
Master thesis Artificial Intelligence

Explainability of Transformers
for Authorship Attribution

Ivan Kondyurin

9086765

First supervisor: Dr. Denis Paperno

Second examiner: Yupei Du

Graduate School of Natural Sciences

Utrecht University

Netherlands

July 29, 2022

Contents

Abstract .. 6

1. Introduction ... 7

1.1 Research question .. 8

1.2 Structure .. 11

2. Authorship attribution methods .. 11

2.1 Traditional approaches to attribution ... 11

2.2 Quantitative approaches to attribution ... 12

2.2.1 Single-measurement features ... 12

2.2.2 Feature selection and Complex features .. 16

2.3 Modern attribution methods .. 16

2.3.1 Profile-based supervised methods: probabilistic and compression models ... 16

2.3.2 Instance-based methods ... 17

2.4 Authorship attribution datasets .. 20

2.4.1. Traditional datasets ... 20

2.4.2 Modern cross-domain datasets .. 20

2.4.3 Datasets discussion .. 21

3. Transformer models in authorship attribution .. 22

3.1 Transformer overview ... 23

3.2 Transformer models fine-tuning .. 24

3.2.1 BERT ... 25

3.2.2 Transformer Language Models evolution ... 26

3.3 Enhanced transformers .. 26

3.3.1 Computational cost .. 26

3.3.2 Improved architectures .. 27

3.4 Transformers application for text classification .. 28

3.4.1 Transformers for authorship attribution ... 28

4. Transformer explainability .. 30

4.1 Defining explainability .. 30

4.2 Attention weights as an explainability tool ... 31

4.2.1 Critical view at attention explainability ... 32

4.2.2 Justification of attention explainability ... 33

4.2.3 Attention explanations in NLP transformers ... 34

4.2.4 Transformer explanations beyond attention .. 35

5. Model for authorship verification .. 35

5.1 Model task overview ... 35

5.2 The PAN fanfiction dataset ... 36

5.3 The model implementation .. 38

5.3.1 Recent approaches to Transformer-based AA ... 38

5.3.2 BERT segment classification model .. 40

5.3.3 BERT segment classification implementation ... 41

5.3.4 Obtaining embeddings ... 45

5.3.5 Final layer classifier ... 45

5.4 Model results ... 45

5.5 Model discussion ... 46

6. Final classifier interpretation ... 47

6.1 LIME-tabular explanations overview .. 47

6.2 LIME-tabular explanations analysis .. 49

6.3 CLS embeddings analysis .. 50

6.4 Comparison of LIME-tabular and difference-based features .. 52

6.5 Untuned CLS embeddings analysis ... 53

6.6 Correlation between CLS embeddings and classifier nodes ... 55

6.7 Classifier layer discussion ... 57

7. LIME explanations for segments ... 57

7.1 LIME overview ... 58

7.2 LIME-text for attribution explanations ... 58

7.2.1 Class 0 explanations .. 59

7.2.2 Class 1 explanations .. 60

7.2.3 Analysis of explanation difference .. 61

7.3 Pair-aware perturbations in LIME ... 62

7.3.1 Non-bag-of-words perturbation ... 62

7.3.2 Bag-of-words perturbation ... 63

7.4 Feature extraction with pair-aware perturbations .. 63

7.4.1 Extracted features overview .. 65

7.4.2 Relations between LIME estimations and prediction logits .. 65

7.4.3 Co-occurrence of important features ... 66

7.4.4 Adversarial examples ... 67

7.4.5 Feature importance discussion ... 70

8. Attention analysis .. 71

8.1 CLS attention overview ... 71

8.1.1 Preliminary per-layer analysis of CLS attention ... 72

8.1.2 Discussion of the general CLS behavior ... 73

8.2 Attention visualization overview ... 73

8.2.1 Averaged attention visualization ... 74

8.2.2 Per-layer attention visualization .. 75

8.3 CLS attention as means of retrieving tokens relevant for classification ... 82

8.3.1 Distribution of relevant attention with respect to CLS .. 82

8.3.2 Selective coverage in CLS ... 83

8.3.3 Types of tokens attended by CLS .. 84

8.4 Highly attended tokens as linguistic features .. 85

8.4.1 Selectivity and causal interpretation .. 88

8.5 Comparison with other known features ... 88

8.5.1 Overlap with features extracted by Boenninghoff et al. .. 88

8.5.2 Overlap with features commonly used in authorship attribution ... 90

8.6 Overlap with LIME ... 92

8.6.1 Feature comparison .. 92

8.6.2 Feature importance .. 94

8.6.3 Label inversion ... 96

8.7 Names as features .. 96

8.7.1 Overview .. 96

8.7.2 Names ablation and alteration techniques ... 97

8.7.3 Names ablation and alteration results .. 98

9. Conclusion .. 101

9.1 Discussion of research question Q1 .. 103

9.2 Discussion of research question Q2 .. 104

9.3 Future work ... 106

Bibliography .. 108

Appendix .. 118

A. Description of all CLS-related attention ... 118

Abstract
Authorship attribution attempts to establish the author of a particular text. In this work, we examine

the capabilities of transformer-based models in the subtype of attribution task referred to as
authorship verification, which involves determining whether the texts are created by the same

author. A few works have been suggested that applied fine-tuned Transformer models in this field.
Such approach is motivated by their excellent performance and adaptability (fine-tuning can be

performed on texts of different sizes and genres, and different pre-trained model checkpoints
enable switching between languages). However, they are not as transparent as the traditional

methods, in which features that quantify the style (stylometric features) are selected to maximize
the distance between texts. To tackle this problem, we first implement a model for authorship

verification based on BERT architecture and then investigate the way its predictions are made by
applying an adapted LIME explainer and proposing an attention-based relevant feature extracting

procedure. We then compare the two approaches and analyze their explainability from the causal
perspective by input ablation and alteration to verify that they can retrieve the features that have a

strong influence on the model predictions. We also describe and classify the extracted features

from a linguistic perspective.

1. Introduction
Authorship attribution (AA) is a traditional field of philological and linguistic studies. In general

case, it attempts to establish the person who wrote a particular text. However, a variety of subtasks
motivated by real-world problems exists, including authorship verification, which aims at proving

that a certain author has indeed created a given piece of text (Kestemont et al., 2020), attribution
of texts with an open or closed set of candidate authors (Stamatatos et al., 2017), authorship

obfuscation (Barlas and Stamatatos, 2020), and more.

Traditionally, researchers in authorship attribution relied on data from extralinguistic sources, such
as biographical and historical information and physical evidence (Stamatatos, 2009). However, in

many cases, such information was unavailable or insufficient to differentiate between several
closely related authors that, for example, worked for the same newspapers and published topically

related articles (Holmes, 1994; Glaudes et al., 2019). In such cases, statistical analysis of stylistic
features was used. For each case of disputable authorship, a feature-based description of each

author’s texts was performed, sometimes by manual labeling (Marusenko, 1990), and a set of
statistically significant parameters that could successfully discriminate between texts of known

authorship was selected.

The set of exploited features differed considerably across studies. A detailed historical review of
the development and refinement of potential features is given by Juola (2006), while a practical
comparison of the effectiveness of available parameters drawn from different levels of language

can be found in Stamatatos (2009) and Sari et al. (2018). In general, many basic word-level features
were shown to be ineffective, while frequencies of the word and character n-grams indeed turned

out to be capable of reflecting individual stylistic preferences (Burrows, 2002; Eder et al., 2016).
More complex and high-level features, such as sentence structure or frequency of rewrite rules

were also used (Marusenko, 1990; Stamatatos, 2009; Sari et al., 2018), but the complexity of

automatic extraction made them less widely exploited, particularly for large texts.

Although statistical methods are still widely used, they can be insufficient in some cases. Firstly,

the accuracy of statistical predictions in some languages may decline for shorter texts (Eder et al.,
2016; Rybicki and Eder, 2011; Rybicki and Eder, 2013; Hirst and Feiguina, 2007), as the feature

frequency distribution can be distorted due to the limited size. For example, Burrows’ Delta, a
widespread statistical metric for discriminating between text styles based on word frequency

distribution (Eder et al., 2016, Evert et al., 2017; Glaudes et al., 2019), was only proposed by
Burrows (2002) for texts “exceeding about 1500 words in length” and can only be used for

reducing the a-priori set of authors if the texts are between 100 and 1500 words in length. Despite
various improvements suggested to this method (Hoover, 2004; Hoover, 2005; Burrows, 2007;

Argamon, 2008; Jannidis et al., 2015; Smith and Aldridge, 2017), the general constraint persisted

and was considered a significant limitation for attribution of texts with limited length.

Moreover, stylistic differences across genres may dominate over those of different authors (Juola,

2006), which impairs the value of statistical feature analysis for cross-domain attribution, in which
sufficient data for a given author is only available in one genre, while attribution needs to be

performed on text of a different genre. If the set of candidate authors is open, that is, the true author
of the text was not included in the training dataset, traditional selection of parameters is also harder

since we cannot ensure their statistical significance for a particular pair of authors.

These considerations motivated the use of neural network-based models for authorship attribution.

Over the last years, different architectures have been used (Zheng, 2006; Khosmood, 2006; Barlas
and Stamatatos, 2021). Among those showing the best performance were RNNs, CNN-based

models which accounted for peculiarities of punctuation, Siamese Networks trained for text

comparison, and various hybrid architectures and ensembles of networks (Stamatatos et al., 2018;

Kestemont et al., 2020). Comparatively modern Transformer models (Vaswani et al., 2017), which
are capable of grasping long-distance relations to accomplish various NLP tasks, have also been

recently applied to authorship attribution (Ordoñez et al., 2020; Fabien et al., 2020; Peng et al.,

2021).

However, no consensus has been reached regarding the optimal architecture and, more generally,

the ability of fine-tuned Transformer language models to learn stylistic specificities and use them
for authorship prediction better or on a par with other contemporary models. While some solutions

surveyed by Barlas and Stamatatos (2020) and BertAA suggested by Fabien et al. (2020) showed
state-of-the-art performance on benchmark datasets, other ones failed to beat the baselines. The

performance of Transformer models during the PAN20 and PAN21 competitions was also
ambiguous: the model by Ordoñez et al. (2020) performed efficiently on the first testing dataset

but showed a significant decline on the second one (Kestemont et al., 2020), while the model of

Peng et al. (2021) has demonstrated near state-of-the-art results.

Apart from the matter of performance, another serious concern with Transformers for AA, as with
other deep learning models, is the explainability of the output. Since the result of attribution may

have considerable consequences in real life, including reconsideration of authorship as such as
well as a potential accusation of plagiarism and issues with royalties. Therefore, the possibility of

explaining and motivating the decision is highly desirable.

Although statistical methods are weaker in some subfields, they allow the researchers to extract
important features and explicitly quantify the difference between texts based on their values, which

fully interprets the procedure. Machine learning models cannot provide such high level of
interpretability, but reliable explainability techniques also exist for some types of models (Jain and

Wallace, 2019). For Transformers, on the contrary, the discussion of which techniques are most
appropriate for extracting meaningful causal relations between input and output is still in progress

(o’Riedl, 2019).

The task of Transformer-based authorship attribution is therefore not only in creating a model with

sufficient prediction accuracy but also in verifying that the model learns information meaningful
for this task, which is the stylistic footprint of the author, and not some irrelevant information,

such as topic- or genre-specific traits. To that end, available explainability methods, both model-
agnostic and specific for Transformer architecture, need to be applied to our model, and their

output needs to be analyzed to check which features the model uses and if they can be treated as

stylistic.

1.1 Research question

The general idea of the current work is to explore whether the use of Transformer models for

authorship attribution is feasible and, if so, to which extent they are interpretable in the course of
such a task — in particular, whether it is possible to detect which features play the most important

role. If the features are retrievable, our goal is also to analyze and classify them with respect to the

existing inventory of parameters used for style analysis.

Therefore, our goal in this research is not only to build a model that can solve the problem of

authorship attribution utilizing a pre-trained transformer-based model but also to analyze how the
predictions are made. To that end, we scrutinize different explanation techniques and analyze their

relationship with the input characteristics.

The relevance of this problem is justified by the growing popularity of fine-tuned or few-shot-

learned Transformer models, which leads to their application in various fields, even sensitive ones.
The remarkable performance of these models in other tasks may persuade the audience that their

output needs to be trusted without additional investigation and consideration. Therefore, given the
importance of potential negative consequences for erroneous results in AA, the explainability of

the model output becomes crucial.

We suggest that the application of AA models to the domain of texts written by independent
creators needs to be done with particular caution. The rapidly increasing number of created texts

encourages automatization of plagiarism and fraud detection, but for independent authors that use
social media and other online platforms as their primary way of publishing, unfair treatment due

to mistakes in classifications may result in financial and reputational losses. One of the fields in
which such problem seems to be relevant is fanfiction, i.e., literary texts created by non-

professional writers “in the tradition of a specific cultural domain” (Stamatatos et al., 2018;
Kestemont et al., 2020). Niche fanfiction writers often work independently without formal

evidence of their authorship or even publish anonymously, which puts them at risk when the author
needs to be established. We emphasize that the ability to motivate the model’s decision even for

accurate classifications is highly desirable, and for the Transformer models explainability is still

among the major challenging aspects.

Besides, we highlight that the explanations need to be task-specific and created with the end user
to whom they are directed in mind. For the task in question, such users are primarily experts, the

linguists performing attributional studies. Therefore, the model should, ideally, be able to reveal
the most important linguistic features that are used to represent stylistic differences, and such

linguistic features should be meaningful in terms of style analysis. Thus, for the use of

Transformers to be justified in AA, we expect such models to fulfill two requirements:

(1) efficiency: showing competitive performance compared to other NN models and outperforming

the common baselines

(2) task-specific explainability: allowing for the extraction of important features that are

meaningful, correspond to some existing stylometric features of any level, and are indeed

discriminative for this model in the current AA task.

These requirements are reflected in the structure of our research question, which is subdivided

into the following parts:

Q1
Is it reasonable to utilize pre-trained Transformer models for the task of authorship attribution,

or their performance does not surpass that of smaller models?
Q1.1

How does the ability to process longer sequences contribute to the Transformer performance? Is

it required for proper attribution to be able to process a longer sequence simultaneously?

Q2-1
If the answer to Q1 is True, which meaningful parameters, if any, can we extract, and by which

means (for example, by analyzing attention matrices, or permuting input, or applying existing

model-agnostic methods)?

Q2-1.1
Do any of these patterns correspond to stylometric features used in the traditional stylistic analysis

for attribution?

Q2-2

If the answer to Q1 is False, what is the cause of this failure? Is it specific to our proposed solution,

related to the known bottlenecks of current Transformer models, or caused by some fundamental

limitations of the Transformer architecture?

Question Q2-1 corresponds with six possible hypotheses:

Hypothesis I implies that explanations related to existing stylometric features may be found by

visualizing the attention weights of different heads at different levels
Hypothesis II aims at finding valuable features by generating explanations on fully connected

layers at different levels
Hypothesis III suggests that the uppermost layer, the classifier itself, can provide sufficient

explanations
Hypothesis IV involves explanations based on complex features (e.g. from combining multiple

attention heads) observed, among other methods, using input permutation
According to Hypothesis V, explanations can be generated by combining information from the

sources mentioned above
Hypothesis VI accounts for the negative answer, according to which no meaningful features that

reveal causal relations between input and output and correspond to any of the existing stylometric
features could be found

If the answer is False (and the Transformer model could be trained in principle but did not

outperform the baselines), Q2-2 is used to determine the possible causes of this issue:

Is this insufficient performance specific to our proposed solution, related to the known bottlenecks

of current Transformer models, or caused by some fundamental limitations of the Transformer

architecture?

In this case, four hypotheses are in place:

Hypothesis I suggests that poor performance is due to the limited input length of existing
Transformer models that does not allow them to process the text as a whole and learn long-distance

stylistic patterns; therefore baseline models with limited input window size would also show a
corresponding decrease in performance

Hypothesis II implies that the size of the pre-trained Transformer language model, i.e., the number
of parameters or hyperparameters, constitutes a limitation, and a larger model (for example, a large

version of GPT-J as opposed to a small one) could perform better in this task
Hypothesis III states that the general Transformer architecture is the reason for insufficient

performance as it is incapable of properly learning quantitative features that are important for AA,
and a better performance can be expected from a model that makes use of different architecture

for the language model, such as LSTM-based one
Hypothesis IV covers the negative scenario in which none of these expected justifications can be

proven.

The anticipated contributions of our work therefore include:

- a model for verifying the authorship of a pair of texts

- a proposed procedure for explaining them

1.2 Structure

In the course of answering these research questions, we will first provide theoretical motivation

and literature review for the problems and postulates outlined above and then describe the stages

of developing our proposed solution.

This work is structured in the following way:

- Firstly, a historical overview of existing methods of AA is provided in Chapter 2,
including traditional philological analysis, statistical stylometry, and machine learning

techniques
- After that, in Chapter 3 we provide a more in-depth survey of the Transformer architecture

with an emphasis on its application to text classification and AA in particular. Particular
attention is paid to known weak points of the existing solutions, such as limited input

sequence length
- In the following Chapter 4, the interpretability of transformers is discussed, with a focus

on the explanation potential of attention weights given their model-specific nature.
Alternative ways of generating explanations are also outlined

- We start the practical part with Chapter 5 by describing the model architecture, reflecting
on its implementation, and evaluating its performance with different input sizes

- The interpretation of the model starts with a detailed investigation of the final classification
layer which averages predictions in multiple segments in Chapter 6. We utilize feature

extraction and analyzer the input embeddings to motivate why the classifier can be
disregarded for the future explanation

- In Chapter 7, we proceed with using LIME-text explainer to obtain most important
features, analyze their statistics and perform ablation experiments to verify their

importance and reveal dependencies
- Finally, in Chapter 8 we analyze the attention in all heads and layers of the BERT

component to highlight the most relevant types of relations and use the relevant attention
matrices to extract the most highly attended tokens. We compare these tokens with LIME

features assess their importance. In the end, we provide an additional investigation of

names used as features, given their frequent occurrence as the most important ones.

2. Authorship attribution methods
A detailed survey of stylometry development can be found in Holmes (1994). Juola (2006)

provides a comprehensive overview of the field with a section dedicated to a critical account of

various attribution techniques from a modern perspective.

2.1 Traditional approaches to attribution

In traditional approaches, the attribution was largely performed based on the evidence from
external sources (such as biographical data, incipits, and colophons (Stamatatos, 2009)), internal

data (self-references, topical and ideological homogeneity), bibliographical evidence, historical

facts, and physical evidence (the analysis of ink, handwriting, watermarks).

One of the earliest accounts of authorship can be found in St. Jerome (Hulley, 1944) with respect

to the critical study of Biblical texts. Among the criteria for questioning the originality of a passage
of text, he considers the contradiction between the ideas in the text and the author’s doctrine, the

inclusion of quotes or references to events that occurred after the author’s death or were unknown
to the author. St. Jerome also pays attention to the shift in style, including the occurrence of words,

collocations, and expressions atypical for texts of certain author. This can be considered an early

example of stylistic features analysis.

2.2 Quantitative approaches to attribution

In some cases, authorship may be ascertained based solely on the historical and biographical data

along with high-level philological analysis.

However, when these knowledge sources are insufficient (Glaudes et al., 2019; Marusenko, 1990),

a more detailed account of the texts at issue is required. Such procedure of authorship attribution
generally relies on stylometry, which includes creation, formal representation, and comparison of

stylistic fingerprints of authors (Holmes, 1994; Holmes, 1998; van Halteren, 2005).

The first evidence of applying quantitative methods to formally describe the writing style dates
back to the late 19th century when Mendenhall (1887) attempted to determine the authorship of
plays officially attributed to Shakespeare. Among other early attempts is the work by Lutoslawski

(1898) who used stylometric features to attribute a number of Plato works. These works were then

followed by influential statistical studies by Zipf (1932), Yule (1938; 1944), and Simpson (1949).

According to Holmes (1994), the research goal with respect to the feature selection was determined

as follows: “The stylometrist therefore looks for a unit of counting which translates accurately the
‘style’ of the text, where we may define ‘style’ as a set of measurable patterns which may be

unique to an author”. The underlying assumption made here is that the style of a single author is
considered constant for the text corpus in question and that this style necessarily differs from that

of other authors. The style in this paradigm is therefore viewed as the unique fingerprint of an

author, or individual “stylome”.

The exact set of methods depends on the type of research question (Juola, 2006): compared to

closed-set attribution, open-set attribution needs to rely more on the exact distance between the
test set documents and all of the a priori classes rather than on finding the nearest a priori class

(Eder et al., 2016). Authorship verification is treated with a stronger emphasis on the pairwise
similarities, which are currently often processed using Siamese networks (Tyo et al., 2021). For

author profiling, establishing the author class is insufficient: this class itself is also to be described

with some attributes, such as age, education, native language (Barlas and Stamatatos, 2021).

For this work, we will focus on the verification of authorship.

2.2.1 Single-measurement features

According to (Neal et al., 2017), there is still no general consensus on the optimal feature set. In

general, features frequently exploited for quantifying the style in authorship attribution involve
vocabulary, syntax, semantics, and characters (Stamatatos, 2009). The overview of such features

together with the tools required for extracting them, as formulated by Stamatatos, are presented in

Table 2.1.

Table 2.1: Types of stylometric features (from Stamatatos (2009))

Vocabulary features

Plain linguistic features that are extracted by means of a single measurement served as the starting
point for formal stylometry. Holmes (1994) traces the earliest formal research of vocabulary to the

aforementioned Mendenhall (1887) who suggested using word lengths as a distinctive feature to

determine the writer.

Multiple lexical features have been assessed as potentially meaningful for authorship attribution,
including average length of words and sentences, average count of syllables per word, POS

distribution, type/token ratio, and measures of vocabulary richness (Stamatatos, 2009). Various
vocabulary richness functions that aim at quantifying the diversity of lexicon used in a text are

type-token ratio V/N (vocabulary/number of words), the number of hapax legomena (that is, words
only occurring once) (de Vel et al., 2001) and sometimes also dis legomena, tris legomena, and so

on (words with double and triple occurrences respectively). However, the values of these
parameters heavily depend on the text length, and therefore a number of functions for normalized

counts of lexicon diversity were proposed, such as Yule’s K (Yule, 1944; Tanaka-Ishii and Aihara,
2015) and Simpson’s D index (Simpson, 1949). The use of vocabulary richness for AA was

criticized in (Hoover, 2003). A broader review of criticism towards this approach can be found in

(Juola, 2006).

However, some plain single-measurement features yielded promising results in the attribution of

specific text corpora. One such case is the use of letter counts (Merriam, 1998) which turned out
to be unexpectedly efficient for the case of Shakespeare vs. Marlowe authorship question. Merriam

claimed that “of counting the letters in the 43 plays was the implausible discovery that the letter
‘o’ differentiates Marlowe and Shakespeare plays to an extent well in excess of chance” and

established a threshold value for ‘o’ frequency that enabled to attribute the set of plays in question

to the Shakespeare class or to that of Marlowe.

According to Juola (2006), a possible reason for the relatively poor performance of the

aforementioned features is that they were selected manually before the actual analysis of the data,
based on their expected contribution to the style characteristic. A more promising approach can be

to reveal the distinctive features from the data analysis by determining the regular, noticeable, and

explainable differences between text sets. Such approach is sometimes referred to as proper
stylometric analysis (Boenninghoff et al., 2019). Within this paradigm, new methods were

introduced, such as the analysis of synonym pairs. However, it was not applicable to some datasets

due to the data sparsity problem since the number of strict synonyms is severely limited.

To avoid the sparsity issue, Mosteller and Wallace (1964) suggested focusing on function words

(articles, prepositions, conjunctions) that carry little lexical meaning but define syntactic or
semantic functions. While in many other areas of language processing, such as sentiment analysis

or topic modeling, these words are commonly removed beforehand, in authorship attribution they
allowed achieving positive results in attributing the Federalist papers. The reason for such success

is that function words are topic-independent, which reduces the influence of topical differences
across authors, and relatively interchangeable, which ensures that different authors could freely

alter the way of expressing themselves according to personal stylistic preferences. The authors
used Bayesian statistical analysis of frequency distributions of the small set of function words.

Stamatatos (2009) marks this study as the one initiating “nontraditional authorship attribution”
that relies on simple quantitative parameters that can easily be extracted automatically, as opposed

to traditional attribution that relied on human experts labeling the data with complex parameters

and selecting statistically significant ones.

The Federalist Papers (a set of 85 essays written under the pseudonym Publius) have been an
important target for AA since then and are now seen as a benchmark. This is a closed-set attribution

problem that is currently considered solved, and the first proposed solution is described as “the
most famous and widely cited statistical analysis of authorship” (Juola, 2006). Mosteller and

Wallace analyzed the relative frequencies of 30 function words, and since then many works relied

on a similar technique.

Currently, a common lexical feature is the (relative) frequency of a number of most frequent words

or n-grams with substantial variation in their number, selection conditions, and preprocessing
(Burrows, 2002; Eder et al., 2016; Sari et al., 2018). However, the raw counts of these feature

values are not used alone: instead, various distance metrics or simple statistics such as PCA can
be applied. Even though the unfiltered list of most frequent words would typically include function

words, many researchers still use a specifically defined set of function words instead. Among them
are Argamon et al. (2007) with a list of 675 words, and Koppel and Schler (2003) who used 480

words.

Syntactic features

A more high-level way of representing stylistic information is by considering syntactic features,

with the assumption being that an individual style contains specific syntactic patterns more
frequently than other styles, and this frequency is to a certain degree consistent among different

texts. The importance of function words for attribution provides additional evidence for this view.
The downside of including diverse and complex syntactic features is the increasing complexity of

labeling. Without reliable techniques for automatic parsing, a substantial amount of human expert
work was needed to count the feature values. Automatic syntactic analysis, on the other hand,

could lead to multiple errors in parsing that may skew the feature counts.

Features counted manually or semi-automatically (i.e., using guided rule-based systems to assist
labeling) were extensively used by Marusenko (1990). He proposed a set of 56 a-priori parameters,

most of them being syntactic, of which those were chosen that showed statistical significance (t-
test values above 1.96) in discriminating texts of two authors. Among such syntactic parameters

are the number of words per simple sentence, number of subordinate clauses, embedded clauses,

homogenous elements, determiners, infinitive groups, and more. This method with some

alterations was successfully used for a number of authorship problems, including that of Corneille-
Molière (Rodionova, 2007). For this work, the set of parameters initially designed for the Russian

language was adapted to better represent the stylistic capabilities of the French language. However,

most of the 51 parameters used in this study correspond with the original ones.

Stamatatos (2009) traces the first attempt to employ more elaborate syntactic features for the

English language to Baayen et al. (1996). They also used a semi-automatic approach for syntactical
annotation to ensure that parsing is correct. To create the set of features, they extracted the

frequencies of rewrite rules (that is, rules according to which a phrase is constructed out of
immediate constituents). The resulting features performed better than vocabulary richness metrics

and some lexical features. Gamon (2004) used rewrite rule frequencies extracted automatically

and observed that in combination with lexical features they can perform better than the latter alone.

Stamatatos (2001) attempted to perform attribution of texts in the Greek language using phrase
boundaries, also extracted automatically, to count the frequencies of constituents. Hirst and

Feiguina (2007) used bigram frequencies of partial parsing with varying complexity.

A more simple way of incorporating additional syntactic information using automatic analysis
would be to use POS tags, but they are not particularly informative outside the context. To address

this, it is possible to count frequencies of n-grams (Sari et al., 2018; Koppel et al., 2009) or POS
n-grams (Stamatatos, 2009). Among solutions in this direction are those proposed by Argamon-

Engelson et al. (1998) and Kukushkina et al. (2001).

Semantic features

Due to the complexity and not fully reliable accuracy of automatic semantic analysis, few attempts

have previously been made to exploit semantic features in AA. One such study that provides a
detailed description of feature extraction and prediction results is that of Argamon et al. (2007).

They used semantic information semi-automatically extracted from WordNet (Miller et al., 1990)
to create features that reflected high-level semantic information associated with certain words or

phrases and indicated their semantic functions, such as “elaboration” and “apposition”. The
authors showed that this set of parameters combined with lexical and syntactic features may

improve the classification, but the effect of those features independently was not reported.

Structural and orthographic features

Another possible addition outlined by Juola (2006) and utilized in some of his works (Juola, 2003)

is the inclusion of character n-grams. They were first used by Kjell (1998) who performed

successful attribution of the Federalist papers using character bi- and trigrams.

The reasons for this success are manifold. Firstly, character-level features can better account for

morphologically related words that can correlate in terms of relative accuracy in texts of a
particular author. Secondly, character-level analysis enables consideration of punctuation and

formatting if such symbols are not removed. This can be particularly important in attributing
internet “microtexts”, specifically chat messages, comments, and social media posts

(Boenninghoff et al., 2019; Suman et al., 2021), in which the specific patterns of spaces,

punctuation, and indentation can bear importance for AA.

Another trait of character-level features is the ability to incorporate the author’s regular

misspellings and atypical uses of punctuation while also being tolerant to noise, such as sporadic
typographical errors. Koppel and Schler (2003) considered regular errors important individual

traits of authors. However, Juola (2006) warns against relying solely on such patterns in datasets

since they may have been disturbed during the preprocessing. In the case of text layout, it can also
be changed during editorial processing. Therefore, one cannot ensure that a particular structural

trace was created by the author herself unless specific evidence exists.

The practical advantage of character-level n-grams compared to word-level ones is their language-
independent nature and simplicity of extraction using most basic programming tools instead of

language-specific tokenizers. However, they increase the dimensionality of feature space

compared to word-based parameters.

2.2.2 Feature selection and Complex features

While word- and character-level n-grams may be successfully used independently, more complex

features work best in combination with each other or with n-grams. However, adding all available
features to the classifier also may be implausible due to increasing dimensionality which can lead

to overfitting (Stamatatos, 2009).

Therefore, the matter of feature selection is important. Some straightforward techniques, such as
the one used by Marusenko (1990), included calculation of Student’s t-test values and choosing

the features that have values above the selected threshold for a given pair of text sets. Forsyth and
Holmes (1996) compared the sets of n-grams obtained by frequencies and by distinctiveness and

found the latter favorable. However, in other cases, frequency-based features were shown to be
more efficient than those collected using such criteria for examining discriminatory power of

features as information gain (Houvardas and Stamatatos, 2006) and odds ratio (Koppel et al.,
2006). Algorithmic approaches were also applied to that end: Li et al. (2006) utilized a genetic

algorithm for feature reduction, and its application resulted in increased accuracy with a mere half

of the initial features.

Lexical features, such as most frequent words, can show certain correlations. In the Federalist
Papers, such correlation was noted for “has” and “have”, as well as for “it” and “that” (Mosteller

and Wallace, 1964). To avoid overweighting particular features, the reduction of highly correlated
feature dimensions can be performed. A popular technique to ensure the independence of

dimensions is principal components analysis (PCA) applied by Burrows (1987; 1989; 1992) and
studied in detail by Sebastiani (2002). PCA aims at generating smaller ordered sets of new

uncorrelated variables (principal components) that explain as much of the data variance as
possible. It thus yields linear combinations of initial features. Typically, two components with the

highest explainability are mapped to a two-dimensional space for easy visualization.

2.3 Modern attribution methods

2.3.1 Profile-based supervised methods: probabilistic and compression models

Stamatatos (2009) provides an interesting criterion for grouping the attribution methods. The
author notices that some methods treat training data per author cumulatively, thus defining the

author’s profile, and the differences within the author’s class are disregarded (“profile-based
methods”), while others treat each instance of the training sample individually (“instance-based

methods”).

An example of the first type of model is a probabilistic model that extracts the profiles of candidate

authors by concatenating their texts and then uses probabilistic classifiers, such as naïve Bayes, to
maximize the probability of training texts belonging to their true authors’ profiles based on their

distance to each author’s class according to a chosen distance function. Such a model was first
used for AA by Mosteller and Wallace (1964), and a detailed account of probabilistic classifiers

can be found in Sebastiani (2002).

Another category that uses concatenated texts to represent authors’ profiles is compression models.
They calculate cross-entropy between the target text and the author’s profiles using compression

algorithms (Marton et al., 2005). In this method, the gain in size after adding the target text to the
compressed set of a candidate author can serve as a similarity measure. The compression model

was used in the study by Kukushkina et al. (2001) that showed that the RAR compression

algorithm performed most efficiently in this task.

Other methods of AA are considered instance-based as they treat the contribution of each training
text separately. They require a better account of the training data processing: each author’s class

needs to be represented by multiple texts of comparable size. The length of these texts is an
important hyperparameter: they need to be sufficient to represent the author’s style in a consistent

manner but also correspond with the average text length to avoid excessive variation. Hirst and
Feiguina (2007) observed the performance of their classifier with text pieces of different length

and discovered that performance significantly decreases for smaller texts (with lengths of 200 and
500 words). Similar findings were made for Burrows’ Delta (Burrows, 2002), for which a

recommended text size of at least 1500 words was initially claimed. Thus, large texts need to be
split into chunks of equal length, while for short texts data augmentation techniques can be used

(Glaudes et al., 2019).

2.3.2 Instance-based methods

When the set of authors is not known a priori, available techniques for statistical analysis include

Multidimensional Scaling (MDS) (Mead, 1992) and Cluster analysis. A large number of features
also necessitates the emphasis on interpretability and visualization of the feature values, as they

are harder to represent. Cluster analysis and MDS involve the calculation of intertextual distances
that represent the degree of dissimilarity. The difference in cluster analysis, according to (Juola,

2006), is that after measuring pairwise distances the closest pairs are grouped together and replaced
with a new item that represents the cluster. This procedure repeats until a single cluster is formed,

and the result can be displayed as a dendrogram with binary branching (with each split representing
a pairwise combination). MDS can be used with different distance metrics, such as «linguistic

cross-entropy» employed by Juola (1997).

