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Abstract 
Authorship attribution attempts to establish the author of a particular text. In this work, we examine 

the capabilities of transformer-based models in the subtype of attribution task referred to as 
authorship verification, which involves determining whether the texts are created by the same 

author. A few works have been suggested that applied fine-tuned Transformer models in this field. 
Such approach is motivated by their excellent performance and adaptability (fine-tuning can be 

performed on texts of different sizes and genres, and different pre-trained model checkpoints 
enable switching between languages). However, they are not as transparent as the traditional 

methods, in which features that quantify the style (stylometric features) are selected to maximize 
the distance between texts. To tackle this problem, we first implement a model for authorship 

verification based on BERT architecture and then investigate the way its predictions are made by 
applying an adapted LIME explainer and proposing an attention-based relevant feature extracting 

procedure. We then compare the two approaches and analyze their explainability from the causal 
perspective by input ablation and alteration to verify that they can retrieve the features that have a 

strong influence on the model predictions. We also describe and classify the extracted features 

from a linguistic perspective. 

  



1. Introduction 
Authorship attribution (AA) is a traditional field of philological and linguistic studies. In general 

case, it attempts to establish the person who wrote a particular text. However, a variety of subtasks 
motivated by real-world problems exists, including authorship verification, which aims at proving 

that a certain author has indeed created a given piece of text (Kestemont et al., 2020), attribution 
of texts with an open or closed set of candidate authors (Stamatatos et al., 2017), authorship 

obfuscation (Barlas and Stamatatos, 2020), and more. 

Traditionally, researchers in authorship attribution relied on data from extralinguistic sources, such 
as biographical and historical information and physical evidence (Stamatatos, 2009). However, in 

many cases, such information was unavailable or insufficient to differentiate between several 
closely related authors that, for example, worked for the same newspapers and published topically 

related articles (Holmes, 1994; Glaudes et al., 2019). In such cases, statistical analysis of stylistic 
features was used. For each case of disputable authorship, a feature-based description of each 

author’s texts was performed, sometimes by manual labeling (Marusenko, 1990), and a set of 
statistically significant parameters that could successfully discriminate between texts of known 

authorship was selected. 

The set of exploited features differed considerably across studies. A detailed historical review of 
the development and refinement of potential features is given by Juola (2006), while a practical 
comparison of the effectiveness of available parameters drawn from different levels of language 

can be found in Stamatatos (2009) and Sari et al. (2018). In general, many basic word-level features 
were shown to be ineffective, while frequencies of the word and character n-grams indeed turned 

out to be capable of reflecting individual stylistic preferences (Burrows, 2002; Eder et al., 2016). 
More complex and high-level features, such as sentence structure or frequency of rewrite rules 

were also used (Marusenko, 1990; Stamatatos, 2009; Sari et al., 2018), but the complexity of 

automatic extraction made them less widely exploited, particularly for large texts. 

Although statistical methods are still widely used, they can be insufficient in some cases. Firstly, 

the accuracy of statistical predictions in some languages may decline for shorter texts (Eder et al., 
2016; Rybicki and Eder, 2011; Rybicki and Eder, 2013; Hirst and Feiguina, 2007), as the feature 

frequency distribution can be distorted due to the limited size. For example, Burrows’ Delta, a 
widespread statistical metric for discriminating between text styles based on word frequency 

distribution (Eder et al., 2016, Evert et al., 2017; Glaudes et al., 2019), was only proposed by 
Burrows (2002) for texts “exceeding about 1500 words in length” and can only be used for 

reducing the a-priori set of authors if the texts are between 100 and 1500 words in length. Despite 
various improvements suggested to this method (Hoover, 2004; Hoover, 2005; Burrows, 2007; 

Argamon, 2008; Jannidis et al., 2015; Smith and Aldridge, 2017), the general constraint persisted 

and was considered a significant limitation for attribution of texts with limited length. 

Moreover, stylistic differences across genres may dominate over those of different authors (Juola, 

2006), which impairs the value of statistical feature analysis for cross-domain attribution, in which 
sufficient data for a given author is only available in one genre, while attribution needs to be 

performed on text of a different genre. If the set of candidate authors is open, that is, the true author 
of the text was not included in the training dataset, traditional selection of parameters is also harder 

since we cannot ensure their statistical significance for a particular pair of authors. 

These considerations motivated the use of neural network-based models for authorship attribution. 

Over the last years, different architectures have been used (Zheng, 2006; Khosmood, 2006; Barlas 
and Stamatatos, 2021). Among those showing the best performance were RNNs, CNN-based 

models which accounted for peculiarities of punctuation, Siamese Networks trained for text 



comparison, and various hybrid architectures and ensembles of networks (Stamatatos et al., 2018; 

Kestemont et al., 2020). Comparatively modern Transformer models (Vaswani et al., 2017), which 
are capable of grasping long-distance relations to accomplish various NLP tasks, have also been 

recently applied to authorship attribution (Ordoñez et al., 2020; Fabien et al., 2020; Peng et al., 

2021).  

However, no consensus has been reached regarding the optimal architecture and, more generally, 

the ability of fine-tuned Transformer language models to learn stylistic specificities and use them 
for authorship prediction better or on a par with other contemporary models. While some solutions 

surveyed by Barlas and Stamatatos (2020) and BertAA suggested by Fabien et al. (2020) showed 
state-of-the-art performance on benchmark datasets, other ones failed to beat the baselines. The 

performance of Transformer models during the PAN20 and PAN21 competitions was also 
ambiguous: the model by Ordoñez et al. (2020) performed efficiently on the first testing dataset 

but showed a significant decline on the second one (Kestemont et al., 2020), while the model of 

Peng et al. (2021) has demonstrated near state-of-the-art results.  

Apart from the matter of performance, another serious concern with Transformers for AA, as with 
other deep learning models, is the explainability of the output. Since the result of attribution may 

have considerable consequences in real life, including reconsideration of authorship as such as 
well as a potential accusation of plagiarism and issues with royalties. Therefore, the possibility of 

explaining and motivating the decision is highly desirable.  

Although statistical methods are weaker in some subfields, they allow the researchers to extract 
important features and explicitly quantify the difference between texts based on their values, which 

fully interprets the procedure. Machine learning models cannot provide such high level of 
interpretability, but reliable explainability techniques also exist for some types of models (Jain and 

Wallace, 2019). For Transformers, on the contrary, the discussion of which techniques are most 
appropriate for extracting meaningful causal relations between input and output is still in progress 

(o’Riedl, 2019).  

The task of Transformer-based authorship attribution is therefore not only in creating a model with 

sufficient prediction accuracy but also in verifying that the model learns information meaningful 
for this task, which is the stylistic footprint of the author, and not some irrelevant information, 

such as topic- or genre-specific traits. To that end, available explainability methods, both model-
agnostic and specific for Transformer architecture, need to be applied to our model, and their 

output needs to be analyzed to check which features the model uses and if they can be treated as 

stylistic. 

1.1 Research question  

The general idea of the current work is to explore whether the use of Transformer models for 

authorship attribution is feasible and, if so, to which extent they are interpretable in the course of 
such a task — in particular, whether it is possible to detect which features play the most important 

role. If the features are retrievable, our goal is also to analyze and classify them with respect to the 

existing inventory of parameters used for style analysis.   

Therefore, our goal in this research is not only to build a model that can solve the problem of 

authorship attribution utilizing a pre-trained transformer-based model but also to analyze how the 
predictions are made. To that end, we scrutinize different explanation techniques and analyze their 

relationship with the input characteristics.  



The relevance of this problem is justified by the growing popularity of fine-tuned or few-shot-

learned Transformer models, which leads to their application in various fields, even sensitive ones. 
The remarkable performance of these models in other tasks may persuade the audience that their 

output needs to be trusted without additional investigation and consideration. Therefore, given the 
importance of potential negative consequences for erroneous results in AA, the explainability of 

the model output becomes crucial.  

We suggest that the application of AA models to the domain of texts written by independent 
creators needs to be done with particular caution. The rapidly increasing number of created texts 

encourages automatization of plagiarism and fraud detection, but for independent authors that use 
social media and other online platforms as their primary way of publishing, unfair treatment due 

to mistakes in classifications may result in financial and reputational losses. One of the fields in 
which such problem seems to be relevant is fanfiction, i.e., literary texts created by non-

professional writers “in the tradition of a specific cultural domain” (Stamatatos et al., 2018; 
Kestemont et al., 2020). Niche fanfiction writers often work independently without formal 

evidence of their authorship or even publish anonymously, which puts them at risk when the author 
needs to be established.  We emphasize that the ability to motivate the model’s decision even for 

accurate classifications is highly desirable, and for the Transformer models explainability is still 

among the major challenging aspects. 

Besides, we highlight that the explanations need to be task-specific and created with the end user 
to whom they are directed in mind. For the task in question, such users are primarily experts, the 

linguists performing attributional studies. Therefore, the model should, ideally, be able to reveal 
the most important linguistic features that are used to represent stylistic differences, and such 

linguistic features should be meaningful in terms of style analysis. Thus, for the use of 

Transformers to be justified in AA, we expect such models to fulfill two requirements: 

(1) efficiency: showing competitive performance compared to other NN models and outperforming 

the common baselines 

(2) task-specific explainability: allowing for the extraction of important features that are 

meaningful, correspond to some existing stylometric features of any level, and are indeed 

discriminative for this model in the current AA task. 

These requirements are reflected in the structure of our research question, which is subdivided 

into the following parts:  

Q1 
Is it reasonable to utilize pre-trained Transformer models for the task of authorship attribution, 

or their performance does not surpass that of smaller models?  
Q1.1 

How does the ability to process longer sequences contribute to the Transformer performance? Is 

it required for proper attribution to be able to process a longer sequence simultaneously?  

Q2-1 
If the answer to Q1 is True, which meaningful parameters, if any, can we extract, and by which 

means (for example, by analyzing attention matrices, or permuting input, or applying existing 

model-agnostic methods)?  

Q2-1.1 
Do any of these patterns correspond to stylometric features used in the traditional stylistic analysis 

for attribution?  



Q2-2 

If the answer to Q1 is False, what is the cause of this failure? Is it specific to our proposed solution, 

related to the known bottlenecks of current Transformer models, or caused by some fundamental 

limitations of the Transformer architecture? 

Question Q2-1 corresponds with six possible hypotheses: 

Hypothesis I implies that explanations related to existing stylometric features may be found by 

visualizing the attention weights of different heads at different levels 
Hypothesis II aims at finding valuable features by generating explanations on fully connected 

layers at different levels 
Hypothesis III suggests that the uppermost layer, the classifier itself, can provide sufficient 

explanations 
Hypothesis IV involves explanations based on complex features (e.g. from combining multiple 

attention heads) observed, among other methods, using input permutation 
According to Hypothesis V, explanations can be generated by combining information from the 

sources mentioned above 
Hypothesis VI accounts for the negative answer, according to which no meaningful features that 

reveal causal relations between input and output and correspond to any of the existing stylometric 
features could be found 

If the answer is False (and the Transformer model could be trained in principle but did not 

outperform the baselines), Q2-2 is used to determine the possible causes of this issue: 

Is this insufficient performance specific to our proposed solution, related to the known bottlenecks 

of current Transformer models, or caused by some fundamental limitations of the Transformer 

architecture? 

In this case, four hypotheses are in place:  

Hypothesis I suggests that poor performance is due to the limited input length of existing 
Transformer models that does not allow them to process the text as a whole and learn long-distance 

stylistic patterns; therefore baseline models with limited input window size would also show a 
corresponding decrease in performance 

Hypothesis II implies that the size of the pre-trained Transformer language model, i.e., the number 
of parameters or hyperparameters, constitutes a limitation, and a larger model (for example, a large 

version of GPT-J as opposed to a small one) could perform better in this task 
Hypothesis III states that the general Transformer architecture is the reason for insufficient 

performance as it is incapable of properly learning quantitative features that are important for AA, 
and a better performance can be expected from a model that makes use of different architecture 

for the language model, such as LSTM-based one 
Hypothesis IV covers the negative scenario in which none of these expected justifications can be 

proven.  

The anticipated contributions of our work therefore include:  

- a model for verifying the authorship of a pair of texts 

- a proposed procedure for explaining them 

 



1.2 Structure 

In the course of answering these research questions, we will first provide theoretical motivation 

and literature review for the problems and postulates outlined above and then describe the stages 

of developing our proposed solution. 

This work is structured in the following way: 

- Firstly, a historical overview of existing methods of AA is provided in Chapter 2, 
including traditional philological analysis, statistical stylometry, and machine learning 

techniques 
- After that, in Chapter 3 we provide a more in-depth survey of the Transformer architecture 

with an emphasis on its application to text classification and AA in particular. Particular 
attention is paid to known weak points of the existing solutions, such as limited input 

sequence length 
- In the following Chapter 4, the interpretability of transformers is discussed, with a focus 

on the explanation potential of attention weights given their model-specific nature. 
Alternative ways of generating explanations are also outlined 

- We start the practical part with Chapter 5 by describing the model architecture, reflecting 
on its implementation, and evaluating its performance with different input sizes 

- The interpretation of the model starts with a detailed investigation of the final classification 
layer which averages predictions in multiple segments in Chapter 6. We utilize feature 

extraction and analyzer the input embeddings to motivate why the classifier can be 
disregarded for the future explanation 

- In Chapter 7, we proceed with using LIME-text explainer to obtain most important 
features, analyze their statistics and perform ablation experiments to verify their 

importance and reveal dependencies 
- Finally, in Chapter 8 we analyze the attention in all heads and layers of the BERT 

component to highlight the most relevant types of relations and use the relevant attention 
matrices to extract the most highly attended tokens. We compare these tokens with LIME 

features assess their importance. In the end, we provide an additional investigation of 

names used as features, given their frequent occurrence as the most important ones. 

 

2. Authorship attribution methods 
A detailed survey of stylometry development can be found in Holmes (1994). Juola (2006) 

provides a comprehensive overview of the field with a section dedicated to a critical account of 

various attribution techniques from a modern perspective.  

 

2.1 Traditional approaches to attribution 

In traditional approaches, the attribution was largely performed based on the evidence from 
external sources (such as biographical data, incipits, and colophons (Stamatatos, 2009)), internal 

data (self-references, topical and ideological homogeneity), bibliographical evidence, historical 

facts, and physical evidence (the analysis of ink, handwriting, watermarks).  



One of the earliest accounts of authorship can be found in St. Jerome (Hulley, 1944) with respect 

to the critical study of Biblical texts. Among the criteria for questioning the originality of a passage 
of text, he considers the contradiction between the ideas in the text and the author’s doctrine, the 

inclusion of quotes or references to events that occurred after the author’s death or were unknown 
to the author. St. Jerome also pays attention to the shift in style, including the occurrence of words, 

collocations, and expressions atypical for texts of certain author. This can be considered an early 

example of stylistic features analysis.  

 

2.2 Quantitative approaches to attribution 

In some cases, authorship may be ascertained based solely on the historical and biographical data 

along with high-level philological analysis.  

However, when these knowledge sources are insufficient (Glaudes et al., 2019; Marusenko, 1990), 

a more detailed account of the texts at issue is required. Such procedure of authorship attribution 
generally relies on stylometry, which includes creation, formal representation, and comparison of 

stylistic fingerprints of authors (Holmes, 1994; Holmes, 1998; van Halteren, 2005).  

The first evidence of applying quantitative methods to formally describe the writing style dates 
back to the late 19th century when Mendenhall (1887) attempted to determine the authorship of 
plays officially attributed to Shakespeare. Among other early attempts is the work by Lutoslawski 

(1898) who used stylometric features to attribute a number of Plato works. These works were then 

followed by influential statistical studies by Zipf (1932), Yule (1938; 1944), and Simpson (1949).  

According to Holmes (1994), the research goal with respect to the feature selection was determined 

as follows: “The stylometrist therefore looks for a unit of counting which translates accurately the 
‘style’ of the text, where we may define ‘style’ as a set of measurable patterns which may be 

unique to an author”. The underlying assumption made here is that the style of a single author is 
considered constant for the text corpus in question and that this style necessarily differs from that 

of other authors. The style in this paradigm is therefore viewed as the unique fingerprint of an 

author, or individual “stylome”.   

The exact set of methods depends on the type of research question (Juola, 2006): compared to 

closed-set attribution, open-set attribution needs to rely more on the exact distance between the 
test set documents and all of the a priori classes rather than on finding the nearest a priori class 

(Eder et al., 2016). Authorship verification is treated with a stronger emphasis on the pairwise 
similarities, which are currently often processed using Siamese networks (Tyo et al., 2021). For 

author profiling, establishing the author class is insufficient: this class itself is also to be described 

with some attributes, such as age, education, native language (Barlas and Stamatatos, 2021).  

For this work, we will focus on the verification of authorship. 

2.2.1 Single-measurement features 

According to (Neal et al., 2017), there is still no general consensus on the optimal feature set. In 

general, features frequently exploited for quantifying the style in authorship attribution involve 
vocabulary, syntax, semantics, and characters (Stamatatos, 2009). The overview of such features 

together with the tools required for extracting them, as formulated by Stamatatos, are presented in 

Table 2.1. 



 

Table 2.1: Types of stylometric features (from Stamatatos (2009))  

 

Vocabulary features  

Plain linguistic features that are extracted by means of a single measurement served as the starting 
point for formal stylometry. Holmes (1994) traces the earliest formal research of vocabulary to the 

aforementioned Mendenhall (1887) who suggested using word lengths as a distinctive feature to 

determine the writer.  

Multiple lexical features have been assessed as potentially meaningful for authorship attribution, 
including average length of words and sentences, average count of syllables per word, POS 

distribution, type/token ratio, and measures of vocabulary richness (Stamatatos, 2009). Various 
vocabulary richness functions that aim at quantifying the diversity of lexicon used in a text are 

type-token ratio V/N (vocabulary/number of words), the number of hapax legomena (that is, words 
only occurring once) (de Vel et al., 2001) and sometimes also dis legomena, tris legomena, and so 

on (words with double and triple occurrences respectively). However, the values of these 
parameters heavily depend on the text length, and therefore a number of functions for normalized 

counts of lexicon diversity were proposed, such as Yule’s K (Yule, 1944; Tanaka-Ishii and Aihara, 
2015) and Simpson’s D index (Simpson, 1949). The use of vocabulary richness for AA was 

criticized in (Hoover, 2003). A broader review of criticism towards this approach can be found in 

(Juola, 2006).  

However, some plain single-measurement features yielded promising results in the attribution of 

specific text corpora. One such case is the use of letter counts (Merriam, 1998) which turned out 
to be unexpectedly efficient for the case of Shakespeare vs. Marlowe authorship question. Merriam 

claimed that “of counting the letters in the 43 plays was the implausible discovery that the letter 
‘o’ differentiates Marlowe and Shakespeare plays to an extent well in excess of chance” and 

established a threshold value for ‘o’ frequency that enabled to attribute the set of plays in question 

to the Shakespeare class or to that of Marlowe.  

According to Juola (2006), a possible reason for the relatively poor performance of the 

aforementioned features is that they were selected manually before the actual analysis of the data, 
based on their expected contribution to the style characteristic. A more promising approach can be 



to reveal the distinctive features from the data analysis by determining the regular, noticeable, and 

explainable differences between text sets. Such approach is sometimes referred to as proper 
stylometric analysis (Boenninghoff et al., 2019). Within this paradigm, new methods were 

introduced, such as the analysis of synonym pairs. However, it was not applicable to some datasets 

due to the data sparsity problem since the number of strict synonyms is severely limited.  

To avoid the sparsity issue, Mosteller and Wallace (1964) suggested focusing on function words 

(articles, prepositions, conjunctions) that carry little lexical meaning but define syntactic or 
semantic functions. While in many other areas of language processing, such as sentiment analysis 

or topic modeling, these words are commonly removed beforehand, in authorship attribution they 
allowed achieving positive results in attributing the Federalist papers. The reason for such success 

is that function words are topic-independent, which reduces the influence of topical differences 
across authors, and relatively interchangeable, which ensures that different authors could freely 

alter the way of expressing themselves according to personal stylistic preferences. The authors 
used Bayesian statistical analysis of frequency distributions of the small set of function words. 

Stamatatos (2009) marks this study as the one initiating “nontraditional authorship attribution” 
that relies on simple quantitative parameters that can easily be extracted automatically, as opposed 

to traditional attribution that relied on human experts labeling the data with complex parameters 

and selecting statistically significant ones. 

The Federalist Papers (a set of 85 essays written under the pseudonym Publius) have been an 
important target for AA since then and are now seen as a benchmark. This is a closed-set attribution 

problem that is currently considered solved, and the first proposed solution is described as “the 
most famous and widely cited statistical analysis of authorship” (Juola, 2006). Mosteller and 

Wallace analyzed the relative frequencies of 30 function words, and since then many works relied 

on a similar technique. 

Currently, a common lexical feature is the (relative) frequency of a number of most frequent words 

or n-grams with substantial variation in their number, selection conditions, and preprocessing 
(Burrows, 2002; Eder et al., 2016; Sari et al., 2018). However, the raw counts of these feature 

values are not used alone: instead, various distance metrics or simple statistics such as PCA can 
be applied. Even though the unfiltered list of most frequent words would typically include function 

words, many researchers still use a specifically defined set of function words instead. Among them 
are Argamon et al. (2007) with a list of 675 words, and Koppel and Schler (2003) who used 480 

words.  

Syntactic features  

A more high-level way of representing stylistic information is by considering syntactic features, 

with the assumption being that an individual style contains specific syntactic patterns more 
frequently than other styles, and this frequency is to a certain degree consistent among different 

texts. The importance of function words for attribution provides additional evidence for this view. 
The downside of including diverse and complex syntactic features is the increasing complexity of 

labeling. Without reliable techniques for automatic parsing, a substantial amount of human expert 
work was needed to count the feature values. Automatic syntactic analysis, on the other hand, 

could lead to multiple errors in parsing that may skew the feature counts. 

Features counted manually or semi-automatically (i.e., using guided rule-based systems to assist 
labeling) were extensively used by Marusenko (1990). He proposed a set of 56 a-priori parameters, 

most of them being syntactic, of which those were chosen that showed statistical significance (t-
test values above 1.96) in discriminating texts of two authors. Among such syntactic parameters 

are the number of words per simple sentence, number of subordinate clauses, embedded clauses, 



homogenous elements, determiners, infinitive groups, and more. This method with some 

alterations was successfully used for a number of authorship problems, including that of Corneille-
Molière (Rodionova, 2007). For this work, the set of parameters initially designed for the Russian 

language was adapted to better represent the stylistic capabilities of the French language. However, 

most of the 51 parameters used in this study correspond with the original ones. 

Stamatatos (2009) traces the first attempt to employ more elaborate syntactic features for the 

English language to Baayen et al. (1996). They also used a semi-automatic approach for syntactical 
annotation to ensure that parsing is correct. To create the set of features, they extracted the 

frequencies of rewrite rules (that is, rules according to which a phrase is constructed out of 
immediate constituents). The resulting features performed better than vocabulary richness metrics 

and some lexical features. Gamon (2004) used rewrite rule frequencies extracted automatically 

and observed that in combination with lexical features they can perform better than the latter alone. 

Stamatatos (2001) attempted to perform attribution of texts in the Greek language using phrase 
boundaries, also extracted automatically, to count the frequencies of constituents. Hirst and 

Feiguina (2007) used bigram frequencies of partial parsing with varying complexity.  

A more simple way of incorporating additional syntactic information using automatic analysis 
would be to use POS tags, but they are not particularly informative outside the context. To address 

this, it is possible to count frequencies of n-grams (Sari et al., 2018; Koppel et al., 2009) or POS 
n-grams (Stamatatos, 2009). Among solutions in this direction are those proposed by Argamon-

Engelson et al. (1998) and Kukushkina et al. (2001). 

Semantic features 

Due to the complexity and not fully reliable accuracy of automatic semantic analysis, few attempts 

have previously been made to exploit semantic features in AA. One such study that provides a 
detailed description of feature extraction and prediction results is that of Argamon et al. (2007). 

They used semantic information semi-automatically extracted from WordNet (Miller et al., 1990) 
to create features that reflected high-level semantic information associated with certain words or 

phrases and indicated their semantic functions, such as “elaboration” and “apposition”. The 
authors showed that this set of parameters combined with lexical and syntactic features may 

improve the classification, but the effect of those features independently was not reported.    

Structural and orthographic features 

Another possible addition outlined by Juola (2006) and utilized in some of his works (Juola, 2003) 

is the inclusion of character n-grams. They were first used by Kjell (1998) who performed 

successful attribution of the Federalist papers using character bi- and trigrams. 

The reasons for this success are manifold. Firstly, character-level features can better account for 

morphologically related words that can correlate in terms of relative accuracy in texts of a 
particular author. Secondly, character-level analysis enables consideration of punctuation and 

formatting if such symbols are not removed. This can be particularly important in attributing 
internet “microtexts”, specifically chat messages, comments, and social media posts 

(Boenninghoff et al., 2019; Suman et al., 2021), in which the specific patterns of spaces, 

punctuation, and indentation can bear importance for AA. 

Another trait of character-level features is the ability to incorporate the author’s regular 

misspellings and atypical uses of punctuation while also being tolerant to noise, such as sporadic 
typographical errors. Koppel and Schler (2003) considered regular errors important individual 



traits of authors. However, Juola (2006) warns against relying solely on such patterns in datasets 

since they may have been disturbed during the preprocessing. In the case of text layout, it can also 
be changed during editorial processing. Therefore, one cannot ensure that a particular structural 

trace was created by the author herself unless specific evidence exists.  

The practical advantage of character-level n-grams compared to word-level ones is their language-
independent nature and simplicity of extraction using most basic programming tools instead of 

language-specific tokenizers. However, they increase the dimensionality of feature space 

compared to word-based parameters. 

2.2.2 Feature selection and Complex features 

While word- and character-level n-grams may be successfully used independently, more complex 

features work best in combination with each other or with n-grams. However, adding all available 
features to the classifier also may be implausible due to increasing dimensionality which can lead 

to overfitting (Stamatatos, 2009).  

Therefore, the matter of feature selection is important. Some straightforward techniques, such as 
the one used by Marusenko (1990), included calculation of Student’s t-test values and choosing 

the features that have values above the selected threshold for a given pair of text sets. Forsyth and 
Holmes (1996) compared the sets of n-grams obtained by frequencies and by distinctiveness and 

found the latter favorable. However, in other cases, frequency-based features were shown to be 
more efficient than those collected using such criteria for examining discriminatory power of 

features as information gain (Houvardas and Stamatatos, 2006) and odds ratio (Koppel et al., 
2006). Algorithmic approaches were also applied to that end: Li et al. (2006) utilized a genetic 

algorithm for feature reduction, and its application resulted in increased accuracy with a mere half 

of the initial features.  

Lexical features, such as most frequent words, can show certain correlations. In the Federalist 
Papers, such correlation was noted for “has” and “have”, as well as for “it” and “that” (Mosteller 

and Wallace, 1964). To avoid overweighting particular features, the reduction of highly correlated 
feature dimensions can be performed. A popular technique to ensure the independence of 

dimensions is principal components analysis (PCA) applied by Burrows (1987; 1989; 1992) and 
studied in detail by Sebastiani (2002). PCA aims at generating smaller ordered sets of new 

uncorrelated variables (principal components) that explain as much of the data variance as 
possible. It thus yields linear combinations of initial features. Typically, two components with the 

highest explainability are mapped to a two-dimensional space for easy visualization. 

 

2.3 Modern attribution methods 

2.3.1 Profile-based supervised methods: probabilistic and compression models 

Stamatatos (2009) provides an interesting criterion for grouping the attribution methods. The 
author notices that some methods treat training data per author cumulatively, thus defining the 

author’s profile, and the differences within the author’s class are disregarded (“profile-based 
methods”), while others treat each instance of the training sample individually (“instance-based 

methods”). 



An example of the first type of model is a probabilistic model that extracts the profiles of candidate 

authors by concatenating their texts and then uses probabilistic classifiers, such as naïve Bayes, to 
maximize the probability of training texts belonging to their true authors’ profiles based on their 

distance to each author’s class according to a chosen distance function. Such a model was first 
used for AA by Mosteller and Wallace (1964), and a detailed account of probabilistic classifiers 

can be found in Sebastiani (2002). 

Another category that uses concatenated texts to represent authors’ profiles is compression models. 
They calculate cross-entropy between the target text and the author’s profiles using compression 

algorithms (Marton et al., 2005). In this method, the gain in size after adding the target text to the 
compressed set of a candidate author can serve as a similarity measure. The compression model 

was used in the study by Kukushkina et al. (2001) that showed that the RAR compression 

algorithm performed most efficiently in this task.  

Other methods of AA are considered instance-based as they treat the contribution of each training 
text separately. They require a better account of the training data processing: each author’s class 

needs to be represented by multiple texts of comparable size. The length of these texts is an 
important hyperparameter: they need to be sufficient to represent the author’s style in a consistent 

manner but also correspond with the average text length to avoid excessive variation. Hirst and 
Feiguina (2007) observed the performance of their classifier with text pieces of different length 

and discovered that performance significantly decreases for smaller texts (with lengths of 200 and 
500 words). Similar findings were made for Burrows’ Delta (Burrows, 2002), for which a 

recommended text size of at least 1500 words was initially claimed. Thus, large texts need to be 
split into chunks of equal length, while for short texts data augmentation techniques can be used 

(Glaudes et al., 2019).  

