supported on 1-dimensional manifolds, but in
contrast to the Wilson lines they do not admit a simple expression in terms of the elementary
gauge field A1. The standard definition of these operators is in terms of a restriction of the
path integral to field configurations that carry non-zero magnetic charge along the curve
γ1. That is, we define it precisely by restricting to field configurations with a non-zero

15We make a number of simplifying assumptions to streamline the discussion. One can formalize and
generalize the steps below by taking a tubular neighbourhood of γ1 and choosing Λ to be strictly proportional
to the dual of the (integral) homology class of γ1 (this latter assumption is not necessary but makes equation
2.65 immediate).
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expectation value for the operator (2.67) for any S2 that links the given curve γ1. This
defines an observable in the same way that more standard path integral insertions do, albeit
without a simple expression for the relevant path integral modification. In more geometric
terms we note that the current 1

2π
F2 represents the first Chern class of the associated U(1)-

bundle so that inserting an ’t Hooft line can be interpreted as restricting the topology of the
underlying gauge bundle (which we otherwise sum over in the path integral).

There is however, a more direct way of studying ’t Hooft lines and the magnetic 1-form
symmetry. Indeed, recall from section 1.6.1 that the two conserved currents we considered
here are interchanged under the electric-magnetic duality transformation of Maxwell theory.
Although it was mentioned only briefly, electric-magnetic duality also maps electric and
magnetic charges to each other. For instance, in the dual theory, the old Wilson lines now
create states of non-zero magnetic flux 1

e2
∗ F2 → − 1

2π
G2 and hence correspond to ’t Hooft

lines in the dual theory. More interestingly for us, the dual theory now grants us an explicit
description of the old ’t Hooft lines in terms of the Wilson lines for the dual gauge field V1.
In particular, in terms of the dual fields, we now have the analogous equation

Um
g (S2)Tm(γ

1) = exp

(
iα

ẽ2

∫
S2

∗G2

)
exp

(
im

∫
γ1

V1

)
= eimα exp

(
im

∫
γ1

V1

)
.

(2.68)

Photons as Goldstone Bosons

A final aspect we would like to touch on briefly, but which is not of direct importance to
our main discussion, is the possibility of spontaneously broken p-form global symmetries.
Consider for instance the 1-form global symmetry (2.19). In this case, the relevant order
parameter is measured by the expectation value of the Wilson loop ⟨W1(γ

1)⟩, naturally
generalizing the local operator ⟨ϕ(x)⟩. Its role as an order parameter is somewhat more
subtle however, as we use it to define phases not by the (non-)vanishing of ⟨W1(γ

1)⟩ but
rather by its long-distance behaviour as the size of the loop γ1 grows. This is not too
different from the local case as we could equivalently define a spontaneously broken phase by
the long-distance behaviour of the expectation value

⟨ϕ(x)ϕ(y)⟩ |x−y|→∞→ ⟨ϕ(x)⟩⟨ϕ(y)⟩ ≠ 0. (2.69)

In general, a Coulomb-type potential V (r) ∼ 1
r
(mediated by A1) will lead to a long distance

behaviour for the Wilson loops given by [40]

⟨Wn(γ
1(r))⟩ ∼ e−V (r) = e−1/r r→∞→ 1, (2.70)

indicating spontaneous symmetry breaking. Intuitively, this behaviour can be understood
as viewing the insertion of a Wilson loop as the creation of a particle-anti-particle pair
(of opposite charge) which are then separated by the radius r of the loop and experience
a Coulomb potential V (r). This is to be contrasted with the long-distance behaviour in
the confining phase (which is absent here but present for non-abelian gauge theory), where
V (r) ∼ r leads to a vanishing vev of the Wilson loop above.

These considerations lead to a very satisfying conclusion, namely that the massless photon
is in fact the Goldstone boson associated to the spontaneously broken 1-form symmetry [2].
Moreover, the symmetry (2.61) now admits the interpretation of the remnant continuous shift-
symmetry (the same conclusion holds for the magnetic 1-form symmetry and its associated
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dual gauge field V1). While spontaneous symmetry breaking of generalized global symmetries
is beyond the scope of this thesis, we refer the interested reader to [39] for a more detailed
discussion.

Conclusions

Before closing this sub-section, let us recapitulate the main lessons we have learned

• Gauge theories provide ubiquitous realizations of higher-form global symmetries. In
particular, any p-form gauge theory has both an electric p-form symmetry and a mag-
netic (d− p− 1)-form symmetry.

• The operators charged under these symmetries are the (non-local) Wilson and ’t Hooft
operators, respectively.

• The generalized global symmetry need not admit a clear action on the local fields of
the theory, but there is always a dual frame where this is the case. This highlights the
fact that global symmetries are a property of the theory, not our description of it.

• When they do admit an action on the local fields, they can be treated much like ordinary
global symmetries, a feature which we will exploit in the following sub-section.

In the next sub-section, we will continue our investigation of Maxwell theory, but gen-
eralize it in two ostensibly different ways. On the one hand, we will study what happens
when we attempt to gauge the 1-form global symmetries discussed in this section. On the
other hand, we will show how they may be broken by the addition of charged matter. As
we shall see however, these two questions are in fact dual to one another and they provide
complimentary perspectives of the same physics.

2.3.2 Example: BF Theory

At the end of section 2.2.2 we discussed how one may gauge a continuous 0-form global
symmetry. To wit, this involved introducing a 1-form gauge field which coupled to the
conserved current. Gauging a p-form global symmetry proceeds completely analogously and
requires the introduction of a (p + 1)-form gauge field. Of course, this is why we spoke of
higher-form gauge fields as the gauged version of p-form global symmetries. To gauge the
magnetic 1-form symmetry we therefore introduce a 2-form background gauge field

δS = −
∫

B2 ∧ Jm
2 = − 1

2π

∫
B2 ∧ F2, (2.71)

which we subsequently render dynamical by including a canonical kinetic term and performing
the path integral over B2. The resulting action is then given by

SBF =

∫ (
− 1

2e2
F2 ∧ ∗F2 −

1

2g2
H3 ∧ ∗H3 −

1

2π
B2 ∧ F2

)
. (2.72)

The new BF-coupling is our first example of a Chern-Simons coupling and these will play a
very important role throughout the rest of this thesis.

2-Form Symmetries

Before considering how gauging the magnetic symmetry affects our old results, let us first
consider the new physics introduced by the 2-form gauge field. Ignoring the BF-coupling,
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we can repeat the arguments from the previous sub-section to see that we have an “electric”
2-form global symmetry that acts on the 2-form gauge field according to

B2 → B2 + Λ2, (2.73)

where Λ2 is now an element of the second cohomology. One way of thinking about this
symmetry is to generalize our discussion about theories on loop spaces and view B2 as a
connection on a U(1)-bundle over loop space. This perspective is formalized by the notion of
a circle 2-bundle with a connection, which although interesting, we do not pursue here.16 In-
stead, we study the resulting 2-form global symmetry in more physical terms in the following
sub-sections. Of particular interest to us will be the conserved current and charge associated
to the symmetry (2.73), which follow readily from the equations of motion for B2

J1 =
1

g2
∗H3, Ueiα(Σ

1) = exp

(
iα

g2

∫
Σ1

∗H3

)
. (2.74)

The objects carrying this charge are now supported on 2-dimensional manifolds, which nat-
urally generalize the Wilson lines from section (2.3.1)

Wn(Σ
2) = exp

(
in

∫
Σ2

B2

)
. (2.75)

These can similarly be thought of as either creating a string that propagates along Σ2 and
couples to the B2 field via its world-line (in fact, this is exactly how string-theory strings
couple to the NS-NS B-field from section 1.2.1), or as enforcing a non-zero J1 flux along any
loop that links the surface Σ2. The symmetry operators Ueiα(Σ

1) effect transformations of
the form (2.73) provided the curve Σ1 links with Σ2 exactly once

exp

(
iα

g2

∫
Σ1

∗H3

)
exp

(
in

∫
Σ2

B2

)
= exp (iαn) exp

(
in

∫
Σ2

B2

)
= exp

(
in

∫
Σ2

Λ2

)
exp

(
in

∫
Σ2

B2

)
.

(2.76)

Similarly, the Bianchi identity for B2 motivates us to consider an additional conserved current

J3 =
1

2π
H3, Ueiα(Σ

3) = exp

(
iα

2π

∫
Σ3

H3

)
, (2.77)

whose charged operators are defined analogously to ’t Hooft lines, i.e. they enforce a non-zero
flux for J3. One notices that this corresponds to a 0-form symmetry, which suggests they
admit a more familiar interpretation as an ordinary global symmetry. We will see this more
explicitly below.

The BF-coupling

The story changes when we include the effect of the BF coupling. In this case the symmetry
(2.73) ceases to be a good symmetry of the theory as the BF term is manifestly not invariant

16In this context, the gauge field B2 is a local representative of the differential character H3, the latter
being defined precisely through its assignment of a holonomy to 2-cycles. The BF-coupling is then understood
in terms of the product in differential cohomology. See e.g. [41].
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under this shift17 This is reflected in the equations of motion which now read

B2 :
1

g2
d ∗H3 =

1

2π
F2, A1 :

1

e2
d ∗ F2 = − 1

2π
H3. (2.78)

These equations reveal a general pattern. By gauging a p-form symmetry, here the 1-form
symmetry with current 1

2π
F2, we render its current exact, as is reflected by the equation of

motion for B2. At the same time however, its associated gauge field introduces a (p + 1)-
form symmetry, here 1

g2
∗ H3, which is explicitly broken by the coupling to the conserved

current.

Dualizing A1

These observations are most clearly realized when we move to a magnetic dual frame where
the (now-gauged) magnetic 1-form symmetry becomes electric. Indeed, performing the dual-
ization along the lines of section 1.6.1 (accounting for the additional BF-coupling), we obtain
a dual “BV”-theory

SBV =

∫ (
− 1

2ẽ2
(dV1 −B2) ∧ ∗(dV1 −B2)−

1

2g2
H3 ∧ ∗H3

)
, (2.79)

where now F2 and e2 are related to V1 and ẽ2 via

F2 = − e2

2π
∗ (dV1 −B2), ẽ = 2π/e. (2.80)

The gauging of the 1-form global symmetry V1 → V1 + Λ1 is now manifest, as under gauge
transformations of B2 we have

B2 → B2 + dΛ1, V1 → V1 + Λ1, (2.81)

which follows from gauge invariance of F2 in equation 2.80. In fact, we see that locally V1 is
now pure gauge and we can always gauge fix locally to set V1 to zero. Looking at the action,
we see that this has the effect of generating a mass-term for B2, which is consistent by virtue
of the fact that its gauge symmetry is now fixed.

Dualizing B2

The equations of motion for A1 reveal the dual side of this story. It too can be read two ways,
stating either that the electric 1-form symmetry is explicitly broken by the coupling to B2, or
that the dual “magnetic” 0-form symmetry with current J3 =

1
2π
H3 is gauged by A1. Indeed,

while so far we have framed the BF coupling as gauging the magnetic 1-form symmetry of
A1, it is easy to see that we can integrate by parts to write it as an “AH-coupling”

SAH =

∫ (
− 1

2e2
F2 ∧ ∗F2 −

1

2g2
H3 ∧ ∗H3 −

1

2π
A1 ∧H3

)
. (2.82)

But this is just how we gauge ordinary 0-form symmetries! It follows that the action (2.82)
can be viewed as a (rather convoluted) way of coupling Maxwell theory to charged matter. We

17Note that due to the quantization of 1
2πF2, the BF-coupling is in fact invariant if Λ2 ∈ H2(X, 2πZ).

However, as for the electric 1-form symmetry, equation 2.76 shows that these transformations act trivially
on all operators in the theory and so these Λ2 do not define a symmetry transformation, but are in fact
additional gauge redundancies of B2. We will encounter an exception to this shortly.
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can make this explicit by dualizing the gauge field B2 along the lines of section 1.6.1. Going
through the motions once more, we promote the field strength H3 to an arbitrary 3-form and
include a Lagrange multiplier − 1

2π
a dH3 to enforce closedness of H3. Upon integrating out

H3 by enforcing its equation of motion

− 1

g2
∗H3 −

1

2π
(da− A1) = 0 ⇒ H3 = − g2

2π
∗ (da− A1), (2.83)

we obtain the equivalent action

SaF =

∫ (
− 1

2e2
F2 ∧ ∗F2 −

1

2g̃2
dAa ∧ ∗dAa

)
, (2.84)

where we have introduced the short-hand dAa = da− A1 and g̃ = 2π/g.

Abelian Higgs Model

The coupling dAa is known as a Stueckelberg coupling and it arises as the low-energy limit of
the abelian Higgs model mentioned briefly at the end of section 2.2.2. To see this, consider
the action of a complex scalar field with U(1) gauge charge q experiencing a typical “Mexican
hat” potential

S =

∫ (
− 1

2e2
F2 ∧ ∗F2 +DqAϕ

† ∧ ∗DqAϕ− µ
(
|ϕ|2 − v2

)2)
, (2.85)

where the scalar couples to A1 via the covariant derivative DqA ≡ d− iqA1. Expanding the
potential we see that ϕ acquires a mass-squared given by m2 = −2µv2 which is negative for
µ > 0. This signals an instability in the field ϕ which subsequently rolls down to the stable
minimum |ϕ| = |v|. Expanding the field around this minimum as ϕ = (v + ρ)eiθ it is easy to
see that the radial fluctuations ρ acquire a now-positive mass m2 = 4µv2 while the angular
fluctuations θ remain massless. At low energy (equivalently for large v) we can integrate out
the massive radial fluctuations which decouple so that we are left with an effective action
describing the gauge field and θ

S =

∫ (
− 1

2e2
F2 ∧ ∗F2 + v2(dθ − qA1) ∧ ∗(dθ − qA1)

)
. (2.86)

Upon identifying v2 = 1
2g̃2

, θ = a and q = 1, we recover the dualized BF theory (2.84).

The Axion

The detour through the abelian Higgs model sheds some interesting light on the theory
(2.84). Firstly, we recognize that the field a is in fact a 2π-periodic variable, emerging as the
low-energy description of the phase of the complex field ϕ. This shows up in the low-energy
theory as the discrete gauge symmetry

a → a+ 2π. (2.87)

Indeed, a is best thought of as a 0-form gauge field whose “field strength” da may admit non-
trivial monodromy

∫
γ1 da ∈ 2πZ around non-trivial cycles γ1, induced by the identification

2.87. The closed form 1
2π
da is just the dual description of the 1-form current 1

g2
∗H3 and the
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Figure 2.5: The ”Wilson Surface” creates a string which propagates along the world-sheet
Σ2. An axion that encircles the string picks up a non-trivial monodromy controlled by the
charge of the string.

monodromy18 measures the charge carried by the strings created by the world-sheet operators
ein

∫
Σ2 B2 (see figure 2.5).

By analogy to the Wilson lines from section 2.3.1, the gauge invariant operators con-
structed out of a are exponentials of the form eina(x) which are well-defined local operators,
supported on 0-dimensional manifolds (i.e. points) x ∈ X. The gauged 0-form symmetry
predicted by equation 2.78 is nothing but the constant shift-symmetry a → a+c for constant
c under which these exponentials transform as

eina(x) → einceina(x). (2.88)

Here we explicitly see that c is only required to be a locally-constant function, which is 2π-
periodic (i.e. c+2π is related to c by a gauge transformation of a) and is hence counted by the
cohomology group H0(X,R/2πZ). Importantly, this symmetry is to be distinguished from
the discrete shift symmetry (2.87), which is always gauged, even in absence of the gauge field
A1. When we include the latter however, we can also see explicitly how the shift symmetry
(2.88) is gauged. In particular, gauge transformations of A1 now also affect the scalar a

A1 → A1 + dλ0, a → a+ λ0, (2.89)

which follows immediately from the usual gauge transformation of the complex scalar ϕ (or,
more generally, from the dualization procedure). It follows that we may fix a gauge where
a vanishes and the second term in (2.84) reduces to a mass term for the gauge field A1. As
an aside, we remark that neither the action (2.79) nor the action (2.84) can be dualized to
yield a theory in terms of the pair (V1, a). This is reflective of the fact that it is impossible
to write down a local QFT including both electric and magnetic sources.

The Operator Perspective

Up until now we have made ample use of of the availability of conserved currents and local
representations of the symmetry action to discuss the symmetry content of the action (2.72).

18While we motivated the periodicity of a via the Higgs model, any 0-form obtained by dualizing a 2-form
(more generally a (d − 2)-form) will admit non-trivial monodromy. This is required for the dualization to
properly reproduce the quantization

[
H3

2π

]
∈ H3(X,Z), which can be achieved by adding a dualizing term

1
2π

∫
da ∧H3 with

[
da
2π

]
∈ H1(X,Z). This fact is general, and is the reason why e.g. the dual field strength

G2 was quantized in section 1.6.1. See also [42] or [21], section 1.6.1.
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Figure 2.6: The action of the symmetry operator Ueiα(Σ
2) becomes ambiguous when acting

on an endable line operator. Consistency requires einα = 1, so that only the trivial operator
U1(Σ

2) remains.

Of course, this is rather natural for continuous global symmetries where we have these tools
available to us. It is nonetheless interesting to consider how things play out in terms of the
more abstract operator language. Consider for instance what happens to the Wilson lines
of our theory once we gauge the magnetic 1-form symmetry. While previously such Wilson
lines could only be defined for closed loops γ1 (ignoring the case of bounded or non-compact
spacetimes), we are now granted a new set of gauge invariant line operators supported on
curves with boundaries. In particular, we can allow such curves to end on local insertions of
eia(x), which therefore lead to a new class of gauge invariant operators

exp

(
i

∫
γ1

A1 − i

∫
∂γ1

a

)
. (2.90)

We say that the Wilson lines have become endable. We then consider how these new endable
operators transform under the electric 1-form symmetry, in particular by considering the
value of the correlator

Ueiα(S
2) exp

(
in

∫
γ1

A1 − in

∫
∂γ1

a

)
= exp

(
iα

∫
S2

1

e2
∗ F2

)
exp

(
in

∫
γ1

A1 − in

∫
∂γ1

a

)
,

(2.91)
for any S2 that surrounds γ1. On the one hand, we may consider shrinking the S2, eventually
crossing the charge n Wilson line so that we pick up a phase einα. However, now that γ1

has a boundary, we may alternatively unlink S2 and γ1 by sliding the former off of the end
points (see figure 2.6). When we subsequently shrink S2 down to a point we do not cross
any operators and we do not pick up a phase. We conclude that the operator Ueiα(S

2) is no
longer topological which signals that the associated symmetry is now broken. Conversely, the
operators charged under the 0-form global symmetry are now no longer gauge invariant, by
the very fact that they are charged under the (now-gauged) symmetry. This means that the
local operators eina(x) can now only appear at the end-points of line operators as in (2.90).
We say that the operators eina(x) are no longer genuine local operators.

A perfectly analogous phenomenon occurs for the pair B2 and V1 in the dual frame.
Indeed, we can now consider ”Wilson surfaces” for B2 corresponding to axionic strings,
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supported on surfaces with boundary, and at this boundary attach an ’t Hooft line

exp

(
i

∫
Σ2

B2 − i

∫
∂Σ2

V1

)
(2.92)

The combination is gauge invariant and hence a good operator in the theory. Any circle
that links Σ2 can be smoothly unlinked and hence the symmetry operators of the 2-form
symmetry are no longer topological.

’t Hooft Anomalies

This pattern of gauging and breaking of symmetries can be understood in terms of a mixed ’t
Hooft anomaly between the electric p-form and magnetic (d−p−1)-form symmetry associated
to any p-form gauge field. Indeed, equation 2.78 tells us that in gauging the magnetic 1-
form symmetry, we broke the electric 1-form symmetry, which is the hallmark of a mixed
’t Hooft. In fact, we can study this anomaly directly in Maxwell theory by simultaneously
including background (classical) gauge fields for both symmetries. For the magnetic 1-form
symmetry, we have already seen that including the BF-coupling corresponds to a substitution
dV1 → dV1 − B

(m)
2 in the dual frame, thus rendering the magnetic symmetry V1 → V1 + Λ1

gauged for all Λ1. Gauging the electric 1-form symmetry similarly involves substituting all
instances of F2 by F2 − B

(e)
2 to render the action invariant under arbitrary shifts of A1. At

the end of this procedure, we are left with the action∫ (
− 1

2e2

(
F2 − B̂

(e)
2

)
∧ ∗
(
F2 − B̂

(e)
2

)
− 1

2π
B̂

(m)
2 ∧

(
F2 − B̂

(e)
2

))
. (2.93)

The ’t Hooft anomaly is now manifest in the final term where we see a coupling occur between
the two background gauge fields, which is not gauge invariant under gauge transformations
of B

(m)
2 . Consequently, we cannot render both dynamical without suffering a gauge anomaly.

As mentioned briefly at the end of section 2.2.2, we can still do so if we imagine our theory
as living on the boundary X of a five-dimensional spacetime Y . If we supplement the action
above by a bulk theory with action

− 1

2π

∫
Y

(
B̂

(m)
2 ∧ dB̂

(e)
2

)
, (2.94)

we find that the anomalous gauge transformation B̂
(m)
2 → B̂

(m)
2 + dλ

(m)
1 now cancels among

the two terms∫
X

(
dλ

(m)
1 ∧ B̂

(e)
2

)
−
∫
Y

(
dλ

(m)
1 ∧ dB̂

(e)
2

)
=

∫
X

(
dλ

(m)
1 ∧ B̂

(e)
2

)
−
∫
Y

d
(
dλ

(m)
1 ∧ B̂

(e)
2

)
=

∫
X

(
dλ

(m)
1 ∧ B̂

(e)
2

)
−
∫
X

(
dλ

(m)
1 ∧ B̂

(e)
2

)
.

(2.95)

The action (2.94) is the anomaly theory which encodes the ’t Hooft anomaly19 and the
mechanism by which a bulk anomaly cancels one on the boundary is known as anomaly
inflow.

19We could have equivalently omitted the B̂e
2 from the final term in equation 2.93, in which case the theory

would not have been invariant under electric gauge transformations (since F2 → F2 + dλ
(e)
1 ). The relevant

anomaly theory would then be given −
∫
Y

(
dB̂

(m)
2 ∧ B̂

(e)
2

)
which reduces to (2.94) after integration by parts.

See also the discussions in e.g. [43, 44] for a more formal treatment.
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Partial Symmetry Breaking

Despite the mixed ’t Hooft anomaly, there is no reason why we should choose to completely
gauge one symmetry, while breaking the other. Indeed, it is clear from the dual picture
that we could choose to couple A1 to a field of generic (integral) charge q. In the original
frame this corresponds to a non-trivial constant multiplying the BF-term. As we now show,
this corresponds to breaking the global symmetry down to a discrete sub-group of the orig-
inal continuous global symmetry groups. It is here that the operator formalism becomes
essential.

Consider the gauge transformations of the modified theory. In the frame with the axion,
these read

A1 → A1 + dλ0, a → a+ qλ0. (2.96)

We find that the operators (2.90) are now only gauge invariant if q Wilson lines emanate from
a single insertion of eia(x). As a result, the unit charge Wilson line is no longer endable. If we
repeat the argument from above, we now find that there remain some non-trivial operators
U e
g (S

2) which remain topological. Consider for example the correlator

U e
eip/q(S

2) exp

(
iq

∫
γ1

A1 − i

∫
∂γ1

a

)
= exp

(
ip

q

∫
S2

1

e2
∗ F2

)
exp

(
iq

∫
γ1

A1 − i

∫
∂γ1

a

)
.

(2.97)
As before, we may slide off the sphere S2 and conclude that the phase-factor must vanish (see
figure 2.6). What is new however, is that this result is not inconsistent with simply shrinking
the sphere and crossing the Wilson lines. Indeed, in this latter case, we find that the phase
factor is precisely given by eiq(p/q) = eip so that if p ∈ 2πZ (corresponding to α ∈ 2πZ/q) the
composite operator is neutral under U e

eip/q
. We therefore find that the symmetry operators

remain topological for a discrete sub-group Zq. Note moreover that closed Wilson lines are
still allowed, so that there do still exist operators charged under the remnant Zq symmetry.
A perfectly analogous argument holds for the operators (2.92).

Conclusions

Before we close our discussion of BF theory, let us highlight some key lessons.

• Given a theory with a continuous p-form global symmetry, we can gauge it by coupling
it to a (p + 1)-form gauge field. When we gauge a global symmetry in this way, its
associated conserved current will become exact, while the (p+1)-form global symmetry
associated to the newly introduced (p+ 1)-form gauge field will in turn be broken.

• Alternatively, we may consider explicitly breaking a p-form global symmetry by cou-
pling the associated gauge field to charged matter. In particular, charge q matter
breaks a U(1) global symmetry down to a Zq sub-group and renders the charged op-
erators endable. This breaks the topological dependence of the associated symmetry
operators.

• Of particular interest to us are the 0- and 1-form cases discussed here. The former
corresponds to a periodic scalar field which has no local gauge transformations, but
which admits a periodic identification corresponding to a large gauge transformation.

2.3.3 Example: Axion-Electrodynamics

As a final example of p-form symmetries in gauge theories, we will consider another mod-
ification of Maxwell theory, namely axion electrodynamics. This case will be of particular
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interest to us once we discuss type IIB EFTs. As a first step however, we first consider a
more modest modification of Maxwell theory.