Similarity-based models

Similarity-based models are based on the idea of pairwise similarity between the target text and

all texts from the training dataset. When this similarity is calculated according to a selected metric
function, the text is attributed to the most likely class that is typically found using the k-nearest

neighbors algorithm (Fix and Hodges, 1951).

One of the most successful cases of combining values of multiple features to separate different

classes of authors is Burrow’s Delta. According to the author’s definition, the Delta measure is
“the mean of the absolute differences between the z-scores for a set of word-variables in a given

text-group and the z-scores for the same set of word-variables in a target text” (Burrows, 2002).

Burrow’s delta was introduced with the view to grasping the stylistic distance between texts. It is

based on the Z-score values of m most frequent words or word-POS pair in each text. The Z-score
is calculated as a difference between a relative frequency of a word and its mean frequency in the

reference corpus divided by standard deviation:

!!(#) =
&!(#) − (!

)!

Distance is then computed as the sum of differences in Z-scores between authors D and D’ for

each frequent word, which is then divided by their total number:

∆"(#, #′) =
1

.
∥ z(#) − z(##) ∥$=

1

.
1|!!(#) − !!(##)|

%!

!&$

A small Delta score means a higher degree of stylistic similarities. During the attribution, the
document is assigned to the author with the lowest Delta value, which implies the greatest

similarity between the document and the author’s class. Initially this metric was used with 150

most frequent words to assess the dataset of Restoration poets and was considered highly effective.

Hoover (2004) introduced several improvements to Burrow’s classical Delta, including ignoring

personal pronouns, considering different numbers of frequent words (n = 700 was claimed to be
optimal), and using culling at 70% (that is, ignoring the words for which a single text provides

70% occurrences or more).

Different approaches have been proposed to the calculation of the Delta score since then (Hoover,

2004; Hoover, 2005; Burrows, 2007; Argamon, 2008; Jannidis et al., 2015; Smith and Aldridge,
2017), including those using percentage difference instead of z-score and various metrics to

calculate the difference between z-scores of a pair of texts. Along with classical Delta (which uses
a variant of Manhattan distance), Cosine similarity and Canberra distance have been successfully

used, notably in the Stylo package for stylometric analysis (Eder et al., 2016).

Z-score can be used separately outside the Burrow’s Delta (Juola, 2006) to compare expected and
observed frequencies of various words, not only the most frequent ones. This approach enables

discovering the words over-used and under-used by each of the authors.

Instance-based similarity techniques were also used for compression models. Benedetto et al.
(2002) used compression algorithms as means of calculating a pairwise similarity between texts

in the way resembling one used in (Marton et al., 2005). The difference is that the target text is
concatenated with a single training text, compressed, and compared with the compressed training

text before concatenation. After that, a 1-nearest-neighbor classifier is used to attribute the target

text to one of the authors.

Distance-based approaches focus on calculating the distance between the query document (Q) and
the author class directly, without prior representation of both in a multidimensional space. The

distribution of words can be treated as a probability distribution and represented using existing
probability difference metrics, such as Kullback–Liebler divergence or Kolmogorov–Smirnoff

distance. Cilibrasi and Vitanyi (2006) suggested an alternative distance metric based on
Kolmogorov complexity. Kolmogorov complexity (Li and Vitanyi, 1997) of a given pair of strings

defines the smallest program that converts that string into another one. For the task of AA,
Kolmogorov complexity can serve as a similarity metric in which the text that requires the least

effort for being converted into the target one is assigned the highest similarity.

Kukushkina et al. (2001) made use of Markov chains for classification. A first-order Markov

model was calculated separately on each author’s training set, and the target text was attributed to

a certain class if its chain yielded the highest probability of producing this text

Vector space models

Training and target texts can be represented as multidimensional vectors in which each dimension
corresponds with a certain feature. In this framework, a vast number of machine-learning

approaches can be applied, including Support Vector Machines (SVMs) (de Vel et al., 2001; Li et
al., 2006), decision trees (Zhao and Zobel, 2005), and neural networks (Zheng et al., 2006;

Khosmood and Levinson, 2006).

SVM solutions turned out to be particularly efficient due to their ability to handle noisy or sparse
data and process multidimensional vectors without overfitting. They learn the location of

hyperplanes separating the data in the training set in the best way and with highest possible
resistance to classification error. They have been extensively used for authorship attribution,

outperforming such statistical techniques as Linear Discriminant Analysis (LDA) and many other

machine learning solutions, such as Naive Bayes and Classification Trees.

In modern works, they are frequently used as one of the baselines, and are still showing compatible

results (Stamatatos et al., 2018).

Deep learning models

Frequently used neural networks that are atypical for other NLP tasks are CNNs for comparing

selected excerpts of n-grams between texts (Ordoñez et al., 2020) and Siamese architectures
networks that were introduced specifically for detecting similar entities (Koch et al., 2015), though

were initially used for comparing images.

A Siamese architecture generally incorporates a neural network that is applied separately to several

(normally two) instances using the same weights in order to produce comparable representations.
These representations are then passed to a distance metric to determine their similarity. For the

training stage, the production of representations can be adjusted to maximize the distance for a

particular task, and for the inference, a threshold can be used to classify a pair of data entries.

The specific model used within the Siamese architecture can be different.

One approach was proposed by Boenninghoff et al. (2019) for attributing short texts. The An

AdHominem model used two layers of bidirectional LSTMs with an attention layer on top for both
word and character embeddings, and a module for nonlinear metric learning was used to calculate

the similarity between their outputs.

Tyo et al. (2021) generated embeddings of a fine-tuned BERT and then used average pooling

across all tokens for each of the input sequences and a dense layer to obtain a final representation
of a sequence. After that, cosine and Euclidean deltas as distance metrics. For the training the

distance was used as means of loss calculation and model optimization, while for the inference, a

threshold was used to classify the pairs.

Interestingly, Koppel et al. (2012) considered similarity-based approaches more appropriate than

machine-learning methods for attribution among many candidate authors. However, it is not clear

to which extent is this claim applicable to large modern ML models for text classification.

2.4 Authorship attribution datasets

Neal et al. (2017) provide a thorough review of the datasets available for authorship attribution

and commonly used for such task. We, in turn, will outline the major steps of their development,
highlighting the importance of cross-topic data representation, and proceed with discussing PAN

datasets in some more details.

2.4.1. Traditional datasets

Traditionally, AA was performed for texts that possessed considerable social and cultural
importance, such as biblical literature (Morton and McLeman, 1966; Kenny, 1981; Eder, 2012),

philosophical works (for example those of Plato and Aristotle (Campbell (1867)), or major literary

works (Mosteller and Wallace, 1964; Merriam, 1998).

The Federalist Papers, investigated by Mosteller and Wallace, were chosen as they satisfy a

number of requirements that clarify and facilitate the attribution procedure: the texts are publicly
accessible, the potential authors are known with certainty (which makes it a closed-set AA), and

the training set is already defined since some of the 85 essays have been signed by the authors.
Besides, these texts are homogeneous in terms of genre and theme and were published in the same

sources during a limited time frame.

2.4.2 Modern cross-domain datasets

In automated AA, computational models enable handling larger datasets and provide predictions

more efficiently even when the information about authors is limited.

The availability and structure of textual data play a key role in such tasks. In (Barlas and

Stamatatos, 2021) numerous data-specific subfields are outlined, including AA in digital
humanities (that of historical works) and in social media analytics (identifying the authors of

tweets and other social media microtexts). A common problem with complex datasets is that the
training subset (with known authors) and test one (with unanimous or questionable authorship)

may have different properties. In some cases, we only possess training data of texts in other genres
or on other topics. To address this issue, a substantial number of current research projects in AA

make use of cross-domain attribution.

CMCC (2009)

Training a cross-domain model requires a highly elaborated dataset in which domain and/or genre

parameter can be isolated. The earliest corpus of such type was introduced by Goldstein-Stewart
et al. (2009) and is sometimes referred to as CMCC. This is a controlled corpus with respect to the

genre, topic, and demographics of subjects. It contains excerpts of texts from 21 undergraduate
students in six genres (“blog, email, essay, chat, discussion, and interview”) and six topics

(“church, gay marriage, privacy rights, legalization of marijuana, war in Iraq, gender
discrimination”) written in English. It enables the evaluation of AA methods in cross-topic and/or

cross-genre settings, ensuring that other factors that can affect performance (e.g., demographics of

authors, distribution of samples over the authors) are diminished.

It was created for the task of person identification in 2009. The authors of the original dataset

applied four classifiers (Naïve-Bayes, SVM, decision trees, and random forests) and achieved 82%

accuracy in some cross-genre and 94% in some cross-topic tasks.

The dataset has been widely used in AA since then. In Stamatatos (2017) the corpus was used in

three settings (cross-topic, cross-genre, and cross-topic-and-genre) to assess the improvement in
the performance of C3G-SVM and PPM5 models by introducing distortion techniques. In (Sapkota

et al., 2014) the authors investigated the performance in single cross-topic and multiple cross-topic
conditions using this corpus along with others, and the same was done in (Barlas and Stamatatos,

2021) for the assessment of transfer learning AA. In (Stamatatos and Barlas, 2020) the corpus was

used to assess the performance of pre-trained models.

The Guardian Corpus

Another corpus used in (Sapkota et al., 2014) is called The Guardian Corpus. The corpus was
constructed using the public API of The Guardian which enables search by keywords, authors, and

topics. The original corpus was created by Stamatatos (2013) and included opinion articles on four

topics as well as some book reviews.

An extended and balanced version of the Guardian dataset is provided by Altakrori et al. (2021).

In this dataset, each author is associated with 40 documents.

PAN 2018

A cross-domain dataset was created in the framework of AA task at PAN 2018 (Stamatatos et al.,

2018), an annual competition and workshop on digital forensics and stylometry. The dataset
includes subsets for multiple AA problems in different languages, but in (Barlas and Stamatatos,

2021) the authors only consider English texts from this dataset.

The corpus incorporates fanfiction texts drawn from different fandoms, that is, dedicated to or

based on various original works of art. Such distinct “universes” of storytelling are treated as topics
that are consistent within themselves and differ from each other. In the PAN 2018 setting, the test

texts with unknown authorship belong to one fandom, while the training texts of known origin are
from numerous other fandoms. This makes the attribution a “cross-fandom” procedure (Stamatatos

et al., 2018).

PAN 2020

PAN is an annual event, and the dataset has been improved over the last few years. The improved
and extended version is introduced by Bischoff et al. (2020) and adapted for the PAN setting by

Kestemont et al. (2020). Itis still based on fanfiction since it is considered among the fastest
growing forms of literary texts accessible online. Fanfiction is openly available and easily

scrapable from the Internet, which makes it a suitable candidate for a corpus of unseen literary

works.

The PAN20 version consists of two datasets (“small” and “large”), both being significantly larger
than the previous fan-fiction corpus. In the 2020 version, only English texts are included, and their

average length is roughly 21000 characters. The “small” corpus contains 52601 texts, while the

“large” one contains 275565.

2.4.3 Datasets discussion

Although numerous traditional datasets exist for the task of authorship attribution, Fabien et al.

(2020) mention that a sufficient number of examples for each author is required. The texts
themselves need to be sufficiently long: Koppel and Schler (2004) name the recommended length

of 500 words for measuring style. Besides, the use of comparatively complex and large models is
motivated for larger datasets with additional complications, such as the necessity of cross-domain

attribution, for otherwise a simpler and better explainable classifier, such as one based on logistic

regression on lexical features, would suffice.

Thus, it seems that the most appropriate choice for this research would be the PAN 2020 corpus,

as it is the largest currently available dataset that has been specifically designed to assess the latest
techniques of authorship verification. Another advantage of this choice is the potential ethical

importance of the task, namely, detecting plagiarism and fraud to protect independent fanfiction

writers.

3. Transformer models in authorship attribution
Transformers are a comparatively recent type of neural networks that were introduced by Vaswani

et al. (2017). The title of their paper, «Attention is all you need», suggests that models based solely
on attention mechanisms can be used without convolutional or recurrent architecture and achieve

impressive results outperforming previous, more complex models.

Before the outbreak of transformer models, long short-term memory models (LSTMs) (Hochreiter

and Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Graves, 2013; Chung et al., 2014)
have been widely used for a variety of NLP tasks, where they showed a state-of-the-art

performance (Cho et al., 2014; Sutskever, 2014)). However, their sequential nature — namely,
that they relied on the iterative generation of hidden states as functions of previous hidden states

and new inputs — limited their performance in processing longer sequences. Memory constraints
“limited batching across examples” (Vaswani et al., 2017), and vanishing gradient problem

(Bengio, Fraskoni, Schmidhuber, 2003) caused the decrease of the nodes’ influence on the current
state in the distance even when they had high weights. As a result, the dependencies between

distant elements were hard to learn. Gated RNN architectures (Chung et al., 2014) achieved
noticeable improvement in taking various parts of a long sequence into account, while factorization

techniques for LSTMs (Kuchaiev and Ginsburg, 2017) increased their computational efficiency,

but the underlying problem of sequential processing persisted.

Attention mechanisms were proposed as a method to address this problem (Bahdanau, Cho,

Bengio, 2014; Kim et al., 2017) since they could learn dependencies between elements in the
sequence regardless of the distance between them. However, until the emergence of Vaswani et

al. (2017) paper these mechanisms were mainly used as part of the model on top of some RNN
architecture (Paulus et al., 2017; Cheng et al., 2016). Attention was applied in a variety of tasks

such as text summarization (Paulus et al., 2017) or machine reading (Cheng et al., 2016). The
proposed Transformer model differed from them in that it only made use of attention to learn

global dependencies between input and output.

An important advantage of this approach is that the maximal (worst-case) number of operations

required to relate input from two positions is constant (3(1)) in the Transformer, while in RNNs

it grows with distance (3(4)), where N is the number of elements between selected positions)

albeit at a different rate with various tools for computational complexity reduction (Graves, 2013).

A valuable side benefit of Transformers is that the underlying self-attention mechanism could be
used as a base for interpreting the models ' output. Inspecting and visualizing attention weight can

reveal the role of each attention head in capturing semantic and syntactic features of a sequence

and provide insights into how particular sequences are analyzed and which relations between

tokens play the most important roles.

3.1 Transformer overview

Architecture

The original Transformer model also follows the encoder-decoder architecture (Cho et al., 2014;
Sutskever et al., 2014; Bahdanau, Cho, Bengio, 2014) by using separate encoder and decoder

modules, both based on self-attention. In the encoder-decoder framework, an input symbolic
sequence is first mapped to a sequence of representations by the encoder, and then an output

symbolic sequence is iteratively generated by the decoder given the sequence of representations.
This model is auto-regressive (Graves, 2013) as it adds the output from the previous step to the

input when generating the new output.

In Transformer, each layer of encoder consists of a self-attention (a type of attention that relates
items in a single input sequence to create a representation of this input) and a fully-connected

feedforward neural network. Decoder layers have two multi-head self-attention sublayers. The first
one features a masked (restricted) attention that only computes attention weights between the
element and its left context to ensure that prediction for the current output only depends on the

previous output, i.e., the output is indeed generated in an auto-regressive manner. The second sub-

layer uses regular self-attention but takes the encoder output as part of its input.

Later works experimented with Transformer models that only incorporate encoder- (Devlin et al.,

2019) or decoder-type (Radford et al., 2018) attention modules to make use of their specificities.

Attention Mechanism

Attention is a function that maps a query and a set of key-value pairs to an output. All these

components are represented as vectors. The compatibility function computed using the query and
the key yields the weight assigned to the corresponding value. This weight corresponds to the

relevance of this item to the query.

Several types of attention functions exist, and the most widely used ones are additive attention
(Bahdanau, Cho, Bengio, 2014) and dot-product attention (Luong et al., 2015). The former uses a

single hidden layer for compatibility function, while in the latter dot products of the query and
each key are computed and converted to weights using a softmax function. Vaswani et al. (2017)

use scaled dot-product attention, which differs from the regular dot-product function in that it uses

a scaling factor of
$

√(), where 56 is the dimension of query and key vectors.

The authors’ motivation for this adjustment is that scaling the dot products makes the softmax
output more diverse and facilitates learning, as large dot products would otherwise push the

corresponding softmax values to the limits.

Even though the performance of two attention functions has similar theoretical complexity
(Vaswani et al., 2017), the dot products can be optimized using efficient matrix multiplication,

which makes them favorable for training large models. In this case, sets of vectors are represented

as matrices of queries (7), keys (8), and values (9). For the decoder module, the softmax input

for tokens from the right context is set to −∞ to implement masking.

:;;<.;=>.(7, 8, 9) = ?>&;@AB C
78*

D5)
E9

Another specificity of the Transformer model is the use of multi-head attention, in which 7, 8,

and 9 are linearly projected to corresponding dimensions, attention is calculated for each set of
projections in parallel, and the results are concatenated before the final projection to the original

output dimension. Multi-head attention is added to prevent averaging the values in cases when two
vectors show high compatibility only in some representational subspaces, which could be the case

for a single attention head. The number of heads is a hyper-parameter that was explored by
Vaswani et al. (2017). It was shown that, while multi-head attention improves the model

performance (with best results achieved using 8 heads), too many heads are less efficient as the

size of each head’s dimension 5) becomes too small. The authors also claimed that the importance

of the large 5) dimension may suggest that query-key compatibility has complex nature and other

compatibility functions should be explored.

Positional Encodings

Since the attention function computes weights between all tokens in the sequence simultaneously,

positional information needs to be inserted additionally in order to let the model make inferences
based on the order. This can be done by adding positional encodings (PE) (Luong et al., 2015) to

the input embeddings. Different types of PE exist, but a convenient choice used by Vaswani et al.
(2017) is sine and cosine functions that allow linear calculation of PE for each offset given the

original value.

FG(,-.,0!) = sin(K>?/10000!/("#$%&)

FG(,-.,0!3$) = cos(K>?/10000!/("#$%&)

The original Transformer model was assessed on a machine translation task, in which it
outperformed previous best models and established a new state-of-the-art BLEU score. After that,

considerable success has been achieved with this architecture on various NLP benchmarks for such
tasks as question answering (Rajpurkar et al., 2016), sentiment analysis (Socher et al., 2013),

language understanding through inference (Williams et al., 2018) and aforementioned machine

translation (Papineni et al., 2002).

3.2 Transformer models fine-tuning

A particularly useful trait of transformers is their effectiveness in transfer learning, that is, pre-
training on one task and transferring the obtained knowledge to another task with fewer available

training data and more limited supervision possibilities, such as authorship attribution (Barlas and
Stamatatos, 2021). In NLP, language modeling has become a widely used base task (Radford et

al., 2018; Radford et al., 2019; Devlin et al., 2019) due to the abounding language data and
comparatively easy training process, although supervised tasks, such as machine translation, have

also been exploited for pre-training (McCann et al., 2017).

Peters et al. (2018), Radford et al. (2018), and other researchers have shown that pre-training a

language model for applying to more specific downstream tasks can be highly effective in NLP.
The central component of pre-training is usually a unidirectional language model that provides

general language representation, while the specific implementation may differ. Devlin et al. (2019)
distinguish two types of pre-training. In a feature-based approach pre-trained representations are

used as additional features in an overall task-specific architecture. This technique is implemented,
for example, with word embeddings in the skip-gram model (Mikolov et al., 2013) and context-

sensitive ELMo vectors (Peters et al., 2018) and with sentence embeddings in (Logeswaran and
Lee, 2018). In the fine-tuning approach used in OpenAI GPT (Radford et al., 2018), all original

pre-trained parameters are fine-tuned for the downstream task so that few parameters need to be

trained from scratch.

3.2.1 BERT

BERT, or Bidirectional Encoder Representations from Transformers, is a language representation

model introduced by Devlin et al. (2019). Its distinctive feature contrasting with OpenAI GPT is
that it uses bidirectional representations in all layers, which means that each self-attention is

unrestricted for both right and left contexts. In the original Transformer, only the decoder

component makes use of bidirectional attention.

The advantage of this design is that BERT can be easily and relatively inexpensively fine-tuned

with only one additional layer on top of the original model. This makes this model preferable for
various NLP tasks, such as language inference and sentiment analysis. Besides, BERT

outperformed previous Transformers and other task-specific models in machine translation,

question answering, and numerous other tests.

BERT architecture

BERT differs from the vanilla fine-tuning approach in that it adds bidirectionality for the language
model to make use of context from both directions. According to (Devlin et al., 2019), this

extension optimizes sentence-level inference and results in significant improvement for token-

level tasks, such as question answering.

To this end, BERT introduces a “masked language model” (MLM) that performs random masking

of several input tokens from the input for training and learns to predict the missing tokens based
on their context from both sides. The resulting bidirectional representations are deep, unlike those

obtained in (Peters et al., 2018) by a “shallow concatenation of independently trained left-to-right

and right-to-left LMs” (Devlin et al., 2019).

BERT is first pre-trained on unlabeled data, and then the learned parameters are initialized for

fine-tuning on labeled data. Same pre-trained data can be used for various downstream tasks

though fine-tuning layer should differ.

In pre-training, the model takes a span of unlabeled text as input. This can be a single sentence or
a concatenation of, e.g., question and answer. The first token in the vector representation of input

is a classification token CLS that aggregates sentence representation. Sentence pairs are separated
with a SEP token. Additionally, a learned segment embedding is added to indicate the sentence to

which a token belongs. In the result, input representation consists of a word, segment, and position

embeddings.

After that, training is performed in two ways. In MLM, the predicted vectors for the masked tokens

are taken by a softmax over the vocabulary to generate the missing word. In the next sentence

Иван Кондюрин

Иван Кондюрин
en

prediction (NSP), the second sentence is replaced with a random one in 50% of cases. This type

of training is required for learning relationships between to sentences and obtaining sentence
representations for such tasks as question answering. BERT can use both sentence embeddings

and other parameters for a downstream task.

BERT was pre-trained on English Wikipedia and other corpora and assessed on GLUE benchmark
(Michael et al., 2018), SQuAD question answering dataset (Rajpurkar et al., 2016), and SWAG

language inference dataset (Zellers et al., 2018), where it showed state-of-the-art results.

The downside of pre-training a bidirectional unlabeled language model is that it entirely relies on

unmasked self-attention, so that the weights need to be calculated between all pairs of tokens in
the sequence. This limits the maximal length of the input sequence: in the best-performing BERT

model the input is limited to 512 tokens. Given that some tasks involve concatenated text pairs,
this can be a serious limitation for tasks in which a large chunk of text is required to create a valid

representation. This constraint is one of those alleviated in GPT-2 (Radford et al., 2019).

Liu et al. (2020) presented RoBERTa, an optimized version of BERT with higher robustness.
Longformer, introduced by Beltagy et al. (2020), is a model based on RoBERTa, but specifically

adapted to process long sequences.

3.2.2 Transformer Language Models evolution

Starting from BERT, GPT, XLNet (Yang et al., 2019), Transformer-XL (Dai et al., 2019), and
MASS (Song et al., 2019), the trend for more general language models with an increasingly large

number of parameters continued. Several generations of models have been created trained on
extremely large datasets using different variants of the transformer architecture, with the number

of parameters growing roughly by ten times every year. The latest implementations include GPT-
2 (Radford et al., 2019), GPT-J (Komatsuzaki, 2021), MegatronLM (Shoeybi et al., 2019), Turing-

NLG (Rosset, 2020), T5 (Raffel et al., 2020), and GPT-3 (Brown et al., 2020). Recently a
Megatron-Turing NLG model developed by NVIDIA was revealed (Kharya and Alvi, 2021). With

over 530B parameters it is the largest language model up to date. It established a new state-of-the-

art in LAMBADA test (Paperno et al., 2016) as well as in other metrics.

At the same time, the growing cost and complexity of collecting the data and training the language

model motivate increasing interest in reducing the model size while retaining the previously
achieved scores. One example of such effort is DistilBERT (Sanh et al., 2019), a smaller version

of BERT which is 60% faster.

3.3 Enhanced transformers

Apart from reducing the size of the model, other improvements can be done to reduce

computational complexity and increase the attention span for more accurate account of high-level

textual features.

3.3.1 Computational cost

Despite the significant success of Transformer models, the computational complexity and memory
cost remained serious limitations. Vaswani et al. (2017) compared the computational complexity

of Transformers to RNNs and noted that self-attention layers are «faster than recurrent layers when

the sequence length N is smaller than the representation dimensionality d», for the layer-wise

complexity of global (unrestricted) self-attention is 3(40· 5) compared to 3(4 · 50) for a
recurrent layer. This was indeed the case for the original machine translation application since the
number of parameters was set to d = 512, and the model was given sentence pairs as input with

words as tokens.

However, in practice quadratic complexity 3(40) limits the context size due to time and memory
demands. This can become a critical bottleneck in cases where long-term dependencies need to be
captured, such as text summarization (Paulus et al., 2017; Liu et al., 2018), question answering

(Rajpurkar et al., 2016), or authorship attribution (Barlas and Stamatatos, 2020; Fabien et al., 2020;
Ordoñez et al., 2020; Futrzynski, 2021; Peng et al., 2021) where the whole text needs to be

considered to discover meaningful patterns. The demand for longer sequences increases given the
common representation of such tasks for fine-tuned models, in which two sequences (source and

target or two items for comparison) are concatenated and separated with a SEP token. For effective
processing, all concatenated sequences and special tokens must fit into the limit of N = 512, which

is a serious limitation.

3.3.2 Improved architectures

Increased input length

Transformer-XL introduced by Day et al. (2019) tried to solve the problem of limited context at
the cost of computational speed. This model achieved state-of-the-art results in language modeling

as it could learn dependencies beyond the regular context scope, but further increased the

computational cost.

Longformers (Beltagy et al., 2020) suggested a compromise between length and computational

cost by providing a model that could accept long sequences as input but processed them with a
limited context window. It is an extension of BERT trained on ca. 6.5 billion words that established

new state-of-the-art in Wiki-Hot and Trivia-QA (Joshi et al., 2017). It makes use of sliding
attention window to compute local self-attention instead of a global one, thus reducing the

computational complexity from quadratic (3(40)) to linear (3(4 · Q)), where Q is the attention
window size. According to Beltagy et al. (2020), global attention can also be used to incorporate

long-distance relations into special tokens, such as a class token CLS.

This approach goes in line with the original suggestion by Vaswani et al. (2017) when the

Transformer was introduced: namely, that “self-attention could be restricted to considering only a
neighborhood of size r in the input sequence centered around the respective output position”.

Another approach to restricted attention was put forward by Suhkbaatar et al. (2019), in which

optimal attention span for each attention head was learned.

Optimized Complexity

Other researchers aimed at reducing the complexity by optimizing the computation while retaining
the global character of self-attention. Child et al. (2019) used sparse factorizations of the attention

matrix and achieved the reduction of complexity up to 3(4√4), while Kitaev et al. (2020)
proposed a Reformer, an improved Transformer model that used locality-sensitive hashing (LSH)

to reduce the complexity to 3(4log4). As Katharopoulos et al. (2020) point out, this technique

imposes a limitation on the values of keys: namely, that they need to be identical to the queries.

Efforts have been also made to increase the speed of the Transformer inference through optimized

memory consumption. To this end, weight pruning (Michel et al., 2019), weight factorization (Lan

et al., 2020) and weight quantization (Zafir et al., 2019) have been used. Besides, Lample et al.

(2019) explored a different type of attention with product keys that was claimed to increase the
capacity of each attention layer. However, according to Katharopoulos et al. (2020), the overall

complexity remained quadratic with respect to the sequence length.

A new promising approach was proposed by Katharopoulos et al. (2020). They introduce a Linear

Transformer Model that is declared to have linear complexity (3(4)) without any limitations.
They propose a change from existing softmax attention to a feature map-based dot product
attention that utilizes the associativity property of matrix products. This results in reduced time

and memory demands and incredibly high inference speed, up to thousands of times faster for
image generation. As the authors state, this type of transformer with linear attention can be

expressed as an RNN as it can perform autoregressive output generation recurrently with attention
memory and normalizer memory as two layers of hidden states. To our knowledge, this type of

Transformer model has not been tested for NLP tasks so far, therefore its performance on existing

benchmarks in this domain is yet to be assessed.

3.4 Transformers application for text classification

Among the downstream tasks to which transformers can be applied, some require classification of
the input text (Shaheen et al., 2021; Chi et al., 2020), including sentiment analysis and emotion

classification. The task of authorship attribution also comes down to attributing the text into one
of the authors ’ class, although traditionally categorization is based on stylistic features, and the

transformers ’ capability of grasping such features requires additional account.

3.4.1 Transformers for authorship attribution

Several attempts have been made to perform AA using transfer learning based on a Transformer

language model. Barlas and Stamatatos (2020) observed the potential for using pre-trained
language models for cross-topic and cross-domain AA. They assessed BERT, GPT-2, ELMo, and
ULM-FiT (Howard and Ruder, 2018) supplemented with a multi-headed classifier. Each classifier

was trained for a binary author verification task for each author, and the text was attributed to the
class with the highest score of a corresponding classifier. In the result, BERT showed the best

performance beating RNNs.

BertAA

Fabien et al. (2020) take this work into account and broaden it with an exhaustive analysis of pre-
trained language models for AA with their limitations. They apply the models to three widely

known corpora: Enron Email corpus by Klimt and Yang (2004), Blog Authorship Attribution

Corpus by Schler et al. (2004), and IMDb Authorship Attribution Corpus by Seroussi et al. (2014).

They proposed a BertAA model for the authorship attribution task, and to our knowledge, this is
the first transformer-based ensemble designed specifically for AA. This model used the BERT

language model since it had been shown to perform well in classification tasks (Sun et al., 2020)
and is capable of extracting semantic and syntactic information useful for stylometric analysis. To

incorporate high-level stylistic information, they combined the original model with stylistic and

hybrid features.

The pre-trained BERT model is fine-tuned with a dense layer and a softmax activation to output

class probabilities, as suggested in (Sun et al., 2020). Weights of both the dense layer and the

BERT itself are adjusted. The Stylometric classifier is based on “style” features selected in (Sari

et al., 2018), namely the text length, words counts, average word length, number of short words,
the proportion of digits and of capital letters, frequencies of letters and digits, hapax legomena,

and punctuation frequencies. Additional “hybrid” features include 100 most frequent n-grams (for
n = 2 and n = 3). Stylistic and hybrid features are fed into two separate logistic regressions that

also yield class probabilities. A final layer of logistic regression is then used to make the choice

based on the probability distributions from three classifiers.

The model achieved state-of-the-art performance on the Blog Authorship dataset (Schler et al.,

2004) but was outperformed by a CNN classifier on an IMDb62 dataset (Seroussi et al., 2014)
with more authors and fewer data per author. It was shown that the inclusion of stylometric and

hybrid features slightly improves the F1 score but affects the accuracy. The authors conclude that
sufficient training data for each author is a necessary prerequisite for the successful performance

of BertAA, while this is rarely the case in real-life applications. Among the suggested extensions
to their work are additional pre-training of BERT on the target domain before adding the dense

layer and experiments with other LM architectures, such as RoBERTa (Liu et al., 2020).

Transfer Learning Approach

Barlas and Stamatatos continued their work in 2021 with additional experiments on AA in cross-

genre and cross-fandom conditions (Barlas and Stamatatos, 2021). They adapted the multi-head
classifier from Bagnall (2015) where it was combined with an RNN language model but

experimented with various transformer-based language models.

Compared to (Barlas and Stamatatos, 2021), this work explored the proposed methods in more

detail and considered a cross-fandom task based on PAN corpus (Kestemont et al., 2018; 2019).
The set of models remained unchanged. For BERT and GPT-2, texts were split into chunks of 510

and 1024 tokens respectively.

The proposed architecture included a LM, a filter for LM representations and a multi-head
classifier (MHC). The filter ensures that only N most frequent tokens will need to be predicted by

the MHC: specifically, it filters out those representations that are not followed by a token from N

most frequent ones, though information about them is incorporated in accepted representations.

BERT and ELMo achieved overall best results in cross-topic task, but ULMFiT (Howard and

Ruder, 2018) has shown comparable results in cross-genre AA. For the cross-fandom task, all
models showed averaged performance below the baseline, although in some runs ELMo and GPT-

2 achieved the best results. The performance representations from different layers of BERT were
compared since they can capture different types of linguistic information (Jawahar et al., 2019),

and shallow layers were shown to be slightly more effective. The authors also postulate the
importance of normalization corpus and the difficulty of combining character-level and token-

level information, which may suggest that ensemble models could be desirable.

PAN transformer-based solutions

PAN dataset (Kestemont et al., 2018; 2020; 2021) has been used for an AA competition, and four

Transformer-based models have been proposed so far for the authorship verification task. The first
one was suggested by Ordoñez et al. (2020). Their solution relies on the Longformer architecture

to better model long text chunks. They use a concatenation of 511 consecutive tokens from each
pair of texts with a SEP token as input and an attention window of 512 tokens. The CLS token

from the Longformer output is combined with the document topic information and fed into the
classifier, which is a multilayer perceptron. The model achieved above baseline performance on

the validation set (F1 score 0.96 for the large version of PAN 2020 dataset) but performed

significantly worse during the competition, reaching only F1 0.75 on the test set.