2.3.2 Instance-based methods 

When the set of authors is not known a priori, available techniques for statistical analysis include 

Multidimensional Scaling (MDS) (Mead, 1992) and Cluster analysis. A large number of features 
also necessitates the emphasis on interpretability and visualization of the feature values, as they 

are harder to represent. Cluster analysis and MDS involve the calculation of intertextual distances 
that represent the degree of dissimilarity. The difference in cluster analysis, according to (Juola, 

2006), is that after measuring pairwise distances the closest pairs are grouped together and replaced 
with a new item that represents the cluster. This procedure repeats until a single cluster is formed, 

and the result can be displayed as a dendrogram with binary branching (with each split representing 
a pairwise combination). MDS can be used with different distance metrics, such as «linguistic 

cross-entropy» employed by Juola (1997).  

Similarity-based models  

Similarity-based models are based on the idea of pairwise similarity between the target text and 

all texts from the training dataset. When this similarity is calculated according to a selected metric 
function, the text is attributed to the most likely class that is typically found using the k-nearest 

neighbors algorithm (Fix and Hodges, 1951).  

One of the most successful cases of combining values of multiple features to separate different 

classes of authors is Burrow’s Delta. According to the author’s definition, the Delta measure is 
“the mean of the absolute differences between the z-scores for a set of word-variables in a given 

text-group and the z-scores for the same set of word-variables in a target text” (Burrows, 2002).  



Burrow’s delta was introduced with the view to grasping the stylistic distance between texts. It is 

based on the Z-score values of m most frequent words or word-POS pair in each text. The Z-score 
is calculated as a difference between a relative frequency of a word and its mean frequency in the 

reference corpus divided by standard deviation: 
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Distance is then computed as the sum of differences in Z-scores between authors D and D’ for 

each frequent word, which is then divided by their total number:  
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A small Delta score means a higher degree of stylistic similarities. During the attribution, the 
document is assigned to the author with the lowest Delta value, which implies the greatest 

similarity between the document and the author’s class. Initially this metric was used with 150 

most frequent words to assess the dataset of Restoration poets and was considered highly effective.  

Hoover (2004) introduced several improvements to Burrow’s classical Delta, including ignoring 

personal pronouns, considering different numbers of frequent words (n = 700 was claimed to be 
optimal), and using culling at 70% (that is, ignoring the words for which a single text provides 

70% occurrences or more).  

Different approaches have been proposed to the calculation of the Delta score since then (Hoover, 

2004; Hoover, 2005; Burrows, 2007; Argamon, 2008; Jannidis et al., 2015; Smith and Aldridge, 
2017), including those using percentage difference instead of z-score and various metrics to 

calculate the difference between z-scores of a pair of texts. Along with classical Delta (which uses 
a variant of Manhattan distance), Cosine similarity and Canberra distance have been successfully 

used, notably in the Stylo package for stylometric analysis (Eder et al., 2016). 

Z-score can be used separately outside the Burrow’s Delta (Juola, 2006) to compare expected and 
observed frequencies of various words, not only the most frequent ones. This approach enables 

discovering the words over-used and under-used by each of the authors.  

Instance-based similarity techniques were also used for compression models. Benedetto et al. 
(2002) used compression algorithms as means of calculating a pairwise similarity between texts 

in the way resembling one used in (Marton et al., 2005). The difference is that the target text is 
concatenated with a single training text, compressed, and compared with the compressed training 

text before concatenation. After that, a 1-nearest-neighbor classifier is used to attribute the target 

text to one of the authors.  

Distance-based approaches focus on calculating the distance between the query document (Q) and 
the author class directly, without prior representation of both in a multidimensional space. The 

distribution of words can be treated as a probability distribution and represented using existing 
probability difference metrics, such as Kullback–Liebler divergence or Kolmogorov–Smirnoff 

distance. Cilibrasi and Vitanyi (2006) suggested an alternative distance metric based on 
Kolmogorov complexity. Kolmogorov complexity (Li and Vitanyi, 1997) of a given pair of strings 

defines the smallest program that converts that string into another one. For the task of AA, 
Kolmogorov complexity can serve as a similarity metric in which the text that requires the least 

effort for being converted into the target one is assigned the highest similarity.    



Kukushkina et al. (2001) made use of Markov chains for classification. A first-order Markov 

model was calculated separately on each author’s training set, and the target text was attributed to 

a certain class if its chain yielded the highest probability of producing this text 

Vector space models 

Training and target texts can be represented as multidimensional vectors in which each dimension 
corresponds with a certain feature. In this framework, a vast number of machine-learning 

approaches can be applied, including Support Vector Machines (SVMs) (de Vel et al., 2001; Li et 
al., 2006), decision trees (Zhao and Zobel, 2005), and neural networks (Zheng et al., 2006; 

Khosmood and Levinson, 2006).  

SVM solutions turned out to be particularly efficient due to their ability to handle noisy or sparse 
data and process multidimensional vectors without overfitting. They learn the location of 

hyperplanes separating the data in the training set in the best way and with highest possible 
resistance to classification error. They have been extensively used for authorship attribution, 

outperforming such statistical techniques as Linear Discriminant Analysis (LDA) and many other 

machine learning solutions, such as Naive Bayes and Classification Trees.  

In modern works, they are frequently used as one of the baselines, and are still showing compatible 

results (Stamatatos et al., 2018).  

Deep learning models 

Frequently used neural networks that are atypical for other NLP tasks are CNNs for comparing 

selected excerpts of n-grams between texts (Ordoñez et al., 2020) and Siamese architectures 
networks that were introduced specifically for detecting similar entities (Koch et al., 2015), though 

were initially used for comparing images. 

A Siamese architecture generally incorporates a neural network that is applied separately to several 

(normally two) instances using the same weights in order to produce comparable representations. 
These representations are then passed to a distance metric to determine their similarity. For the 

training stage, the production of representations can be adjusted to maximize the distance for a 

particular task, and for the inference, a threshold can be used to classify a pair of data entries.  

The specific model used within the Siamese architecture can be different.  

One approach was proposed by Boenninghoff et al. (2019) for attributing short texts. The An 

AdHominem model used two layers of bidirectional LSTMs with an attention layer on top for both 
word and character embeddings, and a module for nonlinear metric learning was used to calculate 

the similarity between their outputs.  

Tyo et al. (2021) generated embeddings of a fine-tuned BERT and then used average pooling 

across all tokens for each of the input sequences and a dense layer to obtain a final representation 
of a sequence. After that, cosine and Euclidean deltas as distance metrics. For the training the 

distance was used as means of loss calculation and model optimization, while for the inference, a 

threshold was used to classify the pairs. 

Interestingly, Koppel et al. (2012) considered similarity-based approaches more appropriate than 

machine-learning methods for attribution among many candidate authors. However, it is not clear 

to which extent is this claim applicable to large modern ML models for text classification. 



 

2.4 Authorship attribution datasets 

Neal et al. (2017) provide a thorough review of the datasets available for authorship attribution 

and commonly used for such task. We, in turn, will outline the major steps of their development, 
highlighting the importance of cross-topic data representation, and proceed with discussing PAN 

datasets in some more details. 

2.4.1. Traditional datasets 

Traditionally, AA was performed for texts that possessed considerable social and cultural 
importance, such as biblical literature (Morton and McLeman, 1966; Kenny, 1981; Eder, 2012), 

philosophical works (for example those of Plato and Aristotle (Campbell (1867)), or major literary 

works (Mosteller and Wallace, 1964; Merriam, 1998).  

The Federalist Papers, investigated by Mosteller and Wallace, were chosen as they satisfy a 

number of requirements that clarify and facilitate the attribution procedure: the texts are publicly 
accessible, the potential authors are known with certainty (which makes it a closed-set AA), and 

the training set is already defined since some of the 85 essays have been signed by the authors. 
Besides, these texts are homogeneous in terms of genre and theme and were published in the same 

sources during a limited time frame. 

2.4.2 Modern cross-domain datasets 

In automated AA, computational models enable handling larger datasets and provide predictions 

more efficiently even when the information about authors is limited. 

The availability and structure of textual data play a key role in such tasks. In (Barlas and 

Stamatatos, 2021) numerous data-specific subfields are outlined, including AA in digital 
humanities (that of historical works) and in social media analytics (identifying the authors of 

tweets and other social media microtexts). A common problem with complex datasets is that the 
training subset (with known authors) and test one (with unanimous or questionable authorship) 

may have different properties. In some cases, we only possess training data of texts in other genres 
or on other topics. To address this issue, a substantial number of current research projects in AA 

make use of cross-domain attribution. 

CMCC (2009)  

Training a cross-domain model requires a highly elaborated dataset in which domain and/or genre 

parameter can be isolated. The earliest corpus of such type was introduced by Goldstein-Stewart 
et al. (2009) and is sometimes referred to as CMCC. This is a controlled corpus with respect to the 

genre, topic, and demographics of subjects. It contains excerpts of texts from 21 undergraduate 
students in six genres (“blog, email, essay, chat, discussion, and interview”) and six topics 

(“church, gay marriage, privacy rights, legalization of marijuana, war in Iraq, gender 
discrimination”) written in English. It enables the evaluation of AA methods in cross-topic and/or 

cross-genre settings, ensuring that other factors that can affect performance (e.g., demographics of 

authors, distribution of samples over the authors) are diminished. 



It was created for the task of person identification in 2009. The authors of the original dataset 

applied four classifiers (Naïve-Bayes, SVM, decision trees, and random forests) and achieved 82% 

accuracy in some cross-genre and 94% in some cross-topic tasks. 

The dataset has been widely used in AA since then. In Stamatatos (2017) the corpus was used in 

three settings (cross-topic, cross-genre, and cross-topic-and-genre) to assess the improvement in 
the performance of C3G-SVM and PPM5 models by introducing distortion techniques. In (Sapkota 

et al., 2014) the authors investigated the performance in single cross-topic and multiple cross-topic 
conditions using this corpus along with others, and the same was done in (Barlas and Stamatatos, 

2021) for the assessment of transfer learning AA. In (Stamatatos and Barlas, 2020) the corpus was 

used to assess the performance of pre-trained models.  

The Guardian Corpus  

Another corpus used in (Sapkota et al., 2014) is called The Guardian Corpus. The corpus was 
constructed using the public API of The Guardian which enables search by keywords, authors, and 

topics. The original corpus was created by Stamatatos (2013) and included opinion articles on four 

topics as well as some book reviews.  

An extended and balanced version of the Guardian dataset is provided by Altakrori et al. (2021). 

In this dataset, each author is associated with 40 documents. 

PAN 2018 

A cross-domain dataset was created in the framework of AA task at PAN 2018 (Stamatatos et al., 

2018), an annual competition and workshop on digital forensics and stylometry. The dataset 
includes subsets for multiple AA problems in different languages, but in (Barlas and Stamatatos, 

2021) the authors only consider English texts from this dataset.  

The corpus incorporates fanfiction texts drawn from different fandoms, that is, dedicated to or 

based on various original works of art. Such distinct “universes” of storytelling are treated as topics 
that are consistent within themselves and differ from each other. In the PAN 2018 setting, the test 

texts with unknown authorship belong to one fandom, while the training texts of known origin are 
from numerous other fandoms. This makes the attribution a “cross-fandom” procedure (Stamatatos 

et al., 2018).  

PAN 2020 

PAN is an annual event, and the dataset has been improved over the last few years. The improved 
and extended version is introduced by Bischoff et al. (2020) and adapted for the PAN setting by 

Kestemont et al. (2020). Itis still based on fanfiction since it is considered among the fastest 
growing forms of literary texts accessible online. Fanfiction is openly available and easily 

scrapable from the Internet, which makes it a suitable candidate for a corpus of unseen literary 

works.  

The PAN20 version consists of two datasets (“small” and “large”), both being significantly larger 
than the previous fan-fiction corpus. In the 2020 version, only English texts are included, and their 

average length is roughly 21000 characters. The “small” corpus contains 52601 texts, while the 

“large” one contains 275565.  

2.4.3 Datasets discussion 



Although numerous traditional datasets exist for the task of authorship attribution, Fabien et al. 

(2020) mention that a sufficient number of examples for each author is required. The texts 
themselves need to be sufficiently long: Koppel and Schler (2004) name the recommended length 

of 500 words for measuring style. Besides, the use of comparatively complex and large models is 
motivated for larger datasets with additional complications, such as the necessity of cross-domain 

attribution, for otherwise a simpler and better explainable classifier, such as one based on logistic 

regression on lexical features, would suffice. 

Thus, it seems that the most appropriate choice for this research would be the PAN 2020 corpus, 

as it is the largest currently available dataset that has been specifically designed to assess the latest 
techniques of authorship verification. Another advantage of this choice is the potential ethical 

importance of the task, namely, detecting plagiarism and fraud to protect independent fanfiction 

writers. 

3. Transformer models in authorship attribution 
Transformers are a comparatively recent type of neural networks that were introduced by Vaswani 

et al. (2017). The title of their paper, «Attention is all you need», suggests that models based solely 
on attention mechanisms can be used without convolutional or recurrent architecture and achieve 

impressive results outperforming previous, more complex models.  

Before the outbreak of transformer models, long short-term memory models (LSTMs) (Hochreiter 

and Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Graves, 2013; Chung et al., 2014) 
have been widely used for a variety of NLP tasks, where they showed a state-of-the-art 

performance (Cho et al., 2014; Sutskever, 2014)). However, their sequential nature — namely, 
that they relied on the iterative generation of hidden states as functions of previous hidden states 

and new inputs — limited their performance in processing longer sequences. Memory constraints 
“limited batching across examples” (Vaswani et al., 2017), and vanishing gradient problem 

(Bengio, Fraskoni, Schmidhuber, 2003) caused the decrease of the nodes’ influence on the current 
state in the distance even when they had high weights. As a result, the dependencies between 

distant elements were hard to learn. Gated RNN architectures (Chung et al., 2014) achieved 
noticeable improvement in taking various parts of a long sequence into account, while factorization 

techniques for LSTMs (Kuchaiev and Ginsburg, 2017) increased their computational efficiency, 

but the underlying problem of sequential processing persisted.  

Attention mechanisms were proposed as a method to address this problem (Bahdanau, Cho, 

Bengio, 2014; Kim et al., 2017) since they could learn dependencies between elements in the 
sequence regardless of the distance between them. However, until the emergence of Vaswani et 

al. (2017) paper these mechanisms were mainly used as part of the model on top of some RNN 
architecture (Paulus et al., 2017; Cheng et al., 2016). Attention was applied in a variety of tasks 

such as text summarization (Paulus et al., 2017) or machine reading (Cheng et al., 2016). The 
proposed Transformer model differed from them in that it only made use of attention to learn 

global dependencies between input and output.  

An important advantage of this approach is that the maximal (worst-case) number of operations 

required to relate input from two positions is constant (3(1)) in the Transformer, while in RNNs 

it grows with distance (3(4)), where N is the number of elements between selected positions) 

albeit at a different rate with various tools for computational complexity reduction (Graves, 2013).  

A valuable side benefit of Transformers is that the underlying self-attention mechanism could be 
used as a base for interpreting the models ' output. Inspecting and visualizing attention weight can 



reveal the role of each attention head in capturing semantic and syntactic features of a sequence 

and provide insights into how particular sequences are analyzed and which relations between 

tokens play the most important roles.  

 

3.1 Transformer overview  

Architecture  

The original Transformer model also follows the encoder-decoder architecture (Cho et al., 2014; 
Sutskever et al., 2014; Bahdanau, Cho, Bengio, 2014) by using separate encoder and decoder 

modules, both based on self-attention. In the encoder-decoder framework, an input symbolic 
sequence is first mapped to a sequence of representations by the encoder, and then an output 

symbolic sequence is iteratively generated by the decoder given the sequence of representations. 
This model is auto-regressive (Graves, 2013) as it adds the output from the previous step to the 

input when generating the new output.  

In Transformer, each layer of encoder consists of a self-attention (a type of attention that relates 
items in a single input sequence to create a representation of this input) and a fully-connected 

feedforward neural network. Decoder layers have two multi-head self-attention sublayers. The first 
one features a masked (restricted) attention that only computes attention weights between the 
element and its left context to ensure that prediction for the current output only depends on the 

previous output, i.e., the output is indeed generated in an auto-regressive manner. The second sub-

layer uses regular self-attention but takes the encoder output as part of its input.  

Later works experimented with Transformer models that only incorporate encoder- (Devlin et al., 

2019) or decoder-type (Radford et al., 2018) attention modules to make use of their specificities.  

Attention Mechanism  

Attention is a function that maps a query and a set of key-value pairs to an output. All these 

components are represented as vectors. The compatibility function computed using the query and 
the key yields the weight assigned to the corresponding value. This weight corresponds to the 

relevance of this item to the query.  

Several types of attention functions exist, and the most widely used ones are additive attention 
(Bahdanau, Cho, Bengio, 2014) and dot-product attention (Luong et al., 2015). The former uses a 

single hidden layer for compatibility function, while in the latter dot products of the query and 
each key are computed and converted to weights using a softmax function. Vaswani et al. (2017) 

use scaled dot-product attention, which differs from the regular dot-product function in that it uses 

a scaling factor of 
$

√(), where 56 is the dimension of query and key vectors.  

The authors’ motivation for this adjustment is that scaling the dot products makes the softmax 
output more diverse and facilitates learning, as large dot products would otherwise push the 

corresponding softmax values to the limits.  

Even though the performance of two attention functions has similar theoretical complexity 
(Vaswani et al., 2017), the dot products can be optimized using efficient matrix multiplication, 

which makes them favorable for training large models. In this case, sets of vectors are represented 



as matrices of queries (7), keys (8), and values (9). For the decoder module, the softmax input 

for tokens from the right context is set to −∞ to implement masking. 
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Another specificity of the Transformer model is the use of multi-head attention, in which 7, 8, 

and 9 are linearly projected to corresponding dimensions, attention is calculated for each set of 
projections in parallel, and the results are concatenated before the final projection to the original 

output dimension. Multi-head attention is added to prevent averaging the values in cases when two 
vectors show high compatibility only in some representational subspaces, which could be the case 

for a single attention head. The number of heads is a hyper-parameter that was explored by 
Vaswani et al. (2017). It was shown that, while multi-head attention improves the model 

performance (with best results achieved using 8 heads), too many heads are less efficient as the 

size of each head’s dimension 5) becomes too small. The authors also claimed that the importance 

of the large 5) dimension may suggest that query-key compatibility has complex nature and other 

compatibility functions should be explored.  

Positional Encodings  

Since the attention function computes weights between all tokens in the sequence simultaneously, 

positional information needs to be inserted additionally in order to let the model make inferences 
based on the order. This can be done by adding positional encodings (PE) (Luong et al., 2015) to 

the input embeddings. Different types of PE exist, but a convenient choice used by Vaswani et al. 
(2017) is sine and cosine functions that allow linear calculation of PE for each offset given the 

original value.  

FG(,-.,0!) = sin(K>?/10000!/("#$%&) 

FG(,-.,0!3$) = cos(K>?/10000!/("#$%&) 

The original Transformer model was assessed on a machine translation task, in which it 
outperformed previous best models and established a new state-of-the-art BLEU score. After that, 

considerable success has been achieved with this architecture on various NLP benchmarks for such 
tasks as question answering (Rajpurkar et al., 2016), sentiment analysis (Socher et al., 2013), 

language understanding through inference (Williams et al., 2018) and aforementioned machine 

translation (Papineni et al., 2002).  

 

3.2 Transformer models fine-tuning  

A particularly useful trait of transformers is their effectiveness in transfer learning, that is, pre-
training on one task and transferring the obtained knowledge to another task with fewer available 

training data and more limited supervision possibilities, such as authorship attribution (Barlas and 
Stamatatos, 2021). In NLP, language modeling has become a widely used base task (Radford et 

al., 2018; Radford et al., 2019; Devlin et al., 2019) due to the abounding language data and 
comparatively easy training process, although supervised tasks, such as machine translation, have 

also been exploited for pre-training (McCann et al., 2017).  



Peters et al. (2018), Radford et al. (2018), and other researchers have shown that pre-training a 

language model for applying to more specific downstream tasks can be highly effective in NLP. 
The central component of pre-training is usually a unidirectional language model that provides 

general language representation, while the specific implementation may differ. Devlin et al. (2019) 
distinguish two types of pre-training. In a feature-based approach pre-trained representations are 

used as additional features in an overall task-specific architecture. This technique is implemented, 
for example, with word embeddings in the skip-gram model (Mikolov et al., 2013) and context-

sensitive ELMo vectors (Peters et al., 2018) and with sentence embeddings in (Logeswaran and 
Lee, 2018). In the fine-tuning approach used in OpenAI GPT (Radford et al., 2018), all original 

pre-trained parameters are fine-tuned for the downstream task so that few parameters need to be 

trained from scratch.  

3.2.1 BERT  

BERT, or Bidirectional Encoder Representations from Transformers, is a language representation 

model introduced by Devlin et al. (2019). Its distinctive feature contrasting with OpenAI GPT is 
that it uses bidirectional representations in all layers, which means that each self-attention is 

unrestricted for both right and left contexts. In the original Transformer, only the decoder 

component makes use of bidirectional attention. 

The advantage of this design is that BERT can be easily and relatively inexpensively fine-tuned 

with only one additional layer on top of the original model. This makes this model preferable for 
various NLP tasks, such as language inference and sentiment analysis. Besides, BERT 

outperformed previous Transformers and other task-specific models in machine translation, 

question answering, and numerous other tests.  

BERT architecture  

BERT differs from the vanilla fine-tuning approach in that it adds bidirectionality for the language 
model to make use of context from both directions. According to (Devlin et al., 2019), this 

extension optimizes sentence-level inference and results in significant improvement for token-

level tasks, such as question answering.  

To this end, BERT introduces a “masked language model” (MLM) that performs random masking 

of several input tokens from the input for training and learns to predict the missing tokens based 
on their context from both sides. The resulting bidirectional representations are deep, unlike those 

obtained in (Peters et al., 2018) by a “shallow concatenation of independently trained left-to-right 

and right-to-left LMs” (Devlin et al., 2019).  

BERT is first pre-trained on unlabeled data, and then the learned parameters are initialized for 

fine-tuning on labeled data. Same pre-trained data can be used for various downstream tasks 

though fine-tuning layer should differ.  

In pre-training, the model takes a span of unlabeled text as input. This can be a single sentence or 
a concatenation of, e.g., question and answer. The first token in the vector representation of input 

is a classification token CLS that aggregates sentence representation. Sentence pairs are separated 
with a SEP token. Additionally, a learned segment embedding is added to indicate the sentence to 

which a token belongs. In the result, input representation consists of a word, segment, and position 

embeddings.  

After that, training is performed in two ways. In MLM, the predicted vectors for the masked tokens 

are taken by a softmax over the vocabulary to generate the missing word. In the next sentence 

Иван Кондюрин
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prediction (NSP), the second sentence is replaced with a random one in 50% of cases. This type 

of training is required for learning relationships between to sentences and obtaining sentence 
representations for such tasks as question answering. BERT can use both sentence embeddings 

and other parameters for a downstream task.  

BERT was pre-trained on English Wikipedia and other corpora and assessed on GLUE benchmark 
(Michael et al., 2018), SQuAD question answering dataset (Rajpurkar et al., 2016), and SWAG 

language inference dataset (Zellers et al., 2018), where it showed state-of-the-art results.  

The downside of pre-training a bidirectional unlabeled language model is that it entirely relies on 

unmasked self-attention, so that the weights need to be calculated between all pairs of tokens in 
the sequence. This limits the maximal length of the input sequence: in the best-performing BERT 

model the input is limited to 512 tokens. Given that some tasks involve concatenated text pairs, 
this can be a serious limitation for tasks in which a large chunk of text is required to create a valid 

representation. This constraint is one of those alleviated in GPT-2 (Radford et al., 2019).  

Liu et al. (2020) presented RoBERTa, an optimized version of BERT with higher robustness. 
Longformer, introduced by Beltagy et al. (2020), is a model based on RoBERTa, but specifically 

adapted to process long sequences.  

3.2.2 Transformer Language Models evolution  

Starting from BERT, GPT, XLNet (Yang et al., 2019), Transformer-XL (Dai et al., 2019), and 
MASS (Song et al., 2019), the trend for more general language models with an increasingly large 

number of parameters continued. Several generations of models have been created trained on 
extremely large datasets using different variants of the transformer architecture, with the number 

of parameters growing roughly by ten times every year. The latest implementations include GPT-
2 (Radford et al., 2019), GPT-J (Komatsuzaki, 2021), MegatronLM (Shoeybi et al., 2019), Turing-

NLG (Rosset, 2020), T5 (Raffel et al., 2020), and GPT-3 (Brown et al., 2020). Recently a 
Megatron-Turing NLG model developed by NVIDIA was revealed (Kharya and Alvi, 2021). With 

over 530B parameters it is the largest language model up to date. It established a new state-of-the-

art in LAMBADA test (Paperno et al., 2016) as well as in other metrics.  

At the same time, the growing cost and complexity of collecting the data and training the language 

model motivate increasing interest in reducing the model size while retaining the previously 
achieved scores. One example of such effort is DistilBERT (Sanh et al., 2019), a smaller version 

of BERT which is 60% faster.   

 

3.3 Enhanced transformers  

Apart from reducing the size of the model, other improvements can be done to reduce 

computational complexity and increase the attention span for more accurate account of high-level 

textual features.  

3.3.1 Computational cost  

Despite the significant success of Transformer models, the computational complexity and memory 
cost remained serious limitations. Vaswani et al. (2017) compared the computational complexity 

of Transformers to RNNs and noted that self-attention layers are «faster than recurrent layers when 



the sequence length N is smaller than the representation dimensionality d», for the layer-wise 

complexity of global (unrestricted) self-attention is 3(40· 5) compared to 3(4 · 50) for a 
recurrent layer. This was indeed the case for the original machine translation application since the 
number of parameters was set to d = 512, and the model was given sentence pairs as input with 

words as tokens.  

However, in practice quadratic complexity 3(40) limits the context size due to time and memory 
demands. This can become a critical bottleneck in cases where long-term dependencies need to be 
captured, such as text summarization (Paulus et al., 2017; Liu et al., 2018), question answering 

(Rajpurkar et al., 2016), or authorship attribution (Barlas and Stamatatos, 2020; Fabien et al., 2020; 
Ordoñez et al., 2020; Futrzynski, 2021; Peng et al., 2021) where the whole text needs to be 

considered to discover meaningful patterns. The demand for longer sequences increases given the 
common representation of such tasks for fine-tuned models, in which two sequences (source and 

target or two items for comparison) are concatenated and separated with a SEP token. For effective 
processing, all concatenated sequences and special tokens must fit into the limit of N = 512, which 

is a serious limitation.  

3.3.2 Improved architectures  

Increased input length  

Transformer-XL introduced by Day et al. (2019) tried to solve the problem of limited context at 
the cost of computational speed. This model achieved state-of-the-art results in language modeling 

as it could learn dependencies beyond the regular context scope, but further increased the 

computational cost.  

Longformers (Beltagy et al., 2020) suggested a compromise between length and computational 

cost by providing a model that could accept long sequences as input but processed them with a 
limited context window. It is an extension of BERT trained on ca. 6.5 billion words that established 

new state-of-the-art in Wiki-Hot and Trivia-QA (Joshi et al., 2017). It makes use of sliding 
attention window to compute local self-attention instead of a global one, thus reducing the 

computational complexity from quadratic (3(40)) to linear (3(4 · Q)), where Q is the attention 
window size. According to Beltagy et al. (2020), global attention can also be used to incorporate 

long-distance relations into special tokens, such as a class token CLS.  

This approach goes in line with the original suggestion by Vaswani et al. (2017) when the 

Transformer was introduced: namely, that “self-attention could be restricted to considering only a 
neighborhood of size r in the input sequence centered around the respective output position”. 

Another approach to restricted attention was put forward by Suhkbaatar et al. (2019), in which 

optimal attention span for each attention head was learned.  

Optimized Complexity  

Other researchers aimed at reducing the complexity by optimizing the computation while retaining 
the global character of self-attention. Child et al. (2019) used sparse factorizations of the attention 

matrix and achieved the reduction of complexity up to 3(4√4), while Kitaev et al. (2020) 
proposed a Reformer, an improved Transformer model that used locality-sensitive hashing (LSH) 

to reduce the complexity to 3(4log4). As Katharopoulos et al. (2020) point out, this technique 

imposes a limitation on the values of keys: namely, that they need to be identical to the queries.  

Efforts have been also made to increase the speed of the Transformer inference through optimized 

memory consumption. To this end, weight pruning (Michel et al., 2019), weight factorization (Lan 



et al., 2020) and weight quantization (Zafir et al., 2019) have been used. Besides, Lample et al. 

(2019) explored a different type of attention with product keys that was claimed to increase the 
capacity of each attention layer. However, according to Katharopoulos et al. (2020), the overall 

complexity remained quadratic with respect to the sequence length.  

A new promising approach was proposed by Katharopoulos et al. (2020). They introduce a Linear 

Transformer Model that is declared to have linear complexity (3(4)) without any limitations. 
They propose a change from existing softmax attention to a feature map-based dot product 
attention that utilizes the associativity property of matrix products. This results in reduced time 

and memory demands and incredibly high inference speed, up to thousands of times faster for 
image generation. As the authors state, this type of transformer with linear attention can be 

expressed as an RNN as it can perform autoregressive output generation recurrently with attention 
memory and normalizer memory as two layers of hidden states. To our knowledge, this type of 

Transformer model has not been tested for NLP tasks so far, therefore its performance on existing 

benchmarks in this domain is yet to be assessed.  

 

3.4 Transformers application for text classification  

Among the downstream tasks to which transformers can be applied, some require classification of 
the input text (Shaheen et al., 2021; Chi et al., 2020), including sentiment analysis and emotion 

classification. The task of authorship attribution also comes down to attributing the text into one 
of the authors ’ class, although traditionally categorization is based on stylistic features, and the 

transformers ’ capability of grasping such features requires additional account.  