Theta Angle and the Witten Effect

Recall that the Maxwell action admits an additional topological θ-term∫ (
− 1

2e2
F2 ∧ ∗F2 +

θ

8π2
F2 ∧ F2

)
. (2.98)

While a complete discussion of the role of the θ-term is beyond the scope of this thesis,
there are a number of interesting phenomena that we would like to highlight. Firstly, note
that this term does not affect the classical theory, as it can locally be written as a total
derivative. Nevertheless, this need not mean that it vanishes, even for spacetimes without
boundary. Much like how the magnetic charge corresponded to the first Chern class of
the gauge bundle, the θ-term corresponds to the first Pontryagin class of the bundle. For
U(1)-bundles, the latter is given by the square of the first Chern class so that the θ-term
is non-vanishing for topologically non-trivial configurations of the gauge field. In particular,
this means that the θ-term is quantized in the sense that∫ (

1

8π2
F2 ∧ F2

)
∈ Z, (2.99)

which renders θ, 2π-periodic in the path-integral. The physical effect of the θ-term is to
modify the spectrum of the theory. In particular, the Noether procedure now leads to the
modified electric current

J̃e
2 :=

(
1

e2
∗ F2 −

Kθ

4π2
F2

)
. (2.100)

To see the implication of this modification of the notion of electric charge, consider the
correlator

⟨Q̃e(S2)Tm(γ
1)⟩ ≡

〈∫
S2

(
1

e2
∗ F2 −

θ

4π2
F2

)
Tm(γ

1)

〉
, (2.101)

where S2 links γ1 once. As before, the term 1
e2
∗F2 acts trivially on the ’t Hooft line, but the

θ-term now detects the fact that the ’t Hooft line fixes the magnetic flux through S2 to m.
Thus, we find that the correlator above evaluates to

−mθ

2π
Tm(γ

1), (2.102)

which indicates that the charge m ’t Hooft line now acquires a fractional electric charge
proportional to θ. This is known as the Witten effect [45], and we will encounter it in several
guises in the remainder of this thesis. The Witten effect has another manifestation once
we consider how the periodicity of θ affects our previous reasoning. In particular, while the
partition function of the action (2.98) is invariant under shifts θ → θ + 2π, equation 2.102
shows that it affects the ’t Hooft lines. Indeed, the charge operator in (2.101) picks up an
extra 1

2π

∫
S2 F2, and hence, the charge m ’t Hooft line now acquires an additional m units

of electric charge, creating a state known as a dyon. Nevertheless, the spectrum as a whole
is left invariant once we recognize that the most general line operator in Maxwell theory is
in fact such a dyonic line operator Ln,m = WnTm, given by the simultaneous insertion of a
charge n Wilson line and a charge m ’t Hooft line. These line operators fill out a lattice
Z× Z, on which the shift θ → θ + 2π acts as (n,m) → (n +m,m), which leaves the lattice
invariant.
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The SL(2,Z) Duality Group

While the periodic θ comes with an obvious duality of Maxwell theory, we have also seen
that Maxwell theory contains another, more subtle electric-magnetic duality. This duality
extends to the theory including the theta angle. To make this manifest, we introduce the
complex coupling

τ =
θ

2π
− 2πi

e2
, (2.103)

in terms of which we can rewrite the original action as

1

2π

∫ (
1

2
Im τF2 ∧ ∗F2 +

1

2
Re τF2 ∧ F2

)
. (2.104)

If we now perform the dualization procedure from section 1.6.1, we obtain the dual action

1

2π

∫ (
1

2
Im(−τ−1)G2 ∧ ∗G2 +

1

2
Re(−τ−1)G2 ∧G2

)
. (2.105)

with

G2 = − (Im τ ∗ F2 +Re τF2) . (2.106)

We see that in addition to the discrete shift-symmetry τ → τ +1 it inherits from the θ-angle,
the theory has another duality which maps τ → − 1

τ
. Together, these two transformations

generate the modular group SL(2,Z) ∼= Sp(2,Z)

τ → aτ + b

cτ + d
,

{
a, b, c, d ∈ Z,
ad− bd = 1,

(2.107)

and it is the analog of the symplectic duality group from supergravity we encountered in
section 1.6. In fact, it is the duality group of supergravity, since the theory above corresponds
to the N = 2 vector sector for a theory with zero vector multiplets. In this case, the action for
the remaining gravi-photon simply reduces to Maxwell theory. Moreover, we see explicitly
how the classical duality group Sp(2,R) is broken down to a discrete sub-group via the
quantization of the Wilson/’t Hooft lines.20

Axion Electrodynamics

The effects discussed above appear rather more dramatically once we promote the periodic
θ-angle to a dynamical field. Its periodicity then becomes a gauge transformation of this
field, which we therefore identify as an axion. The resulting theory is given by∫ (

− 1

2e2
F2 ∧ ∗F2 +

K

8π2
aF2 ∧ F2 −

1

2g2
da ∧ ∗da

)
, (2.108)

whose equations of motion now read

A1 :
1

e2
d ∗ F2 =

K

4π2
da ∧ F2, a :

1

g2
d ∗ da = − K

8π2
F2 ∧ F2. (2.109)

We see that the coupling to the axion now explicitly breaks the electric 1-form current.
Nevertheless, as in the previous section, a discrete symmetry, controlled by the value of K,

20Recall that their quantization defined the gauge group to be U(1).
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remains. Indeed, by analogy to the modified current (2.100), we can imagine defining a
modified current

dJ̃e
2 := d

(
1

e2
∗ F2 −

K

4π2
aF2

)
= 0. (2.110)

While conserved by virtue of the equations of motion, it is again not invariant under a →
a + 2π. This time however, this is a genuine gauge transformation of the theory, so that J̃e

2

is not a well-defined current. Nevertheless, we can still use it to construct the associated
symmetry operators, which remain well-defined for g = e2πip/K [46]

Ue2πip/K (Σ2) = exp

(
2πip

K

∫
Σ2

(
1

e2
∗ F2 −

K

4π2
aF2

))
, p ∈ ZK , (2.111)

which is gauge invariant by virtue of the quantization of 1
2π
F2. This phenomenon is perfectly

analogous to what we encountered in our discussion of BF-theory, where we arrived at a
similar conclusion based on the requirement that Ug be topological. Here it can be understood
as a direct consequence of the Witten effect, applied to a dynamical theta-angle. These
conclusions can similarly be reached by moving to a dual frame. The dualization of the
gauge field proceeds completely analogously, only now the θ-angle is dynamical. It is clear
that the would-be conserved magnetic current in this frame

1

2π
G2 =

1

e2
∗ F2 −

aK

4π2
F2, (2.112)

is no longer gauge invariant, while the gauge invariant field strength

1

2π
G̃2 :=

1

e2
∗ F2 =

1

2π
G2 +

aK

4π2
F2, (2.113)

is no longer conserved 21.

Similarly, the equation of motion for a tells us that the axionic shift symmetry a → a+ c
is explicitly broken by the coupling to the gauge field. Nevertheless, for |K| ≠ 1 a discrete
shift-symmetry remains, which is most readily seen by noting that shifts a → a + 2π/K
leave the action invariant, without corresponding to gauge transformations of a. From an
operator perspective, this again also follows from the existence of gauge invariant topological
operators

Ue2πip/K (Σ3) = exp

(
2πip

K

∫
Σ3

(
1

g2
∗ da+ K

8π2
A1 ∧ F2

))
, p ∈ ZK . (2.114)

Chern-Weil Currents

While so far we have interpreted the equations of motion as broken global symmetries, fol-
lowing the logic from section 2.3.2 we may also interpret them as gauging the currents

J3 =
1

4π2
da ∧ F2, J4 =

1

8π2
F2 ∧ F2. (2.115)

These are examples of so-called Chern-Weil currents. Indeed, more generally we may consider
arbitrary wedge products of gauge field strengths Fp+1

J := Fp+1 ∧ . . . ∧ Fq+1, (2.116)

21The distinction between these currents has appeared in the literature under the terms Page and Maxwell
currents. More specifically, the external current that couples to G̃ is the Maxwell current, while the current
that couples to G2 is the Page current. In light of our eventual applications, we remark that brane states
couple (in four dimensions) to the latter.
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which are automatically closed by virtue of their associated Bianchi identities. These were
first discussed systematically in the literature in [47], to which we refer for a more thorough
discussion of such currents in the non-abelian case.

While it is clear that such symmetries are not readily derived from any transformation
of the fields, they nonetheless define quantized charge operators which exponentiate to topo-
logical operators of the theory. One might object that the current J4 is a top-form and as
such trivially conserved. Nevertheless, our discussion of the θ-angle suggests that it should
be interpreted as a topological charge associated to the full spacetime. In this sense we do
not require the current to be conserved locally. In particular, the current J4 is an example of
a “(−1)-form” symmetry. Although breaking such a symmetry is slightly subtle, it is clear
that absent other effects, gauging it corresponds to rendering the associated current cohomo-
logically trivial on-shell. The situation is less subtle for the J3 current, which equation 2.109
tells us is similarly gauged.

Monopoles and Strings

Let us now consider how we can couple the theory (2.108) to magnetic charge. Up until now,
we have essentially viewed magnetic charge as equivalent to electric charge, as we may always
move to a dual frame where this is the case. However, the situation becomes more subtle in
the presence of Chern-Simons terms. To see why, let us present an alternative definition of
the latter. Absent monopoles, we can introduce an auxiliary five-manifold Y with boundary
X to rewrite this term as

K

8π2

∫
X

aF2 ∧ F2 =
K

8π2

∫
Y

da ∧ F2 ∧ F2, (2.117)

where we also have to specify an extension of the fields on X into the bulk of Y . The resulting
(exponentiated) action is in fact independent of the choice of Y , since the difference between
two such choices Y1 and Y2 is 2π-quantized (thus dropping out of the path integral)

K

8π2

(∫
Y1

da ∧ F2 ∧ F2 −
∫
Y2

da ∧ F2 ∧ F2

)
=

K

8π2

∫
Y1∪Y −

2

da ∧ F2 ∧ F2 ∈ 2πKZ, (2.118)

where Y −
2 denotes Y2 with the orientation reversed. Indeed, this is a generic manipulation for

topological terms that could also have been applied to the BF term from section 2.3.2.

This construction fails in the presence of monopoles, due to the violation of the Bianchi
identity

1

2π
dF2 = δ3(γ

1), (2.119)

where δ3(γ
1) is a delta function, localized on the world-line. Indeed, it is easy to see that in

this case∫
X

aF2 ∧ F2 =

∫
Y

d (a ∧ F2 ∧ F2) =

∫
Y

da ∧ F2 ∧ F2 + 4π

∫
Y

aF2 ∧ δ3(γ
1). (2.120)

We can remedy this by assuming that the monopole carries its own dynamics, described by
a world-volume action

Smono =

∫
γ1

(
1

2v2
dKAσ ∧ ∗1dKAσ +

a

2π
dKAσ

)
, dKAσ := dσ −KA1, (2.121)
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where σ is a charged scalar that transforms as

A1 → A1 + dλ0, σ → σ +Kλ0. (2.122)

When we add this last term to the Chern-Simons term, we find that it cancels the offending
term, so that the combined action can be described by the (gauge-invariant) action∫

X

(
K

8π2
aF2 ∧ F2 +

a

2π
dKAσ ∧ δ3(γ

1)

)
=

∫
Y

(
da ∧ F2 ∧ F2 +

1

2π
da ∧ dKAσ ∧ δ3(γ

1)

)
.

(2.123)
The basic idea here is that the Chern-Simons term becomes anomalous in the presence of
monopoles, but this anomaly is canceled by the anomaly of the monopole action. The latter
is nothing but the witten effect. Indeed, under shifts a → a + 2π, the monopole action
transforms as

Smono → Smono −K

∫
γ1

A1, (2.124)

which tells us that the monpole picks up −K units of electric charge, thus becoming a dyon.
Note morover that a coupling

∫
γ1

aK
2π

A1, which would be sufficient to cancel this anomaly
would not be gauge invariant under transformations of A1, thus signaling the need for the
charged world-volume field σ.

What is the interpretation of this field? The classic example where this mechanism plays
out is for the Polyakov-’t Hooft monopole (see e.g. [48] ch. 15 for a review). In this case, we
view the U(1) gauge theory as the spontaneously broken phase of an SU(2) gauge theory,
coupled to an adjoint scalar with a potential

V (ϕ) ∼
(
tr(ϕ2)− v2

)
. (2.125)

This leads to a vev

ϕ ∼
(
v 0
0 −v

)
. (2.126)

We are left with a massless U(1) gauge field associated to the generator that preserves this
vev, while the remaining generators acquire a mass. At low energies, the effective U(1) gauge
theory now contains monopoles which arise as solitonic solutions of the SU(2) gauge theory.
Geometrically, the non-abelian gauge group contributes the non-trivial topology required by
a monopole configuration of the U(1) field. We can compare this to monopoles created by
’t Hooft lines, where the singularity on the world-line effectively modifies the topology of
spacetime. Indeed, the SU(2) description of the monopole field configuration allows us to
resolve its core, which is no longer singular.

The corresponding monopole solution now possesses two kinds of collective coordinates,
which correspond to massless deformations of the monopole solution. These include trans-
lational degrees of freedom, but also a dyonic collective coordinate of the type described
above. The latter corresponds to rotations of the monopole field configuration, inside its
field space. More generally, we expect, based on the general argument presented above, that
any U(1) monopole should carry some anomalous world-volume theory to cancel the bulk
anomaly.

Another way of seeing the need for this world-volume degree of freedom, is to note that
monopoles break the magnetic 1-form symmetry, and by extension, break the Chern-Weil
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current F2 ∧ F2 which the axion coupling gauged [47]. When we include the monople action
however, the axion equation of motion is modified to

1

g2
d ∗ da = −

(
K

8π2
F2 ∧ F2 +

1

2π
dAσ ∧ δ3(γ

1)

)
, (2.127)

which now tells us a linear combination of bulk and localized currents are gauged, while the
bulk current itself can safely be broken.

Finally, let us mention the case of axionic strings. Recall from section 2.3.2 that these
are states around which the axion picks up a non-trivial monodromy

∫
S1 da, which is the

zero-form analog of
∫
S2 F2. These too leads to an anomaly which should be canceled by an

appropriate world-sheet theory. Alternatively, such strings violate the associated “Bianchi
identity” 1

2π
d(da) = δ2(Σ

2), so that we break the gauged Chern-Weil symmetry da∧F2

0
d2=0
= d

(
1

e2
d ∗ F2

)
=

K

4π
d(da) ∧ F2 =

K

8π2
δ2(Σ

2) ∧ F2 ̸= 0. (2.128)

In this case, we can include a chiral boson (i.e. dσ = ∗dσ) on the world-sheet which is
electrically charged under the gauge field (see e.g. [49, 50] for details). This modifies the
equation of motion for the latter, resolving the inconsistency.

Conclusions

Finally, let us close this sub-section by highlighting some key lessons we can draw from this
example

• The presence of three-field Chern-Simons terms of the kind above break both the electric
1-form and axionic shift-symmetries, potentially down to discrete sub-groups controlled
by the integer K.

• This term also gauges two Chern-Weil symmetries, whose currents are given by various
wedge products of field strengths.

• The Chern-Simons term induces the Witten effect on monopoles. The broken electric
symmetry can also be understood as a consequence of this effect, which tells us that
electric charge is only defined mod K.

• Monopoles lead to an anomaly in the Chern-Simons term, which requires it to carry an
anomalous world-volume theory which cancels the bulk anomaly. The Witten effect can
then be understood as the anomaly of the world-volume theory. A similar statement
holds for axionic strings.

2.4 More Generalized Global Symmetries

While this in principle concludes our review of higher-form global symmetries, these are not
the only generalizations of global symmetries that have been realized in recent years. In this
section we would like to comment on some of the more recent developments regarding general-
ized global symmetries, in particular with a focus on their application in a pure QFT context
while reserving a discussion of their role in the swampland program for the next section.
Indeed, a remarkable body of literature has been built up that seeks to understand quantum
field theories exhibiting such generalized global symmetries. While we cannot do this rich
subject justice, we do wish to give a sense of what directions these further generalizations
take here.
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2.4.1 Higher-Group Symmetries

The abstract operator definition of global symmetries introduced in section 2.2 led to an
immediate generalization in the form of p-form global symmetries. These satisfy all the usual
properties of ordinary global symmetries, except that their associated symmetry operators
are supported on (d− p− 1)-dimensional manifolds (and consequently, act on p-dimensional
operators). It is not hard however, to come up with further generalizations to this programme
and indeed, several such variations exist.

The simplest such generalization is given by the so-called higher-group symmetries. In
this case, we have that the symmetry operators of two distinct higher-form global symmetries
mix to give a mathematical structure known as a higher-group. In particular given a p-form
symmetry with group G and a q-form symmetry with group H, their symmetry operators
may not furnish a representation of the product group G × H, but the operators of one
may act non-trivially on the other. The simplest such mixing occurs when we have a 0-form
symmetry and a 1-form symmetry leading to a 2-group symmetry.

A somewhat more down-to-earth perspective of this phenomenon is given in terms of the
background gauge fields for these symmetries. Indeed, when we couple the symmetries that
mix into a 2-group to background fields, the 2-group structure appears as a mixing of the
gauge transformations for these fields. In particular, given the 1- and 2-form background
fields Â1, Â2 for the 0- and 1-form symmetries, then a typical 2-group will appear as a mixed
gauge transformation of the form

Â1 → Â1 + dλ0, Â2 → Â2 + dλ2 + αdÂ1 ∧ λ0, (2.129)

for some constant α. Of course, viewed this way, the phenomenon above is nothing but the
mixed gauge transformations (1.2) we encountered in type IIB string theory. Indeed, gauged
higher-group symmetries are ubiquitous in string theory constructions, most famously in the
Green-Schwarz mechanism. The primary distinction here is that the preceding discussion
applies to non-dynamical background fields for global symmetries.

Let us make this idea more concrete by means of an example. In fact, we have already
encountered such an example in the previous section: namely, axion electrodynamics. Fol-
lowing [46], we couple the theory to background gauge fields for its p-form global symmetries.
Compared to the examples we have considered previously however, there are two subtleties
to deal with. The first is the fact that the electric 1-form symmetry and the axionic shift
symmetry are broken down to a discrete ZK sub-group. Their background field should thus
be understood to denote a discrete (hence flat) background connection specifying cohomology
classes (cf. our discussion at the end of section 2.2.2)[

K

2π
Ĉ1

]
∈ H1(X,ZK),

[
K

2π
B̂

(e)
2

]
∈ H2(X,ZK), (2.130)

which we choose to represent by continuous gauge fields Ĉ1 and B̂
(e)
2 with restricted holonomy.

The second subtlety is related to the axion coupling, which involves a bare axion, rather
than its ”field strength” da. As such we cannot simply substitute da → da − Ĉ1 to ensure
invariance under arbitrary shifts. Nevertheless, we can invoke the construction from section
2.3.3 to rewrite this term using an auxiliary five-manifold Y

K

8π2

∫
X

aF2 ∧ F2 =
K

8π2

∫
Y

da ∧ F2 ∧ F2. (2.131)
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Written in this way, we can now readily couple the theory to background gauge fields as22

S =

∫
X

(
− 1

2e2
(F2 − B̂

(e)
2 ) ∧ ∗(F2 − B̂

(e)
2 )− 1

2g2
(da− Ĉ1) ∧ ∗(da− Ĉ1)

)
+

1

2π

∫
X

(
dB̂

(m)
2 ∧ A1 − a dĈ3

)
+

K

8π2

∫
Y

(da− Ĉ1) ∧ (F2 − B̂
(e)
2 ) ∧ (F2 − B̂

(e)
2 ),

(2.132)

where, for reasons that will become clear shortly, we have integrated the gaugings of F2 and
da (first term, second line) by parts. The problem we are faced with is that in the presence of
the background gauge fields, the action is no longer independent of the choice of Y . This can
be fixed, up to terms involving only background gauge fields, by including yet more counter
terms to cancel the offending parts of the last term23

− K

8π2

∫
Y

(
da ∧ B̂

(e)
2 ∧ B̂

(e)
2 + 2Ĉ1 ∧ B̂

(e)
2 ∧ F2

)
. (2.133)

By virtue of flatness of the background fields Ĉ1 and B̂
(e)
2 , we can apply Stokes’ theorem to

write it as an integral over X, which we can then combine with the gaugings of F2 and da to
obtain

1

2π

∫
X

((
dB̂

(m)
2 +

K

2π
Ĉ1 ∧ B̂

(e)
2

)
∧ A1 − a

(
dĈ3 +

K

4π
B̂

(e)
2 ∧ B̂

(e)
2

))
. (2.134)

The upshot of this computation is that we now see appear the combinations of gauge fields

Ĥ
(m)
3 := dB̂

(m)
2 +

K

2π
Ĉ1 ∧ B̂

(e)
2 , Ĝ4 := dĈ3 +

K

4π
B̂

(e)
2 ∧ B̂

(e)
2 . (2.135)

If we wish for the construction to remain gauge invariant, up to anomaly terms, we conclude
that the gauge fields B̂

(m)
2 and Ĉ3 must transform non-trivially under gauge transformations

of Ĉ1 and B̂
(e)
2

B̂
(m)
2 → B̂

(m)
2 + dΛ

(m)
1 − K

2π
Λ0B̂

(2)
e − K

2π
Ĉ1 ∧ Λ

(e)
1 +

K

2π
dΛ(0) ∧ Λ(1)

e .

Ĉ3 → Ĉ3 + dΛ2 −
K

2π
B̂

(e)
2 ∧ Λ

(e)
1 − K

2π
Λ

(e)
1 ∧ dΛ

(e)
1 ,

(2.136)

where the mixing of 0-, 1- and 2-form symmetry transformations in particular signals a 3-
group. It is of course also interesting to consider this phenomenon directly in terms of the
topological operators, which was analyzed in [51].

2.4.2 Non-Invertible Global Symmetries

The second important class of generalizations are the non-invertible global symmetries which
involve operators of a fixed co-dimension, but which admit fusion rules that generalize ordi-
nary group multiplication. In particular, this means that these operators no longer furnish a
group representation, but rather satisfy a fusion algebra of the form

UA(Σ
d−p−1)× UB(Σ

d−p−1) =
∑
C

NC
AB UC(Σ

d−p−1), (2.137)

22For the present discussion we are not interested in ’t Hooft anomalies. We therefore work modulo terms
involving only background fields, which simply encode said anomalies.

23Note that terms involving only one background field such as 2K
8π2 da ∧ F2 ∧ B̂

(e)
2 and K

8π2 Ĉ1 ∧ F2 ∧ F2 are
2πZ valued by virtue of equation 2.130. They therefore do not contribute to the path integral.
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which reduced to the usual p-form algebra whenever NC
AB is non-zero only one operator

C. For a simple example of how these may occur, consider the fusion law satisfied by the
Wilson lines in gauge theory. For the abelian case we had already concluded that inserting
two Wilson lines simply results in a new Wilson line whose charge equals the sum of the
constituent lines. The picture becomes more interesting for non-abelian gauge groups, where
Wilson lines are labeled by a representation ρ of the gauge group and are written

Wρ(γ
1) = Trρ exp

(
i

∫
γ1

A1

)
, (2.138)

with the trace taken in the representation ρ.24 There is no good way to add two Wilson lines
in different representations so that they satisfy a more general fusion algebra [52]

Wρ(γ
1)×Wν(γ

1) =
∑
i

Wµi
(γ1) (2.139)

which can be understood as the creation of a multi-particle state in the representation ρ⊗ ν,
which is subsequently decomposed into irreducible representations as ρ ⊗ ν = ⊕iµi. Now,
Wilson lines are generically not topological and hence do not constitute a non-invertible
symmetry by the above definition, but it turns out that for special choices of the gauge
group G, a subset of the Wilson line operators can become topological, hence furnishing a
non-invertible global symmetry.

Finally, though we do not discuss it in any detail here, it has been proposed that non-
invertible global symmetries exist even in a setting quite familiar by now, namely axion
electrodynamics [53]. A more careful analysis than ours reveals that the (partially) broken
axionic shift-symmetry survives as a non-invertible global symmetry, where the relevant topo-
logical operators are constructed out of the usual shift-symmetry Ug(Σ

3), together with the
partition function of a topological field theory for which the gauge field acts as a background
connection. The latter cancels the dependence of Ug on Σ3 for g ̸= e2πin/K but leads to
non-trivial fusion rules of the kind discussed above.

2.5 Generalized Global Symmetries in the Swampland

Let us now return to the main topic of this chapter and indeed this thesis, namely the role
of generalized global symmetries in the swampland program. As we have already alluded
to, generalized global symmetries have proven to be a useful organizing principle within the
swampland. While at first only leading to connections between existing conjectures, more
recently they have been used to formulate new conjectures as well. The goal of this section
is to revisit the ideas from section 2.1 and view them in the language of generalized global
symmetries.

The main idea is to extend the No Global Symmetries conjecture to include generalized
global symmetries, including discrete ones. That is to say, any generalized global symmetry
should be either broken or gauged. The idea for this somewhat predates the formal notion of a
generalized global symmetry [23], as it was well understood that branes in string theory always
carry gauge charge, which allows an outside observer to detect them. Conversely, brane states

24In the abelian case, the charge n can also be understood to label the representations of the gauge group,
which are always 1-dimensional (so that the trace operation is trivial). In fact, this is the origin of the
distinction between U(1) and R gauge theory, as the representations of the latter are labeled by real numbers
rather than discrete integers.
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that do not carry such gauge charge would be undetectable away from their core, leading
to problems akin to those associated with global charge. 25 In fact, the NGS conjecture for
higher-form global symmetries can be understood as a result of the ordinary NGS conjecture
under compactification. Indeed, consider for example a circle compactification of Maxwell
theory from five to four dimensions. In this case, the gauge field, which has a five-dimensional
1-form global symmetry, splits according to

AM → Aµ ⊕ A5. (2.140)

The four-dimensional theory now has a new 1-form global symmetry associated to the four-
dimensional gauge field, but also a 0-form global symmetry associated to the compactified
component of the gauge field. If we wish to prevent this we should demand that higher-form
global symmetries are forbidden to begin with. Any UV-completion should then either gauge,
or break these symmetries.

2.5.1 New Connections

This new, stronger requirement leads to various new connections between the conjectures
discussed in section 2.1. The reasoning often proceeds along similar lines. Namely, given an
effective theory, valid up to some cut-off, one asks how its global symmetries may be gauged
or broken by UV effects, allowing for a consistent UV-completion. This can then lead to the
prediction of new states or objects which break global symmetries, or we may expect certain
symmetry-breaking terms to be required in the effective theory. We present a selection of
such examples from the literature below.

Completeness Hypothesis

The completeness hypothesis for continuous, connected gauge groups can now be understood
as a condition to ensure that all ungauged higher-form global symmetries are broken. Indeed,
recall from our discussion in section 2.3.2 that by including charge q matter, a U(1) p-form
global symmetry is broken down to a subgroup Zq. If one demands that the symmetry is
broken completely, one requires that the spectrum of charges is complete, including higher-
dimensional objects.

Nevertheless, we have already seen that this cannot be the whole story. For example,
even in our simple examples of theories with generalized global symmetries, we saw that
the magnetic 1-form symmetry was gauged by the inclusion of the charged particle, hence
removing the symmetry without the need to introduce monopoles. Similarly, in axion electro-
dynamics, the electric 1-form symmetry is broken purely by virtue of gauging the Chern-Weil
current, i.e. without the need for charged particles. Both of these are examples of Chern-
Simons terms, which spoil the naive one-to-one correspondence between completeness and
NGS.

More generally however, it has been argued [52] that completeness of the spectrum can
be understood as arising from the absence of any topological operators. That is to say, we
extend the NGS conjecture to the non-invertible symmetries from section 2.4.2, which due to
their fusion algebra lose their interpretation as a symmetry. As discussed, these may survive
in the presence of Chern-Simons terms [53], such that a complete spectrum may be needed
to break them. This remains an open question however, as their realization in string theory
constructions remains poorly understood. Nevertheless, this enlarged notion of NGS could

25Somewhat amusingly, the authors refer to (ordinary) global symmetries as (−1)-form gauge symmetries.
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prove to be the generalization necessary to get to the heart of why global symmetries are
forbidden in QG.