During the next-year event, Tyo et al. (2021) proposed a Siamese network that made use of BERT
embeddings. The model was trained to locate embeddings of similar texts adjacently in the

representation space, and a threshold was used at the inference stage to make the prediction.

Transformer-based model by Futrzynski et al. (2021) used vanilla BERT architecture with an input

size of 30 tokens. They considered both the prediction based on single input and on 100 input
sequences, from which a final output is calculated using the median of each component across all

100 output vectors. This model achieved F 0.76 but could not beat the baseline solutions for the

PAN competition (Kestemont et al, 2021).

Solution of Peng et al. (2021) utilized a similar approach with multiple input sequences but used

a larger input size (256 tokens) and only 30 sequences. Instead of using the median value across
all vectors, they trained an additional classifier for the BERT output, to which global average

pooling was applied. The model achieved F1 0.945 on the validation set and 0.917 on the test set,
thus being the best solution proposed at PAN 2021 among those trained on the small version of

PAN 2020 dataset (Kestemont et al., 2020). With all other metrics considered, their solution ranked

second.

Thus, it can be seen that two general strategies are used to incorporate BERT architecture into an
authorship verification model. In the first approach, the task is treated as a recognition of relations

between segments from different texts. In such a case, a separator token is used to divide the
segments, and the CLS token is assumed to learn how to represent stylistic relations between two

parts. In the second approach, we only assume that CLS is capable of representing a text in the
embeddings space, including the representation of its style. Therefore, two such representations

can be compared using a distance metric, such as a dot product or a cosine delta. and the model
can be fine-tuned to minimize the distance between the texts of the same author or maximize that

between texts of different authors.

4. Transformer explainability

4.1 Defining explainability

The problem of explainability can be subdivided into three notions: transparency, explainability,
and interpretability (Wiegreffe and Pinter, 2019). These terms have been used in different senses

(Lipton, 2016; Doshi-Velez and Kim, 2017; Rudin, 2018; Riedl, 2019). Lipton (2016) pointed out
that transparency largely conflicts with explainability. Transparency in his view refers to human

understanding, the way a certain component of a model corresponds to (or can be mapped to) an

understandable human construct.

From this perspective, attention is transparent as it provides a matrix of scores for each element of

the input, which shows this element is weighted in the following steps, and which contribution it

has to the attention output.

Explainability, on the contrary, refers to the extent to which the model performance can be

analyzed post-hoc. It can be regarded as mimicking human explanations of various actions as it

aims at justifying the decision and providing arguments for it.

Rudin (2018) defines explanation as a reconstruction of decision-making process and emphasizes

that it is not necessarily a faithful reconstruction. Despite potentially erroneous underlying
methods, explanations are considered important and human (Riedl, 2019) and were shown to

increase the user’s trust in a system (Thorne et al., 2019), which is especially important in sensitive

domains.

The dichotomy between explainability and interpretability, in turn, is related to the level of
abstraction. According to Rudin (2018), interpretability involves a holistic understanding of the

relations between input and output (in this sense, shallow classification trees are typically
interpretable). In (Doshi-Velez and Kim, 2017) a more fine-grained categorization of

interpretability is presented.

While the explanations as interpreted by Rudin aim at resembling some human rationale, there is
no full agreement on how their resemblance should be measured. Hence techniques of evaluating

explanations also differ even within the topic of transformer explainability. In Lei et al. (2016),
where explanations are generated at the same time as predictions and come directly from the input,

the model is trained with gold-label explanations. Other works (Mullenbach et al., 2018; Ehsan et

al., 2019) rely on human evaluation.

A number of techniques have been utilized to provide explanations for NLP tasks. Ross et al.
(2017) measured feature importance using gradient information, while (Li et al., 2016) based the

explanation technique on “representation erasure” in which the impact of each dimension from the
representation being removed is calculated. Ghaeini et al. (2018) used visualizations of LSTM

gating signals as well as attention saliency. In (Alvarez-Melis and Tommi, 2017) a causal
framework for explaining predictions was proposed To explicitly identify explanations of black-

box predictions.

4.2 Attention weights as an explainability tool

Vaswani et al. (2017) claimed that investigating the self-attention mechanism can lead to
interpretations of the models ’ output. Visualized attention weights can potentially reveal the

function of each attention head in capturing semantic and syntactic features. For any particular
sequence, these weights could also provide insight into the way it is analyzed by the model, in

particular, which relations between words are captured.

Models that have at least one attention layer provide a distribution of attention weights over input

units that is often treated as communicating the relative importance heatmap (Jain and Wallace,
2019). This assumption suggests that high attention weight of a certain input increases tis

responsibility for the output of the model. Xu et al. (2015) used attention scores as means of
visualizing the saliency of image content for the task of image description. Li et al. (2016) claimed

that «Attention provides an important way to explain the workings of neural models», and multiple
authors presented works in the spirit of this view, including (Mullenbach et al., 2018; Ehsan et al.,

2019; Choi et al., 2016; Martins and Astudillo, 2016; Xie et al., 2017; Thorne et al., 2019; Serrano
and Smith, 2019). Attention weights was also shown to correlate with human attention in the task

of document classification (Pappas and Popescu-Belis, 2016).

Another line of work involved modifying the attention to facilitate interpretability, for example,

by employing sparse attention that only uses a subset of inputs for prediction and considering this
subset responsible for the output (Lei et al., 2016; Peters et al., 2018) or by fitting the attention

weights to explanations provided by humans. (Bao et al., 2018)

4.2.1 Critical view at attention explainability

However, the degree to which attention can serve as an explainability tool is often questioned, and
the specificity of the relation between attention weight and outputs is not completely clear for some

researchers.

Jain and Wallace (2019) pointed out that attention weights lack explainability potential since they

often show a weak correlation with gradient-based feature importance measures, and multiple
distributions of attention weights can yield similar predictions in classification tasks. They claimed

that two properties need to hold for a valid explanation: (i) that attention weights correlate with
more reliable measures and (ii) that “counterfactual” and “adversarial” attention weights that

substantially differ from original ones result in correspondingly significant changes in the output

predictions.

They selected gradient-based feature importance scores and leave-one-out (LOO) as reliable

measures as they had been shown to reveal individual feature importance with known semantics
(Ross et al., 2017), even though they cannot serve as a standalone interpretation technique (Feng

et al., 2018) due to inherent complexity of reaching neural models interpretability. The
“counterfactual” attention distributions were generated at first by random permutations, while the

“adversarial” one was calculated as a maximally different distribution in which the output

prediction remains unchanged.

They assessed a BiLSTM and a feedforward encoder, both with two types of attention mechanism,
on a number of binary classification tasks, question answering, and natural language inference,

and found that these properties were not fulfilled by most models except one for the MIMIC

(Johnson et al., 2016) classification task (for the positive outcomes subclass).

Firstly, correlation analysis revealed that attention weights don’t agree with standard feature

importance scores in a strong or consistent way, albeit correlations between attention weights and

gradient- or LOO-scores were much stronger for feedforward encoder than for BiLSTM.

Secondly, “adversarial” attention indeed yielded essentially unchanged predictions quite

frequently, which led the authors to the conclusion that equally plausible explanations were
possible for the same output, and hence none of them are reveal causal relation (that a model made

a certain prediction because it paid attention to inputs in a particular way).

These considerations persuaded the authors that using attention to explain the models’ prediction

can be misleading as it doesn’t provide meaningful insights; therefore, no indication of why a
model made the prediction can be made and no “faithful” explanation can be created. They

attributed the lack of interpretability potential of attention to the fact that representations encode
arbitrary interactions between inputs and using attention weights of such representations cannot

explain the output from the perspective of the input.

Another possible explanation was that only a few (“top-k”) features out of those used by a model
show strong agreement with the feature importance measures. However, separating them would

be complicated.

Importantly, this claim was only made for RNN-based models with attention layer(s), and future

investigation was required for attention-centered Transformer models. Also, they noted that not
all NLP tasks equally crave explanations: specifically, that interpretability is more crucial for

classification tasks than for translation. This consideration may motivate our attention to the
explainability of authorship attribution models since AA essentially belongs to the domain of

classification problems.

4.2.2 Justification of attention explainability

Wiegreffe and Pinter (2019) joined the discussion with an opposite opinion explicitly conveyed
by the title, “Attention is not Explanation”. They asserted that the explanation potential of attention

depends on the definition of explanation and additional experiments are required to properly assess

it, involving more layers of the model.

They agreed with the conclusion that attention fails to meet the criterion of consistency (i) and that

inconsistent correlation with other interpretability techniques questions the validity of such
explanations. However, they proposed four new tests instead of permuted and “adversarial”

attention for criterion (ii), namely: a baseline with uniform attention to test the attention's
contribution to the model; an examination of expected variance using multiple random input seeds;

a diagnostic tool that used attention distributions as frozen weights in a multi-layered perceptron;

a model-consistent end-to-end training protocol for adversarial attention.

According to the authors, key assumptions of the original experiment leave too much freedom in

the setup for two main reasons. First of all, Jain and Wallace (2019) detached attention output
prediction from the parameters used to compute them, and treat each attention score as independent

of the model, which disregards the model itself. The explainability of attention weights is based

on the fact that the model was trained to yield such weights.

The computation of “adversarial” distribution was also performed independently for different
attention weights. Besides, “Existence does not Entail Exclusivity” (Wiegreffe and Pinter, 2019),

which implies that providing an explanation instead of a comprehensive list of all valid
explanations, as demanded by Jain and Wallace, does not make the result “unfaithful”. The final

layer of LSTM produces complex outputs that can be aggregated and projected in different ways,
and in case of a binary classification task, the demand for a single (or complete) explanation

becomes even less justified as the attention matrix is reduced to a scalar attributed to one of two
classes, and many dimensions corresponding to attention weights of certain inputs are not

significant for this particular classification. This claim corresponds with Jain and Wallace’s

hypothesis that only top-k attention weights are important.

Testing techniques

Wiegreffe and Pinter tested the validity of using attention for classification by comparing it to a
simple baseline with uniform distribution of attention and discovered that in some datasets they

do not perform better. Then they assessed the variance of attention weights by multiple training

sequences.

For the third test, they used pre-trained weights from the attention-enabled LSTM model in a

different model without recurrence (specifically, a multi-layered perceptron, MLP). The pre-
trained attention scores performed well compared to MLPs with weights being uniformly

distributed or learned from scratch, which suggested that attention could bear some model-

independent interpretation of input tokens for a particular task on which they were trained.

Finally, they proposed a model-consistent protocol for training «adversarial» attention. This

technique utilized a modified loss function that considered the distance from original attention
scores. In cases where «adversarial» attention could lead to similar prediction output, the produced

weights differed in a less extreme way compared to the original solution (Jain and Wallace, 2019).
Attention scores obtained using this protocol did not perform as good as MLP weights, showing

that attention distributions with the same output may not be equally powerful as explanations of
the model, and it is the training on a specific task that infuses them with explainability potential.

Thus, Jain and Wallace’s claim that two explanations with the same output are equally possible

doesn’t seem so persuasive in light of this finding.

All these tests can in principle be used for assessing the explainability of a particular attention-

based model.

Attention and Explainability definitions

Another contribution of the Wiegreffe and Pinter’s work is a reflection on the nature of

explainability, showing that the human-centered understanding of explanations does not require a
unique and faithful rationale, and the plausibility of potential explanations should be assessed by

human experts. They warn against confusing the demand for explainability with that of
transparency (Lipton, 2016) and interpretability (Rudin, 2018), which are barely achievable for

deep learning models due to their vast and complex structure. Demand for a single comprehensible
explanation of which attention weights pattern leads to a certain output is in fact a demand for

transparency, which is valid but likely unfulfillable.

4.2.3 Attention explanations in NLP transformers

The aforementioned techniques for explaining the models’ performance based on the attention
weights were tested for architectures that involve some layers of attention while based on LSTM

or RNN architecture. Meanwhile, the Transformer models are centered around multi-layered

attention, and specific explainability techniques may be used for them.

Vig and Belnikov (2019) analyzed the attention structure of a Transformer language model,

namely a small GPT-2, and concluded that different features are grasped by attention on different
layers. In order to consider the pattern of certain syntactic or semantic relations in the input,

particular layers of attention need to be used.

Vashishth et al. (2019) attempted to give a more systematic account of information conveyed by
attention layers in different NLP tasks to find out in which cases attention weights can be

considered explanations (in support of Wiegreffe and Pinter (2019)) and in which cases they
cannot (in line with Jain and Wallace (2019)). They differentiated between single-sequence (such

as classification) in which attention «mimics gating units» and «pair-sequence» tasks (such as NLI
and translation) and claimed that attention weights only have sufficient explanatory power for the
latter. However, this paper aroused certain criticism as this distinction did not fully correspond

with other findings in the domain.

A detailed account of the variety of functions performed by BERT attention heads is given in
(Jawahar et al., 2019). They prove the presence of syntax-aware attention by finding specific heads

attending to words with particular syntactic roles, such as direct objects of verbs, objects of
prepositions, determiners of nouns, and use probing classifiers that take attention maps as input to

evaluate their accuracy, which in some heads exceeds 75%.

They extract attention maps produced by BERT for 1000 random excerpts from Wikipedia articles.

First, general surface-level patterns are examined, such as next- or same-token attention. After

that, the potential of different heads to predict the word in a certain syntactic role is observed.

4.2.4 Transformer explanations beyond attention

Most methods overviewed above employ attention scores (i.e. products of queries and keys)

ignoring other components of attention (queries, keys, and values separately) and other parts of
the model. Hence, novel methods for transformer explainability can make use of these additional

components.

Two such methods, attention flow and rollout method, were suggested by Abnar and Zuidema.
(2020). The former involved the max-flow along the pair-wise attention graph and showed a

considerably high correlation with gradient-based methods, but was computationally expensive.
The latter made a linearity assumption for the layer-wise attention combinations, which led to

erroneous emphasis on some tokens. However, it was adopted by other researchers (Dosovitskiy

et al., 2020).

Another method was recently proposed by Chefer et al. (2021) who used Deep Taylor

Decomposition principle to obtain relevancy scores. Their solution was designed for transformer-

based computer vision tasks but was also tested for text classifications.

5. Model for authorship verification
In this chapter, we briefly introduce the problem that shaped the authorship verification task that
our model is designed to solve and formalize the task. We then provide a more detailed analysis

of the fan-fiction dataset that is being used, proceed with motivating the choice of a particular
architecture and model for fine-tuning and introduce the baselines. After that, a detailed account

of our implementation of the BERT segment classification model is provided with emphasis on
the model hyperparameters that were investigated and altered compared to the originally suggested

architecture. Finally, we introduce the results for different input representations and model sizes,
compare them with existing implementations and reflect on the potential trade-offs, including the

feasibility of using a larger model in practical applications. Finally, we outline potential paths for

further research.

5.1 Model task overview

We begin our description of the attributional problem addressed in this research, the corresponding

dataset, and the model we developed to tackle it, with a brief overview of the motivation behind

it.

The rationale is described in detail in Kestemont et al. (2021). The primary goal of the recent PAN
authorship identification tracks is declared as the struggle to verify the hypothesis of individual

authors’ stylome, as formulated by van Halteren (van Halteren, 2005). According to it, each author
— or, in a wider sense, each writing individual — has an individual stylistic footprint that can be

retrieved when a sufficient sample of one’s writing is present. Despite a plethora of successful
experiments in authorship attribution, these results still cannot be generalized to verify this

hypothesis (Kestemont et al., 2021), with one of the major obstacles being the ad-hoc character of

these experiments: a particular model can reliably discriminate between authors in a small group
and tailor to their writing idiosyncrasies. Widening the model’s success to an open-set case,

especially that of hundreds or thousands of authors, however, is supposed to be more challenging,
as it requires learning more general traits that separate individual styles without overfitting on

particular authors’ data.

These considerations motivated the creation of the largest to-date corpus specifically designed for
the authorship identification tasks in order to challenge the generalization capacity of existing

architecture and enable the development of more complex deep learning models. Given the size of
this dataset and the fact that it has been specifically designed to assess the latest techniques of

authorship identification, we believe it to be the most suitable for training the Transformer-based
model. Another advantage of this choice is the potential ethical importance of the task, namely,

detecting plagiarism and fraud to protect independent fan-fiction writers.

Given the limited number of texts available for each author, the demand for a large dataset

motivated the involvement of a substantial number of authors. In such setting, solving the
authorship attribution problem straight away may be perplexing, because locating the text

accurately in the multi-dimensional space of several thousand authors is a non-trivial task. This
becomes increasingly difficult in the open-set problem where the test set may include texts written

by previously unrepresented authors. In practice, many attributional experiments are indeed
performed in the open-set format, since the attributional hypothesis is typically based on extra-

linguistic evidence and is rarely comprehensive. It is often re-formulated based on the results of
the attribution procedure: if the target group of texts didn’t show sufficient proximity to any of the

a priori author classes, it can be concluded that these texts belong to an unrepresented class, and
new candidate authors may be added. Differentiating between sufficient and insufficient proximity

is complicated in a large space of authors, such as the one in our problem.

Therefore, the last three PAN tracks were concentrated on authorship verification, and the dataset
was tailored to that problem. Authorship verification is essentially a binary classification problem,

in which the goal is to detect, for each given pair of texts, whether they are written by the same

author or not. Formally, it can be formulated as an approximation of the target function U: (#6,

#V) → {W, X}, where #6	denotes a set of documents, all created by the same author, and	#V	
represents a document of unknown origin. The function takes the value T if the latter also belongs

to this set of texts written by one author, and F otherwise. For the task in question, the case of |#6|	
= 1 was considered, that is, the function only accepted a pair of texts.

Thus, for the current task, the goal of the model is to correctly detect whether each pair of excerpts

from fan-fiction literary texts is written by the same author or not.

5.2 The PAN fanfiction dataset

The PAN 2018 and PAN 2020 datasets are overviewed in Section 2.4. Here, we will provide a

more in-depth analysis of the “small” variant of the PAN 2020 set.

Total #
of Texts

Same/Different
Author

Number of
Fandoms

Max length,
Characters

Min length,
Characters

Avg length,
Characters

52601 27834/24767 1600 296887 20670 21425

Table 5.1: The details of PAN 2020 authorship verification dataset

A summary of some basic properties of this dataset is provided in Table 5.1. The dataset includes

52601 texts, most of them being close to the average length in characters (around 21500), but some
featuring a significantly bigger length. The number of Same Author pairs is slightly larger than

that of Different Author pairs and constitutes approximately 52.9%, which can be taken as a trivial

majority classifier baseline accuracy.

Despite having a much smaller sample of authors, the dataset has the same number of fandoms, or

topics, as the “large” counterpart – that is, 1600. The distribution of texts across these fandoms is
not equal: a rather small share of fandoms is substantially more popular, followed by a large tail

of fandoms with around 50 texts per fandom. The distribution is presented in Figure 5.1.

Figure 5.1: Distribution of the fandoms. Every 20th fandom name is plotted on the X axis to exemplify the relative

popularity of different fandoms.

The exact number of texts for the 20 most productive fandoms is presented in Table 5.2.

Doctor Who 312

Avengers 280

Twilight 275

Criminal Minds 270

Supernatural 267

X-Men: The Movie 266

Pirates of the Caribbean 266

Harry Potter 265

Once Upon a Time 265

Vampire Diaries 264

Hetalia - Axis Powers 262

Lord of the Rings 262

Power Rangers 262

Legend of Zelda 259

Fruits Basket 257

Pokémon 254

Sonic the Hedgehog 253

Sherlock 250

Star Wars 247

Yu-Gi-Oh 245

Table 5.2 Names of the most frequently occurring fandoms in the “small” version of PAN 2020 dataset

The dataset consists of two files, with the first one containing the pair of texts and the information
about the fandoms they are related to, and the second one providing the author IDs and the label,

which has a binary value. The label takes the “True” value if both texts are written by the same
author and the “False” value if the authors are different. The goal of the model is therefore not to

identify particular authors of a given pair, but to predict that label.

In order to ensure that the dataset can be split into training and test subsets properly, we had to
check that there is no excessive number of recurring instances. It was observed that, indeed, there

are some texts that appear twice or more times, but these are only texts from the same-author pair.
This re-occurrence can be explained by the procedure used to create the same-author subset of the

corpus.

The same-author pairs were created by building all possible combinations of 2 out of n Z%0[– that

is, all pairings of texts within the author’s subset, – without allowing the two texts to belong to the

same fandom. However, the “small” dataset only contains a subset of pairs, and we typically
observe 2 to 4 occurrences of each text, while many texts from same-author pairs still only appear

once.

Besides, in many cases, abstracts are taken from different parts of the same text. They may overlap,

but the beginnings and endings of such texts are different. This is done whenever the source texts

are longer than 21,000 characters.

For different-author pairs, no repetitions that start from the beginning of the text were observed. It

makes sense given a much large space from which different-author pairs can be drawn.

During the model design phase, the dataset was shuffled and split into the test set of size 5261
(10%), the validation set of size 4734 (10% of the remaining data), and the training set of size

42606. The validation set was used for tuning hyperparameters and comparing specific
architectures. When the model design was complete, the model was trained and evaluated once

again on a newly shuffled dataset with the test set of size 7601 and the training set of size 45000.

5.3 The model implementation

5.3.1 Recent approaches to Transformer-based AA

Transformer models, particularly those pre-trained for language modeling tasks, were shown to
perform well on multiple NLP tasks with some basic fine-tuning or with barely any additional

training at all, as is the case with GPT-2 (Radford et al., 2019).

Their ability to capture long-distance dependencies and to learn syntactic relationships suggests

that they can be capable of learning such a complex notion as individual style as long as it can be
formalized in terms of particular lexical choices, punctuation specificities, syntactic preferences,

and frequent patterns. They may therefore be able to use this ability to differentiate those individual

styles in the task of authorship verification.

Indeed, Transformers have already been used for authorship attribution a few times with different

results. While BertAA (Fabien et al., 2020) showed state-of-the-art performance on some datasets,
it was outperformed by a CNN baseline on others. Their experiments also showed that combining

BERT features with supplementary quantitative features is not necessary as it causes a rather
moderate improvement in performance. Comparable results were achieved by a standard fine-

tuned BERT model (Devlin et al., 2019) that performed well in the cross-topic tasks but failed to

overcome the baseline in the cross-fandom application.

Additionally, three Transformer models were applied to the PAN 2020 dataset with different
degrees of success (Kestemont et al., 2020; 2021). One of them was a Siamese network that

compared BERT embeddings of both texts from the pair (Tyo et al., 2021). Another model utilized
the Longformer model in order to analyze longer excerpts from both texts, each including 511

tokens (Ordoñez et al., 2020). In these two cases, however, the models failed to outperform the
baselines on the test dataset, which is particularly striking for the Longformer model that achieved

accuracy well over 90% on the validation set (the one available to the developers, as opposed to
the test dataset used during the competition to evaluate and rank the models). Nonetheless, the

third model, which made use of an ensemble of BERT models and then classified their averaged
prediction (Peng et al., 2021), achieved consistently high results on both sets during PAN 2021

track: it was ranked 3rd according to the F1 score and 6th according to the overall score, which also
penalized low-confidence predictions. Moreover, it achieved the highest F1 score among the

models trained on the “small” dataset.

Thus, BERT turns out to be among the most commonly used Transformer-based language models
that are being fine-tuned to perform authorship attribution. Choosing it as the core of our

architecture seems justified by the impressive performance of some existing models that are based
on it, and in our experiments, we follow the most successful to-date architecture for BERT-based

authorship verification, that is, the one suggested by Peng et al. (2021).

Baseline selection

Several baseline classifiers have been released specifically for the PAN competitions.

The one provided for AA task in PAN 2018 is based on character n-gram features and uses SVM

with a linear kernel. For PAN 2019, a slightly adjusted version of the SVM classifier with character

trigram input was used.

A “naïve” baseline classifier (Kestemont et al., 2016) makes use of cosine similarities between
character tetragram text representations normalized by TF-IDF. It bears conceptual resemblance

to the Stylo (Eder et al., 2016) classifier module, with the exception that it uses larger n-grams and
is run using the sklearn library on Python, rather than R. The “naïve” classifier can be used both

for attribution and verification, but it gains significantly higher scores in the second task of PAN

(F1 ~0.79 vs ~0.55) (Kestemont et al., 2020).

A “compression” baseline calculates the cross-entropy of a second text in the pair using the

prediction by a partial matching model of the first text in the pair and then uses the values as input

for the logistic regression classifier (Halvani and Graner, 2018). This baseline is based on the third-

best model suggested at PAN 2018 and can also be used for the verification task.

Stylo (Eder et al., 2016) has been used as a baseline for several AA works, but its interface is better
suited for attributing texts in a smaller space of candidate authors. Therefore, replicating the same

authorship verification experiment using Stylo may require substantial processing of the data and

classifying subsets of the dataset separately.

For the current experiment, we used the “naïve” classifier as the baseline and generated the

explanations for that baseline as well.

5.3.2 BERT segment classification model

For this task, we adopted the architecture suggested by Peng et al. (2021). We provide a
generalized description of that architecture, in which various hyperparameters and tools can be

utilized to achieve results depending on the problem being tackled. The schema of that model is

provided in Figure 5.2.

Figure 5.2: Architecture diagram for the model with original classifier module (from Peng et al. (2019))

It revolves around splitting the two texts from the pair into segments and creating a new set of S

pairs by combining them. For i-th segment from text 1, a corresponding i-th segment from text 2
is juxtaposed. If one or both texts were split into more than S parts, the remaining segments were

left aside, so that the number of segments per text is constant in the dataset.

After that, the segments are tokenized and padded to have equal lengths across each segment in

each pair, and the BERT model is used to produce embedding representations. Embeddings of
CLS tokens, which are assumed to represent the information about the pair of segments, are

extracted from the BERT output for each pair of segments and stacked in a two-dimensional tensor
of size (S, 768), where S is the number of segments per text. The total size of the model’s output

for a given dataset will be (N, S, 768), where N is the number of instances in the dataset.

Finally, the tensor is averaged along dimension 0 to obtain a tensor of shape (N, 768). A simple
FFNN classifier with two hidden layers of size 16 and 2 respectively connected with ReLU

activation function is then used, and, after passing the output through the softmax activation, the

model produces the probabilities for each class.

Such approach enables bypassing the central limitation of architectures based on BERT, namely
the limited input length that can be at most 512 tokens – that is, 256 tokens for each text in the

pair, including separation and class tokens. The use of multiple segments allows the model to still

cover a large excerpt of the text while not exceeding the maximal input length.

We also point out additional benefits of the use of segments that can prove useful in authorship

attribution. Firstly, the proportion of segments for each class prediction can be used as an indicator
of the model’s confidence, and a more reliable one than the class probabilities, for when the logits

take extremely high and low values, their changes are not reflected in the final prediction. For

particular practical applications, a threshold can be established to filter out unreliable predictions.

Secondly, the outputs of per-segment attribution can be utilized for dynamic analysis of co-
authorship, in which we observe the parts of the text that are more likely to be written by a

particular author out of a set of co-authors. Such type of analysis is implemented in existing AA
solutions, such as Stylo package, and is frequently used for analyzing long co-authored literary

texts.

5.3.3 BERT segment classification implementation

For the BERT model, Peng et al. used a package named bert4keras that utilizes Tensorflow

backend. For the final classifier, a Keras sequential model was used. The potential downside of
that approach is in the structure of dependencies that may lead to a versions conflict: to date, the

last version of Tensorflow that works with that implementation (1.15) is unsupported by many
versions of CUDA on local devices, as well as by multiple packages for explaining the predictions.

Besides, both bert4keras package and the implementation of the model by Peng et al. lack English

documentation and comments, which further complicates replication of their experiment.

Therefore, it was decided to implement the model with similar architecture from scratch, adopting

only the snippet for splitting texts from the bert4keras snippets module. Our solution benefits from
being implemented with a widely adopted HuggingFace API (Wolf et al., 2020), including data
preprocessing with HuggingFace Datasets package, loading the tokenizer and the pre-trained

BERT model with a sequence classification head from the HuggingFace Transformers library, and
using the Trainer tool in combination with PyTorch backend to train the model. The final classifier

was also implemented using PyTorch in order to reduce the number of dependencies.

Tokenizer

The input is being tokenized with the standard pre-trained BertTokenizer for the “bert-base-cased”

model – that is, the regular-sized version of BERT that takes the casing of the input into account.

In general, BERT tokenizer in the Transformers library is based on a WordPiece algorithm for

subword tokenization that had been proposed by Schuster and Nakajima (2012). Such classifier is
initialized with all characters from the training data and learns the merging rules based on the

probability of the combined sequence in the training data being greater than the probability of each
subsequence combined. In the case of BertTokenizer, the tokenizer is already pre-trained like the

BERT itself, using the same dataset. We are not performing any additional training since the
tokenizer was exposed to a giant corpus of English language during the initial procedure and is,

therefore, a reliable tool for splitting English literary texts.

Since the “bert-base-cased” model considers the casing, the corresponding tokenizer also treats
differently cased words in a dissimilar way, most commonly assigning a word-level token to a

word with conventional casing (the first letter capitalized in proper nouns, while for other words
tokens are assigned to both capitalized and not-capitalized versions). Non-standard way of writing

(such as fully capitalized words) is handled by subword tokens, which can be character-level n-

grams or some affixes.

Of course, the vocabulary of subword tokens is not limited to those accounting for capitalization.
There are no strict patterns, since the vocabulary was learned to optimize the performance: while

some heavily affixed words are encoded with a single token, others are processed into morphemes
or quasi-morphemes. The tokenizer does not necessarily follow grammatical rules of word

formation: for example, the word “pleasingly” is tokenized into “plea”, “sing” and “ly”.

Other words that are typically decomposed into subword tokens are fandom-specific or otherwise
unusual names that were probably previously unseen by the tokenizer (“R” + “ino” + “a”). Same

stands for all typographic mistakes: “lengthy” is processed as a concatenation of tokens “le” +
“ng” + “ht” + “y”. Subword tokens are marked by a special “##” sign that allows the model to treat

sequences of subword units in a specific way and avoid imposing excessive attention on their

word-level combination.

BertTokenizer, as a variety of PreTrainedTokenizer, encodes input, token-type, and attention mask
IDs simultaneously and is capable of detecting cases when the input is a pair of sequences. If this

is the case, the input is encoded with an additional SEP token that separates the two sequences:
[CLS] Sequence A [SEP] Sequence B [SEP]. Besides, token-type IDs are automatically added to

indicate the sequence to which each token belongs.

Preprocessing

In our model, the tokenizer was applied to the first S segments of both texts, with S = 30.
Segmentation was performed with help of the bert4keras snippet. It takes a list of separators and a

maximal length value and concatenates the split sequences until they are about to exceed the
maximal length. If a single sequence is longer than the maximal length, it is kept as is without

truncation. After segmentation, the resulting number of segments in each text of the pair is
compared with S. If larger, the remaining chunk is not passed through the tokenizer. If smaller, the

list of segments is replicated 30 times until the requirement is met with certainty, and the first 30

segments from the resulting list are directed to the tokenizer.

The value was initially set to S = 30 following the experimental setup of Peng et al., but a more

detailed investigation justified that choice.

We performed segmentation with two maximal length thresholds: 510 characters (as in Peng et al.,

ensuring that the majority of segment pairs reliably fall within the limit of 255 tokens after
tokenization) and 750 characters (for the 512 tokens limit after tokenization), and the number of

texts that had insufficient segments grew substantially when S was > 30. For segments with a

maximal length of 750 characters, the number of pairs in which one or both texts didn’t have 30
segments was 207 out of 52601. When S was increased to 31, the number of texts that failed to

meet this requirement was 20366.

Such a striking difference is motivated by the fact that most texts have a very similar length of
around 21000 characters. Therefore, S = 30 was shown to be a perfect compromise. It is the largest

value that still enabled the vast majority of texts to be segmented without further augmentation
needed, but still large enough so that the texts with many segments are not severely

underrepresented after preprocessing.

Interestingly, the thresholds for the maximal segment length in characters are also rather tight. We

have selected 750 as a compromise number: for segments of length 510, 64 pairs required
augmentation, and after increasing the threshold to 750 the value grew to 207 pairs, which was

still not a large percentage of data overall. However, after increasing the maximal length by mere
10 characters, over 2100 texts would require augmentation, and be the number increased to 800,

the value would exceed 48000 texts.

Within these limits, nonetheless, we could adjust the preprocessing to ensure a more uniform
length of segments. In the original implementation, Peng et al. used a limited set of separators (full

stops, question and exclamation marks). This resulted in the separator being unable to split many
texts into the required number of segments. After studying these examples, it was discovered that

some authors favored separating sentences with symbols other than full stops and exclamation
marks and used semicolons. To properly account for that idiosyncrasy and include such sentences

without truncation, we added semicolons to the list of separators. That enabled us to reduce that
number of augmented pairs from 64 to 59 in case of 510-character sequences and from 207 to 195

in case of 750-character ones.

When passing the segments to the tokenizer, the maximal length of the resulting encoded input

was originally set to 255 tokens and then increased to 512 tokens. Segments that exceeded this

length were truncated, and those shorter than the limit were padded with PAD tokens.

Each pair of segments was assigned the same label as the text from which it was excerpted.

Datasets were converted to Huggingface Datasets format with the order of segments within one

text preserved.

Fine-tuning

The pre-trained model used in our implementation is “bert-base-cased” from
AutoModelForSequenceClassification with the number of classes = 2, which is essentially a BERT

transformer model with a head for sequence classification. A head, in Transformer API
terminology, is an additional wrapper on top of the base model class that adds extra output layers

on top of the Transformer output (Wolf et al., 2020), which is a layer of raw hidden states. The
layers used for the initial pre-training of BERT – that is, masked language modeling and next

sentence prediction (Devlin et al., 2019), are also implemented as heads.

