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Abstract—Assessing the risk of wildfires over the entire globe
can be crucial in avoiding harm to wildlife, economy, properties
and humans. This is known to be a challenging task. Here, a
machine learning model is trained on a dataset composed of
remote sensing data variables such as topography, vegetation and
weather. The model is able to assess the risk of fire with a spatial
resolution of 1000m/pixel. It achieves optimal results compared
to other state-of-the-art architectures. Most of the variables in
the dataset are found to be critical for the task, while few were
disregarded. Particular focus has been given to collecting data
across a variety of landscapes. Specifically, samples from Africa,
Australia, Asia, Europe, South America and the US are included.
This research shows the potential for deploying global wildfire
risk assessment applications.

I. INTRODUCTION

Climate change is affecting the Earth with extreme events
difficult to be foreseen. Wildfires are one of them. They are
dangerous, devastating, occurring both naturally or human-
induced. These events damage the economy, properties,
wildlife and environment. Mizutori and Guha-Sapir (2017)
mention that from 1998 to 2017 there were 254 wildfire
disasters around the world. The economical loss for these
events is estimated at 68 billion US dollars (nearly the total
GDP of Luxembourg in 2017). The First Street Foundation
(2022) published a report for the year 2022 stating that
in the US, nearly 72 million homes have an average risk
of being damaged by a wildfire, while 4 million properties
have an extreme or severe risk. Chen et al. (2021) identified
that short-term exposure to wildfire-related fine particulate
matter (PM2.5) in the air is linked to an increased risk of
mortality. Climate change also contributes to forest decline,
increasing water scarcity, water evaporation and tree mortality
(Park Williams et al. 2013). All these factors contribute to
increasing the available fuel source for wildfires.

The National Interagency Fire Center (NIFC) (2021) of the
United States, reported 58,950 wildfires across the country.
For a total of 40,963 Km2 burned (nearly the size of the
Netherlands). Wildfire records reveal that in the last 10 years
the number of wildfires in the US has decreased. However, the
area of impact has increased, causing more damage. A report
additionally showed that the extent of area burned by wildfires
each year seems to have increased since the 1980s (US EPA
2021).
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Given the rising damage of wildfires and an ongoing climate
change process, prevention is the only means of managing and
reducing costs to humans and nature. Stein et al. (2013), state
that communities with strong wildfire prevention programs are
likely to have fewer human-caused ignitions.

It is more expensive to fight fires and rebuild what was
destroyed than it is to avoid them. This can be done by educat-
ing the community, by instructing the government to provide
funds, equipment and expertise, essential for preparedness in
case of emergency. More can be done also by monitoring the
condition of trees, cutting trees near lines, burning critical fuel,
monitoring the weather and soil condition (Stein et al. 2013).
Given many factors that contribute to the start of a fire, such
as human intervention, wind, soil and air moisture, predicting
where a wildfire could start is challenging. Forecasting the
risk or the area in which a wildfire can occur could lower the
impact on the economy and ecologic damage (Jazebi, De Leon,
and Nelson 2019, Surya 2020).

Predicting the path, intensity or occurrences of wildfires
is difficult because of complicated meteorological scenarios,
complex terrain effects on the airflow and spatially hetero-
geneous and physically elaborated fuel structures. Modelling
and predicting wildfires is a multi- and inter-disciplinary
challenge addressed by various fields such as engineering,
ecology, physics, atmospheric science, chemistry, mathemat-
ics, forestry, and other fields, all linked by computational
science (Coen and Douglas 2010).

Historical fire data is hard to rely on due to various biases,
such as limited observations or reporting. It also requires
hand-labelling, a time consuming task. Remote sensing is the
process of detecting and monitoring some physical charac-
teristics of an area by measuring its reflected and emitted
radiation at a distance, typically from satellites (What is remote
sensing? U.S. Geological Survey (USGS) (2021)). It provides
reliable and frequent data that overcomes the historical data’s
limitations. A copious amount of data allows researchers to
build more robust models that can be applied on a large scale.
However, building a model relying purely on satellite data is
sub-optimal. Satellites cannot cover the entire earth in one
single instance but need to rotate around the globe. Their data
can also be obstructed by clouds. These issues can be partially
solved by estimating the data from ground data or inferred
from past data.