Higher-Groups and the WGC

In addition to revealing new connections to the completeness hypothesis, generalized global
symmetries have also shed new light on the WGC. In [54] it was argued that aspects of
the WGC for theories with multiple p-form gauge fields can be understood in terms of the
higher-group structure of the associated p-form global symmetries. Suppose for instance that,
starting from a UV-complete theory, we obtain axion electrodynamics at low energies. In the
UV we expect the presence of both electric charges (of mass me), that break the remnant ZK

electric 1-form symmetry and axionic strings (of tension Te), which break the axionic 2-form
symmetry. These states come with energy-scales Λe ∼ me and Λstring ∼

√
Ts, respectively,

below which the symmetry is restored.

If we assume that we are well-below Λe, then the electric 1-form symmetry is a good
symmetry of the theory, and we are free to introduce a background connection for this
symmetry as in section 2.4.1. However, as is clear from equation (2.135), any background

B̂
(e)
2 automatically turns on a background connection for Ĉ3 as well! Hence, if we are to

consistently recover axion electrodynamics at low energies, this means that the axionic 2-
form symmetry must be a good symmetry whenever the electric 1-form symmetry is a good
symmetry. This directly leads to a bound [46]

Λe ≲ Λstring, ⇒ me ≲
√

Te. (2.141)

In [54], it is then further argued that by assuming that these strings satisfy their version of the
WGC, and that the associated axion couples to instantons with action Sinst ∼ g−2 [50], this
leads to the statement of the weak gravity conjecture for the excitations of the string.

Chern-Weil Currents

Finally, in [47] it has been shown that by including Chern-Weil currents in the analysis,
one can deduce many distinctly stringy phenomena by demanding that all such symmetries
are broken. For instance, low-energy theories obtained from string theory typically contain
three-field Chern-Simons terms (see for instance the last term in equation (1.4)). These terms
can be understood as gauging particular Chern-Weil currents, and consistently breaking the
remaining symmetries constrains the interactions of the objects that do so. In this way one
finds that branes should be able to end on branes, understood as branes becoming endable in
the sense of section 2.3.2. Moreover, it was shown that the world-volume degrees of freedom
of the brane can be understood as the degrees of freedom that cancel the anomaly inflow
from the bulk theory. This observation can in fact be used to re-derive the full Chern-Simons
action of the brane.

2.5.2 Cobordism Conjecture

In addition to providing new connections between existing swampland conjectures, accounting
for generalized global symmetries has also led to new conjectures. One of the most significant
developments to come out of this is the cobordism conjecture [55]. In topology, cobordisms are
a very coarse way of classifying manifolds. They answer the question of when two manifolds
can be realized as the boundary of a manifold of one higher dimension. Crucially, this
construction should take into account any structure (e.g. orientation, spin, symplectic etc.)
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Figure 2.7: Illustration of a cobordism. Topology-changing transitions such as cobordisms
should be allowed in the full theory to prevent a global symmetry. This implies the existence
of defects which enable such transitions. Figure based on [32].

on these boundary manifolds and extend them into the ”bulk” in such a way that we recover
the original structure by restricting to the boundary (cf. our discussion around equation
2.131). This construction provides an equivalence relation between manifolds with a certain
G-structure, which leads to a classification of such manifolds in terms of their equivalence
class under this relation. The resulting set of equivalence classes is generically denoted ΩG

d

for a given dimension d and G-structure, and it admits an abelian group structure.

The cobordism conjecture then states

Cobordism Conjecture: Consider some D-dimensional QG theory compactified on
a d-dimensional internal manifold. All cobordism classes must vanish

ΩQG
d = 0. (2.142)

Otherwise they give rise to a (D−d−1)-form global symmetry with charges [M ] ∈ ΩQG
d .

The basic idea here is that any compactification manifold of e.g. string theory should
carry a number of structures that make it a suitable string background. The collection of
these structures is denoted QG and manifolds with this structure can be collected into the
cobordism group ΩQG

d . In the compactified theory, this background is allowed to fluctuate,
which we recall gave rise to moduli. However, in the full theory, we should be able to
transition between any two such backgrounds, even topologically distinct ones. A non-trivial
cobordism class implies an obstruction to such transitions. From this perspective, we can
therefore imagine the cobordism class as a d-form charge carried by the compact space, which
should be forbidden by (a generalized) NGS conjecture.
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In general however, we do not know what the full structure group of quantum gravity is.
Rather, we can only proceed by approximation and consider e.g. backgrounds with a spin
or G-bundle structure. These will not typically lead to a vanishing cobordism group, but we
know that in the UV-complete theory, cobordisms between these ostensibly non-cobordant
backgrounds should be possible. While the UV-theory therefore carries the structure neces-
sary to trivialize these cobordism classes, from the low-energy perspective these transitions
appear as defects/objects that interpolate between these non-cobordant backgrounds.

Reasoning based on the vanishing of cobordism classes has proven an effective tool to
re-derive known properties of string theory, such as the existence of various brane states as
necessary [56]. What makes this conjecture truly remarkable however, is that it has also
led to new predictions. For instance, the original paper on the topic suggests the existence
of undiscovered defects (analogous to brane states) that interpolate between otherwise non-
cobordant backgrounds. Non-trivial cobordism groups have also been used to determine
uncancelled anomalies of type IIB string theory [57] and subsequently proposing the relevant
anomaly theory that restores the full duality group.

More dramatic still has been the proposal to take seriously the idea of a trivial cobordism
class. In particular, it is well-known [58] that Kaluza-Klein compactification of e.g. five-
dimensional gravity (cf. section 1.3.2), though classically stable26, admits a non-perturbative
instability by which the KK background tunnels to one with a hole, a region not covered
by the metric solution. Worse still, one finds that once formed, this hole will grow leaving
“nothing” behind. Such solutions are called bubbles of nothing and they rely crucially on the
fact that the internal space shrinks to zero size as we approach the bubble. Thus a necessary
condition for this to occur is that the background manifold can continuously be shrunk to
zero size. In the past it has been argued that topological obstructions, such as the presence
of spinors along with the metric background, can form a topological obstruction to such a
pathological instability. This is essentially equivalent to the statement that the background
defines a non-trivial cobordism class in ΩQG, which by the cobordism conjecture cannot be the
case [59]. It follows that stability of a given compactification becomes a dynamical question,
which is a far subtler matter (see e.g. [60, 61]) than the guaranteed protection afforded by
topological obstructions. In a more general context, these bubbles-of-nothing are examples
of end-of-the-world branes, domain walls which enact the cobordism to the trivial element in
[0] ∈ ΩQG

d , which have garnered significant attention in recent years.

2.5.3 Symmetries in Type IIB Compactification

Finally, we turn to our case of interest, namely type IIB Calabi-Yau compactifications. These
provide us with a concrete setting in which to study the gauging and breaking of (generalized)
global symmetries. As we have seen, generalized global symmetries provide us with a new
interpretation of phenomena predicted by many existing swampland conjectures. While we
expect the global symmetry group to be trivial (once we account for the correct stringy
effects), the way this is arranged in a given theory can be non-trivial and highlight interesting
connections. This motivates us to consider global symmetries as they appear in explicitly
realized string theory constructions.

In particular, we will investigate what global symmetries may appear in the vector sector

26Recall that small variations around the background produced precisely the tower of Kaluza-Klein modes.
Had any of these modes appeared with a negative mass-squared, this would signal a classical instability.
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of type IIB Calabi-Yau compactifications, which we introduced in chapter 1

S =

∫ (
1

2
IIJF

I ∧ ∗F J +
1

2
RIJF

I ∧ F J −Kij̄dz
i ∧ ∗dz̄ j̄

)
. (2.143)

We emphasize that the kinetic matrix N = R+ iI and the Kahler metric Kij̄ are functions of
the moduli. At generic points in the moduli space, these are expected to be very complicated
functions, for which we do not have generic expressions. Nevertheless, near special limits
in the moduli space the mathematical tools afforded to us by asymptotic Hodge theory will
allow us to extract the limiting form of these functions, where they simplify considerably.
This will provide us with concrete theories to study for their symmetry content, along the
lines of this chapter.

Such special limits correspond to points on the moduli space where the corresponding
Calabi-Yau manifold develops a singularity. These limits have been well-studied from both a
mathematical, as well as a physical perspective. Regarding the latter, previous investigations
of compactifications in these asymptotic regimes have shown that such limits often lie at
infinite distance in field space. Moreover, they are associated with gauge couplings going to
zero such that a global symmetry is restored, therefore providing connections to the WGC,
the SDC and the NGS conjecture. In the following chapter, we will develop the tools needed
to understand these results, and subsequently apply them to derive the explicit limiting form
of the action (2.143).



Chapter 3

Asymptotic Hodge Theory

In this chapter we will present the mathematics necessary to study the vector sector of N = 2
supergravity near special limits in the Calabi-Yau moduli space. As we have already seen in
section 1.6, these theories display a rich geometric structure. Important physical quantities
are encoded in sections of various bundles over the scalar manifold. Indeed, for Calabi-Yau
compactifications in particular, we encountered the following

• The Kahler potential, expressed in terms of the holomorphic (3, 0)-form Ω

e−K = i⟨Ω, Ω̄⟩. (3.1)

• The gauge kinetic functions, expressed in terms of the Hodge star matrix

M =

(
⟨αI , ∗αJ⟩ ⟨αI , ∗βJ⟩
⟨βI , ∗αJ⟩ ⟨βI , ∗βJ⟩

)
=

(
−ImN − ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN −(ImN )−1

)
.

(3.2)

• The mass and physical charge of a (BPS) state q, expressed in terms of the Hodge star
matrix and Ω, respectively

Q2
q :=

1

2
qTMq =

1

2
⟨q, ∗q⟩, M2

q = eK |⟨Ω,q⟩|2. (3.3)

More generally we have seen the importance of the structure group of the symplectic bundle,
which was intimately related to the dualities and symmetries of the vector sector. All of
these structure arise naturally when studying the variation of the Hodge decomposition on
the middle cohomology of the Calabi-Yau.

Starting in section 3.1, we therefore begin by reviewing the basic mathematics used to
describe these variations, codified in a variation of Hodge structure (VHS). We will encounter
the Hodge bundle, which is the flat symplectic bundle required by supersymmetry. Since this
bundle is flat, its transition functions are constant and can be characterized by a monodromy
action, which will be central for the rest of this chapter. In section 3.2 we then zoom in
on regions near special limits in the moduli space where the Calabi-Yau manifold becomes
singular. It is here that the monodromy group takes center stage. It turns out that these
singularities are distributed along divisors in the moduli space, which generate an action
of the monodromy group on the Hodge bundle. The nilpotent orbit theorem of Schmidt
makes precise the way in which this monodromy action controls the VHS near these special
limits. The algebraic properties of these monodromy matrices will be seen to control much
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of the physics, and we give a classification of such singularities in terms of so-called mixed
Hodge structures. Along the way we re-derive basic physical results, deferring to the original
literature for a more complete overview. In section 3.3, we review the single-variable SL2-orbit
theorem. It gives a more detailed description of the structure present at these singularities
and allows us to derive an approximate form of the Hodge star matrix near such limits. In
section 3.4, we then finally use the results of this chapter to obtain the most general limiting
form of the physical quantities enumerated above.

3.1 Hodge Structures

The goal of this section will be to give a more precise mathematical description of the geo-
metric structures we have encountered in a more physical setting in chapter 1.

3.1.1 Pure Hodge Structures

Before graduating to describing variations over the moduli space, it will serve us well to first
make precise the various structures present at a typical point in moduli space, that is, away
from any singularities. This defines what is known as a polarized pure Hodge structure,
whose definition summarizes the various structures encountered in chapter 1. While we are
eventually interested in the setting of 3-folds, we formulate these definitions for arbitrary
(complex) dimension n.

Given the real vector space HR = Hn(X,R) with complexification HC = HR ⊗ C and a
contained lattice HZ = Hn(X,Z) ⊂ HR, its associated Hodge decomposition defines a pure
Hodge structure of weight n. More precisely, this is defined as the pair (HR, F ), where F is
a finite decreasing filtration of HR. That is, we have a sequence of sub-spaces F p

F n ⊂ F n−1 ⊂ . . . ⊂ F 1 ⊂ F 0 = HC, (3.4)

satisfying

HC = F p ⊕ F
n−p+1

. (3.5)

This filtration is equivalent to the Hodge decomposition of HC, and the two are related by

Hp,q = F p ∩ F
q
, F p =

⊕
r≥p

Hr,k−r. (3.6)

While possibly less familiar than the Hodge decomposition Hp,q, the filtration F p is the
structure that most naturally describes the Hodge structure onHR once we consider variations
of this structure over the moduli space. As we have also seen in chapter 1, the vector space
HR carries two additional structures that will be of interest to us for the following discussion.
The first follows from the fact that the Hodge star operator maps n-forms to n-forms on a
Calabi-Yau n-fold. It therefore restricts to a well-defined homomorphism on the space HC,
whose action decomposes along with the Hodge decomposition on HC

∗ω = ip−qω, ω ∈ Hp,q. (3.7)

In this way it is clear that the Hodge star depends on the complex structure which controls
the Hodge decomposition. If we wish to abstract this construction away from the context
of describing cohomology classes, the operator ∗ is typically written C and is referred to
as the Weil operator of the Hodge structure. In later sections we will occasionally adopt a
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similar notation. The second structure defined on (HR, F ) is inherited from the pairing we
encountered in section 1.5.2. In particular, we have a bi-linear pairing

⟨α, β⟩ ≡ S(α, β) :=

∫
X

α ∧ β, α, β ∈ HC. (3.8)

This pairing satisfies a number of nice properties with respect to the Hodge decomposition
and Weil operator1

1. S(α, β) = (−1)nS(β, α),

2. S(F p, F n−p+1) = 0, ⇔ S(Hp,q, Hr,s) = 0, (p, q) ̸= (s, r),

3. S(Cv, v) > 0, v ∈ Hp,q, v ̸= 0.

Note that this last property renders S(C·, ·) into an inner product on HC and the associated
vector norm ||v||2 := S(Cv, v) is called the Hodge norm on HC. In general, any bilinear
pairing on a pure Hodge structure is said to be a polarization if it satisfies the properties
above. The existence of these additional structures on (HR, F ) places essential constraints
on the Hodge structure. Though this is sometimes left implicit, these constraints are crucial
to many of the results that follow.

3.1.2 Variation of Hodge Structure

Having discussed the structures present at a typical point in the moduli space, we can now
study how this structure varies if we allow the space X in question to vary. We will first do
so from a global point of view, before moving on to a local description of the moduli space
more suitable for the applications we will be interested in.

Given a Calabi-Yau manifold X, let us denote its complex structure moduli space M.
Each point z ∈ M then corresponds to a Calabi-Yau Xz, differing from each other only
in their complex structure. Consequently, each of these Xz have isomorphic cohomology
groups Hn(Xz,C) ∼= HC, which suggests the possibility of assembling them into a bundle.
It turns out that there is a canonical way of doing so, so that the moduli space naturally
comes equipped with a flat vector bundle H whose fibers are identified point-wise as the
cohomology group Hn(Xz,C). Note however, that while this bundle is flat, the possibly non-
trivial topology of M may prevent it from being trivial2, which will be important to us later.
The various sub-spaces (Hp,q, F p, HR, HZ, . . .) defined in the previous section can be realized
as fibers of smooth sub-bundles of this vector bundle. Moreover, the fiber-wise polarization
extends to a flat bilinear form on the bundle H, which reduces the structure group of H to
the automorphism group of S(·, ·). Because H is flat, it comes equipped with a canonical flat
connection ∇, referred to in this context as the Gauss-Manin connection. It is here that the
importance of the Hodge filtration first becomes apparent. In particular, these sub-bundles
admit two very nice properties

1Strictly speaking, this is only true for n = 3. More generally one should restrict the discussion to the
so-called primitive part of Hn, defined as the kernel of the cohomology map K∧ · for K the Kahler form. For
n = 3 this condition is automatically satisfied for any α ∈ H3 as K ∧ α ∈ H5 which is empty. Since this is
our case of interest, we do not keep track of this distinction.

2A more careful treatment would involve taking a family of Calabi-Yau manifolds π : X → M whose fiber
over a point z ∈ M is the Calabi-Yau π−1(z) = Xz. The cohomology groups of Xz assemble into a sheaf over
X and by taking the direct image sheaf under π one obtains a local system on M, which in the present case
corresponds in the bundle flat H. The discussion in the main text should be viewed as a heuristic motivation,
but is otherwise correct once one recovers the bundle H.
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• While all of the sub-bundles Hp,q are smooth, it turns out that the sub-bundles F p are
in fact holomorphic.

• With respect to the flat connection on H, we have that ∇F p ⊂ F p−1 ⊗ T (1,0)M. This
property is called Griffiths’ transversality.

The collection of objects and properties listed above define precisely the abstract notion
of a variation of Hodge structure (VHS) whose abstract definition we do not repeat here.
Instead, we specialize further to the case of Calabi-Yau 3-folds, where we have more detailed
information available to us. In particular, we have that F 3 = H3,0 is one-dimensional, and
holomorphic sections correspond to a holomorphic choice of (3, 0)-form as a function of the
moduli. Moreover, in the particular case of Calabi-Yau 3-folds we obtain a stronger version
of Griffiths’ transversality that states that we can recover the full Hodge filtration from such
a section by repeated application of the connection ∇. In particular, choosing holomorphic
coordinates zi on M, we have that

Ω(z) → ∇iΩ(z) → ∇i∇jΩ(z) → ∇i∇j∇kΩ(z). (3.9)

Hence the full information about the sub-bundles F p can be derived from a holomorphic
section Ω of F 3. It follows that if we understand how the section Ω behaves as a section of
H that we can (at least in principle) reconstruct the full VHS.

To better understand the properties of Ω(z), let us switch to a more local description in
terms of the period vector. As a first step, let us fix a base point z0 ∈ M and choose a (real,
integral3) basis (αI , β

I) of the fiber H3(Xz0 ,C). We can take this basis to be symplectic with
respect to the polarization on the fiber over z0

ηIJ = S(αI , αJ) = 0 = S(βI , βJ) = ηIJ , ηJI = S(αI , β
J) = δJI . (3.10)

which fixes it uniquely up to symplectic transformations. We can extend this basis to a local
frame of H which is flat with respect to ∇. That is to say, if we take our holomorphic section
Ω(z) and expand it with respect to the basis above

Π(z) :=

( ∫
AI Ω(z)

−
∫
BI

Ω(z)

)
≡
(
XI(z)
−FI(z)

)
, Ω(z) = XI(z)αI − FI(z)β

I , (3.11)

the components of ∇iΩ(z) are simply given by ∂iΠ(z). As mentioned, the basis (αI , β
I) can

only be used to define a frame locally. The extent of this failure is measured precisely by the
monodromy. In particular, let M̃ denote the universal cover of M. We can view this space
as the total space of a principal bundle over M with structure group π1(M) the fundamental
group of M

π1(M) → M̃ → M. (3.12)

Pulling back the Hodge bundle H by the projection π we obtain a trivial bundle π∗H ∼=
M × HC where the frame (αI , β

I) is now globally well-defined. It is a general fact that
any flat vector bundle over M is the associated bundle to (3.12) by some representation
T : π1(M) → GL(HC). Hence we obtain an equivalent characterization of the sections of
H as maps M̃ → HC that are equivariant under the action of π1(M). In particular, this
means that we can lift the period vector Π(z) to a vector defined on the universal cover that
is equivariant under the action of π1(M)

T−1
g Π(gt) = Π(t), g ∈ π1(M). (3.13)

3Recall that the space HR ⊂ HC comes with a lattice HZ ⊂ HR, which is the image of H3(Xz0 ,Z) in
H3(Xz0 ,R) (i.e. 3-forms with integral periods over integral cycles). An integral basis is a basis for HR which
is also a basis for HZ. We revisit this point in section 3.4.
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Figure 3.1: Cartoon of the moduli space of a double torus. The singular locus consists of two
divisors ∆1 and ∆2 where one of the cycles of the torus pinches off.

Equation 3.13 precisely captures the extent to which the bundle H fails to be trivial, and it
will play a crucial role throughout this chapter and the next. The image of π1(M) under T
inside GL(HC) is called the monodromy group and it is a discrete subgroup of the symplectic
group, i.e. Tg ∈ Sp(2nV + 2,Z).

3.2 Singularities in Moduli Space

We now turn our attention to describing the singularities in moduli space. In our discussion
of Calabi-Yau compactifications, we saw that we can describe this moduli space locally as
a smooth manifold, with a tangent space spanned by the complex structure deformations of
the Kahler form. However, the moduli space need not admit such a nice description globally.
In particular, there will be singular points on this moduli space where the complex structure
of the Calabi-Yau degenerates. Intuitively, this can be understood in terms of cycles in the
Calabi-Yau shrinking to zero size, as is illustrated in figure 3.1.

While a priori these singular points may be distributed along the moduli space in a very
complicated way, it can be shown that after a possible resolution [62], these singularities
can be assumed to appear in very specific configurations. In particular, the complete set of
singular points, called the singular locus ∆ is built out of elementary building blocks called
divisors ∆ = ∪i∆i. Locally, we can describe each of these divisors as the vanishing locus of
one of the coordinates zi = 0, meaning that they are of co-dimension one. Crucially, these
divisors may intersect, but we may further assume that these crossings are always normal,
i.e. points on the intersection of k divisors can locally be described as the vanishing locus of
k of the coordinates zi1 , . . . , zik = 0. Taken together, it follows that any given point on the
singular locus is the intersection of k divisors, such that we obtain a standard model for the
local geometry near any singular point, given by

E ∼= (D∗)nk × (D)n−nk , (3.14)

where

D := {z ∈ C||z| ≤ 1}, D∗ := D \ {0}. (3.15)



88 3. Asymptotic Hodge Theory

Figure 3.2: Illustration of the local model for a one-dimensional moduli space as a punctured
disk, along with its universal cover, the upper half-plane. Encircling the singular locus
corresponds to discrete shifts on the upper-half plane. Figure based on [63].

We can split the coordinates on this patch as (zi, ζM) where zi are the coordinates on the
punctured disk D∗ (with the singularity located at zi = 0). The remaining complex directions
are parameterized by the ζM , which we refer to as spectator moduli. These typically will not
play an important role in our discussions so that we will often neglect to write them.

Throughout the rest of this chapter, it will be important to keep track of which regions
of the moduli space we are studying. For this reason, let us introduce some notation that
will help us in doing so. Firstly, we denote a k-fold intersection of divisors by

∆i1...ik := ∆i1 ∩ . . . ∩∆ik , (3.16)

where the ∆i denote individual divisors labeled by an index i. while we denote the points on
∆i1...ik that do not lie on any other divisors by

∆◦
i1...ik

:= ∆i1 ∩ . . . ∩∆ik −
⋃

j ̸=i1,...,ik

∆i1...ikj. (3.17)

This generic state of affairs is likewise illustrated in figure 3.1. In view of the discussion in
section 3.1.2, we also note that the universal cover of the patch E is given by

Ẽ ∼= (H)nk × (D)n−nk , (3.18)

where H := {t ∈ C | Im t > 0} denotes the upper-half plane. We will generically introduce
coordinates (ti, ζM) on the universal cover which are related to those on E via the projection
π : Ẽ → E as

π : (ti, ζM) 7→ (zi(ti), ζM) := (e2πit
i

, ζM). (3.19)

This implies that the singularities now lie at ti = i∞, while the ζM are again spectator
moduli. It is natural to decompose the coordinates ti into real and imaginary parts

ti = ai + isi, (3.20)

so that the singularity now lies at si → ∞. For reasons that will become clear shortly, we
refer to the real part ai as the axion and the imaginary part as the saxion.
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3.2.1 The Nilpotent Orbit Theorem

As we have seen in section 3.1.2, the period vector efficiently encodes the information con-
tained in the variation of Hodge structure. Moreover, we saw how the period vector can be
viewed as a function on the universal cover, which descends to a multi-valued function on
the moduli space. Crucially, the singularities in the moduli space lead to non-trivial cycles
in M which act as generators for the fundamental group π1(M). It follows that encircling
a singular divisor ∆◦

i1...ik
leads to a non-trivial monodromy action on the period vector Π.

That is to say, as zi → zie2πi (eq. ti → ti + 1), the period vector transforms as

Π(z) → TiΠ(z). (3.21)

As we show in this section, the algebraic properties of these monodromy matrices encode
the essential information about a given singularity. We therefore begin by discussing some
of these properties.

1. Quasi-unipotency

∃mi, ni ∈ N : (Tmi
i − Id)ni+1 = 0. (3.22)

2. Commutation

[Ti, Tj] = 0 ∀ i, j ∈ {i1, . . . , ik}. (3.23)

Both of these properties are non-trivial and in particular, commutativity only holds for those
Ti obtained by encircling a single fixed component ∆◦

i1...ik
of the singular locus. To further

analyze the first property, we consider the Jordan–Chevalley decomposition of the matrix Ti

Ti = T s
i T

u
i . (3.24)

This is a unique decomposition of Ti into semisimple T s
i and unipotent T u

i parts which
commute. The failure of the Ti to be unipotent is captured by the semisimple part, however
one can show that it is always of finite order, i.e. (T s

i )
mi = 1. It turns out that the essential

information about the singularity is contained in the unipotent part. While we will revisit the
distinction between unipotency and quasi-unipotency in chapter 4, it only serves to clutter
the notation for the time being. We therefore simplify the present discussion by redefining
our coordinates as zi → (zi)mi . The resulting monodromy matrices are all unipotent of order
ni. In particular, the unipotency of the Ti implies that their logarithms are nilpotent so that
we introduce the log-monodromy matrices

Ni := log Ti ∈ sp(2n,Q), (3.25)

from which it follows that

Nni+1
i = 0. (3.26)

With these in hand, we are now in a position to state our first result, due to Schmidt [3]
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Nilpotent Orbit Theorem: Near a point p ∈ ∆◦
i1,...,ik

, the Hodge filtration F p can
be approximated by

F p(ti, ζM) = exp

(
nk∑
i=1

tiNi

)
F p
0 (ζ

M)︸ ︷︷ ︸
F p
nil

+O(e2πit
j

), (3.27)

where F p
0 (ζ

M) is holomorphic in the spectator moduli ζM . For sufficiently large Im ti

the leading approximation F p
nil(t

i, ζ) is a well-defined Hodge filtration.