This model matches the first component of the proposed architecture as it enables fine-tuning
BERT embeddings for our specific classification problem. We are using a standard BERTbase
configuration (L=12, H=768, A=12) where L denotes the number of hidden layers in the
Transformer encoder, H represents the dimensionality of hidden layers, and A stands for the

number of attention heads. The model is also initialized with an absolute type of position

embeddings and the dropout probability for the hidden layer = 0.1.

Standard input model

For the fine-tuning stage, data was supplied in shuffled batches with batch_size = 30. PyTorch

implementation of AdamW was used as the optimizer. AdamW is an Adam algorithm with weight
decay (Loshchilov and Hutter, 2017). Initially, training was performed with the default learning

rate of 5e-5, but the model performance did not increase over epochs, and the learning rate was
decreased to 2e-5 in order to facilitate the learning process. The training was performed both using

the Trainer API from the Huggingface module and using the native PyTorch training loop and

achieved identical results.

In all training sessions, we used 5 epochs and evaluated the model’s performance after each epoch
to ensure that further training is justified. We have chosen that number following the Peng et al.

(2019 approach and the recommendation of Sun et al. (2020) to keep the number of training epochs
small. We observed that the best results, indeed, were achieved after training for 5 epochs.

Moreover, additional training for 2 more epochs did not bring a significant improvement in
accuracy and increased the model’s eval loss, which suggests that the model may be overfitted

with further training.

Training with a total number of instances being 4 ∙] = 1.35M typically took 27 hours on a local

CUDA-enabled device using NVIDIA RTX3080 with 16GB VRAM.

Extended input model

Along with assessing the general capability of the architecture in question, investigation of the
importance of the segment-wise input size on the model’s overall performance. We exploited the

longer segments with a maximal length of 750 characters and used a tokenizer with an extended
input length limit of 512 tokens. The data was supplied in smaller chunks of 15 instances to comply

with the increased memory requirement while preserving the integrity of segmented texts so that
exactly two batches incorporate the segments from one text. The data was otherwise processed

similarly to that in the base model, and the model was trained in the same fashion with identical

hyperparameters. Training with the same resources took roughly 70 hours.

The fine-tuned models were evaluated using accuracy and F1 scores, both in the built-in Trainer

evaluator function and native PyTorch loop. The results were identical.

In Table 5.3, we provide the outcomes for both standard and extended input models, including
those after epoch 5, that were later used to produce segment embeddings, and results after epoch

4.

Model Binary accuracy F1

Untuned BERT 0.566 0.551

Standard input (epoch 5) 0.852 0.847
Standard input (epoch 4) 0.840 0.843

Extended input (epoch 5) 0.876 0.872
Extended input (epoch 4) 0.872 0.869

Table 5.3: Performance of the model before and after fine-tuning for separate segments (before averaging)

It can be seen that the model without fine-tuning is not capable of performing substantially above
the chance level (which is 0.529). Both models perform better on the test set after 5 epochs

compared to 4. The model with extended input, however, shows a noticeable advantage of roughly

2.5% over that with standard input size.

5.3.4 Obtaining embeddings

When the fine-tuning was complete, the model was used to produce segment embeddings for both
train and test datasets. Two types of representations were obtained: firstly, we saved the CLS token

embeddings from the last, 12th hidden layer of BERT. Secondly, we stacked and summed the
embeddings of CLS tokens from the last four hidden layers, following the findings of Devlin et al.

(2019) that showed that such representation may perform better in some tasks. Lastly, we obtained
the logits from the classifier layer. All types of embeddings were converted in two shapes: a

squeezed set of features with size (N, S, H) with N = 7601 for test and 45000 for train dataset, S =
30, and H = 768, and a flattened set with size (N * S, H) where N * S resulted in 228080 instances

for test and 1350000 instances for the train one. Both sets were supplemented with label sets of

corresponding sizes: N for the squeezed and N * S for the flattened set.

Obtaining embeddings for the train dataset texts (N = 45000) took roughly 180 minutes for the

standard input model and 450 minutes for the extended input model.

The flattened set was created to evaluate the model’s per-segment performance without averaging

and was also required to analyze the embeddings and produce their visualizations. It was not used

in any of the complete model implementations.

5.3.5 Final layer classifier

The classifier was implanted using a PyTorch Sequential model class. For the flattened dataset, a

simple classifier with two hidden layers of sizes 16 and 2 linked with a ReLU activation function
was used. For the squeezed dataset, adaptive average pooling was applied along dimension 0 in

order to average the embeddings for all 30 input segments. After that, the averaged embedding
was flattened to reduce the dimensionality and passed through identical hidden layers. The output

of the model is therefore a tensor of size (1, 2) with the class prediction logits. This model was
chosen as the final solution in our model and was used in the prediction pipeline that was passed

to various explanation modules. It will be further referred to as FinalNetAvg. For the per-segment
logits, two classifiers were used: one of them was a classifier with adaptive average pooling that

used a 2-node hidden layer, while another one did not use any hidden layers at all and produced
the output as the plain average of the 30 input logits. The latter, therefore, was not a model per se

and did not require any training.

The classifiers with hidden layers were trained in a native PyTorch loop with batch_size = 30 using
Adam optimizer and learning rate = 1e-4 selected using a learning rate optimization algorithm.

The models were trained for 10 epochs, though peak values of the eval accuracy could already be
achieved after 5 epochs. These findings do not quite agree with the experimental setup of Peng et

al., in which the final classifier was trained for 400 epochs with a higher learning rate (a default
Keras Adam optimizer learning rate of 1e-3). Without a consistent decrease in the training loss

function score and improvement of the evaluation results, excessive training did not seem

necessary.

5.4 Model results

Table 5.4 shows the results of our main model that has been chosen for further experiments
compared to the original architecture of Peng et al. It can be noted that a gap of 0.9% exists for the

F1 score. However, the scores fall between the two values reported by the authors: Val-1 scores

for the test set of size 15780 and Val-2 for the test set of size 7601, which is being used in our

evaluation as well.

Model Binary accuracy F1 AUC

Standard Input Bert +

FinalNetAvg

0.933 0.936 0.933

Extended Input Bert

CLS + FinalNetAvg

0.942 0.944 0.943

Peng et al. Val-2

bert4keras + Keras

N/A 0.945 0.944

Peng et al. Val-1

bert4keras + Keras

N/A 0.926 0.920

Naïve baseline N/A 0.786 0.796

Table 5.4: Performance of our model compared to the model of Peng et al. (2019 and the baseline

Table 5.5 provides the comparison of the model of our choice with different architectures of the
final classifier and different types of input embeddings – namely, produced by standard and

extended input BERT models. Moreover, we compared the model’s performance with the
classifier layer receiving different inputs: embeddings of the last layer CLS token, sum of

embeddings of CLS tokens from four last layers, and plain logits.

Model Binary accuracy F1

Standard Input Bert CLS + FinalNetAvg 0.933 0.936

Extended Input Bert CLS + FinalNetAvg 0.942 0.944
Extended Input Bert 4-layer CLS +

FinalNetAvg

0.935 0.937

Extended Input Bert logits + 2-node Avg 0.942 0.944
Extended Input Bert logits + plain average 0.941 0.943

Table 5.5: Performance of our model in different sizes and with different processing of embeddings

It can be observed that, even though the growth in performance for the extended input model is

still noticeable, it is considerably smaller for the averaged text-level prediction compared to the

segment-level one: the growth of F1 score is only 0.8% as opposed to 2.5%.

The results also show that the model with the last-layer CLS token performs best (0.942/0.944) on
par with the one classifying averaged logits, while the sum of logits shows a noticeably worse

performance (0.935/0.937). For averaging logits, we tried both training a 2-node classifier and
using plain averaging. Although the performance was very similar, plain averaging results were

marginally lower by 0.1%, and some trained instances of the 2-node classifier reached even better
results (up to 0.944/0.946), though such scores were irreplicable and were most likely due to

overfitting on specific evaluation instances, and therefore were not further used for the final

evaluation on the test dataset.

5.5 Model discussion

These results show that, in general, averaged logits can be used for classification as is, without

training any additional dense layers, since the decline in performance is insignificant.

Considering the choice of the model size, the accuracy gain on the text level after increasing the

size was noticeable (0.9%), but considerably smaller than that of single segments (2.9%). Given
the dramatically longer training time (64 hours instead of 26) and the need to separate the segments

from one text into two batches, the trade-off between time and prediction quality can be resolved

differently depending on the goals of a particular experiment and on the type of target texts.

For longer texts, which can be separated into 30 or even more segments, using a faster and lighter

model seems to be preferable, since averaging multiple predictions does not depend so strongly on
the input size, and both training and generating embedding representation take significantly more

time for the extended input model with an almost threefold increase. For smaller texts, particularly
those that constitute only one segment, the choice can be made in favor of better quality of each

prediction, since the options for averaging are limited and increasing the input size becomes the

most plausible way to reach higher accuracy.

6. Final classifier interpretation
For generating explanations, we adopted a top-down approach, which assumes moving from the
final layer of the model, which is the text-level classifier, down to the segment-level classifier and

then to the internal structure of the BERT model, namely to the attention.

In this section, we use LIME explanations to analyze the behavior of the final classification model
that uses the embeddings of segments as input and outputs class predictions. We then analyze the

CLS embeddings that were obtained as the output of our fine-tuned BERT model and are now
used as classifier input, observe how are they treated by the classifier and compare their saliency

to the frequency of their appearing in LIME explanations.

As a result, we aim at answering whether the classifier in this setting is learning some new

information to make its final prediction, or these predictions are already contained in the input
embeddings as a result of fine-tuning, and by averaging the input from each sequence we can

already provide a sufficiently accurate explanation.

6.1 LIME-tabular explanations overview

We used lime-tabular, a version of the LIME explainer that can accept two-dimensional input,
such as the embeddings in question. Since the standard version of the classifier uses three-

dimensional input (4 ∙ 30 ∙ 768), we had to consider two separate types of explanations: those
generated for a single pair of sequences (one of 30 elements along dimension 2) and the one using

averaged output (where the mean value is calculated along dimension 2).

For single pairs of sequences, we generated explanations for several settings: two adjacent pairs
of sequences, two pairs from one text, and two pairs from random texts. For each case,
explanations were computed for the 10 most important feature-value combinations, which is the

standard mode for lime-tabular. Due to a huge number of candidate features (768), the difference
in weights between features in explanations is subtle. Weights over 0.1 were only observed

sporadically, while in most cases feature #1 had a weight no bigger than 0.08. Nonetheless, it was
observed that the top 10 most important features overlap in different explanations. The number of

common features is highest for adjacent segments (50%), but even across non-adjacent segments
and segments from texts with different labels, there was a number of overlapping features (2–3 in

our observations). Also, some features may also maintain their relevance across segments, but with
slightly lower importance, and therefore be excluded from the top 10. Examples of explanations

are provided in Figures 6.1 and 6.2

The explanations for sequences averaged within one text were similar in terms of overlapping
features, but the weights of the most important features were generally lower. Besides, we

observed that the explanations differed in terms of confidence: while common confidence for

separate segments was within 80–95%, the confidence of predictions for averaged segments was
either even higher (close to 100%) or much lower, around over 55–60%. This can be explained by

the fact that for some texts the segments yielded predictions with both labels, and averaging the
embeddings of such segments, which likely contained opposite values, resulted in a decline of

confidence, as well as in lower weights of features in explanations in general. If, on the contrary,
the same labels were predicted for all segments, the final prediction could be made with higher

confidence since the individual variance of each segment is mitigated by averaging.

6.2 LIME-tabular explanations analysis

To obtain a broader view and to uncover the extent of the top features’ re-occurrence, we checked

their distribution for multiple explanations. To that end, we generated 100 explanations for
instances randomly sampled from the test data and collected the most popular features — that is,

we counted the number of times a particular feature occurred among the 10 features that LIME
extracted. We only considered the counts of the features rather than their values provided by

explanations, since the subtle differences in these values would create too many unique feature-

value combinations and hinder the understanding of this experiment.

Figure 6.3: Counts of features selected by LIME-tabular as top-10 for instances for label “1”, with total counts for
both labels in blue in the background

Figure 6.4: Counts of features selected by LIME-tabular as top-10 for instances for label “0”, with total counts for

both labels in blue in the background

We counted the occurrences for the whole sampled subset and separately for samples with the

predicted label «1», with the predicted label «0», and with the erroneous predictions (where the

predicted label is different from the true one).

In total, 165 features out of a total of 768 occurred as most important for LIME at least once. Given

that in total LIME had to select 1000 features (10 for each of 100 explanations), this result suggests
significant overlapping. Figures 6.3 and 6.4 show the distribution of counts for two classes

separately, as well as the total counts. The most common features (>10 counts) are highlighted.

It can be seen that there is one most popular feature, 135, that appears in almost 70% of

explanations, and 15 features that appear in 20% or more. Their distribution between the two
classes slightly differs: feature 47 (bar 4) is considerably more common for the class “1” than for

the class “0”. Feature 216 is also more important for label “1”, while it is not even among the
opposite class’s most common ones. Features 294 and 608 are similarly more common for label

“0” than for label “1”.

Thus, we verified that a few top features are extremely common in explanations for both classes,
which suggests that contrasting values of these particular features are crucial for the final

prediction. We also discovered that there are also some atypically common for one particular class,
or for misclassified segments. However, at that point, there was no observable link between the

importance of classifier input features and interpretations of those features with respect to the input

texts.

6.3 CLS embeddings analysis

In search of a link between the classifier’s performance, which was partially uncovered by LIME,
and the characteristics of BERT embeddings produced by our model, we analyzed the difference

between the embeddings across two classes. We then compared the results for the training and the
test sets and contrasted them to the embeddings produced by a standard BERT model without fine-

tuning. Finally, we calculated the Pearson correlation coefficients between the embeddings and

the weights learned by the classifier. We aimed at determining whether the features most
frequently occurring as most important ones for the classifier are also those that are the most salient

in the input embeddings.

Figure 6.5 shows the weights of features ranked according to their number, averaged for each class
separately. It can be seen that the values are typically opposite for large groups of features: a

positive average value for class 1 is frequently accompanied by a negative value for class 0 and

vice versa.

The average weights of features in embeddings produced for the Test set, shown in Figure 6.5
(bottom), are largely similar to those of the Train set (top): the groups of positive and negative

values can be observed. However, the absolute values tend to be smaller. This can be explained by
the fact that a higher number of prediction errors compared to the training set results in both

positive and negative values being averaged as part of the same class, thus decreasing the absolute

value.

Figure 6.5: Average weights of features in all segments with labels “1” (blue) and “0” (gold) in Train subset

(above) and Test subset (below)

After sorting the feature weights by value, it can be observed in Figure 6.6 that within one class
features with different values are generally distributed evenly, with a similar increment in weight,

excepting a small number of both positive and negative features with the highest absolute values.

Figure 6.6: Average weights of features in all segments with labels “1” for the Train subset, sorted by values

To see how these features enable discriminating between the two classes, we considered the
absolute values of the difference between the averaged weights (Figure 6.7). A somewhat similar

picture was observed: a comparatively small subset of approximately 50 features showed a

noticeably larger increment in absolute values of differences than those following them.

Figure 6.7: Differences between average weights of features between classes “1” and “0” for the Train subset,

sorted by absolute values

6.4 Comparison of LIME-tabular and difference-based features

In order to observe whether such salient differences are taken into account by the classifier, we

calculated the overlap between these features with highest difference between weights in different
classes and the list of most frequent features extracted by LIME in the previous experiment. The

results are summarized in Table 6.1.

For LIME-tabular explanations of 100 items sampled from the Train dataset, we selected the 50
most frequently extracted features and compared this list with 50 features that have the most salient

weight difference between classes in embeddings produced for the Train dataset. We discovered
that 52% of features from these lists were overlapping. After following the same procedure for

LIME explanations of samples from the Test dataset, we found 50% of overlapping features. We
repeated the experiment with the embeddings of the Test dataset and obtained the result of 54%

and 48% respectively. It can be noticed that this percentage of overlapping features is considerably
large given the total number of candidate features (768) and the limited sample (50). Indeed, over

half of the 50 features most commonly chosen as most important ones are also among those with
the highest difference between classes. Also, for both Train and Test dataset embeddings, the

overlap is slightly larger with LIME features from explanations of instances sampled from the

Train dataset. It suggests that the classifier’s performance on Train data is slightly more consistent

with the initial information represented in the embeddings.

To ensure that such behavior is justified by the model’s performance and that the difference

between classes is indeed learned at the pre-training stage, we also calculated the overlap for the
embeddings produced by the untuned BERT model. As before, 50 features with the highest

absolute difference between classes were selected. In this case, however, the percentage of
overlapping features was significantly smaller: 10% were overlapping with LIME features on test

samples, and a mere 6% — with those on train samples.

 LIME for Train set LIME for Test set
Train set embeddings (fine-tuned model) 52 % 50 %
Test set embeddings (fine-tuned model) 54 % 48 %

Train set embeddings (untuned model) 10 % 6 %

Table 6.1: Overlap between embedding components with the highest difference between classes and embedding
features extracted by LIME for Train and Test subsets in fine-tuned and untuned models

6.5 Untuned CLS embeddings analysis

The results suggest that untuned embeddings differ significantly in terms of feature weights. To

verify it, we analyzed them in the same way as before. Figure 6.8 shows that feature weights for
two classes are almost identical, which is quite the opposite picture compared to fine-tuned

embeddings that had contrasting values. Besides, most average weights are close to 0, which

suggests that a single class included both positive and negative values.

(A) Untuned model, label “1”

(B) Fine-tuned model, label “1”

(C) Untuned model, label “0”

(D) Fine-tuned model, label “0”
Figure 6.8: Average weights of features in all segments with labels “1” (A, B) and “0” (C, D) in Train subset for the

untuned (A, C) and fine-tuned model (B, D)

Moreover, even though some differences in absolute values between classes exist, they are
dramatically lower than those in fine-tuned embeddings, where the most salient difference is

roughly 20 times bigger, as can be seen in Figure 6.9.

Figure 6.9: Differences between average weights of features between classes “1” and “0” for the Train subset,

sorted by absolute values, for untuned model (above) and fine-tuned model (below)

6.6 Correlation between CLS embeddings and classifier nodes

Generating multiple LIME explanations for sampled instances provided some understanding of

the classifier as it showed that a limited number of features is regularly used in predictions for both
classes. Comparing the averaged values of features in embeddings for each class showed that these

values are primarily opposite. To fully grasp the behavior of the classifier, we needed to see how
these values are processed in the hidden layers. The model’s architecture included two fully-

connected layers of sizes 16 and 2 respectively, connected by a ReLU activation function. Two
nodes of the second layer correspond with the final prediction, as they are turned into class

probabilities after the softmax activation. Therefore, we expected the first layer to be capable of

selecting features responsible for each class.

To visualize the relations between the nodes, we plotted a heatmap of Pearson correlation

coefficients between the parameters of all 16 nodes in Figure 6.10. To show how they correspond
to embeddings of different classes, we also added the averaged feature weights for class 1 (C1)

and class 0 (C0) in fine-tuned Train embeddings. These weights indeed show a strong negative
correlation (-0.93) which goes in line with the previous observations in Figures 6–7. Besides, the
nodes turned out to be divided with respect to correlation: nodes 1–4, 7, and 15 show a positive

correlation with class 0, while other nodes – with class 1. In C0 and C1, the positive correlation is

generally stronger, and it reaches 0.76 for node 4 in C0.

Figure 6.10: Pearson correlation between weights in 16 nodes in the first fully-connected layer of the classifier (1–

16) and averaged embeddings of class “1” (C1) and of class “0” (C0)

Given the ReLU activation function that immediately follows the first fully-connected layer and

sets all negative values to zero, the only way in which the model can maximize the values of the
desired class is by multiplying positive values of relevant features by positive parameter values,

and negative ones – by negative parameter values, while leaving irrelevant features negative or
close to zero. Thus, a positive correlation between the class and the node parameters suggests that

the node in question selects instances with feature values relevant to that class.

Figure 6.11: Pearson correlation between weights in 2 nodes in the second fully-connected layer
of the classifier (0–1)

The parameters of 16 nodes in the second fully-connected layer were also visualized with a
heatmap in Figure 6.11. Some traces of the division observed in the correlation heatmap can also
be found here: nodes 1–4, 7, and 15, which had a positive correlation with class 0, are assigned

higher weights in this layer’s node 0.

6.7 Classifier layer discussion

These findings indicate that the classifier essentially uses its first fully-connected layer to

emphasize the high values of features relevant to a particular class. After that, for most nodes, it
further increases the difference between positive and negative values by applying positive weights

to the nodes that show a positive correlation with a class. As a result, a high positive value is

achieved for the desired class and a low negative one – for the irrelevant class.

It seems that such a procedure does not necessarily require a separate model with hidden layers.

Given that the encodings of each sequence pair already show contrasting values for different
classes and that that contrast can be preserved after averaging the sequence pairs from one text,

we could either use a classifier without averaging or consider the logits of the fine-tuned BERT
instead of the CLS token embeddings, since they can also represent the contrast encoded in these

embeddings.

Therefore, it is possible to disregard further explanations of the joint model including both BERT

and the final classification layer and to proceed to the explanations of fine-tuned BERT
individually. Given that the predictions for 30 segments are plainly averaged without any

substantial transformations, we are now able to consider the explanations for separate segments.
A joint explanation can thus be created, if needed, by considering all segments or by providing

example explanations for some, most expressive, cases.

7. LIME explanations for segments
The results of the previous chapter enabled us to conclude that the contribution of the final
classifier applied to the CLS embeddings of all segments boils down to discriminating between

two sets of almost opposite embeddings that are shaped by the fine-tuned BERT, and no additional
transformation is performed in the hidden layers. This reasoning is further verified by a merely

marginal drop in performance when plain averaging is used instead of a classifier with two dense

layers.

These considerations enabled us to move from text-level explanations to a smaller scale and

concentrate on segment-level explanations, given that further changes in the prediction that are
happening at the final classification step are fully interpretable and reduced to averaging. Joint

explanations can thus be created, if needed, by considering all segments or by providing example

explanations for some most expressive cases.

In this chapter, we introduce the original LIME tool for generating explanations and analyze its
performance on segment-level predictions for both classes. We then reflect on the results, suggest

an explanation for the difference in performance between classes, and propose an updated model
that may be used to mitigate this gap. Finally, we compare the results of the original and the

updated models on different examples, probe the correctness of assigned weights and the

robustness of classification and use the outcomes for outlining the potential set of features involved

in classification.

7.1 LIME overview

As the primary means of generating initial explanations, we have chosen the original

implementation of LIME (Ribeiro et al., 2016)). LIME is a model-agnostic technique of post-hoc
explanations, which implies that it can be used regardless of the inner structure of the model, only

considering input and output, and that explanation is happing after the prediction is obtained, using

additional operations (Danilevsky et al. (2020).

In LIME, a local surrogate model is learned for approximating the model’s behavior in case of a

particular prediction. To that end, LIME creates some “perturbed” samples by randomly removing
some subsets of data (random lists of words, in case of LIME-text explainer) and supplementing

the resulting input with cosine distance from the original text as the default metric, so that higher
weight is assigned when perturbed input is close to the original, but prediction for it differs

substantially.

The tool performs a large number of random permutations (5000 by default). A locally linear
sparse model is learned based on this perturbed data. That proxy model is then interpreted by
highlighting the contribution of the most important features to its prediction. The weights of these

features should approximate the original model’s behavior: removing each of these features should
shift the prediction towards the opposite class by this weight, and this property is ideally supposed

to be additive.

7.2 LIME-text for attribution explanations

In this section, we try to extract candidate important features that can be shown to influence the

prediction and therefore correlate with the classifier’s features.

To do so, we use LIME-text to explain the complete pipeline of our model, as well as the pipeline

of the naïve baseline.

The main prerequisite of a properly functioning LIME explanation is a classification model

pipeline that satisfies the following requirement: it has to be able to accept a list of single texts as
input and produce a Numpy array of probabilities (logits processed through the softmax layer) as

output. For that reason, we implemented different types of pipelines: for pairs of segments, for

pairs of texts, and for a single input that combines both texts from a pair with a separator.

The explainer for textual input only accepts a single text, while our model is trained to process a

pair of texts. Therefore, the input pair in the LIME-compatible pipeline is initially combined with
a separator made of special characters (so that it is not influenced by word-level perturbation, as

would be the case with the usual SEP token used in BERT) and then split back at the preprocessing

stage.

Perturbations can be performed in two modes: bag-of-words (default) and non-bag-of-words. In
the latter, the words are randomly removed based on their positions, while in the former

perturbations are performed on the vocabulary of the text so that all occurrences of a selected word

are removed. For this task, we utilized the standard bag-of-words mode, given that the alphabet of

features would otherwise be too large.

7.2.1 Class 0 explanations

The first explanation, shown in Figure 7.1 (top), was generated for a single pair with label 0 (“not

the same author”), correctly predicted. This prediction shows very high confidence (p=1.0).
Generating an explanation with top-6 features for the whole model took about 13 minutes,

compared to 3 minutes for the embeddings classifier, with standard 5000 perturbations. All of the
top-6 features shift the decision towards the correct class prediction and explain a total of ~77%

of the prediction, which is considerably different from the embeddings classifier, in which top-10

features explained roughly 60%.

All of those features seem to be meaningful, though different in nature. Five of them are in fact

character names from both texts (Knuckles and Neo only appear in the first fragment, while Robyn,
Sportacus, and Kit — only in the second one). It may seem that in this example the model primarily

functions as a named entity recognizer, but the dataset is constructed with cross-topic classification
in mind: both same-author and different-author pairs include texts from different fandoms

(therefore, with at least some different names), and same characters, in turn, may appear in pairs

with both labels.

The 6th feature is the word Want, which is indeed a suitable candidate parameter for style

formalization. This is a frequently used verb that has a significant amount of contextual synonyms
and stylistic variants due to its broad meaning that sometimes expresses modality. Thus, an author

can freely choose between want and its alternatives without changing the meaning, which makes
it a good indicator of individual stylistic footprint. In this example, the counts of the word want

differ between the two texts: out of 18 occurrences, only 2 are in the first text. According to LIME,
such stylistic dissimilarity adds 9.3% to the probability of these texts being written by different

authors.

We then generated more explanations for the same data with top-6 features and top-10 features,

also shown in Figure 7.1 (middle and bottom). The 5 most frequent features re-appeared in all
explanations with but slight re-arrangement. The situation with other features was different: these

were different words that appeared in dissimilar proportions. The word pointing appeared in a
proportion close to that of want, but the words houses, lips, and ten only appear once. It could be

concluded that the top-5 features are followed by a longer tail of roughly similarly important

features.

Figure 7.1: Text-level LIME features, true class “0”, bag-of-word setting, for different runs of LIME-base with top-
6 features (top and middle) and top-10 features (bottom) selected. Only an excerpt of the text is visualized

However, the distribution of importance in top-10 features doesn’t support this view: the
importance vanishes quite rapidly, with feature 10 being 3 times less important than feature 9 (0.06

→ 0.02). Top-9 features in this case explain 86% of the prediction and don’t really leave any room

for the high estimated importance of want (0.09) or lips (0.1).

We arrived at two possible explanations for that:

the local approximations can be inconsistent, and while alterations of ±0.2 are not so important for

most common features, they significantly change the distribution of less common ones

some features may not be reduced to words themselves, and since LIME is limited to word-level

explanations, it is bound to be uncertain about their importance.

Nonetheless, all extracted features in this example seem to be meaningful in terms of explainability
since they appear in two texts with different frequency. Therefore, removing them makes the texts

more similar and decreases p of class 0.

7.2.2 Class 1 explanations

In explanations of texts for Class 1, shown in Figure 7.2, we can see that, despite the very high

confidence of the model, LIME cannot explain its prediction at the word level. Top-6 features only
marginally influence the prediction, with the highest value being a mere -2.85e-06. According to

LIME, none of the word-level features can explain the model’s confident prediction.

In the bottom example in Figure 7.2, we see that all extracted features point at class 0. though with
extremely low weight, contrary to the actual prediction, and the top features are in fact just the first

words from the text.

We observed similar behavior for most examples with label 1, and in all of them, the weights

assigned to features were close to zero, and the intercept value of the local linear model was
around 0.99.

Figure 7.2: Text-level LIME features, true class “0”, bag-of-word setting, for different texts. Only an excerpt of
each text is visualized

7.2.3 Analysis of explanation difference

Interpretations of our model for class 0 are meaningful both in terms of their capacity to

approximate the probability and their interpretability as linguistic features. This can be explained
by the fact that LIME perturbations are capable of controlling the degree of dissimilarity between

texts, which, ultimately, is the generalization of all the features used for capturing stylistic

differences.

Indeed, if a certain word has a different frequency in two texts, we decrease their dissimilarity by
removing it. If a corresponding change towards class 1 in the prediction happens, it proves that

this word contributes to class 0 and makes the texts more dissimilar. The most salient features, in
this case, are unique words (names and some singular occurrences) and the words substantially

different in frequency.

Interpretations for class 1, however, don’t seem to be meaningful and do not provide weights that
account for the prediction. The likely reason for this is as follows: the goal of the explanation for

class 1, in the end, is to find words without which the texts will become less similar, which would

imply that these words make texts stylistically more similar. And this goal, as it turns out, is
unachievable in this classical LIME perturbations scenario: we cannot perform such perturbations

that would make texts less similar.

In case of removing a word feature that accounts for dissimilarity (a word with a different
frequency in two texts), the texts will become more similar, which means that such perturbation

can only increase the probability of class 1 — thus, such word cannot account for the probability

of class ‘1’.

If we remove a word feature that accounts for similarity (a word with similar frequency in two
texts), both texts are changed in a similar way; thus the degree of their similarity doesn’t shift

substantially, and such changes also cannot account for the probability of class 1.

Therefore, we claim that the degree of dissimilarity (in dissimilar texts) is a parameter controllable

through classical LIME perturbations, but the degree of similarity (in similar texts) is not.

We formalized the problem of explanations for class 1 as a list of intermediate hypotheses.

Firstly, the problem may be in two texts, for such a setup enables manipulating dissimilarity, but
not similarity. If this is the case, a version of LIME has to be created that can permute features of

two texts independently: interpreting class 0 could be performed by removing dissimilarity when
a word with dissimilar frequencies is deleted. Class 1 explanations, on the contrary, requires

reduction of similarity, and we can do so by removing the equally distributed word from the first

and the second text to see how important such equality is for the model.

Secondly, it may be the case that the model doesn’t learn similarity features at all. It only learns

what makes the texts dissimilar, and in the absence of such features, the default class is 1 (‘same
author’). By removing features from a text without dissimilarity, we have no means to access the

features that are already absent given the a priori similarity of these texts. In this case, we can only

use class 0 for explanations.

We aim at probing the first hypothesis to verify that explanations can be generated by performing
a different type of input perturbation and that there exist such features that are responsible for

classifying text pairs with label “1”. If such explanations cannot be achieved by influencing the
perturbation strategy, such result would suggest that the second hypothesis is the case and the

model treats one of the classes as default.

7.3 Pair-aware perturbations in LIME

As mentioned above, LIME-text uses two modes. Therefore, we implemented two ways of

independent perturbation of input.

7.3.1 Non-bag-of-words perturbation

For the non-bag-of-words mode, we enabled the Explainer to memorize the position of the

separator and change the input in three different modes: “left” (only permute the first text in the
pair), “right” (only the second one), and “random” (for each permutation, the side which is going

to be altered is chosen randomly). The motivation behind the introduction of the “random” mode
is that, even though on average both texts are involved equally, each particular perturbation is still

performed on a single text, thus allowing a liner model to learn from a set of cases in which only

one text is manipulated, and similarity that exists between the texts is therefore broken.

The “random” mode showed the results that are closest to the original LIME in the non-bag-of-
words setting. The other two modes in the non-bag-of-words setting still could not produce

meaningful interpretations. The most likely explanation for that is the large number of candidate
features that the explainer faces when each word is treated individually and with its position in

mind. For the set of 256 features, with some of them likely correlated (such as quotes, which are

paired), creating a local linear approximation might be too complicated.

To reduce the number of candidate features and also obtain a more diverse set of important features

when the explanation is generated, we proceeded with a beg-of-words mode.

7.3.2 Bag-of-words perturbation

For the bag-of-words setup, we had to adopt a different approach. The original LIME first builds
the vocabulary for the input text and then selects random entries from that vocabulary and turns

them off in the input text. In such a case, plainly limiting the scope of perturbations is not feasible
because the randomly selected vocabulary entry may not be present in the text, and hence the

average intensity of perturbations will decline, and so will the explainability of the linear model.

An additional limitation is that the perturbation cannot be edited or partially reconstructed after

the initial application because it is performed together with the cosine similarity calculation.
Changing the input afterward would impair the correctness of the similarity metric, which is crucial

for correctly estimating the importance of perturbations.

Therefore, we had to build separate vocabularies for each of the texts, sample candidates for
permutations from these vocabularies separately, and then apply them with the scope of each text,

defined by the separator position, in mind. The methods for reconstructing the text from tokens for
visualizing the explanation and for highlighting the words according to their estimated importance

also had to be changed, taking the two vocabularies into consideration. All of the main classes had
to be redefined in order to enable the preservation of the separator position and the current text

from the pair which is being processed.