In recent years, studies constructed models and gathered
different types of remotely sensed products in order to predict
wildfires.
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The first quantitative tool for predicting the spread and
intensity of forest fires was developed by Rothermel (1972).
The model attempted to mathematically describe the physical
and chemical processes of fire. It required variables such as
fuel, winds, slopes, moisture, climate and weather. Although
this model was not complex, it was reliable and easy to use.
This was an essential component to predict the fire spread and
intensity on the spot (Wells (2008)).

The Global Fire Atlas presented in the paper by Andela et al.
(2019), is a worldwide dataset that allows to dynamically track
individual fires, tracing their size, duration, daily expansion,
fire line length, speed, and direction of spread. The data
used in the research is derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) Collection 6 burned-
area dataset. Such algorithms are useful for fire management
and investigation of the vegetation–fire feedback, as well as
climatic and human controls on global burned area.

Artés et al. (2019), developed a data mining algorithm
(GlobFire) to create a global wildfire database to pursue
analysis on fire regimes and fire behaviour. The input to the
model is composed of the burnt area Collection 6 (MCD64A1)
from the NASA’s MODIS. GlobFire characterizes the fires and
their perimeters. It is comparable to the Global Fire Atlas,
but it focuses more on the fire patch behaviour than on the
characterization of the fire events. Although their goals are
similar, they rely on a different methodology. The algorithm is
available on the Global Wildfire Information System platform.

With recent progress of Artificial Intelligence (AI) in the
field of Machine Learning (ML), the task of monitoring and
predicting a wildfire can benefit from such advances. ML can
identify highly complex patterns ignored by other methods.
ML techniques require a vast amount of data to be trained.
These algorithms are commonly trained using supervised or
unsupervised learning. The first requires a label linked to each
sample in the dataset. Labelling is usually done manually to
ensure that the model will be properly trained. The second
method does not require labels. The model learns to group
together samples by their properties, inferring knowledge from
these.

Sayad, Mousannif, and Al Moatassime (2019), built a model
to predict wildfire occurrences in Canada between 2013 and
2014. The dataset is composed of data relative to the state of
the crops, the state of the soil, and a fire indicator. The last is
taken from the MOD14A1 V6 dataset. It provides a daily fire
mask composites at 1km resolution derived from the MODIS
4- and 11-micrometer radiances. It gives direct information
about the confidence of fire detected (Justice et al. (2002)).
They collected 804 instances (386 positive and 418 negative
labels). After preprocessing the dataset, the team trained a
Multi-Layer Perceptron (MLP) Classifier and a Support Vector
Machine (SVM) Classifier algorithm. Both models achieved
a high score on accuracy and F1-score (respectively 98.3%
and 97%). Their results are promising for further research on
wildfire prediction using Neural Networks (NNs).

A second approach that applies machine learning was
proposed by Radke, Hessler, and Ellsworth (2019). The team

leveraged deep learning to predict wildfire spread. The algo-
rithm called “FireCast” is composed of a 2D Convolutional
Neural Network (CNN) that is trained on supervised data.
FireCast merges AI and Geographic Information Systems
(GIS) with satellite imagery, elevation data, weather data, and
historical fire perimeters. The model predicts the area that is
going to burn during the following 24 hours given the initial
inputs. Such algorithms reduce the computation time required
for critical decisions. Methods such as the Wildland Fire
Decision Support System (WFDSS)1 requires a large amount
of appropriate data. The team had to interpolate weather data
and apply data augmentation to generate a sufficient amount
of training data. FireCast can outperform traditional wildfire
modelling software, with an average accuracy of 87.7%.

Following the previous approach, Huot et al. (2021) con-
structed a dataset containing historical wildfire records, topog-
raphy of the US, weather data (surface temperature, precipi-
tation, winds, and humidity), USA drought data, vegetation
indices, population density and an energy release component.
Their dataset contains 18,545 samples, 58% in which the
fire increases in size, 39% in which the fire decreases in
size and for the remaining 3%, the fire stays the same size.
Given the element of time introduced as a variable in the
dataset, the team used an autoencoder, as it would be more
effective than a simple CNN. This type of machine learning
algorithm is a sequence to sequence model. It is commonly
used for tasks such as machine translation, voice recognition
and video captioning. An autoencoder can map sequences of
different lengths to each other. Through this means, the team
can achieve good results in predicting the next day wildfire
(Huot et al. 2021). The model was more accurate when it was
given lower resolution images than when it was given higher
resolution ones. It was able to detect the correct next day fire
pixels with an accuracy of 35% for images 1 km x 1 km and
67% for images 8 km x 8 km. The team considers a fire pixel
as a fire, regardless of its intensity.