3.4.1 Transformers for authorship attribution  

Several attempts have been made to perform AA using transfer learning based on a Transformer 

language model. Barlas and Stamatatos (2020) observed the potential for using pre-trained 
language models for cross-topic and cross-domain AA. They assessed BERT, GPT-2, ELMo, and 
ULM-FiT (Howard and Ruder, 2018) supplemented with a multi-headed classifier. Each classifier 

was trained for a binary author verification task for each author, and the text was attributed to the 
class with the highest score of a corresponding classifier. In the result, BERT showed the best 

performance beating RNNs.  

BertAA  

Fabien et al. (2020) take this work into account and broaden it with an exhaustive analysis of pre-
trained language models for AA with their limitations. They apply the models to three widely 

known corpora: Enron Email corpus by Klimt and Yang (2004), Blog Authorship Attribution 

Corpus by Schler et al. (2004), and IMDb Authorship Attribution Corpus by Seroussi et al. (2014).  

They proposed a BertAA model for the authorship attribution task, and to our knowledge, this is 
the first transformer-based ensemble designed specifically for AA. This model used the BERT 

language model since it had been shown to perform well in classification tasks (Sun et al., 2020) 
and is capable of extracting semantic and syntactic information useful for stylometric analysis. To 

incorporate high-level stylistic information, they combined the original model with stylistic and 

hybrid features.  

The pre-trained BERT model is fine-tuned with a dense layer and a softmax activation to output 

class probabilities, as suggested in (Sun et al., 2020). Weights of both the dense layer and the 



BERT itself are adjusted. The Stylometric classifier is based on “style” features selected in (Sari 

et al., 2018), namely the text length, words counts, average word length, number of short words, 
the proportion of digits and of capital letters, frequencies of letters and digits, hapax legomena, 

and punctuation frequencies. Additional “hybrid” features include 100 most frequent n-grams (for 
n = 2 and n = 3). Stylistic and hybrid features are fed into two separate logistic regressions that 

also yield class probabilities. A final layer of logistic regression is then used to make the choice 

based on the probability distributions from three classifiers.  

The model achieved state-of-the-art performance on the Blog Authorship dataset (Schler et al., 

2004) but was outperformed by a CNN classifier on an IMDb62 dataset (Seroussi et al., 2014) 
with more authors and fewer data per author. It was shown that the inclusion of stylometric and 

hybrid features slightly improves the F1 score but affects the accuracy. The authors conclude that 
sufficient training data for each author is a necessary prerequisite for the successful performance 

of BertAA, while this is rarely the case in real-life applications. Among the suggested extensions 
to their work are additional pre-training of BERT on the target domain before adding the dense 

layer and experiments with other LM architectures, such as RoBERTa (Liu et al., 2020).  

Transfer Learning Approach  

Barlas and Stamatatos continued their work in 2021 with additional experiments on AA in cross-

genre and cross-fandom conditions (Barlas and Stamatatos, 2021). They adapted the multi-head 
classifier from Bagnall (2015) where it was combined with an RNN language model but 

experimented with various transformer-based language models.  

Compared to (Barlas and Stamatatos, 2021), this work explored the proposed methods in more 

detail and considered a cross-fandom task based on PAN corpus (Kestemont et al., 2018; 2019). 
The set of models remained unchanged. For BERT and GPT-2, texts were split into chunks of 510 

and 1024 tokens respectively.  

The proposed architecture included a LM, a filter for LM representations and a multi-head 
classifier (MHC). The filter ensures that only N most frequent tokens will need to be predicted by 

the MHC: specifically, it filters out those representations that are not followed by a token from N 

most frequent ones, though information about them is incorporated in accepted representations.  

BERT and ELMo achieved overall best results in cross-topic task, but ULMFiT (Howard and 

Ruder, 2018) has shown comparable results in cross-genre AA. For the cross-fandom task, all 
models showed averaged performance below the baseline, although in some runs ELMo and GPT-

2 achieved the best results. The performance representations from different layers of BERT were 
compared since they can capture different types of linguistic information (Jawahar et al., 2019), 

and shallow layers were shown to be slightly more effective. The authors also postulate the 
importance of normalization corpus and the difficulty of combining character-level and token-

level information, which may suggest that ensemble models could be desirable.  

PAN transformer-based solutions  

PAN dataset (Kestemont et al., 2018; 2020; 2021) has been used for an AA competition, and four 

Transformer-based models have been proposed so far for the authorship verification task. The first 
one was suggested by Ordoñez et al. (2020). Their solution relies on the Longformer architecture 

to better model long text chunks. They use a concatenation of 511 consecutive tokens from each 
pair of texts with a SEP token as input and an attention window of 512 tokens. The CLS token 

from the Longformer output is combined with the document topic information and fed into the 
classifier, which is a multilayer perceptron. The model achieved above baseline performance on 



the validation set (F1 score 0.96 for the large version of PAN 2020 dataset) but performed 

significantly worse during the competition, reaching only F1 0.75 on the test set.  

During the next-year event, Tyo et al. (2021) proposed a Siamese network that made use of BERT 
embeddings. The model was trained to locate embeddings of similar texts adjacently in the 

representation space, and a threshold was used at the inference stage to make the prediction. 

Transformer-based model by Futrzynski et al. (2021) used vanilla BERT architecture with an input 

size of 30 tokens. They considered both the prediction based on single input and on 100 input 
sequences, from which a final output is calculated using the median of each component across all 

100 output vectors. This model achieved F 0.76 but could not beat the baseline solutions for the 

PAN competition (Kestemont et al, 2021). 

Solution of Peng et al. (2021) utilized a similar approach with multiple input sequences but used 

a larger input size (256 tokens) and only 30 sequences. Instead of using the median value across 
all vectors, they trained an additional classifier for the BERT output, to which global average 

pooling was applied. The model achieved F1 0.945 on the validation set and 0.917 on the test set, 
thus being the best solution proposed at PAN 2021 among those trained on the small version of 

PAN 2020 dataset (Kestemont et al., 2020). With all other metrics considered, their solution ranked 

second. 

Thus, it can be seen that two general strategies are used to incorporate BERT architecture into an 
authorship verification model. In the first approach, the task is treated as a recognition of relations 

between segments from different texts. In such a case, a separator token is used to divide the 
segments, and the CLS token is assumed to learn how to represent stylistic relations between two 

parts. In the second approach, we only assume that CLS is capable of representing a text in the 
embeddings space, including the representation of its style. Therefore, two such representations 

can be compared using a distance metric, such as a dot product or a cosine delta. and the model 
can be fine-tuned to minimize the distance between the texts of the same author or maximize that 

between texts of different authors. 

 

4. Transformer explainability 
 

4.1 Defining explainability 

The problem of explainability can be subdivided into three notions: transparency, explainability, 
and interpretability (Wiegreffe and Pinter, 2019). These terms have been used in different senses 

(Lipton, 2016; Doshi-Velez and Kim, 2017; Rudin, 2018; Riedl, 2019). Lipton (2016) pointed out 
that transparency largely conflicts with explainability. Transparency in his view refers to human 

understanding, the way a certain component of a model corresponds to (or can be mapped to) an 

understandable human construct. 

From this perspective, attention is transparent as it provides a matrix of scores for each element of 

the input, which shows this element is weighted in the following steps, and which contribution it 

has to the attention output.  



Explainability, on the contrary, refers to the extent to which the model performance can be 

analyzed post-hoc. It can be regarded as mimicking human explanations of various actions as it 

aims at justifying the decision and providing arguments for it.   

Rudin (2018) defines explanation as a reconstruction of decision-making process and emphasizes 

that it is not necessarily a faithful reconstruction. Despite potentially erroneous underlying 
methods, explanations are considered important and human (Riedl, 2019) and were shown to 

increase the user’s trust in a system (Thorne et al., 2019), which is especially important in sensitive 

domains. 

The dichotomy between explainability and interpretability, in turn, is related to the level of 
abstraction. According to Rudin (2018), interpretability involves a holistic understanding of the 

relations between input and output (in this sense, shallow classification trees are typically 
interpretable). In (Doshi-Velez and Kim, 2017) a more fine-grained categorization of 

interpretability is presented. 

While the explanations as interpreted by Rudin aim at resembling some human rationale, there is 
no full agreement on how their resemblance should be measured. Hence techniques of evaluating 

explanations also differ even within the topic of transformer explainability. In Lei et al. (2016), 
where explanations are generated at the same time as predictions and come directly from the input, 

the model is trained with gold-label explanations. Other works (Mullenbach et al., 2018; Ehsan et 

al., 2019) rely on human evaluation. 

A number of techniques have been utilized to provide explanations for NLP tasks. Ross et al. 
(2017) measured feature importance using gradient information, while (Li et al., 2016) based the 

explanation technique on “representation erasure” in which the impact of each dimension from the 
representation being removed is calculated. Ghaeini et al. (2018) used visualizations of LSTM 

gating signals as well as attention saliency. In (Alvarez-Melis and Tommi, 2017) a causal 
framework for explaining predictions was proposed To explicitly identify explanations of black-

box predictions.  

 

4.2 Attention weights as an explainability tool 

Vaswani et al. (2017) claimed that investigating the self-attention mechanism can lead to 
interpretations of the models ’ output. Visualized attention weights can potentially reveal the 

function of each attention head in capturing semantic and syntactic features. For any particular 
sequence, these weights could also provide insight into the way it is analyzed by the model, in 

particular, which relations between words are captured. 

Models that have at least one attention layer provide a distribution of attention weights over input 

units that is often treated as communicating the relative importance heatmap (Jain and Wallace, 
2019). This assumption suggests that high attention weight of a certain input increases tis 

responsibility for the output of the model. Xu et al. (2015) used attention scores as means of 
visualizing the saliency of image content for the task of image description. Li et al. (2016) claimed 

that «Attention provides an important way to explain the workings of neural models», and multiple 
authors presented works in the spirit of this view, including (Mullenbach et al., 2018; Ehsan et al., 

2019; Choi et al., 2016; Martins and Astudillo, 2016; Xie et al., 2017; Thorne et al., 2019; Serrano 
and Smith, 2019). Attention weights was also shown to correlate with human attention in the task 

of document classification (Pappas and Popescu-Belis, 2016).  



Another line of work involved modifying the attention to facilitate interpretability, for example, 

by employing sparse attention that only uses a subset of inputs for prediction and considering this 
subset responsible for the output (Lei et al., 2016; Peters et al., 2018) or by fitting the attention 

weights to explanations provided by humans. (Bao et al., 2018) 

4.2.1 Critical view at attention explainability  

However, the degree to which attention can serve as an explainability tool is often questioned, and 
the specificity of the relation between attention weight and outputs is not completely clear for some 

researchers.  

Jain and Wallace (2019) pointed out that attention weights lack explainability potential since they 

often show a weak correlation with gradient-based feature importance measures, and multiple 
distributions of attention weights can yield similar predictions in classification tasks. They claimed 

that two properties need to hold for a valid explanation: (i) that attention weights correlate with 
more reliable measures and (ii) that “counterfactual” and “adversarial” attention weights that 

substantially differ from original ones result in correspondingly significant changes in the output 

predictions. 

They selected gradient-based feature importance scores and leave-one-out (LOO) as reliable 

measures as they had been shown to reveal individual feature importance with known semantics 
(Ross et al., 2017), even though they cannot serve as a standalone interpretation technique (Feng 

et al., 2018) due to inherent complexity of reaching neural models interpretability. The 
“counterfactual” attention distributions were generated at first by random permutations, while the 

“adversarial” one was calculated as a maximally different distribution in which the output 

prediction remains unchanged.  

They assessed a BiLSTM and a feedforward encoder, both with two types of attention mechanism, 
on a number of binary classification tasks, question answering, and natural language inference, 

and found that these properties were not fulfilled by most models except one for the MIMIC 

(Johnson et al., 2016) classification task (for the positive outcomes subclass). 

Firstly, correlation analysis revealed that attention weights don’t agree with standard feature 

importance scores in a strong or consistent way, albeit correlations between attention weights and 

gradient- or LOO-scores were much stronger for feedforward encoder than for BiLSTM. 

Secondly, “adversarial” attention indeed yielded essentially unchanged predictions quite 

frequently, which led the authors to the conclusion that equally plausible explanations were 
possible for the same output, and hence none of them are reveal causal relation (that a model made 

a certain prediction because it paid attention to inputs in a particular way). 

These considerations persuaded the authors that using attention to explain the models’ prediction 

can be misleading as it doesn’t provide meaningful insights; therefore, no indication of why a 
model made the prediction can be made and no “faithful” explanation can be created. They 

attributed the lack of interpretability potential of attention to the fact that representations encode 
arbitrary interactions between inputs and using attention weights of such representations cannot 

explain the output from the perspective of the input. 

Another possible explanation was that only a few (“top-k”) features out of those used by a model 
show strong agreement with the feature importance measures. However, separating them would 

be complicated.  



Importantly, this claim was only made for RNN-based models with attention layer(s), and future 

investigation was required for attention-centered Transformer models. Also, they noted that not 
all NLP tasks equally crave explanations: specifically, that interpretability is more crucial for 

classification tasks than for translation. This consideration may motivate our attention to the 
explainability of authorship attribution models since AA essentially belongs to the domain of 

classification problems.  

4.2.2 Justification of attention explainability 

Wiegreffe and Pinter (2019) joined the discussion with an opposite opinion explicitly conveyed 
by the title, “Attention is not Explanation”. They asserted that the explanation potential of attention 

depends on the definition of explanation and additional experiments are required to properly assess 

it, involving more layers of the model.  

They agreed with the conclusion that attention fails to meet the criterion of consistency (i) and that 

inconsistent correlation with other interpretability techniques questions the validity of such 
explanations. However, they proposed four new tests instead of permuted and “adversarial” 

attention for criterion (ii), namely: a baseline with uniform attention to test the attention's 
contribution to the model; an examination of expected variance using multiple random input seeds; 

a diagnostic tool that used attention distributions as frozen weights in a multi-layered perceptron; 

a model-consistent end-to-end training protocol for adversarial attention.  

According to the authors, key assumptions of the original experiment leave too much freedom in 

the setup for two main reasons. First of all, Jain and Wallace (2019) detached attention output 
prediction from the parameters used to compute them, and treat each attention score as independent 

of the model, which disregards the model itself. The explainability of attention weights is based 

on the fact that the model was trained to yield such weights.  

The computation of “adversarial” distribution was also performed independently for different 
attention weights. Besides, “Existence does not Entail Exclusivity” (Wiegreffe and Pinter, 2019), 

which implies that providing an explanation instead of a comprehensive list of all valid 
explanations, as demanded by Jain and Wallace, does not make the result “unfaithful”. The final 

layer of LSTM produces complex outputs that can be aggregated and projected in different ways, 
and in case of a binary classification task, the demand for a single (or complete) explanation 

becomes even less justified as the attention matrix is reduced to a scalar attributed to one of two 
classes, and many dimensions corresponding to attention weights of certain inputs are not 

significant for this particular classification. This claim corresponds with Jain and Wallace’s  

hypothesis that only top-k attention weights are important.  

Testing techniques  

Wiegreffe and Pinter tested the validity of using attention for classification by comparing it to a 
simple baseline with uniform distribution of attention and discovered that in some datasets they 

do not perform better. Then they assessed the variance of attention weights by multiple training 

sequences. 

For the third test, they used pre-trained weights from the attention-enabled LSTM model in a 

different model without recurrence (specifically, a multi-layered perceptron, MLP). The pre-
trained attention scores performed well compared to MLPs with weights being uniformly 

distributed or learned from scratch, which suggested that attention could bear some model-

independent interpretation of input tokens for a particular task on which they were trained.  



Finally, they proposed a model-consistent protocol for training «adversarial» attention. This 

technique utilized a modified loss function that considered the distance from original attention 
scores. In cases where «adversarial» attention could lead to similar prediction output, the produced 

weights differed in a less extreme way compared to the original solution (Jain and Wallace, 2019). 
Attention scores obtained using this protocol did not perform as good as MLP weights, showing 

that attention distributions with the same output may not be equally powerful as explanations of 
the model, and it is the training on a specific task that infuses them with explainability potential. 

Thus, Jain and Wallace’s claim that two explanations with the same output are equally possible 

doesn’t seem so persuasive in light of this finding.  

All these tests can in principle be used for assessing the explainability of a particular attention-

based model.  

Attention and Explainability definitions 

Another contribution of the Wiegreffe and Pinter’s work is a reflection on the nature of 

explainability, showing that the human-centered understanding of explanations does not require a 
unique and faithful rationale, and the plausibility of potential explanations should be assessed by 

human experts. They warn against confusing the demand for explainability with that of 
transparency (Lipton, 2016)  and interpretability (Rudin, 2018), which are barely achievable for 

deep learning models due to their vast and complex structure. Demand for a single comprehensible 
explanation of which attention weights pattern leads to a certain output is in fact a demand for 

transparency, which is valid but likely unfulfillable. 

4.2.3 Attention explanations in NLP transformers 

The aforementioned techniques for explaining the models’ performance based on the attention 
weights were tested for architectures that involve some layers of attention while based on LSTM 

or RNN architecture. Meanwhile, the Transformer models are centered around multi-layered 

attention, and specific explainability techniques may be used for them. 

Vig and Belnikov (2019) analyzed the attention structure of a Transformer language model, 

namely a small GPT-2, and concluded that different features are grasped by attention on different 
layers. In order to consider the pattern of certain syntactic or semantic relations in the input, 

particular layers of attention need to be used.  

Vashishth et al. (2019) attempted to give a more systematic account of information conveyed by 
attention layers in different NLP tasks to find out in which cases attention weights can be 

considered explanations (in support of Wiegreffe and Pinter (2019)) and in which cases they 
cannot (in line with Jain and Wallace (2019)). They differentiated between single-sequence (such 

as classification) in which attention «mimics gating units» and «pair-sequence» tasks (such as NLI 
and translation) and claimed that attention weights only have sufficient explanatory power for the 
latter. However, this paper aroused certain criticism as this distinction did not fully correspond 

with other findings in the domain. 

A detailed account of the variety of functions performed by BERT attention heads is given in 
(Jawahar et al., 2019). They prove the presence of syntax-aware attention by finding specific heads 

attending to words with particular syntactic roles, such as direct objects of verbs, objects of 
prepositions, determiners of nouns, and use probing classifiers that take attention maps as input to 

evaluate their accuracy, which in some heads exceeds 75%.  

 



They extract attention maps produced by BERT for 1000 random excerpts from Wikipedia articles. 

First, general surface-level patterns are examined, such as next- or same-token attention. After 

that, the potential of different heads to predict the word in a certain syntactic role is observed. 

4.2.4 Transformer explanations beyond attention 

Most methods overviewed above employ attention scores (i.e. products of queries and keys) 

ignoring other components of attention (queries, keys, and values separately) and other parts of 
the model. Hence, novel methods for transformer explainability can make use of these additional 

components.  

Two such methods, attention flow and rollout method, were suggested by Abnar and Zuidema. 
(2020). The former involved the max-flow along the pair-wise attention graph and showed a 

considerably high correlation with gradient-based methods, but was computationally expensive. 
The latter made a linearity assumption for the layer-wise attention combinations, which led to 

erroneous emphasis on some tokens. However, it was adopted by other researchers (Dosovitskiy 

et al., 2020).  

Another method was recently proposed by Chefer et al. (2021) who used Deep Taylor 

Decomposition principle to obtain relevancy scores. Their solution was designed for transformer-

based computer vision tasks but was also tested for text classifications.  

 

5. Model for authorship verification  
In this chapter, we briefly introduce the problem that shaped the authorship verification task that 
our model is designed to solve and formalize the task. We then provide a more detailed analysis 

of the fan-fiction dataset that is being used, proceed with motivating the choice of a particular 
architecture and model for fine-tuning and introduce the baselines. After that, a detailed account 

of our implementation of the BERT segment classification model is provided with emphasis on 
the model hyperparameters that were investigated and altered compared to the originally suggested 

architecture. Finally, we introduce the results for different input representations and model sizes, 
compare them with existing implementations and reflect on the potential trade-offs, including the 

feasibility of using a larger model in practical applications. Finally, we outline potential paths for 

further research. 

 

5.1 Model task overview 

We begin our description of the attributional problem addressed in this research, the corresponding 

dataset, and the model we developed to tackle it, with a brief overview of the motivation behind 

it. 

The rationale is described in detail in Kestemont et al. (2021). The primary goal of the recent PAN 
authorship identification tracks is declared as the struggle to verify the hypothesis of individual 

authors’ stylome, as formulated by van Halteren (van Halteren, 2005). According to it, each author 
— or, in a wider sense, each writing individual — has an individual stylistic footprint that can be 

retrieved when a sufficient sample of one’s writing is present. Despite a plethora of successful 
experiments in authorship attribution, these results still cannot be generalized to verify this 



hypothesis (Kestemont et al., 2021), with one of the major obstacles being the ad-hoc character of 

these experiments: a particular model can reliably discriminate between authors in a small group 
and tailor to their writing idiosyncrasies. Widening the model’s success to an open-set case, 

especially that of hundreds or thousands of authors, however, is supposed to be more challenging, 
as it requires learning more general traits that separate individual styles without overfitting on 

particular authors’ data.  

These considerations motivated the creation of the largest to-date corpus specifically designed for 
the authorship identification tasks in order to challenge the generalization capacity of existing 

architecture and enable the development of more complex deep learning models. Given the size of 
this dataset and the fact that it has been specifically designed to assess the latest techniques of 

authorship identification, we believe it to be the most suitable for training the Transformer-based 
model. Another advantage of this choice is the potential ethical importance of the task, namely, 

detecting plagiarism and fraud to protect independent fan-fiction writers. 

Given the limited number of texts available for each author, the demand for a large dataset 

motivated the involvement of a substantial number of authors. In such setting, solving the 
authorship attribution problem straight away may be perplexing, because locating the text 

accurately in the multi-dimensional space of several thousand authors is a non-trivial task. This 
becomes increasingly difficult in the open-set problem where the test set may include texts written 

by previously unrepresented authors. In practice, many attributional experiments are indeed 
performed in the open-set format, since the attributional hypothesis is typically based on extra-

linguistic evidence and is rarely comprehensive. It is often re-formulated based on the results of 
the attribution procedure: if the target group of texts didn’t show sufficient proximity to any of the 

a priori author classes, it can be concluded that these texts belong to an unrepresented class, and 
new candidate authors may be added. Differentiating between sufficient and insufficient proximity 

is complicated in a large space of authors, such as the one in our problem. 

Therefore, the last three PAN tracks were concentrated on authorship verification, and the dataset 
was tailored to that problem. Authorship verification is essentially a binary classification problem, 

in which the goal is to detect, for each given pair of texts, whether they are written by the same 

author or not. Formally, it can be formulated as an approximation of the target function U: (#6, 

#V) → {W, X}, where #6	denotes a set of documents, all created by the same author, and	#V	
represents a document of unknown origin. The function takes the value T if the latter also belongs 

to this set of texts written by one author, and F otherwise. For the task in question, the case of |#6|	
= 1 was considered, that is, the function only accepted a pair of texts. 

Thus, for the current task, the goal of the model is to correctly detect whether each pair of excerpts 

from fan-fiction literary texts is written by the same author or not.  

 

5.2 The PAN fanfiction dataset 

The PAN 2018 and PAN 2020 datasets are overviewed in Section 2.4. Here, we will provide a 

more in-depth analysis of the “small” variant of the PAN 2020 set.  

Total # 
of Texts 

Same/Different 
Author  

Number of 
Fandoms 

Max length, 
Characters 

Min length, 
Characters 

Avg length, 
Characters 

52601 27834/24767 1600 296887 20670 21425 

Table 5.1: The details of PAN 2020 authorship verification dataset  



A summary of some basic properties of this dataset is provided in Table 5.1. The dataset includes 

52601 texts, most of them being close to the average length in characters (around 21500), but some 
featuring a significantly bigger length. The number of Same Author pairs is slightly larger than 

that of Different Author pairs and constitutes approximately 52.9%, which can be taken as a trivial 

majority classifier baseline accuracy. 

Despite having a much smaller sample of authors, the dataset has the same number of fandoms, or 

topics, as the “large” counterpart – that is, 1600. The distribution of texts across these fandoms is 
not equal: a rather small share of fandoms is substantially more popular, followed by a large tail 

of fandoms with around 50 texts per fandom. The distribution is presented in Figure 5.1.  

 
Figure 5.1: Distribution of the fandoms. Every 20th fandom name is plotted on the X axis to exemplify the relative 

popularity of different fandoms. 

The exact number of texts for the 20 most productive fandoms is presented in Table 5.2.  

Doctor Who  312 

Avengers  280 

Twilight  275 

Criminal Minds  270  

Supernatural  267 

X-Men: The Movie  266 

Pirates of the Caribbean  266  

Harry Potter  265  

Once Upon a Time  265  

Vampire Diaries  264  

Hetalia - Axis Powers  262  

Lord of the Rings  262  

Power Rangers  262  



Legend of Zelda  259  

Fruits Basket  257  

Pokémon  254  

Sonic the Hedgehog  253  

Sherlock  250 

Star Wars  247 

Yu-Gi-Oh  245  

Table 5.2 Names of the most frequently occurring fandoms in the “small” version of PAN 2020 dataset 

The dataset consists of two files, with the first one containing the pair of texts and the information 
about the fandoms they are related to, and the second one providing the author IDs and the label, 

which has a binary value. The label takes the “True” value if both texts are written by the same 
author and the “False” value if the authors are different. The goal of the model is therefore not to 

identify particular authors of a given pair, but to predict that label.  

In order to ensure that the dataset can be split into training and test subsets properly, we had to 
check that there is no excessive number of recurring instances. It was observed that, indeed, there 

are some texts that appear twice or more times, but these are only texts from the same-author pair. 
This re-occurrence can be explained by the procedure used to create the same-author subset of the 

corpus.  

The same-author pairs were created by building all possible combinations of 2 out of n Z%0[ – that 

is, all pairings of texts within the author’s subset, – without allowing the two texts to belong to the 

same fandom. However, the “small” dataset only contains a subset of pairs, and we typically 
observe 2 to 4 occurrences of each text, while many texts from same-author pairs still only appear 

once.  

Besides, in many cases, abstracts are taken from different parts of the same text. They may overlap, 

but the beginnings and endings of such texts are different. This is done whenever the source texts 

are longer than 21,000 characters.  

For different-author pairs, no repetitions that start from the beginning of the text were observed. It 

makes sense given a much large space from which different-author pairs can be drawn. 

During the model design phase, the dataset was shuffled and split into the test set of size 5261 
(10%), the validation set of size 4734 (10% of the remaining data), and the training set of size 

42606. The validation set was used for tuning hyperparameters and comparing specific 
architectures. When the model design was complete, the model was trained and evaluated once 

again on a newly shuffled dataset with the test set of size 7601 and the training set of size 45000.  

 

5.3 The model implementation 

5.3.1 Recent approaches to Transformer-based AA 

Transformer models, particularly those pre-trained for language modeling tasks, were shown to 
perform well on multiple NLP tasks with some basic fine-tuning or with barely any additional 

training at all, as is the case with GPT-2 (Radford et al., 2019).  



Their ability to capture long-distance dependencies and to learn syntactic relationships suggests 

that they can be capable of learning such a complex notion as individual style as long as it can be 
formalized in terms of particular lexical choices, punctuation specificities, syntactic preferences, 

and frequent patterns. They may therefore be able to use this ability to differentiate those individual 

styles in the task of authorship verification.  

Indeed, Transformers have already been used for authorship attribution a few times with different 

results. While BertAA (Fabien et al., 2020) showed state-of-the-art performance on some datasets, 
it was outperformed by a CNN baseline on others. Their experiments also showed that combining 

BERT features with supplementary quantitative features is not necessary as it causes a rather 
moderate improvement in performance. Comparable results were achieved by a standard fine-

tuned BERT model (Devlin et al., 2019) that performed well in the cross-topic tasks but failed to 

overcome the baseline in the cross-fandom application.  

Additionally, three Transformer models were applied to the PAN 2020 dataset with different 
degrees of success (Kestemont et al., 2020; 2021). One of them was a Siamese network that 

compared BERT embeddings of both texts from the pair (Tyo et al., 2021). Another model utilized 
the Longformer model in order to analyze longer excerpts from both texts, each including 511 

tokens (Ordoñez et al., 2020). In these two cases, however, the models failed to outperform the 
baselines on the test dataset, which is particularly striking for the Longformer model that achieved 

accuracy well over 90% on the validation set (the one available to the developers, as opposed to 
the test dataset used during the competition to evaluate and rank the models). Nonetheless, the 

third model, which made use of an ensemble of BERT models and then classified their averaged 
prediction (Peng et al., 2021), achieved consistently high results on both sets during PAN 2021 

track: it was ranked 3rd according to the F1 score and 6th according to the overall score, which also 
penalized low-confidence predictions. Moreover, it achieved the highest F1 score among the 

models trained on the “small” dataset.  

Thus, BERT turns out to be among the most commonly used Transformer-based language models 
that are being fine-tuned to perform authorship attribution. Choosing it as the core of our 

architecture seems justified by the impressive performance of some existing models that are based 
on it, and in our experiments, we follow the most successful to-date architecture for BERT-based 

authorship verification, that is, the one suggested by Peng et al. (2021).  

Baseline selection 

Several baseline classifiers have been released specifically for the PAN competitions. 