Given the global character of required changes, we did not implement a “random” mode for the
bag-of-words setting: the scope of perturbations have to be chosen upon the initialization or the

explanation. Consequently, the appropriate method of feature extraction with this version of LIME
implies the application of explainers in both “left” and “right” modes and combining the lists of

features extracted by both of them, taking the importance of these features into account.

Application of the bag-of-words explainer for pair-aware input alternation finally resulted in

explanations in which the weight of the extracted features did not approach zero, and the intercept
weight of the local linear model approximating the prediction was lower than 0.99 (as was the case

with the original LIME), commonly not exceeding 0.3.

7.4 Feature extraction with pair-aware perturbations

In this section, we provide the analysis of features that were extracted for different segments. We

generate LIME explanations for random segments of the selected pairs, assess the correctness of
LIME estimations for extracted important features by removing them separately, and then check

their joint importance upon simultaneous deletion. After that, we proceed with investigating the

behavior of other potentially important features with and without the most important ones removed

to get the initial understanding of the influence of stylistic changes on the model predictions.

For segments with predicted class 1, as mentioned above, basic LIME assigns comparatively low

weights to the top-6 features in segments, though these weights are slightly higher than previously.
LIME-pair, however, produces explanations with much higher weights for both the “left” (Figure

7.3, middle) and the “right” (Figure 7.3, bottom) modes.

For predicted class 0, LIME-pair, in turn, is unable to assign any weights to top features for since

explaining texts for this class requires controlling dissimilarity rather than similarity. Basic LIME,
on the contrary, can produce meaningful explanations with assigned weights. These weights,

however, do not linearly approximate the probabilities or the logits but can still serve as means of

qualitative estimation.

Therefore, the most illustrative results for our task can be achieved by using both types of LIME

explainer: LIME-pair in “left” and “right” modes for class 1 and basic LIME for class 0.

Figure 7.3: Segment-level LIME features, true class “1”, bag-of-word setting, for LIME-base (top), LIME-pair in
“left” mode (middle), and LIME-pair in “right” mode (bottom)

We note that, in principle, LIME-pair is also able to produce feature extraction with non-zero

weights assigned even on the text level, but given the averaging procedure that may hide the

importance of certain features we recommend generating segment-level explanations and counting

the features extracted by them instead if needed.

7.4.1 Extracted features overview

Figure 7.4: counts of 25 most common features extracted from 100 sample segments

Following this procedure, we obtained important features for 100 sample texts. 25 most frequent
ones are displayed in Figure 7.4. We can observe that the most commonly selected are function

words, including conjunctions (“and”, “as”), various personal pronouns (“I”, “He”, “her”, “You”,
and more), auxiliary verbs in full and short (“d”) forms, reporting verbs (“asked”, “replied”), and

some proper names that were found in more than one segment (for each text in the sample, 5
segments were considered). Finally, an underscore, which is apparently disregarded by the non-

character filter used in LIME-text, is also extracted. Other types of punctuation are not present due

to the filtering.

The majority of these features are words of very high frequency, which makes them suitable
stylometric features: even slight differences in their frequency or in the patterns of usage can be

indicative of the individual style. First- and third-person pronouns enable representation of the
narrative perspective: whether the story is narrated from a first- or third-person view. Reporting

verbs, in turn, are highly variable, and their diversity or repetitiveness can also be subject to
individual style. Names and proper nouns, on the contrary, are typically involved in modeling the

topic of the narrative, yet they may incorporate numerous other features: the author’s preferences
in character selection and in choosing to use names instead of other means of reference (co-

referring nouns, pronouns) can also be indicative of the individual stylistic fingerprint, and the

involvement of multiple pronouns as important features supports this view.

7.4.2 Relations between LIME estimations and prediction logits

Neither the original explainer nor the augmented version assigns weights that correspond to the

probability of the class prediction. However, it was discovered that in many cases the weights
assigned by LIME-pair approximate the change in the model’s logits after removing the

corresponding feature.

For example, for the text displayed in Figure 7.5, the original prediction had class logits [-
5.531711, 5.7830925]. Removing the word Aranea (with the weight assigned by LIME being 0.66)

resulted in the new logits [-4.927722, 4.5944533], so that the difference for class 0 logits was 0.6).
Removing the word Rinoa led to logits [-5.381693, 5.3939533] (observed difference 0.15,

predicted weight 0.18). This pattern repeats for the word Laguna (predicted weight 0.16).

This pattern, nevertheless, cannot be observed for all top features, likely due to the non-linear and

interconnected nature of some of these features. When a certain feature is removed together with
another one at the premutation stage and together they create an important complex feature, it may

increase the average weight of the feature in question among all permutations and lead to an
incorrectly high linear approximation that doesn’t correspond with the change observed upon the

removal of solely this parameter from the input segment.

Thus, beyond the top 2-3 parameters, for which the weights approximate logits rather accurately,
only qualitative estimation is possible — namely, that features with higher assigned weight

contribute more to the logits, and features with positive weights contribute to class 1, and vice
versa. The precise value of that contribution, though, depends on the co-occurrence with other

features.

7.4.3 Co-occurrence of important features

Let us discuss these interconnections in more detail. Comparison of logits obtained after removing
one or more important features extracted by LIME and other pre-selected candidate features in

different combinations shows that even a local linear approximation of the model’s behavior is
implausible since the contribution of any feature is not constant and depends on its position,

context, the total number of occurrences, and the presence of other features. Furthermore, these
dependencies are by no means limited by the word level: the prediction can be influenced by the

punctuation and stylistic variations thereof, by casing, and spelling mistakes.

First of all, it appears that the most important features extracted by LIME, which indeed were
shown to contribute to the corresponding class, tend to accumulate their value. For example,

removing the word Aranea increases the logit of the incorrect class 0 by roughly 0.6, which is
insufficient to change the prediction. However, when the other five features contributing most

strongly to class 1 (Rinoa, Laguna, though, Kiros, cleared) are also removed, so that the resulting
class logits are [-2.8962233, 1.7099165], the contribution of removing Aranea to class 0 increases

to 4.34, which results in the change of the predicted label logits: [1.4439765, -1.4362624]. This
change if shown in Figure 7.5. Thus, the influence of top features is the strongest when no other

top features occur in the text, and it drops substantially when the other features indicative of the

same class are already present.

This claim can be generalized to other features, which are note highlighted by LIME, as well: they
tend to show a much stronger influence on the prediction when the most important features,

especially names, are removed from the text. Such behavior seems logical: without the names that
could have been learned to indicate certain authorship, the model can no longer rely on such

shortcuts and needs to make predictions based on other features of the text, with naturally lower
confidence and robustness. Figure 7.5 (top) shows that, with the absence of 6 features contributing

to class 1, the remaining features point at class 0, and these are mainly pronouns and functional

words, which are essentially traditional stylometric parameters.

Figure 7.5: Segment-level LIME features, true class “1”, bag-of-word setting, for LIME-base. In the top example, 6
features previously identified as important for class “1” are removed (Rinoa, Laguna, though, Kiros, cleared,

Aranea); see Figure 7.3. In the bottom example, one of them (Aranea) is brought back

Such influence was not only discovered for co-occurrences of the word features. Some other cases

are presented in Table 7.1. For example, the opening quote before OH (OH itself is marked as a
#1 feature for class 0, as seen in Figure 7.3 (middle)) turns out to be important for class 1. Although

its removal is unimportant when other features are present (it changes logit of class 0 by 0.04), it
reaches 2.753 in case the 5 important features for class 1 (Rinoa, Laguna, though, Kiros, cleared)

are removed beforehand, and results in the prediction label change: [-0.14309846, -0.2922034].
That opening quote does not show a strong correlation with any of the top features in particular,

so it is the absence of all 5 that matters.

Importantly, quotes are only contained in the first part of the segment, so it might seem that

removing any of them should make the texts more similar. However, the model’s behavior
indicates quite the opposite result, and removing all quotes when top features are removed results

in an even higher increase of class logits: [2.9483943, -3.1187959]. This pattern can only be
observed when no top features are present. Otherwise, the increase is marginal: [-5.3608084,

5.3494406].

Example feature Influence on class 0 logits upon removal

Top-5 features present Top-5 features absent

“Aranea” 0.604 4.340

Singe quote before “OH” 0.040 2.753

All quotes 0.171 5.844

Table 7.1: Influence of removing selected features on prediction logits with and without top-5 features removed, for
an example text from Figure 7.5

7.4.4 Adversarial examples

We proceeded with further experiments by introducing adversarial examples that involved

punctuation and typographic variations, as well as removal and replacement of various features.
In general, we observed that when the top features were present, no significant changes could be

observed. After removing them, alterations became a lot more salient. Results of different

alternations are shown in Table 7.2

Typographic variations

Firstly, we checked the typographic variations. Replacing double quotes (“) with single quotes (‘)
did not result in a change of the predicted label but decreased the overall similarity between texts

by pushing class 0 logits higher and class 1 — lower: [-1.8707004, 0.9313528].

After that, we considered available stylistic variations. The first text contained 3 exclamation
marks that could be replaced with full stops without significant change in the meaning and were

therefore subject to the author’s stylistic choice.

Removing and replacing punctuation

Changing all full stops into exclamation marks dramatically increased the similarity: [-4.64954,

4.0420275]. Making an identical change in only one of the texts did not make such a big difference
until we also changed all exclamation marks to full stops in the other one: [2.222923, -2.2992437].

Simply replacing all exclamation marks with full stops did not yield any significant results but
slightly increased the probability of class 0 (which, again, might seem counter-intuitive given that

such change makes the texts more similar).

When we replaced exclamation marks with question marks, which produces a meaningful
semantic change, the decrease in similarity was a bit higher [-2.616405, 1.396568], yet still without

changing the predicted label.

Removing punctuation significantly increased the similarity of the texts (i.e., the logit of class 1):

removing all punctuation resulted in logits being pushed back to [-5.441371, 5.5717177],
removing solely full stops — in [-4.8784447, 4.341698], while removing solely commas — in [-

5.252601 5.1758327], which emphasizes the importance of different uses of commas for the

difference between the styles of various authors.

Thus, we could increase the similarity of the texts by removing punctuation or making uniform

replacements in both texts. Increasing the dissimilarity turned out to be a harder problem: so far,
we could do it only by making directly opposite replacements of “.” and “!”. Other cases in which

the alteration resulted in a different prediction are adding more full stops to the first text (to the
places where there were no punctuation marks) while also removing full stops from the second

text where possible or replacing them with stylistic alternatives (commas, semicolons, double

dashes): [1.8393167, -1.9136158].

Example punctuation feature Class 0

(“different-
author”) logits

Class 1 (“same-

author”) logits

Interpretation

Default, top-5 features removed -2.8962233 1.7099165 Texts are similar

Double quotes replaced with

single

-1.8707004 0.9313528 Similarity decreased

Full stops replaced with

exclamation marks

-4.64954 4.0420275 Similarity increased

Text one: exclamation marks to

full stops; text two: full stops to
exclamation marks

2.222923 -2.2992437 Similarity decreased;

texts are dissimilar

Exclamation marks replaced with
question marks

-2.616405 1.396568 Similarity decreased

Removing all punctuation -5.441371 5.5717177 Similarity increased

Removing full stops -4.8784447 4.341698 Similarity increased

Removing commas -5.252601 5.1758327 Similarity increased

Text one: more full stops added;
text two: full stops replaced with

alternatives

1.8393167 -1.9136158 Similarity decreased;
texts are dissimilar

Adding nonessential correctly

placed commas

1.5631607 -1.6246212 Similarity decreased;

texts are dissimilar

Adding non-grammatical commas -2.0973256 1.0720851 Similarity decreased
Table 7.2: Influence of input ablation and alteration on prediction logits for an example text from Figure 7.5

Adding new punctuation

We then considered adversarial examples that added new punctuation marks to the positions where

no other symbols were present. It turned out that new instances of commas have a stronger

influence than those obtained by replacing other punctuation.

Adding new commas to the first text yielded different results depending on their syntactic role and
co-occurrence. When we added several unnecessary commas to both texts, isolating I believe as a

parenthetical clause resulted in a significant change and a different label: [1.5631607, -1.6246212].
Adding a non-grammatical comma (for example, after let out) didn’t have a similarly strong

influence: [-2.0973256, 1.0720851].

We can conclude that it is possible to control the similarity by making changes to punctuation
marks in certain locations, particularly where they are optional or believed to be so or can be

replaced by alternatives. Although the quantity of changed symbols does influence the intensity of
changes, sometimes just one symbol is crucial for making the correct prediction, contributing

almost 70% of the total weight of all such symbols. However, these relations are complex and non-
linear: adding more commas to random places of one text does not necessarily make it significantly

less similar to another one and combining two features with positive influence may result in a

negative influence.

The non-linearity can be explained by the fact that BERT can encode contextual and syntactic
information, and therefore commas between the components of a complex sentence or after a

parenthetical clause are treated differently. Besides, commas can be strictly grammatical, or

subject to stylistic variation, or explicitly non-grammatical.

Controlling capitalization

Figure 7.6: Segment-level LIME features, true class “0”, bag-of-word setting, for LIME-base.

For another text segment, shown in Figure 7.6, the top 6 most important features were: She, MARY,
and, proceeded, ran, bush. Of these, MARY is of significant interest. We considered removing that

word completely, which slightly increased the probability of class 0. After that, we replaced that
name with another capitalized name of the same length (JOHN), and the probability increased

even further. Interestingly, replacing capitalized MARY with not capitalized Mary resulted in an
even higher increase. Thus, the presence of capitalization turns out to be even more important than

a particular name. This suggests that casing is indeed a meaningful feature for this model.

The difference between uppercased and lowercased instances of the same word can be more salient
than that between different words written using the same case. This goes in line with the

stylometric theory: typographic differences that are controlled by the author are often optional and
can therefore indicate individual stylistic preferences. Those not fully controlled by the author,

such as fonts and margins, need to be used with caution since they may have been changed by the
published or during the preprocessing. In fact, words can be lowercased at the preprocessing stage

as well, but we preserve the original casing as it was in the dataset.

Such importance is also explainable from the BERT perspective: in the regular casing, most

conventional names (Mary, Joshua, Alexander) and some unconventional (Laguna) are processed
into a single token. Others are treated by subword units (R + ##ino + ##a). When the name (or any

other word) is unexpectedly capitalized, it is segmented into a list of subword tokens with one or
more capital letters. Thus, identical words with and without uppercasing are represented as

different sets of tokens, so assigning different weights to them is justifiable.

7.4.5 Feature importance discussion

The nature of internal connections between the features observed and analyzed above is diverse.

For example, an opening quote before OH! is clearly only important when OH! itself is present,
but the exact rule behind that observation can have various explanations: for example, that it is

typical for this author to start a direct speech with capitalized exclamations, or that the author
generally uses quotation marks to convey direct speech, and closing and opening quotes often

follow one another, so if one of them is missing in the middle of the direct speech narrative, it is

an argument against that author’s authorship.

It is also important to re-iterate that these features show up when the most salient and constant
features, which are predominantly names in the examined texts, are removed. Otherwise, changes

in other features only show a moderate influence on the final prediction, normally without changes

in the label.

Combining observations from multiple texts, we can conclude that segments seem to have different

degrees of robustness, and this robustness does not necessarily correspond with confidence. This

consideration makes sense given the non-linear nature of many features: in some positions or in

certain combinations, the features can have an extremely strong influence on the output logits.

Besides, even with confidence being 1, the actual logits may differ substantially across segments:
a prediction with logits around [-7, 7] is expected to be more robust than that with [-4, 4], even

though the probabilities will be identical after the Softmax activation.

Such differences can be expected from the model with such architecture as ours since the logits

are averaged across all 30 segments of a given text. Therefore, if the model is particularly certain
about a segment, it can surely assign more extreme values to the logits to move the averaged

prediction further towards the correct prediction. The segment about which the model is not that
certain can just barely pass the threshold or even remain incorrect, which is not critical if their

logits for both classes are close to 0.

In general, we can conclude that the features extracted by LIME can in principle be interpreted as
stylometric and mostly belong to the category of word-level features related to function word

counts. The joint usage of the two versions (standard LIME and LIME-pair) enables generally
reliable estimation of weights at least for the most salient features, thus proving that the problem

of original LIME was likely in the inability of usual perturbation to control similarity. Beyond the
most salient features, however, feature importance can still be estimated qualitatively in terms of

relative contribution and importance for a particular class.

8. Attention analysis
This chapter covers the analysis of the attention in the fine-tuned BERT model that can be relevant
for classifying texts in authorship verification. We then proceed with suggesting an algorithm that

takes into account the weights of attention emitted from CLS tokens and selects the tokens to
which CLS attends most commonly or with the highest intensity. This algorithm is used for feature

extraction. The extracted features are then analyzed and compared to the features highlighted by
the LIME explainer, the features suggested as important by recent works in the field of authorship

attribution, and the features traditionally used in authorship attribution.

8.1 CLS attention overview

We started with analyzing and counting the weights in attention matrices in all layers and heads in

each example from the sample of 100 text pairs. For each layer separately, we considered attention
from CLS tokens. For each head, we took 10 tokens with the highest attention outcoming from the

CLS token. Then, we combined the lists of these tokens from all heads and counted their

occurrences. The result can be seen in the Appendix A.

The resulting data provided information about the rank and frequency of CLS attention to each

token for a given text pair at each layer, thus showing whether it was the one universally attended
by CLS in all heads or selected only by some heads. Using both rank and counts enabled us to

track the involvement of the SEP token throughout the layers and discover the layers at which the
largest part of attention from CLS is poured into that token. Besides, we could see specific tokens

that are frequently attended in particular texts but are not overall common due to their uniqueness,

such as particular names or their parts.

Additionally, we counted how many times these tokens were selected in all examples from our

sample in each layer. In this setup, we counted the occurrence of a token in a particular instance’s
list of frequently attended tokens only once to mitigate the difference in frequencies within one

text and avoid assigning high frequencies to tokens that are attended often yet only in one particular

instance.

This observation provided more general information about the distribution of frequently attended

tokens over all instances. Given that the instances and the number of heads remain unchanged
throughout the layers, changes in that distribution enabled us to observe which tokens are more

commonly attended by CLS at some particular layers and whether some general trends can be

retrieved.

8.1.1 Preliminary per-layer analysis of CLS attention

A certain pattern could be noticed for the behavior of the SEP token. SEP token is claimed to be a

“dustbin” for attention (Clark et al., 2019) in case nothing meaningful for that combination of
layer, head, and token was found in the sentence. It was consistently among the most popular ones.

However, its rank and overall counts (limited to 24 per layer: 2 in the text, to be attended by each

of 12 heads) differ substantially across levels.

At the first layer, frequencies are inconsistent, but SEP typically appears 7–11 times, ranking

between 1 and 7. In general, the scope of attention of CLS at this layer seems diverse (2119
different tokens), but the most common are: “the”, “a”, “and”, “to”, “of”, punctuation (full stops,

commas, question and exclamation marks, quotes, hyphens, semicolons), some subword tokens:
frequent affixes (“##es”, “##ed”, “##ly”, “##ing”) and frequent name constituents (mostly one- or

two-character tokens) — tokens that are generally common in texts, but also meaningful for style
classification. They are followed by a large number of tokens attended by CLS frequently only in

a fraction of segments, mostly segments from one text. These involve more specific name
constituents (“##us” for Rome-themed texts, “##mir” for the Lord of the Rings-themed texts),

some single-token names, pronouns, and frequent verbs.

The second layer is less diverse (1526 distinct tokens) and is concentrated around a small number

of frequently attended tokens: SEP, CLS, and “.” appear in all examples, but apart from them only
a few hyper-frequent words appear in multiple examples (“the”, “The”, “a”, “was”, “I”). Since the

texts in the sample are literary works, it is no surprise that the reporting verb in the past tense (such
as “asked” and “said”) are also among such frequent words. Importantly, the rank of tokens is very

consistent: “.” is the most frequent in almost all examples, almost universally followed by SEP
and CLS. The number of SEP tokens being attended is also much higher, varying around 19–24

per instance.

This pattern repeats in Layer 3, with the difference being in much higher attention for quotes (94%)
and the presence of other punctuation. Layer 4 adds commas to most common tokens (also 94%

compared to 69% at layer 3) and pays more attention to frequent verbs and pronouns (”said” in

39% vs 10% at layer 2).

At layers 7–8 question mark finally appears among the most frequent tokens (41% at layer 8, 24%
at layer 7 vs 9% at layer 6) and shows even more attention to narrational verbs “said”, “asked”,

and “replied” (43%, 32%, and 14% respectively). Pronouns, most notably “I”, gradually become

more important (for “I”: 38% at layer 7, compared with 9% at layer 2).

At layer 9, the rank of SEP drops. It was most universally ranked #1 at layer 7 and was declining

since then. At the final layer, SEP if almost never the most frequent token. The most frequently

attended ones are full stops, commas, and quotes, followed by all forms of personal pronouns,

narrational verbs and adverbs, relative pronouns, conjunctions, and subword tokens.

8.1.2 Discussion of the general CLS behavior

Combining the observations above, we can conclude that CLS attends more, and also more
diversely, at the first three layers, and after that the continuously growing share of its attention is

given to the SEP tokens, maximizing at layer 7. Then the importance of SEP starts declining but
drops most substantially at the very last layer. This can be explained by the fact that the

intermediate layers are often concerned with syntactic analysis of various kind, and fewer

processes in these layers are related to shaping the CLS representation.

The intermediate layers show different preferences for some specific tokens: some favor a

particular punctuation mark or a particular part of speech. The features that are overwhelmingly
frequently attended as important are three basic punctuation marks (full stops, quotes, and

commas). They are followed at some distance and with layer-wise variation by pronouns,
conjunctions, prepositions, and some reporting verbs that are frequently used in storytelling (aside

from those mentioned above, these are also “thought”, “answered”, and “stated”).

For the names and name constituents, it is harder to track the exact rank and frequency changes
due to their uniqueness. It can be nonetheless observed that they repeatedly arise among the most

frequent in higher layers but only truly shine at the final layer, where they often turn out to be the

most important ones.

8.2 Attention visualization overview

Although the general analysis of CLS attention in all layers provided high-level statistics of the
importance of different types of tokens and the amount of potentially irrelevant attention (the one

directed to SEP), it did not allow for proper exploration of the attention directed at particular words
and punctuation. Besides, the analysis of raw matrices did not provide information about the scope

of attention in each head and its specificity.

Moreover, such approach only enabled us to consider attention outcoming from CLS, whereas the
types of attention that can be relevant for shaping the CLS representation may also include

attention directed at CLS from tokens frequently attended by CLS and attention between tokens
that have already been marked as relevant to CLS or between such relevant tokens and some other

categories. Such variety is motivated by the fact that when CLS attends to a particular token, it
gets access not only to the token itself but to its embedding which includes a representation of

different information about the token and its context.

For this reason, we proceeded with using a visualization tool, namely BertViz (Vig, 2019), which

is an interactive tool that enables visualization of Transformer attention. It can be run in interactive
Python notebooks and has native support of the HuggingFace Transformers framework, including

both the model and the tokenizer.

The attention maps used for the analysis of BERT syntactic capabilities in (Jawahar et al., 2019)
was limited to the maximal length of 128 tokens. Thus, the segments examined by them are twice

as short as the ones in our base model. The computational cost of processing the maps is
considerably higher in our case, and the maps for different layers can only be visualized separately,

without the option of choosing the layer on a single visualization, which is usually possible with

BertViz (Vig, 2019).

This tool is theoretically able to create a general visualization for a given input, allowing the user
to choose the layer, the head, and the scope of attention. However, in our case, BertViz was unable

to process all layers for the text pair, likely given the large size of the input. To overcome this
limitation, we started with averaging the attention in each head over all layers and proceeded with

the analysis of all heads in all layers separately. We analyzed the resulting attention maps and
compared them with similar maps produced by an untuned BERT model for text classification to

see whether the observed relations are general properties of BERT embeddings construction or

they are specific to the task of authorship verification.

8.2.1 Averaged attention visualization

Averaging attention of one head across layers provided general insights into the difference between

the fine-tuned and the untuned models. We observed that the basic patterns, such as attention to
next token, previous token, and same token, are typically preserved in both models. Semantic

relations, such as links between words from the same semantic group related to the same topic, is
also typically retrievable from both models, though they can be stronger in the fine-tuned one.

Other relations are typically dissimilar. In the untuned model, a lot more attention is given to full
stops, and such attention is a lot less selective: it may be coming from all words in the input pair

uniformly. A lot more common are also various types of attention that select syntactic
constructions. There are also significantly fewer long-distance relations: most types of attention in

the untuned model either have a fixed local window (for example, 5–10 tokens or the scope of one
sentence) or are spread uniformly. All these relations, in principle, go in line with the observations

of Clark et al. (2019). The fine-tuned model selects fewer types of constructions but with higher
emphasis on them and often attends to similar constructions on different layers. It also utilizes a

large number of long-distance relationships, usually to link the tokens from a certain category

(such as reporting verbs or special characters) regardless of their location.

The specific patterns observable in averaged attention maps include diverse attention involving

subword tokens: some link all tokens from one word between each other; in others, all subword

tokens attend to one, typically the initial token.

We also observed repeating attention that involves quotes. The most common one is the attention
to the quotation mark from the segment preceding the next citation. Interestingly, closing quotes

are consistently more important than opening ones (both examples are for closing). Opening quotes
are of least importance when they directly follow a full stop. Despite the identical symbols being

used for quotes and apostrophes in the preprocessed data, their ambiguity seems to be resolved:
apostrophes that can be mistaken for a closing quote do not receive much attention. In Figure 8.1,

the apostrophe only gets attention from “ve”, although it stands in the position making it a potential
closing quote and should attend the upcoming words. Besides, some quotation marks are attended

from other quotation marks, even distant ones from another text, which suggests that counting

might be going on in some levels.

Figure 8.1: Attention received by a quote and an apostrophe (Head 3, averaged across layers)

Another specific attention involves reporting verbs (that is, verbs used for retelling, quoting,
describing and paraphrasing a discourse). Noticeable are long-distance relations between identical

verbs (“replied” attending to all its instances) in both texts, as well as attention to other
synonymous reporting verbs in another text (“stated” and “said” attending to “replied” in the other

text, but not in the same one). Such pattern is absent in corresponding heads of the untuned model.

8.2.2 Per-layer attention visualization

These general considerations with averaging the values across layers do not allow for tracking
relations for a particular layer. Given that the role of attention on different levels may vary

significantly even for the same head, many types of attention may be concealed because of that

averaging. Therefore, we proceeded with per-layer analysis of attention maps for each head.

We provide the table that summarizes the most relevant types of attention in Appendix A. This

table includes the direction of the link, types and categories of tokens involved, strength, scope,
and coverage of the relation. A more detailed description of these types, supplemented with

illustrations and a brief discussion of the exceptions and specificities, is available online1.

Here, we outline some of the most notable relations.

Head 5 in layer 3 features diverse relations for punctuation, shown in Figure 8.2. Full stops mostly

receive attention from words within one sentence, including all direct speech inserted in it.
Sometimes the scope is limited to the nearest preceding punctuation, which can be a comma or a

quote. Commas may attend to the context from both sides but typically only get attention from
preceding words. For the quotes, the closing one is consistently more popular: it is attended by

tokens from within the direct speech utterances. Specific behavior is displayed by more rare
punctuation symbols: question marks are strongly attended by the subject, the predicate, the object,

1 https://elite-shame-5a4.notion.site/Per-layer-BertViz-Analysis-for-AA-5689fa1720bf4cdf9f63827faf7ed235

and, if present, the question word of the interrogative sentence, though such selectivity is not

typical for other sentence separators.

Figure 8.2: Attention to punctuation, specific to its type (Layer 3, Head 5)

Head 6 in layer 3 (Figure 8.3) shows more remote identity relations between words and symbols.

Such attention is either concentrated on one identical token, not necessarily the nearest one, be it
ahead or behind, or distributed among identical tokens. Interestingly, different forms of pronouns,

such as “I” and “me” and “she” and “her”, are also linked. Strongest attention is between identical
subword tokens, prepositions, functional verbs, wh-words, pronouns, and wrongly spelled words.

Such a type of attention is not present in the untuned model.

Figure 8.3: Attention between identical important tokens, but not to itself. In this case, between two mistakes (words
with redundant characters) (Layer 3, Head 6)

Head 1 in Layer 4 (Figure 8.4) seems to be linking reporting verbs with quotations, as well as

different names within a long distance from both texts (not with the same name).

Figure 8.4: Attention between reporting verbs and quotes (Layer 4, Head 1)

In Head 2 of Layer 4, as well as in multiple other heads (see Appendix), we observe that CLS

token attends a wide yet formalizable range of words, to which we will be referring as “important”

words.

They include:

- dialect variations

- names
- reporting verbs

- some content words with stylistic variation, which can be replaced with a well-known
synonym without substantial change in meaning (“fellows”, “kids”, “kind” as noun,

“manner” meaning “way”, “acknowledge”, “becoming”), including many adjectives and
adverbs (“entire”, “cute”, “slightly”, “kindly”, “sole”, “lately”, “presumably”, “just”

meaning “only”, “although”)
- various function words with stylistic variation (“towards”, “as”, “once” as conjunction)

- optional full or short forms of function words, mostly auxiliary verbs (“will” and “ll”, “are”
and “re”, “have” and “ve”), as well as variable verb forms, such as “gotten”

- specific vocabulary not related to the theme (“feminine”), infrequent words not related
directly to the theme, including those processed into subword tokens (“furrow”, “trundle”,

"mischievous”)
- mistakes (“too” instead of “to”, missing determiners (“take nap”)

- some epithets (“beet red”)
- rude and obscene words

- numbers (“15” instead of verbalization)

Note that this list only incorporates important words, excluding the punctuation and subword

tokens.

Figure 8.5: Attention to punctuation, specific to its type (Layer 4, Head 2)

Attention to dialect variations can be found in Head 2 of Layer 4 (Figure 8.5). Head 5 of Layer 5,
shown in figure 8.6, demonstrates an interesting type of attention between full and short forms,

but not from one full form to another. There also is attention between different forms of pronouns

(“he” → “his”), from pronouns to neighboring names, and between names.

Figure 8.6: Attention between full and short forms (Layer 5, Head 5)

Head 6 in layer 6 displays attention between function words and punctuation. Attention is
selective: it includes identity relation with variable weights, attention to different forms of a

pronoun, or to other words of the same part of speech (such as auxiliary verbs). Outcoming

attention is mostly headed forwards. This type of attention is also absent in the untuned model.

Figure 8.7: Attention between pronouns (Layer 6, Head 6)

Head 7 in layer 7 (Figure 8.8) has very selective attention to functional words and quotes to select

subordinate clauses and appositive phrases. Conjunctions “if”, “although”, “as” are attended by
the comma that isolates the conditional clause, and by the verb “would”, wh-words, or plainly the

token following that comma. Importantly, “as” as a preposition is not confused with a conjunction,
therefore part-of-speech ambiguity seems to be resolved for such relations. There also is a link

between punctuation used to introduce direct speech and the verbs that describe that speech.
Besides, in explanatory phrases isolated with commas, there is a backward attention from the

closing to the opening comma. All these relations are absent in the untuned model.

Figure 8.8: Attention selecting subordinate clauses and appositive phrases (Layer 7, Head 7)

Head 11 in Layer 7, exemplified in Figure 8.9, marks such relations as that of determiner and noun,

pronoun and adjective in such constructions as “my own”, and specific constructions, such as
words joined with hyphens (”Boy-Who-Lived”). These types are in general the only ones in this

head

Figure 8.9: Attention selects compound words with hyphens (Layer 7, Head 11)

Head 3 of Layer 8 (Figure 8.10) provides a link from the reporting verb to the closing quote of the

direct speech or to the relative pronoun used to describe indirect speech.

 stated

Figure 8.10: Attention maps reporting verbs to the closing quote or relative pronoun

In the later layers, CLS begins to show a lot more attention to punctuation, which did not happen
widely on the previous ones. Along with attending to all types of punctuation, multiple heads in

layers 10–12 feature attention from CLS solely to all full stops or quotes. In the meantime,
attention to words becomes more selective: for example, in Head 8 of Layer 10 CLS attends wither

to some adverbs (”perhaps”, “maybe”), or pronouns, or verbs, but the exact focus depends on the
particular text. When attending to names in higher layers, CLS more often focuses on a particular

name instead of attending to all names in the pair equally.

Such selectivity may indicate that a certain type of feature selection is happening in the later layers.

Features on different levels, including subword, word, and syntactic ones, could be extracted and

represented in the embeddings throughout the lower labels, while in the higher ones CLS attends

more to specific features that are most relevant in this segment. Such variability is explainable
given that different segments display very dissimilar components of storytelling: features that are

most useful for dialogues may not be as relevant for expository or depictive narratives.

Interestingly, this type of behavior resembles the traditional authorship attribution pipeline
(Marusenko, 1990), in which feature extraction is followed by the selection of the most distinctive

features for a particular set of investigated texts.

8.3 CLS attention as means of retrieving tokens relevant for
classification

After exploring all attention matrices, we selected the combinations of layers and heads in which

relations seemed to be the most relevant and analyzed their distribution and key properties.

8.3.1 Distribution of relevant attention with respect to CLS

We observed that the attention to CLS from other tokens and the attention from CLS are unevenly
distributed across layers, as shown in Figure 8.11. More specifically, tokens strongly attend to

CLS in the lower layers 1–3, with this attention being variable, selective, token-specific, and
meaningful in that it creates stronger links to CLS for tokens that were shown to be important for

the prediction.