Overall, previous research showed that remote sensing data
is an essential tool to predict wildfires globally. This data can
be obtained daily from satellites, as well as being estimated.
This work builds on the research of Sayad et al. by:

• designing a ML architecture with the prospect of near
real-time capabilities;

• comparing the proposed model with other state of the art
models;

• training a model capable of assessing the risk of wildfire
across a variety of landscapes;

• investigating a range of remote-sensing data sources from
GEE;

The first step toward dealing with such a complex task is
constructing a dataset. This is composed by images extracted
from Google Earth Engine (GEE). After gathering and prepro-
cessing the dataset, it is split into training and validation. The
dataset is fed into a CNN that classifies each image’s pixel as

1The WFDSS is a web-based geospatial fire management portal used by
some state and federal fire agencies to manage and document large fires
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Figure 1: The image shows the location of the samples that compose the training and validation sets.

1 (probability of fire in the area) or 0 (no probability of fire in
the area). In the next sections an explanation of the features in
the dataset will follow, section II. The ML architectures used
are explained in section III. After describing the experiments
in section IV, the results are presented in section V and then
discussed in section VI. Finally, conclusions are drawn in
section VII based on the data gathered in the experiments.

II. DATA

Using GEE, each image is extracted from different areas
around the globe, from the years 2018, 2019 and 2020. In
particular, focus has been given to fire seasons in Africa, Asia,
Australia, Europe, South America and USA (an example is
shown in Figure 1).

The features extracted from GEE have been chosen with
a broad geographical and historical coverage, as well as
with regards to missing data. Previous research composed
their dataset with only two features. Here, 20 remote-sensing
data sources are investigated. Spatial and temporal resolution
details about the features are shown in Table I.

• Elevation data is from the NASADEM dataset, a mod-
ernized collection of the Digital Elevation Model (DEM)
and associated products generated from the Shuttle Radar
Topography Mission (SRTM) data (Crippen et al. 2016).
The elevation of water bodies is not included in this
dataset.

• History LAI and FAPAR data are from the NOAA
Climate Data Record. Its values are computed globally
over land surfaces, but not over sparsely vegetated areas,
permanent ice or snow, permanent wetland, urban areas,
or water bodies. The history of the data refers to a 10
year mean of Leaf Area Index (LAI) and Fraction of
Absorbed Photosynthetically Active Radiation (FAPAR)
in the month in which the image has been extracted. This
feature holds information about the vegetation status of
the area.

• Land Surface Temperature (LST) data is from the
ERA5-Land dataset. It provides an evolutionary view of

Image feature Spatial resolution Temporal resolution

Elevation 30 m/pixel 1 year
History LAI 5,566 m/pixel 10 years
History FAPAR 5,566 m/pixel 10 years
LST 11,132 m/pixel daily
History LST 4,638 m/pixel 5 days
Soil temperature 11,132 m/pixel daily
History soil temperature 11,132 m/pixel 5 days
Daily precipitations 5,566 m/pixel daily
History precipitations 5,566 m/pixel 5 days
Air pressure 11,132 m/pixel daily
Wind u component 11,132 m/pixel daily
Wind v component 11,132 m/pixel daily
Daily humidity 11,132 m/pixel daily
History humidity 11,132 m/pixel 5 days
Daily LAI high 11,132 m/pixel daily
Daily LAI low 11,132 m/pixel daily
Daily NDVI 463 m/pixel daily
8 days Evapotranspiration 500 m/pixel 8 days
History fire 1,000 m/pixel 1 year
Land cover 500 m/pixel daily

Table I: The table lists all 20 image features included in the
dataset, with their respective spatial and temporal resolutions.

land variables over several decades. ERA5-Land data is
available from 1981 up to three months from real-time.
Land surface temperature is measured at 2m above the
surface. The maximum daily temperature is obtained for
this feature.

• History LST data is from the Global Change Observation
Mission (GCOM) dataset. This feature consists of the
mean land surface temperature over five days prior to the
image being captured.