The one provided for AA task in PAN 2018 is based on character n-gram features and uses SVM 

with a linear kernel. For PAN 2019, a slightly adjusted version of the SVM classifier with character 

trigram input was used.  

A “naïve” baseline classifier (Kestemont et al., 2016) makes use of cosine similarities between 
character tetragram text representations normalized by TF-IDF. It bears conceptual resemblance 

to the Stylo (Eder et al., 2016) classifier module, with the exception that it uses larger n-grams and 
is run using the sklearn library on Python, rather than R. The “naïve” classifier can be used both 

for attribution and verification, but it gains significantly higher scores in the second task of PAN 

(F1 ~0.79 vs ~0.55) (Kestemont et al., 2020). 

A “compression” baseline calculates the cross-entropy of a second text in the pair using the 

prediction by a partial matching model of the first text in the pair and then uses the values as input 



for the logistic regression classifier (Halvani and Graner, 2018). This baseline is based on the third-

best model suggested at PAN 2018 and can also be used for the verification task.  

Stylo (Eder et al., 2016) has been used as a baseline for several AA works, but its interface is better 
suited for attributing texts in a smaller space of candidate authors. Therefore, replicating the same 

authorship verification experiment using Stylo may require substantial processing of the data and 

classifying subsets of the dataset separately.   

For the current experiment, we used the “naïve” classifier as the baseline and generated the 

explanations for that baseline as well.  

5.3.2 BERT segment classification model 

For this task, we adopted the architecture suggested by Peng et al. (2021). We provide a 
generalized description of that architecture, in which various hyperparameters and tools can be 

utilized to achieve results depending on the problem being tackled. The schema of that model is 

provided in Figure 5.2.  

 

Figure 5.2: Architecture diagram for the model with original classifier module (from Peng et al. (2019))  

It revolves around splitting the two texts from the pair into segments and creating a new set of S 

pairs by combining them. For i-th segment from text 1, a corresponding i-th segment from text 2 
is juxtaposed. If one or both texts were split into more than S parts, the remaining segments were 

left aside, so that the number of segments per text is constant in the dataset. 



After that, the segments are tokenized and padded to have equal lengths across each segment in 

each pair, and the BERT model is used to produce embedding representations. Embeddings of 
CLS tokens, which are assumed to represent the information about the pair of segments, are 

extracted from the BERT output for each pair of segments and stacked in a two-dimensional tensor 
of size (S, 768), where S is the number of segments per text. The total size of the model’s output 

for a given dataset will be (N, S, 768), where N is the number of instances in the dataset. 

Finally, the tensor is averaged along dimension 0 to obtain a tensor of shape (N, 768). A simple 
FFNN classifier with two hidden layers of size 16 and 2 respectively connected with ReLU 

activation function is then used, and, after passing the output through the softmax activation, the 

model produces the probabilities for each class. 

Such approach enables bypassing the central limitation of architectures based on BERT, namely 
the limited input length that can be at most 512 tokens – that is, 256 tokens for each text in the 

pair, including separation and class tokens. The use of multiple segments allows the model to still 

cover a large excerpt of the text while not exceeding the maximal input length. 

We also point out additional benefits of the use of segments that can prove useful in authorship 

attribution. Firstly, the proportion of segments for each class prediction can be used as an indicator 
of the model’s confidence, and a more reliable one than the class probabilities, for when the logits 

take extremely high and low values, their changes are not reflected in the final prediction. For 

particular practical applications, a threshold can be established to filter out unreliable predictions.  

Secondly, the outputs of per-segment attribution can be utilized for dynamic analysis of co-
authorship, in which we observe the parts of the text that are more likely to be written by a 

particular author out of a set of co-authors. Such type of analysis is implemented in existing AA 
solutions, such as Stylo package, and is frequently used for analyzing long co-authored literary 

texts. 

5.3.3 BERT segment classification implementation 

For the BERT model, Peng et al. used a package named bert4keras that utilizes Tensorflow 

backend. For the final classifier, a Keras sequential model was used. The potential downside of 
that approach is in the structure of dependencies that may lead to a versions conflict: to date, the 

last version of Tensorflow that works with that implementation (1.15) is unsupported by many 
versions of CUDA on local devices, as well as by multiple packages for explaining the predictions. 

Besides, both bert4keras package and the implementation of the model by Peng et al. lack English 

documentation and comments, which further complicates replication of their experiment. 

Therefore, it was decided to implement the model with similar architecture from scratch, adopting 

only the snippet for splitting texts from the bert4keras snippets module. Our solution benefits from 
being implemented with a widely adopted HuggingFace API (Wolf et al., 2020), including data 
preprocessing with HuggingFace Datasets package, loading the tokenizer and the pre-trained 

BERT model with a sequence classification head from the HuggingFace Transformers library, and 
using the Trainer tool in combination with PyTorch backend to train the model. The final classifier 

was also implemented using PyTorch in order to reduce the number of dependencies.  

Tokenizer 

The input is being tokenized with the standard pre-trained BertTokenizer for the “bert-base-cased” 

model – that is, the regular-sized version of BERT that takes the casing of the input into account.  



In general, BERT tokenizer in the Transformers library is based on a WordPiece algorithm for 

subword tokenization that had been proposed by Schuster and Nakajima (2012). Such classifier is 
initialized with all characters from the training data and learns the merging rules based on the 

probability of the combined sequence in the training data being greater than the probability of each 
subsequence combined. In the case of BertTokenizer, the tokenizer is already pre-trained like the 

BERT itself, using the same dataset. We are not performing any additional training since the 
tokenizer was exposed to a giant corpus of English language during the initial procedure and is, 

therefore, a reliable tool for splitting English literary texts.  

Since the “bert-base-cased” model considers the casing, the corresponding tokenizer also treats 
differently cased words in a dissimilar way, most commonly assigning a word-level token to a 

word with conventional casing (the first letter capitalized in proper nouns, while for other words 
tokens are assigned to both capitalized and not-capitalized versions). Non-standard way of writing 

(such as fully capitalized words) is handled by subword tokens, which can be character-level n-

grams or some affixes.  

Of course, the vocabulary of subword tokens is not limited to those accounting for capitalization. 
There are no strict patterns, since the vocabulary was learned to optimize the performance: while 

some heavily affixed words are encoded with a single token, others are processed into morphemes 
or quasi-morphemes. The tokenizer does not necessarily follow grammatical rules of word 

formation: for example, the word “pleasingly” is tokenized into “plea”, “sing” and “ly”. 

Other words that are typically decomposed into subword tokens are fandom-specific or otherwise 
unusual names that were probably previously unseen by the tokenizer (“R” + “ino” + “a”). Same 

stands for all typographic mistakes: “lengthy” is processed as a concatenation of tokens “le” + 
“ng” + “ht” + “y”. Subword tokens are marked by a special “##” sign that allows the model to treat 

sequences of subword units in a specific way and avoid imposing excessive attention on their 

word-level combination. 

BertTokenizer, as a variety of PreTrainedTokenizer, encodes input, token-type, and attention mask 
IDs simultaneously and is capable of detecting cases when the input is a pair of sequences. If this 

is the case, the input is encoded with an additional SEP token that separates the two sequences: 
[CLS] Sequence A [SEP] Sequence B [SEP]. Besides, token-type IDs are automatically added to 

indicate the sequence to which each token belongs.  

Preprocessing 

In our model, the tokenizer was applied to the first S segments of both texts, with S = 30. 
Segmentation was performed with help of the bert4keras snippet. It takes a list of separators and a 

maximal length value and concatenates the split sequences until they are about to exceed the 
maximal length. If a single sequence is longer than the maximal length, it is kept as is without 

truncation. After segmentation, the resulting number of segments in each text of the pair is 
compared with S. If larger, the remaining chunk is not passed through the tokenizer. If smaller, the 

list of segments is replicated 30 times until the requirement is met with certainty, and the first 30 

segments from the resulting list are directed to the tokenizer.   

The value was initially set to S = 30 following the experimental setup of Peng et al., but a more 

detailed investigation justified that choice.  

We performed segmentation with two maximal length thresholds: 510 characters (as in Peng et al., 

ensuring that the majority of segment pairs reliably fall within the limit of 255 tokens after 
tokenization) and 750 characters (for the 512 tokens limit after tokenization), and the number of 



texts that had insufficient segments grew substantially when S was > 30. For segments with a 

maximal length of 750 characters, the number of pairs in which one or both texts didn’t have 30 
segments was 207 out of 52601. When S was increased to 31, the number of texts that failed to 

meet this requirement was 20366.  

Such a striking difference is motivated by the fact that most texts have a very similar length of 
around 21000 characters. Therefore, S = 30 was shown to be a perfect compromise. It is the largest 

value that still enabled the vast majority of texts to be segmented without further augmentation 
needed, but still large enough so that the texts with many segments are not severely 

underrepresented after preprocessing.  

Interestingly, the thresholds for the maximal segment length in characters are also rather tight. We 

have selected 750 as a compromise number: for segments of length 510, 64 pairs required 
augmentation, and after increasing the threshold to 750 the value grew to 207 pairs, which was 

still not a large percentage of data overall. However, after increasing the maximal length by mere 
10 characters, over 2100 texts would require augmentation, and be the number increased to 800, 

the value would exceed 48000 texts.  

Within these limits, nonetheless, we could adjust the preprocessing to ensure a more uniform 
length of segments. In the original implementation, Peng et al. used a limited set of separators (full 

stops, question and exclamation marks). This resulted in the separator being unable to split many 
texts into the required number of segments. After studying these examples, it was discovered that 

some authors favored separating sentences with symbols other than full stops and exclamation 
marks and used semicolons. To properly account for that idiosyncrasy and include such sentences 

without truncation, we added semicolons to the list of separators. That enabled us to reduce that 
number of augmented pairs from 64 to 59 in case of 510-character sequences and from 207 to 195 

in case of 750-character ones.  

When passing the segments to the tokenizer, the maximal length of the resulting encoded input 

was originally set to 255 tokens and then increased to 512 tokens. Segments that exceeded this 

length were truncated, and those shorter than the limit were padded with PAD tokens.  

Each pair of segments was assigned the same label as the text from which it was excerpted. 

Datasets were converted to Huggingface Datasets format with the order of segments within one 

text preserved.   

Fine-tuning  

The pre-trained model used in our implementation is “bert-base-cased” from 
AutoModelForSequenceClassification with the number of classes = 2, which is essentially a BERT 

transformer model with a head for sequence classification. A head, in Transformer API 
terminology, is an additional wrapper on top of the base model class that adds extra output layers 

on top of the Transformer output (Wolf et al., 2020), which is a layer of raw hidden states. The 
layers used for the initial pre-training of BERT – that is, masked language modeling and next 

sentence prediction (Devlin et al., 2019), are also implemented as heads.  

This model matches the first component of the proposed architecture as it enables fine-tuning 
BERT embeddings for our specific classification problem. We are using a standard BERTbase 
configuration (L=12, H=768, A=12) where L denotes the number of hidden layers in the 
Transformer encoder, H represents the dimensionality of hidden layers, and A stands for the 

number of attention heads. The model is also initialized with an absolute type of position 

embeddings and the dropout probability for the hidden layer = 0.1. 



Standard input model 

For the fine-tuning stage, data was supplied in shuffled batches with batch_size = 30. PyTorch 

implementation of AdamW was used as the optimizer. AdamW is an Adam algorithm with weight 
decay (Loshchilov and Hutter, 2017). Initially, training was performed with the default learning 

rate of 5e-5, but the model performance did not increase over epochs, and the learning rate was 
decreased to 2e-5 in order to facilitate the learning process. The training was performed both using 

the Trainer API from the Huggingface module and using the native PyTorch training loop and 

achieved identical results.  

In all training sessions, we used 5 epochs and evaluated the model’s performance after each epoch 
to ensure that further training is justified. We have chosen that number following the Peng et al. 

(2019 approach and the recommendation of Sun et al. (2020) to keep the number of training epochs 
small. We observed that the best results, indeed, were achieved after training for 5 epochs. 

Moreover, additional training for 2 more epochs did not bring a significant improvement in 
accuracy and increased the model’s eval loss, which suggests that the model may be overfitted 

with further training.  

Training with a total number of instances being 4 ∙ ] = 1.35M typically took 27 hours on a local 

CUDA-enabled device using NVIDIA RTX3080 with 16GB VRAM. 

Extended input model 

Along with assessing the general capability of the architecture in question, investigation of the 
importance of the segment-wise input size on the model’s overall performance. We exploited the 

longer segments with a maximal length of 750 characters and used a tokenizer with an extended 
input length limit of 512 tokens. The data was supplied in smaller chunks of 15 instances to comply 

with the increased memory requirement while preserving the integrity of segmented texts so that 
exactly two batches incorporate the segments from one text. The data was otherwise processed 

similarly to that in the base model, and the model was trained in the same fashion with identical 

hyperparameters. Training with the same resources took roughly 70 hours. 

The fine-tuned models were evaluated using accuracy and F1 scores, both in the built-in Trainer 

evaluator function and native PyTorch loop. The results were identical.  

In Table 5.3, we provide the outcomes for both standard and extended input models, including 
those after epoch 5, that were later used to produce segment embeddings, and results after epoch 

4.  

Model Binary accuracy F1 

Untuned BERT 0.566 0.551 

Standard input (epoch 5) 0.852 0.847 
Standard input (epoch 4) 0.840 0.843 

Extended input (epoch 5) 0.876 0.872 
Extended input (epoch 4) 0.872 0.869 

Table 5.3: Performance of the model before and after fine-tuning for separate segments (before averaging)  

It can be seen that the model without fine-tuning is not capable of performing substantially above 
the chance level (which is 0.529). Both models perform better on the test set after 5 epochs 

compared to 4. The model with extended input, however, shows a noticeable advantage of roughly 

2.5% over that with standard input size.   



5.3.4 Obtaining embeddings 

When the fine-tuning was complete, the model was used to produce segment embeddings for both 
train and test datasets. Two types of representations were obtained: firstly, we saved the CLS token 

embeddings from the last, 12th hidden layer of BERT. Secondly, we stacked and summed the 
embeddings of CLS tokens from the last four hidden layers, following the findings of Devlin et al. 

(2019) that showed that such representation may perform better in some tasks. Lastly, we obtained 
the logits from the classifier layer. All types of embeddings were converted in two shapes: a 

squeezed set of features with size (N, S, H) with N = 7601 for test and 45000 for train dataset, S = 
30, and H = 768, and a flattened set with size (N * S, H) where N * S resulted in 228080 instances 

for test and 1350000 instances for the train one. Both sets were supplemented with label sets of 

corresponding sizes: N for the squeezed and N * S for the flattened set. 

Obtaining embeddings for the train dataset texts (N = 45000) took roughly 180 minutes for the 

standard input model and 450 minutes for the extended input model.   

The flattened set was created to evaluate the model’s per-segment performance without averaging 

and was also required to analyze the embeddings and produce their visualizations. It was not used 

in any of the complete model implementations. 

5.3.5 Final layer classifier 

The classifier was implanted using a PyTorch Sequential model class. For the flattened dataset, a 

simple classifier with two hidden layers of sizes 16 and 2 linked with a ReLU activation function 
was used. For the squeezed dataset, adaptive average pooling was applied along dimension 0 in 

order to average the embeddings for all 30 input segments. After that, the averaged embedding 
was flattened to reduce the dimensionality and passed through identical hidden layers. The output 

of the model is therefore a tensor of size (1, 2) with the class prediction logits. This model was 
chosen as the final solution in our model and was used in the prediction pipeline that was passed 

to various explanation modules. It will be further referred to as FinalNetAvg. For the per-segment 
logits, two classifiers were used: one of them was a classifier with adaptive average pooling that 

used a 2-node hidden layer, while another one did not use any hidden layers at all and produced 
the output as the plain average of the 30 input logits. The latter, therefore, was not a model per se 

and did not require any training.  

The classifiers with hidden layers were trained in a native PyTorch loop with batch_size = 30 using 
Adam optimizer and learning rate = 1e-4 selected using a learning rate optimization algorithm. 

The models were trained for 10 epochs, though peak values of the eval accuracy could already be 
achieved after 5 epochs. These findings do not quite agree with the experimental setup of Peng et 

al., in which the final classifier was trained for 400 epochs with a higher learning rate (a default 
Keras Adam optimizer learning rate of 1e-3). Without a consistent decrease in the training loss 

function score and improvement of the evaluation results, excessive training did not seem 

necessary. 

 

5.4 Model results 

Table 5.4 shows the results of our main model that has been chosen for further experiments 
compared to the original architecture of Peng et al. It can be noted that a gap of 0.9% exists for the 

F1 score. However, the scores fall between the two values reported by the authors: Val-1 scores 



for the test set of size 15780 and Val-2 for the test set of size 7601, which is being used in our 

evaluation as well.  

Model Binary accuracy F1 AUC 

Standard Input Bert + 

FinalNetAvg 

0.933 0.936 0.933 

Extended Input Bert 

CLS + FinalNetAvg 

0.942 0.944 0.943 

Peng et al. Val-2 

bert4keras + Keras 

N/A 0.945 0.944 

Peng et al. Val-1 

bert4keras + Keras 

N/A 0.926 0.920 

Naïve baseline  N/A 0.786 0.796 

Table 5.4: Performance of our model compared to the model of Peng et al. (2019 and the baseline 

Table 5.5 provides the comparison of the model of our choice with different architectures of the 
final classifier and different types of input embeddings – namely, produced by standard and 

extended input BERT models. Moreover, we compared the model’s performance with the 
classifier layer receiving different inputs: embeddings of the last layer CLS token, sum of 

embeddings of CLS tokens from four last layers, and plain logits. 

Model Binary accuracy F1 

Standard Input Bert CLS + FinalNetAvg 0.933 0.936 

Extended Input Bert CLS + FinalNetAvg 0.942 0.944 
Extended Input Bert 4-layer CLS + 

FinalNetAvg 

0.935 0.937 

Extended Input Bert logits + 2-node Avg 0.942 0.944 
Extended Input Bert logits + plain average 0.941 0.943 

Table 5.5: Performance of our model in different sizes and with different processing of embeddings 

It can be observed that, even though the growth in performance for the extended input model is 

still noticeable, it is considerably smaller for the averaged text-level prediction compared to the 

segment-level one: the growth of F1 score is only 0.8% as opposed to 2.5%.  

The results also show that the model with the last-layer CLS token performs best (0.942/0.944) on 
par with the one classifying averaged logits, while the sum of logits shows a noticeably worse 

performance (0.935/0.937). For averaging logits, we tried both training a 2-node classifier and 
using plain averaging. Although the performance was very similar, plain averaging results were 

marginally lower by 0.1%, and some trained instances of the 2-node classifier reached even better 
results (up to 0.944/0.946), though such scores were irreplicable and were most likely due to 

overfitting on specific evaluation instances, and therefore were not further used for the final 

evaluation on the test dataset.  

 

5.5 Model discussion  

These results show that, in general, averaged logits can be used for classification as is, without 

training any additional dense layers, since the decline in performance is insignificant. 



Considering the choice of the model size, the accuracy gain on the text level after increasing the 

size was noticeable (0.9%), but considerably smaller than that of single segments (2.9%). Given 
the dramatically longer training time (64 hours instead of 26) and the need to separate the segments 

from one text into two batches, the trade-off between time and prediction quality can be resolved 

differently depending on the goals of a particular experiment and on the type of target texts. 

For longer texts, which can be separated into 30 or even more segments, using a faster and lighter 

model seems to be preferable, since averaging multiple predictions does not depend so strongly on 
the input size, and both training and generating embedding representation take significantly more 

time for the extended input model with an almost threefold increase. For smaller texts, particularly 
those that constitute only one segment, the choice can be made in favor of better quality of each 

prediction, since the options for averaging are limited and increasing the input size becomes the 

most plausible way to reach higher accuracy. 

 

6. Final classifier interpretation 
For generating explanations, we adopted a top-down approach, which assumes moving from the 
final layer of the model, which is the text-level classifier, down to the segment-level classifier and 

then to the internal structure of the BERT model, namely to the attention.  

In this section, we use LIME explanations to analyze the behavior of the final classification model 
that uses the embeddings of segments as input and outputs class predictions. We then analyze the 

CLS embeddings that were obtained as the output of our fine-tuned BERT model and are now 
used as classifier input, observe how are they treated by the classifier and compare their saliency 

to the frequency of their appearing in LIME explanations.  

As a result, we aim at answering whether the classifier in this setting is learning some new 

information to make its final prediction, or these predictions are already contained in the input 
embeddings as a result of fine-tuning, and by averaging the input from each sequence we can 

already provide a sufficiently accurate explanation. 

 

6.1 LIME-tabular explanations overview 

We used lime-tabular, a version of the LIME explainer that can accept two-dimensional input, 
such as the embeddings in question. Since the standard version of the classifier uses three-

dimensional input (4 ∙ 30 ∙ 768), we had to consider two separate types of explanations: those 
generated for a single pair of sequences (one of 30 elements along dimension 2) and the one using 

averaged output (where the mean value is calculated along dimension 2). 



 

 

For single pairs of sequences, we generated explanations for several settings: two adjacent pairs 
of sequences, two pairs from one text, and two pairs from random texts. For each case, 
explanations were computed for the 10 most important feature-value combinations, which is the 

standard mode for lime-tabular. Due to a huge number of candidate features (768), the difference 
in weights between features in explanations is subtle. Weights over 0.1 were only observed 

sporadically, while in most cases feature #1 had a weight no bigger than 0.08. Nonetheless, it was 
observed that the top 10 most important features overlap in different explanations. The number of 

common features is highest for adjacent segments (50%), but even across non-adjacent segments 
and segments from texts with different labels, there was a number of overlapping features (2–3 in 

our observations). Also, some features may also maintain their relevance across segments, but with 
slightly lower importance, and therefore be excluded from the top 10. Examples of explanations 

are provided in Figures 6.1 and 6.2 

The explanations for sequences averaged within one text were similar in terms of overlapping 
features, but the weights of the most important features were generally lower. Besides, we 



observed that the explanations differed in terms of confidence: while common confidence for 

separate segments was within 80–95%, the confidence of predictions for averaged segments was 
either even higher (close to 100%) or much lower, around over 55–60%. This can be explained by 

the fact that for some texts the segments yielded predictions with both labels, and averaging the 
embeddings of such segments, which likely contained opposite values, resulted in a decline of 

confidence, as well as in lower weights of features in explanations in general. If, on the contrary, 
the same labels were predicted for all segments, the final prediction could be made with higher 

confidence since the individual variance of each segment is mitigated by averaging.  

 

6.2 LIME-tabular explanations analysis 

To obtain a broader view and to uncover the extent of the top features’ re-occurrence, we checked 

their distribution for multiple explanations. To that end, we generated 100 explanations for 
instances randomly sampled from the test data and collected the most popular features — that is, 

we counted the number of times a particular feature occurred among the 10 features that LIME 
extracted. We only considered the counts of the features rather than their values provided by 

explanations, since the subtle differences in these values would create too many unique feature-

value combinations and hinder the understanding of this experiment. 

 

Figure 6.3: Counts of features selected by LIME-tabular as top-10 for instances for label “1”, with total counts for 
both labels in blue in the background 



 
Figure 6.4: Counts of features selected by LIME-tabular as top-10 for instances for label “0”, with total counts for 

both labels in blue in the background 

We counted the occurrences for the whole sampled subset and separately for samples with the 

predicted label «1», with the predicted label «0», and with the erroneous predictions (where the 

predicted label is different from the true one). 

In total, 165 features out of a total of 768 occurred as most important for LIME at least once. Given 

that in total LIME had to select 1000 features (10 for each of 100 explanations), this result suggests 
significant overlapping. Figures 6.3 and 6.4 show the distribution of counts for two classes 

separately, as well as the total counts. The most common features (>10 counts) are highlighted. 

It can be seen that there is one most popular feature, 135, that appears in almost 70% of 

explanations, and 15 features that appear in 20% or more. Their distribution between the two 
classes slightly differs: feature 47 (bar 4) is considerably more common for the class “1” than for 

the class “0”. Feature 216 is also more important for label “1”, while it is not even among the 
opposite class’s most common ones. Features 294 and 608 are similarly more common for label 

“0” than for label “1”. 

Thus, we verified that a few top features are extremely common in explanations for both classes, 
which suggests that contrasting values of these particular features are crucial for the final 

prediction. We also discovered that there are also some atypically common for one particular class, 
or for misclassified segments. However, at that point, there was no observable link between the 

importance of classifier input features and interpretations of those features with respect to the input 

texts. 

 

6.3 CLS embeddings analysis 

In search of a link between the classifier’s performance, which was partially uncovered by LIME, 
and the characteristics of BERT embeddings produced by our model, we analyzed the difference 

between the embeddings across two classes. We then compared the results for the training and the 
test sets and contrasted them to the embeddings produced by a standard BERT model without fine-



tuning. Finally, we calculated the Pearson correlation coefficients between the embeddings and 

the weights learned by the classifier. We aimed at determining whether the features most 
frequently occurring as most important ones for the classifier are also those that are the most salient 

in the input embeddings. 

Figure 6.5 shows the weights of features ranked according to their number, averaged for each class 
separately. It can be seen that the values are typically opposite for large groups of features: a 

positive average value for class 1 is frequently accompanied by a negative value for class 0 and 

vice versa. 

The average weights of features in embeddings produced for the Test set, shown in Figure 6.5 
(bottom), are largely similar to those of the Train set (top): the groups of positive and negative 

values can be observed. However, the absolute values tend to be smaller. This can be explained by 
the fact that a higher number of prediction errors compared to the training set results in both 

positive and negative values being averaged as part of the same class, thus decreasing the absolute 

value.  

 
Figure 6.5: Average weights of features in all segments with labels “1” (blue) and “0” (gold) in Train subset 

(above) and Test subset (below) 

After sorting the feature weights by value, it can be observed in Figure 6.6 that within one class 
features with different values are generally distributed evenly, with a similar increment in weight, 

excepting a small number of both positive and negative features with the highest absolute values. 



 
Figure 6.6: Average weights of features in all segments with labels “1” for the Train subset, sorted by values 

To see how these features enable discriminating between the two classes, we considered the 
absolute values of the difference between the averaged weights (Figure 6.7). A somewhat similar 

picture was observed: a comparatively small subset of approximately 50 features showed a 

noticeably larger increment in absolute values of differences than those following them. 

 
Figure 6.7: Differences between average weights of features between classes “1” and “0” for the Train subset, 

sorted by absolute values 

 

6.4 Comparison of LIME-tabular and difference-based features 

In order to observe whether such salient differences are taken into account by the classifier, we 

calculated the overlap between these features with highest difference between weights in different 
classes and the list of most frequent features extracted by LIME in the previous experiment. The 

results are summarized in Table 6.1.  

For LIME-tabular explanations of 100 items sampled from the Train dataset, we selected the 50 
most frequently extracted features and compared this list with 50 features that have the most salient 

weight difference between classes in embeddings produced for the Train dataset. We discovered 
that 52% of features from these lists were overlapping. After following the same procedure for 

LIME explanations of samples from the Test dataset, we found 50% of overlapping features. We 
repeated the experiment with the embeddings of the Test dataset and obtained the result of 54% 

and 48% respectively. It can be noticed that this percentage of overlapping features is considerably 
large given the total number of candidate features (768) and the limited sample (50). Indeed, over 

half of the 50 features most commonly chosen as most important ones are also among those with 
the highest difference between classes. Also, for both Train and Test dataset embeddings, the 



overlap is slightly larger with LIME features from explanations of instances sampled from the 

Train dataset. It suggests that the classifier’s performance on Train data is slightly more consistent 

with the initial information represented in the embeddings. 

To ensure that such behavior is justified by the model’s performance and that the difference 

between classes is indeed learned at the pre-training stage, we also calculated the overlap for the 
embeddings produced by the untuned BERT model. As before, 50 features with the highest 

absolute difference between classes were selected. In this case, however, the percentage of 
overlapping features was significantly smaller: 10% were overlapping with LIME features on test 

samples, and a mere 6% — with those on train samples. 

 LIME for Train set LIME for Test set 
Train set embeddings (fine-tuned model) 52 % 50 % 
Test set embeddings (fine-tuned model) 54 % 48 % 

Train set embeddings (untuned model) 10 % 6 % 

Table 6.1: Overlap between embedding components with the highest difference between classes and embedding 
features extracted by LIME for Train and Test subsets in fine-tuned and untuned models 

6.5 Untuned CLS embeddings analysis 

The results suggest that untuned embeddings differ significantly in terms of feature weights. To 

verify it, we analyzed them in the same way as before. Figure 6.8 shows that feature weights for 
two classes are almost identical, which is quite the opposite picture compared to fine-tuned 

embeddings that had contrasting values. Besides, most average weights are close to 0, which 

suggests that a single class included both positive and negative values.  

(A) Untuned model, label “1” 



 
(B) Fine-tuned model, label “1” 

(C) Untuned model, label “0” 

 
(D) Fine-tuned model, label “0” 
Figure 6.8: Average weights of features in all segments with labels “1” (A, B) and “0” (C, D) in Train subset for the 

untuned (A, C) and fine-tuned model (B, D) 

Moreover, even though some differences in absolute values between classes exist, they are 
dramatically lower than those in fine-tuned embeddings, where the most salient difference is 

roughly 20 times bigger, as can be seen in Figure 6.9. 