As we approach the singularities in the moduli space the Calabi-Yau manifold degenerates.
As is to be expected, so too does the Hodge decomposition on the cohomology. The nilpotent
orbit theorem essentially states that this degeneration is “mild” and that it is completely
controlled by the log-monodromy matrices Ni. Here we wish to emphasize two points that
follow from (3.27)

1. While the Hodge filtration becomes singular at zi = 0, its singular behaviour is con-
tained entirely in the oscillatory behaviour of the factor exp (

∑nk

i=1 t
iNi). In particular,

it means that the limit

F p
0 (ζ

M) = lim
ti→i∞

exp

(
−

nk∑
i=1

tiNi

)
F p(zi, ζM), (3.28)

exists and is holomorphic in the (non-singular) coordinates ζM . Note that commuta-
tivity of the monodromy matrices implies that these expressions are unambiguous with
respect to the ordering of the Nj.

2. As a representative of F 3, the period vector admits a similar expansion as

Π(ti, ζM) = exp

(
nk∑
i=1

tiNi

)
a0(ζ)︸ ︷︷ ︸

Πnil

+O(e2πit
i

). (3.29)

It follows that the period vector similarly degenerates, but we can nonetheless extract
a limiting piece that represents F 3

0

a0(ζ
M) = lim

ti→i∞
exp

(
−

nk∑
i=1

tiNi

)
Π(zi, ζM) ∈ F 3

0 . (3.30)

While it may be tempting to again work exclusively with the nilpotent orbit Πnil(t
i, ζM),

it need no longer the case that its derivatives span the full filtration F p
nil. Indeed, it is not

hard to see that derivatives with respect to the moduli ti pull down factors of Ni from the
exponent. However, these matrices are nilpotent so that the derivatives may vanish before
we are able to span the full filtration. In this case, one is either forced to include exponential
corrections to Πnil or work with the full filtration F p

nil to recover the complete information
about the VHS.

Moreover, while the filtration F p
nil defines a good Hodge filtration near the singularity,

the same need not be the case at the singularity. In general, the limiting filtration F p
0 that is
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defined here will define a filtration, but it will generically fail to be Hodge in the sense that
we lose compatibility with the polarization (this is equivalent to a breakdown of equation
3.6). Nevertheless, this means that the filtration at the singularity is almost Hodge in a
precise sense. In the following section we will investigate what structure remains at these
singularities. However, before we do so, let us illustrate the usefulness of the nilpotent orbit
theorem by deriving conditions for a singularity to lie at infinite distance.

Infinite Distance Limits

As a first application of the nilpotent orbit theorem, we recall the expression for the Kahler
potential

K = − log i⟨Π, Π̄⟩ = − log iΠTηΠ̄. (3.31)

Moreover, recall that the monodromy matrices Ti preserve the polarization, so that the log-
monodromies satisfy the Lie algebra relationship (cf. (3.10))

NT
i η + ηNi = 0. (3.32)

Inserting the nilpotent orbit approximation to the period vector, we obtain the following
leading order expression for the Kahler potential as we take the limit ti → i∞

e−K = iaT
0 η exp

(∑
i

(t̄i − ti)Ni

)
ā0 +O(e2πit

i

). (3.33)

By nilpotency of the Ni the expansion of the exponential truncates at order mi in each of
the moduli ti so that the leading order dependence on the ti is at most polynomial in Im ti.
Moreover, the dependence on Re ti is contained entirely in the exponential corrections to
this result. Crucially however, the integers mi only impose an upper bound on the degree
of this polynomial, as the pairing between a0 and N

dj
j ā0 may vanish for dj < mj + 1. We

will revisit this subtlety in the next subsection where we study conditions for when this
may happen, but we may already derive some important physical consequences from the
expression (3.33).

The first is that it allows us to identify a class of infinite distance limits in the moduli
space, as is required by the swampland distance conjecture. Indeed, the singularities in the
moduli space are natural candidates for such infinite distance points and the Kahler potential
(3.33) allows us to write down a necessary condition for this to be the case. Intuitively, the
metric derived from this potential should not decay too quickly as we approach the infinite
distance point. In particular, a rather straight-forward computation shows that if Nia0 = 0
for all i, then the leading term in (3.33) is exponential, and the distance to the singularity
evaluated along the path (ti(τ), ζM(τ)) = (iτ, . . . , iτ, 0, . . . , 0) is finite. Hence we obtain the
completely general result that

p at infinite distance ⇒ ∃Ni : Nia0 ̸= 0. (3.34)

The converse implication is more complicated however, because this involves showing infinite
distance along all paths (or equivalently, identifying the correct geodesics). Nevertheless, if
we specialize to the case that we send only one modulus to the boundary, i.e. we focus on
individual divisors away from any intersections, it is possible to prove the converse implica-
tion. Here, path dependence is not an issue and we can determine whether we are at infinite
distance based on the leading contribution to the Kahler metric. Evaluating the polynomial
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contribution to (3.33) explicitly for this case, we obtain

e−K = iaT
0 η
∑
n

1

n!
(−2i (Im t)N)n ā0

= −
∑
n

2n

n!
(Im t)ni3−n⟨a0, N

nā0⟩.
(3.35)

By computing the associated Kahler metric (which we do explicitly in section 3.2.3), one
can then show that a sufficient condition for p to lie at infinite distance is that this leading
contribution is non-constant, i.e.

i3−d⟨a0, N
da0⟩ ≡ i3−dSd(a0, ā0) ̸= 0, (3.36)

for some d > 0. In section 3.2.3 we will see that the quantity defined above is in fact positive
for some d > 0 if and only if Na0 ̸= 0, so that for one-modulus degenerations we obtain the
stronger result

p at infinite distance ⇔ Na0 ̸= 0. (3.37)

This example highlights how the algebraic properties of the log-monodromy matrices encode
useful physical information about the singularities in the moduli space via the nilpotent
orbit theorem. It is also clear however, that if we wish to make more concrete statements we
will need a handle on these algebraic properties. This requires the introduction of so-called
mixed Hodge structures that generalize the pure Hodge structures that exist away from the
singularity.

3.2.2 Mixed Hodge Structures

The nilpotent orbit theorem tells us that although the Hodge filtration becomes singular near
the singularity, we can still extract a “principal part” of the degenerating Hodge structure.
Intuitively, one expects that this limiting filtration contains information about the Calabi-
Yau that has degenerated there. However, the degenerate nature of this space means that
this information is no longer encoded in a pure Hodge structure. Instead, we obtain several
pure Hodge structures of different weights, leading to the notion of a mixed Hodge structure.
The first ingredient in the construction is the introduction of a weight filtration. Recall that
we defined the weight of a pure Hodge structure as the integer k such that

HC =
⊕

p+q=k

Hp,q (3.38)

It turns out that the decomposition defined by the limiting filtration F p
0

Hp,q
0 = F p

0 ∩ F̄ q
0 , (3.39)

no longer satisfies the property (3.38), but one can recover it if one admits a sum over different
weights k as

HC =
⊕
k

⊕
p+q=k

Hp,q
0 ≡

⊕
k

W̃k. (3.40)

The monodromy weight filtration refines the above intuition of a weight decomposition W̃k

to an increasing filtration Wk of HC
4

W−1 ≡ 0 ⊂ W0 ⊂ W1 ⊂ . . . ⊂ W2n−1 ⊂ W2n = HC. (3.41)

4More precisely, the weight filtration is defined over Q, meaning that the filtration of HC is obtained from
that on HQ via complexification. Intuitively, this follows from the fact that N(k) ∈ sp(2n,Q), but we refer to
the mathematical literature for details [3]. Though not relevant right now, this point will be important come
section 3.4.
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To define it, we require again the log-monodromy matrices which, through equation 3.28,
control the deviation of the F p

0 from the genuine (but approximate) Hodge filtration F p
nil. In

particular, we fix a point p on the intersection of nk divisors p ∈ ∆◦
i1,...,ik

, with associated
log-monodromy matrices Ni1 , . . . , Nik . The weight filtration is then defined as

Wl =
⊕

j≥0,l−3

kerN j+1
(k) ∩ imN j−l+3

(k) , N(k) := Ni1 + . . .+Nik , (3.42)

which can be shown to define a filtration of the type above. We remark that the resulting
filtration Wl is independent on the particular linear combination

∑
i ciNi of log-monodromies

we use, as long as all coefficients ci are positive [64] and use N(k) for the sum of the first k
log-monodromies. For simplicity, we will therefore always choose ci = 1. We will occasionally
write Wl(N(k)) when we wish to emphasize the dependence of the spaces on these matrices.
The weight filtration defined above is the unique filtration of HC that satisfies

1. N(k)Wl ⊂ Wl−2

2. Ni : Gr3+j → Gr3−j defines an isomorphism, where we have defined

Grl := Wl/Wl−1, (3.43)

the graded pieces of the limiting Hodge filtration.

Intuitively, these graded pieces Grl capture the part of the weight filtration of weight precisely
l (i.e. without the parts lower in the filtration). This intuition is confirmed by the fact that
the limiting filtration F p

0 defines a pure Hodge structure of weight l on Grl. In particular,
we define

F p
0Grl := (F p ∩Wl)/(F

p ∩Wl−1), (3.44)

in terms of which we obtain a pure Hodge structure on Grl as

Grl =
⊕
p+q=l

Hp,q
0 , Hp,q

0 = F p
0Grl ∩ F q

0Grl. (3.45)

The definition above subsumes the pure Hodge structure away from the singularity, in which
case the weight filtration is trivial (i.e. non-zero only for one value of l) and the pure Hodge
structure reduces to the ordingary Hodge filtration on HC. More generally, a mixed Hodge
structure is defined as any two filtrations (F p

0 ,Wl) (with Wl defined over Q) such that for
each l the filtration (3.44) is a pure Hodge structure. As we shall see in section 3.4, the
pure Hodge structures on the graded pieces admit a very elegant geometric interpretation.
Nevertheless, the nature of the spaces Grl as quotients makes explicitly working with them
rather cumbersome. Let us therefore introduce an equivalent but more convenient way of
encoding the mixed Hodge structure.

Rather than using the graded pieces to define a pure Hodge structure, we instead introduce
an analogous splitting of, but whose elements are simply vectors, rather than

Ip,q := F p
0 ∩Wp+q ∩

(
F̄ p
0 ∩Wp+q +

⊕
j≥1

F̄ q−j
0 ∩Wp+q−j−1

)
. (3.46)

The decomposition Ip,q is called the Deligne splitting of HC. Though its definition is some-
what involved, it satisfies a number of properties which make it “the closest thing” to the
decomposition above. In particular, it is the unique splitting that satisfies

F p
0 =

⊕
r≥p

⊕
s

Ir,s, Wl =
⊕
p+q≤l

Ip,q, (3.47)



94 3. Asymptotic Hodge Theory

W0

∩

W1
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W2
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W3
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W4

∩

W5

∩

W6
H3,0

H2,1

H1,2

N(k)

I0,0

I0,1 I1,0

I2,0 I0,2

I2,1 I1,2

F 2
0

F 1
0

Figure 3.3: A Hodge-Deligne diamond illustrating how the spaces F p
0 , Wl, H

p,q and Ip,q are
related. The arrow indicates a generic action of the log-monodromy matrix acting on these
spaces.

and
Īp,q = Iq,p mod

⊕
r<q,s<p

Ir,s. (3.48)

Morally speaking, the Ip,q correspond to the spaces Hp,q
0 in (3.45), but because we do not take

the quotient they also contain all of the lower parts in the weight decomposition. Indeed, this
is the meaning of the non-trivial conjugation rule (3.48), which measures the failure of the
Ip,q to define pure Hodge structures. Nevertheless, if it so happens that F p

0 and Wl conspire
to give a Deligne splitting where I

p,q
= Iq,p, then the complicated definition (3.46) reduces

to a straight-forward generalization of

Ip,q = F p ∩ F̄ q ∩Wp+q. (3.49)

We call Deligne splittings of the form above R-split, and they will play an important role in
section 3.3. The constructions above may be rather abstract, but by visualizing them in a
so-called Hodge-Deligne diamond as in figure 3.3, their interrelationships become clear.

The log-monodromy matrix N(k) used to define the weight filtration also has a special role
to play in the Deligne splitting. Indeed, it can be shown to act on the Ip,q as

N(k)I
p,q ⊂ Ip−1,q−1, (3.50)

thus appearing as a “lowering operator” in the Hodge-Deligne diamond that moves a vector
down by one row. It follows from the fact that Ip,q = 0 for p, q > 3 and p, q < 0 that

N4
(k) = 0, (3.51)
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providing an upper bound on the nilpotency of the log-monodromy matrices. Moreover, the
property (3.50) allows us to further simplify the Deligne-splitting. In particular, we can
define the primitive part of Ip,q as

P p,q := Ip,q ∩ kerNp+q−2
(k) . (3.52)

Intuitively, these are the parts of Ip,q that cannot be obtained through the action of N on
any of the higher Ip,q. These primitive spaces contain the essential information of the Deligne
splitting, as the latter can be recovered from the primitive parts via

Ip,q =
⊕
l≥0

N lP p+l,q+l. (3.53)

Their siginificance now comes from the fact that the polarization S(·, ·) on H3 induces a
polarization on the P p,q of fixed weight.

1.
Sl(P

p,q, P r,s) = 0, r + s = 3 + l = p+ q, (p, q) ̸= (s, r), (3.54)

2.
ip−qSl(v, v) > 0, v ∈ P p,q, v ̸= 0. (3.55)

3.2.3 Classifying Singularities

The mixed Hodge structures introduced in the previous subsection provide a way of encoding
more detailed information about the singularity involving both the log-monodromy matrices
N as well as the limiting filtration F p

0 in terms of the new structure Ip,q. The coarsest possible
classification of such a decomposition is given by the dimensionality of the spaces Ip,q, however
it turns out that for many applications this coarse classification is already sufficient to fix
the behaviour of physical quantities near a given singularity. These numbers can then be
assembled into a diamond

i3,3

i3,2 i2,3

i3,1 i2,2 i1,3

i3,0 i2,1 i1,2 i0,3

i2,0 i1,1 i0,2

i1,0 i0,1

i0,0

ip,q := dimCI
p,q. (3.56)

The fact that the Ip,q arise as a finer splitting of the (moduli-dependent) Hp,q decomposition
of HC means that the numbers ip,q are related to the Hodge numbers hp,q. Indeed, it can be
shown using the properties derived in the previous sub-section that these satisfy∑

q

ip,q = hp,3−p. (3.57)

By summing over p we recover the expected result that the Ip,q span the full middle coho-
mology. Moreover, one can show that they satisfy the following additional properties [65]

ip,q = iq,p = i3−p,3−q, for all p, q,

ip−1,q−1 ≤ ip,q, for p+ q ≤ 3.
(3.58)
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For Calabi-Yau 3-folds these properties lead to a concise classification of the possible Hodge-
Deligne diamonds that may occur. In particular, we have that for Calabi-Yau 3-folds h3,0 = 1.
Evaluating equation 3.57 for p = 3, it follows that because the ip,q are all non-negative only
one of i3,q can be non-zero. We label these possibilities by roman numerals I, II, III, IV
for q = 0, 1, 2, 3, respectively. Once this is fixed, the symmetries (3.58) imply that there
remain only two independent Hodge-Deligne numbers, which we can choose to be i2,1 and
i1,1. Equation 3.57 applied to p = 2 further constrains this to one independent Hodge-Deligne
number once we fix h2,1, although the particular form this constraint takes depends on which
of the four i3,q is non-zero. We may always take the unfixed Hodge-Deligne number to be i1,1

which we use to label the four singularity types

Ii1,1 , IIi1,1 , IIIi1,1 , IVi1,1 . (3.59)

The singularity types (3.59) thus completely specify the Hodge-Deligne numbers once we
specify the Hodge number h2,1, which we recall corresponds to the dimensionality of the
complex structure moduli space via dimCM = h2,1 + 1. Table 3.1 lists all of the allowed
singularity types for arbitrary values of h2,1.

singularity Ia IIb IIIc IVd

HD diamond
a′ a′

a

a
b′

b
b′

b
c′ c′

c

c

d
d′ d′

d

index
a+ a′ = h2,1

0 ≤ a ≤ h2,1

b+ b′ = h2,1 − 1

0 ≤ b ≤ h2,1 − 1

c+ c′ = h2,1 − 1

0 ≤ c ≤ h2,1 − 2

d+ d′ = h2,1

1 ≤ d ≤ h2,1

rk(N,N2, N3) (a, 0, 0) (2 + b, 0, 0) (4 + c, 0, 0) (2 + d, 2, 1)

eigvals ηN a negative
b negative
2 positive

not needed not needed

Table 3.1: Classification of singularity types in complex structure moduli space based on
the 4h2,1 possible different Hodge-Deligne diamonds. In each Hodge-Deligne diamond we
indicated non-vanishing ip,q by a dot on the roster, where the dimension has been given
explicitly when ip,q > 1. In the last two rows we listed the characteristic properties of
the log-monodromy matrix N and the symplectic pairing η that are sufficient to make a
distinction between the types. Table taken from [66].

Classifying Infinite Distance Limits

As an exercise in the application of mixed Hodge structures, we now use this classification to
complete our classification of infinite distance limits initiated in section 3.2.1. Indeed, recall
that whether a singularity laid at infinite distance or not was determined by the positivity
of the pairing

i3−dSd(a0, ā0) > 0, (3.60)
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for d > 0. This now becomes a simple corollary of the results from the previous section.
In particular, recall that a0 is a representative of F 3

0 and as such, belongs to one of the
I3,0, . . . , I3,3 (of which only one was non-empty). If we let d ≤ 3 denote the integer such that
a0 ∈ I3,d = P 3,d, equation 3.60 follows readily from the second property (3.55). In particular,
we find that the integer d is determined by the singularity type

singularity is type I, II, III, IV ⇔ d = 0, 1, 2, 3, (3.61)

and that it vanishes if and only if the singularity is of type I. Equation (3.37) then becomes

p at infinite distance ⇔ Type II, III, IV singularity, (3.62)

which we stress holds for one-modulus degenerations. Of particular interest to us will be the
limiting moduli-dependence of the Kahler metric, at least in the one-modulus case. For the
infinite distance limits, the integer 3 ≥ d > 0 controls the leading power of Im t = (t− t̄)/2i
that appears in the polynomial part of e−K . This implies that the Kahler potential is well-
approximated by

−K = log
(
αIm td + . . .

)
∼ log

(
α Im td

)
+ . . . = d log(t− t̄) + log(α/(2i)d) + . . . , (3.63)

where α is an unimportant (t-independent) coefficient, and dots denote sub-leading terms.
One then readily computes

Ktt̄ ∼
d

4s2
+O

(
e2πit

)
, (3.64)

from which the infinite distance behaviour follows. The type I case requires more care how-
ever, and we do not discuss it in full generality.

BPS Masses

We can likewise derive a limiting expression for the mass of BPS states, i.e. D3 particles
wrapping special Lagrangian 3-cycles. Since this mass constitutes a lower-bound, it is inter-
esting to consider which states can ever become light in the asymptotic limit. Recall that for
a state with charge vector q, we gave the following general expression for the corresponding
BPS mass

M2 = eK
∣∣∣∣∫

L3

Ω

∣∣∣∣2 = eK |⟨Π,q⟩|2 = |⟨Π,q⟩|2

i⟨Π, Π̄⟩
. (3.65)

Using our limiting expression for the Kahler potential above, the denominator is given by

i⟨Π, Π̄⟩ ∼ s−d +O
(
e2πit

)
, (3.66)

Next, we insert the nilpotent orbit result for the period vector into the numerator to obtain

|⟨q,Π⟩|2 ∼ |⟨q, etNa0⟩|2 =

∣∣∣∣∣∑
n

tn

n!
⟨q, Nna0⟩

∣∣∣∣∣
2

∼ |tlm|2|Slm(q, a0)|2, (3.67)

where the integer lm denotes the highest non-vanishing term in the expansion and we have
identified the polarization form Slm up to unimportant signs and imaginary coefficients. For
infinite distance singularities, we may replace tlm by the saxion as the axion-dependence
becomes sub-leading once we divide by (3.66) (for the finite distance case, the leading con-
tribution to (3.66) is constant, so axions may become important). Upon taking the quotient,
we obtain our leading order form of the

M2 ∼ s2lm−d. (3.68)

We emphasize that this result is again only valid for infinite distance limits, though we will
revisit this point in the next chapter.
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3.3 The Single-Variable SL2-Orbit Theorem

As we have seen, the nilpotent orbit theorem teaches us that the key information about a given
singularity is contained in the algebraic properties of the log-monodromy matrices. Moreover,
while this algebraic data is a priori expected to be highly case dependent, the mixed Hodge
structures from the previous section often give us sufficiently refined information about a
given singularity to allow us to derive some physically relevant properties. Nevertheless,
for our eventual goal of studying the global symmetries of Calabi-Yau compactifications, we
require more detailed information still, specifically regarding the kinetic matrix. In particular,
we should derive a similar approximation scheme for the Hodge star that determines it. The
goal of this section will be to introduce the necessary results, in the form of the SL2-orbit
theorem5. In the following we specialize to one-modulus degenerations, so that we have
only a single log-monodromy to keep track of. The multi-variable case is markedly more
involved [67] and we do not discuss it here.

Roughly speaking, the SL2 orbit theorem assigns to a given limiting filtration F p
0 , another,

closely related filtration. The latter comes with a natural action of the sl(2) Lie algebra on
its associated mixed Hodge structure. The goal of this section is to introduce this machinery
and use it to construct an approximation to the Hodge star near infinite distance points,
which we will then use to compute the gauge kinetic functions.

3.3.1 Nilpotent Matrices and sl(2)

To set the stage for the SL2-orbit theorem, we first provide a sketch of how the connection
between the nilpotent orbit data and the representation theory of sl(2) comes about. In
the following, let m := h2,1 + 1. Recall that, for the case of Calabi-Yau 3-folds, the log-
monodromy matrices Ni are nilpotent elements of sp(2m,R). Such elements are well-known
to be classified by representations of sl(2,R) as follows [68].

Given a nilpotent element N ∈ sp(2m,R), a theorem of Jacobson and Morozov [69] tells
us that one can always find operators N+, N0 ∈ sp(2m,R), such that the triple {N− :=
N,N+, N0} generates the sl(2,R) Lie algebra

[N0, N+] = +2N+, [N0, N−] = −2N−, [N+, N−] = N0. (3.69)

The operators N0, N+ and N− admit interpretations as weight, raising and lowering op-
erators, respectively. Equation 3.69 tells us that the matrices {N−, N+, N0} furnish a Lie
algebra representation of sl(2,R) on the vector space HC. However, this representation will
generically be reducible, which means that there exists a basis of HC such that the triple
admits the block-diagonal form

N0, N± =



ν1

ν2

ν3
. . .


, (3.70)

with each block furnishing an irreducible representation of sl(2,R). Note that some of these
blocks may correspond to the trivial representation, leading to zero entries on the diagonal.

5Our presentation is in some sense backwards here. The results below are in fact the reason that the
filtration Wl was such that it defined a mixed Hodge structure.
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In the following, we then focus on a particular block in this decomposition, labeled by the
index ν above, whose dimension we denote by dν + 1. As follows from the representation
theory of sl(2,R), the weight operator N0

ν defines a decomposition of the sub-space Hν ⊂ HC
on which it acts

Hν = Hdν
ν ⊕Hdν−2

ν ⊕ . . .⊕H−dν+2
ν ⊕H−dν

ν , H l
ν = {v ∈ Hν | N0

ν v = lv}. (3.71)

The raising and lowering operators N±
ν then map between these spaces as N±

ν : H l
ν → H l±2

ν .
Since the weight decomposition has dν levels, it follows that N±

ν can at most raise/lower a
vector dν times. This fixes the nilpotency order of the raising/lowering operators as

(N−
ν )

dν+1 = (N+
ν )

dν+1 = 0. (3.72)

The full log-monodromy matrix is a direct sum of such blocks, so that the nilpotency of
the original nilpotent operator N places an upper bound on the dimension of each block.
Moreover, the full vector space HC can be decomposed into sub-spaces Hν on which the
irreducible representations act, so that we obtain

HC = Hν1 ⊕Hν2 ⊕ . . .⊕Hνn . (3.73)

Each of these sub-spaces comes with its own weight space decomposition, so that we obtain
a simultaneous decomposition by weight and irrep.

HC =



H
dν1
ν1

H
dν1−2
ν1

...

H
−dν1+2
ν1

H
−dν1
ν1



⊕
. . .

⊕



H
dνn−2
νn

H
dνn−2
νn

...

H
−dνn+2
νn

H
−dνn
νn


. (3.74)

3.3.2 The SL2-Split

Clearly, the structures that emerge mirror those present in the Deligne splitting. There too
did we obtain a weight decomposition and did the nilpotent log-monodromy matrix N(k) act
as a lowering operator with respect to this decomposition. Morally speaking, each block in
the decomposition above (equivalently each column in (3.74)) corresponds to a column in
the Hodge-Deligne diamond. The precise identification of the triple {N−, N+, N0} and its
action on the Ip,q is slightly more subtle however. In the one-modulus case, the problem can
essentially be traced back to the non-trivial conjugation relation (3.48). In particular, while
we may attempt to define a naive weight operator which satisfies

N 0vp,q = (p+ q − 3)vp,q, vp,q ∈ Ip,q, (3.75)

the conjugation relation (3.48) shows that this matrix can never be real. The single-variable
SL2-orbit theorem of Schmidt remedies this issue for one-modulus degenerations6. The pro-
cedure consists of two steps.

6The following construction is not in fact the one given in the original single-variable SL2-orbit theorem
in [3]. Instead we follow the discussion from [70]. This also extends more readily to the multi-variable case.
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1. In the first, a result due to Deligne shows that given the Deligne splitting obtained
from (F p

0 ,Wl(N)), there is always another mixed Hodge structure (F̂ p
0 ,Wl(N)) with

the same weight filtration which is polarized by N . In particular, there exists an
operator δ ∈ sp(2m,R) such that

F̂ p
0 := e−iδF p

0 , (3.76)

defines an R-split Deligne splitting. To this new filtration, we can associate a new
Deligne splitting Îp,q by evaluating equation (3.46) for the pair (F̂ p

0 ,Wl(N)) (or, now
that it is R-split, 3.49). Its explicit construction is given in appendix B.

2. The second step involves a further rotation, by a second, uniquely defined operator
ζ ∈ sp(2m,R)

F̃ p
0 := eζF̂ p

0 . (3.77)

The resulting filtration defines a mixed Hodge structure (F̃ p
0 ,Wl(N)) with associated

Deligne splitting Ĩp,q that is again R-split. We call the splitting the Ĩp,q the SL2-splitting
to distinguish it from the R-split Deligne splitting above. Its explicit construction is
likewise given in appendix B. Let us mention that for our applications, this second step
is always trivial, we mention it here for the sake of completeness.

Once these steps are taken, we are left with a mixed Hodge structure (F̃ ,W (N)), distinct
from but related to the original one associated to the singularity at p ∈ ∆◦

i1,...,ik
. Following

the construction from section 3.3.1, we know that for a given nilpotent N we can always find
an sl(2,R)-triple {N− := N,N+, N0}, but this choice is not unique. The SL2-orbit theorem
states that there exists a unique choice of such triples that is compatible with the SL2-split
Ĩp,q in the following sense.