• Soil temperature and history soil temperature data are
from the ERA5-Land dataset. This is the temperature of
the soil in layer 1 (0 - 7cm). The daily maximum soil
temperature is extracted for every image. The history is
then the mean soil temperature value of five days.

• Daily precipitations and history precipitations data are
from the Climate Hazards Group InfraRed Precipitation
with Station dataset (CHIRPS). It is a 30+ year quasi-
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Figure 2: The graph shows a sample from the training set of the 20 remote-sensing data sources extrapolated from the GEE.
Each image is 200 by 200 pixels.

global rainfall dataset. The precipitation history is the
mean value of rainfall over five days.

• Air Pressure data is from the ERA5-Land dataset. The
daily minimum air pressure is obtained for every image.

• Wind u and v component data is from the ERA5-Land
dataset. Both components give information about the
wind direction. The daily mean of the two components
is extracted.

• Daily humidity and historical humidity data are from
the ERA5-Land dataset. A daily mean of the first com-
ponents is extrapolated, while the history is a five days
mean.

• Daily LAI high and daily LAI low data are from
the ERA5-Land dataset. LAI low and high stands for
respectively high and low vegetation type. It is obtained
a daily minimum value of the two components.

• Daily NDVI data is from the MODIS dataset. The Nor-
malized Difference Vegetation Index (NDVI) quantifies
vegetation by measuring the difference between near-
infrared (which vegetation strongly reflects) and red light
(which vegetation absorbs) (What is NDVI 2022).

• 8 days Evapotranspiration data is from the MODIS
dataset. Evapotranspiration/Latent Heat Flux product is
an 8-day composite product. It is the sum of evaporation

from the land surface plus transpiration from plants. The
pixel value for the Evapotranspiration is the sum of all
eight previous days (Evapotranspiration and the Water
Cycle 2018).

• Fire history data is from the MODIS Terra Thermal
Anomalies & Fire Daily Global 1km dataset. This is
the maximum intensity per-pixel of fires which happened
over a period of 1 year prior to the image. An area
devastated by a fire is unlikely to be lightened up again,
since it is lacking fuel to burn.

• Land cover data is from the MODIS Land Cover Type
Version 6 dataset. This is derived using supervised clas-
sifications of MODIS Terra and Aqua reflectance data.
The band Land Cover Type 1 is extracted to differentiate
between flammable and not flammable land (such as wa-
ter bodies, urban areas, wetlands, barren and permanent
snow or ice).

For each image, its label showing the pixel-fire instances is
retrieved from the MODIS Terra Thermal Anomalies dataset.
A fire is converted into a fire pixel regardless of its intensity.
The dataset is naturally highly unbalanced, as the dataset
presents more no-fire instances than fire instances (Table VII).
Before feeding the dataset into the model, all images are
preprocessed. In GEE clouds are exported as empty pixels.
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On average, all features present 4% of missing pixels. Empty
pixels replaced with zeros or the mean, depending on the
feature:

• The elevation feature presents empty pixels correspond-
ing to water bodies or irregularities. These are replaced
with zeros.

• Empty pixels in the history fire feature are replaced by
zeros because of the uncertainty of being a fire.

• For the land cover feature, empty pixels are treated as a
non flammable area.

• All missing values from other features are replaced with
their mean. This is due to constraints on time and easiness
of implementation.

The dataset is composed of 900 instances for the training set
and 150 for the validation set. Each image is 200 x 200 pixels,
with a resolution of 1,000 m/pixel. The area distribution of the
datasets is shown in Table II.

Dataset Africa Australia Asia Europe South America USA

Training set 491 137 0 0 196 76
Validation set 0 0 0 16 0 134

Table II: Geographical area distribution in the datasets.

The distribution depicted in Table II is not equally split due
to the possibility of finding the same fire instance in multiple
samples.

III. METHODS

Sayad et al. built a NN and a SVM, achieving over 97%
accuracy in predicting wildfires in Quebec. This paper studies
the risk of wildfire as an image segmentation task. Instead of
classifying the entire picture, the model determines if each
pixel is at risk of fire. The size of the model’s output is
the same as its input. Therefore, the prediction is an image
mask, marking fires over the area of interest. This section
explains how Autoencoder, U-Net and CNN architectures
are configured, which loss functions are used, and which
classification metrics are implemented.

A. Autoencoder architecture

Figure 3: Architecture of the autoencoder.