 
Figure 6.9: Differences between average weights of features between classes “1” and “0” for the Train subset, 

sorted by absolute values, for untuned model (above) and fine-tuned model (below) 

 

6.6 Correlation between CLS embeddings and classifier nodes 

Generating multiple LIME explanations for sampled instances provided some understanding of 

the classifier as it showed that a limited number of features is regularly used in predictions for both 
classes. Comparing the averaged values of features in embeddings for each class showed that these 

values are primarily opposite. To fully grasp the behavior of the classifier, we needed to see how 
these values are processed in the hidden layers. The model’s architecture included two fully-

connected layers of sizes 16 and 2 respectively, connected by a ReLU activation function. Two 
nodes of the second layer correspond with the final prediction, as they are turned into class 

probabilities after the softmax activation. Therefore, we expected the first layer to be capable of 

selecting features responsible for each class.  

To visualize the relations between the nodes, we plotted a heatmap of Pearson correlation 

coefficients between the parameters of all 16 nodes in Figure 6.10. To show how they correspond 
to embeddings of different classes, we also added the averaged feature weights for class 1 (C1) 

and class 0 (C0) in fine-tuned Train embeddings. These weights indeed show a strong negative 
correlation (-0.93) which goes in line with the previous observations in Figures 6–7. Besides, the 
nodes turned out to be divided with respect to correlation: nodes 1–4, 7, and 15 show a positive 

correlation with class 0, while other nodes – with class 1. In C0 and C1, the positive correlation is 

generally stronger, and it reaches 0.76 for node 4 in C0.  



 
Figure 6.10: Pearson correlation between weights in 16 nodes in the first fully-connected layer of the classifier (1–

16) and averaged embeddings of class “1” (C1) and of class “0” (C0) 

Given the ReLU activation function that immediately follows the first fully-connected layer and 

sets all negative values to zero, the only way in which the model can maximize the values of the 
desired class is by multiplying positive values of relevant features by positive parameter values, 

and negative ones – by negative parameter values, while leaving irrelevant features negative or 
close to zero. Thus, a positive correlation between the class and the node parameters suggests that 

the node in question selects instances with feature values relevant to that class.  

 

Figure 6.11: Pearson correlation between weights in 2 nodes in the second fully-connected layer  
of the classifier (0–1) 



The parameters of 16 nodes in the second fully-connected layer were also visualized with a 
heatmap in Figure 6.11. Some traces of the division observed in the correlation heatmap can also 
be found here: nodes 1–4, 7, and 15, which had a positive correlation with class 0, are assigned 

higher weights in this layer’s node 0. 

 

6.7 Classifier layer discussion 

These findings indicate that the classifier essentially uses its first fully-connected layer to 

emphasize the high values of features relevant to a particular class. After that, for most nodes, it 
further increases the difference between positive and negative values by applying positive weights 

to the nodes that show a positive correlation with a class. As a result, a high positive value is 

achieved for the desired class and a low negative one – for the irrelevant class. 

It seems that such a procedure does not necessarily require a separate model with hidden layers. 

Given that the encodings of each sequence pair already show contrasting values for different 
classes and that that contrast can be preserved after averaging the sequence pairs from one text, 

we could either use a classifier without averaging or consider the logits of the fine-tuned BERT 
instead of the CLS token embeddings, since they can also represent the contrast encoded in these 

embeddings.  

Therefore, it is possible to disregard further explanations of the joint model including both BERT 

and the final classification layer and to proceed to the explanations of fine-tuned BERT 
individually. Given that the predictions for 30 segments are plainly averaged without any 

substantial transformations, we are now able to consider the explanations for separate segments. 
A joint explanation can thus be created, if needed, by considering all segments or by providing 

example explanations for some, most expressive, cases. 

 

7. LIME explanations for segments 
The results of the previous chapter enabled us to conclude that the contribution of the final 
classifier applied to the CLS embeddings of all segments boils down to discriminating between 

two sets of almost opposite embeddings that are shaped by the fine-tuned BERT, and no additional 
transformation is performed in the hidden layers. This reasoning is further verified by a merely 

marginal drop in performance when plain averaging is used instead of a classifier with two dense 

layers. 

These considerations enabled us to move from text-level explanations to a smaller scale and 

concentrate on segment-level explanations, given that further changes in the prediction that are 
happening at the final classification step are fully interpretable and reduced to averaging. Joint 

explanations can thus be created, if needed, by considering all segments or by providing example 

explanations for some most expressive cases. 

In this chapter, we introduce the original LIME tool for generating explanations and analyze its 
performance on segment-level predictions for both classes. We then reflect on the results, suggest 

an explanation for the difference in performance between classes, and propose an updated model 
that may be used to mitigate this gap. Finally, we compare the results of the original and the 

updated models on different examples, probe the correctness of assigned weights and the 



robustness of classification and use the outcomes for outlining the potential set of features involved 

in classification.  

 

7.1 LIME overview 

As the primary means of generating initial explanations, we have chosen the original 

implementation of LIME (Ribeiro et al., 2016)). LIME is a model-agnostic technique of post-hoc 
explanations, which implies that it can be used regardless of the inner structure of the model, only 

considering input and output, and that explanation is happing after the prediction is obtained, using 

additional operations (Danilevsky et al. (2020).  

In LIME, a local surrogate model is learned for approximating the model’s behavior in case of a 

particular prediction. To that end, LIME creates some “perturbed” samples by randomly removing 
some subsets of data (random lists of words, in case of LIME-text explainer) and supplementing 

the resulting input with cosine distance from the original text as the default metric, so that higher 
weight is assigned when perturbed input is close to the original, but prediction for it differs 

substantially. 

The tool performs a large number of random permutations (5000 by default). A locally linear 
sparse model is learned based on this perturbed data. That proxy model is then interpreted by 
highlighting the contribution of the most important features to its prediction. The weights of these 

features should approximate the original model’s behavior: removing each of these features should 
shift the prediction towards the opposite class by this weight, and this property is ideally supposed 

to be additive.  

 

7.2 LIME-text for attribution explanations  

In this section, we try to extract candidate important features that can be shown to influence the 

prediction and therefore correlate with the classifier’s features.  

To do so, we use LIME-text to explain the complete pipeline of our model, as well as the pipeline 

of the naïve baseline. 

The main prerequisite of a properly functioning LIME explanation is a classification model 

pipeline that satisfies the following requirement: it has to be able to accept a list of single texts as 
input and produce a Numpy array of probabilities (logits processed through the softmax layer) as 

output. For that reason, we implemented different types of pipelines: for pairs of segments, for 

pairs of texts, and for a single input that combines both texts from a pair with a separator.  

The explainer for textual input only accepts a single text, while our model is trained to process a 

pair of texts. Therefore, the input pair in the LIME-compatible pipeline is initially combined with 
a separator made of special characters (so that it is not influenced by word-level perturbation, as 

would be the case with the usual SEP token used in BERT) and then split back at the preprocessing 

stage. 

Perturbations can be performed in two modes: bag-of-words (default) and non-bag-of-words. In 
the latter, the words are randomly removed based on their positions, while in the former 



perturbations are performed on the vocabulary of the text so that all occurrences of a selected word 

are removed. For this task, we utilized the standard bag-of-words mode, given that the alphabet of 

features would otherwise be too large. 

7.2.1 Class 0 explanations  

The first explanation, shown in Figure 7.1 (top), was generated for a single pair with label 0 (“not 

the same author”), correctly predicted. This prediction shows very high confidence (p=1.0). 
Generating an explanation with top-6 features for the whole model took about 13 minutes, 

compared to 3 minutes for the embeddings classifier, with standard 5000 perturbations. All of the 
top-6 features shift the decision towards the correct class prediction and explain a total of ~77% 

of the prediction, which is considerably different from the embeddings classifier, in which top-10 

features explained roughly 60%.  

All of those features seem to be meaningful, though different in nature. Five of them are in fact 

character names from both texts (Knuckles and Neo only appear in the first fragment, while Robyn, 
Sportacus, and Kit — only in the second one). It may seem that in this example the model primarily 

functions as a named entity recognizer, but the dataset is constructed with cross-topic classification 
in mind: both same-author and different-author pairs include texts from different fandoms 

(therefore, with at least some different names), and same characters, in turn, may appear in pairs 

with both labels. 

The 6th feature is the word Want, which is indeed a suitable candidate parameter for style 

formalization. This is a frequently used verb that has a significant amount of contextual synonyms 
and stylistic variants due to its broad meaning that sometimes expresses modality. Thus, an author 

can freely choose between want and its alternatives without changing the meaning, which makes 
it a good indicator of individual stylistic footprint. In this example, the counts of the word want 

differ between the two texts: out of 18 occurrences, only 2 are in the first text. According to LIME, 
such stylistic dissimilarity adds 9.3% to the probability of these texts being written by different 

authors. 

We then generated more explanations for the same data with top-6 features and top-10 features, 

also shown in Figure 7.1 (middle and bottom). The 5 most frequent features re-appeared in all 
explanations with but slight re-arrangement. The situation with other features was different: these 

were different words that appeared in dissimilar proportions. The word pointing appeared in a 
proportion close to that of want, but the words houses, lips, and ten only appear once. It could be 

concluded that the top-5 features are followed by a longer tail of roughly similarly important 

features.  



 

 

 

Figure 7.1: Text-level LIME features, true class “0”, bag-of-word setting, for different runs of LIME-base with top-
6 features (top and middle) and top-10 features (bottom) selected. Only an excerpt of the text is visualized 

However, the distribution of importance in top-10 features doesn’t support this view: the 
importance vanishes quite rapidly, with feature 10 being 3 times less important than feature 9 (0.06 

→ 0.02). Top-9 features in this case explain 86% of the prediction and don’t really leave any room 

for the high estimated importance of want (0.09) or lips (0.1). 

We arrived at two possible explanations for that:  

the local approximations can be inconsistent, and while alterations of ±0.2 are not so important for 

most common features, they significantly change the distribution of less common ones 

some features may not be reduced to words themselves, and since LIME is limited to word-level 

explanations, it is bound to be uncertain about their importance. 

Nonetheless, all extracted features in this example seem to be meaningful in terms of explainability 
since they appear in two texts with different frequency. Therefore, removing them makes the texts 

more similar and decreases p of class 0. 

7.2.2 Class 1 explanations  



In explanations of texts for Class 1, shown in Figure 7.2, we can see that, despite the very high 

confidence of the model, LIME cannot explain its prediction at the word level. Top-6 features only 
marginally influence the prediction, with the highest value being a mere -2.85e-06. According to 

LIME, none of the word-level features can explain the model’s confident prediction.  

In the bottom example in Figure 7.2, we see that all extracted features point at class 0. though with 
extremely low weight, contrary to the actual prediction, and the top features are in fact just the first 

words from the text. 

We observed similar behavior for most examples with label 1, and in all of them, the weights 

assigned to features were close to zero, and the intercept value of the local linear model was 
around 0.99. 

Figure 7.2: Text-level LIME features, true class “0”, bag-of-word setting, for different texts. Only an excerpt of 
each text is visualized 

 

7.2.3 Analysis of explanation difference  

Interpretations of our model for class 0 are meaningful both in terms of their capacity to 

approximate the probability and their interpretability as linguistic features. This can be explained 
by the fact that LIME perturbations are capable of controlling the degree of dissimilarity between 

texts, which, ultimately, is the generalization of all the features used for capturing stylistic 

differences.  

Indeed, if a certain word has a different frequency in two texts, we decrease their dissimilarity by 
removing it. If a corresponding change towards class 1 in the prediction happens, it proves that 

this word contributes to class 0 and makes the texts more dissimilar. The most salient features, in 
this case, are unique words (names and some singular occurrences) and the words substantially 

different in frequency. 

Interpretations for class 1, however, don’t seem to be meaningful and do not provide weights that 
account for the prediction. The likely reason for this is as follows: the goal of the explanation for 



class 1, in the end, is to find words without which the texts will become less similar, which would 

imply that these words make texts stylistically more similar. And this goal, as it turns out, is 
unachievable in this classical LIME perturbations scenario: we cannot perform such perturbations 

that would make texts less similar.  

In case of removing a word feature that accounts for dissimilarity (a word with a different 
frequency in two texts), the texts will become more similar, which means that such perturbation 

can only increase the probability of class 1 — thus, such word cannot account for the probability 

of class ‘1’. 

If we remove a word feature that accounts for similarity (a word with similar frequency in two 
texts), both texts are changed in a similar way; thus the degree of their similarity doesn’t shift 

substantially, and such changes also cannot account for the probability of class 1. 

Therefore, we claim that the degree of dissimilarity (in dissimilar texts) is a parameter controllable 

through classical LIME perturbations, but the degree of similarity (in similar texts) is not.  

We formalized the problem of explanations for class 1 as a list of intermediate hypotheses. 

Firstly, the problem may be in two texts, for such a setup enables manipulating dissimilarity, but 
not similarity. If this is the case, a version of LIME has to be created that can permute features of 

two texts independently: interpreting class 0 could be performed by removing dissimilarity when 
a word with dissimilar frequencies is deleted. Class 1 explanations, on the contrary, requires 

reduction of similarity, and we can do so by removing the equally distributed word from the first 

and the second text to see how important such equality is for the model. 

Secondly, it may be the case that the model doesn’t learn similarity features at all. It only learns 

what makes the texts dissimilar, and in the absence of such features, the default class is 1 (‘same 
author’). By removing features from a text without dissimilarity, we have no means to access the 

features that are already absent given the a priori similarity of these texts. In this case, we can only 

use class 0 for explanations.  

We aim at probing the first hypothesis to verify that explanations can be generated by performing 
a different type of input perturbation and that there exist such features that are responsible for 

classifying text pairs with label “1”. If such explanations cannot be achieved by influencing the 
perturbation strategy, such result would suggest that the second hypothesis is the case and the 

model treats one of the classes as default.  

 

7.3 Pair-aware perturbations in LIME 

As mentioned above, LIME-text uses two modes. Therefore, we implemented two ways of 

independent perturbation of input.  

7.3.1 Non-bag-of-words perturbation 

For the non-bag-of-words mode, we enabled the Explainer to memorize the position of the 

separator and change the input in three different modes: “left” (only permute the first text in the 
pair), “right” (only the second one), and “random” (for each permutation, the side which is going 

to be altered is chosen randomly). The motivation behind the introduction of the “random” mode 
is that, even though on average both texts are involved equally, each particular perturbation is still 



performed on a single text, thus allowing a liner model to learn from a set of cases in which only 

one text is manipulated, and similarity that exists between the texts is therefore broken.  

The “random” mode showed the results that are closest to the original LIME in the non-bag-of-
words setting. The other two modes in the non-bag-of-words setting still could not produce 

meaningful interpretations. The most likely explanation for that is the large number of candidate 
features that the explainer faces when each word is treated individually and with its position in 

mind. For the set of 256 features, with some of them likely correlated (such as quotes, which are 

paired), creating a local linear approximation might be too complicated.  

To reduce the number of candidate features and also obtain a more diverse set of important features 

when the explanation is generated, we proceeded with a beg-of-words mode. 

7.3.2 Bag-of-words perturbation 

For the bag-of-words setup, we had to adopt a different approach. The original LIME first builds 
the vocabulary for the input text and then selects random entries from that vocabulary and turns 

them off in the input text. In such a case, plainly limiting the scope of perturbations is not feasible 
because the randomly selected vocabulary entry may not be present in the text, and hence the 

average intensity of perturbations will decline, and so will the explainability of the linear model.  

An additional limitation is that the perturbation cannot be edited or partially reconstructed after 

the initial application because it is performed together with the cosine similarity calculation. 
Changing the input afterward would impair the correctness of the similarity metric, which is crucial 

for correctly estimating the importance of perturbations.  

Therefore, we had to build separate vocabularies for each of the texts, sample candidates for 
permutations from these vocabularies separately, and then apply them with the scope of each text, 

defined by the separator position, in mind. The methods for reconstructing the text from tokens for 
visualizing the explanation and for highlighting the words according to their estimated importance 

also had to be changed, taking the two vocabularies into consideration. All of the main classes had 
to be redefined in order to enable the preservation of the separator position and the current text 

from the pair which is being processed.  

Given the global character of required changes, we did not implement a “random” mode for the 
bag-of-words setting: the scope of perturbations have to be chosen upon the initialization or the 

explanation. Consequently, the appropriate method of feature extraction with this version of LIME 
implies the application of explainers in both “left” and “right” modes and combining the lists of 

features extracted by both of them, taking the importance of these features into account. 

Application of the bag-of-words explainer for pair-aware input alternation finally resulted in 

explanations in which the weight of the extracted features did not approach zero, and the intercept 
weight of the local linear model approximating the prediction was lower than 0.99 (as was the case 

with the original LIME), commonly not exceeding 0.3.  

 

7.4 Feature extraction with pair-aware perturbations 

In this section, we provide the analysis of features that were extracted for different segments. We 

generate LIME explanations for random segments of the selected pairs, assess the correctness of 
LIME estimations for extracted important features by removing them separately, and then check 



their joint importance upon simultaneous deletion. After that, we proceed with investigating the 

behavior of other potentially important features with and without the most important ones removed 

to get the initial understanding of the influence of stylistic changes on the model predictions. 

For segments with predicted class 1, as mentioned above, basic LIME assigns comparatively low 

weights to the top-6 features in segments, though these weights are slightly higher than previously. 
LIME-pair, however, produces explanations with much higher weights for both the “left” (Figure 

7.3, middle) and the “right” (Figure 7.3, bottom) modes. 

For predicted class 0, LIME-pair, in turn, is unable to assign any weights to top features for since 

explaining texts for this class requires controlling dissimilarity rather than similarity. Basic LIME, 
on the contrary, can produce meaningful explanations with assigned weights. These weights, 

however, do not linearly approximate the probabilities or the logits but can still serve as means of 

qualitative estimation.  

Therefore, the most illustrative results for our task can be achieved by using both types of LIME 

explainer: LIME-pair in “left” and “right” modes for class 1 and basic LIME for class 0.  

Figure 7.3: Segment-level LIME features, true class “1”, bag-of-word setting, for LIME-base (top), LIME-pair in 
“left” mode (middle), and LIME-pair in “right” mode (bottom) 

We note that, in principle, LIME-pair is also able to produce feature extraction with non-zero 

weights assigned even on the text level, but given the averaging procedure that may hide the 



importance of certain features we recommend generating segment-level explanations and counting 

the features extracted by them instead if needed.  

7.4.1 Extracted features overview 

Figure 7.4: counts of 25 most common features extracted from 100 sample segments 

Following this procedure, we obtained important features for 100 sample texts. 25 most frequent 
ones are displayed in Figure 7.4. We can observe that the most commonly selected are function 

words, including conjunctions (“and”, “as”), various personal pronouns (“I”, “He”, “her”, “You”, 
and more), auxiliary verbs in full and short (“d”) forms, reporting verbs (“asked”, “replied”), and 

some proper names that were found in more than one segment (for each text in the sample, 5 
segments were considered). Finally, an underscore, which is apparently disregarded by the non-

character filter used in LIME-text, is also extracted. Other types of punctuation are not present due 

to the filtering. 

The majority of these features are words of very high frequency, which makes them suitable 
stylometric features: even slight differences in their frequency or in the patterns of usage can be 

indicative of the individual style. First- and third-person pronouns enable representation of the 
narrative perspective: whether the story is narrated from a first- or third-person view. Reporting 

verbs, in turn, are highly variable, and their diversity or repetitiveness can also be subject to 
individual style. Names and proper nouns, on the contrary, are typically involved in modeling the 

topic of the narrative, yet they may incorporate numerous other features: the author’s preferences 
in character selection and in choosing to use names instead of other means of reference (co-

referring nouns, pronouns) can also be indicative of the individual stylistic fingerprint, and the 

involvement of multiple pronouns as important features supports this view. 

7.4.2 Relations between LIME estimations and prediction logits 



Neither the original explainer nor the augmented version assigns weights that correspond to the 

probability of the class prediction. However, it was discovered that in many cases the weights 
assigned by LIME-pair approximate the change in the model’s logits after removing the 

corresponding feature. 

For example, for the text displayed in Figure 7.5, the original prediction had class logits [-
5.531711, 5.7830925]. Removing the word Aranea (with the weight assigned by LIME being 0.66) 

resulted in the new logits [-4.927722, 4.5944533], so that the difference for class 0 logits was 0.6). 
Removing the word Rinoa led to logits [-5.381693, 5.3939533] (observed difference 0.15, 

predicted weight 0.18). This pattern repeats for the word Laguna (predicted weight 0.16). 

This pattern, nevertheless, cannot be observed for all top features, likely due to the non-linear and 

interconnected nature of some of these features. When a certain feature is removed together with 
another one at the premutation stage and together they create an important complex feature, it may 

increase the average weight of the feature in question among all permutations and lead to an 
incorrectly high linear approximation that doesn’t correspond with the change observed upon the 

removal of solely this parameter from the input segment.  

Thus, beyond the top 2-3 parameters, for which the weights approximate logits rather accurately, 
only qualitative estimation is possible — namely, that features with higher assigned weight 

contribute more to the logits, and features with positive weights contribute to class 1, and vice 
versa. The precise value of that contribution, though, depends on the co-occurrence with other 

features. 

7.4.3 Co-occurrence of important features  

Let us discuss these interconnections in more detail. Comparison of logits obtained after removing 
one or more important features extracted by LIME and other pre-selected candidate features in 

different combinations shows that even a local linear approximation of the model’s behavior is 
implausible since the contribution of any feature is not constant and depends on its position, 

context, the total number of occurrences, and the presence of other features. Furthermore, these 
dependencies are by no means limited by the word level: the prediction can be influenced by the 

punctuation and stylistic variations thereof, by casing, and spelling mistakes. 

First of all, it appears that the most important features extracted by LIME, which indeed were 
shown to contribute to the corresponding class, tend to accumulate their value. For example, 

removing the word Aranea increases the logit of the incorrect class 0 by roughly 0.6, which is 
insufficient to change the prediction. However, when the other five features contributing most 

strongly to class 1 (Rinoa, Laguna, though, Kiros, cleared) are also removed, so that the resulting 
class logits are [-2.8962233, 1.7099165], the contribution of removing Aranea to class 0 increases 

to 4.34, which results in the change of the predicted label logits: [1.4439765, -1.4362624]. This 
change if shown in Figure 7.5. Thus, the influence of top features is the strongest when no other 

top features occur in the text, and it drops substantially when the other features indicative of the 

same class are already present.  

This claim can be generalized to other features, which are note highlighted by LIME, as well: they 
tend to show a much stronger influence on the prediction when the most important features, 

especially names, are removed from the text. Such behavior seems logical: without the names that 
could have been learned to indicate certain authorship, the model can no longer rely on such 

shortcuts and needs to make predictions based on other features of the text, with naturally lower 
confidence and robustness. Figure 7.5 (top) shows that, with the absence of 6 features contributing 



to class 1, the remaining features point at class 0, and these are mainly pronouns and functional 

words, which are essentially traditional stylometric parameters. 

Figure 7.5: Segment-level LIME features, true class “1”, bag-of-word setting, for LIME-base. In the top example, 6 
features previously identified as important for class “1” are removed (Rinoa, Laguna, though, Kiros, cleared, 

Aranea); see Figure 7.3. In the bottom example, one of them (Aranea) is brought back 

Such influence was not only discovered for co-occurrences of the word features. Some other cases 

are presented in Table 7.1. For example, the opening quote before OH (OH itself is marked as a 
#1 feature for class 0, as seen in Figure 7.3 (middle)) turns out to be important for class 1. Although 

its removal is unimportant when other features are present (it changes logit of class 0 by 0.04), it 
reaches 2.753 in case the 5 important features for class 1 (Rinoa, Laguna, though, Kiros, cleared) 

are removed beforehand, and results in the prediction label change: [-0.14309846, -0.2922034]. 
That opening quote does not show a strong correlation with any of the top features in particular, 

so it is the absence of all 5 that matters.  

Importantly, quotes are only contained in the first part of the segment, so it might seem that 

removing any of them should make the texts more similar. However, the model’s behavior 
indicates quite the opposite result, and removing all quotes when top features are removed results 

in an even higher increase of class logits: [2.9483943, -3.1187959]. This pattern can only be 
observed when no top features are present. Otherwise, the increase is marginal: [-5.3608084, 

5.3494406]. 

Example feature Influence on class 0 logits upon removal 

Top-5 features present Top-5 features absent  

“Aranea” 0.604 4.340 

Singe quote before “OH” 0.040 2.753 

All quotes 0.171 5.844 

Table 7.1: Influence of removing selected features on prediction logits with and without top-5 features removed, for 
an example text from Figure 7.5 

7.4.4 Adversarial examples  



We proceeded with further experiments by introducing adversarial examples that involved 

punctuation and typographic variations, as well as removal and replacement of various features. 
In general, we observed that when the top features were present, no significant changes could be 

observed. After removing them, alterations became a lot more salient. Results of different 

alternations are shown in Table 7.2 

Typographic variations 

Firstly, we checked the typographic variations. Replacing double quotes (“) with single quotes (‘) 
did not result in a change of the predicted label but decreased the overall similarity between texts 

by pushing class 0 logits higher and class 1 — lower: [-1.8707004, 0.9313528]. 

After that, we considered available stylistic variations. The first text contained 3 exclamation 
marks that could be replaced with full stops without significant change in the meaning and were 

therefore subject to the author’s stylistic choice. 

Removing and replacing punctuation 

Changing all full stops into exclamation marks dramatically increased the similarity: [-4.64954, 

4.0420275]. Making an identical change in only one of the texts did not make such a big difference 
until we also changed all exclamation marks to full stops in the other one: [2.222923, -2.2992437]. 

Simply replacing all exclamation marks with full stops did not yield any significant results but 
slightly increased the probability of class 0 (which, again, might seem counter-intuitive given that 

such change makes the texts more similar). 

When we replaced exclamation marks with question marks, which produces a meaningful 
semantic change, the decrease in similarity was a bit higher [-2.616405, 1.396568], yet still without 

changing the predicted label. 

Removing punctuation significantly increased the similarity of the texts (i.e., the logit of class 1): 

removing all punctuation resulted in logits being pushed back to [-5.441371, 5.5717177], 
removing solely full stops — in [-4.8784447, 4.341698], while removing solely commas — in [-

5.252601 5.1758327], which emphasizes the importance of different uses of commas for the 

difference between the styles of various authors. 

Thus, we could increase the similarity of the texts by removing punctuation or making uniform 

replacements in both texts. Increasing the dissimilarity turned out to be a harder problem: so far, 
we could do it only by making directly opposite replacements of “.” and “!”. Other cases in which 

the alteration resulted in a different prediction are adding more full stops to the first text (to the 
places where there were no punctuation marks) while also removing full stops from the second 

text where possible or replacing them with stylistic alternatives (commas, semicolons, double 

dashes): [1.8393167, -1.9136158]. 

Example punctuation feature Class 0 

(“different-
author”) logits 

Class 1 (“same-

author”) logits 

Interpretation 

Default, top-5 features removed -2.8962233 1.7099165 Texts are similar 

Double quotes replaced with 

single 

-1.8707004 0.9313528 Similarity decreased 

Full stops replaced with 

exclamation marks 

-4.64954 4.0420275 Similarity increased 



Text one: exclamation marks to 

full stops; text two: full stops to 
exclamation marks 

2.222923 -2.2992437 Similarity decreased; 

texts are dissimilar 

Exclamation marks replaced with 
question marks 

-2.616405 1.396568 Similarity decreased 

Removing all punctuation -5.441371 5.5717177 Similarity increased 

Removing full stops -4.8784447 4.341698 Similarity increased 

Removing commas -5.252601 5.1758327 Similarity increased 

Text one: more full stops added; 
text two: full stops replaced with 

alternatives 

1.8393167 -1.9136158 Similarity decreased; 
texts are dissimilar 

Adding nonessential correctly 

placed commas 

1.5631607 -1.6246212 Similarity decreased; 

texts are dissimilar 

Adding non-grammatical commas -2.0973256 1.0720851 Similarity decreased 
Table 7.2: Influence of input ablation and alteration on prediction logits for an example text from Figure 7.5 

Adding new punctuation 

We then considered adversarial examples that added new punctuation marks to the positions where 

no other symbols were present. It turned out that new instances of commas have a stronger 

influence than those obtained by replacing other punctuation. 

Adding new commas to the first text yielded different results depending on their syntactic role and 
co-occurrence. When we added several unnecessary commas to both texts, isolating I believe as a 

parenthetical clause resulted in a significant change and a different label: [1.5631607, -1.6246212]. 
Adding a non-grammatical comma (for example, after let out) didn’t have a similarly strong 

influence: [-2.0973256, 1.0720851].  

We can conclude that it is possible to control the similarity by making changes to punctuation 
marks in certain locations, particularly where they are optional or believed to be so or can be 

replaced by alternatives. Although the quantity of changed symbols does influence the intensity of 
changes, sometimes just one symbol is crucial for making the correct prediction, contributing 

almost 70% of the total weight of all such symbols. However, these relations are complex and non-
linear: adding more commas to random places of one text does not necessarily make it significantly 

less similar to another one and combining two features with positive influence may result in a 

negative influence. 

The non-linearity can be explained by the fact that BERT can encode contextual and syntactic 
information, and therefore commas between the components of a complex sentence or after a 

parenthetical clause are treated differently. Besides, commas can be strictly grammatical, or 

subject to stylistic variation, or explicitly non-grammatical. 

Controlling capitalization 



Figure 7.6: Segment-level LIME features, true class “0”, bag-of-word setting, for LIME-base. 

For another text segment, shown in Figure 7.6, the top 6 most important features were: She, MARY, 
and, proceeded, ran, bush. Of these, MARY is of significant interest. We considered removing that 

word completely, which slightly increased the probability of class 0. After that, we replaced that 
name with another capitalized name of the same length (JOHN), and the probability increased 

even further. Interestingly, replacing capitalized MARY with not capitalized Mary resulted in an 
even higher increase. Thus, the presence of capitalization turns out to be even more important than 

a particular name. This suggests that casing is indeed a meaningful feature for this model.  