1. The weight operator acts on the SL2-splitting according to

N0Ĩp,q = (p+ q − 3)Ĩp,q. (3.78)

2. The raising/lowering operators act as raising/lowering operators on the SL2-splitting

N±Ĩp,q ⊂ Ĩp±1,q±1. (3.79)

3. Associated to the SL2-splitting there is a pure Hodge structure in the sense of section
3.1. This is defined by

F p
∞ := eiN

−
F̃ p
0 , C∞vp,q = ip−qvp,q, vp,q ∈ Hp,q

∞ := F p
∞ ∩ F̄ q

∞. (3.80)

4. Let d denote the integer such that

Nd ̸= 0, Nd+1 = 0. (3.81)

Then the weight space decomposition of HC induced by the weight operator N0

HC = Hd ⊕Hd−2 ⊕ . . .⊕H−d, H l := {v ∈ HC| N0v = lv}, (3.82)

satisfies the following properties with respect to the polarization on HC

C∞ : H l → H6−l, ⟨H l, H l′⟩ = 0 if l + l′ ̸= 6. (3.83)

We emphasize that each of these results is a non-trivial part of the full statement of the SL2-
orbit theorem and we encourage the reader to review the original mathematical literature
[3, 70]. The remainder of this section will be dedicated to a particular consequence of the
SL2-orbit theorem which will allow us to approximate the Hodge star in the asymptotic
regime.



3.3 The Single-Variable SL2-Orbit Theorem 101

3.3.3 The SL2-Approximated Hodge Star

One of the non-trivial consequences of the SL2-orbit theorem is that it provides us with an
approximation to the Weil operator. This uses crucially the compatibility of the boundary
pure Hodge structure with the sl(2)-triple of the mixed Hodge structure. We denote this
approximation Csl(2). Starting from the boundary Weil operator C∞, we proceed in two
steps [68]

• First, we introduce the leading saxion-dependence and set the axion a = 0. Analogous
to the statement of the nilpotent orbit theorem, the limiting Weil operator is obtained
from the following limit

C∞ = lim
s→∞

e(s)Ce(s)−1, e = exp

(
1

2
log(s)N0

)
. (3.84)

The leading saxion-dependence is then re-instated by

Csl(2)(a = 0, s) = e−1(s)C∞e(s). (3.85)

• Next we re-introduce the axion dependence. By manipulating the results of the nilpo-
tent orbit theorem, it follows that this axion dependence takes a very simple form

Csl(2)(a, s) := eaN
−
Csl(2)(a = 0, s)e−aN−

= eaN
−
e(s)−1C∞e(s)e−aN−

. (3.86)

Weak Coupling Limits

As an immediate application of the result (3.86), let us derive a sufficient condition to assess
whether states are weakly coupled in the asymptotic regime (see [71] for a far more extensive
analysis which includes multi-moduli limits). What we mean by this is that given a D3 brane
with charge vector q = (pI ,−qI)

T , its physical charge, defined in section 2.1.3 as

Qq =
1

2
qTMq, M =

(
−ImN − ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN −(ImN )−1

)
, (3.87)

goes to zero in the limit s → ∞. In the geometric Calabi-Yau context, it follows from section
1.5.2 that the matrix M is precisely the Hodge star matrix which we approximated above.
In particular, it is given by

M = ηC ∼ ηCsl(2), (3.88)

such that the physical charge can be expressed in terms of the sl(2)-approximated Hodge
norm as

Q2
q ∼ 1

2
⟨q, Csl(2)q⟩ =

1

2
∥q∥2sl(2), (3.89)

where we have used the fact that q is real. Next, we decompose the charge vector q and the
axion-dependent combination ρ(a) := e−aN−

q according to the weight-decomposition of HC
induced by the weight operator N0

q =
∑
l

ql, ρ(a) =
∑
l

ρl(a), ql, ρl(a) ∈ H l
C. (3.90)

The vector ρ(a) can be used to simplify the expression for the Hodge norm as follows. Recall
that N−, N0 ∈ sp(4,Z) meaning that their exponents preserve the polarization. This allows
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us to rewrite (3.89) as

⟨Csl(2)q,q⟩ = ⟨eaN−
e(s)−1C∞e(s)e−aN−

q,q⟩
= ⟨C∞e(s)e−aN−

q, e(s)e−aN−
q⟩

= ⟨C∞e(s)ρ(a), e(s)ρ(a)⟩.
(3.91)

Next, we use that the operator e(s) acts on weight-eigenstates as multiplication by s
l−3
2 , along

with the orthogonality property 3.83

⟨C∞e(s)ρ(a), e(s)ρ(a)⟩ =
∑
k,l

s
k+l−6

2 ⟨C∞ρ(a)k, ρ(a)l⟩

=
∑
l

sl−3⟨C∞ρ(a)l, ρ(a)l⟩.
(3.92)

We find that the leading order saxion dependence of the Hodge norm (3.89) is dictated by
the highest-weight component of e−aN−

q in (3.90). Moreover, since the lowering operator
N− only produces states of lower weight, it follows that this highest-weight piece is the same
as that of q. If we denote the latter by the integer lm, we obtain a succinct criterion to
determine whether the state is weakly or strongly coupled in the asymptotic regime

lim
s→∞

Q2
q =


∞ if lm > 3,

const. if lm = 3,

0 if lm < 3.

(3.93)

In the next section, we will use this condition to identify a basis for HC in which the gauge
fields are weakly coupled, i.e. their gauge couplings go to zero in the limit s → 0, which will
ensure for us that we are justified in a semi-classical analysis.

A Note on Methods

Before we proceed with our analysis, let us comment on our motivation for using the method
presented above. In particular, one could also have recovered approximate expressions for the
gauge kinetic functions from the special geometry identity (1.107), applied to the nilpotent
orbit approximation of the period vector. The reason for employing the SL2-approximated
Hodge star is twofold. The first is that it extends more readily to the multi-modulus case.
The second is that our method applies also to the type I case. A generic feature at these
limits is that the nilpotent orbit Πnil does not contain enough information to recover the full
Hodge filtration F p

nil, as is required to reconstruct the Weil operator. This simply follows
from the defining condition that Na0 = 0, which is precisely how derivatives act on Πnil.
In this case, one should include exponential corrections. If, however, one has available the
full filtration F p

nil = etNF p
0 for all p, there is no need to re-package this information into a

period vector. Indeed, this will be our goal in the following section, where we will use Hodge
theoretic constraints to recover the full nilpotent orbit data. With this in hand, one could
alternatively reconstruct the exponential corrections to Πnil, which is the approach taken
in [66].

3.4 Reconstructing the Hodge Star

Finally, we use the results from this chapter to construct an approximate form of the Hodge
star operator near the singularities in the moduli space, from which we obtain the limiting



3.4 Reconstructing the Hodge Star 103

I1 II0 IV1

Figure 3.4: Hodge-Deligne diamonds for the three one-modulus degenerations for h2,1. Black
dots indicate non-empty Ip,q.

form of the gauge kinetic matrices. In particular we will do so for one-dimensional moduli
spaces, i.e. h2,1 = 1. Looking back at the restrictions on the sub-type index in table 3.1,
we see that for h2,1 = 1 we can never have a type IIIc singularity due to the restriction on
c. Moreover, positivity of the sub-type index for the other cases means that there are only
three possible cases for such one-dimensional moduli spaces

I1 : Conifold Point,

II0 : Tyurin Degeneration,

IV1 : Large Complex Structure Point,

(3.94)

whose corresponding Hodge-Deligne diamonds are shown in figure 3.4. The names correspond
to the geometric setting in which each of these singularity types is realized. Indeed, it is easy
to forget that these abstract mixed Hodge structures should arise from degenerating Calabi-
Yau manifolds. While the three types above are allowed by the algebraic properties of the
mixed Hodge structures, we are not guaranteed that all such singularity types are actually
realized by an actual degenerating Calabi-Yau. Nevertheless, this is the case for the three
one-modulus cases studied here and we will make some brief comments on their geometric
properties as we go through the cases. In fact, these one-dimensional moduli spaces have
been well-studied in the past, often starting from the geometric setting of an explicit family of
Calabi-Yau. We instead start from the abstract classification of such limits and occasionally
identify with the geometric case. Our method will capture all such geometric cases, whose
details are encoded in terms of various unfixed parameters.

Our strategy in this section will consist, broadly speaking of two steps. The first is
to construct the most general nilpotent orbit data associated to a given singularity type,
consisting of the the triple (N,F p

0 ,Wl). With this in hand we can apply the procedure from
the previous section to obtain the limiting form of the Hodge star. While this may appear
to be a daunting task at first, it turns out that for the one-modulus cases considered here
the algebraic constraints encountered throughout this chapter are sufficient to specify, to a
reasonable level of detail, the most general possible data. This has been done in [72]. We
will use their results and comment on the relevant procedure, but otherwise do not repeat
it in full detail. Altogether this will give us the information we need to begin analyzing the
symmetries that appear in the resulting EFT. With these general remarks out of the way, let
us be more specific about how we will proceed.

1. The “zero’th” step will be to fix a basis {e1, e2, e3, e4} for the space HC with respect
to which we will cast our results. This basis cannot be arbitrary however, and should
satisfy three important properties.



104 3. Asymptotic Hodge Theory

• Symplectic The first is that we wish for it to be symplectic with respect to
the pairing ⟨·, ·⟩ on HC. While it is not strictly necessary that this pairing take
the canonical form (3.10), it will be convenient when the time comes to discuss
the physics, and we should at the very least know its explicit form. This means
concretely that our basis elements can be identified with the symplectic basis
elements as

e1 ∼= α0, e3 ∼= β0,

e2 ∼= α1, e4 ∼= β1.
(3.95)

• Integral The second, arguably more important property is that it should be
integral, which is to say that it should constitute a Z-basis7 for the lattice HZ ⊂
HC. What we mean by this is that the basis should be primitive with respect
to the lattice HZ ⊂ HC. Recall that this lattice is given by H3(X,Z), which is
poincare dual to H3(X,Z). In turn, this implies that D3-particles have integral
charge vectors and that the associated field strengths have quantized fluxes, i.e.∫

S2

(
F I

GI

)
∈ Z2h2,1+2. (3.96)

• Weak Coupling The third property is more physically motivated. This is that
the chosen basis should correspond to a weakly coupled frame for our gauge fields.
This means that given a symplectic basis (αI , β

J), we demand that charges which
couple to the corresponding F I (i.e. the electric fields of the given frame) have
vanishing physical charge in the limit s → ∞. These correspond to states with
charge vector q = (0, 0,−q0,−q1)

T so that we demand that the basis elements
βI satisfy ∥βI∥ ≲ O(1). According to our discussion in section 3.3.3, this can be
arranged by choosing a basis so that the {βI} ⊂ Wl<3.

8 As a direct consequence
of the fact that NWl ⊂ Wl−2 it also follows that monodromy transformations will
preserve “electric” states.

In [72] it was shown that for each of the three cases (3.94), there always exists an integral
symplectic basis which satisfies all three properties. More precisely, it was shown that
for each case we can choose an integral symplectic basis that is compatible with the
weight filtration in the sense that successive basis vectors span successive spaces in
the filtration. This statement is non-trivial and uses crucially the fact that both the
weight filtration and the polarization are defined over Q. Together these ensure that
we may choose an integral basis compatible with the weight filtration, and moreover
that this basis may be chosen symplectic for a case-dependent form of the symplectic
pairing η. We prefer to keep η in the canonical form (3.10), in favour of sacrificing
strict compatibility with the weight filtration.

2. Once the basis is fixed, one can then derive the most general form of the log-monodromy
matrix, making sure to comply with the various consistency conditions encountered

7A Z-basis is a basis {ei} for HR such that any point in HZ is a linear combination of the ei with integer
coefficients. It follows that the elements {ei} are primitive, i.e. ∄n ∈ Z, |n| ≥ 2 : [ei] = 0 ∈ HZ/nHZ
(intuitively, ei is not an integer multiple of some other element in the lattice). That this is always possible
follows from the fact that the lattice HZ is torsion-free.

8More precisely, our discussion showed that we need {βI} ⊂ H l<3, which differs from the condition stated
in the main text only by pieces of lower-weight. Note moreover that this condition is ambiguous for the type
I case since dim Wl<3 = 1. This case will be treated separately.
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throughout this chapter. These are given by

NWl ⊆ Wl−2, Nd = 0, NTη + ηN = 0, eN ∈ Sp(4,Z), (3.97)

together with the case-dependent polarization conditions on the pure Hodge structures
on the primitive spaces (equivalently the graded pieces). The latter enforce positivity
conditions that will ensure that the resulting kinetic terms have the correct sign. We
emphasize that the monodromy so-recovered only corresponds to the nilpotent part of
the full monodromy T .

3. Finally, we write down the most general basis vectors for the limiting filtration F p
0 .

These too should satisfy various compatibility conditions, both with the weight filtration
as well as with the log-monodromy matrix. The details are somewhat case-dependent
and we refer to [72] for further details. It will be convenient to express the filtration in
terms of a period matrix whose columns successively span the elements of the limiting
filtration

Ω =
(
F 3
0 ⊂ F 2

0 ⊂ F 1
0 ⊂ F 0

0

)
. (3.98)

An important freedom we have is to redefine our coordinates on the moduli space.
Indeed, in the definition of the limiting filtration entered crucially a choice of lifting
defined by the coordinate t = 1

2πi
log(z). Under a divisor-preserving9 re-definition

z → z̃(z) = ef(z)z for f(z) arbitrary, one finds that (for large Im t)

t =
log(z)

2πi
→ log(z̃(e2πit))

2πi
∼ log (0 + z̃′(0)e2πit +O(e4πit))

2πi
=

f(0)

2πi
+ t, (3.99)

so that [3, 72]

F p
0 := lim

t→i∞
e−tNF p(z) → lim

t→i∞
e−(

f(0)
2πi

+t)NF p(z) = e−
f(0)
2πi

NF p
0 . (3.100)

For our purposes we can thus generate all relevant transformations of F p
0 by constant

re-scalings of the form z → e2πiλz which correspond to shifts of t → t+λ. This freedom
can be used to reduce the number of arbitrary parameters, or to bring them into a
convenient form.

4. Having assembled the most general nilpotent orbit data which can arise in a single-
variable degeneration, we can apply procedure from the previous sections to obtain
approximate expressions for the period vector and gauge kinetic functions. The former
follows directly from the nilpotent orbit theorem: one takes a representative a0 of F 3

0

constructed above (normalized to convenience) and recovers from it the nilpotent orbit

Πnil = etNa0. (3.101)

The kinetic functions are constructed from the SL2-approximated Hodge star. Following
the procedure of section 3.3, we start by translating the mixed Hodge structure (F p

0 ,Wl)
to the more convenient Deligne splitting Ip,q. We then construct the rotation operators
that take us to the SL2-splitting where we have control over the action of the Hodge star.
By identifying the pure Hodge structure associated to the boundary, we can extract
the limiting form of the Weil operator, and extend it into the near-boundary region
following section 3.3.3. Finally, we recover the gauge kinetic functions by inverting the
matrix M in (3.87).

9That is to say z̃(0) = 0, while z̃(z) ̸= 0 for z ̸= 0.
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3.4.1 Type IV1

We start by discussing the Type IV1 case. In order to illustrate the method, we will be
quite detailed for this first case. We emphasize however, that for each of the three cases, the
construction of the nilpotent orbit data was done in [72], so that we are relatively brief about
this part.

Nilpotent Orbit Data

Following the steps outlined above, we start by fixing our integral symplectic basis. In [72] it
was shown that this may always be done such that the weight filtration is spanned as follows

Type IV1 :



W6 = span
(
1 0 0 0

)⊕
W4,

W4 = span
(
0 1 0 0

)⊕
W2,

W2 = span
(
0 0 0 1

)⊕
W0,

W0 = span
(
0 0 1 0

)
.

(3.102)

In this basis one may then construct the most general log-monodromy matrix compatible
with this filtration, as well as the constraints (3.97). The result is given by [72]

N =


0 0 0 0
m 0 0 0
c b 0 −m
b n 0 0

 , with


m,n ∈ Z,
b+mn/2 ∈ Z,
c−m2n/6 ∈ Z,
m ̸= 0, n > 0.

(3.103)

We note that the property (3.102) does not uniquely fix a basis. In particular, there remain
integral symplectic transformations that preserves the weight filtration, whereby lower-weight
pieces get rotated into the higher-weight pieces. These can be used to simplify some of the
coefficients appearing in the log-monodromy matrix, but we do not do so here. It is then
shown that, by an appropriate choice of coordinates z, the most general limiting filtration
F p
0 can be spanned by the following period matrix (3.98) [72]

Ω =


1 0 0 0
0 1 0 0
ξ c/(2m) 0 1

c/(2m) b/m 1 0

 , with ξ ∈ C. (3.104)

sl(2)-orbit Data

With the nilpotent orbit in hand, we can now begin to compute the associated Deligne
splitting by evaluating equation 3.46. It turns out that for this particular case the Ip,q simply
correspond to the columns of the period matrix above, so that we do not give their explicit
expression here. Instead, we proceed right away to constructing the rotation operator that
renders this splitting R-split. Following the procedure in appendix B, we find the following
operator

δ = δ−3,−3 =


0 0 0 0
0 0 0 0

Im ξ 0 0 0
0 0 0 0

 , (3.105)
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which we then use to rotate to the R-split Deligne splitting
Î3,3 Î2,2 Î1,1 Î0,0

1 0 0 0
0 1 0 0

Re ξ c/(2m) 0 1
c/(2m) b/m 1 0

 . (3.106)

The second rotation matrix is trivial so that we immediately arrive at the final splitting. In
the following we will need the weight operator of the sl(2)-triple associated to this splitting.
This is readily obtained by solving

N0Îp,q = (p+ q − 3)Îp,q. (3.107)

Note that because the Îp,q span the full HC, this equation fixes N0 unambiguously. The
result is given by

N0 =


3 0 0 0
0 1 0 0

6Re ξ 2c/m −3 0
2c/m 2b/m 0 −1

 . (3.108)

Boundary Data

Next, we compute the limiting pure Hodge structure and associated Weil operator by applying
the log-monodromy matrix. The former is given by a limiting Hodge filtration with associated
period matrix given by

F p
∞ = eiNF p

0 ⇔ Ωp
∞ = eiNΩp, (3.109)

which evaluates to

Ω∞ =


1 0 0 0
im 1 0 0

1
6
i(m2n+ 3c) + Re ξ c/(2m) +mn/2 b/m+ in 1

c/(2m)−mn/2 + ib b/m+ in 1 0

 . (3.110)

From it, one evaluates
Hp,q

∞ = F p
∞ ∩ F̄ q

∞, (3.111)

which yields

H3,0
∞ :

(
1, im, 1

6
i(m2n+ 3c) + Re ξ, c/(2m)−mn/2 + ib

)
,

H2,1
∞ :

(
1, 1

3
im, −1

6
i(m2n− c) + Re ξ, c/(2m) +mn/6 + ib/3

)
,

(3.112)

with the other two spaces being related to these by complex conjugation. One sees that the
pure Hodge structure at the boundary is related to the mixed Hodge structure in a rather
non-trivial way. One can now solve for the limiting Weil operator using

C∞v = ip−qv, v ∈ Hp,q
∞ , (3.113)

which like (3.107) unambiguously defines C∞. The result is given by

C∞ =
1

m2n


6Re ξ 3c/m −6 0
mc 2mb 0 −2m2

(m4n2 + 3c2 + 36(Re ξ)2)/6 c(b+ 3Re ξ/m) −6Re ξ −mc
c(b+ 3Re ξ/m) m2n2/2 + 2b2 + 3c2/(2m2) −3c/m −2mb

 .

(3.114)



108 3. Asymptotic Hodge Theory

Final Result

Finally, we can put everything together to compute the sl(2)-approximated Hodge star.
Recall that the sl(2)-approximated Weil operator is obtained by evaluating

Csl(2)(a, s) = eaN
−
e(s)−1C∞e(s)e−aN−

, e(s) = exp

(
1

2
log(s)N0

)
(3.115)

where N− and N0 are given in (3.103) and (3.108), respectively. By multiplying from the
left with η, we recover the Hodge star matrix

M = ηCsl(2) =

(
⟨αI , ∗αJ⟩ ⟨αI , ∗βJ⟩
⟨βI , ∗αJ⟩ ⟨βI , ∗βJ⟩

)
. (3.116)

For this case in particular, the expression obtained from (3.116) is too large to present
explicitly here, but we will do so for the following two cases. Instead, we note that this
matrix determines the kinetic matrix N via the identification

M = ηCsl(2) =

(
−ImN − ReN (ImN )−1ReN −ReN (ImN )−1

−(ImN )−1ReN −(ImN )−1

)
. (3.117)

Thus, by inverting (minus) the bottom-right block of the resulting matrix, we recover the
imaginary part of N , while multiplying the latter by the bottom-left block yields the real
part of N . Rather than present the full matrix M, we give here the bottom two blocks

⟨αI , ∗βJ⟩ = −(ImN )−1ReN =

−1

m3ns3

(
−mna3 + 3(c/m)a+ 6Re ξ/m 3a(2b/m+ na) + 3c/m2

c(3a2 + s2)−m2na2(a2 + s2) + 6aRe ξ 3a(c/m+ a(2b+mna)) + 2(b+mna)s2

)
,

⟨βI , ∗βJ⟩ = −(ImN )−1 =

1

m2ns3

(
6 6ma

6ma 2m2(3a2 + s2)

)
.

(3.118)

From these, we compute the real and imaginary parts of N to obtain our final result for the
kinetic matrix

N =

(
−1

3
m2na3 − Re ξ 1

2
mna2 − c

2m
1
2
mna2 − c

2m
−na− b

m

)
+

(
−1

6
m2ns(3a2 + s2) 1

2
mnas

1
2
mnas −n

2
s

)
. (3.119)

The corresponding period vector (in the nilpotent orbit approximation) given by

Πnil = etNa0 =


1
mt

−m2nt3/6 + ct/2 + ξ
mnt2/2 + bt+ c/(2m)

 , (3.120)

where a0 is a representative of F 3
0 , for which we have used the first column of (3.104).

Geometric Interpretation

As mentioned the type IV1 case is best understood from a mathematical perspective, but
the reason for this actually has its origin in physics. In particular, one of the most famous
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interactions between math and physics has been the discovery of mirror symmetry. Although
a proper discussion of mirror symmetry is beyond the scope of this thesis, let us say a few
words here.

While we have not discussed it explicitly in this thesis, the type IIA effective action bears
striking resemblance to that of type IIB, the most prominent difference being the appearance
of odd p-form fields (C1, C3), rather than even. Likewise, when compactified on a Calabi-
Yau, the resulting theory is also an N = 2 supergravity theory. Here the most prominent
difference is that the complex structure moduli now appear in the hyper-multiplets, whereas
the Kahler moduli enter the vector multiplets. This suggests the possibility that given a
Calabi-Yau compactification of type IIB on X, there exists a mirror Calabi-Yau X̂ where
the complex and Kahler moduli are exchanged whose type IIA compactification leads to
the same four-dimensional theory. This idea has been formalized in the concept of mirror
symmetry.

For some very special cases, this so-called mirror map has been constructed explicitly [73].
By matching the physics on both sides of the duality, we can then gain insight into the the
geometry of the mirror pair. In particular, the un-fixed coefficients appearing in (3.120) can
be matched to topological invariants on the mirror side. For instance, restricting to m = 1
for simplicity, one readily sees that the period (3.120) can be obtained from a pre-potential

F =
1

6
n
(X1)3

X0
+

1

2
bt(X1)2 +

1

2
cX1X0 +

1

2
ξ(X0)2 (3.121)

By matching with the mirror side, one finds that the coefficient n can be identified with the
triple intersection number of the mirror Calabi-Yau X̂

n =

∫
X̂

ω ∧ ω ∧ ω, (3.122)

where ω is an appropriately chosen harmonic (1, 1)-form on X̂. This is a topological invari-
ant of the mirror X̂. Similarly, the parameter ξ can be identified with another topological
invariant of the mirror X̂, namely

ξ =
χζ(3)

(2πi)3
, (3.123)

where χ is the Euler characteristic of X̂ and ζ(3) is the Riemann-Zeta function evaluated at
3, in which case one finds that the real part of ξ vanishes.

3.4.2 Type II0

Next, we consider the type II0 case. We will not be quite as detailed as above, but do present
intermediate results.

Nilpotent Orbit Data

For this case, it was shown that one can always find an integral symplectic basis such that
the weight filtration (here consisting only out of W2 ⊂ W4) is spanned by [72]

Type II0 :

W4 = span
{(

1 0 0 0
)
,
(
0 1 0 0

)}⊕
W2

W2 = span
{(

0 0 1 0
)
,
(
0 0 0 1

)} . (3.124)
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Again, we have that equation 3.124 does not uniquely specify the symplectic basis. In par-
ticular, integral symplectic transformations of the form

S =

(
A−1 0
C AT

)
, (3.125)

with AC symmetric preserve both the symplectic pairing η as well as the form of the weight
filtration (3.124). We will use this freedom to simplify some of the unfixed coefficients appear-
ing below. The most general log-monodromy matrix compatible with the weight filtration
above is given by

N =


0 0 0 0
0 0 0 0
m k 0 0
k n 0 0

 , with

{
m,n, k ∈ Z,
m, n > 0.