After layer 3, attention to CLS substantially decreases and becomes weak and mostly uniform for

different tokens. In the meantime, CLS starts attending tokens other than itself and SEP, and
towards the middle layers, this attention grows stronger, denser, and wider in terms of the scope

and the diversity of attended tokens.

Figure 8.11: Number of times a particular category of attention is observed at each level

In the higher layers, another tendency for the attention outcoming from CLS arises: while getting
more sparse, it begins to show text-specific character: in the same head, CLS may attend to

different types of tokens in different texts.

We also observed some general trends reported by (Jawahar et al., 2019) re-emerging in the fine-

tuned BERT. In early layers, many tokens indeed attend to CLS; in middle layers, the attention
directed at SEP grows, and in the higher layers a lot of attention is directed in punctuation. This

may indicate that, in general, fine-tuned BERT follows a similar procedure for encoding different

aspects of the text.

8.3.2 Selective coverage in CLS

Another important property of attention from CLS is its selectivity in terms of the region of the

text, shown in Figure 8.12. Attention from CLS is typically not limited to a particular context
window: it can reach the tokens that are selected at a particular layer and head within a global

range, regardless of their distance from the CLS token, which always comes at number 0. However,
the analysis of attention maps showed that in many heads attention from CLS is actually directed

at tokens from a particular text from the pair. This limitation can be strict (when no attention is
directed to the tokens beyond the separator) or loose (when certain attention gets outside a single

text, but it is weaker or more sparse).

Such behavior is understandable, given that the goal of the CLS token is to accumulate information
relevant to the classification task for which the model is fine-tuned. For authorship verification,

the ultimate goal is to represent stylistic differences between the texts to be able to conclude
whether they are written by different authors. Therefore, at certain stages, CLS may be aggregating

various information about each text separately in order to be able to compare them in the later
layers, which are claimed to be the most task-specific (Rogers et al., 2020) and build the final

representation.

Indeed, that proportion of equal and one-text attention is observed throughout the layers. The
attention that is specific to a particular region starts at layer 4 (earlier CLS attention treats both

texts equally) and peaks at layer 5, coinciding with a decline in the number of attention types that
consider both texts. This drop of equal attention types happens in the middle layers, which are

considered responsible for short-distance syntactic relations. Towards the higher layers, equal
types of attention become dominant again. Interestingly, attention directed at the second sequence

is typically more popular than that directed at the first one.

Figure 8.12: Number of times CLS attends to tokens in first, second, or both sequences at each layer

8.3.3 Types of tokens attended by CLS

For each layer and head, we generalized the current type of attention relevant to CLS and described

it in terms of the types and categories of tokens being involved.

For the categories, we used the most general description that indicated whether the attended token
is a content word, a function word, a punctuation mark, or a subword token. Importantly, we

differentiated subword tokens as a separate category only in cases when they represented a
subword-level feature, such as a grammatical affix. When attention was directed at all names,

including those segmented into subword tokens, we considered it a single type of attention that is

directed at names, that is, at content words.

Figure 8.13 displays the proportion of main types of tokens involved in CLS attention (not only

attention from CLS, but also to CLS, and that between tokens relevant to CLS) in each layer. To
visualize that proportion, we counted how many times a relation involving that type of token was

observed in all heads of a given layer. For example, in layer 1, which had 6 CLS-related types of
attention in total (see Figure 8.12), content words are involved in 6, function words – in 1, and

subword tokens – in 4 relations.

Note that the total counts of categories do not have to add up to the total number of relations, as

one relation may involve multiple categories. This is particularly common for attention from CLS,

which may be directed at a large variety of tokens, while still being highly selective.

It can be seen that subword tokens are predominantly involved in relations in the earlier layers.

Content words remain relevant throughout the whole model, usually appearing in more than half
of the relations. Their share slightly declines in layers 3–5, when punctuation and function words

arise.

Punctuation is not involved in CLS-related attention until layer 3, which goes in line with
observations of Lin et al., 2019 indicating that the lower layers mainly collect information about

the linear word order and typically do not involve syntactic relations, for which attention to
punctuation may be required. Involvement of punctuation in CLS-related attention grows at layer

4 and further increases in the later layers, in which CLS continuously attends to full stops. The
drop in attention of CLS to punctuation in the middle layers, which are considered responsible for

most syntactic relations, can be explained by the fact that these relations first need to be extracted
from the text and accumulated. This is presumably happening in layers 6–8, in which we

discovered multiple types of attention between punctuation, or between function words to

punctuation, or with punctuation being attended by words within one sentence.

Figure 8.13: Number of times each of the main categories of tokens is involved in CLS attention at each layer

8.4 Highly attended tokens as linguistic features

We proceeded with analyzing the general statistics of the retrieved highly attended tokens. For
each pair of texts out of 100 samples, we analyzed 64 selected attention maps that were shown to

link CLS with tokens relevant for style formalization. We then extracted from these attention
matrices the tokens with attention exceeding the threshold (0.01), sorted them by attention

strength, and selected the 40 most highly attended tokens for each text pair from our sample. Such
filtering of only the most highly attended goes in line with the suggestions of Jain and Wallace

(2019) that only top-k attention weights are important and enables us to filter out the manifold
tokens that are attended by CLS with only a residual weight, yet can end up counted as frequently

attended due to their overall frequency in language.

The threshold value was chosen as a trade-off between the manifoldness and representability of
the resulting features set. We observed that with values over 0.02 only a few most common tokens,

similar in most texts, were selected (mostly commas and full stops), while with values smaller than
0.005 the filtering barely reduced the number of features. Thus, we have chosen the value within

this stretch as a starting point for important features extraction.

As a result, we obtained 818 different tokens out of 4000 total counts.

Punctuation

1. Overwhelmingly most frequent ones are full stops, which take almost 40% (1666

occurrences).
2. Other types of punctuation also appear among the most frequently attended tokens. These

are, most notably, quotes and commas with 360 and 66 occurrences respectively.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12
Layer

Main categories of tokens involved in CLS attention
per layer

Total relations Content words

Function words Punctuation

Subword tokens (not in names)

3. Other commonly attended punctuation includes question and exclamation marks (32),

semicolons and colons (18 and 15), closing parentheses (13), underscores (8), and hyphens
(6).

4. Special characters, such as asterisks (“*”), tildes (“~”), and dollar signs (“$”) are also

highly attended, though their overall low frequency does not let them high on the list.

Verbs for reporting discourse

1. A highly notable group of attended words is that of reporting verbs (Carter, 2016) Among
the conventional ones, the most frequent are: “said” (131 occurrences), “asked” (38), and

“replied” (32). Less widely used but still frequently attended are “stated” (12), “yelled”
(10), “countered” (9), “responded” (9), “explained”, “commented”, “questioned”,

“smirked”, “answered”, “agreed”, “exclaimed”, “whispered”, “ordered”, and more.
2. Some other frequent verbs, mostly mental-state verbs or verbs of motion related to

speaking and communication, are not directly linked to reporting a discourse but are often
used to describe the act of speaking and refer to an utterance or an act of inner dialogue

conveyed using direct speech: “realized”, “recalled”, “thought”, “nodded”, “sighed”,
“lowered” (as in “lowered her voice”), “began”, “continued”, and more. These verbs

constitute the majority of those highly attended.

Other verbs

Other influential verbs include those of motion (“moved” (11), “walked” (10), “sat” (9)), of

sensory perception (“felt” (9)). In general, verbs that are not involved in describing a discourse are

less frequently attended.

Function words

Another large group of tokens includes function words, namely:

1. Conjunctions (“and”, “as”, “that”), adverbs (“also”, “then”, “already”, “immediately”),
2. Prepositions (“towards”, “with”, “by”, “like”, “to”)

3. Modal verbs in full and short, negative and neutral forms (“could”, “couldn”)
4. Auxiliary verbs in various full and short forms (“was”, “had”, “d”, “wasn”, “didn”, “m”)

5. Pronouns are comparatively infrequent in this list. Personal first- and third-person singular
pronouns in different forms are the ones that most commonly occur among highly attended.

It can be explained by the fact that they are used to discriminate between first-person and
third-person narratives and thus represent the stylistic preferences of an author regarding

the perspective of storytelling.

Proper names and co-referring words

1. As was already observed, most names and proper nouns are also continuously attended,
including both conventional single-token ones and those processed into multiple subword

tokens.
2. Besides, we also observed a large variety of words used to refer to an individual or a group

of people. They include
a. words denoting people (“man”, “person”, “male”, “female”, “boy”)

b. means of addressing people (“gentlemen”, “miss”, “honey”, “master”)
c. words denoting different relations (“friends”, “siblings”, “father”, “partner”)

d. military ranks and titles (“admiral”, “officer”)
e. ethnicity (“Jamaican”, “Latino”, “Jew”, “Roman”)

3. Various proper nouns that are not names of people are also attended. These are mostly real

or fictional toponyms, and sometimes also names of organizations or institutions and works

of art.

Abbreviations

Another group of highly attended tokens includes abbreviations (“HP”, “TV”, “CPUs”). Their
inclusion by the model seems reasonable given that they might be indicative of the author’s

background (authors more deeply familiar with a particular fandom, especially in those related to
science fiction, may rely more heavily on technical abbreviations). Many commonly used

abbreviations and acronyms also display substantial stylistic variation, and trends may change over
time or in different dialects and sociolects. Besides, some abbreviations are specific to a particular

fandom and are therefore more closely related to the category that includes names and topical

nouns.

Numbers

Different types of numbers also commonly arise as highly attended. This includes both spelled

numbers and digits, Arabic and Roman. Typical examples of influential numbers are years
(“1990”), centuries (“XVII”), ordinal numerals used in names (“VI”), and some plain numbers as

digits or words (“ten”).

Foreign words and dialect variations

Another interesting group includes:

1. Words in foreign languages (“Sie”, “Mädchen”, “adios”)
2. Loanwords with original spelling (“touché”, “naïve”).

3. A related group is the one that includes dialectal variations (“colour”, “favourite”,

“limousine”, “endeavour”, “neighbourhood”, verbs ending with “-se” or “-ze”).

Infrequent words

Many infrequent words not involved in modeling the topic of the fandom are also attended. These

are such words as “mystique”, “furrow”, “trundle”, and "mischievous”. Such words correspond to
the category of vocabulary richness, which was often represented by measuring the number of

hapax legomena (that is, words that only occur once) in the text. Given the limited size of each
pair of segments, quantifying the number of rare words by means of hapax legomena is

problematic. However, it can clearly be observed that in the model CLS often attends to words
that are not part of a basic vocabulary and are therefore often segmented into subword tokens.

Such subword tokens, even though they are not parts of names, still receive CLS attention, which

is not the case for many subword tokens used for grammatical affixes.

Errors

Several types of errors were found to be highly attended by CLS during the analysis of attention

maps. Such mistakes include:

1. In-word errors (missing or redundant characters or inversion of characters)

2. Between-word (missing whitespaces or hyphens, missing function words, such as a
determiner, or missing word from a set expression)

3. Casing mistakes (accidental irregularly uppercased characters).

Errors of certain kinds are not easy to spot among the highly attended tokens list since erroneously

written words are segmented into subword-level tokens, and high attention of CLS may be directed
at any of them. Missing words in a set phrase also cannot be represented in terms of important

tokens: it cannot be reconstructed that the importance of a neighboring token is caused not by its
own properties but by the absence of the one that commonly follows it. Therefore, for many

typographic errors or missing words we can only rely on the observations drawn from the attention
maps analysis. However, compound spelling (missing whitespace or hyphen between separate

words) is easily retrievable, and we observe high attention frequently directed at such constructions

(“nondiscrimination”, “Thankyou”, “getability”).

Capitalized words

Finally, CLS often attends to capitalized words (“SERIOUSLY”, “HECK”) regardless of the part
of speech. Partial capitalization, most frequently caused by a typing mistake (“CAme”) is also

attended.

8.4.1 Selectivity and causal interpretation

Causal interpretation on the level of particular attention layers and heads is hindered by the number

of attention maps relevant to CLS. From 144 possible attention maps, we extracted 64 relations
showing attention emitted from CLS, and that attention was selective in all cases except one, in

which an earlier layer (layer 3, head 5) showed relatively uniform attention from CLS. The scope
of this selectivity is rather complex: CLS in different heads may attend to various combinations of

features, with different emphasis on each component of such combination. For example, attention
to content words, such as names, cannot be distinctly separated from attention to punctuation

because in multiple heads CLS attends to both. Moreover, selectivity in names can also be
different: some heads direct CLS attention at a particular text-specific name, while in others

attention involves names, pronouns, and co-referring nouns or noun phrases. Finally, similar
attention in different heads may be directed at different sites of the text pair: there are those that

strictly limit the range of attention to one text and those that attend tokens in a particular text from

the pair with higher intensity.

In all these relations, CLS typically attends to other tokens with fairly moderate strength, especially
compared to the intensity of outcoming attention in other tokens. Therefore, each attention link

from CLS to a certain token does not change its embedding substantially, given that limited weight.

Thus, separating a particular layer-head combination that enables the model to arrive at a particular
is complicated. The process can rather be described as a gradual construction of the CLS

embedding, which is relatively equally distributed between heads, with a slightly bigger
contribution of heads 4 and 12. It starts in layer 3 and grows until layer 5. In these early layers,

there are also numerous relations that involve tokens that are attended by CLS in current or
subsequent layers. Seeing a small decline afterward in the middle layers, it then regains its

importance closer to the final layers, in which CLS attention becomes more focused on full stops
and also more selective in terms of the types of tokens it attends in different texts and the range of

attention.

8.5 Comparison with other known features

8.5.1 Overlap with features extracted by Boenninghoff et al.

Boenninghoff et al. (2019) proposed an explainable model for attribution that used attention

modules to link different layers of bidirectional LSTMs. The authors then extracted linguistic
features from 100 samples taking high attention weights into account. This is a different case of

utilizing attention weights as an explanation for predicting authorship. Firstly, this model performs
feature extraction on two texts separately instead of considering the pair jointly. Secondly, the

encoded input does not encode tokens used by BERT – that is, CLS and SEP, and analysis is based
on relations between tokens instead of checking to which tokens a particular classification token

typically attends. Nevertheless, we find the list of features extracted and exemplified in their work
highly important and illustrative and therefore provide a discussion of differences and similarities

between extracted features.

Among the “Punctuation” features, we did not specify “accumulation of punctuation marks”,
which primarily involved ellipsis (three dots). In terms of syntactic properties, our model treats

three dots as a single full stop – that is, words from the sentence, or other punctuation, or other
tokens involved in representations of syntactic relations, attend to one of the dots (typically the

first one). However, we noted the involvement of ellipsis in two between-token types of attention,
observed in layer 8 (head 2) and in layer 9 (head 3), as we discovered specific links that only

occurred in a sequence of dots and not from a separate full stop.

Besides, we highlighted the particular importance of quotes and their frequent connections with

reporting verbs and names or co-referring constructions, while in (Boenninghoff et al., 2019)
quotes are not marked as important punctuation. However, this difference is related with the

different type of texts used for attribution.

In the “characters” features, we did not differentiate between variants of typing errors: all
erroneous are processed into subword tokens, and these subword tokens are typically highly

attended regardless of the particular type (missing, switched, or redundant characters)

We also discovered the strong importance of casing and described fully capitalized words and

erroneous capitalization of particular characters as separate features. However, among the
extracted tokens there were not many examples of using lowercase when uppercase is

conventional, and we did not define lowercase as a discrete category.

Erroneous compound spelling is also described in our work, though as part of a wider group of
between-word mistakes, which also includes missing words in set phrases. Acronyms and

abbreviations are taken into account in our analysis. However, we did not differentiate between
various types since we noted that both commonly used and unconventional or topic-specific

abbreviations attract high attention. Both diatopic variations and foreign words were commonly

listed among the commonly attended tokens.

In terms of stylistic features, in which the authors group a rather diverse set of features, we

observed the importance of colloquial and obscene words. However, we did not note alternative
spelling (when a dialectal alternative existed, we attributed it to diatopic variations, and when the

alternative spelling was unconventional, it was processed as a regular mistake). We also did not
specify neologisms as a distinct category. Many unusual words that are unknown to the tokenizer

were not introduced by that author but are typical for a particular fandom. Differentiating between
such topical words and pure neologisms would be unfeasible without a deep understanding of each

fandom in the sample. Finally, we did not generalize a group of unusual interjections and discourse
particles. Interjections are indeed sometimes attended by CLS together with other function words

or stylistically variable or optional words, such as adverbs or prepositions for which there are
commonly known alternatives. However, we did not find a particular attention map in which

interjections are selected solely or with particular emphasis. Therefore, we ascribed them to a

general category of stylistically variable words.

We did not extract any specifically syntactic features that are noticeably selected by CLS.
However, we noted specific attention maps that selected clauses, explanatory phrases, or other

distinctive syntactic constructions. Besides, we observed intense and variable attention to function
words, with particular intensity of attention to words for which different short and full forms exist

(“did” and “didn”, “have” and “ve”).

The strong attention to proper nouns was widely highlighted in our analysis, with a more detailed

observation of the potential influential properties of names. Besides, we observed the importance
of other words used to refer to people or address them. However, we did not consider mistakes in

the spelling of the names as a separate feature, given that the reconstruction of correct forms is

problematic for unconventional fictional names.

Thus, out of the 29 features outlined by (Boenninghoff et al., 2019), we observed and described

11 due to a more coarse-grained categorization and a different character of analyzed texts.

Besides, we extracted numerous linguistic features not listed by the authors. These are, most
notably, verbs related with narration, quotes, infrequent words, words with stylistic variation, short

and full forms of function words, words used to refer to people and address them, and numbers.
Naturally, many of them are specific to the dataset on which the model was fine-tuned: reporting
verbs, quotes, and words referring to people are most common in fictional literary works with a

certain plot and set of characters, and such features cannot be expected in a corpus of non-fiction

literature or social media microtexts.

8.5.2 Overlap with features commonly used in authorship attribution

Features typically used in machine learning models trained for authorship attribution are typically
derived from the raw input: these can be word embeddings or counts of words and n-grams on

word- or character-level, possibly weighted by TF-IDF. Such features are not directly comparable

to the ones that we extracted from the attention maps since those are represented as separate tokens.

However, several features show a notable resemblance to specific parameters attended by our

model. Among them is, firstly, vocabulary richness, which is often formalized as the number of
hapax legomena (words occurring only once) and dis-legomena (words appearing twice). This

parameter was used as one of the “Style” features by Sari et al. (2018) and as one of the “Lexical”
features in Stamatatos (2009). We suppose that the high level of attention of the model towards

rare words of all parts of speech can be related to this metric, as their rarity implies the range of

vocabulary that an author possesses.

Other “style” features used by Sari et al. that correspond to those in our model may include the
counts of punctuation (since the attention of CLS to all punctuation in the sentence may involve

counting), of function words, and of digits (since we observed that numbers are frequently
attended, though not only in the form of digits, but also as roman numerals or words). They are

shown in table 8.1.

Table 8.1: Types of stylometric features (from Sari et al. (2017))

Among the set features generalized by Stamatatos (2009), shown in Table 8.2, we note errors
(though in that work they are classified on a lexical and syntactic level, while we differentiate three

common types of observable errors, including character-level ones, and mention other types of

errors in ablation experiments with LIME).

Part-of-speech data also seems to be involved, given that the majority of highly attended tokens

fall into a limited number of categories. However, for most parts of speech, the model favors a
certain type of words: verbs describing discourse, nouns referring to people, auxiliary verbs with

variable forms, and adverbs with semantically similar analogs. Therefore, we argue that the model

does not rely solely on part-of-speech counts.

Synonyms, categorized as a semantic-level feature, are also taken into account to a certain extent

by high attention directed at words with substantial stylistic variation, which implies that they can
be replaced by a close synonym without a meaningful change of semantics, and the choice between

such synonyms is therefore subject to individual stylistic preferences.

Table 8.2: Types of stylometric features (from Stamatatos (2009))

8.6 Overlap with LIME

8.6.1 Feature comparison

For each of the 100 samples, we obtained the list of highly attended tokens. These lists contained

multiple repetitions due to the fact that attention is calculated for each of the identical tokens (such
as full stops) separately, and attention in different layer-head combinations may highlight the same

token multiple times. We filtered out SEP and CLS tokens and reconstructed full words from the
subword tokens, so that all subword units receiving attention from CLS could contribute to the

weight of the word to which they belong.

Raw counts of all highly attended tokens, sorted by the attention weight emitted by CLS at an

individual token, did provide meaningful insights into the variety of important features employed
by the model when we considered general statistics for all text pairs. However, they obscured the

importance of each feature for a particular pair: it was not clear whether a large number of
occurrences of a token as highly attended implies its importance for the prediction in question, or

all these occurrences only had a weight slightly above the threshold, and it is the overall frequency

of this token in the dataset that ensured its many counts.

To unveil this difference, we exploited two ways of selecting the most important tokens for each

text: we first considered the 20 tokens that are most frequently attended by CLS (combining the
counts for identical tokens), and then – the 20 tokens that receive the highest attention weight, with

the weight being accumulated for all identical tokens. We intentionally used a larger number of
extracted features for the attention-based explanation compared to LIME (20 and 10 respectively)

to account for punctuation, numbers, and special symbols, which are not contained among the

LIME features and are commonly selected as important by the attention analysis.

Figure 8.14: Counts of 25 most common features selected in all 100 samples by attention-based procedure (top) and
LIME (bottom)

In Figure 8.14, the 25 features most commonly selected by an attention-based algorithm using

counts and by the LIME explainer are visualized. It can be seen that the most salient difference is
the overwhelming importance of punctuation in attention-based features, which is inevitably

absent in LIME. At the same time, various other word-level features in different categories

overlap: in both cases, we observe pronouns, reporting verbs, and conjunctions. To better
understand the difference between the two approaches, deeper analysis of features beyond 25 most

commonly selected was performed

Table 8.3: Overlap between features extracted using attention-based procedure aggregated using counts or sum
and the features extracted by LIME

As shown in Table 8.3, we observed that over 55% of important features that are selected by LIME

are also present in the list generated based on the counts of times CLS attended that type of token.
The number for the list that is based on the total attention emitted at that type of token by CLS is

comparable (54.8%). Moreover, in 20% of instances the overlap reached around 80%, which
means that 8 out of 10 LIME features could also be found among the top-20 most heavily attended

features.

The words that were selected by LIME but did not receive enough attention to be selected by the
attention analysis algorithm vary for different text instances, but noticeable categories include

discourse particles (“Ahhh”, “Ohhhh”, “Oh”, “Yeah”, “Damn”), multiple non-reporting verbs,

pronouns that are not first- or third-person, determiners (typically “the”).

Besides, some words naturally appear on the list due to different tokenization being used: words
that are erroneously written without whitespace, or those preceded or followed by an underscore,

are processed by LIME as a single token, while the BERT tokenizer divides them into several

tokens.

There are also accidental occurrences of words from categories that we selected as important:

dialect variations, numbers, first- and third-person pronouns. This may be explained by the fact
that we had to limit the number of important tokens extracted based on CLS attention by 20, which

resulted in some important tokens being missed. This unveils the explainability trade-off between

the simplicity and completeness of explanations.

8.6.2 Feature importance

To understand whether the model actually treats such infrequent but heavily attended tokens as

important and relevant for the final prediction, we compared the mean importance of selected

tokens for each of the selection techniques. We calculated the importance of each token b4 as the

mean of absolute values of the difference between the original logits c and logits predicted after

removing that word from the text c# for each class d out of 4 — that is, for classes 0 and 1.

b4 =
∑ |c5 −	c5# |6
5&7

4

Revealing how large the importance value is compared to the original logits required calculation
of the average magnitude of the mean of logits for two classes in each instance, which was 4.71.

The results are provided in Table 8.4.

For the counts-based selection, which showed the highest resemblance to LIME feature extraction,
the mean importance of 20 selected tokens was 0.804. Given the mean magnitude of logits, these

 Counts, top 20 Sum, top 20

Overlap 0.554 0.548

features on average account for over 17% of each logit (both positive and negative). Along with

the average importance of top-20 tokens, we also selected one token with the highest influence on
the prediction logits for each instance and found the average weight of the most important token

in each instance. That value was 4.49, constituting over 95% of the mean logits.

In practice, it means that removing that token from the text on average results in total confusion
of the model, as both logits are pushed towards 0. For the values even slightly above average,

removing such a token will lead to the inversion of the prediction, as the logit with the highest

value will change.

These #1 tokens for each text are mostly full stops (19/100), commas (10/100), quotes (8/100),
first- and third-person pronouns (“he”: 3/100 and “I”: 2/100), conjunctions (“and”, “as”: 2/100

each), verb form “said”, various names and co-referring nouns, special characters, and words with
stylistic variants. It appears that more complex names, including foreign and compound ones

(“Sumireko”, “Zexion”), are more often highlighted as the most important tokens in the text.

For comparison, we also calculated feature importance in a similar way for features extracted
LIME. It can be seen that the mean importance of all features selected for each text is higher,

contributing on average 0.982, or 20.85%, to the average value of logits. This can be explained by
the fact that fewer features are selected by LIME (10) compared to attention analysis (20), and

given that LIME arranges features by their estimated importance, such difference can be expected.

Nonetheless, the mean importance of #1 most important token is significantly lower, constituting

3.626, or 77% of an average logit. This means that, when LIME features are used, the most
important token on average does not decrease the model’s certainty to 0, as almost a quarter of an

original logits value for each class is preserved.

These results suggest that, even though LIME extracts fewer features that are slightly more
influential upon averaging, it is less capable of detecting the heaviest instances of the text in terms

of prediction change. This motivates the use of an attention analysis algorithm for probing the
robustness of similar models for authorship attribution. For the list of features, a combination of

LIME and attention-based techniques can be used for wider coverage.

The comparison of two extraction techniques shows that, even though high attention is
accumulated in certain tokens, relying on them instead of more frequent ones does not benefit the

explanation capacity of the algorithm, and the most efficient technique is also the most
straightforward one, in which tokens are selected plainly based on the number of times it was

attended by CLS with intensity above the threshold.

 Mean
value

Mean value as % of mean
logit

Mean importance of top-20 tokens,
Counts

0.804 17.07%

Mean importance of top-20 tokens,
Sum

0.782 16.6%

Mean importance of top-10 LIME
words

0.982 20.85%

Importance of #1 token, Counts 4.490 95.33%
Importance of #1 token, Sum 4.346 92.27%

Importance of #1 token in LIME 3.626 76.99%

Mean logits magnitude 4.710 100%

Table 8.3: Importance of top-20 and top-1 tokens extracted by LIME and attention-based procedure, compared
with average logit magnitude

8.6.3 Label inversion

The high explanation capacity of the features selected based on counts goes in line with the

observations of the number of label switches upon feature ablation. For each important feature, we
considered not only the difference between the original logits and logits predicted after removing

that feature but also the final label and registered the cases when the label was not equal to the

originally predicted.

As shown in Table 8.4, on average, in 6.8% of extracted important features (that is, in 136 features)

removing solely that feature led to an instant label switch. For all text pairs, at least one feature
out of 20 selected could achieve a label switch in 50% of cases, which seems to be reasonable

given that a label switch requires a change of logits greater than their original value and average

logits magnitude is very close to the average weight of the most important feature in the list.

Switches, token-wise 6.8%

Switches, instance-wise 50%

Table 8.4: Percentage of label switches for the attention-based procedure with count aggregation

8.7 Names as features

8.7.1 Overview

Names repeatedly occur both among the most commonly and the most intensively attended tokens.
They are also frequently selected as important features by LIME, and input obfuscation confirms

their importance, as removing or altering names often results in a significant change of logits or

even a switch of the predicted label.

The analysis of attention maps in various layer-head combinations shows that this is not a plain

result of a linear combination of attention directed at subword tokens contained in names. In many
heads, single-token names are attended concurrently with composite ones, and selectivity of the

attention emitted from CLS most commonly leads to only one or two subword tokens from each
word being attended. Besides, single-token names are often shown to cause a significant change

in the prediction upon altering, and no direct correlation between single- or multi-token names and

their importance was observed.

To retrieve a broader view of the influence of names on the prediction, we performed a different

type of obfuscation for those highly attended tokens that were identified as names.

Preliminary experiments showed that their behavior may differ. Some names show the behavior

close to that of linear features: increasing and decreasing the number of their occurrences
correspondingly changes the prediction. Others turn out to be sensitive to the casing to an even

larger extent than to changes in the name itself. In other words, a name can act as a different type
of feature, with different levels of analysis involved. Defining the relevance of potential types

required a separate experiment.

8.7.2 Names ablation and alteration techniques

Based on the previous observations, we outlined a number of possible ways in which names can

be involved in the classification of a pair of texts.

Plain ablation

Firstly, a name in a particular context may plainly serve as a keyword for memorizing a particular
segment. Such shortcuts can be used by the model in particular author classes, which are

significantly biased towards one label, or only incorporate texts from a certain fandom, in which
there is a high probability of that name appearing. In this case, we hypothesize that removing that

word from the surrounding context should result in a significant change of the prediction logits,
likely also causing the inversion of the final prediction. At the same time, adding more identical

names should not influence the prediction substantially, as it does not affect the name-as-keyword
occurrence.

To retrieve such cases, we performed deletion of names from the text, as in the previous

experiment with all types of tokens.

Multiplication

Secondly, a name can act as a linear feature. Should this be the case, doubling the number of
occurrences will create the difference between original logits and logits after multiplication

proportionally to the original importance of that name, which can be established by deletion.

Such behavior would mean that the name is not that important on its own, and it is rather its

frequency in the text that defines the author’s style.

Replacement

However, it is yet unclear in such setting whether it is this particular name that is important for the

model, or any name standing in a certain position and surrounded by a particular context.

Therefore, we perform multiple alterations to address that issue.

We replace each name with a conventional male and female name in conventional spelling (“John”

and “Mary”) to see whether a new name leads to a substantially different behavior of the model

and whether any patterns can be observed separately for a male and a female name.

We also replace the name with an unconventional and fandom-specific name (“Rinoa”) which is

tokenized into a list of subword tokens to see if the impact of such alteration is larger.

Uppercasing

Moreover, aside from the quantitative features, names may also be related to features representing

typographic variation. Therefore, we assess the importance of casing by replacing each name with
its uppercased and lowercased versions. If it is the way each name is spelled that is important for

the prediction, such changes can be expected to result in significant prediction alteration.

Advanced replacement

Finally, the name can be important as long as it fulfills its role as a reference to a named person.

If this is the case, replacing names with pronouns or other co-referring words should not influence

the prediction substantially, as it preserves the reference to that character. To assess whether this

type of behavior takes place, we replaced names with pronouns (“she” and “he”) and a gender-

neutral noun phrase referring to the character (“the person”).

This type of feature stretches beyond a purely linguistic analysis of the text, as it indicates the

structure of the narrative by telling how often a particular character is being involved, regardless

of the particular verbal expression used for such reference.

There are, of course, other features representing the structure of the narrative that are more or less
directly related to names. After all, names are used to refer to the characters involved in the story.

Not only the order and intensity with which they are involved but also the exact set of characters
selected for a particular act of storytelling may well be characteristic of a particular author.

However, such properties lie beyond a purely stylistic analysis of the text and, therefore, beyond
the scope of the current research. Besides, analyzing them requires thorough labeling, which is

further complicated by the rather exotic topic.

Even labeling the character’s gender, when the names used in the text are unconventional and the
pronouns are not always available in the same segment, is non-trivial. Additional insights can be

drawn from a more detailed description of each character in terms of a particular literary work and
fandom. Such description may include an indication of whether that person is conventionally a

protagonist or antagonist, a main or a minor character, whether it is a well-known figure, or one
from the extended universe, unknown by the general audience, or completely made up by a

particular author.

8.7.3 Names ablation and alteration results

After retrieving 513 names from 100 segment pairs, we performed 11 input obfuscations described
above. We then obtained the absolute values of changes in logits after feeding the altered text into

the model and took the mean of these changes for both classes. The resulting value was used as
means of representing the importance of each alteration. For these values, we calculated the mean

and standard deviation, reported in Table 8.5.

Type of change Mean influence on logits Standard deviation

Del 1.012 1.855

Upper 1.133 2.060

Lower 1.038 2.011

Duplicate 0.355 0.711

John 1.059 1.943

Mary 1.072 1.964

Rinoa 1.323 2.157
He 0.909 1.750

She 0.943 1.766

The person 0.968 1.784

The boy 0.976 1.837

Table 8.5: Mean influence of changes in names on logits

In general, all types of changes in names except one show relatively high influence on prediction

logits compared to the average influence of top-20 features selected based on counts. However, it
can be seen that multiplying the number of occurrences of a name in question is the least important

change: on average, it only changes the logits by 0.35.

The boxplot visualization in Figure 8.16 also shows that the median values differ from the mean

by a large margin, which can be explained by a number of outlying features which show very high
importance with respect to the prediction logits. For most types of alterations, some tokens showed

changes in logits by over 9 (which is over 200% of the average logit magnitude). Only for

multiplication, most of the outliers did not diverge from the median value by over 2.

The substantial number of outliers together with the low median value indicates that not all names

are equally important for the model: there are some with extremely high influence and the majority

which does not substantially differ from other features (for which the average influence is 0.8).

Deletion, which had been used for all types of tokens in the previous experiment, shows an average
logit change close to 1.0, and most other features perform comparatively close to that value, though

some differences can be noticed. We pay particular attention to changes that result in a smaller
average change in the prediction logits than a regular deletion of a name, as it indicates that certain

information that used to be encoded in that name can still be encoded after replacing it with an

alternative.