The difference between uppercased and lowercased instances of the same word can be more salient 
than that between different words written using the same case. This goes in line with the 

stylometric theory: typographic differences that are controlled by the author are often optional and 
can therefore indicate individual stylistic preferences. Those not fully controlled by the author, 

such as fonts and margins, need to be used with caution since they may have been changed by the 
published or during the preprocessing. In fact, words can be lowercased at the preprocessing stage 

as well, but we preserve the original casing as it was in the dataset.  

Such importance is also explainable from the BERT perspective: in the regular casing, most 

conventional names (Mary, Joshua, Alexander) and some unconventional (Laguna) are processed 
into a single token. Others are treated by subword units (R + ##ino + ##a). When the name (or any 

other word) is unexpectedly capitalized, it is segmented into a list of subword tokens with one or 
more capital letters. Thus, identical words with and without uppercasing are represented as 

different sets of tokens, so assigning different weights to them is justifiable. 

7.4.5 Feature importance discussion 

The nature of internal connections between the features observed and analyzed above is diverse. 

For example, an opening quote before OH! is clearly only important when OH! itself is present, 
but the exact rule behind that observation can have various explanations: for example, that it is 

typical for this author to start a direct speech with capitalized exclamations, or that the author 
generally uses quotation marks to convey direct speech, and closing and opening quotes often 

follow one another, so if one of them is missing in the middle of the direct speech narrative, it is 

an argument against that author’s authorship.  

It is also important to re-iterate that these features show up when the most salient and constant 
features, which are predominantly names in the examined texts, are removed. Otherwise, changes 

in other features only show a moderate influence on the final prediction, normally without changes 

in the label. 

Combining observations from multiple texts, we can conclude that segments seem to have different 

degrees of robustness, and this robustness does not necessarily correspond with confidence. This 



consideration makes sense given the non-linear nature of many features: in some positions or in 

certain combinations, the features can have an extremely strong influence on the output logits. 

Besides, even with confidence being 1, the actual logits may differ substantially across segments: 
a prediction with logits around [-7, 7] is expected to be more robust than that with [-4, 4], even 

though the probabilities will be identical after the Softmax activation. 

Such differences can be expected from the model with such architecture as ours since the logits 

are averaged across all 30 segments of a given text. Therefore, if the model is particularly certain 
about a segment, it can surely assign more extreme values to the logits to move the averaged 

prediction further towards the correct prediction. The segment about which the model is not that 
certain can just barely pass the threshold or even remain incorrect, which is not critical if their 

logits for both classes are close to 0. 

In general, we can conclude that the features extracted by LIME can in principle be interpreted as 
stylometric and mostly belong to the category of word-level features related to function word 

counts. The joint usage of the two versions (standard LIME and LIME-pair) enables generally 
reliable estimation of weights at least for the most salient features, thus proving that the problem 

of original LIME was likely in the inability of usual perturbation to control similarity. Beyond the 
most salient features, however, feature importance can still be estimated qualitatively in terms of 

relative contribution and importance for a particular class.  

8. Attention analysis 
This chapter covers the analysis of the attention in the fine-tuned BERT model that can be relevant 
for classifying texts in authorship verification. We then proceed with suggesting an algorithm that 

takes into account the weights of attention emitted from CLS tokens and selects the tokens to 
which CLS attends most commonly or with the highest intensity. This algorithm is used for feature 

extraction. The extracted features are then analyzed and compared to the features highlighted by 
the LIME explainer, the features suggested as important by recent works in the field of authorship 

attribution, and the features traditionally used in authorship attribution. 

 

8.1 CLS attention overview 

We started with analyzing and counting the weights in attention matrices in all layers and heads in 

each example from the sample of 100 text pairs. For each layer separately, we considered attention 
from CLS tokens. For each head, we took 10 tokens with the highest attention outcoming from the 

CLS token. Then, we combined the lists of these tokens from all heads and counted their 

occurrences. The result can be seen in the Appendix A. 

The resulting data provided information about the rank and frequency of CLS attention to each 

token for a given text pair at each layer, thus showing whether it was the one universally attended 
by CLS in all heads or selected only by some heads. Using both rank and counts enabled us to 

track the involvement of the SEP token throughout the layers and discover the layers at which the 
largest part of attention from CLS is poured into that token. Besides, we could see specific tokens 

that are frequently attended in particular texts but are not overall common due to their uniqueness, 

such as particular names or their parts.  



Additionally, we counted how many times these tokens were selected in all examples from our 

sample in each layer. In this setup, we counted the occurrence of a token in a particular instance’s 
list of frequently attended tokens only once to mitigate the difference in frequencies within one 

text and avoid assigning high frequencies to tokens that are attended often yet only in one particular 

instance.  

This observation provided more general information about the distribution of frequently attended 

tokens over all instances. Given that the instances and the number of heads remain unchanged 
throughout the layers, changes in that distribution enabled us to observe which tokens are more 

commonly attended by CLS at some particular layers and whether some general trends can be 

retrieved.  

8.1.1 Preliminary per-layer analysis of CLS attention 

A certain pattern could be noticed for the behavior of the SEP token. SEP token is claimed to be a 

“dustbin” for attention (Clark et al., 2019) in case nothing meaningful for that combination of 
layer, head, and token was found in the sentence. It was consistently among the most popular ones. 

However, its rank and overall counts (limited to 24 per layer: 2 in the text, to be attended by each 

of 12 heads) differ substantially across levels.  

At the first layer, frequencies are inconsistent, but SEP typically appears 7–11 times, ranking 

between 1 and 7. In general, the scope of attention of CLS at this layer seems diverse (2119 
different tokens), but the most common are: “the”, “a”, “and”, “to”, “of”, punctuation (full stops, 

commas, question and exclamation marks, quotes, hyphens, semicolons), some subword tokens: 
frequent affixes (“##es”, “##ed”, “##ly”, “##ing”) and frequent name constituents (mostly one- or 

two-character tokens) — tokens that are generally common in texts, but also meaningful for style 
classification. They are followed by a large number of tokens attended by CLS frequently only in 

a fraction of segments, mostly segments from one text. These involve more specific name 
constituents (“##us” for Rome-themed texts, “##mir” for the Lord of the Rings-themed texts), 

some single-token names, pronouns, and frequent verbs.  

The second layer is less diverse (1526 distinct tokens) and is concentrated around a small number 

of frequently attended tokens: SEP, CLS, and “.” appear in all examples, but apart from them only 
a few hyper-frequent words appear in multiple examples (“the”, “The”, “a”, “was”, “I”). Since the 

texts in the sample are literary works, it is no surprise that the reporting verb in the past tense (such 
as “asked” and “said”) are also among such frequent words. Importantly, the rank of tokens is very 

consistent: “.” is the most frequent in almost all examples, almost universally followed by SEP 
and CLS. The number of SEP tokens being attended is also much higher, varying around 19–24 

per instance. 

This pattern repeats in Layer 3, with the difference being in much higher attention for quotes (94%) 
and the presence of other punctuation. Layer 4 adds commas to most common tokens (also 94% 

compared to 69% at layer 3) and pays more attention to frequent verbs and pronouns (”said” in 

39% vs 10% at layer 2).  

At layers 7–8 question mark finally appears among the most frequent tokens (41% at layer 8, 24% 
at layer 7 vs 9% at layer 6) and shows even more attention to narrational verbs “said”, “asked”, 

and “replied” (43%, 32%, and 14% respectively). Pronouns, most notably “I”, gradually become 

more important (for “I”: 38% at layer 7, compared with 9% at layer 2).  

At layer 9, the rank of SEP drops. It was most universally ranked #1 at layer 7 and was declining 

since then. At the final layer, SEP if almost never the most frequent token. The most frequently 



attended ones are full stops, commas, and quotes, followed by all forms of personal pronouns, 

narrational verbs and adverbs, relative pronouns, conjunctions, and subword tokens. 

8.1.2 Discussion of the general CLS behavior 

Combining the observations above, we can conclude that CLS attends more, and also more 
diversely, at the first three layers, and after that the continuously growing share of its attention is 

given to the SEP tokens, maximizing at layer 7. Then the importance of SEP starts declining but 
drops most substantially at the very last layer. This can be explained by the fact that the 

intermediate layers are often concerned with syntactic analysis of various kind, and fewer 

processes in these layers are related to shaping the CLS representation.  

The intermediate layers show different preferences for some specific tokens: some favor a 

particular punctuation mark or a particular part of speech. The features that are overwhelmingly 
frequently attended as important are three basic punctuation marks (full stops, quotes, and 

commas). They are followed at some distance and with layer-wise variation by pronouns, 
conjunctions, prepositions, and some reporting verbs that are frequently used in storytelling (aside 

from those mentioned above, these are also “thought”, “answered”, and “stated”). 

For the names and name constituents, it is harder to track the exact rank and frequency changes 
due to their uniqueness. It can be nonetheless observed that they repeatedly arise among the most 

frequent in higher layers but only truly shine at the final layer, where they often turn out to be the 

most important ones. 

 

8.2 Attention visualization overview 

Although the general analysis of CLS attention in all layers provided high-level statistics of the 
importance of different types of tokens and the amount of potentially irrelevant attention (the one 

directed to SEP), it did not allow for proper exploration of the attention directed at particular words 
and punctuation. Besides, the analysis of raw matrices did not provide information about the scope 

of attention in each head and its specificity.  

Moreover, such approach only enabled us to consider attention outcoming from CLS, whereas the 
types of attention that can be relevant for shaping the CLS representation may also include 

attention directed at CLS from tokens frequently attended by CLS and attention between tokens 
that have already been marked as relevant to CLS or between such relevant tokens and some other 

categories. Such variety is motivated by the fact that when CLS attends to a particular token, it 
gets access not only to the token itself but to its embedding which includes a representation of 

different information about the token and its context.  

For this reason, we proceeded with using a visualization tool, namely BertViz (Vig, 2019), which 

is an interactive tool that enables visualization of Transformer attention. It can be run in interactive 
Python notebooks and has native support of the HuggingFace Transformers framework, including 

both the model and the tokenizer.  

The attention maps used for the analysis of BERT syntactic capabilities in (Jawahar et al., 2019) 
was limited to the maximal length of 128 tokens. Thus, the segments examined by them are twice 

as short as the ones in our base model. The computational cost of processing the maps is 
considerably higher in our case, and the maps for different layers can only be visualized separately, 



without the option of choosing the layer on a single visualization, which is usually possible with 

BertViz (Vig, 2019). 

This tool is theoretically able to create a general visualization for a given input, allowing the user 
to choose the layer, the head, and the scope of attention. However, in our case, BertViz was unable 

to process all layers for the text pair, likely given the large size of the input. To overcome this 
limitation, we started with averaging the attention in each head over all layers and proceeded with 

the analysis of all heads in all layers separately. We analyzed the resulting attention maps and 
compared them with similar maps produced by an untuned BERT model for text classification to 

see whether the observed relations are general properties of BERT embeddings construction or 

they are specific to the task of authorship verification.  

8.2.1 Averaged attention visualization 

Averaging attention of one head across layers provided general insights into the difference between 

the fine-tuned and the untuned models. We observed that the basic patterns, such as attention to 
next token, previous token, and same token, are typically preserved in both models. Semantic 

relations, such as links between words from the same semantic group related to the same topic, is 
also typically retrievable from both models, though they can be stronger in the fine-tuned one. 

Other relations are typically dissimilar. In the untuned model, a lot more attention is given to full 
stops, and such attention is a lot less selective: it may be coming from all words in the input pair 

uniformly. A lot more common are also various types of attention that select syntactic 
constructions. There are also significantly fewer long-distance relations: most types of attention in 

the untuned model either have a fixed local window (for example, 5–10 tokens or the scope of one 
sentence) or are spread uniformly. All these relations, in principle, go in line with the observations 

of Clark et al. (2019). The fine-tuned model selects fewer types of constructions but with higher 
emphasis on them and often attends to similar constructions on different layers. It also utilizes a 

large number of long-distance relationships, usually to link the tokens from a certain category 

(such as reporting verbs or special characters) regardless of their location. 

The specific patterns observable in averaged attention maps include diverse attention involving 

subword tokens: some link all tokens from one word between each other; in others, all subword 

tokens attend to one, typically the initial token.  

We also observed repeating attention that involves quotes. The most common one is the attention 
to the quotation mark from the segment preceding the next citation. Interestingly, closing quotes 

are consistently more important than opening ones (both examples are for closing). Opening quotes 
are of least importance when they directly follow a full stop. Despite the identical symbols being 

used for quotes and apostrophes in the preprocessed data, their ambiguity seems to be resolved: 
apostrophes that can be mistaken for a closing quote do not receive much attention. In Figure 8.1, 

the apostrophe only gets attention from “ve”, although it stands in the position making it a potential 
closing quote and should attend the upcoming words. Besides, some quotation marks are attended 

from other quotation marks, even distant ones from another text, which suggests that counting 

might be going on in some levels. 



 

Figure 8.1: Attention received by a quote and an apostrophe (Head 3, averaged across layers) 

Another specific attention involves reporting verbs (that is, verbs used for retelling, quoting, 
describing and paraphrasing a discourse). Noticeable are long-distance relations between identical 

verbs (“replied” attending to all its instances) in both texts, as well as attention to other 
synonymous reporting verbs in another text (“stated” and “said” attending to “replied” in the other 

text, but not in the same one). Such pattern is absent in corresponding heads of the untuned model. 

8.2.2 Per-layer attention visualization 

These general considerations with averaging the values across layers do not allow for tracking 
relations for a particular layer. Given that the role of attention on different levels may vary 

significantly even for the same head, many types of attention may be concealed because of that 

averaging. Therefore, we proceeded with per-layer analysis of attention maps for each head.  

We provide the table that summarizes the most relevant types of attention in Appendix A. This 

table includes the direction of the link, types and categories of tokens involved, strength, scope, 
and coverage of the relation. A more detailed description of these types, supplemented with 

illustrations and a brief discussion of the exceptions and specificities, is available online1. 

Here, we outline some of the most notable relations.  

Head 5 in layer 3 features diverse relations for punctuation, shown in Figure 8.2. Full stops mostly 

receive attention from words within one sentence, including all direct speech inserted in it. 
Sometimes the scope is limited to the nearest preceding punctuation, which can be a comma or a 

quote. Commas may attend to the context from both sides but typically only get attention from 
preceding words. For the quotes, the closing one is consistently more popular: it is attended by 

tokens from within the direct speech utterances. Specific behavior is displayed by more rare 
punctuation symbols: question marks are strongly attended by the subject, the predicate, the object, 

 

1 https://elite-shame-5a4.notion.site/Per-layer-BertViz-Analysis-for-AA-5689fa1720bf4cdf9f63827faf7ed235 



and, if present, the question word of the interrogative sentence, though such selectivity is not 

typical for other sentence separators. 

 

Figure 8.2: Attention to punctuation, specific to its type (Layer 3, Head 5) 

Head 6 in layer 3 (Figure 8.3) shows more remote identity relations between words and symbols. 

Such attention is either concentrated on one identical token, not necessarily the nearest one, be it 
ahead or behind, or distributed among identical tokens. Interestingly, different forms of pronouns, 

such as “I” and “me” and “she” and “her”, are also linked. Strongest attention is between identical 
subword tokens, prepositions, functional verbs, wh-words, pronouns, and wrongly spelled words. 

Such a type of attention is not present in the untuned model. 



 

Figure 8.3: Attention between identical important tokens, but not to itself. In this case, between two mistakes (words 
with redundant characters) (Layer 3, Head 6) 

Head 1 in Layer 4 (Figure 8.4) seems to be linking reporting verbs with quotations, as well as 

different names within a long distance from both texts (not with the same name).  

 

Figure 8.4: Attention between reporting verbs and quotes (Layer 4, Head 1) 

In Head 2 of Layer 4, as well as in multiple other heads (see Appendix), we observe that CLS 

token attends a wide yet formalizable range of words, to which we will be referring as “important” 

words.  



They include: 

- dialect variations 

- names 
- reporting verbs 

- some content words with stylistic variation, which can be replaced with a well-known 
synonym without substantial change in meaning (“fellows”, “kids”, “kind” as noun, 

“manner” meaning “way”, “acknowledge”, “becoming”), including many adjectives and 
adverbs (“entire”, “cute”, “slightly”, “kindly”, “sole”, “lately”, “presumably”, “just” 

meaning “only”, “although”) 
- various function words with stylistic variation (“towards”, “as”, “once” as conjunction)  

- optional full or short forms of function words, mostly auxiliary verbs (“will” and “ll”, “are” 
and “re”, “have” and “ve”), as well as variable verb forms, such as “gotten” 

- specific vocabulary not related to the theme (“feminine”), infrequent words not related 
directly to the theme, including those processed into subword tokens (“furrow”, “trundle”, 

"mischievous”) 
- mistakes (“too” instead of “to”, missing determiners (“take nap”) 

- some epithets (“beet red”) 
- rude and obscene words 

- numbers (“15” instead of verbalization) 

Note that this list only incorporates important words, excluding the punctuation and subword 

tokens. 

 

Figure 8.5: Attention to punctuation, specific to its type (Layer 4, Head 2) 

Attention to dialect variations can be found in Head 2 of Layer 4 (Figure 8.5). Head 5 of Layer 5, 
shown in figure 8.6, demonstrates an interesting type of attention between full and short forms, 

but not from one full form to another. There also is attention between different forms of pronouns 

(“he” → “his”), from pronouns to neighboring names, and between names. 



 

Figure 8.6: Attention between full and short forms (Layer 5, Head 5) 

Head 6 in layer 6 displays attention between function words and punctuation. Attention is 
selective: it includes identity relation with variable weights, attention to different forms of a 

pronoun, or to other words of the same part of speech (such as auxiliary verbs). Outcoming 

attention is mostly headed forwards. This type of attention is also absent in the untuned model. 

 

Figure 8.7: Attention between pronouns (Layer 6, Head 6) 



Head 7 in layer 7 (Figure 8.8) has very selective attention to functional words and quotes to select 

subordinate clauses and appositive phrases. Conjunctions “if”, “although”, “as” are attended by 
the comma that isolates the conditional clause, and by the verb “would”, wh-words, or plainly the 

token following that comma. Importantly, “as” as a preposition is not confused with a conjunction, 
therefore part-of-speech ambiguity seems to be resolved for such relations. There also is a link 

between punctuation used to introduce direct speech and the verbs that describe that speech. 
Besides, in explanatory phrases isolated with commas, there is a backward attention from the 

closing to the opening comma. All these relations are absent in the untuned model.  

 

 

Figure 8.8: Attention selecting subordinate clauses and appositive phrases (Layer 7, Head 7) 

Head 11 in Layer 7, exemplified in Figure 8.9, marks such relations as that of determiner and noun, 

pronoun and adjective in such constructions as “my own”, and specific constructions, such as 
words joined with hyphens (”Boy-Who-Lived”). These types are in general the only ones in this 

head 



 

Figure 8.9: Attention selects compound words with hyphens (Layer 7, Head 11) 

Head 3 of Layer 8 (Figure 8.10) provides a link from the reporting verb to the closing quote of the 

direct speech or to the relative pronoun used to describe indirect speech.  

   stated 

 

Figure 8.10: Attention maps reporting verbs to the closing quote or relative pronoun 

In the later layers, CLS begins to show a lot more attention to punctuation, which did not happen 
widely on the previous ones. Along with attending to all types of punctuation, multiple heads in 

layers 10–12 feature attention from CLS solely to all full stops or quotes. In the meantime, 
attention to words becomes more selective: for example, in Head 8 of Layer 10 CLS attends wither 

to some adverbs (”perhaps”, “maybe”), or pronouns, or verbs, but the exact focus depends on the 
particular text. When attending to names in higher layers, CLS more often focuses on a particular 

name instead of attending to all names in the pair equally. 

Such selectivity may indicate that a certain type of feature selection is happening in the later layers. 

Features on different levels, including subword, word, and syntactic ones, could be extracted and 



represented in the embeddings throughout the lower labels, while in the higher ones CLS attends 

more to specific features that are most relevant in this segment. Such variability is explainable 
given that different segments display very dissimilar components of storytelling: features that are 

most useful for dialogues may not be as relevant for expository or depictive narratives.  

Interestingly, this type of behavior resembles the traditional authorship attribution pipeline 
(Marusenko, 1990), in which feature extraction is followed by the selection of the most distinctive 

features for a particular set of investigated texts. 

 

8.3 CLS attention as means of retrieving tokens relevant for 
classification 

After exploring all attention matrices, we selected the combinations of layers and heads in which 

relations seemed to be the most relevant and analyzed their distribution and key properties.  

8.3.1 Distribution of relevant attention with respect to CLS 

We observed that the attention to CLS from other tokens and the attention from CLS are unevenly 
distributed across layers, as shown in Figure 8.11. More specifically, tokens strongly attend to 

CLS in the lower layers 1–3, with this attention being variable, selective, token-specific, and 
meaningful in that it creates stronger links to CLS for tokens that were shown to be important for 

the prediction.  

After layer 3, attention to CLS substantially decreases and becomes weak and mostly uniform for 

different tokens. In the meantime, CLS starts attending tokens other than itself and SEP, and 
towards the middle layers, this attention grows stronger, denser, and wider in terms of the scope 

and the diversity of attended tokens. 

 

Figure 8.11: Number of times a particular category of attention is observed at each level 

In the higher layers, another tendency for the attention outcoming from CLS arises: while getting 
more sparse, it begins to show text-specific character: in the same head, CLS may attend to 

different types of tokens in different texts.  



We also observed some general trends reported by (Jawahar et al., 2019) re-emerging in the fine-

tuned BERT. In early layers, many tokens indeed attend to CLS; in middle layers, the attention 
directed at SEP grows, and in the higher layers a lot of attention is directed in punctuation. This 

may indicate that, in general, fine-tuned BERT follows a similar procedure for encoding different 

aspects of the text. 

8.3.2 Selective coverage in CLS  

Another important property of attention from CLS is its selectivity in terms of the region of the 

text, shown in Figure 8.12. Attention from CLS is typically not limited to a particular context 
window: it can reach the tokens that are selected at a particular layer and head within a global 

range, regardless of their distance from the CLS token, which always comes at number 0. However, 
the analysis of attention maps showed that in many heads attention from CLS is actually directed 

at tokens from a particular text from the pair. This limitation can be strict (when no attention is 
directed to the tokens beyond the separator) or loose (when certain attention gets outside a single 

text, but it is weaker or more sparse). 

Such behavior is understandable, given that the goal of the CLS token is to accumulate information 
relevant to the classification task for which the model is fine-tuned. For authorship verification, 

the ultimate goal is to represent stylistic differences between the texts to be able to conclude 
whether they are written by different authors. Therefore, at certain stages, CLS may be aggregating 

various information about each text separately in order to be able to compare them in the later 
layers, which are claimed to be the most task-specific (Rogers et al., 2020) and build the final 

representation. 

Indeed, that proportion of equal and one-text attention is observed throughout the layers. The 
attention that is specific to a particular region starts at layer 4 (earlier CLS attention treats both 

texts equally) and peaks at layer 5, coinciding with a decline in the number of attention types that 
consider both texts. This drop of equal attention types happens in the middle layers, which are 

considered responsible for short-distance syntactic relations. Towards the higher layers, equal 
types of attention become dominant again. Interestingly, attention directed at the second sequence 

is typically more popular than that directed at the first one.  

 

Figure 8.12: Number of times CLS attends to tokens in first, second, or both sequences at each layer 



 

8.3.3 Types of tokens attended by CLS  

For each layer and head, we generalized the current type of attention relevant to CLS and described 

it in terms of the types and categories of tokens being involved.  

For the categories, we used the most general description that indicated whether the attended token 
is a content word, a function word, a punctuation mark, or a subword token. Importantly, we 

differentiated subword tokens as a separate category only in cases when they represented a 
subword-level feature, such as a grammatical affix. When attention was directed at all names, 

including those segmented into subword tokens, we considered it a single type of attention that is 

directed at names, that is, at content words.  

Figure 8.13 displays the proportion of main types of tokens involved in CLS attention (not only 

attention from CLS, but also to CLS, and that between tokens relevant to CLS) in each layer. To 
visualize that proportion, we counted how many times a relation involving that type of token was 

observed in all heads of a given layer. For example, in layer 1, which had 6 CLS-related types of 
attention in total (see Figure 8.12), content words are involved in 6, function words – in 1, and 

subword tokens – in 4 relations.  

Note that the total counts of categories do not have to add up to the total number of relations, as 

one relation may involve multiple categories. This is particularly common for attention from CLS, 

which may be directed at a large variety of tokens, while still being highly selective.  

It can be seen that subword tokens are predominantly involved in relations in the earlier layers. 

Content words remain relevant throughout the whole model, usually appearing in more than half 
of the relations. Their share slightly declines in layers 3–5, when punctuation and function words 

arise.  

Punctuation is not involved in CLS-related attention until layer 3, which goes in line with 
observations of Lin et al., 2019 indicating that the lower layers mainly collect information about 

the linear word order and typically do not involve syntactic relations, for which attention to 
punctuation may be required. Involvement of punctuation in CLS-related attention grows at layer 

4 and further increases in the later layers, in which CLS continuously attends to full stops. The 
drop in attention of CLS to punctuation in the middle layers, which are considered responsible for 

most syntactic relations, can be explained by the fact that these relations first need to be extracted 
from the text and accumulated. This is presumably happening in layers 6–8, in which we 

discovered multiple types of attention between punctuation, or between function words to 

punctuation, or with punctuation being attended by words within one sentence.  



 

Figure 8.13: Number of times each of the main categories of tokens is involved in CLS attention at each layer 

 

8.4 Highly attended tokens as linguistic features  

We proceeded with analyzing the general statistics of the retrieved highly attended tokens. For 
each pair of texts out of 100 samples, we analyzed 64 selected attention maps that were shown to 

link CLS with tokens relevant for style formalization. We then extracted from these attention 
matrices the tokens with attention exceeding the threshold (0.01), sorted them by attention 

strength, and selected the 40 most highly attended tokens for each text pair from our sample. Such 
filtering of only the most highly attended goes in line with the suggestions of Jain and Wallace 

(2019) that only top-k attention weights are important and enables us to filter out the manifold 
tokens that are attended by CLS with only a residual weight, yet can end up counted as frequently 

attended due to their overall frequency in language. 

The threshold value was chosen as a trade-off between the manifoldness and representability of 
the resulting features set. We observed that with values over 0.02 only a few most common tokens, 

similar in most texts, were selected (mostly commas and full stops), while with values smaller than 
0.005 the filtering barely reduced the number of features. Thus, we have chosen the value within 

this stretch as a starting point for important features extraction. 

As a result, we obtained 818 different tokens out of 4000 total counts.  

Punctuation 

1. Overwhelmingly most frequent ones are full stops, which take almost 40% (1666 

occurrences).  
2. Other types of punctuation also appear among the most frequently attended tokens. These 

are, most notably, quotes and commas with 360 and 66 occurrences respectively.  
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3. Other commonly attended punctuation includes question and exclamation marks (32), 

semicolons and colons (18 and 15), closing parentheses (13), underscores (8), and hyphens 
(6).  

4. Special characters, such as asterisks (“*”), tildes (“~”), and dollar signs (“$”) are also 

highly attended, though their overall low frequency does not let them high on the list.  

Verbs for reporting discourse  

1. A highly notable group of attended words is that of reporting verbs (Carter, 2016) Among 
the conventional ones, the most frequent are: “said” (131 occurrences), “asked” (38), and 

“replied” (32). Less widely used but still frequently attended are “stated” (12), “yelled” 
(10), “countered” (9), “responded” (9), “explained”, “commented”, “questioned”, 

“smirked”, “answered”, “agreed”, “exclaimed”, “whispered”, “ordered”, and more.  
2. Some other frequent verbs, mostly mental-state verbs or verbs of motion related to 

speaking and communication, are not directly linked to reporting a discourse but are often 
used to describe the act of speaking and refer to an utterance or an act of inner dialogue 

conveyed using direct speech: “realized”, “recalled”, “thought”, “nodded”, “sighed”, 
“lowered” (as in “lowered her voice”), “began”, “continued”, and more. These verbs 

constitute the majority of those highly attended.  

Other verbs 

Other influential verbs include those of motion (“moved” (11), “walked” (10), “sat” (9)), of 

sensory perception (“felt” (9)). In general, verbs that are not involved in describing a discourse are 

less frequently attended. 

Function words 

Another large group of tokens includes function words, namely: 

1. Conjunctions (“and”, “as”, “that”), adverbs (“also”, “then”, “already”, “immediately”), 
2. Prepositions (“towards”, “with”, “by”, “like”, “to”) 

3. Modal verbs in full and short, negative and neutral forms (“could”, “couldn”)  
4. Auxiliary verbs in various full and short forms (“was”, “had”, “d”, “wasn”, “didn”, “m”) 

5. Pronouns are comparatively infrequent in this list. Personal first- and third-person singular 
pronouns in different forms are the ones that most commonly occur among highly attended. 

It can be explained by the fact that they are used to discriminate between first-person and 
third-person narratives and thus represent the stylistic preferences of an author regarding 

the perspective of storytelling. 

Proper names and co-referring words  

1. As was already observed, most names and proper nouns are also continuously attended, 
including both conventional single-token ones and those processed into multiple subword 

tokens.  
2. Besides, we also observed a large variety of words used to refer to an individual or a group 

of people. They include  
a. words denoting people (“man”, “person”, “male”, “female”, “boy”)  

b. means of addressing people (“gentlemen”, “miss”, “honey”, “master”) 
c. words denoting different relations (“friends”, “siblings”, “father”, “partner”) 

d. military ranks and titles (“admiral”, “officer”) 
e. ethnicity (“Jamaican”, “Latino”, “Jew”, “Roman”) 



3. Various proper nouns that are not names of people are also attended. These are mostly real 

or fictional toponyms, and sometimes also names of organizations or institutions and works 

of art.  