(3.126)

Following [72], we will assume that n/k is integer, in which case we may use a symplectic
transformation of the kind (3.125) to set k = 0 and assume m ≥ n > 0. We emphasize
however, that this is not quite the most general choice, although we clearly cover a large
subset of this type of limits class. In [72] it was then shown that the most general period
matrix compatible with (3.124) and this choice of log-monodromy, is given by

Ω =


1 0 0 0
iα 0 1 0
β 1 0 0
iαδ i/α δ 1

 , with

{
α :=

√
m/n ∈ R,

β, δ ∈ C.
(3.127)

Under rescalings z → e−2πiλz (cf. (3.100)) we have that

β → β +mλ, δ → δ + nλ, (3.128)

which we use to set β = 0 in the following. For ease of notation, we decompose the remaining
parameter δ into real and imaginary parts as follows

δ = p− iq/α. (3.129)

sl(2)-Orbit Data

Using equation 3.46 we can derive the associated Deligne splitting, which is now non-trivially
related to the period matrix above

I3,1 I1,3 I2,0 I0,2

1 1 0 0
iα −iα 0 0
0 −iαq 1 1
iαδ −iαp iα −iα

 . (3.130)

Following the procedure from appendix B we construct the relevant rotation operators to
obtain the R-split Deligne splitting. These are given by

δ = δ−1,−1 = −q

2


0 0 0 0
0 0 0 0
α 0 0 0
0 α−1 0 0

 , (3.131)
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while the rotation matrix ζ is again trivial. The resulting R-split Deligne splitting is given
by 

Î3,1 Î1,3 Î2,0 Î0,2

1 1 0 0
iα −iα 0 0
1
2
αq −1

2
iαq 1 1

q
2
+ iαp q

2
− iαp iα −iα

 . (3.132)

Moreover, the associated weight operator is given by

N0 =


1 0 0 0
0 1 0 0
0 q −1 0
q 2p 0 −1

 . (3.133)

Boundary Data

Rotating the associated filtration according to F p
∞ = eiN F̂ p

0 , we find the following period
matrix

Ω∞ =


1 0 0 0
iα 0 1 0

i(m+ qα/2) 1 0 0
−nα + q/2 + ipα iα p− iq/(2α) + in 1

 . (3.134)

The Hodge decomposition associated to this filtration is given by

H3,0
∞ :

(
1, iα, i(m+ qα/2), −nα + q/2 + ipα

)
,

H2,1
∞ :

(
1, iα, i(−m+ qα/2), nα + q/2 + ipα

)
,

(3.135)

with the remaining two spaces following by complex conjugation. As before, we can solve for
the limiting Weil operator which is now given by

C∞ =


0 q/(2m) −1/m 0

q/(2n) p/n 0 −1/n
m+ q2/(4n) pq/(2n) 0 −q/(2n)
pq/(2n) n+ p2/n+ q2/(4m) −q/(2m) −p/n

 , (3.136)

which one checks to have the correct action on the Hp,q
∞ given above.

Final Result

With these results, we can again construct the sl(2)-approximated Weil operator, given now
by

ηCsl(2) =
1

s


q2/(4n) +m(a2 + s2) aq + pq/(2n) −a −q/(2n)

aq + pq/(2n) q2/(4m) + (an+ p)2/n+ ns2 −q/(2m) −a− p/n
−a −q/(2m) 1/m 0

−q/(2n) −a− p/n 0 1/n

 .

(3.137)
From the bottom two blocks, we can then obtain the final result for the kinetic matrix, given
by

N = −
(
ma q

2
q
2

na− p

)
− i

(
ms 0
0 ns

)
. (3.138)



112 3. Asymptotic Hodge Theory

Moreover, the nilpotent orbit approximation to the period vector is given by

Πnil = eiNa0 =


1
iα
mt

iα(δ + nt)

 , (3.139)

where, for a0, we again use the first column in equation 3.127 (recall that we set β = 0). We
remark that this period vector is not in the special coordinates of section 1.6 (although this
can always be achieved by a symplectic rotation).

Geometric Interpretation

Compared to the previous example, the geometric interpretation of this case is not as well-
studied. Crudely speaking, under a Tyurin degeneration, the Calabi-Yau X6 splits into two
new 3-folds10 X1

6 and X2
6 , glued along a special type of divisor in each X i

6 [74]. While the
details of this are not important to us, this fact has a nice interpretation at the level of
the associated mixed Hodge structures. In particular, the two pure Hodge structures on the
graded pieces Gr4 and Gr2 ∼= NG4 admit the interpretation of the pure Hodge structures
on the non-singular spaces X i

6. The unfixed parameters above then capture the non-trivial
gluing of these spaces so that the resulting mixed Hodge structure is more than the sum of
its parts.

3.4.3 Type I1

This final case is slightly more involved, because it lies at finite distance. In particular, what
this means is that the period vector in the nilpotent orbit approximation will not span the full
Hodge filtration, which practically implies that to leading approximation the Kahler metric
vanishes. We will address this issue shortly but for now we begin as before by writing down
the most general nilpotent orbit data for this case.

Nilpotent Orbit Data

For this case it is always possible to pick an integral symplectic basis such that the weight
filtration W2 ⊂ W3 ⊂ W4 is spanned by [72]

Type I1 :


W4 = span

{(
1 0 0 0

)}⊕
W3

W3 = span
{(

0 1 0 0
)
,
(
0 0 0 1

)}⊕
W2

W2 = span
{(

0 0 1 0
)}

.

(3.140)

Similarly to the previous cases compatibility with the weight filtration does not uniquely fix
our basis, as the former is invariant under integer symplectic transformations of the form

1 0 0 0
b1 1 0 0
0 b2 1 −b1
b2 0 0 1

 ,


b 0 0 0
0 c11 0 c12
0 0 b−1 0
0 c21 0 c22

 ,

{
0 < b ∈ Z,
{cij} ∈ SL(2,Z).

(3.141)

10These new 3-folds are no longer Calabi-Yau, but admit a special structure in that they now become
quasi-Fano varieties.
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We will not make use of this freedom however. The most general log-monodromy matrix
associated to this weight filtration is given by

N =


0 0 0 0
0 0 0 0
n 0 0 0
0 0 0 0

 , 0 < n ∈ Z. (3.142)

Meanwhile, we can choose our period matrix to be of the form

Ω =


0 1 0 0
1 γ 0 0

δ − τγ 0 1 0
τ δ 0 1

 ,

{
γ, δ ∈ R,
Im τ ̸= 0.

(3.143)

sl(2)-Orbit Data

The Deligne-splitting obtained from this data is given by
I2,2 I3,0 I0,3 I1,1

1 0 0 0
γ 1 1 0
0 δ − γτ δ − γτ̄ 1
δ τ τ̄ 0

 . (3.144)

It follows that the resulting Deligne-splitting is already R-split. The weight operator associ-
ated to this Deligne splitting is then given by

N0 =


1 0 0 0
γ 0 0 0
0 δ −1 −γ
δ 0 0 0

 . (3.145)

Boundary Data

Evaluating F p
∞ = eiNF p

0 we find the following period matrix

Ω∞ =


0 1 0 0
1 γ 0 0

δ − γτ in 1 0
τ δ 0 1

 , (3.146)

with associated Hodge decomposition given by

H3,0
∞ :

(
0, 1, δ − γτ, τ

)
,

H2,1
∞ :

(
1, γ, in, δ

)
.

(3.147)

In the following we introduce the following short-hands

τ = x+ iy, (3.148)

keeping in mind that Im τ = y ̸= 0. We can then solve for the limiting Weil operator acting
on the Hp,q

∞ , which now reads

C∞ =
1

ny


0 −δy y γy

n(δ − γx) nx− δγy γy −n+ γ2y
−n2y + n|δ − γτ |2 n(δx− γ|τ |2) 0 −n(δ − γx)

n(δx− γ|τ |2) −δ2y + n|τ |2 δy −nx+ δγy

 . (3.149)
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Final Result

Finally, we compute the sl(2)-approximated Hodge star matrix, which is given by

ηCsl(2) =
1

s


s|δ−γτ |2

y
− n(a2 + s2) δ(sx−ay)−γs(x2+y2)

y
a aγy+sγx−δs

y
δ(sx−ay)−γs(x2+y2)

y
− δ2

n
+ s(y2+x2)

y
δ
n

δγ
n
− sx

y

a δ
n

− 1
n

− γ
n

−δs+γ(sx+ay)
y

δγ
n
− sx

y
− γ

n
−γ2

n
+ s

y

 . (3.150)

Extracting the relevant blocks, we then find that the gauge kinetic matrix is given by

N = −
(
na− γ(δ − γx) δ − γx

δ − γx x

)
+ i

(
ns− γ2y γy

γy −y

)
, (3.151)

where we can perform a shift a → a+ γ(δ − γx)/n to simplify the real part (this could also
be done at the level of the mixed Hodge structure, but its purpose is more clear here). The
associated nilpotent orbit is given by

Πnil =


0
1

δ − γτ
τ

 . (3.152)

It is clear that the vanishing of Na0 implies that the associated nilpotent orbit is moduli-
independent. As such it leads to a constant Kahler potential and a vanishing Kahler metric.
Indeed, this was exactly what we used to argue that these limits are located at finite distance.
While this means that we cannot naively use a0 ∈ F 3

0 to recover the full Hodge filtration, we
have access to the full limiting filtration F p

0 . One expects that this should contain sufficient
information to reconstruct an approximate period vector which does span the full filtration.
Indeed, this was the strategy used in [66], where limiting expressions for the period vector
were recovered that include the first sub-leading corrections. Although the authors do not
work in an integral basis, we can nevertheless use their leading form for the Kahler metric for
this case, as we are only interested in the leading axion/saxion dependence which is invariant
under symplectic transformations. We note their leading order result here

Ktt̄ ∼ ce−4πs, (3.153)

where c is a model-dependent coefficient.

Geometric Interpretation

This final class of singularities are called conifold singularities. Like the type IV0 case they
have been extensively studied in geometric settings. A characteristic feature of such singu-
larities is that some number (here only one) of three-cycles shrink to zero size. We refer to
the literature (e.g. [75]) for further discussion on these types of singularities.



Chapter 4

Symmetries in One-Modulus Limits

With our limiting expressions for the monodromy, period vector and kinetic matrix in hand,
we are now finally in a position to study the resulting EFTs and their associated global sym-
metries. We will consider separately the details of each of the one-modulus limits discussed
in section 3.4. In particular, we will focus on the following questions.

1. Which symmetries are broken or gauged without the addition of stringy ingredients?

2. Which stringy effects are necessary to break the remaining symmetries?

3. Which symmetries emerge1 as we approach infinite distance limits in field space?

4. Can the massless tower of states predicted by the SDC be understood as preventing an
emergent symmetry?

To set the stage for this discussion, we start in section 4.1 with some general considerations
about the symmetries of this class of EFTs. Afterwards, we will go through each of the three
one-modulus limits from the previous chapter. Our analysis will start off rather broad with
a discussion of type II0 limits in section 4.2. In section 4.3, we present the finite distance
type I1 case as a counterpoint, though our analysis will be less in-depth. Finally, in section
4.4 we briefly discuss the type IV0 case, whose physics is markedly more involved than the
previous two cases.

4.1 General Considerations

Let us recall one more time the action of the N = 2 vector sector, specialized to the one-
modulus case

S =

∫ (
1

2
IIJF

I ∧ ∗F J +
1

2
RIJF

I ∧ F J −Ktt̄dt ∧ ∗dt̄
)
, (4.1)

where we have chosen to write the scalar kinetic term in terms of the coordinate t. As we
have seen, the moduli t = a + is admit a shift symmetry a → a + 1 which we interpreted
as a gauge transformation. Consequently, the real part of the moduli will play the role of
an axion. Motivated by these facts, we choose not to consider saxion dynamics. Unlike the
axion, the saxion is a genuine scalar and it is not charged under any of the other gauge

1The use of the term emergent in this chapter is not to be confused with the term emergent as it appears
in the emergence proposals from [76, 77], which we briefly mention in section 4.3, nor the emergent string
proposal [78] which we mention in 4.2.



116 4. Symmetries in One-Modulus Limits

symmetries of the theory. Consequently, we do not expect it to affect the symmetry content
of the theory in any interesting way, but rather clutter the analysis. We do comment on
one possible exception to this below, but otherwise assume the saxion to be fixed at a value
sufficiently large for the tools from chapter 3 to be applicable. The action then reduces to

S =

∫ (
1

2
IIJF

I ∧ ∗F J +
1

2
RIJF

I ∧ F J −Ktt̄da ∧ ∗da
)
. (4.2)

With this caveat out of the way, let us first enumerate the possible global symmetries this
model may possess. To this aim, we list here the equations of motion for the action (4.2)

d(IIJ ∗ F J +RIJF
J) ≡ dGI = 0,

Ktt̄d ∗ da+ ∂aKtt̄(da∧ ∗ da) + 1

2
(∂aI)IJF I ∧ ∗F J +

1

2
(∂aR)IJF

I ∧ F J = 0,
(4.3)

where we have identified the dual field strength GI ≡ I ∗ F I +RF I as a short-hand for the
the equations of motion. These equations are to be supplemented by the Bianchi identities

dF I = 0, d(da) = 0. (4.4)

Based on these equations, we can distinguish three general classes of potential global sym-
metries of the theory

1. The electric and magnetic 1-form symmetries of the vector fields F I , with associated
currents

J I = F I , JI = GI . (4.5)

2. The continuous axionic shift symmetry and its dual 2-form symmetry, with associated
currents

J i = da, J i = Ktt̄ ∗ da. (4.6)

3. Chern-Weil global symmetries constructed out of the field strengths F I and da, with
associated currents

J IJ = F I ∧ F J , J I = da ∧ F I . (4.7)

In the following we discuss the fate of these global symmetries, and what factors may lead
to their gauging or breaking.

4.1.1 Vector Symmetries

Recall from our discussion of electric magnetic duality in section 1.6 that the field strengths
F I and their duals GI can be assembled into a symplectic vector, so that the conservation
laws of the currents (4.5) can succinctly be written as

d

(
F
G

)
= 0. (4.8)

This vector similarly transforms under scalar isometries, in particular the axion monodromy
that occurs as we encircle a divisor. Consequently, if T denotes the associated monodromy
transformation, then under a → a+ 1 the field strengths transform according to(

F
−G

)
→ T

(
F
−G

)
=

(
A B
C D

)(
F
−G

)
. (4.9)
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These monodromy transformations are gauged isometries of the scalar manifold (recall that
the true scalar manifold is the moduli space parameterized by z), so that despite their
closedness, these currents need not define good symmetries of the theory. Those currents
that transform non-trivially under (4.9) are automatically broken, potentially down to a
discrete sub-group. Indeed, this is a generalization of what we saw in axion electrodynamics,
where the electric current G transformed non-trivially under axion monodromy.

It follows that we can already give a crude classification of the number of un-broken
symmetries, based solely on the properties of the monodromy matrix. In particular, since
the latter is given by T = eN = 1+N+ . . ., currents that are invariant are annihilated by N .2

Thus, the number of unbroken symmetries is bounded from below by the dimension of the
kernel of N . In fact, this observation extends immediately to the multi-modulus case, where
we obtain several monodromy matrices Ti, each of which effecting a gauge transformation of
the theory. As such, we require the un-broken currents to be invariant under all of them,
meaning that they should be annihilated by N(k) = N1 + . . . + Nk. The dimension of the
nullspace of N(k) is given by

dimR(kerN(k)) = dimR(HC)− dimR(imN(k)). (4.10)

In all cases, the dimension of HC is given by 2h2,1 + 2, while the rank of N(k) was given in
table 3.1. Combining these two facts we obtain the following general classification

dimR(kerN(k)) =


2h2,1 + 2− a Type Ia,

2h2,1 − b Type IIb,

2h2,1 − 2− c Type IIIc,

2h2,1 − d Type IVd.

(4.11)

Moreover, if we combine this with the upper bounds of the indices a, b, c, d, similarly given in
table 3.1, it follows that axion monodromy is never sufficient to break all of the symmetries.
Of course, this is nothing but the statement that a nilpotent matrix N(k) can never be full-
rank.

D3 Particles

It therefore follows that we will always require some charged states to break the remaining
symmetries. This includes any remnant discrete symmetries which are not detected by the
argument above. The natural charged objects that couple to these gauge fields are of course
D3-branes wrapped on 3-cycles. There is a priori no obstruction for a brane to wrap a given
cycle, so that away from any singularities, we obtain a complete spectrum of D3-particles,
as one expects from the completeness hypothesis. One of the questions we wish to answer
however, is to what extent these D3 branes are also required to break a given symmetry, and
if we can relate their properties to the symmetries they break.

In particular, since we have chosen our basis to correspond to a weak coupling limit, some
or all of the couplings may go to zero as we approach the singularity. This means that some
of the charged states decouple as their physical charge goes to zero. If those charged states
were necessary to break a current not already broken by monodromy, then a global symmetry
appears. We expect to encounter some form of EFT obstruction to this phenomenon. This

2One might object that the currents are not simply arbitrary vectors in HC but rather elements of an
integral basis, so that it might be necessary to invoke the rationality of N and the weight-filtration to make
this argument general.
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can also be understood directly from the magnetic WGC, which states that the EFT cut-off
should go to zero with the gauge coupling. It is natural to expect this EFT obstruction to be
related to the symmetry that emerges in this limit. In the following, we discuss a candidate
for such EFT obstructions.

Charge Orbits

One important property of the symmetry-breaking brane states is that their charge vectors
q = (pI , qI)

T also transform under monodromy. From a top-down perspective, this sim-
ply follows because they denote the components of a 3-form (Poincare dual to the 3-cycle
wrapped by the brane). From the perspective of the EFT, this can be understood as a direct
consequence of the non-trivial monodromy of the conserved currents to which they couple.
In particular, the equations of motion in the presence of sources now read

dF I = pIδ3(γ
1), dGI = qIδ3(γ

1), (4.12)

where δ3(γ
1) is a 3-form localized on the particle world-line. Consistency with the monodromy

transformation (4.9) requires the charge vector to similarly transform under monodromy. We
will later see explicitly how this can be interpreted as a manifestation of the Witten effect.
For now however, let us briefly discuss the properties of the monodromy orbits generated by
these states. These have been extensively studied in [76] and [79] and we review some of
their most important results.

The first important observation is that near any singularity in the moduli space, it is
always possible to find an infinite monodromy orbit. This follows from precisely the same
reasoning we used to deduce that monodromy cannot break all of the symmetries. This
presents a natural candidate for the EFT obstruction, required by the emergent global sym-
metry discussed above. We are then faced with two questions

• Does the infinite monodromy orbit become massless in the limit g → 0?

• Is the monodromy orbit related to the emergent global symmetry?

The main tool we have to assess these is the BPS mass formula, for which we derived the
limiting expression (3.68). The main difficulty one runs into is that it is hard to determine
generically whether a given 3-cycle supports a BPS state, eq. a special Lagrangian cycle.
This mass therefore gives only a lower-bound on the mass of a given state. Nevertheless, in
special cases it is sufficient to assume that only a single state in the orbit is populated by
a state that is indeed BPS, from which it then follows that the whole orbit is populated by
BPS states which obey the mass formula.

In [76], the authors present a sufficient condition for this to be the case. The crux of the
argument is to keep track of the assumed BPS state, say q, as we adiabatically transition
from a to a + 1. While we know that the spectrum is invariant under a → a + 1 up to a
possible re-labelling3, this only ensures for us that at a + 1, the state labeled Tq is BPS. If
however, as we go from a to a + 1 the state q remains BPS, then we have two BPS states
at a + 1, namely q as well as Tq which we had already concluded should be BPS (see also
figure 4.1).

3It is important to distinguish the state from the charge vector to which it is associated. The latter is
only a label and a state may change its label under monodromy (as long as the spectrum as a whole is left
invariant). This is just the physical interpretation of the fact that the monodromy of q corresponds to a
transition function on the Hodge bundle.
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Figure 4.1: Diagram illustrating how states are mapped under monodromy. Physical states
are colour coded, and their label transforms under shifts a → a + 1. The red dot denotes a
BPS state at a with label q. Monodromy ensures that at a + 1, we have at least one (red)
BPS state, now at Tq. If the state with label q remains BPS, we may have two BPS states
at a + 1. However, it may occur that at some intermediate value a∗, the state at q ceases
to be BPS (e.g. becomes unstable to decay into the new BPS state Tq), so that the new
(green) state q at a+ 1 need not be BPS [76].

The obstruction for the state q to remain BPS is related to its stability. Indeed, it may
occur that somewhere along the path a → a+1 the BPS state q becomes unstable to decay,
so that by the time we arrive at a+1 we no longer have a BPS state at q. Below we present
only a sufficient condition for q to remain stable, but otherwise do not motivate it, instead
referring to [76] for details. In particular, if we define the two sets

M1 := {q ∈ HZ | Slm(q, a0) ̸= 0, Sl>lm(q, a0) = 0 lm < d/2}, (4.13)

M2 := {q ∈ HZ | Sl(q, a0) = 0, ∀ l}, (4.14)

then the BPS mass formula

M2
q ∼ s−d

∑
l

s2lSl(q, a0) +O(e2πit), (4.15)

tells us that states inM1 become light polynomially in s, while those inM2 are exponentially
light. If we then consider states in an infinite orbit and define δq := Tq− q, then the state
q for which δq ∈ M2 will become unstable to decay into Tq and δq, at least for some value
of the moduli encountered as we encircle the divisor a → a + 1. To ensure that we obtain
a genuine tower of massless states then, we should demand that δq ∈ M1. We emphasize
that this is a sufficient condition, since we are not guaranteed that the state δq is BPS. The
upshot of the results in [76] is then that in one-modulus degenerations, stable massless towers
of states were generated by monodromy only in the type IV case. The discussion presented
here is a reduced version of the argument presented in [76] to which we refer for more detail
as well as a microscopic interpretation of the condition δq ∈ M1.

In the following, we will revisit these results and study how the monodromy orbits can
be understood from the EFT perspective. Moreover, we will see why in some cases we can
generate infinite towers of massless states, and in some cases we cannot.
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4.1.2 Axionic Symmetries

The axion similarly has associated to it a pair of global symmetries. While the magnetic
1-form symmetry of the vector fields could be broken due to their non-trivial monodromy
transformation, the analogous axionic current da is manifestly invariant so that this symmetry
should be broken some other way. The most obvious candidate for this are the axionic strings
discussed in chapter 2. Unlike the D3-particles however, we do not have an obvious string-
theoretic candidate for how these strings should be realized. While, for example, D3-branes
wrapping 2-cycles will lead to strings, it is not clear that these are magnetically charged under
the axion. More generally, branes (including NS5 branes) that lead to a string in 4D will
not wrap a 3-cycle. Since our classification only focuses on the latter, we would need a more
refined description of the Calabi-Yau to make concrete statements here. We will therefore
naturally have less concrete things to say about such strings, but we will comment on what
their properties might be.

We can however, readily study the continuous shift-symmetry of the axion, which can be
broken through the coupling to the gauge fields. Indeed, any non-vanishing terms other than
the first in equation 4.3 can lead to a broken axionic shift symmetry. The most well-studied
example of this has been the exponential corrections to the Kahler metric, which are known
to generate symmetry breaking terms as we move into the bulk of the moduli space. A
sufficient condition to completely break the axionic symmetry is to include two exponential
corrections at orders p and q for p, q co-prime. We generically expect such corrections to
exist, and as such the axionic symmetry is expected to always be approximate.4

However, as we have seen throughout the previous chapter, the leading order contribution
to the Kahler metric is typically axion-independent. This means that as we take the limit
s → ∞, we are at risk of another global symmetry appearing. There is however, a second
symmetry breaking effect, namely the coupling of the axion to the gauge fields. If R ∼ a, this
is analogous to what happens in axion electrodynamics, and we will encounter such couplings
here as well. These may prevent an emergent axionic symmetry in the limit s → ∞. If the
coupling to the gauge fields is not sufficient to break the shift symmetry however, we should
expect EFT break-down whenever s → ∞ corresponds to an infinite distance limit, barring
other symmetry breaking effects.

Finally, let us comment on possible emergent symmetries appearing from the magnetic
axionic symmetry. As we have seen, the Kahler metric always decays in the limit s → ∞,
with the rate of decay determining whether the limit is at finite or infinite distance. If we
view the axion as a gauge field, this means that the limit s → ∞ is a strong-coupling limit.
The dual statement is that the dual 2-form field is weakly coupled, so that the strings which
couple to the axion magnetically decouple in the limit s → ∞. It is therefore plausible that
these strings are responsible for the EFT to breakdown near such limits.

Saxionic Symmetries

While we do not consider any saxion dynamics in this work (saxion dependence will be
important to determine coupling constants and particle masses), let us briefly comment on
one place where this may become relevant. Suppose for the moment that we include the
saxions as dynamical fields in our description. Following our discussion about dualities, we

4Towards the end of writing it was pointed out to us that there exist some Calabi-Yau with no exponential
corrections. In section 4.2 we briefly mention a mechanism by which the axionic symmetry is broken through
instanton effects induced by monopole loops [80]. It is possible that in this case (as well as all other cases)
the axionic symmetry is still broken by this effect (specifically due to magnetic D3-branes).
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know that the full duality group of our theory is generated by scalar diffeomorphisms. These
diffeomorphisms include the saxions. In fact, for any infinite distance limit, we have already
observed that the limiting form of the Kahler potential is given by

Ktt̄(ds ∧ ∗ds+ da ∧ ∗da) = d

4s2
(ds ∧ ∗ds+ da ∧ ∗da). (4.16)

Modulo constants, this metric is the two-dimensional euclidean anti-de Sitter metric and its
isometry group is well-known to be given by the same modular group

t → at+ b

ct+ d
, ad− bc = 1, (4.17)

which obviously covers axion monodromy with a = d = b = 1, c = 0. Importantly however,
some of these isometries may lift to genuine global symmetries of the theory. The reason that
we need not concern ourselves with this possibility is that apart from axion monodromy, the
generator

t → −1

t
, (4.18)

inverts the saxion. Not only does this typically correspond to an electric-magnetic duality
(i.e. induces a symplectic transformation of the gauge fields with B ̸= 0)5, it also takes us
away from the asymptotic limit where the approximate form of the metric (4.16) is valid.
The associated duality is therefore only approximate, so that the saxions will not lead to
additional symmetries of the theory.6

4.1.3 Chern-Weil Symmetries

Finally, there are the Chern-Weil symmetries. As we discuss below, these are typically
gauged via the topological Chern-Simons term RIJF

I ∧ F J . While this does not require
the introduction of additional elements to break them, their gauging forces us to be careful
with how we break the other symmetries of the theory. In particular, breaking the magnetic
1- and axionic 2-form symmetries also breaks the Chern-Weil symmetries. This is perfectly
analogous to what we observed in section 2.3.3, where three-term Chern-Simons couplings
required the introduction of world-volume degrees of freedom. Genuinely identifying these
for our case requires more detailed information than we have available to us. We will mention
how the Chern-Weil symmetries are gauged/broken at the level of the action, but otherwise
leave a more thorough investigation of these symmetries for future work.

4.2 Type II0

The first case we consider is the type II0 singularity, the reason being that it has a simpler
structure than the type IV1 limit, but unlike the type I1 case it lies at infinite distance making
it more interesting from a swampland perspective. The action for the vector fields is given

5While this means that the corresponding transformation is not a classical symmetry of the theory, we
should still expect such transformations to be gauged in the quantum theory. In fact, this is the case for
ten-dimensional supergravity when UV-completed into type IIB string theory.