Figure 8.15: Influence of changes in names on logits

Converting the whole name to upper case is consistently more important than converting it to lower

case, with uppercasing being the second most important change overall. This can be explained by
the fact that the upper case can be used as a device for conveying expressivity. For example, it can

be an indication that the name is shouted or otherwise expressively. The lower case, on the
contrary, does not provide such connotation by default. Instead, a name spelled without

capitalization of the first letter is likely perceived as an error. A noticeable difference in their
influence on the final prediction indicates that names are not only important on their own but also

as means of conveying additional information about expressivity and emotionality.

In both conventional names and pronouns, replacing the name with a gender-specific alternative
is consistently slightly more important when we choose a female name or pronoun as a

replacement. Given the exotic character of names in many fandoms and the large number of non-
binary characters involved in narratives, accurate labeling of the gender corresponding to each

name is complicated, and we can only assume that this pattern is caused by the slightly unequal
distribution of gender in characters in the texts, most likely with a higher percentage of male

characters. When gender-specific pronouns and names are used to replace the original names, the
gender of the character in question is inevitably switched for one of the two options, which causes

substantial changes in the semantics of the text and results in a more significant difference in the
final prediction. Therefore, the slightly bigger importance of female names and pronouns as
replacements can be explained by the fact that, given a slightly larger amount of male characters

in the data, such switches happen more often.

The difference after replacing the names with a gender-neutral construction (“the person”) and a
gender-specific construction (“the boy”) turns out to be quite similar to that of the regular deletion,

with a gender-specific noun phrase referring to a male child being slightly less influential, likely

for the same reason as with the pronouns.

The pronouns themselves, when compared with conventional names, are less important by a

comparatively large margin, indicating that names are not involved solely as means of referring to
a person participating in the story, but are also meaningful features on their own. Besides, replacing

names with pronouns undermines their relevance when a name is used by a person to address
someone, to call someone by name (“Mary, look!”) rather than to refer to someone. This suggests

that the type and quantity of such addresses may to a certain extent be involved in formalizing the

style.

Finally, we also replaced each name with an unconventional name, which is typical for a particular
fandom and is not part of the tokenizer’s regular vocabulary. We observed that the intensity of

alterations in prediction was the highest for this type of change. This suggests that the inclusion of
certain names is even more important than the name referring to a person with a particular gender.

Such importance indicates that the coherence of the narrative and its agreement with the
conventional range of characters for a certain fandom is still important and breaking it by adding

an irrelevant character substantially changes the model’s behavior.

Figure 8.16: Percentage of label inversion upon each type of change in names

The mean changes in the prediction correspond quite well with the percentage of cases in which
replacing a name with a certain alternative resulted in an inversion of the predicted label, shown

in Figure 8.16. The number is the highest for an unconventional name (11,1%), closely followed
by uppercasing (10,7%). Other conventional names and “the person” are roughly equally

influential, switching labels in approximately 9.5% of cases, similar to the regular deletion. The
pronouns and lowercasing are less important than deletion, resulting in label inversion in around

8% of cases. Lastly, duplication causes such inversion in a mere 1.75% of cases, which is an even

more significant drop than that in average logits alteration.

9. Conclusion
In this project, our goal was to explore and propose a solution for authorship attribution based on

deep learning architecture, namely a transformer model. That choice was motivated by their state-
of-the-art performance in diverse domains of NLP and the ease of adapting such models to

different datasets by means of fine-tuning without manual or semi-automated feature selection.
The downside of such versatility is the problem of model explainability: the learned features and

their influence on classification decisions are essentially part of a black-box algorithm. Although
such opaqueness can be tolerated in some domains, authorship attribution can be used in forensic

analysis or otherwise be related to reputational and financial risks, to which independent content
creators are particularly sensitive. Therefore, for the current task of verifying the authorship of

fanfiction texts, we considered explainability a desideratum. We focused on interpreting the model
not only with the view to practical applications: understanding how the model functions and, in

particular, on which features it relies, can help us better understand the value of existing
stylometric parameters and the way complex stylistic representations arise in deep learning

models.

Thus, our objective was twofold: it included solving the problem of authorship attribution by

utilizing a pre-trained transformer-based model to verify that such models are able to learn stylistic
differences and applying explanation techniques to uncover the process of making the

classification decision and the features being involved. From that goal two research questions

arise:

Q1 aims at observing whether it is reasonable to utilize pre-trained Transformer models for the task of
authorship attribution or their performance does not surpass that of smaller models
Q1.1 formulates a specific research problem of Transformers for text classification: What does the ability
to process longer sequences contribute to the Transformer performance in context of AA?

Q2 is formulated differently depending on our answer to Q1. If the answer is True (that is, a Transformer
model for this task can be trained with sufficient prediction accuracy), Q2-1 takes place: Which
meaningful parameters, if any, can we extract, and by which means? Additional subquestion Q2-1.1
concerns the nature of such parameters: Do any of these patterns correspond to stylometric

features used in the traditional stylistic analysis for attribution?

This question corresponds with six possible hypotheses:

Hypothesis I implies that explanations related to existing stylometric features may be found by

visualizing the attention weights of different heads at different levels

Hypothesis II aims at finding valuable features by generating explanations on fully connected

layers at different levels

Hypothesis III suggests that the uppermost layer, the classifier itself, can provide sufficient

explanations

Hypothesis IV involves explanations based on complex features (e.g. from combining multiple

attention heads) observed, among other methods, using input permutation

According to Hypothesis V, explanations can be generated by combining information from the

sources mentioned above

Hypothesis VI accounts for the negative answer, according to which no meaningful features that

reveal causal relations between input and output and correspond to any of the existing stylometric

features could be found

If the answer is False (and the Transformer model could be trained in principle but did not

outperform the baselines), Q2-2 is used to determine the possible causes of this issue: Is this

insufficient performance specific to our proposed solution, or related with the known bottlenecks

of current Transformer models, or caused by some fundamental limitations of the Transformer

architecture?

In this case four hypotheses are in place:

Hypothesis I suggests that poor performance is due to limited input length of existing Transformer
models that does not allow them to process the text as a whole and learn long-distance stylistic

patterns, and therefore baseline models with limited input window size would also show a

corresponding decrease in performance

Hypothesis II implies that the size of the pre-trained Transformer language model, i.e. the number

of parameters or hyperparameters, constitutes a limitation, and a larger model could perform better

in this task

Hypothesis III states that the general Transformer architecture is the reason for insufficient

performance as it is incapable of properly learning quantitative features that are important for AA,
and a better performance can be expected from a model that makes use of different architecture

for the language model, such as LSTM-based one

Hypothesis IV covers the negative scenario in which none of these expected justifications can be

proven.

9.1 Discussion of research question Q1

First, we planned to implement a model that can solve the problem of authorship attribution
utilizing a pre-trained transformer-based model. To that end, we adopted the architecture suggested

by Peng et al. (2021) and implemented it using commonly used and widely supported frameworks
and tools. The model was evaluated compared to the common baseline and the existing BERT-

based implementation to justify the use of such architecture. We then scrutinized various
parameters, such as the limits of segmentation and the BERT input size, and trained two models:

a base model with 256-token input and a large one that accepts 512 tokens.

We compared the performance of these models in terms of both predictions for individual
segments and averaged text-level predictions and concluded that, even though the difference for
separate segments is noticeable, it diminishes when these segments are averaged for the final

decision. Considering that the large model takes significantly longer for all operations, including
fine-tuning, predictions, and explanations, resolving the trade-off in favor of a slightly better

performance does not seem justifiable at least for the task in question, in which comparatively long
texts are available. Even more importantly, the analysis of attention maps of such length is a lot

less feasible, and their visualizations often cannot be processed using the existing tools for

displaying HTML.

These considerations enable us to positively answer research question Q1, which aims at

observing whether it is reasonable to utilize pre-trained Transformer models for the task of

authorship attribution, or their performance does not surpass that of smaller models.

We also collected sufficient evidence to answer the corresponding sub-question Q1.1 which

formulates a specific research problem of Transformers for text classification: What does the

ability to process longer sequences contribute to the Transformer performance in the context of

AA?

In this regard, we claim that the use of longer input is beneficial in principle in terms of evaluation

metrics, but it hinders the usability of the model due to higher requirements. For longer texts,
splitting into even more segments can be applied with a merely linear increase of training time

and, as mentioned in Chapter 3, such technique provides additional benefits of assessing the
confidence of the model by checking the percentage of correct segment-level prediction and of

analyzing the co-authorship throughout the entire text by keeping track of the distribution of
segment labels. For shorter texts, such as social media microtexts. increasing the input size, on the

contrary, seems to be the most appropriate way of improving the classification performance since

segmentation is unavailable or limited to a very small number of segments.

In a more global sense, the advantage of deep learning-based models for authorship attribution

compared to alternatives is the ease of adapting it to a particular task: neither manual feature

selection nor preprocessing steps, such as data annotation with a part-of-speech tagger, are required

for fine-tuning.

9.2 Discussion of research question Q2

Secondly, we aimed at finding the meaningful parameters that can provide insights into the way

the predictions are made in order to answer Q2-1 (Which meaningful parameters, if any, can we

extract, and by which means? Do any of these patterns correspond to stylometric features used in

traditional stylistic analysis for attribution?)

To that end, we first provide a detailed investigation of the role of the final classifier in order to be
able to disregard its explanations at the later stages. We then scrutinize local post-hoc explanations

and analyze their relationship with the input characteristics and perform experiments with
adversarial examples to highlight interconnections between the extracted features and other

parameters.

After that, we proceed with analyzing the attention relevant to CLS and extract the tokens most
highly attended at head-layer combinations marked as relevant as potentially important features.

We classify these tokens into meaningful categories and describe them in terms of linguistic

features to which they correspond.

Finally, we compare the most commonly extracted features in LIME and the attention-based
approach to reveal the extent to which they overlap and to compare the importance of these features

in terms of their influence on prediction logits. We conclude that, with over 55% of features
overlapping, LIME and attention-based approach indeed extract largely similar features, with the

exception of punctuation. While LIME features are more important on average, the most important

features are more salient in attention-based approach.

Analyzing that procedure, we note that LIME provides an explanation algorithm that is

interpretable with respect to the input. It is also model-agnostic: any model trained for that specific
task of pair-wise attribution can receive explanations by a joint application of base LIME and

LIME-pair. The problem is that it is non-deterministic: random permutations result in slightly
different linear approximations. Such differences are not crucial for most salient features, such as

some names, but lead to significant re-arrangement of less important ones. Therefore, it does not
make sense to retrieve more than 10 features: they will be different in multiple runs. Even for 10

features, last 2-3 features are often dissimilar.

Besides, the existing version of LIME did not enable direct use of the BERT tokenizer because

that tokenizer yields tokens encoded as integers, while the LIME text module necessitates the use
of natural language strings. A character-level tokenizer, in turn, would not enable straightforward

detection of the separator, which is needed for LIME-pair. As a result, extracted features did not
include punctuation, which is a serious limitation and one of the most common reasons for the

dissimilarity between the list of important tokens extracted using LIME and the attention analysis.

Attention analysis is driven by the model. It is partially transparent in that it uses particular
attention matrices, which are known beforehand, and selects tokens most heavily attended by CLS

from those matrices. However, the model’s classification component is not taken into account.
Due to numerous types of attention from CLS to other tokens, and a large variety of tokens being

attended, we do not propagate weights of particular tokens attended by CLS through multiple
layers and do not track their contribution to particular dimensions of the final embedding, and the

influence of these dimensions on the classifier’s decision. Instead, we rely on a general assumption

that, given the overall sparsity, selectivity, and moderateness of CLS attention, all tokens attended
by CLS in non-uniform types of attention contribute to a certain extent to the final representation.

Given the goal of the explanation, which is not to provide an exhaustive interpretation of the model
at all levels but rather to provide a motivation for the model’s decision with respect to the input,

we consider such an assumption reasonable.

This assumption is verified by the large percentage of tokens appearing both in LIME and
attention-driven explanations (55%), which is drastically above a hypothetical chance level (the

total amount of potential sets of important features, in the worst case, would be the number of

combinations of 10 elements out of 256).

Another limitation of the attention-based explanation is that it does not directly link input with the
output: instead of deriving the influence in the final prediction from some properties of the model

and the input, we just select features that are likely to be important for the model based on the

model’s internal structure and then calculate the importance by input ablation and alteration.

In the end, we propose the joint application of LIME and attention-based techniques for a more

thorough and balanced explanation that involves different components of the prediction process.

In terms of the hypotheses formulated in Q2-1, we arrived at Hypothesis V, according to which
explanations can be generated by combining information from multiple sources listed in other

hypotheses.

More specifically, our proposed solution utilizes the content of Hypothesis I, which implies that

explanations related to existing stylometric features may be found by visualizing attention weights
of different heads at different levels, and Hypothesis IV, which involves explanations based on

potentially complex features extracted by means of input permutation.

In the course of that research, we disproved Hypothesis III, according to which the uppermost
layer, the classifier itself, can provide sufficient explanations. We showed that the classifier merely

uses the consistent differences between classes that are shaped and accumulated in the embeddings

at the earlier stages.

The results of feature importance assessment and comparison of the two techniques enabled us to
conclude that features extracted by then provide, at least to a certain extent, valid explanations that

account for a large part of the model prediction. We can therefore use the feature classification
discussed in Chapter 8 to answer the sub-question Q2-1.1 by claiming that the model utilizes a

large number of linguistic features on character, lexical, syntactic, and potentially semantic levels.

Many of them are considered by existing solutions, including frequencies of function words and
numbers, the occurrence of punctuation and spelling errors, and vocabulary richness. Other

features are not listed among traditional stylometric parameters but are nonetheless revealed in
other solutions that use Attention for AA models (Boenninghoff et al., 2019). Among such features

are proper nouns, special symbols, capitalization, and acronyms. A number of features that seem
to be specific to the class of literary texts are not described in the works of which we are aware.

Such features include reporting verbs, words used to refer to people, and quotes (the latter relates
to the generic feature of punctuation counts, but we highlight the particular importance of quotes

for the observed texts).

9.3 Future work

Hypothesis II was not taken into account based on the simplifying assumption we made when

analyzing the attention weights. However, it is not refuted by any means, and we propose the
analysis of dense layers inside BERT, as well as dimension-wise investigation of individual

neurons in the query and key vectors, as potential directions for future research for more thorough

interpretability of Transformer-based architectures.

For the ensemble architecture proposed by Peng et al. (2019), different ways of processing the

output of all segments can be used. Instead of averaging the embeddings, some weighting
techniques or additional dense layers can be employed to assign importance to embeddings of

different fragments.

A variety of future directions for research concern different model architectures that may improve

the performance or aid in generalizing the model to a broader range of tasks. For current research,
we implemented the Transformer-based model for authorship identification with a widely used

BERT model that has already been shown to perform successfully in related areas. However, we
also note a variety of paths for further development of the model itself, that can even be possible

within the adopted architecture.

Firstly, RoBERTa (Liu et al., 2020) was mentioned by (Fabien et al., 2020) and (Barlas and
Stamatatos, 2021) as a desirable path for future experiments, and it has outperformed original

BERT model in a number of applications, and Longformer (Beltagy et al., 2020), which is an
extension of RoBERTa adapted for processing longer sequences, has shown better results for

larger text chunks, which can be desirable in the attribution of literary works. Therefore, combining

it with the ensemble technique may further improve the results.

Besides, a promising approach by (Katharopoulos et al. 2020) has not been used for language
models yet, but the potential benefits are significant. Lastly, all of the previous research gave no

account of how well the 3rd generation of GPT model could perform. GPT-2 (Radford et al., 2019)
showed competitive results, though not the best ones on average, but GPT-3 (Brown et al., 2020)

is already known for being capable of very diverse and complex linguistic tasks. Although access
to GPT-3 itself is limited, GPT-J (Komatsuzaki, 2021) provides a publicly available analogue that

achieved comparable results. Therefore, testing how well it can handle the AA tasks compared to

BERT is of great interest.

The research of models with longer input coupled with feature extraction techniques could also

help determine whether there exist some extremely-long-distance features that can be retrieved by
the model and are useful for encoding the style of different authors. Such features are of great

interest both for the study of attribution per se, and the philological research in general, as they
may be related to the general composition and narrational structure of the text. However, extensive

research will be required to analyze that features and bring them in correspondence with the

existing formal methods of quantifying the style.

Another important direction of future work could be aimed at increasing the robustness of

authorship attribution models. In our work, we checked the number of cases in which the predicted
label was inverted for at least one important feature and discover that it happens in 50% of cases.

The possibility of fooling the model by only changing one feature was also investigated with
adversarial examples. Such ease of impeding the correct prediction goes in line with the

observations of Boenninghoff et al. (2019) who noted that a model may rely heavily on a single

feature and motivates the need for future research.

From a more general perspective, future research with an emphasis on causality is highly

anticipated. Our suggested approach ensures a certain degree of objectivity by comparing the
features produced by two techniques of different nature. Yet, an even more objective joint account

of how changes in the input influence the way that input is processed inside the model can probably

be achieved by incorporating gradient-based methods.

Ideally, such research could be performed in parallel with a detailed linguistic study of the texts to

which the model is applied to arrive at a classification of ways in which different linguistic features
may influence the style. Such classification is missing in the works concerning interpretable

attribution since they typically concentrate on the set of features and not on the subcategories and
their functions. This will facilitate the interpretability of explanations themselves since the

problem of meta-interpretability is becoming an issue on its own. It is needed to keep in mind that,
especially in sensitive areas, even the explanations of models’ behavior cannot be trusted blindly.

Their plausibility and truthfulness need to be assessed using methods grounded in the theory of a

particular domain.

In conclusion, we would like to get back to the importance of designing the model itself and all its
explanations with orientation for the end users, the linguist experts performing attributional

studies. It is important to bear in mind that all findings provided by AI techniques need to be
brought into correlation with real-life evidence in the end and be provided with plausible and

truthful interpretations that can sensibly motivate the prediction. And even the explanation that is
proven to be important and that is justified by linguistic analysis for a particular case still should

not be trusted blindly. After all, citing Craig and Kinney (2009), “The results of computational
linguistics are always matters of probability, not certainty. (...) After all, we are dealing with

writers who are at liberty to imitate each other, to try new styles, and to write differently for a

particular occasion or in a new genre”

Bibliography
1. Abnar, S., and Zuidema, W. (2020). Quantifying Attention Flow in Transformers. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics (pp. 4190–4197).
Association for Computational Linguistics.

2. Altakrori M, Cheung J, Fung B. (2021) The Topic Confusion Task: A Novel Evaluation Scenario
for Authorship Attribution

3. Alvarez-Melis, D. and Jaakkola, T. (2017). A causal framework for explaining the predictions of
black-box sequence-to-sequence models. 412-421. 10.18653/v1/D17-1042.

4. Argamon-Engelson, S., Koppel, M., and Avneri, G. (1998). Style-based text categorization: What
newspaper am I reading? In Proceedings of AAAI Workshop on Learning for Text Categorization

(pp. 1–4).
5. Argamon, S. Interpreting Burrows ’ Delta: Geometric and Probabilistic Foundations. // Literary

and Linguistic Computing 23 (2), — 2008. — 131-147.
6. Argamon, S., Konnel, M., Pennebaker, J., and Schier, J. (2007). Mining the Blogosphere: Age,

gender and the varieties of self-expression. First Monday, 12.
7. Argamon, S., Whitelaw, C., Chase, P., Hota, S.R., Garg, N., and Levitan, S. (2007). Stylistic text

classification using functional lexical features. Journal of the American Society for Information
Science and Technology, 58(6), 802–822. arXiv preprint arXiv:1702.08608.

8. Baayen, R., van Halteren, H., and Tweedie, F. (1996). Outside the cave of shadows: Using
syntactic annotation to enhance authorship attribution. Literary and Linguistic Computing, 11(3),

121–131.
9. Bagnall, D. (2015) Author identification using multi-headed recurrent neural networks. In:

Working Notes of CLEF 2015—Conference and Labs of the Evaluation forum
10. Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural Machine Translation by Jointly Learning

to Align and Translate. ArXiv. 1409.
11. Barlas, G. and Stamatatos E. (2020). Cross-Domain Authorship Attribution Using Pre-trained

Language Models. In Ilias Maglogiannis, Lazaros Iliadis, and Elias Pimenidis, editors, Artificial

Intelligence Applications and Innovations, volume 583, pages 255–266. Springer International

Publishing, Cham. Series Title: IFIP Advances in Information and Communication Technology.
12. Barlas, G., Stamatatos, E. (2021) A transfer learning approach to cross-domain authorship

attribution. https://doi-org.proxy.library.uu.nl/10.1007/s12530-021-09377-2
13. Beltagy, I., Peters, M.E., Cohan, A. (2020). Longformer: The long-document transformer. ArXiv

abs/2004.05150 (2020)
14. Benedetto, D., Caglioti, E., and Loreto, V. (2002). Language trees and zipping. Physical Review

Letters, 88(4), 048702.
15. Bengio, Y., Frasconi, P., Schmidhuber, J. (2003). Gradient Flow in Recurrent Nets: the Difficulty

of Learning Long-Term Dependencies. A Field Guide to Dynamical Recurrent Neural Networks.
16. Bischoff, S., Deckers, N., Schliebs, M., Thies, B., Hagen, M., Stamatatos, E., Stein,B., Potthast,

M.: The importance of suppressing domain style in authorship analysis. CoRR abs/2005.14714
(2020), URL https://arxiv.org/abs/2005.14714

17. Boenninghoff, B., Hessler, S., Kolossa, D., Nickel, R. (2019). Explainable Authorship Verification
in Social Media via Attention-based Similarity Learning. 36-45.

10.1109/BigData47090.2019.9005650.
18. Brown, T. B., Mann, B. P., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,

Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krüger, G., Henighan, T., Child,
R., Ramesh, A., Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.J., Litwin, M.,

Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.
(2020). Language models are few-shot learners. ArXiv abs/2005.14165

19. Burrows, J. (1987). Word patterns and story shapes: The statistical analysis of narrative style.
Literary and Linguistic Computing, 2, 61–70.

20. Burrows, J. (1989). ’An ocean where each kind. . . ’: Statistical analysis and some

major determinants of literary style. Computers and the Humanities, vol. 23, no. 4–5, pp. 309–21,
1989.

21. Burrows, J. (1992). Not unless you ask nicely: The interpretative nexus between analysis and
information. Literary and Linguistic Computing, 7(2), 91–109.

22. Burrows, J. (2002). Delta: A measure of stylistic difference and a guide to likely 45 authorship.
Literary and Linguistic Computing, 17(3), 267-287.

23. Burrows J. (2007) All the way through: testing for authorship in different frequency strata. //
Literary and Linguistic Computing, 22(1), — 2007. — pp. 27–48

24. Campbell L. (1867) The Sophisties and Polilicus of Plato — Oxford : Clarendon, 1867. — 170 p.
25. Carter, R. English Grammar Today: The Cambridge A-Z Grammar of English, 2016.

26. Chefer, H., Gur, S., and Wolf, L.. (2020). Transformer Interpretability Beyond Attention
Visualization.

27. Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., and Robinson, T. (2013) One
billion word benchmark for measuring progress in statistical language modeling. arXiv preprint

arXiv:1312.3005, 2013.
28. Cheng, J., Dong, L., Lapata, M. (2016). Long Short-Term Memory-Networks for Machine

Reading.
29. Child, R., Gray, S., Radford, A., and Sutskever, I. (2019). Generating long sequences with sparse

transformers. arXiv preprint arXiv:1904.10509, 2019.
30. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., and Bengio, Y. (2014)

Learning phrase representations using rnn encoderdecoder for statistical machine translation.
CoRR, abs/1406.1078, 2014.

31. Choi, E., Bahadori, M., Kulas, J., Schuetz, A., Stewart, W., and Sun, J.. (2016). RETAIN: An
Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. In

Advances in Neural Information Processing Systems, pages 3504–3512.
32. Chung, J., Gülçehre, C., Cho, K., and Bengio, Y. (2014) Empirical evaluation of gated recurrent

neural networks on sequence modeling. CoRR, abs/ 1412.3555, 2014.
33. Cilibrasi, R., and Vitanyi, P.M.B. (2005). Clustering by compression. IEEE Transactions on

Information Theory, 51(4), 1523–1545.
34. Clark, K., Khandelwal, U., Levy, O., and Manning, C. (2019). What Does BERT Look At? An

Analysis of BERT's Attention.
35. Craig H., and Kinney A.F. (2009). Shakespeare, Computers, and the Mystery of Authorship,

Cambridge, Cambridge University Press.
36. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and Salakhutdinov, R. (2019). TransformerXL:

Attentive language models beyond a fixed-length context. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pp. 2978– 2988, Florence, Italy, July

2019. Association for Computational Linguistics.
37. Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., and Sen, P. (2020). A Survey of

the State of Explainable AI for Natural Language Processing. arXiv preprint arXiv:2010.00711,
2020.

38. de Vel, O., Anderson, A., Corney, M., and Mohay, G. (2001). Mining e-mail content for author
identification forensics. SIGMOD Record, 30(4), 55–64.

39. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171– 4186, Minneapolis, Minnesota, June

2019. Association for Computational Linguistics.
40. Doshi-Velez, F., and Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine

Learning.

41. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,

M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale.

42. Eder, M. and Rybicki, J. Do birds of a feather really flock together, or how to choose training
samples for authorship attribution. // Literary and Linguistic Computing 28 (2), —2013. — pp.

229-236.
43. Eder, M., Rybicki, J. and Kestemont, M. (2016). Stylometry with R: a package for computational

text analysis. R Journal 8(1): 107-121. <https://journal.r-project.org/archive/2016/RJ-2016-
007/index.html>

44. Eder. M. (2012) Computational stylistics and biblical translation: how reliable can a dendrogram
be? The Translator and the Computer. — WSF Press, Wroclaw, 2012. — pp. 155–170

45. Ehsan, U., Tambwekar, P., Chan, L., Harrison, B., and Riedl, M.. (2019). Automated Rationale
Generation: A Technique for Explainable AI and its Effects on Human Perceptions.

46. Evert St., Proisl Th., Jannidis F., Reger Is., Pielström St., Schöch Chr., Vitt. Th. Understanding
and explaining Delta measures for authorship attribution // Digital Scholarship in the Humanities,

Vol. 32, Issue 2, — 2017. — pp. 114–116
47. Fabien, M., Villatoro-Tello, E., Motlicek, P., and Parida, S. (2020). BertAA: BERT fine-tuning

for Authorship Attribution. In Proceedings of the 17th International Conference on Natural
Language Processing (ICON) (pp. 127–137). NLP Association of India (NLPAI).

48. Feng, S., Wallace, E., Grissom II, A., Iyyer, M., Rodriguez, P., and Boyd-Graber, J. (2018).
Pathologies of Neural Models Make Interpretations Difficult. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing (pp. 3719–3728). Association
for Computational Linguistics.

49. Fix, E., Hodges, J. L. (1951). Discriminatory Analysis. Nonparametric Discrimination:
Consistency Properties (Report). USAF School of Aviation Medicine, Randolph Field, Texas

50. Forsyth, R. S. and Holmes, D. I. (1996) Feature-finding for text classification. // Literary and
Linguistic Computing, 11. — 1996. — pp. 163–74

51. Futrzynski, R. Author classification as pre-training for pairwise authorship verification, in: G.
Faggioli, N. Ferro, A. Joly, M. Maistro, F. Piroi (Eds.) (2021). CLEF 2021 Labs and Workshops,

Notebook Papers, CEUR-WS.org, 2021.
52. Gamon, M. (2004). Linguistic correlates of style: Authorship classifica-tion with deep linguistic

analysis features. In Proceedings of the 20th International Conference on Computational
Linguistics (pp. 611–617). Morristown, NJ: Association for Computational Linguistics.

53. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y. (2017). Convolutional Sequence to
Sequence Learning.

54. Ghaeini, R., Fern, X., and Tadepalli, P. (2018). Interpreting Recurrent and Attention-Based Neural
Models: a Case Study on Natural Language Inference. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing (pp. "4952–4957",). Association for
Computational Linguistics.

55. Glaudes P., Guglielmi F., Mayaux C., Marusenko M. A., Kuralesina E. N., Miretina M. S.,
Nikitina E. Ya., Solovieva M. V., Khutoretskaya O. A., Kondyurine I. A. (2019). Jules Barbey

d’Aurevilly and Newspaper Corpus: problems of attribution (Part II) eISSN: 0202-2502
56. Goldstein-Stewart J, Winder R, Sabin RE (2009) Person identification from text and speech genre

samples. https://aclanthology.org/E09-1039.pdf
57. Graves A. (2013) Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.
58. Halvani, O., Graner,L. (2018) Cross-domain authorship attribution based on compression:

Notebook for PAN at CLEF 2018. In: Cappellato, L., Ferro, N., Nie, J., Soulier, L. (eds.) Working
Notes of CLEF 2018 Conference and Labs of the Evaluation Forum, Avignon, France, September

10-14, 2018, CEUR Workshop Proceedings, vol. 2125, CEUR-WS.org (2018), URL http://ceur-
ws.org/Vol-2125/paper_90.pdf

59. Hill, F., Bordes, A., Chopra, S., and Weston, J. (2015) The goldilocks principle: Reading children’s

books with explicit memory representations. arXiv preprint arXiv:1511.02301, 2015.
60. Hirst, G. and Feiguina, O. (2007). Bigrams of syntactic labels for authorship discrimination of

short texts. Literary and Linguistic Computing, 22(4), 405–417.
61. Hochreiter, S. and Schmidhuber, J. (1997) Long short-term memory. Neural computation,

9(8):1735–1780, 1997.
62. Holmes, D. I., The Evolution of Stylometry in Humanities Scholarship, Literary and

Linguistic Computing 13 (1998) 111–117.
63. Holmes, H. (1994). Authorship Attribution, Computers and Humanities, p. 87

64. Hoover D. L. Testing Burrows’s Delta // Literary and Linguistic Computing, Vol. 19, No. 4. —
2004. —pр. 453–475

65. Hoover, D. L. (2003). Another Perspective on Vocabulary Richness. Computers and the
Humanities. 37, 151-178.

66. Hoover, D. L. Delta, Delta Prime, and Modern American Poetry: Authorship Attribution Theory
and Method. // Proceedings of the 2005 ALLC/ACH conference. — 2005.

67. Hoover, J. F. (2004). Delta Prime? Literary and Linguistic Computing, 19(4), 477-495.
68. Houvardas, J., and Stamatatos, E. (2006). N-gram feature selection for authorship identification.

In Proceedings of the 12th International Conference on Artificial Intelligence: Methodology,
Systems, Applications (pp. 77–86). Berlin, Germany: Springer.

69. Howard, J., and Ruder, S.. (2018). Universal Language Model Fine-tuning for Text Classification.
70. Hulley, K. K. (1944). Principles of Textual Criticism Known to St. Jerome. Harvard Studies in

Classical Philology, 55, 87–109. https://doi.org/10.2307/310878
71. Jain, S. and Byron C. Wallace, B. C. (2019). Attention is not Explanation. In Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), Minneapolis, Minnesota. Association

for Computational Linguistics.
72. Jannidis, F., Pielstrom, S., Schoch, Ch. and Vitt, Th. Improving Burrows' Delta: An empirical

evaluation of text distance measures. // Digital Humanities 2015: Conference Abstracts. — 2015.
73. Jawahar G, Sagot B, Seddah D (2019). What does BERT learn about the structure of language?

In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, pp 3651–3657

74. Johnson, A., Pollard, T., Shen, L., Lehman, L.w., Feng, M., Ghassemi, M., Moody, B., Szolovits,
P., Celi, L., and Mark, R. (2016). MIMIC-III, a freely accessible critical care database. Scientific

Data, 3, 160035.
75. Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L.. (2017). TriviaQA: A Large Scale Distantly

Supervised Challenge Dataset for Reading Comprehension.
76. Juola, P. (1997). What can we do with small corpora? Document categorization via cross-entropy,”

in Proceedings of an Interdisciplinary Workshop on Similarity and Categorization, Department of
Artificial Intelligence, University of Edinburgh, Edinburgh, UK, 1997.

77. Juola, P. (2003). The time course of language change. Computers and the Humanities, vol. 37, no.
1, pp. 77–96, 2003.

78. Juola, P. (2006). Authorship attribution. Foundations and Trends in Information Retrieval, 1(3).
79. Katharopoulos, A., Vyas, A., Pappas, N., Fleuret, F. (2020). Transformers are RNNs: Fast

Autoregressive Transformers with Linear Attention. Proceedings of the 37th International
Conference on Machine Learning, in Proceedings of Machine Learning Research 119:5156-5165

Available from https:// proceedings.mlr.press/v119/katharopoulos20a.html.
80. Kenny, A. (1981) Some observations on the stylometry of the Pauline epistles // Actes du Congrès

international informatique et sciences humaines. —L.A.S.L.A. Liege, Belgium, 1981. — pp. 510–
512

81. Kestemont M, Tschuggnall M, Stamatatos E, Daelemans W, Specht G., Stein B., Potthast M.
(2018). Overview of the Author Identification Task at PAN-2018: Cross-domain Authorship

Attribution and Style Change Detection. In: Cappellato L, Ferro N, Nie Y, Soulier L (eds) Working

Notes Papers of the CLEF 2018 Evaluation Labs, CEUR Workshop Proceedings, vol. 2125.