Abbreviations 

Another group of highly attended tokens includes abbreviations (“HP”, “TV”, “CPUs”). Their 
inclusion by the model seems reasonable given that they might be indicative of the author’s 

background (authors more deeply familiar with a particular fandom, especially in those related to 
science fiction, may rely more heavily on technical abbreviations). Many commonly used 

abbreviations and acronyms also display substantial stylistic variation, and trends may change over 
time or in different dialects and sociolects. Besides, some abbreviations are specific to a particular 

fandom and are therefore more closely related to the category that includes names and topical 

nouns. 

Numbers 

Different types of numbers also commonly arise as highly attended. This includes both spelled 

numbers and digits, Arabic and Roman. Typical examples of influential numbers are years 
(“1990”), centuries (“XVII”), ordinal numerals used in names (“VI”), and some plain numbers as 

digits or words (“ten”).  

Foreign words and dialect variations  

Another interesting group includes: 

1. Words in foreign languages (“Sie”, “Mädchen”, “adios”) 
2. Loanwords with original spelling (“touché”, “naïve”).  

3. A related group is the one that includes dialectal variations (“colour”, “favourite”, 

“limousine”, “endeavour”, “neighbourhood”, verbs ending with “-se” or “-ze”). 

Infrequent words 

Many infrequent words not involved in modeling the topic of the fandom are also attended. These 

are such words as “mystique”, “furrow”, “trundle”, and "mischievous”. Such words correspond to 
the category of vocabulary richness, which was often represented by measuring the number of 

hapax legomena (that is, words that only occur once) in the text. Given the limited size of each 
pair of segments, quantifying the number of rare words by means of hapax legomena is 

problematic. However, it can clearly be observed that in the model CLS often attends to words 
that are not part of a basic vocabulary and are therefore often segmented into subword tokens. 

Such subword tokens, even though they are not parts of names, still receive CLS attention, which 

is not the case for many subword tokens used for grammatical affixes.  

Errors  

Several types of errors were found to be highly attended by CLS during the analysis of attention 

maps. Such mistakes include:  

1. In-word errors (missing or redundant characters or inversion of characters) 

2. Between-word (missing whitespaces or hyphens, missing function words, such as a 
determiner, or missing word from a set expression) 

3. Casing mistakes (accidental irregularly uppercased characters). 



Errors of certain kinds are not easy to spot among the highly attended tokens list since erroneously 

written words are segmented into subword-level tokens, and high attention of CLS may be directed 
at any of them. Missing words in a set phrase also cannot be represented in terms of important 

tokens: it cannot be reconstructed that the importance of a neighboring token is caused not by its 
own properties but by the absence of the one that commonly follows it. Therefore, for many 

typographic errors or missing words we can only rely on the observations drawn from the attention 
maps analysis. However, compound spelling (missing whitespace or hyphen between separate 

words) is easily retrievable, and we observe high attention frequently directed at such constructions 

(“nondiscrimination”, “Thankyou”, “getability”).  

Capitalized words 

Finally, CLS often attends to capitalized words (“SERIOUSLY”, “HECK”) regardless of the part 
of speech. Partial capitalization, most frequently caused by a typing mistake (“CAme”) is also 

attended.  

8.4.1 Selectivity and causal interpretation 

Causal interpretation on the level of particular attention layers and heads is hindered by the number 

of attention maps relevant to CLS. From 144 possible attention maps, we extracted 64 relations 
showing attention emitted from CLS, and that attention was selective in all cases except one, in 

which an earlier layer (layer 3, head 5) showed relatively uniform attention from CLS. The scope 
of this selectivity is rather complex: CLS in different heads may attend to various combinations of 

features, with different emphasis on each component of such combination. For example, attention 
to content words, such as names, cannot be distinctly separated from attention to punctuation 

because in multiple heads CLS attends to both. Moreover, selectivity in names can also be 
different: some heads direct CLS attention at a particular text-specific name, while in others 

attention involves names, pronouns, and co-referring nouns or noun phrases. Finally, similar 
attention in different heads may be directed at different sites of the text pair: there are those that 

strictly limit the range of attention to one text and those that attend tokens in a particular text from 

the pair with higher intensity. 

In all these relations, CLS typically attends to other tokens with fairly moderate strength, especially 
compared to the intensity of outcoming attention in other tokens. Therefore, each attention link 

from CLS to a certain token does not change its embedding substantially, given that limited weight. 

Thus, separating a particular layer-head combination that enables the model to arrive at a particular 
is complicated. The process can rather be described as a gradual construction of the CLS 

embedding, which is relatively equally distributed between heads, with a slightly bigger 
contribution of heads 4 and 12. It starts in layer 3 and grows until layer 5. In these early layers, 

there are also numerous relations that involve tokens that are attended by CLS in current or 
subsequent layers. Seeing a small decline afterward in the middle layers, it then regains its 

importance closer to the final layers, in which CLS attention becomes more focused on full stops 
and also more selective in terms of the types of tokens it attends in different texts and the range of 

attention. 

 

8.5 Comparison with other known features  

8.5.1 Overlap with features extracted by Boenninghoff et al. 



Boenninghoff et al. (2019) proposed an explainable model for attribution that used attention 

modules to link different layers of bidirectional LSTMs. The authors then extracted linguistic 
features from 100 samples taking high attention weights into account. This is a different case of 

utilizing attention weights as an explanation for predicting authorship. Firstly, this model performs 
feature extraction on two texts separately instead of considering the pair jointly. Secondly, the 

encoded input does not encode tokens used by BERT – that is, CLS and SEP, and analysis is based 
on relations between tokens instead of checking to which tokens a particular classification token 

typically attends. Nevertheless, we find the list of features extracted and exemplified in their work 
highly important and illustrative and therefore provide a discussion of differences and similarities 

between extracted features.  

Among the “Punctuation” features, we did not specify “accumulation of punctuation marks”, 
which primarily involved ellipsis (three dots). In terms of syntactic properties, our model treats 

three dots as a single full stop – that is, words from the sentence, or other punctuation, or other 
tokens involved in representations of syntactic relations, attend to one of the dots (typically the 

first one). However, we noted the involvement of ellipsis in two between-token types of attention, 
observed in layer 8 (head 2) and in layer 9 (head 3), as we discovered specific links that only 

occurred in a sequence of dots and not from a separate full stop. 

Besides, we highlighted the particular importance of quotes and their frequent connections with 

reporting verbs and names or co-referring constructions, while in (Boenninghoff et al., 2019) 
quotes are not marked as important punctuation. However, this difference is related with the 

different type of texts used for attribution. 

In the “characters” features, we did not differentiate between variants of typing errors: all 
erroneous are processed into subword tokens, and these subword tokens are typically highly 

attended regardless of the particular type (missing, switched, or redundant characters) 

We also discovered the strong importance of casing and described fully capitalized words and 

erroneous capitalization of particular characters as separate features. However, among the 
extracted tokens there were not many examples of using lowercase when uppercase is 

conventional, and we did not define lowercase as a discrete category. 

Erroneous compound spelling is also described in our work, though as part of a wider group of 
between-word mistakes, which also includes missing words in set phrases. Acronyms and 

abbreviations are taken into account in our analysis. However, we did not differentiate between 
various types since we noted that both commonly used and unconventional or topic-specific 

abbreviations attract high attention. Both diatopic variations and foreign words were commonly 

listed among the commonly attended tokens.  

In terms of stylistic features, in which the authors group a rather diverse set of features, we 

observed the importance of colloquial and obscene words. However, we did not note alternative 
spelling (when a dialectal alternative existed, we attributed it to diatopic variations, and when the 

alternative spelling was unconventional, it was processed as a regular mistake). We also did not 
specify neologisms as a distinct category. Many unusual words that are unknown to the tokenizer 

were not introduced by that author but are typical for a particular fandom. Differentiating between 
such topical words and pure neologisms would be unfeasible without a deep understanding of each 

fandom in the sample. Finally, we did not generalize a group of unusual interjections and discourse 
particles. Interjections are indeed sometimes attended by CLS together with other function words 

or stylistically variable or optional words, such as adverbs or prepositions for which there are 
commonly known alternatives. However, we did not find a particular attention map in which 



interjections are selected solely or with particular emphasis. Therefore, we ascribed them to a 

general category of stylistically variable words.  

We did not extract any specifically syntactic features that are noticeably selected by CLS. 
However, we noted specific attention maps that selected clauses, explanatory phrases, or other 

distinctive syntactic constructions. Besides, we observed intense and variable attention to function 
words, with particular intensity of attention to words for which different short and full forms exist 

(“did” and “didn”, “have” and “ve”). 

The strong attention to proper nouns was widely highlighted in our analysis, with a more detailed 

observation of the potential influential properties of names. Besides, we observed the importance 
of other words used to refer to people or address them. However, we did not consider mistakes in 

the spelling of the names as a separate feature, given that the reconstruction of correct forms is 

problematic for unconventional fictional names.  

Thus, out of the 29 features outlined by (Boenninghoff et al., 2019), we observed and described 

11 due to a more coarse-grained categorization and a different character of analyzed texts.  

Besides, we extracted numerous linguistic features not listed by the authors. These are, most 
notably, verbs related with narration, quotes, infrequent words, words with stylistic variation, short 

and full forms of function words, words used to refer to people and address them, and numbers. 
Naturally, many of them are specific to the dataset on which the model was fine-tuned: reporting 
verbs, quotes, and words referring to people are most common in fictional literary works with a 

certain plot and set of characters, and such features cannot be expected in a corpus of non-fiction 

literature or social media microtexts.   

8.5.2 Overlap with features commonly used in authorship attribution 

Features typically used in machine learning models trained for authorship attribution are typically 
derived from the raw input: these can be word embeddings or counts of words and n-grams on 

word- or character-level, possibly weighted by TF-IDF. Such features are not directly comparable 

to the ones that we extracted from the attention maps since those are represented as separate tokens. 

However, several features show a notable resemblance to specific parameters attended by our 

model. Among them is, firstly, vocabulary richness, which is often formalized as the number of 
hapax legomena (words occurring only once) and dis-legomena (words appearing twice). This 

parameter was used as one of the “Style” features by Sari et al. (2018) and as one of the “Lexical” 
features in Stamatatos (2009). We suppose that the high level of attention of the model towards 

rare words of all parts of speech can be related to this metric, as their rarity implies the range of 

vocabulary that an author possesses. 

Other “style” features used by Sari et al. that correspond to those in our model may include the 
counts of punctuation (since the attention of CLS to all punctuation in the sentence may involve 

counting), of function words, and of digits (since we observed that numbers are frequently 
attended, though not only in the form of digits, but also as roman numerals or words). They are 

shown in table 8.1. 

 



 
Table 8.1: Types of stylometric features (from Sari et al. (2017))  

Among the set features generalized by Stamatatos (2009), shown in Table 8.2, we note errors 
(though in that work they are classified on a lexical and syntactic level, while we differentiate three 

common types of observable errors, including character-level ones, and mention other types of 

errors in ablation experiments with LIME).  

Part-of-speech data also seems to be involved, given that the majority of highly attended tokens 

fall into a limited number of categories. However, for most parts of speech, the model favors a 
certain type of words: verbs describing discourse, nouns referring to people, auxiliary verbs with 

variable forms, and adverbs with semantically similar analogs. Therefore, we argue that the model 

does not rely solely on part-of-speech counts. 

Synonyms, categorized as a semantic-level feature, are also taken into account to a certain extent 

by high attention directed at words with substantial stylistic variation, which implies that they can 
be replaced by a close synonym without a meaningful change of semantics, and the choice between 

such synonyms is therefore subject to individual stylistic preferences.  



 
Table 8.2: Types of stylometric features (from Stamatatos (2009))  

 

8.6 Overlap with LIME 

8.6.1 Feature comparison 

For each of the 100 samples, we obtained the list of highly attended tokens. These lists contained 

multiple repetitions due to the fact that attention is calculated for each of the identical tokens (such 
as full stops) separately, and attention in different layer-head combinations may highlight the same 

token multiple times. We filtered out SEP and CLS tokens and reconstructed full words from the 
subword tokens, so that all subword units receiving attention from CLS could contribute to the 

weight of the word to which they belong.  

Raw counts of all highly attended tokens, sorted by the attention weight emitted by CLS at an 

individual token, did provide meaningful insights into the variety of important features employed 
by the model when we considered general statistics for all text pairs. However, they obscured the 

importance of each feature for a particular pair: it was not clear whether a large number of 
occurrences of a token as highly attended implies its importance for the prediction in question, or 

all these occurrences only had a weight slightly above the threshold, and it is the overall frequency 

of this token in the dataset that ensured its many counts.  

To unveil this difference, we exploited two ways of selecting the most important tokens for each 

text: we first considered the 20 tokens that are most frequently attended by CLS (combining the 
counts for identical tokens), and then – the 20 tokens that receive the highest attention weight, with 

the weight being accumulated for all identical tokens. We intentionally used a larger number of 
extracted features for the attention-based explanation compared to LIME (20 and 10 respectively) 

to account for punctuation, numbers, and special symbols, which are not contained among the 

LIME features and are commonly selected as important by the attention analysis.  



 

Figure 8.14: Counts of 25 most common features selected in all 100 samples by attention-based procedure (top) and 
LIME (bottom) 

In Figure 8.14, the 25 features most commonly selected by an attention-based algorithm using 

counts and by the LIME explainer are visualized. It can be seen that the most salient difference is 
the overwhelming importance of punctuation in attention-based features, which is inevitably 



absent in LIME. At the same time, various other word-level features in different categories 

overlap: in both cases, we observe pronouns, reporting verbs, and conjunctions. To better 
understand the difference between the two approaches, deeper analysis of features beyond 25 most 

commonly selected was performed 

 

 

Table 8.3: Overlap between features extracted using attention-based procedure aggregated using counts or sum 
and the features extracted by LIME 

As shown in Table 8.3, we observed that over 55% of important features that are selected by LIME 

are also present in the list generated based on the counts of times CLS attended that type of token. 
The number for the list that is based on the total attention emitted at that type of token by CLS is 

comparable (54.8%). Moreover, in 20% of instances the overlap reached around 80%, which 
means that 8 out of 10 LIME features could also be found among the top-20 most heavily attended 

features.  

The words that were selected by LIME but did not receive enough attention to be selected by the 
attention analysis algorithm vary for different text instances, but noticeable categories include 

discourse particles (“Ahhh”, “Ohhhh”, “Oh”, “Yeah”, “Damn”), multiple non-reporting verbs, 

pronouns that are not first- or third-person, determiners (typically “the”).  

Besides, some words naturally appear on the list due to different tokenization being used: words 
that are erroneously written without whitespace, or those preceded or followed by an underscore, 

are processed by LIME as a single token, while the BERT tokenizer divides them into several 

tokens.  

There are also accidental occurrences of words from categories that we selected as important: 

dialect variations, numbers, first- and third-person pronouns. This may be explained by the fact 
that we had to limit the number of important tokens extracted based on CLS attention by 20, which 

resulted in some important tokens being missed. This unveils the explainability trade-off between 

the simplicity and completeness of explanations.  

8.6.2 Feature importance  

To understand whether the model actually treats such infrequent but heavily attended tokens as 

important and relevant for the final prediction, we compared the mean importance of selected 

tokens for each of the selection techniques. We calculated the importance of each token b4 as the 

mean of absolute values of the difference between the original logits c and logits predicted after 

removing that word from the text c# for each class d out of 4 — that is, for classes 0 and 1.  

b4 =
∑ |c5 −	c5# |6
5&7

4
 

Revealing how large the importance value is compared to the original logits required calculation 
of the average magnitude of the mean of logits for two classes in each instance, which was 4.71. 

The results are provided in Table 8.4.  

For the counts-based selection, which showed the highest resemblance to LIME feature extraction, 
the mean importance of 20 selected tokens was 0.804. Given the mean magnitude of logits, these 

 Counts, top 20 Sum, top 20 

Overlap 0.554 0.548 



features on average account for over 17% of each logit (both positive and negative). Along with 

the average importance of top-20 tokens, we also selected one token with the highest influence on 
the prediction logits for each instance and found the average weight of the most important token 

in each instance. That value was 4.49, constituting over 95% of the mean logits.  

In practice, it means that removing that token from the text on average results in total confusion 
of the model, as both logits are pushed towards 0. For the values even slightly above average, 

removing such a token will lead to the inversion of the prediction, as the logit with the highest 

value will change.  

These #1 tokens for each text are mostly full stops (19/100), commas (10/100), quotes (8/100), 
first- and third-person pronouns (“he”: 3/100 and “I”: 2/100), conjunctions (“and”, “as”: 2/100 

each), verb form “said”, various names and co-referring nouns, special characters, and words with 
stylistic variants. It appears that more complex names, including foreign and compound ones 

(“Sumireko”, “Zexion”), are more often highlighted as the most important tokens in the text.  

For comparison, we also calculated feature importance in a similar way for features extracted 
LIME. It can be seen that the mean importance of all features selected for each text is higher, 

contributing on average 0.982, or 20.85%, to the average value of logits. This can be explained by 
the fact that fewer features are selected by LIME (10) compared to attention analysis (20), and 

given that LIME arranges features by their estimated importance, such difference can be expected.  

Nonetheless, the mean importance of #1 most important token is significantly lower, constituting 

3.626, or 77% of an average logit. This means that, when LIME features are used, the most 
important token on average does not decrease the model’s certainty to 0, as almost a quarter of an 

original logits value for each class is preserved.  

These results suggest that, even though LIME extracts fewer features that are slightly more 
influential upon averaging, it is less capable of detecting the heaviest instances of the text in terms 

of prediction change. This motivates the use of an attention analysis algorithm for probing the 
robustness of similar models for authorship attribution. For the list of features, a combination of 

LIME and attention-based techniques can be used for wider coverage.  

The comparison of two extraction techniques shows that, even though high attention is 
accumulated in certain tokens, relying on them instead of more frequent ones does not benefit the 

explanation capacity of the algorithm, and the most efficient technique is also the most 
straightforward one, in which tokens are selected plainly based on the number of times it was 

attended by CLS with intensity above the threshold.  

 Mean 
value 

Mean value as % of mean 
logit 

Mean importance of top-20 tokens, 
Counts 

0.804 17.07%  

Mean importance of top-20 tokens, 
Sum 

0.782 16.6% 

Mean importance of top-10 LIME 
words 

0.982 20.85% 

Importance of #1 token, Counts 4.490 95.33%  
Importance of #1 token, Sum 4.346 92.27% 

Importance of #1 token in LIME 3.626 76.99% 

Mean logits magnitude 4.710 100% 



Table 8.3: Importance of top-20 and top-1 tokens extracted by LIME and attention-based procedure,  compared 
with average logit magnitude 

 

8.6.3 Label inversion  

The high explanation capacity of the features selected based on counts goes in line with the 

observations of the number of label switches upon feature ablation. For each important feature, we 
considered not only the difference between the original logits and logits predicted after removing 

that feature but also the final label and registered the cases when the label was not equal to the 

originally predicted. 

As shown in Table 8.4, on average, in 6.8% of extracted important features (that is, in 136 features) 

removing solely that feature led to an instant label switch. For all text pairs, at least one feature 
out of 20 selected could achieve a label switch in 50% of cases, which seems to be reasonable 

given that a label switch requires a change of logits greater than their original value and average 

logits magnitude is very close to the average weight of the most important feature in the list. 

Switches, token-wise 6.8% 

Switches, instance-wise  50% 

Table 8.4: Percentage of label switches for the attention-based procedure with count aggregation 

 

8.7 Names as features 

8.7.1 Overview 

Names repeatedly occur both among the most commonly and the most intensively attended tokens. 
They are also frequently selected as important features by LIME, and input obfuscation confirms 

their importance, as removing or altering names often results in a significant change of logits or 

even a switch of the predicted label. 

The analysis of attention maps in various layer-head combinations shows that this is not a plain 

result of a linear combination of attention directed at subword tokens contained in names. In many 
heads, single-token names are attended concurrently with composite ones, and selectivity of the 

attention emitted from CLS most commonly leads to only one or two subword tokens from each 
word being attended. Besides, single-token names are often shown to cause a significant change 

in the prediction upon altering, and no direct correlation between single- or multi-token names and 

their importance was observed.  

To retrieve a broader view of the influence of names on the prediction, we performed a different 

type of obfuscation for those highly attended tokens that were identified as names.  

Preliminary experiments showed that their behavior may differ. Some names show the behavior 

close to that of linear features: increasing and decreasing the number of their occurrences 
correspondingly changes the prediction. Others turn out to be sensitive to the casing to an even 

larger extent than to changes in the name itself. In other words, a name can act as a different type 
of feature, with different levels of analysis involved. Defining the relevance of potential types 

required a separate experiment. 



8.7.2 Names ablation and alteration techniques  

Based on the previous observations, we outlined a number of possible ways in which names can 

be involved in the classification of a pair of texts.  

Plain ablation 

Firstly, a name in a particular context may plainly serve as a keyword for memorizing a particular 
segment. Such shortcuts can be used by the model in particular author classes, which are 

significantly biased towards one label, or only incorporate texts from a certain fandom, in which 
there is a high probability of that name appearing. In this case, we hypothesize that removing that 

word from the surrounding context should result in a significant change of the prediction logits, 
likely also causing the inversion of the final prediction. At the same time, adding more identical 

names should not influence the prediction substantially, as it does not affect the name-as-keyword 
occurrence.  

To retrieve such cases, we performed deletion of names from the text, as in the previous 

experiment with all types of tokens.  

Multiplication 

Secondly, a name can act as a linear feature. Should this be the case, doubling the number of 
occurrences will create the difference between original logits and logits after multiplication 

proportionally to the original importance of that name, which can be established by deletion.  

Such behavior would mean that the name is not that important on its own, and it is rather its 

frequency in the text that defines the author’s style.  

Replacement 

However, it is yet unclear in such setting whether it is this particular name that is important for the 

model, or any name standing in a certain position and surrounded by a particular context. 

Therefore, we perform multiple alterations to address that issue.  

We replace each name with a conventional male and female name in conventional spelling (“John” 

and “Mary”) to see whether a new name leads to a substantially different behavior of the model 

and whether any patterns can be observed separately for a male and a female name.  

We also replace the name with an unconventional and fandom-specific name (“Rinoa”) which is 

tokenized into a list of subword tokens to see if the impact of such alteration is larger. 

Uppercasing 

Moreover, aside from the quantitative features, names may also be related to features representing 

typographic variation. Therefore, we assess the importance of casing by replacing each name with 
its uppercased and lowercased versions. If it is the way each name is spelled that is important for 

the prediction, such changes can be expected to result in significant prediction alteration.  

Advanced replacement 

Finally, the name can be important as long as it fulfills its role as a reference to a named person. 

If this is the case, replacing names with pronouns or other co-referring words should not influence 



the prediction substantially, as it preserves the reference to that character. To assess whether this 

type of behavior takes place, we replaced names with pronouns (“she” and “he”) and a gender-

neutral noun phrase referring to the character (“the person”). 

This type of feature stretches beyond a purely linguistic analysis of the text, as it indicates the 

structure of the narrative by telling how often a particular character is being involved, regardless 

of the particular verbal expression used for such reference.  

There are, of course, other features representing the structure of the narrative that are more or less 
directly related to names. After all, names are used to refer to the characters involved in the story. 

Not only the order and intensity with which they are involved but also the exact set of characters 
selected for a particular act of storytelling may well be characteristic of a particular author. 

However, such properties lie beyond a purely stylistic analysis of the text and, therefore, beyond 
the scope of the current research. Besides, analyzing them requires thorough labeling, which is 

further complicated by the rather exotic topic.  

Even labeling the character’s gender, when the names used in the text are unconventional and the 
pronouns are not always available in the same segment, is non-trivial. Additional insights can be 

drawn from a more detailed description of each character in terms of a particular literary work and 
fandom. Such description may include an indication of whether that person is conventionally a 

protagonist or antagonist, a main or a minor character, whether it is a well-known figure, or one 
from the extended universe, unknown by the general audience, or completely made up by a 

particular author.   

8.7.3 Names ablation and alteration results  

After retrieving 513 names from 100 segment pairs, we performed 11 input obfuscations described 
above. We then obtained the absolute values of changes in logits after feeding the altered text into 

the model and took the mean of these changes for both classes. The resulting value was used as 
means of representing the importance of each alteration. For these values, we calculated the mean 

and standard deviation, reported in Table 8.5. 

Type of change Mean influence on logits Standard deviation 

Del 1.012 1.855 

Upper 1.133 2.060 

Lower 1.038 2.011 

Duplicate 0.355 0.711 

John 1.059 1.943 

Mary 1.072 1.964 

Rinoa 1.323 2.157 
He 0.909 1.750 

She 0.943 1.766 

The person 0.968 1.784 

The boy 0.976 1.837 

Table 8.5: Mean influence of changes in names on logits 

In general, all types of changes in names except one show relatively high influence on prediction 

logits compared to the average influence of top-20 features selected based on counts. However, it 
can be seen that multiplying the number of occurrences of a name in question is the least important 

change: on average, it only changes the logits by 0.35.  



The boxplot visualization in Figure 8.16 also shows that the median values differ from the mean 

by a large margin, which can be explained by a number of outlying features which show very high 
importance with respect to the prediction logits. For most types of alterations, some tokens showed 

changes in logits by over 9 (which is over 200% of the average logit magnitude). Only for 

multiplication, most of the outliers did not diverge from the median value by over 2.  

The substantial number of outliers together with the low median value indicates that not all names 

are equally important for the model: there are some with extremely high influence and the majority 

which does not substantially differ from other features (for which the average influence is 0.8). 

Deletion, which had been used for all types of tokens in the previous experiment, shows an average 
logit change close to 1.0, and most other features perform comparatively close to that value, though 

some differences can be noticed. We pay particular attention to changes that result in a smaller 
average change in the prediction logits than a regular deletion of a name, as it indicates that certain 

information that used to be encoded in that name can still be encoded after replacing it with an 

alternative.  

 
Figure 8.15: Influence of changes in names on logits 



Converting the whole name to upper case is consistently more important than converting it to lower 

case, with uppercasing being the second most important change overall. This can be explained by 
the fact that the upper case can be used as a device for conveying expressivity. For example, it can 

be an indication that the name is shouted or otherwise expressively. The lower case, on the 
contrary, does not provide such connotation by default. Instead, a name spelled without 

capitalization of the first letter is likely perceived as an error. A noticeable difference in their 
influence on the final prediction indicates that names are not only important on their own but also 

as means of conveying additional information about expressivity and emotionality.  

In both conventional names and pronouns, replacing the name with a gender-specific alternative 
is consistently slightly more important when we choose a female name or pronoun as a 

replacement. Given the exotic character of names in many fandoms and the large number of non-
binary characters involved in narratives, accurate labeling of the gender corresponding to each 

name is complicated, and we can only assume that this pattern is caused by the slightly unequal 
distribution of gender in characters in the texts, most likely with a higher percentage of male 

characters. When gender-specific pronouns and names are used to replace the original names, the 
gender of the character in question is inevitably switched for one of the two options, which causes 

substantial changes in the semantics of the text and results in a more significant difference in the 
final prediction. Therefore, the slightly bigger importance of female names and pronouns as 
replacements can be explained by the fact that, given a slightly larger amount of male characters 

in the data, such switches happen more often.  

The difference after replacing the names with a gender-neutral construction (“the person”) and a 
gender-specific construction (“the boy”) turns out to be quite similar to that of the regular deletion, 

with a gender-specific noun phrase referring to a male child being slightly less influential, likely 

for the same reason as with the pronouns. 

The pronouns themselves, when compared with conventional names, are less important by a 

comparatively large margin, indicating that names are not involved solely as means of referring to 
a person participating in the story, but are also meaningful features on their own. Besides, replacing 

names with pronouns undermines their relevance when a name is used by a person to address 
someone, to call someone by name (“Mary, look!”) rather than to refer to someone. This suggests 

that the type and quantity of such addresses may to a certain extent be involved in formalizing the 

style.  

Finally, we also replaced each name with an unconventional name, which is typical for a particular 
fandom and is not part of the tokenizer’s regular vocabulary. We observed that the intensity of 

alterations in prediction was the highest for this type of change. This suggests that the inclusion of 
certain names is even more important than the name referring to a person with a particular gender. 

Such importance indicates that the coherence of the narrative and its agreement with the 
conventional range of characters for a certain fandom is still important and breaking it by adding 

an irrelevant character substantially changes the model’s behavior.  



 

Figure 8.16: Percentage of label inversion upon each type of change in names 

The mean changes in the prediction correspond quite well with the percentage of cases in which 
replacing a name with a certain alternative resulted in an inversion of the predicted label, shown 

in Figure 8.16. The number is the highest for an unconventional name (11,1%), closely followed 
by uppercasing (10,7%). Other conventional names and “the person” are roughly equally 

influential, switching labels in approximately 9.5% of cases, similar to the regular deletion. The 
pronouns and lowercasing are less important than deletion, resulting in label inversion in around 

8% of cases. Lastly, duplication causes such inversion in a mere 1.75% of cases, which is an even 

more significant drop than that in average logits alteration.  