6This can also be understood in terms of the statement that the scalar field space is a punctured disk
in the z-plane, which retracts to the circle. The saxionic part can therefore never have interesting winding
modes and its shift-symmetry is broken by the Kahler metric.
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by ∫ (
−ms

2
F 0 ∧ ∗F 0 − ns

2
F 1 ∧ ∗F 1 − ma

2
F 0 ∧ F 0 − q

2
F 0 ∧ F 1

−na+ p

2
F 1 ∧ F 1 − 1

4s2
da ∧ ∗da

)
,

(4.19)

with associated equations of motion

d
(
ms ∗ F 0 +maF 0 + qF 1

)︸ ︷︷ ︸
−G0

= 0, d
(
ns ∗ F 1 + (na+ p)F 1 + qF 0

)︸ ︷︷ ︸
−G1

= 0, (4.20)

where we have identified the GI as the conserved currents obtained from the Noether pro-
cedure. If we allow ourselves to use the Bianchi identity these equations simplify down to

sd
(
∗F 0

)
= −da ∧ F 0, sd

(
∗F 1

)
= −da ∧ F 1. (4.21)

We can also include the equation of motion for the axion, which reads

1

2s2
d ∗ da =

m

2
F 0 ∧ F 0 +

n

2
F 1 ∧ F 1. (4.22)

It is clear that this theory is a variation of the axion electrodynamics we considered in section
2.3.3. As such we will make generous use of our observations in earlier sections.

4.2.1 Global Symmetries

In the following we go over the three classes of symmetries discussed in the previous sections
and determine whether they are broken or gauged at the level of the equations of motion. In
the next sub-section we will comment on how the remaining symmetries can be broken.

Vector Currents

We can study the fate of the 1-form global symmetries following the line of argument from
the previous section. The field strengths transform under monodromy according to

F 0

F 1

−G0

−G1

→ T


F 0

F 1

−G0

−G1

 =


1 0 0 0
0 1 0 0
m 0 1 0
0 n 0 1




F 0

F 1

−G0

−G1

 =


F 0

F 1

−G0 +mF 0

−G1 + nF 1

 . (4.23)

In accordance with our general analysis, we find that 2h2,1 = 2 symmetries are un-broken
corresponding to the magnetic symmetries. Moreover, we find that the two electric symme-
tries are broken to discrete sub-groups Zm and Zn, controlled by the integers that appear in
the log-monodromy matrix.

The interpretation of these results is clear. Due to the Chern-Simons coupling to the
axion, the electric charges are only conserved mod m,n. This is nothing but the Witten
effect, which implies that a magnetic charge becomes a dyon under monodromy and as such
our flux-integrals are only well-defined up to said monodromy.
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Axionic Symmetries

The axion equations of motion (4.22) above tell us that the axionic shift-symmetry (with
associated current ∗da) is broken. In particular, we see that the terms responsible are the
same Chern-Simons couplings that broke the electric symmetries above. The integers n,m
that controlled the remnant electric 1-form symmetries also control the axionic shift symme-
try. Here we have two integers to keep track of however, and the remnant 0-form symmetry
is given by Zgcd(m,n) where gcd(m,n) is the greatest common divisor of the integers m,n.
Following the argument from section 4.1.2, we expect this discrete symmetry to be broken
by exponential corrections to the Kahler metric.

Chern-Weil Symmetries

The broken electric and axionic symmetries serve to gauge the two types of Chern-Weil
symmetries introduced above, which is read most directly from equations 4.21 and 4.22.
More specifically, the axion gauges a linear combination mF 0 ∧F 0 +nF 1 ∧F 1, while leaving
unbroken mF 0 ∧ F 0 − nF 1 ∧ F 1. Consequently, these need not be broken further.

4.2.2 Breaking the Symmetries

Next, we discuss charged states that may break the remaining symmetries.

D3 Particles

In order to break the remaining symmetries of the vector fields we should include charged D3
particles. Since the magnetic 1-form symmetry is never broken, let us start by considering
magnetically charged states. In their presence, the Bianchi identity of the (electric) gauge
fields is violated by the addition of a source term localized on the particle world-line

dF I = pIδ3(γ
1). (4.24)

Following our earlier discussions, to break the magnetic symmetries completely we require at
least a state with charge p0 = 1 and a (possibly different) state with charge p1 = 1.

If we assume these states to be pure monopoles, the Witten effects turns them into dyons
with electric charges m,n. This is illustrated by the basic monodromy orbit

. . .
T→


1
1

−m
−n

 T→


1
1
0
0

 T→


1
1
m
n

 T→


1
1
2m
2n

 T→ . . . . (4.25)

From this perspective it is clear that in order to consistently break the magnetic 1-form
symmetry, the whole orbit should be populated by physical states. Nevertheless, the ques-
tion of whether this orbit should be BPS is subtle as follows from our discussion in section
4.1.1.

It is clear however, that such magnetically charged states can never break any remaining
electric 1-form symmetries. Of course, this is because the electric charge (measured by

∫
GI)

is only conserved mod m,n, which was necessary to allow for the Witten effect to occur in the
first place. As a result, the monodromy cannot break the electric symmetry any further, so
that whenever m,n ̸= 1 we also require states with elementary electric charge qI = 1.
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Chern-Weil Symmetries

As was already pointed out, the coupling to the axion gauges some of the Chern-Weil currents
discussed in the opening of this chapter. The subsequent breaking of the magnetic symmetries
also breaks the Chern-Weil currents constructed out of them, so that we do not require any
additional objects. It also means that consistency with their gauging requires some additional
elements. Alternatively, we may think of this as an EFT implementation of the Witten effect
experienced by the monopole.

Following section 2.3.3 (but see also [47, 50]), we could argue for the presence of world-
volume degrees of freedom on the monopole worldline, however identifying such degrees of
freedom would required detailed knowledge of the world-volume theory of the compactified
D3-brane. Moreover, it is not obvious which brane degree of freedom would carry charge
under the R-R 4-form (compare this to e.g. the KK monopole where any state that can be
boosted along the compact direction automatically carries gauge charge). Here we simply
state that the theory can be rendered consistent by including a world-volume degree of
freedom on any magnetically charged state

S ∼ −
∫
γ1

a
(
dσ −mp0A0 − np1A1

)
,

{
AI → AI + dλI ,

σ → σ +mp0λ0 + np1λ1.
(4.26)

but otherwise do not claim to have a candidate for such a field. In this case, the axion gauges
a linear combination of currents

1

s2
d ∗ da =

(m
2
F 0 ∧ F 0 +

n

2
F 1 ∧ F 1 +

(
db0 −mp0A0 − np1A1

)
∧ δ3(γ

1)
)
. (4.27)

4.2.3 Emergent Symmetries and EFT Obstructions

While we always have the states necessary to break the symmetries, at least in the UV-
completion where brane states are dynamical, we expect some of these symmetries to re-
emerge in the limit where we take s → ∞. As mentioned, the usual culprit is the axion,
which develops a shift-symmetry as the exponentially suppressed corrections to the Kahler
metric vanish and an axion-independent metric emerges. While this is indeed the case, we
find that the Chern-Simons coupling may break the axionic symmetry even as we approach
s → ∞. In particular, we can canonically normalize the fields by

F I → F I/
√
s, a → sa. (4.28)

The corresponding factors of s cancel in the Chern-Simons term∫
aF I ∧ F I → s

(
√
s)2

∫
aF I ∧ F I , (4.29)

which we find persists even in the limit s → ∞.7 This point will be important below when we
discuss axionic strings but for now, we observe that if gcd(m,n) = 1, the axionic symmetry
is broken for all values of s. Meanwhile, when gcd(m,n) ̸= 1 a discrete global shift symmetry
may appear as the exponential corrections to the Kahler metric vanish.

Another potential emergent symmetry in this limit is related to the gauge coupling going
to zero. Indeed, by construction, the electrically charged states decouple from the gauge field

7As we will see below, this is the case for all infinite distance limits considered here. There may be a
general argument that this should be the case, either based on symmetries or Hodge theoretic reasoning, but
we do not know of one.
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in the limit s → ∞ restoring the electric 1-form symmetry. However, here too we may be
protected from such a symmetry if m = n = 1. This suggests that these emergent symmetries
are somehow not as “fundamental”. In the following however, we will assume that we are
working in the general case where m,n ̸= 1 and study possible EFT obstructions to the
emergence of these symmetries.

BPS Masses

A natural candidate for the massless tower of states that protects us in this limit is of course
the monodromy orbit (4.25). Explicitly, we find that when we evaluate the BPS mass formula
for a state with non-vanishing magnetic charge, the particle mass is linearly divergent in the
limit s → ∞

M2 =
|⟨q,Πnil⟩|2

2s2
=

1

4

(
m(p0)2 + n(p1)2

)
s+O(1). (4.30)

Because the monodromy is induced by the Witten effect, it is only these magnetically charged
states which can generate infinite monodromy orbits. These orbits can therefore never become
light as we take the infinite distance limit. This is the same conclusion arrived at in [76],
here viewed as a direct consequence of the fact that the tower is generated by the Witten
effect (along with the fact that dyons are heavy).

As for the electrically charged states, our BPS mass formula tells us that there is no
obstruction for these states to become light

M2 =
1

4s

(
(q0)2/m+ (q1)2/n

)
+O(s−2). (4.31)

This could also be viewed as the statement that the electric states satisfy the WGC, in which
case their asymptotic massless-ness follows from the vanishing physical charge. The problem
here however, is that there is no mechanism by which we should expect an infinite tower of
them to be present (although demanding that they satisfy the tower/lattice versions of the
Weak Gravity Conjecture [81,82] would lead to this conclusion).

While the results presented so far essentially follow from straight computation, in the
remainder of this sub-section we will be more speculative. In particular, we will discuss what
additional states may be present that break the remaining symmetries, what their properties
may be, and how they may lead to an EFT break-down. These results are not intended to be
conclusive and we provide this warning to indicate a drop in the level of rigor in the following
paragraphs.

Instanton Effects

Let us begin by briefly commenting on the case gcd(m,n) ̸= 1. Here, the limit s → ∞
is associated with an axionic shift-symmetry, albeit only a discrete one. It has been ar-
gued that in the presence of a Chern-Simons coupling as in (4.19), monopoles loops induce
instanton-effects which lead to a non-perturbative potential for the axion which breaks the
emergent global symmetry [80]. Because we always have magnetic D3-particles in the theory
(which remain strongly coupled in the limit) it is possible that this always breaks the axionic
symmetry, even if gcd(m,n) ̸= 1.

Axionic Strings

As we have seen, we can always use D3 branes to construct the states that break the symme-
tries associated with the gauge fields. However we have not said anything about the unbroken
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Figure 4.2: Illustration of an EFT string configuration (adapted from [83]). Going around
the string induces a monodromy for the axion, while the saxion diverges as we approach it.
The finite EFT cut-off means that the string has a finite size r∗ ∼ Λ−1, which shrinks to zero
as we try to take Λ → ∞. We emphasize that we are not able to explicitly construct such
solutions for our models.

axionic 2-form symmetry da. Although we do not have as clear of a picture on how these are
potentially broken as for the gauge fields, we would still like to speculate on this issue here.
Most likely we require the existence of some form of axionic string. While we do not have
any clear candidate for such strings (i.e. it is not obvious which string theory state leads to
the appropriate string in the EFT), we can comment on some of their properties

Up until now we have used a probe approximation to describe the D3-particles. It is well-
known that this approximation breaks down for low co-dimension objects, such as strings of
co-dimension two. In particular, a string charged under the axion is expected to similarly
back-react on the saxion, that is, induce a non-trivial profile for s outside its world-sheet. For
fundamental8 strings in particular, it has been argued [83, 84] that it is precisely the back-
reaction of such strings that forces the saxion to probe the asymptotic regions of its field
space, meaning that the saxion profile diverges near the string core. In fact, such solutions
are constructed explicitly in [84], which they refer to as EFT strings. More generally, such
configurations have been interpreted as end-of-the-world branes9 [85].

The detailed arguments in [84] that lead to EFT string solutions assumes that these
strings are BPS and that a continuous axionic shift symmetry is restored as we approach the
string core (where s → ∞). Our results show however, that this symmetry is always broken
down to at most a discrete sub-group, even in the limit of large s. Extending their argument
to our case requires additional care (and need not even be possible in general). This does
not mean such states cannot exist, nor that more general axionic cannot strings exist.

8By this we mean strings which cannot be resolved into a smooth field configuration inside any EFT,
meaning that their core remains singular (this is exactly how string theory D-branes appear from an EFT
perspective).

9The strings can then be understood as defects that kill a non-trivial cobordism class, which corresponds
to the non-contractible cycle in the moduli space [56,84] (cf. footnote 6).
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Barring these issues, we may still try to apply their results to our case, making additional
assumptions if necessary. Since the large-saxion limit lies at infinite distance, the SDC implies
that we expect a breakdown of the EFT as we try to resolve the string core. Alternatively,
this breakdown can be understood as the emergence of a global symmetry. Indeed, since the
axion is strongly coupled, its dual 2-form is expected to be weakly coupled. As we follow
the saxion to infinity, the string decouples and the 2-form global symmetry is restored. It
is argued in [84] that this limit is associated with the EFT string tension going to zero.
Just like the fundamental strings from section 1.1, these strings exhibit an infinite tower of
excited states, whose mass is proportional to the string tension. As the latter goes to zero,
we encounter a massless tower of states that shields us from the infinite distance limit. This
is analogous to a breakdown of the field theory approximation which led to the type IIB
action from section 1.2, although we emphasize that the string becoming light in this case
need not correspond to a type IIB superstring. It follows that the massless tower of states
signals that we should move to a string-theoretic description of the physics, rather than a
field-theory description.

All in all, these observations fit nicely with the emergent string proposal from [78], which
states that any infinite distance limit is associated either with a decompactification limit (i.e.
a tower of KK modes becoming light), or with the emergence of a weakly coupled string.
More generally our models admit two natural candidates for the massless towers of states,
namely one related to the monodromy orbit and one related to the axionic strings, which
are needed to break the 1- and 2-form symmetries, respectively. The former may, through
an appropriate duality, be related to a KK tower (see also our comments in section 4.4),
while the latter may lead to an emergent critical string. We end our speculation on this
topic here however, since genuinely identifying both the strings and more generally the tower
which becomes light first requires more detailed information about the UV-completion than
we have available to us. Nevertheless, these remarks should illustrate that the physics of
axionic strings provides both interesting connections to various swampland conjectures and
can quite naturally be viewed through the lens of global symmetry breaking.

Finally, let us note that the obstructions to directly importing the results from [84] are
intimately related to the Witten effect. In particular, as we encircle an axionic string, the
induced monodromy simultaneously leads to the Witten effect [49]. These strings should
therefore be appropriately charged under the gauge field, which is used in [50] to argue that
the light string states also satisfy WGC with respect to the vanishing gauge couplings (thus
relating the SDC to the WGC along the lines of 2.1.4).

Semi-Simple Monodromy

As a final subtlety, recall that when we introduced the monodromy matrix T , we used the
Jordan–Chevalley decomposition to split it into semi-simple and nilpotent parts

T = TsTu. (4.32)

We mentioned that the semi-simple part is always of finite order and moreover, that it does
not enter into the nilpotent orbit theorem. However, in deriving the action (4.19) and the
associated monodromy, we started from the nilpotent orbit data. As such we can never
recover a possibly non-trivial semi-simple piece.

In principle, this semi-simple piece can have rather dramatic consequences on the analysis
of the previous section. For instance, it may act non-trivially on some or all of the vector
currents, breaking them completely without the need for additional brane states. Recovering
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the details of this effect requires one to start from the geometric setting e.g. by solving
the Picard-Fuchs equations for the periods and mapping the result to an integral basis for
comparison with our results. This is a highly non-trivial task in general and we can therefore
not comment on it much further.

4.2.4 Conclusions

Before moving on we would like to take stock of the results from this sub-section. We will
use the questions posed at the start of this section as a guide.

1. Which symmetries are broken or gauged without the addition of stringy ingredients?

• The electric 1-form symmetry is broken by monodromy down to a Zm and a Zn

sub-group. This is a consequence of the Witten effect, induced by the Chern-
Simons couplings.

• The axionic shift-symmetry is broken down to a Zgcd(m,n) sub-group by the Chern-
Simons couplings. Exponential corrections to the Kahler metric are expected to
break it completely.

• The Chern-Weil currents da ∧ F I are both gauged.

• The magnetic 1-form symmetries, the axionic 2-form symmetry and the off-diagonal
combination F 0 ∧ F 0 − F 1 ∧ F 1 are all intact.

2. Which stringy effects are necessary to break the remaining symmetries?

• D3-particles provide us with a full spectrum of charges that break all vector sym-
metries. These also break the associated Chern-Weil symmetries. Consistency
with the latter’s gauging requires world-volume degrees of freedom which we were
not able to identify.

When m,n = 1, we do not require a full set of charges, as the electric 1-form
symmetries are already broken completely.

• The axionic 2-form symmetry requires the inclusion of strings to be broken. Though
we do not have a higher-dimensional candidate for such strings, we have discussed
their properties.

3. Which symmetries emerge as we approach infinite distance limits in field space?

• If m,n ̸= 1, the electrically charged states which are required to break the electric
1-form symmetries decouple. These lead to emergent (discrete) symmetries. No-
tably, for m = n = 1, there is no emergent vector symmetry, as the Chern-Simons
term persists in the limit s → ∞.

• If gcd(m,n) ̸= 1, the exponentially suppressed corrections to the Kahler metric
vanish and lead to an emergent discrete shift symmetry for the axion. Notably,
for gcd(m,n) = 1, there is no emergent shift symmetry, as the Chern-Simons term
persists in the limit s → ∞. Otherwise, instanton effects as in [80] may break this
symmetry in this limit.

• Since the axion is strongly coupled, it is expected that the axionic strings are
weakly coupled and decouple in the limit s → ∞, leading to an emergent 2-form
global symmetry.



4.3 Type I1 129

4. Can the massless tower of states predicted by the SDC be understood in terms of an
emergent symmetry?

• The monodromy orbit, which is related to the broken 1-form symmetries, does
not lead to a massless tower of states. We have framed this as a consequence
of the fact that this orbit is generated by the Witten effect, which only acts on
magnetically charged states. These are strongly coupled and heavy in the limit
s → ∞.

• Electric BPS states do become light, but we cannot guarantee that we have an
infinite tower of them. These states would be directly related to the emergent
1-form symmetry if we assume the states that broke this symmetry satisfy the
tower/lattice WGC.

• We have proposed that the massless tower of states in this case could arise due to
the strings which break the 2-form symmetry becoming massless. Moreover, this
is the only emergent symmetry to persist for arbitrary values of m,n (specifically
for m = n = 1, this is the only emergent symmetry), which could be viewed as a
hint towards this direction.

4.3 Type I1

Next, we turn to the type I1 case, which we know occurs at finite distance. Moreover its
action is rather similar to the previous case, allowing us to highlight the differences between
such finite and infinite distance limits. Indeed, the relevant action is given by∫ (ns

2
F 0 ∧ ∗F 0 + γyF 0 ∧ ∗F 1 − y

2
F 1 ∧ ∗F 1 − na

2
F 0 ∧ F 0

−2βF 0 ∧ F 1 − x

2
F 1 ∧ F 1 − 1

2g2
da ∧ ∗da

)
,

(4.33)

where we have shifted the saxion s → s + γ2y/n to simplify the first kinetic term and
introduced the short-hand β := δ − γx which is real. The equations of motion are given
by

d
(
−ns ∗ F 0 − γy ∗ F 1 + naF 0 + 2βF 1

)︸ ︷︷ ︸
−G0

= 0, d
(
γy ∗ F 0 + y ∗ F 1 + 2βF 1 + xF 1

)︸ ︷︷ ︸
−G1

= 0,

(4.34)
where we have again identified the GI . If we allow ourselves to use the Bianchi identity these
equations simplify down to

sd
(
∗F 0

)
= −da ∧ F 0, sd

(
∗F 1

)
= 0 (4.35)

We can also include the equation of motion for the axion, which reads

1

g2
d ∗ da =

n

2
F 0 ∧ F 0, (4.36)

where we emphasize that the coupling g−1 is exponentially suppressed in s, but axion-
independent.

In order not to repeat ourselves, the analysis here will be less detailed than for the previous
case, as many observations carry over immediately. We will list the (un-)broken symmetries
and how they can be broken, but otherwise focus on interesting differences compared to the
previous example.
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4.3.1 Global Symmetries

Vector Symmetries

The vector symmetries can again be read off from the monodromy action on the field
strengths, this time given by

F 0

F 1

−G0

−G1

→ T


F 0

F 1

−G0

−G1

 =


1 0 0 0
0 1 0 0
n 0 1 0
0 0 0 1




F 0

F 1

−G0

−G1

 =


F 0

F 1

−G0 + nF 0

−G1

 . (4.37)

In accordance with our general discussion in section 4.1.1, we find that 2h2,1 + 1 = 3 sym-
metries are left un-broken, while the electric current associated to A0 is broken down to Zn.
This can similarly be understood in terms of the Witten effect. However, unlike the previous
case, the axion now only couples to one of the gauge fields.

Axionic Symmetries

The situation for the axion is the same as before, except that its shift symmetry is now
broken only by its coupling to A0. It is therefore simply broken down to Zn at leading order,
and broken completely by exponential corrections.

Chern-Weil Symmetries

Here too is the situation largely unchanged from before. There are some differences however.
The first is that now only the F 0 ∧ F 0 current is gauged by the axion, rather than a linear
combination of the two. Moreover, the current da∧F 1 is not gauged in this case, and requires
the addition of charges to be broken.

4.3.2 Breaking the Symmetries

D3 Particles

As before, we find that we require magnetically charged states to break the magnetic 1-form
symmetries. The magnetic charges that break F 1 also break the Chern-Weil current da∧F 1,
and since the latter is not gauged, no complications arise from this. Meanwhile, the magnetic
charge that breaks F 1 generates an orbit of charges by the Witten effect according to

. . .
T→


1
0
−n
0

 T→


1
0
0
0

 T→


1
0
n
0

 T→


1
0
2n
0

 T→ . . . . (4.38)

The monodromy orbit is necessarily magnetically charged, because it corresponds to the
Witten effect experienced by the gauge field A0. Moreover, for non-trivial n, we require both
types of electric charges to break the remaining electric 1-form symmetries.

Axionic Strings

While we do not revisit these in as much detail as in the previous section, one can argue
that similar considerations should hold regarding axionic strings, at least with respect to the
gauge field A0 which couples to the axion.
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4.3.3 Emergent Symmetries and EFT Obstructions

In order to take the limit s → ∞, let us again canonically normalize the fields as

F 0 → F 0/
√
s, a → ag ∼ ae2πs. (4.39)

The resulting action now reads∫ (
n

2
F 0 ∧ ∗F 0 +

γy√
s
F 0 ∧ ∗F 1 − y

2
F 1 ∧ ∗F 1 − ane2πs

2s
F 0 ∧ F 0

−2(δ − γx)√
s

F 0 ∧ F 1 − x

2
F 1 ∧ F 1 − 1

2
da ∧ ∗da

)
,

(4.40)

The mixed terms are now sub-leading so that we focus on the dynamics of the field F 0. We
observe that like the previous case, the Chern-Simons term persists in the limit s → ∞ and
in fact becomes dominant.

Regarding the vector symmetries, only one of the gauge couplings vanishes in the limit
s → ∞ and this is the same gauge field that couples to the axion. Hence, a Zn sub-group
may emerge here. Meanwhile, the axionic shift symmetry is similarly restored up to the Zn

sub-group that emerges as the sub-leading exponential corrections to the Kahler potential
are dropped.

A Comment on Finite Distance Singularities

Unlike the previous case, the type I1 limit is at finite distance. As such we do not expect
an infinite tower of massless states. In fact, it has been argued that such finite distance
singularities arise precisely because we have integrated out a state (more generally several
states) which becomes massless at the singularity [86], and as such should have been included
in our effective description. This inconsistency manifests itself as a singularity in the moduli
space. We therefore do not expect an infinite tower of states to become massless, but rather a
single state. From a geometric perspective, we briefly mentioned that conifolds are associated
with a 3-cycle shrinking to zero size. Branes wrapping those cycles are then expected to
become massless in the low-energy theory. More generally it has been proposed that infinite
distance singularities are the result of integrating out an infinite tower of massless states
[76, 77], namely those predicted by the SDC, but this is a topic otherwise beyond the scope
of this thesis.

BPS Masses

Let us consider again the BPS masses of the D3-particles. As before, the charge that ex-
periences the Witten effect is magnetic. Evaluating the BPS formula for states of charge
q = (p0, p1,−q0,−q1)

T , we find that

M2 ∼ (p0δ + q1 + (p1 − γp0)x)2 + (p1 − γp0)2y2

2y
+O(e2πit). (4.41)

As before, states with non-vanishing magnetic charge p0 (which generate an infinte orbit)
remain massive in the limit s → ∞, although their mass now stays finite. In particular,
states for which the leading order contribution vanishes can are given by

q = p0(1, γ, 0, δ)T + q0(0, 0,−1, 0)T (4.42)
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for p0, q0 arbitrary. One recognizes this vector as lying in the span of

q ∈ span
(
I2,2 ⊕ I1,1

)
, (4.43)

from equation 3.144, where the second piece is left invariant under monodromy. Since
the parameters γ, δ are real however, we generically expect (4.41) to vanish only for q =
(0, 0,−q0, 0)

T , as the part along I2,2 is not integrally quantized. We therefore identify the
(single) electric BPS state which decouples in the limit to be the one responsible for the
conifold singularity along the lines of our discussion above. Moreover, this is the same state
which is responsible for breaking the emergent 1-form symmetry associated to A0. We there-
fore expect that once we integrate this state back in, the emergent 1-form symmetry remains
broken in the UV.

Axionic Strings

Finally, let us comment on the axionic string discussed in the previous section. These are
again required to break the 2-form symmetry associated to the axion, but we should not
expect these to lead to massless towers of states in the limit s → ∞. Invoking again the
arguments from [84], we argue that this is because the core of the string now lies at finite
distances in field space. Indeed, a key part of the argument that lead to the conclusion that
the string has an infinite tower of massless excitations was that the string was fundamental,
namely that we could not resolve its core. However, when the core of the string is located
at finite distance in field space, the divergent saxion need not lead to a singularity there.
Instead we expect the axionic string which breaks the 2-form symmetry to be a solitonic
object which can be resolved in an EFT.

4.3.4 Conclusions

As before we close this section by revisiting the questions from the start of this chapter.
Since these limits lie at finite distance however, we do not address the last two questions but
rather comment on what happens as we approach the singularity.

1. Which symmetries are broken or gauged without the addition of stringy ingredients?

• One of the electric 1-form symmetries is broken by monodromy down to a Zn

sub-group. This is again a consequence of the Witten effect, induced by the
Chern-Simons coupling.

• The axionic shift-symmetry is broken down to a Zn sub-group by the Chern-Simons
couplings. Exponential corrections to the Kahler metric are expected to break it
completely.

• The Chern-Weil currents da ∧ F I and F 0 ∧ F 0 are gauged.

• The electric 1-form symmetry, both magnetic 1-form symmetries, the axionic 2-
form symmetry and the Chern-Weil currents da∧F 1 and F 1∧F 1 are both intact.