CEUR-WS.org . http:// ceur-ws.org/ Vol-2125/
82. Kestemont, M., Manjavacas, E., Markov, I., Bevendorff, J., Wiegmann, M., Stamatatos, E.,

Potthast, M., and Stein, B. (2020). Overview of the Cross-Domain Authorship Verification Task
at PAN 2020. In B. De Carolis, C. Gena, A. Lieto, S. Rossi, and A. Sciutti (Eds.), cAESAR 2020

- Proceedings of the Workshop on Adapted Interaction with Social Robots (Vol. 2696). (CEUR
Workshop Proceedings). CEUR-WS.

83. Kestemont, M., Stamatatos, E., Manjavacas, E., Daelemans, W., Potthast, M., Stein, B. (2019).
Overview of the cross-domain authorship attribution task at PAN 2019. In: Cappellato L, Ferro N,

Losada DE, Müller H (eds) Working Notes of CLEF 2019 - Conference and Labs of the Evaluation
Forum, CEUR Workshop Proceedings, vol. 2380. CEUR-WS.org

84. Kestemont, M., Stover, J.A., Koppel, M., Karsdorp, F., Daelemans, W. (2016) Authenticating the
writings of julius caesar. Expert Systems with Applications 63, 86–96 (2016),

https://doi.org/10.1016/ j.eswa.2016.06.029
85. Kestemont, M., Manjavacas, E., Markov, I., Bevendorff, J., Wiegmann, M., Stamatatos, E., Stein,

B., Potthast, M. (2021). Overview of the Cross-Domain Authorship Verification Task at PAN
2021.

86. Khosmood, F., and Levinson, R. (2006). Toward unification of source attribution processes and
techniques. In Proceedings of the 5th International Conference on Machine Learning and

Cybernetics (pp. 4551–4556). Washington, DC: IEEE.
87. Kim, Y., Denton, C., Hoang, L., and Rush, A. (2017). Structured Attention Networks.

88. Kitaev, N., Kaiser, Ł., and Levskaya, A. (2020). Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

89. Kjell, B. (1994). Discrimination of authorship using visualization. Information Processing and
Management, 30(1), 141–150.

90. Klimt., B. and Yang., Y. (2004). The Enron Corpus: A New Dataset for Email Classification
Research. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann

Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen,
Madhu Sudan, Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, Jean-

Franc ̧ Lois Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi, editors, Machine

Learning: ECML 2004, volume 3201, pages 217–226. Springer Berlin Heidelberg, Berlin,

Heidelberg. Series Title: Lecture Notes in Computer Science.
91. Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese Neural Networks for One-shot

Image Recognition.
92. Komatsuzaki A. (2021) GPT-J-6B: 6B JAX-Based Transformer https://

arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/
93. Koppel M., Schler J., Argamon S., Winter Y. (2012). The “Fundamentals Problem” of Authorship

Attribution. English Studies, 93(3), 284-291.
94. Koppel, M., and Schler, J. (2003). Exploiting stylistic idiosyncrasies for authorship attribution. In

Proceedings of IJCAI'03 Workshop on Computational Approaches to Style Analysis and Synthesis
(pp. 69–72).

95. Koppel, M., Akiva, N., and Dagan, I. (2006). Feature instability as a criterion for selecting
potential style markers. Journal of the American Society for Information Science and Technology,

57(11), 1519–1525.
96. Koppel, M., Schler, J. and Argamon, S. (2009) Computational Methods in Authorship Attribution.

// Journal of the American Society for Information Science and Technology 60 (1), —2009. — 9-
26.

97. Kovaleva, O., Romanov, A., Rogers, A., and Rumshisky, A. (2019). Revealing the Dark Secrets
of BERT. In EMNLP/IJCNLP.

98. Kuchaiev, O. and Ginsburg, B. (2017) Factorization tricks for LSTM networks. arXiv preprint
arXiv:1703.10722, 2017.

99. Kukushkina, O., Polikarpov, A., and Khmelev, D. (2001). Using literal and grammatical statistics

for authorship attribution. Problems of Information Transmission, 37(2), 172–184.
100. Lample, G., Sablayrolles, A., Ranzato, M. A., Denoyer, L., and Jegou, H. (2019) Large memory

layers with product keys. In Wallach, H., Larochelle, H., Beygelzimer, A., dA ́lche ́-
Buc,F.,Fox,E.,andGarnett,R.(eds.),Advances in Neural Information Processing Systems 32, pp.

8546– 8557. Curran Associates, Inc., 2019.
101. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020). Albert: A lite

bert for self-supervised learning of language representations. In International Conference on

Learning Representations, 2020.

102. Lei, T., Barzilay, R., and Jaakkola, T. (2016). Rationalizing Neural Predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 107–117).

Association for Computational Linguistics.
103. Li, J., Monroe W., and Jurafsky, D. (2016). Understanding neural networks through representation

erasure. arXiv preprint arXiv:1612.08220.
104. Li, J., Zheng, R., and Chen, H. (2006). From fingerprint to writeprint. Communications of the

ACM, 49(4), 76–82.
105. Li, M. and Vitanyi, P. (1997). An Introduction to Kolmogorov Complexity and Its Applications.

Graduate Texts in Computer Science, New York: Springer, second ed., 1997.
106. Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., and Shazeer., N. (2018)

Generating wikipedia by summarizing long sequences. ICLR, 2018.
107. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and

Stoyanov, V. (2020). RoBERTa: A robustly optimized BERT pretraining approach, 2020.
108. Logeswaran, L. and Lee, H. (2018). An efficient framework for learning sentence representations.

109. Loshchilov, I., and Hutter, F. (2017). Decoupled Weight Decay Regularization.
110. Luong, M., Pham, H., Manning, C. (2015). Effective Approaches to Attention-based Neural

Machine Translation. 10.18653/v1/D15-1166.
111. Lutoslawski, W. (1898). Principes de stylométrie appliqués à la chronologie des œuvres de Platon

// Revue des Études Grecques. —1898. —pp. 61–81
112. Martins, A. and Astudillo, R. (2016). From softmax to sparsemax: A sparse model of attention and

multi-label classification. In International Conference on Machine Learning, pages 1614–1623.
113. Marton, Y., Wu, N., and Hellerstein, L. (2005). On compression-based text classification. In

Proceedings of the European Conference on Information Retrieval (pp. 300–314).
114. Marusenko M. (1990). Attribution of anonymous and pseudonymous literary works by means of

pattern recognition [Марусенко М. А. Атрибуция анонимных и псевдонимных литературных
произведений методами теории распознавания образов. — Л.: Изд-во ЛГУ, 1990.]

115. McCann, B., Bradbury, J., Xiong, C., and Socher, R. (2017). Learned in Translation:
Contextualized Word Vectors.

116. Mead, A. (1992). Review of the Development of Multidimensional Scaling Methods. Journal of
the Royal Statistical Society. Series D (The Statistician). 41 (1): 27–39.

117. Mendenhall T. (1887). The characteristic curves of composition. Science, vol. IX, pp. 237–249,
1887.

118. Merriam, T (1994). Letter Frequency as a Discriminator of Authors. Notes & Queries, 239, 1994,
p. 467-469.

119. Merriam, T (1998). Heterogeneous Authorship in Early Shakespeare and the Problem of Henry V.
Literary and Linguistic Computing, 13, 1998, p. 15-28.

120. Michael, J., Hill, F., Levy, O., and Bowman, S. (2018). GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding. 353-355. 10.18653/v1/W18-5446.

121. Michel, P., Levy, O., and Neubig, G. (2019). Are sixteen heads really better than one? In Wallach,
H., Larochelle, H., Beygelzimer, A., d ’ Alche ́-Buc, F., Fox, E., and Garnett, R. (eds.), Advances

in Neural Information Processing Systems 32, pp. 14014–14024. Curran Associates, Inc., 2019.
122. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J. (2013). Distributed representations of

words and phrases and their compositionality. In: Conference on Advances in Neural Information

Processing Systems. Distributed Representations of Words and Phrases and Their

Compositionality. 3111-3119
123. Miller, G. A., Beckwith, R., Fellbaum, C. D., Gross, D., Miller, K. (1990). WordNet: An online

lexical database. Int. J. Lexicograph. 3, 4, pp. 235–244.
124. Morton, A. Q., and McLeman, J. (1966). Paul, the man and the myth: A study in the authorship of

Greek prose. —New York: Harper & Row, 1966.
125. Mosteller, F. and Wallace, D. L. (1964) Inference and Disputed Authorship: The Federalist Papers.

— New York: Springer, 1964
126. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., and Eisenstein, J. (2018). Explainable Prediction

of Medical Codes from Clinical Text. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers) (pp. "1101–1111",). Association for Computational
Linguistics.

127. Neal, T., Sundararajan, K., Fatima, A., Yan, Y., Xiang, Y., and Woodard, D. (2017). Surveying
Stylometry Techniques and Applications. ACM Computing Surveys, 50, 1-36.

128. Ordoñez, J., Soto, R.A., and Chen, B.Y. (2020). Will Longformers PAN Out for Authorship
Verification? Notebook for PAN at CLEF 2020. CLEF.

129. o’Riedl, M. (2019). Human-centered artificial intelligence and machine learning. Human Behavior
and Emerging Technologies, 1(1):33–36.

130. Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N., Bernardi, R., Pezzelle, S., Baroni, M.,
Boleda, G., and Fernandez, R. (2016) The lambada dataset: Word prediction requiring a broad

discourse context. arXiv preprint arXiv:1606.06031, 2016.
131. Papineni, K., Roukos, S., Ward, T., Zhu, W. J. (2002). BLEU: a method for automatic evaluation

of machine translation (PDF). ACL-2002: 40th Annual meeting of the Association for
Computational Linguistics. pp. 311–318. CiteSeerX 10.1.1.19.9416

132. Pappas, N., and Popescu-Belis, A. (2016). Human versus machine attention in document
classification: A dataset with crowdsourced annotations. In Proceedings of The Fourth

International Workshop on Natural Language Processing for Social Media, pages 94–100.
133. Kharya, P. and Alvi, A. (2021) Using DeepSpeed and Megatron to Train Megatron-Turing NLG

530B, the World’s Largest and Most Powerful Generative Language Model
https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-

530b-the-worlds-largest-and-most-powerful-generative-language-model/
134. Paulus, R., Xiong, C., and Socher, R. (2017) A deep reinforced model for

abstractive summarization. arXiv preprint arXiv:1705.04304, 2017.
135. Peters, B., Niculae, V., and Martins, A. (2018). Interpretable Structure Induction via Sparse

Attention. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP (pp. 365–367). Association for Computational Linguistics.

136. Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L. (2018). Deep
Contextualized Word Representations. 2227-2237. 10.18653/v1/N18-1202.

137. Radford, A., Narasimhan, K., Salimans, T., , and Sutskever, I. (2018). Improving language
understanding by generative pretraining. In OpenAI report, 2018.

138. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models
are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

139. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu,
P.. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.

Journal of Machine Learning Research, 21:1–67.
140. Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+ Questions for

Machine Comprehension of Text.
141. Ribeiro, M., Singh, S., and Guestrin, C. (2016). "Why Should I Trust You?": Explaining the

Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (pp. 1135–1144). Association for Computing

Machinery.

142. Riedl, M. O. Human-centered artificial intelligence and machine learning. Human Behavior and

Emerging Technologies, 1(1):33–36. https://doi.org/10.1002/hbe2.117
143. Rodionova E. (2007) Informative parameters selection for the attribution of verse plays by Molière

[Родионова Е.С. Отбор информативных параметров при атрибуции стихотворных пьес
Мольера // Материалы ХХХVI Международной филологической конференции (12 – 17

марта 2007 г.). – СПб : Филол. фак. С.‐Петерб. гос. ун-та, 2007. – Вып. 10 : Прикладная и
математическая лингвистика / под ред. Т. Г. Скребцовой. С. 67–74]

144. Rogers, A., Kovaleva, O., and Rumshisky, A. (2020). A Primer in BERTology: What We Know
About How BERT Works. Transactions of the Association for Computational Linguistics, 8,

842–866.
145. Ross, A., Hughes, M., and Doshi-Velez, F.. (2017). Right for the Right Reasons: Training

Differentiable Models by Constraining their Explanations. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pages 2662–2670. AAAI Press.

146. Rosset, C. (2020). Turing-NLG: A 17-billion-parameter language model by microsoft. Microsoft

Research Blog, 2:13.

147. Rudin, C. (2018). Please stop explaining black box models for high stakes decisions. arXiv

preprint arXiv:1811.10154.

148. Rybicki, J. and Eder, M. Deeper Delta across genres and languages: do we really need the most
frequent words? // Literary and Linguistic Computing 26 (3), — 2011. — pp. 315-321.

149. Sapkota, U., Solorio, T., Montes, M., Bethard, S., and Rosso, P. (2014). Cross-Topic Authorship
Attribution: Will Out-Of-Topic Data Help?. In Proceedings of COLING 2014, the 25th

International Conference on Computational Linguistics: Technical Papers (pp. 1228–1237).
Dublin City University and Association for Computational Linguistics.

150. Sari, Y., Stevenson, M., and Vlachos, A. (2018). Topic or Style? Exploring the Most Useful
Features for Authorship Attribution, Proceedings of the 27th International Conference on

Computational Linguistics. pages 343–353 Santa Fe, New Mexico, USA, August 20-26, 2018.
https://aclanthology.org/C18-1029.pdf

151. Schuster, M., and Nakajima, K. (2012). Japanese and Korean voice search. In 2012 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5149-

5152).
152. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing

Surveys, 34(1), 1–47.
153. Serrano, S., and Smith, N. (2019). Is Attention Interpretable? In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics (pp. 2931–2951). Association for
Computational Linguistics.

154. Seroussi, Y., Zukerman, I., and Bohnert, F. (2014). Authorship Attribution with Topic Models.
Computational Linguistics, 40(2), 269–310.

155. Shikhar Vashishth, Shyam Upadhyay, Gaurav Singh Tomar, Manaal Faruqui. (2019). Attention
Interpretability Across NLP Tasks In ICLR 2020 Conference Blind Submission

156. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and Catanzaro, B. (2019). Megatron-
LM: Training multi-billion parameter language models using model parallelism. arXiv preprint

arXiv:1909.08053.
157. Simpson, E. H. (1949). Measurement of diversity. Nature, vol. 163, p. 688, 1949.

158. Smith, P. and Aldridge W. Improving Authorship Attribution. Optimizing Burrows ’ Delta Method.
// Journal of quantitative linguistics 18(1), — 2017. — pp. 63-88.

159. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., and Potts., C. (2013).
Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings

of the 2013 conference on empirical methods in natural language processing, pages 1631–1642.
160. Song, K., Tan, X., Qin, T., Lu, J., and Liu, T.-Y. MASS: Masked sequence to sequence pre-training

for language generation. In Chaudhuri, K. and Salakhutdinov, R. (eds.) (2019). Proceedings of the

36th International Conference on Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pp. 5926–5936, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

161. Stamatatos, E, Barlas G. (2020) Authorship Attribution Using Pre-trained Language Models

https://link-springer-com/chapter/10.1007%2F978-3-030-49161-1_22
162. Stamatatos, E, Rangel, F., Tschuggnall, M., Stein, B., Kestemont, M., Rosso, P., Potthast, M.

(2018) Overview of pan 2018. In: International Conference of the Cross-Language Evaluation
Forum for European Languages. Springer, pp 267–285 http://ceur-ws.org/Vol-

2125/invited_paper_2.pdf
163. Stamatatos, E. (2009). A survey of modern authorship attribution methods. Journal of the

American Society for Information Science and Technology, vol 60, no 3, pp 538–556 https://doi-
org.proxy.library.uu.nl/10.1002/asi.21001

164. Stamatatos, E. (2013) On the Robustness of Authorship Attribution Based on Character N-gram
Features https://brooklynworks.brooklaw.edu/cgi/viewcontent.cgi?article=1048&context=jlp

165. Stamatatos, E. (2017) Masking topic-related information to enhance authorship attribution
https://asistdl-onlinelibrary-wiley-com.proxy.library.uu.nl/doi/10.1002/asi.23968

166. Stamatatos, E., Fakotakis, N., and Kokkinakis, G. (2001). Computer-based authorship attribution
without lexical measures. Computers and the Humanities, 35(2), 193–214.

167. Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin, A. (2019). Adaptive attention span in
transformers. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pp. 331–335, Florence, Italy, July 2019. Association for Computational Linguistics.
168. Suman, C, Raj, A, Saha, S, and Bhattacharyya, P. (2021). Authorship Attribution of Microtext

Using Capsule Networks," in IEEE Transactions on Computational Social Systems, doi:
10.1109/TCSS.2021.3067736

169. Sun, C., Qiu, X., Xu, Y., and Huang, X. (2020). How to Fine-Tune BERT for Text Classification?
170. Sutskever, I., Vinyals, O., and Quoc V. Le. (2014) Sequence to sequence learning with neural

networks. In Advances in Neural Information Processing Systems, pages 3104– 3112, 2014.
171. Tanaka-Ishii, K., Aihara S. (2015). Computational Constancy Measures of Texts — Yule's K and

Rényi's Entropy. Computational Linguistics 2015; 41 (3): 481–502. doi:
https://doi.org/10.1162/COLI_a_00228

172. Thorne, J., Vlachos, A., Christodoulopoulos, C., and Mittal, A. (2019). Generating Token-Level
Explanations for Natural Language Inference. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers) (pp. 963–969). Association for Computational

Linguistics.
173. Tyo, J., Dhingra, B., Lipton, Z., Siamese Bert for authorship verification, in: G. Faggioli, N.

Ferro, A. Joly, M. Maistro, F. Piroi (Eds.), CLEF 2021 Labs and Workshops, Notebook Papers,
CEUR-WS.org, 2021.

174. van Halteren, H., Baayen, R. H., Tweedie, F., Haverkort, M., and Neijt, A. (2005). New machine
learning methods demonstrate the existence of a human stylome. // Journal of Quantitative

Linguistics, vol. 12, no. 1. — 2005. — pp. 65–77
175. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and

Polosukhin, I. (2017). Attention is all you need. In NIPS, 2017.
176. Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf (2019) DistilBERT, a distilled

version of BERT: smaller, faster, cheaper and lighter
177. Vig, J. (2019). A Multiscale Visualization of Attention in the Transformer Model. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations (pp. 37–42). Association for Computational Linguistics.

178. Vig, J. and Belinkov, Y. (2019) Analyzing the structure of attention in a transformer language
model. In Proc. of BlackBoxNLP, 2019.

179. Wiegreffe, S., and Pinter, Y. (2019). Attention is not not Explanation. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-ĲCNLP) (pp. 11–20). Association for
Computational Linguistics.

180. Williams, A., Nangia, N., and Bowman, S. (2018). A Broad-Coverage Challenge Corpus for

Sentence Understanding through Inference. 1112-1122. 10.18653/v1/N18-1101.
181. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,

R., Funtowicz, M., Davison, J., Shleifer, S., Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le
Scao, T., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. (2020). Transformers: State-of-the-

Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations (pp. 38–45). Association for

Computational Linguistics.
182. Xie, Q., Ma, X., Dai, Z., and Hovy, E. (2017). An Interpretable Knowledge Transfer Model for

Knowledge Base Completion. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) (pp. "950–962",). Association for

Computational Linguistics.
183. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., and Bengio, Y..

(2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.
184. Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., and Le, Q. V. (2019). Xlnet:

Generalized autoregressive pretraining for language understanding. CoRR, abs/ 1906.08237, 2019.
185. Yujia Bao, Shiyu Chang, Mo Yu, and Regina Barzilay. (2018). Deriving machine attention from

human rationales. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 1903–1913.

186. Yule, G. (1938). On sentence-length as a statistical characteristic of style in prose, with application
to two cases of disputed authorship. Biometrika, 30, 363–390.

187. Yule, G. (1944). The Statistical Study of Literary Vocabulary. Cambridge University Press.
188. Zachary C. Lipton. (2016). The mythos of model interpretability. arXiv preprint

arXiv:1606.03490.
189. Zafrir, O., Boudoukh, G., Izsak, P., and Wasserblat, M. (2019). Q8BERT: quantized 8bit BERT.

CoRR, abs/1910.06188, 2019.
190. Zein Shaheen, Gerhard Wohlgenannt, Erwin Filtz. (2021) Large Scale Legal Text Classification

Using Transformer Models arXiv:2010.12871
191. Zellers, R., Bisk, Y., Schwartz, R., and Choi, Y. (2018). SWAG: A Large-Scale Adversarial

Dataset for Grounded Commonsense Inference. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing (EMNLP).

192. Zhao, Y., and Zobel, J. (2005). Effective and scalable authorship attribution using function words.
In Proceedings of the 2nd Asia Information Retrieval Symposium. Berlin, Germany: Springer.

193. Zheng, R., Li, J., Chen, H., and Huang, Z. (2006). A framework for authorship identification of
online messages: Writing style features and classification techniques. Journal of the American

Society of Information Science
194. Zipf, G. (1932). Selected studies of the principle of relative frequency in language. Cambridge,

MA: Harvard University Press.

Appendix

A. Description of all CLS-related attention
Layer Head Direction Important Tokens Types of

Important Tokens
Strength of
attention

Scope Coverage
(one text
or both)

1 1 To CLS Names, subword tokens (all),
topical nouns

Content words,
subword tokens

Moderately strong Global Both

1 2 To CLS Names, subword tokens (all),
topical nouns, narrational verbs

Content words,
subword tokens

Strong Global Both

1 5 To CLS Names, subword tokens (initial) Content words,
subword tokens

Moderately strong Global Both

1 7 Between tokens
(between non-
narrational verbs)

Non-narrational verbs Content words,
subword tokens

Moderately strong Large Both

1 9 Between tokens
(narrational verbs
and full/short
form variations)

Narrational verbs, full/short form
variations

Content words,
special function
words

Moderately strong Local Both

1 9 To CLS Names, words co-referring to
named persons

Content words Moderately strong Global Both

2 7 To CLS Subword tokens (non-initial),
prepositions

Function words,
subword tokens

Moderately strong Global Both

2 9 To CLS Names, stylistically variable
words, in-word mistakes

Content words,
subword tokens,
function words,
mistakes

Moderately strong Global Both

2 10 To CLS Names, stylistically variable
words, diatopic variations

Content words,
subword tokens,
function words,
mistakes

Moderately strong Global Both

3 1 To CLS Names, stylistically variable set
phrases

Content words, set
phrases

Moderately strong Global Both

3 4 From CLS Names, verbs related to names,
quotes

Content words,
punctuation

Moderately strong Global Both

3 5 To CLS Topical nouns, subword tokens
(all), full stops, quotes

Content words,
subword tokens,
punctuation

Moderately strong Global Both

3 5 From CLS Uniform attention Uniform attention Weak Global Both
3 5 Between tokens

(words to
punctuation)

Full stops, commas, quotes,
question marks, other punctuation

Punctuation Moderately strong Local Both

3 6 Between tokens
(identity relation)

Subword tokens, prepositions,
wh-words, pronouns, in-word
mistakes

Function words,
subword tokens,
mistakes

Strong Large Both

3 9 To CLS Infrequent narrational verbs,
stylistically variable set phrases,
topical nouns, other verbs

Content words, set
phrases

Strong Large Both

3 10 Between subword
tokens

Names, in-word mistakes,
abbreviations

Subword tokens Moderately strong Neighbor Both

3 12 From CLS Narrational verbs, punctuation Content words,
punctuation

Moderately strong Global Both

4 1 Between tokens
(narrational verbs
and quotes)

Narrational verbs, quotes Content words,
punctuation

Moderately strong Local Both

4 2 From CLS Names, narrational verbs,
stylistically variable words,
diatopic variations, full/short
form variations, infrequent words,
various mistakes, obscene words,
numbers

Content words,
special function
words, mistakes,
numbers

Moderately strong Large First

4 2 Between tokens
(punctuation)

Punctuation Punctuation Moderately strong Global,
but
stronger
locally

Both

4 3 From CLS Names, narrational verbs,
stylistically variable words,
diatopic variations, full/short
form variations, infrequent words,
various mistakes, obscene words,
numbers

Content words,
special function
words, mistakes,
numbers

Moderately strong Large Second

4 3 Between tokens
("important"
words attended by
other tokens)

Names, narrational verbs,
stylistically variable words,
diatopic variations, full/short
form variations, infrequent words,
various mistakes, obscene words,
numbers

Content words,
special function
words, mistakes,
numbers

Moderately strong Medium Both

4 4 From CLS Names, topical nouns Content words Moderately strong Global Both
4 8 Between tokens

(identity relation)
Subword tokens, prepositions,
wh-words, pronouns, in-word
mistakes

Function words,
subword tokens,
mistakes

Strong Large Both

4 9 From CLS Uniform attention (end of Text 1) Uniform attention Weak Local First
4 12 To CLS Names, punctuation Content words,

punctuation
Strong Global Both

5 2 From CLS Names, narrational verbs,
stylistically variable words,
diatopic variations, full/short
form variations, infrequent words,
various mistakes, obscene words,
numbers

Content words,
special function
words, mistakes,
numbers

Moderately strong Large Second

5 5 From CLS Names Content words Moderately strong Large Second
5 5 Between tokens

(full/short form
variations)

Full/short form variations Function words Moderately strong Large Both

5 7 From CLS Names, topical nouns Content words Moderately strong Large First
5 7 Between tokens

(words in
utterance and
quotes)

Quotes Punctuation Moderately strong Local Both

5 10 From CLS Names Content words Moderately strong Large Second
5 11 From CLS Pronouns, conjunctions, full/short

form variations, punctuation
Function words,
punctuation

Moderately strong,
instance-specific

Large Second

5 12 From CLS Punctuation Punctuation Weak Large Second
6 6 Between tokens

(punctuation and
function words)

Pronouns, auxiliary verbs,
punctuation

Function words,
punctuation

Moderately strong Medium Both

6 7 From CLS Names, numbers Content words,
numbers

Weak Large Second

6 9 From CLS Names Content words Weak Large Second
6 10 From CLS Names Content words Strong, instance-

specific
Large Second

7 1 From CLS Names Content words Moderately strong Large First
7 7 Between tokens

(conditional
clauses,
appositive clauses
and direct speech)

Conjunctions, wh-words, modal
verbs, narrational verbs, quotes,
commas, colons

Content words,
function words,
punctuation

Strong Local Both

7 8 Between subword
tokens

Names, in-word mistakes,
abbreviations

Subword tokens Strong Neighbor Both

7 9 From CLS Names, narrational verbs,
stylistically variable words,
diatopic variations, full/short
form variations, infrequent words,
various mistakes, obscene words,
numbers, punctuation

Content words,
special function
words, mistakes,
numbers,
punctuation

Moderately strong Large First

7 11 Between tokens
(set phrases,
objects with
attributes,
compound words
with hyphens)

Pronouns, verbs, hyphens, other
words

Set phrases,
compound words

Very strong Neighbor Both

7 12 From CLS Names Content words Moderately strong Large Second

8 1 Between tokens
(punctuation and
function words)

Casing mistakes Mistakes Strong, instance-
specific

Local Both

8 2 Between tokens
(punctuation and
function words)

Ellipsis (three dots), conjunctions,
full/short form variations,
pronouns, names

Content words,
function words,
punctuation

Strong, instance-
specific

Local Both

8 3 Between tokens
(narrational verbs
and quotes)

Narrational verbs, quotes, wh-
words

Content words,
function words,
punctuation

Strong Large Both

8 4 From CLS Names, narrational verbs Content words Moderately strong Large Second
8 6 From CLS Names Content words Strong Large Second
8 6 Between tokens

("important"
words attended by
other tokens)

Names, narrational verbs,
stylistically variable words,
diatopic variations, full/short
form variations, infrequent words,
various mistakes, obscene words,
numbers, punctuation

Content words,
special function
words, mistakes,
numbers,
punctuation

Moderately strong Medium Both

8 11 From CLS Names Content words Moderately strong Large Second
8 12 From CLS Quotes Punctuation Moderately strong,

instance-specific
Global Both

9 3 Between tokens
(punctuation and
function words)

Ellipsis (three dots), modal verbs,
various function words, quotes

Function words,
punctuation

Moderately strong Large Both

9 4 From CLS Names, punctuation, pronouns Content words,
function words,
punctuation

Strong Global Both, but
mainly
second

9 6 From CLS Names Content words Moderately strong Global Both
9 7 Between tokens

(punctuation and
function words to
verbs)

Auxiliary verbs, frequent verbs,
narrational verbs, rare verbs,
punctuation

Content words,
function words,
punctuation

Moderately strong Large Both

9 8 From CLS Conjunctions, prepositions,
adverbs

Function words Moderately strong Large Second

9 9 From CLS Names Content words Strong, instance-
specific

Global Both

9 11 From CLS Names, punctuation Content words,
punctuation

Strong Large Second

9 11 Between tokens
(verbs to
punctuation and
function words)

Full stops, commas, question
marks, other punctuation, verbs,
prepositions

Content words,
function words,
punctuation

Moderately strong Local Both

9 12 From CLS Names Content words Moderately strong Global Both
10 1 From CLS Quotes, full stops Punctuation Moderately strong Global Both
10 2 From CLS Names Content words Moderately strong Global Both
10 3 From CLS Names, quotes Content words,

punctuation
Moderately strong Large Second

10 4 From CLS Names, verbs related to names Content words Strong Large Second
10 4 Between tokens

(punctuation,
function words
and names to
function words)

Auxiliary verbs, conjunctions,
names, punctuation

Content words,
function words,
punctuation

Moderately strong Medium Both

10 5 From CLS Full stops, pronouns, names Content words,
function words,
punctuation

Moderately strong Global Both

10 5 Between tokens
(names to
pronouns)

Names, pronouns Content words,
function words

Moderately strong Medium Both

10 6 From CLS Full stops Punctuation Moderately strong Global Both
10 7 From CLS Verbs Content words Moderately strong,

instance-specific
Global Both

10 8 From CLS Full stops, pronouns, adverbs,
verbs

Content words,
function words,
punctuation

Moderately strong,
instance-specific

Global Both

10 9 From CLS Names, punctuation Content words,
punctuation

Moderately strong,
instance-specific

Large Second

10 10 From CLS Names Content words Moderately strong Large Second

10 11 From CLS Names, verbs related to names Content words Moderately strong,
instance-specific

Large Second

10 12 From CLS Full stops, commas, prepositions,
names

Content words,
function words,
punctuation

Moderately strong Global Both

11 1 From CLS Names, narrational verbs,
stylistically variable words,
diatopic variations, full/short
form variations

Content words,
function words

Moderately strong Global Both

11 2 From CLS Names, adverbs, prepositions,
pronouns, rare punctuation

Content words,
function words,
punctuation

Moderately strong Global Both

11 3 From CLS Full stops Punctuation Moderately strong Global Both
11 4 From CLS Full stops Punctuation Moderately strong Global Both
11 5 From CLS Full stops Punctuation Moderately strong Global Both
11 6 From CLS Full stops, pronouns, names Punctuation Moderately strong,

instance-specific
Global Both

11 7 From CLS Full stops, pronouns, names Punctuation Moderately strong,
instance-specific

Global Both

11 8 From CLS Names, punctuation, pronouns Content words,
function words,
punctuation

Moderately strong,
instance-specific

Global Both

11 9 From CLS Names, pronouns Content words,
function words

Moderately strong,
instance-specific

Large Second

11 10 From CLS Names, narrational verbs,
adverbs, pronouns, conjunctions,
grammatical affixes, full stops,
rare punctuation

Content words,
subword tokens,
function words,
punctuation

Moderately strong,
instance-specific

Global Both, but
mainly
first

11 11 From CLS Names, narrational verbs,
adverbs, pronouns, conjunctions,
grammatical affixes, full stops,
rare punctuation

Content words,
subword tokens,
function words,
punctuation

Strong, instance-
specific

Global Both, but
mainly
first

11 12 From CLS Names, pronouns, adverbs,
punctuation

Content words,
function words,
punctuation

Moderately strong,
instance-specific

Global Both, but
mainly
second

12 1 From CLS Names, narrational verbs,
punctuation

Content words,
punctuation

Moderately strong,
instance-specific

Global Both, but
mainly
first

12 2 From CLS Full stops, other punctuation,
names

Content words,
punctuation

Moderately strong,
instance-specific

Global Both

12 3 From CLS Narrational verbs, function
words, punctuation, uniform
attention (certain regions)

Content words,
function words,
punctuation,
uniform attention

Moderately strong,
instance-specific

Large Second

12 4 From CLS Narrational verbs, function
words, punctuation

Content words,
function words,
punctuation

Moderately strong,
instance-specific

Large First

12 5 From CLS Narrational verbs, function
words, punctuation

Content words,
function words,
punctuation

Weak Global Both

12 6 From CLS Names, narrational verbs,
punctuation

Content words,
punctuation

Moderately strong Global Both

12 7 From CLS Names, topical nouns Content words Strong Large First
12 8 From CLS Names, topical nouns Content words Moderately strong Global Both
12 10 From CLS Names, topical nouns, narrational

verbs, stylistically variable words,
diatopic variations, full/short
form variations, infrequent words,
various mistakes, punctuation

Content words,
special function
words, mistakes,
punctuation

Moderately strong Global Both

12 11 From CLS Names, topical nouns, narrational
verbs, stylistically variable words,
diatopic variations, full/short
form variations, infrequent words,
various mistakes, punctuation

Content words,
special function
words, mistakes,
punctuation

Weak, instance-
specific

Global Both

12 12 From CLS Full stops OR Names, topical
nouns, narrational verbs,
stylistically variable words,
diatopic variations, full/short
form variations

Content words,
special function
words, punctuation

Moderately strong,
instance-specific

Global Both