 

9. Conclusion 
In this project, our goal was to explore and propose a solution for authorship attribution based on 

deep learning architecture, namely a transformer model. That choice was motivated by their state-
of-the-art performance in diverse domains of NLP and the ease of adapting such models to 

different datasets by means of fine-tuning without manual or semi-automated feature selection. 
The downside of such versatility is the problem of model explainability: the learned features and 

their influence on classification decisions are essentially part of a black-box algorithm. Although 
such opaqueness can be tolerated in some domains, authorship attribution can be used in forensic 

analysis or otherwise be related to reputational and financial risks, to which independent content 
creators are particularly sensitive. Therefore, for the current task of verifying the authorship of 

fanfiction texts, we considered explainability a desideratum. We focused on interpreting the model 
not only with the view to practical applications: understanding how the model functions and, in 

particular, on which features it relies, can help us better understand the value of existing 
stylometric parameters and the way complex stylistic representations arise in deep learning 

models. 

Thus, our objective was twofold: it included solving the problem of authorship attribution by 

utilizing a pre-trained transformer-based model to verify that such models are able to learn stylistic 
differences and applying explanation techniques to uncover the process of making the 



classification decision and the features being involved. From that goal two research questions 

arise:  

Q1 aims at observing whether it is reasonable to utilize pre-trained Transformer models for the task of 
authorship attribution or their performance does not surpass that of smaller models 
Q1.1 formulates a specific research problem of Transformers for text classification: What does the ability 
to process longer sequences contribute to the Transformer performance in context of AA?  

Q2 is formulated differently depending on our answer to Q1. If the answer is True (that is, a Transformer 
model for this task can be trained with sufficient prediction accuracy), Q2-1 takes place: Which 
meaningful parameters, if any, can we extract, and by which means? Additional subquestion Q2-1.1 
concerns the nature of such parameters: Do any of these patterns correspond to stylometric 

features used in the traditional stylistic analysis for attribution?  

This question corresponds with six possible hypotheses: 

Hypothesis I implies that explanations related to existing stylometric features may be found by 

visualizing the attention weights of different heads at different levels  

Hypothesis II aims at finding valuable features by generating explanations on fully connected 

layers at different levels  

Hypothesis III suggests that the uppermost layer, the classifier itself, can provide sufficient 

explanations  

Hypothesis IV involves explanations based on complex features (e.g. from combining multiple 

attention heads) observed, among other methods, using input permutation  

According to Hypothesis V, explanations can be generated by combining information from the 

sources mentioned above  

Hypothesis VI accounts for the negative answer, according to which no meaningful features that 

reveal causal relations between input and output and correspond to any of the existing stylometric 

features could be found  

If the answer is False (and the Transformer model could be trained in principle but did not 

outperform the baselines), Q2-2 is used to determine the possible causes of this issue: Is this 

insufficient performance specific to our proposed solution, or related with the known bottlenecks 

of current Transformer models, or caused by some fundamental limitations of the Transformer 

architecture?  

In this case four hypotheses are in place:  

Hypothesis I suggests that poor performance is due to limited input length of existing Transformer 
models that does not allow them to process the text as a whole and learn long-distance stylistic 

patterns, and therefore baseline models with limited input window size would also show a 

corresponding decrease in performance  

Hypothesis II implies that the size of the pre-trained Transformer language model, i.e. the number 

of parameters or hyperparameters, constitutes a limitation, and a larger model  could perform better 

in this task  



Hypothesis III states that the general Transformer architecture is the reason for insufficient 

performance as it is incapable of properly learning quantitative features that are important for AA, 
and a better performance can be expected from a model that makes use of different architecture 

for the language model, such as LSTM-based one  

Hypothesis IV covers the negative scenario in which none of these expected justifications can be 

proven.  

 

9.1 Discussion of research question Q1 

First, we planned to implement a model that can solve the problem of authorship attribution 
utilizing a pre-trained transformer-based model. To that end, we adopted the architecture suggested 

by Peng et al. (2021) and implemented it using commonly used and widely supported frameworks 
and tools. The model was evaluated compared to the common baseline and the existing BERT-

based implementation to justify the use of such architecture. We then scrutinized various 
parameters, such as the limits of segmentation and the BERT input size, and trained two models: 

a base model with 256-token input and a large one that accepts 512 tokens.  

We compared the performance of these models in terms of both predictions for individual 
segments and averaged text-level predictions and concluded that, even though the difference for 
separate segments is noticeable, it diminishes when these segments are averaged for the final 

decision. Considering that the large model takes significantly longer for all operations, including 
fine-tuning, predictions, and explanations, resolving the trade-off in favor of a slightly better 

performance does not seem justifiable at least for the task in question, in which comparatively long 
texts are available. Even more importantly, the analysis of attention maps of such length is a lot 

less feasible, and their visualizations often cannot be processed using the existing tools for 

displaying HTML.  

These considerations enable us to positively answer research question Q1, which aims at 

observing whether it is reasonable to utilize pre-trained Transformer models for the task of 

authorship attribution, or their performance does not surpass that of smaller models. 

We also collected sufficient evidence to answer the corresponding sub-question Q1.1 which 

formulates a specific research problem of Transformers for text classification: What does the 

ability to process longer sequences contribute to the Transformer performance in the context of 

AA?  

In this regard, we claim that the use of longer input is beneficial in principle in terms of evaluation 

metrics, but it hinders the usability of the model due to higher requirements. For longer texts, 
splitting into even more segments can be applied with a merely linear increase of training time 

and, as mentioned in Chapter 3, such technique provides additional benefits of assessing the 
confidence of the model by checking the percentage of correct segment-level prediction and of 

analyzing the co-authorship throughout the entire text by keeping track of the distribution of 
segment labels. For shorter texts, such as social media microtexts. increasing the input size, on the 

contrary, seems to be the most appropriate way of improving the classification performance since 

segmentation is unavailable or limited to a very small number of segments. 

In a more global sense, the advantage of deep learning-based models for authorship attribution 

compared to alternatives is the ease of adapting it to a particular task: neither manual feature 



selection nor preprocessing steps, such as data annotation with a part-of-speech tagger, are required 

for fine-tuning. 

 

9.2 Discussion of research question Q2 

Secondly, we aimed at finding the meaningful parameters that can provide insights into the way 

the predictions are made in order to answer Q2-1 (Which meaningful parameters, if any, can we 

extract, and by which means? Do any of these patterns correspond to stylometric features used in 

traditional stylistic analysis for attribution?) 

To that end, we first provide a detailed investigation of the role of the final classifier in order to be 
able to disregard its explanations at the later stages. We then scrutinize local post-hoc explanations 

and analyze their relationship with the input characteristics and perform experiments with 
adversarial examples to highlight interconnections between the extracted features and other 

parameters.  

After that, we proceed with analyzing the attention relevant to CLS and extract the tokens most 
highly attended at head-layer combinations marked as relevant as potentially important features. 

We classify these tokens into meaningful categories and describe them in terms of linguistic 

features to which they correspond.  

Finally, we compare the most commonly extracted features in LIME and the attention-based 
approach to reveal the extent to which they overlap and to compare the importance of these features 

in terms of their influence on prediction logits. We conclude that, with over 55% of features 
overlapping, LIME and attention-based approach indeed extract largely similar features, with the 

exception of punctuation. While LIME features are more important on average, the most important 

features are more salient in attention-based approach.  

Analyzing that procedure, we note that LIME provides an explanation algorithm that is 

interpretable with respect to the input. It is also model-agnostic: any model trained for that specific 
task of pair-wise attribution can receive explanations by a joint application of base LIME and 

LIME-pair. The problem is that it is non-deterministic: random permutations result in slightly 
different linear approximations. Such differences are not crucial for most salient features, such as 

some names, but lead to significant re-arrangement of less important ones. Therefore, it does not 
make sense to retrieve more than 10 features: they will be different in multiple runs. Even for 10 

features, last 2-3 features are often dissimilar.  

Besides, the existing version of LIME did not enable direct use of the BERT tokenizer because 

that tokenizer yields tokens encoded as integers, while the LIME text module necessitates the use 
of natural language strings. A character-level tokenizer, in turn, would not enable straightforward 

detection of the separator, which is needed for LIME-pair. As a result, extracted features did not 
include punctuation, which is a serious limitation and one of the most common reasons for the 

dissimilarity between the list of important tokens extracted using LIME and the attention analysis.   

Attention analysis is driven by the model. It is partially transparent in that it uses particular 
attention matrices, which are known beforehand, and selects tokens most heavily attended by CLS 

from those matrices. However, the model’s classification component is not taken into account. 
Due to numerous types of attention from CLS to other tokens, and a large variety of tokens being 

attended, we do not propagate weights of particular tokens attended by CLS through multiple 
layers and do not track their contribution to particular dimensions of the final embedding, and the 



influence of these dimensions on the classifier’s decision. Instead, we rely on a general assumption 

that, given the overall sparsity, selectivity, and moderateness of CLS attention, all tokens attended 
by CLS in non-uniform types of attention contribute to a certain extent to the final representation. 

Given the goal of the explanation, which is not to provide an exhaustive interpretation of the model 
at all levels but rather to provide a motivation for the model’s decision with respect to the input, 

we consider such an assumption reasonable. 

This assumption is verified by the large percentage of tokens appearing both in LIME and 
attention-driven explanations (55%), which is drastically above a hypothetical chance level (the 

total amount of potential sets of important features, in the worst case, would be the number of 

combinations of 10 elements out of 256).  

Another limitation of the attention-based explanation is that it does not directly link input with the 
output: instead of deriving the influence in the final prediction from some properties of the model 

and the input, we just select features that are likely to be important for the model based on the 

model’s internal structure and then calculate the importance by input ablation and alteration. 

In the end, we propose the joint application of LIME and attention-based techniques for a more 

thorough and balanced explanation that involves different components of the prediction process.  

In terms of the hypotheses formulated in Q2-1, we arrived at Hypothesis V, according to which 
explanations can be generated by combining information from multiple sources listed in other 

hypotheses.  

More specifically, our proposed solution utilizes the content of Hypothesis I, which implies that 

explanations related to existing stylometric features may be found by visualizing attention weights 
of different heads at different levels, and Hypothesis IV, which involves explanations based on 

potentially complex features extracted by means of input permutation. 

In the course of that research, we disproved Hypothesis III, according to which the uppermost 
layer, the classifier itself, can provide sufficient explanations. We showed that the classifier merely 

uses the consistent differences between classes that are shaped and accumulated in the embeddings 

at the earlier stages.  

The results of feature importance assessment and comparison of the two techniques enabled us to 
conclude that features extracted by then provide, at least to a certain extent, valid explanations that 

account for a large part of the model prediction. We can therefore use the feature classification 
discussed in Chapter 8 to answer the sub-question Q2-1.1 by claiming that the model utilizes a 

large number of linguistic features on character, lexical, syntactic, and potentially semantic levels.  

Many of them are considered by existing solutions, including frequencies of function words and 
numbers, the occurrence of punctuation and spelling errors, and vocabulary richness. Other 

features are not listed among traditional stylometric parameters but are nonetheless revealed in 
other solutions that use Attention for AA models (Boenninghoff et al., 2019). Among such features 

are proper nouns, special symbols, capitalization, and acronyms. A number of features that seem 
to be specific to the class of literary texts are not described in the works of which we are aware. 

Such features include reporting verbs, words used to refer to people, and quotes (the latter relates 
to the generic feature of punctuation counts, but we highlight the particular importance of quotes 

for the observed texts).  

 



9.3 Future work 

Hypothesis II was not taken into account based on the simplifying assumption we made when 

analyzing the attention weights. However, it is not refuted by any means, and we propose the 
analysis of dense layers inside BERT, as well as dimension-wise investigation of individual 

neurons in the query and key vectors, as potential directions for future research for more thorough 

interpretability of Transformer-based architectures.  

For the ensemble architecture proposed by Peng et al. (2019), different ways of processing the 

output of all segments can be used. Instead of averaging the embeddings, some weighting 
techniques or additional dense layers can be employed to assign importance to embeddings of 

different fragments. 

A variety of future directions for research concern different model architectures that may improve 

the performance or aid in generalizing the model to a broader range of tasks. For current research, 
we implemented the Transformer-based model for authorship identification with a widely used 

BERT model that has already been shown to perform successfully in related areas. However, we 
also note a variety of paths for further development of the model itself, that can even be possible 

within the adopted architecture.  

Firstly, RoBERTa (Liu et al., 2020) was mentioned by (Fabien et al., 2020) and (Barlas and 
Stamatatos, 2021) as a desirable path for future experiments, and it has outperformed original 

BERT model in a number of applications, and Longformer (Beltagy et al., 2020), which is an 
extension of RoBERTa adapted for processing longer sequences, has shown better results for 

larger text chunks, which can be desirable in the attribution of literary works. Therefore, combining 

it with the ensemble technique may further improve the results.  

Besides, a promising approach by (Katharopoulos et al. 2020) has not been used for language 
models yet, but the potential benefits are significant. Lastly, all of the previous research gave no 

account of how well the 3rd generation of GPT model could perform. GPT-2 (Radford et al., 2019) 
showed competitive results, though not the best ones on average, but GPT-3 (Brown et al., 2020) 

is already known for being capable of very diverse and complex linguistic tasks. Although access 
to GPT-3 itself is limited, GPT-J (Komatsuzaki, 2021) provides a publicly available analogue that 

achieved comparable results. Therefore, testing how well it can handle the AA tasks compared to 

BERT is of great interest.  

The research of models with longer input coupled with feature extraction techniques could also 

help determine whether there exist some extremely-long-distance features that can be retrieved by 
the model and are useful for encoding the style of different authors. Such features are of great 

interest both for the study of attribution per se, and the philological research in general, as they 
may be related to the general composition and narrational structure of the text. However, extensive 

research will be required to analyze that features and bring them in correspondence with the 

existing formal methods of quantifying the style. 

Another important direction of future work could be aimed at increasing the robustness of 

authorship attribution models. In our work, we checked the number of cases in which the predicted 
label was inverted for at least one important feature and discover that it happens in 50% of cases. 

The possibility of fooling the model by only changing one feature was also investigated with 
adversarial examples. Such ease of impeding the correct prediction goes in line with the 

observations of Boenninghoff et al. (2019) who noted that a model may rely heavily on a single 

feature and motivates the need for future research. 



From a more general perspective, future research with an emphasis on causality is highly 

anticipated. Our suggested approach ensures a certain degree of objectivity by comparing the 
features produced by two techniques of different nature. Yet, an even more objective joint account 

of how changes in the input influence the way that input is processed inside the model can probably 

be achieved by incorporating gradient-based methods.  

Ideally, such research could be performed in parallel with a detailed linguistic study of the texts to 

which the model is applied to arrive at a classification of ways in which different linguistic features 
may influence the style. Such classification is missing in the works concerning interpretable 

attribution since they typically concentrate on the set of features and not on the subcategories and 
their functions. This will facilitate the interpretability of explanations themselves since the 

problem of meta-interpretability is becoming an issue on its own. It is needed to keep in mind that, 
especially in sensitive areas, even the explanations of models’ behavior cannot be trusted blindly. 

Their plausibility and truthfulness need to be assessed using methods grounded in the theory of a 

particular domain.  

In conclusion, we would like to get back to the importance of designing the model itself and all its 
explanations with orientation for the end users, the linguist experts performing attributional 

studies. It is important to bear in mind that all findings provided by AI techniques need to be 
brought into correlation with real-life evidence in the end and be provided with plausible and 

truthful interpretations that can sensibly motivate the prediction. And even the explanation that is 
proven to be important and that is justified by linguistic analysis for a particular case still should 

not be trusted blindly. After all, citing Craig and Kinney (2009), “The results of computational 
linguistics are always matters of probability, not certainty. (...) After all, we are dealing with 

writers who are at liberty to imitate each other, to try new styles, and to write differently for a 

particular occasion or in a new genre” 
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Appendix 

A. Description of all CLS-related attention 
Layer Head Direction Important Tokens Types of 

Important Tokens 
Strength of 
attention 

Scope Coverage 
(one text 
or both) 

1 1 To CLS Names, subword tokens (all), 
topical nouns 

Content words, 
subword tokens 

Moderately strong Global Both 

1 2 To CLS Names, subword tokens (all), 
topical nouns, narrational verbs 

Content words, 
subword tokens 

Strong Global Both 

1 5 To CLS Names, subword tokens (initial) Content words, 
subword tokens 

Moderately strong Global Both 

1 7 Between tokens 
(between non-
narrational verbs) 

Non-narrational verbs Content words, 
subword tokens 

Moderately strong Large Both 

1 9 Between tokens 
(narrational verbs 
and full/short 
form variations) 

Narrational verbs, full/short form 
variations 

Content words, 
special function 
words 

Moderately strong Local Both 

1 9 To CLS Names, words co-referring to 
named persons 

Content words Moderately strong Global Both 

2 7 To CLS Subword tokens (non-initial), 
prepositions 

Function words, 
subword tokens 

Moderately strong Global Both 

2 9 To CLS Names, stylistically variable 
words, in-word mistakes 

Content words, 
subword tokens, 
function words, 
mistakes 

Moderately strong Global Both 

2 10 To CLS Names, stylistically variable 
words, diatopic variations 

Content words, 
subword tokens, 
function words, 
mistakes 

Moderately strong Global Both 

3 1 To CLS Names, stylistically variable set 
phrases 

Content words, set 
phrases 

Moderately strong Global Both 

3 4 From CLS Names, verbs related to names, 
quotes  

Content words, 
punctuation 

Moderately strong Global Both 

3 5 To CLS Topical nouns, subword tokens 
(all), full stops, quotes 

Content words, 
subword tokens, 
punctuation 

Moderately strong Global Both 

3 5 From CLS Uniform attention Uniform attention Weak Global Both 
3 5 Between tokens 

(words to 
punctuation) 

Full stops, commas, quotes, 
question marks, other punctuation 

Punctuation Moderately strong Local Both 

3 6 Between tokens 
(identity relation) 

Subword tokens, prepositions, 
wh-words, pronouns, in-word 
mistakes 

Function words, 
subword tokens, 
mistakes 

Strong Large Both 

3 9 To CLS Infrequent narrational verbs, 
stylistically variable set phrases, 
topical nouns, other verbs 

Content words, set 
phrases 

Strong Large Both 

3 10 Between subword 
tokens 

Names, in-word mistakes, 
abbreviations 

Subword tokens Moderately strong Neighbor Both 

3 12 From CLS Narrational verbs, punctuation Content words, 
punctuation 

Moderately strong Global Both 

4 1 Between tokens 
(narrational verbs 
and quotes) 

Narrational verbs, quotes Content words, 
punctuation 

Moderately strong Local Both 

4 2 From CLS Names, narrational verbs, 
stylistically variable words, 
diatopic variations, full/short 
form variations, infrequent words, 
various mistakes, obscene words, 
numbers 

Content words, 
special function 
words, mistakes, 
numbers 

Moderately strong Large First 

4 2 Between tokens 
(punctuation) 

Punctuation Punctuation Moderately strong Global, 
but 
stronger 
locally 

Both 



4 3 From CLS Names, narrational verbs, 
stylistically variable words, 
diatopic variations, full/short 
form variations, infrequent words, 
various mistakes, obscene words, 
numbers 

Content words, 
special function 
words, mistakes, 
numbers 

Moderately strong Large Second 

4 3 Between tokens 
("important" 
words attended by 
other tokens) 

Names, narrational verbs, 
stylistically variable words, 
diatopic variations, full/short 
form variations, infrequent words, 
various mistakes, obscene words, 
numbers 

Content words, 
special function 
words, mistakes, 
numbers 

Moderately strong Medium Both 

4 4 From CLS Names, topical nouns Content words Moderately strong Global Both 
4 8 Between tokens 

(identity relation) 
Subword tokens, prepositions, 
wh-words, pronouns, in-word 
mistakes 

Function words, 
subword tokens, 
mistakes 

Strong Large Both 

4 9 From CLS Uniform attention (end of Text 1) Uniform attention Weak Local First 
4 12 To CLS Names, punctuation Content words, 

punctuation 
Strong Global Both 

5 2 From CLS Names, narrational verbs, 
stylistically variable words, 
diatopic variations, full/short 
form variations, infrequent words, 
various mistakes, obscene words, 
numbers 

Content words, 
special function 
words, mistakes, 
numbers 

Moderately strong Large Second 

5 5 From CLS Names Content words Moderately strong Large Second 
5 5 Between tokens 

(full/short form 
variations) 

Full/short form variations Function words Moderately strong Large Both 

5 7 From CLS Names, topical nouns Content words Moderately strong Large First 
5 7 Between tokens 

(words in 
utterance and 
quotes) 

Quotes Punctuation Moderately strong Local Both 

5 10 From CLS Names Content words Moderately strong Large Second 
5 11 From CLS Pronouns, conjunctions, full/short 

form variations, punctuation 
Function words, 
punctuation 

Moderately strong, 
instance-specific 

Large Second 

5 12 From CLS Punctuation Punctuation Weak Large Second 
6 6 Between tokens 

(punctuation and 
function words) 

Pronouns, auxiliary verbs, 
punctuation 

Function words, 
punctuation 

Moderately strong Medium Both 

6 7 From CLS Names, numbers Content words, 
numbers 

Weak Large Second 

6 9 From CLS Names Content words Weak Large Second 
6 10 From CLS Names Content words Strong, instance-

specific 
Large Second 

7 1 From CLS Names Content words Moderately strong Large First 
7 7 Between tokens 

(conditional 
clauses, 
appositive clauses 
and direct speech) 

Conjunctions, wh-words, modal 
verbs, narrational verbs, quotes, 
commas, colons 

Content words, 
function words, 
punctuation 

Strong Local Both 

7 8 Between subword 
tokens 

Names, in-word mistakes, 
abbreviations 

Subword tokens Strong Neighbor Both 

7 9 From CLS Names, narrational verbs, 
stylistically variable words, 
diatopic variations, full/short 
form variations, infrequent words, 
various mistakes, obscene words, 
numbers, punctuation 

Content words, 
special function 
words, mistakes, 
numbers, 
punctuation 

Moderately strong Large First 

7 11 Between tokens 
(set phrases, 
objects with 
attributes, 
compound words 
with hyphens) 

Pronouns, verbs, hyphens, other 
words 

Set phrases, 
compound words 

Very strong Neighbor Both 

7 12 From CLS Names Content words Moderately strong Large Second 



8 1 Between tokens 
(punctuation and 
function words) 

Casing mistakes Mistakes Strong, instance-
specific 

Local Both 

8 2 Between tokens 
(punctuation and 
function words) 

Ellipsis (three dots), conjunctions, 
full/short form variations, 
pronouns, names 

Content words, 
function words, 
punctuation 

Strong, instance-
specific 

Local Both 

8 3 Between tokens 
(narrational verbs 
and quotes) 

Narrational verbs, quotes, wh-
words 

Content words, 
function words, 
punctuation 

Strong Large Both 

8 4 From CLS Names, narrational verbs Content words Moderately strong Large Second 
8 6 From CLS Names Content words Strong Large Second 
8 6 Between tokens 

("important" 
words attended by 
other tokens) 

Names, narrational verbs, 
stylistically variable words, 
diatopic variations, full/short 
form variations, infrequent words, 
various mistakes, obscene words, 
numbers, punctuation 

Content words, 
special function 
words, mistakes, 
numbers, 
punctuation 

Moderately strong Medium Both 

8 11 From CLS Names Content words Moderately strong Large Second 
8 12 From CLS Quotes Punctuation Moderately strong, 

instance-specific 
Global Both 

9 3 Between tokens 
(punctuation and 
function words) 

Ellipsis (three dots), modal verbs, 
various function words, quotes 

Function words, 
punctuation 

Moderately strong Large Both 

9 4 From CLS Names, punctuation, pronouns Content words, 
function words, 
punctuation 

Strong Global Both, but 
mainly 
second 

9 6 From CLS Names Content words Moderately strong Global Both 
9 7 Between tokens 

(punctuation and 
function words to 
verbs) 

Auxiliary verbs, frequent verbs, 
narrational verbs, rare verbs, 
punctuation 

Content words, 
function words, 
punctuation 

Moderately strong Large Both 

9 8 From CLS Conjunctions, prepositions, 
adverbs 

Function words Moderately strong Large Second 

9 9 From CLS Names Content words Strong, instance-
specific 

Global Both 

9 11 From CLS Names, punctuation Content words, 
punctuation 

Strong Large Second 

9 11 Between tokens 
(verbs to 
punctuation and 
function words) 

Full stops, commas, question 
marks, other punctuation, verbs, 
prepositions 

Content words, 
function words, 
punctuation 

Moderately strong Local Both 

9 12 From CLS Names Content words Moderately strong Global Both 
10 1 From CLS Quotes, full stops Punctuation Moderately strong Global Both 
10 2 From CLS Names Content words Moderately strong Global Both 
10 3 From CLS Names, quotes Content words, 

punctuation 
Moderately strong Large Second 

10 4 From CLS Names, verbs related to names Content words Strong Large Second 
10 4 Between tokens 

(punctuation, 
function words 
and names to 
function words) 

Auxiliary verbs, conjunctions, 
names, punctuation 

Content words, 
function words, 
punctuation 

Moderately strong Medium Both 

10 5 From CLS Full stops, pronouns, names Content words, 
function words, 
punctuation 

Moderately strong Global Both 

10 5 Between tokens 
(names to 
pronouns)  

Names, pronouns Content words, 
function words 

Moderately strong Medium Both 

10 6 From CLS Full stops Punctuation Moderately strong Global Both 
10 7 From CLS Verbs Content words Moderately strong, 

instance-specific 
Global Both 

10 8 From CLS Full stops, pronouns, adverbs, 
verbs 

Content words, 
function words, 
punctuation 

Moderately strong, 
instance-specific 

Global Both 

10 9 From CLS Names, punctuation Content words, 
punctuation 

Moderately strong, 
instance-specific 

Large Second 

10 10 From CLS Names Content words Moderately strong Large Second 



10 11 From CLS Names, verbs related to names Content words Moderately strong, 
instance-specific 

Large Second 

10 12 From CLS Full stops, commas, prepositions, 
names 

Content words, 
function words, 
punctuation 

Moderately strong Global Both 

11 1 From CLS Names, narrational verbs, 
stylistically variable words, 
diatopic variations, full/short 
form variations 

Content words, 
function words 

Moderately strong Global Both 

11 2 From CLS Names, adverbs, prepositions, 
pronouns, rare punctuation 

Content words, 
function words, 
punctuation 

Moderately strong Global Both 

11 3 From CLS Full stops Punctuation Moderately strong Global Both 
11 4 From CLS Full stops Punctuation Moderately strong Global Both 
11 5 From CLS Full stops Punctuation Moderately strong Global Both 
11 6 From CLS Full stops, pronouns, names Punctuation Moderately strong, 

instance-specific 
Global Both 

11 7 From CLS Full stops, pronouns, names Punctuation Moderately strong, 
instance-specific 

Global Both 

11 8 From CLS Names, punctuation, pronouns Content words, 
function words, 
punctuation 

Moderately strong, 
instance-specific 

Global Both 

11 9 From CLS Names, pronouns Content words, 
function words 

Moderately strong, 
instance-specific 

Large Second 

11 10 From CLS Names, narrational verbs, 
adverbs, pronouns, conjunctions, 
grammatical affixes, full stops, 
rare punctuation 

Content words, 
subword tokens, 
function words, 
punctuation 

Moderately strong, 
instance-specific 

Global Both, but 
mainly 
first 

11 11 From CLS Names, narrational verbs, 
adverbs, pronouns, conjunctions, 
grammatical affixes, full stops, 
rare punctuation 

Content words, 
subword tokens, 
function words, 
punctuation 

Strong, instance-
specific 

Global Both, but 
mainly 
first 

11 12 From CLS Names, pronouns, adverbs, 
punctuation 

Content words, 
function words, 
punctuation 

Moderately strong, 
instance-specific 

Global Both, but 
mainly 
second 

12 1 From CLS Names, narrational verbs, 
punctuation 

Content words, 
punctuation 

Moderately strong, 
instance-specific 

Global Both, but 
mainly 
first 

12 2 From CLS Full stops, other punctuation, 
names 

Content words, 
punctuation 

Moderately strong, 
instance-specific 

Global Both 

12 3 From CLS Narrational verbs, function 
words, punctuation, uniform 
attention (certain regions)  

Content words, 
function words, 
punctuation, 
uniform attention 

Moderately strong, 
instance-specific 

Large Second 

12 4 From CLS Narrational verbs, function 
words, punctuation 

Content words, 
function words, 
punctuation 

Moderately strong, 
instance-specific 

Large First 

12 5 From CLS Narrational verbs, function 
words, punctuation 

Content words, 
function words, 
punctuation 

Weak Global Both 

12 6 From CLS Names, narrational verbs, 
punctuation 

Content words, 
punctuation 

Moderately strong Global Both 

12 7 From CLS Names, topical nouns Content words Strong Large First 
12 8 From CLS Names, topical nouns Content words Moderately strong Global Both 
12 10 From CLS Names, topical nouns, narrational 

verbs, stylistically variable words, 
diatopic variations, full/short 
form variations, infrequent words, 
various mistakes, punctuation 

Content words, 
special function 
words, mistakes, 
punctuation 

Moderately strong Global Both 

12 11 From CLS Names, topical nouns, narrational 
verbs, stylistically variable words, 
diatopic variations, full/short 
form variations, infrequent words, 
various mistakes, punctuation 

Content words, 
special function 
words, mistakes, 
punctuation 

Weak, instance-
specific 

Global Both 

12 12 From CLS Full stops OR Names, topical 
nouns, narrational verbs, 
stylistically variable words, 
diatopic variations, full/short 
form variations 

Content words, 
special function 
words, punctuation 

Moderately strong, 
instance-specific 

Global Both 



 