2. Which stringy effects are necessary to break the remaining symmetries?

• D3-particles provide us with a full spectrum of charges to break all vector symme-
tries. These also break the associated Chern-Weil symmetries. Consistency with
the latter’s gauging requires world-volume degrees of freedom which we were not
able to identify.



4.4 Type IV0 133

When n = 1, we do not require a full set of charges, as the electric 1-form symmetry
is already broken completely.

• The axionic 2-form symmetry again requires the inclusion of strings to be broken.

3. What happens as we approach the finite distance singularity?

• If n ̸= 1, the electrically charged state that was necessary to break the electric
1-form symmetry decouples. This leads to an emergent (discrete) symmetries.
Notably, for n = 1, there is no emergent vector symmetry.

• Likewise, if n ̸= 1 the exponentially suppressed corrections to the Kahler metric
vanish and lead to an emergent discrete shift symmetry for the axion. Notably,
for n = 1, there is no emergent shift symmetry.

• The monodromy orbit is now of finite mass. This differs somewhat from the
analysis in [76] because we work in an integral basis which led us to exclude certain
states for which the orbit became light, rather than have to invoke a stability
argument. The conclusion is still the same however, namely that monodromy
orbits do not lead to an infinite tower of states in this limit.

4. Do any states become massless as we approach the singularity?

• There is a single electrically charged state which becomes massless in this limit, and
it is the same state that breaks a potential emergent 1-form symmetry associated to
the gauge field A0. The finite distance singularity is related to this state becoming
massless.

• Because this singularity is at finite distance, the axionic strings which were nec-
essary to break the 2-form symmetry are expected to be solitonic and of finite
tension. They therefore do not lead to an infinite tower of massless states.

4.4 Type IV0

The final model we consider is the type IV0 case. Its structure is rather different from the
previous two examples and as such provides a nice contrast to what we have seen so far. The
action is given by the following∫ (

−m2ns(3a2 + s2)

12
F 0 ∧ ∗F 0 +

mnas

2
F 0 ∧ ∗F 1 − ns

4
F 1 ∧ ∗F 1 − m2na3

6
F 0 ∧ F 0

+
mna2 − c/m

2
F 0 ∧ F 1 − na+ b/m

2
F 1 ∧ F 1 − 3

4s2
da ∧ ∗da

)
,

(4.44)

where, for simplicity we have dropped the real part of the parameter ξ (which is the case for
models obtained from mirror symmetry). The corresponding equations of motion are given
by

d

(
m2ns

6
(3a2 + s2) ∗ F 0 − mnas

2
∗ F 1 +

m2na3

3
F 0 − mna2 − c/m

2
F 1

)
= 0,

d

(
ns

2
∗ F 1 − mnas

2
∗ F 0 + (na+ b/m)F 1 − mna2 − c/m

2
F 0

)
= 0.

(4.45)

As we shall see, the highly non-linear couplings of the axion lead to a non-standard form of
the Witten effect. This will have rather dramatic consequences, and will eventually lead to
the massless tower of states observed in [76].
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4.4.1 Global Symmetries

For this last case, we focus mainly on the vector symmetries and briefly discuss axionic
symmetries, leaving a discussion of the role of the Chern-Weil currents for future work.

Vector Symmetries

The monodromy transformation is now markedly more involved. Using the monodromy
matrix from section 3.4.1, we find that the field strengths transform according to

F 0

F 1

−G0

−G1

→ T


F 0

F 1

−G0

−G1

 =


1 0 0 0
m 1 0 0

−m2n
6

+ c −mn
2

+ b 1 −m
mn
2

+ b n 0 1




F 0

F 1

−G0

−G1



=


F 0

F 1 +mF 0

−G0 − (m
2n
6

− c)F 0 − (mn
2

− b)F 1 +mG1

−G1 + (mn
2

+ b)F 0 + nF 1

 .

(4.46)

We find that the monodromy leaves un-broken h2,1 − 1 = 1 symmetry. More interesting
is the fact that now one of the magnetic 1-form symmetries is explicitly broken too. In
particular, the integer m controls the remnant discrete symmetry for the same reason as it
did in the previous two examples. The precise fate of the two electric symmetries depends
on the constellation of values the parameters m,n, e, f take.

While the monodromy (4.46) tells us that the magnetic symmetry is broken, it is interest-
ing to consider how this monodromy arises from the action itself. This can be traced back to
the non-linear axion dependence in both the real and imaginary parts of the kinetic matrix
N . The action simplifies when we rewrite it in terms of the gauge-invariant combinations

F 0, F̃ 1 := F 1 −maF 0, (4.47)

in terms of which the kinetic terms are now manifestly invariant

Skin =

∫ (
−m2ns3

12
F 0 ∧ ∗F 0 − ns

4
F̃ 1 ∧ ∗F̃ 1

)
. (4.48)

Moreover, computing the variation of the action under a → a + 1, while also effecting the
monodromy transformation F 1 → F 1 +mF 0, we obtain

δS =

∫ (
−1

2

((
c−m2n/6

)
+m (b+mn/2)

)
F 0 ∧ F 0 − (b+mn/2)F 0 ∧ F 1 − n

2
F 1 ∧ F 1

)
,

(4.49)
which is manifestly quantized by virtue of the constraints (3.103) on the parametersm,n, e, f .
Note that this also means that the non-trivial constant parts of R are essential to ensure
gauge invariance.10

Axionic Symmetries

The axion no longer has a simple shift symmetry, not even a discrete one, due to its appear-
ance in the kinetic terms for the gauge fields. For special values of the parameters m,n, e, f

10A similar observation was made in [50] regarding a model with cubic θ-terms.
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there may be a discrete shift-symmetry where one also shifts F 1 by a term proportional to F 0

so that the gauge-invariant combination F̃ 1 is left invariant. This is rather case-dependent
however, and we do not present a general condition for this to be the case.

4.4.2 Breaking the Symmetries

D3 Particles

While the magnetic 1-form symmetry associated to the current F 1 may be broken by the
monodromy, we always require magnetically charged particles to break F 0. In addition, it is
possible that there remain discrete symmetries, e.g. when m ̸= 1 or when some of the integers
in the monodromy matrix T admit a common divisor, in which case additional particles are
also necessary.

Axionic Strings

As before we require axionic strings to break the 2-form symmetry. Though we again do
not have an immediate UV origin for these strings, we will give them a higher-dimensional
interpretation below.

4.4.3 Emergent Symmetries and EFT Obstructions

Upon re-scaling the gauge fields and axion according to

F 0 → F 0/s3/2, F 1 → F 1/s1/2, a → as, (4.50)

we find that the factors of s drop out of the non-trivial couplings in the action, which now
reads∫ (

−m2ns3(3a2 + 1)

12
F 0 ∧ ∗F 0 +

mna

2
F 0 ∧ ∗F 1 − n

4
F 1 ∧ ∗F 1 − m2na3

6
F 0 ∧ F 0

+
mna2 − c/(ms2)

2
F 0 ∧ F 1 − na+ b/(ms)

2
F 1 ∧ F 1 − 3

4
da ∧ ∗da

)
.

(4.51)

This implies that emergent symmetries can appear only to the extent to which these symme-
tries were not already broken, which is exactly what we observed for the previous cases. In
particular, we may encounter emergent 1-form symmetries associated to the electric charges
decoupling if these are not already broken by the Chern-Simons coupling.

BPS Masses

As discussed, it is known that for this class of limits it is possible to construct an infinite
tower of massless BPS states (assuming one such state exists) from the monodromy orbit [76].
We can now see explicitly why this is possible for this type of limit, but not for the others.
The key point here is that the monodromy now no longer admits an interpretation in terms
of a classical Witten effect. In particular, due to the non-trivial gauge transformation of F 1,
we find that electrically charged states may also experience a “Witten effect”. In particular,
we find the non-trivial monodromy orbit

. . .
T→


0
0
m
1

 T→


0
0
0
1

 T→


0
0

−m
1

 T→


0
0

−2m
1

 T→ . . . . (4.52)
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Evaluating the BPS mass formula for these states, we find

M2 ∼ 3

4ns

(
1 +

k2

s2

)
+O(s−4), (4.53)

where k denotes the k’th state in the orbit. Firstly, we observe that the BPS masses of the
states in this orbit all vanish in the limit. Moreover, the mass of the vector δq now manifestly
lies in the polynomially massless set M1, and as such the states in the orbit remain stable.
We thus find a massless tower of states, generated by the modified Witten effect, that acts on
electrically charged states, provided there exists an appropriate seed-charge that is BPS.

Mirror Interpretation

In contrast with the previous two cases, mirror symmetry can give us additional insight
into the nature and origin of both the charge orbit (4.25) as well as the non-trivial gauge
transformation (4.46). Indeed, as we have mentioned, type IV0 limits correspond to large
complex structure limits which under mirror symmetry map to the large volume point. The
different electric and magnetic states have a natural interpretation here. In particular, given
a charge vector

q = (p0, p1,−q0,−q1)
T , (4.54)

the components of different charges map to branes in type IIA as [87]

p0 → D6-Brane wrapping the Calabi-Yau,

p1 → D4-Brane wrapping 4-cycle (divisor),

q1 → D2-Brane wrapping 2-cycle (curve),

q0 → D0-Brane on a point.

(4.55)

General charged states then correspond to bound states of the particles that descend from
these brane states. From this perspective, the infinite charge orbit obtained above corre-
sponds to bound states of D0- and D2-branes. The type IIA picture also suggests another
perspective on this theory, namely as arising from a further circle compactification of M-
theory compactified on the same Calabi-Yau.

Axionic Strings

Finally, we revisit once more the axionic strings. In principle, we should expect such strings
to be present here as well. Compared to the previous two cases however, the non-linear axion
couplings complicates the explicit analysis from [84]. On the one hand, it is not obvious how,
or even if the axion can be explicitly dualized to a 2-form. This only aggravates the issues we
have sidestepped in our previous discussions, likely putting any explicit EFT string solution
outside reach.

However, it is plausible that these strings are not the ones responsible for the infinite
tower of states, in contrast to the type II0 case considered earlier. The motivation for this
comes again from the mirror picture discussed above. Following the logic of the emergent
string conjecture [78], this infinite distance limit is associated to either a decompactification
limit, or the emergence of a tensionless string. In this case however, it is clear from the type
IIA perspective that this limit is a decompactification limit, as it corresponds to an infinite
volume Calabi-Yau [78]. This can be made explicit in terms of the M-theory perspective
mentioned above.
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Note that this does not mean a string cannot become tensionless. Indeed, this may well
still be the case, but it is possible that, measured with respect to the Planck scale, the
KK tower becomes light faster. This possibility was also accounted for in the EFT string
proposals from [83, 84], where it is conjectured that the mass-scale MSDC of the SDC is
related to the EFT string tension as

M2
SDC ∼ M2

Pl

(
Tstring

M2
Pl

)w

, w ∈ {1, 2, 3}. (4.56)

When w = 1, we encounter the possibility of a stringy tower of states (though this still
need not necessarily be the case), while cases with w > 1 correspond to decompactification
limits, as another tower of states becomes light more quickly than those related to the string.
Note moreover that there is an obvious similarity between the integer w and the integer d
that entered our singularity type classification. Proving, or even checking such a one-to-one
relationship is likely a very difficult task in general. However, it is interesting to note that
if these integers agree then an emergent string in the type II0 limit is indeed possible (since
then w = d = 1).

Finally, we remark that the mirror picture of type IIA/M-theory compactifications can
potentially be used to elucidate some of the properties of these axionic strings. The mirror
dual of the complex structure axion is the scalar zero-mode of the NS-NS B-field, while the
associated saxion is just the real Kahler modulus (the limit s → ∞ therefore corresponds to
the large volume point, as expected). It follows that the strings which magnetically couple
to this axion descend from states magnetically coupled under the B-field which, by defini-
tion, are the NS5-branes (wrapped on 4-cycles to give four-dimensional strings). Studying
the corresponding states could provide interesting insights into these axionic strings, which
although only directly valid at the LCS point, might teach us more general lessons about
axionic strings in the presence of Chern-Simons terms.

4.4.4 Conclusions

Finally, we address our four questions for the type IV0 case.

1. Which symmetries are broken or gauged without the addition of stringy ingredients?

• Both electric 1-form symmetries are broken due to the monodromy. Moreover,
one of the magnetic 1-form symmetries is broken by monodromy. Comparison to
the large volume point suggests we set m = 1, in which case the latter is broken
completely.

• The axionic shift-symmetry is likewise broken. It is possible a discrete subgroup
remains, under which the gauge field A1 transforms non-trivially as well. We have
not checked this in full generality.

• One magnetic 1-form symmetry and the axionic 2-form symmetry are both intact.

2. Which stringy effects are necessary to break the remaining symmetries?

• D3-particles provide us with a full spectrum of charges that break all vector sym-
metries. These also break the associated Chern-Weil symmetries. Consistency
with the latter’s gauging requires world-volume degrees of freedom which we were
not able to identify.
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For specific values of the parameters m,n, e, f , we do not require a full set of
charges, as both electric and one magnetic 1-form symmetry is already broken
completely.

• The axionic 2-form symmetry requires the inclusion of strings to be broken. These
strings are now mirror dual to NS5-branes wrapped on 4-cycles. Studying them
from this perspective could give us insights into the role of axionic strings in the
presence of such Chern-Simons terms.

3. Which symmetries emerge as we approach infinite distance limits in field space?

• Any un-broken electric 1-form symmetries will re-emerge as we take the limit
s → ∞, while those broken by the Chern-Simons terms remain so.

• The exponentially suppressed corrections to the Kahler metric vanish, which could
potentially lead to an emergent shift-symmetry (under which the field F 0 would
have to transform non-trivially).

• Since the axion is strongly coupled, it is again expected that the axionic strings are
weakly coupled and decouple in the limit s → ∞, leading to an emergent 2-form
global symmetry.

4. Can the massless tower of states predicted by the SDC be understood in terms of an
emergent symmetry?

• The monodromy orbit now leads to an infinite tower of massless states, provided
one BPS seed-charge exists. This is attributed to a non-standard Witten effect,
due to the non-linear axion couplings, under which electrically charged states
transform non-trivially.

• Though it is possible that there are also strings which become massless in this
case, the mirror symmetric view of this limit suggests that it corresponds to a
decompactification limit, with the relevant tower of states corresponding to the
monodromy orbit.
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Summary and Outlook

5.1 Summary

In this thesis we have studied generalized global symmetries as they appear in four-dimensional
effective field theories obtained from type IIB Calabi-Yau compactifications. As a first step
in this direction we have focused on EFTs near particular limits in the complex structure
moduli space. Here, the tools from asymptotic Hodge theory allow us to extract the limiting
form of the action which gives us full control over the low-energy theory in these regions
of the moduli space. By restricting to singularities in one-dimensional moduli spaces, we
could reconstruct the most general asymptotic form of the action and monodromy matrices.
Compared to previous investigations of these limits, we have been careful to work in an in-
tegral symplectic basis, as constructed in [72]. This gave us access to the various discrete
symmetries that may arise and allowed us to keep track of the quantization of charges. For
each class of limit, we enumerated the possible global symmetries and explored how they
may be broken by stringy effects.

Of primary importance was the role of the monodromy around the singularity, which was
responsible for breaking some subset of the global symmetries. From the EFT perspective,
these were associated to a variety of Chern-Simons couplings, arising from the RF ∧F term
in the action. In simple cases, these reduce to ordinary axion couplings in terms of which
the monodromy orbits of [76, 79] admit a bottom-up interpretation as a manifestation of
the Witten effect. For the remaining symmetries, D3-particles provided us with the states
necessary to break all global symmetries associated to the gauge fields. Meanwhile, expo-
nential corrections to the Kahler metric are expected to break any axionic shift symmetry
not already broken by the Chern-Simons terms. Finally, we argued that in each case, some
type of axionic string should be present to break the associated 2-form symmetry, though we
could not always identify the string theory states which lead to such strings.

Near each singularity, we encountered one or several gauge couplings which go to zero.
For specific values of the parameters in the nilpotent orbit data, the Chern-Simons terms
were sufficient to prevent the emergence of a global symmetry. More generally however,
discrete 0- and 1-form symmetries could emerge. A completely general feature was the
emergence of a 2-form global symmetry associated to the axion. We then investigated what
EFT obstructions could shield us from these emergent global symmetries. It was already
known that monodromy orbits could only lead to massless towers of states in the type IV0

case [76]. Here, we reproduced this result and interpreted it in terms of a modified Witten
effect for electric charges. For the other class of infinite distance limit we proposed that
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axionic strings along the lines of [50,84] could lead to the infinite tower of states that shields
us from this limit, thus relating these models to the emergent string conjecture [78].

5.2 Outlook

As we have hopefully illustrated throughout this thesis, there remain many interesting av-
enues for further research. Most closely related to the work in this thesis is the extension of
our investigation to two-moduli cases. In fact, if one abandons the condition that we work
in an integral basis, our results can be readily extended following the methods of [66]. These
computations have been performed as part of the work for this thesis, but were not included
here as the subsequent analysis was incomplete. Moreover, keeping track of the integral struc-
ture proved useful as it allowed us to study discrete symmetries, but doing so is generally
much more involved than for the one-modulus cases. On the other hand, the one-modulus
cases already illustrate that there remain many interesting open questions.

In a similar vein, we have sporadically commented on how the un-fixed parameters ap-
pearing in the limiting mixed Hodge structures influence our results. It could be interesting
to study in more detail what values these parameters take in geometric examples. In partic-
ular, we found that their values could determine whether or not a global symmetry emerged
in a given limit. Since we have used the latter to argue in favour of such dramatic effects as
infinite towers of massless states, it would be interesting to see if there is any relationship
between the geometry, the symmetries and these massless towers. For instance, the tower
that becomes light first (i.e. particles or strings) could depend on whether an electric 1-form
symmetry appears. This would involve studying explicit geometric examples and therefore
run somewhat counter to the more general spirit of asymptotic Hodge theory, where we want
to describe the most general asymptotic form near a singularity, however, as we have seen,
questions relating to symmetries often depend on model-dependent details. Finally let us
also recall that our method could not recover a possible semi-simple part of the monodromy
transformation. A good first step towards investigating its influence would likewise be to
consider explicit geometric examples.

Departing somewhat from the specific context of this thesis, we have seen that some of
the most interesting questions were related to the properties of the states that break the
symmetries we have encountered. These included the nature of the axionic strings necessary
to break its 2-form symmetry, the BPS spectrum of D3-particles required to break the 1-form
symmetries and the relative masses of the associated towers of states. Moreover, the precise
fate of the Chern-Weil currents depends strongly on the world-volume degrees of freedom
on these states. Though one can argue on general grounds that the appropriate world-
volume degrees of freedom should exist, it could nonetheless be insightful to study how these
descend from the ten-dimensional theory. More generally, the properties mentioned here are
all sensitive to the UV-completion of the theory, highlighting the more general pattern that
breaking magnetic symmetries typically occurs in said UV-completion.

All of this naturally leads one to consider EFTs obtained from other string theory con-
structions, where either a geometric or microscopic picture of these objects is more clear.
While one of the advantages of studying type IIB EFTs has been that the tools of Hodge
theory give us very explicit, yet general expressions for the low-energy theory, our comments
regarding mirror symmetry already highlight that dualities to other string theory settings
could lead to a more microscopic understanding of these phenomena. Alternatively, taking
a step back and considering more controlled higher-dimensional theories has likewise proven
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fruitful in the past [88].

Lastly, while we have primarily focused on the role of higher-form global symmetries, it
should be clear from our general discussion in chapter 2 that these are far from the only class
of generalized global symmetries. Of particular interest to the theories we have considered
in this thesis are the non-invertible symmetries which we have already noted may be present
in theories with Chern-Simons terms. Indeed, taking these into consideration may help
elucidate the relationship between these terms and the symmetry breaking states discussed
in this thesis, while also providing a concrete setting for studying their role in the swampland
program [52].



Appendix A

Conventions

A.1 Differential Forms

Whenever we work in Minkowski space, we take the metric signature (−,+,+, . . . ,+). Dif-
ferential forms are expanded with respect to a coordinate basis {dxµ}, µ = 0, 1, . . . , D − 1
according to

ωp =
1

p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp . (A.1)

The exterior derivative of this form is defined as

dωp =
1

p!
∂[σωµ1...µp]dx

σ ∧ dxµ1 ∧ . . . ∧ dxµp , (A.2)

and satisfies
d(αp ∧ βq) = dαp ∧ βq = (−1)pαp ∧ dβq, (A.3)

which leads for instance to the integration by parts formula∫
(dαp ∧ βD−q) = (−1)p+1

∫
(αp ∧ dβD−q) . (A.4)

The Hodge dual of a p-form is the (D − p)-form defined by

∗ωp = −
√
−g

p!(D − p)!
εµ1...µD

gµ1ν1 . . . gµpνpων1...νpdx
µp+1 ∧ . . . ∧ dxµD . (A.5)

Here, we have introduced g = detgµν and the Levi-Civita symbol, defiend as

ε01...(D−1) = −ε01...(D−1) = 1. (A.6)

It follows from our definition of the Hodge star that

∗1 =
√
−gdx0 ∧ . . . ∧ dxD−1, ∗(∗ωp) = −(−1)p(D−p)ωp, (A.7)

with the extra minus-sign being absent for Euclidean signature. Moreover, given two p-forms
αp, βp, we have the following useful identities

αp ∧ ∗βp =
1

p!

√
−g αµ1...µpβµ1...µpdx

0 ∧ . . . ∧ dxD−1 = βp ∧ ∗αp, (A.8)

from which follows that
∗αp ∧ ∗βD−p = −αp ∧ βD−p, (A.9)

where the minus-sign is again absent for Euclidean signature.
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A.2 Quantization

“Stringy” Conventions

For most of this thesis, we employ conventions for charge quantization which follow directly
from the action in section 1.2. Here, the coupling µp−1

∫
Cp leads to

µp−1

∫
Σp+1

Fp+1 ∈ 2πZ. (A.10)

If we work in units such that ls = 1, then the charge-tension relation

Tp = µp = 2πl−(p+1)
s , (A.11)

implies that the ten-dimensional gauge fields are quantized as∫
Σp+1

Fp+1 ∈ Z. (A.12)

Upon compactification, we assume that we work in an integral symplectic homology basis
(AI , B

I) ∈ H3(X,Z) (see also section 3.4) which is dual to the cohomology basis (αI , β
I).

For a D3-particle wrapping the cycle LJ , dual to αJ , it then follows that its electric charge
is quantized as

1 =

∫
S2×LJ

F5 =

∫
S2×X6

(
F I ∧ αI −GI ∧ βI

)
∧ αJ =

∫
S2

GJ . (A.13)

Similarly, from a single D3-brane wrapping LJ , dual to βJ , it follows that the associated
magnetic charge is quantized as

1 =

∫
S2×LJ

F5 =

∫
Σ2×X6

(
F I ∧ αI −GI ∧ βI

)
∧ βJ =

∫
S2

F J . (A.14)

Thus, in four-dimensional theories obtained from Calabi-Yau compactification of type IIB
supergravity, we employ the quantization∫ (

F I

GI

)
∈ Z2nV +2. (A.15)

Field Theory Conventions

Throughout chapter 3 (and also section 1.6.1), we have employed a set of conventions which
highlight the connection to geometry. In particular, we identify the gauge field with the
connection form on the gauge bundle, so that its field strength is quantized as

1

2π

∫
Σp+1

Fp+1 ∈ Z. (A.16)

Dualization relates this to the quantization of the electric flux

1

e2

∫
ΣD−p−1

∗Fp+1 ∈ Z. (A.17)
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Construction of SL2-Rotation
Operators

Here we give the explicit expressions for the rotation operators that enter the sl(2)-orbit
theorem from section 3.3. We follow the presentation in [68,79].

The Operator δ

The first rotation operator rotates the original Deligne splitting, rendering it R-split. One
way to measure the failure of this splitting to be R-split is to consider the “naive” weight
operator from the main text

N 0vp,q = (p+ q − 3)vp,q, vp,q ∈ Ip,q. (B.1)

This operator is in general not real, but we can use its non-trivial conjugation to define the
operator δ

N̄ 0 = e−2iδN 0e2iδ. (B.2)

One moreover shows [67] that the operator δ so-defined acts strictly as a lowering operator
on the Deligne splitting Ip,q (this follows from the fact that Īp,q = Iq,p fails only by a part
that sit lower in the decomposition)

δIp,q ⊂
⊕

r<p,s<q

Ir,s. (B.3)

Furthermore, we have that

δ ∈ sp(2h2,1 + 2,R) ⇔ δTη + ηδ = 0, (B.4)

and δ commutes with all log-monodromy matrices. We can obtain a more explicit expression
for δ by decomposing it with respect to its action on the Ip,q. In particular, we define

δ =
∑
p,q≥1

δ−p,−q, δ−p,−qI
r,s ⊂ Ir−p,s−q. (B.5)
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The separate pieces are then given in terms of N 0, which we decompose in a similar way,
by [63]

δ−1,−1 =
i

4
(N̄ 0 −N 0)−1,−1 , δ−1,−2 =

i

6
(N̄ 0 −N 0)−1,−2 , δ−1,−3 =

i

8
(N̄ 0 −N 0)−1,−3 ,

δ−2,−2 =
i

8
(N̄ 0 −N 0)−2,−2 , δ−2,−3 =

i

10
(N̄ 0 −N 0)−2,−3 −

i

5
[δ−1,−2, δ−1,−1] ,

δ−3,−3 =
i

12
(N̄ 0 −N 0)−3,−3 −

i

3
[δ−2,−2, δ−1,−1] ,

(B.6)
with the rest following by complex conjugation.

The operator ζ

Though we do not need it in this thesis, we give here also the expression for ζ ∈ sp(2h2,1+2,R).
Once we have rotated the original mixed Hodge structure according to

F̂ p
0 = e−iδF p

0 , (B.7)

we can evaluate equation 3.46 (or, equivalently (3.49), now that it is R-split) to obtain the
associated Deligne splitting Îp,q. We can then again decompose δ according to its action on
this new splitting Îp,q

δ =
∑

p≥1,q≥1

δ−p,−q, δ−p,−qI
r,s ⊂ Ir−p,s−q. (B.8)

The operator ζ is given in terms of its components

ζ =
∑

p≥1,q≥1

ζ−p,−q, ζ−p,−qI
r,s ⊂ Ir−p,s−q, (B.9)

which are given in terms of those of δ by

ζ−1,−2 = − i

2
δ−1,−2 , ζ−1,−3 = −3i

4
δ−1,−3 ,

ζ−2,−3 = −3i

8
δ−2,−3 −

1

8
[δ−1,−1, δ−1,−2] , ζ−3,−3 = −1

8
[δ−1,−1, δ−2,−2] ,

(B.10)

with the rest either vanishing or being related to these by complex conjugation.
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