For the task of assessing the risk of wildfires, an autoencoder
is the first architecture presented. It is shown in Figure 3.
The autoencoder is composed of six main blocks. The first
three convolutional layers decrease the number of filters,
compressing the image, while the last three increase them,
expanding the image (these are respectively 40, 20, 5, 5, 20,
40 for each convolutional layer). All max pooling and up
sampling layers have a kernel of 2 by 2 pixels. The function
tanh in used for all activation layers. As underlined by the
study of Nieradzik et al. (2021), this function improves the
accuracy of image segmentation tasks when using the dice loss
function. The last layer converts the outputs of the precedent
ones to a single filter through a sigmoid activation function.
Every layer retains the same input size for its output. The
model has a total of 36,596 parameters.

B. U-Net architecture

Figure 4: Architecture of the U-Net. The first half of the figure
describes the elements of the down and up blocks, as well as
they interaction in the model.

The second model is a U-Net. This architecture is known
to achieve optimal performance in tasks such as biomedical
image segmentation. Its implementation is shown in Figure 4.
The model is composed by five blocks that compress the input
(called down blocks) and four blocks that expand it (called up
blocks). The inner layers of each are illustrated in Figure 4.
The number of filters from the down blocks 1 to 5 are 64,
128, 256, 512 and 1,024, while from the up blocks 1 to 4
the number of filters are 512, 254, 128, 64. Each up block
accepts as input a concatenation of the output of the previous
block passed by a convolutional 2d transpose, with the output
of the second convolutional layer of a down block with the
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same nuber of filters. The last layer converts the outputs of the
preceding ones to a single filter through a sigmoid activation
function. This U-Net architecture is borrowed from the library
Tensorflow (Martı́n Abadi et al. 2015). The model has a total
of 33,674,753 parameters.

C. CNN architecture

Figure 5: Architecture of the CNN.

The CNN architecture consists in multiple blocks of con-
volutional, batch normalisation, and activation layers as illus-
trated in Figure 5. Each convolutional layer retains the original
size of the image while increasing the number of filters. These
are 40, 60, 30 and 1 respectively for the first, second, third and
fourth block. The inner blocks uses a tanh activation function
while the other blocks rely on the ReLU activation function.
The number of inner blocks is optimised in section IV. The
last layer converts the outputs of the precedent ones to a single
filter through a sigmoid activation function. The model has
587,177 parameters in total.

D. Loss function

Multiple loss functions such as Mean Squared Error (MSE),
Binary Cross Entropy (BCE) and Focal Loss were tested.
These showed poor results and therefore do not seem to
be suited for this specific tasks. On the other hand, the
dice loss, a loss function adapted from the dice coefficient,
showed optimal results. This has been implemented along the
three architectures presented previously. The dice coefficient
is mostly used as a metric in computer vision to calculate
similarities between two images (Jadon 2020). Dice score
measures the relative overlap between the prediction and the
ground truth. Its value is independent of the size of objects,
i.e. large objects contribute to its value as much as small ones.

Given y pred as the image predicted from the model and
y true as the label, the dice loss is calculated by first comput-
ing its coefficient as follows:

DICE COEF(y pred, y true) =
2 · |y true · y pred|
|y true|+ |y pred|

(1)

DICE LOSS = 1− DICE COEF (2)

Figure 6: Graphic representation of the dice coefficient.

E. Classification Metrics

Metrics such as accuracy, precision and f1 score metrics
are not suited for this task. Instead, four classification metrics
have been used during the training and evaluation phases.
The first, fire ratio, calculates the ratio of correctly predicted
fires instances over the total number of true ground fires
instances. In binary classification, this metric is commonly
called sensitivity. Before calculating the fire ratio, the output
of the model undergoes a threshold (set to 0.5) to translate the
predictions to a binary value:

thr(image) =

{
if pixel > 0.5 1

else 0
(3)

FIRE RATIO(y pred, y true) =
|thr(y pred) · thr(y true)|

|thr(y true)|
(4)

Figure 7: The figure shows an example of the process to
calculate the fire ratio of a predicted image, given its ground
truth. The fire ratio of this example is 0.8.

The second is the Intersection Over Union (IOU). It also
known as the Jaccard similarity coefficient (Rahman and Wang
2016). It is used to describe the extent of overlap of two sets.
For instance, it can be found in object detection tasks where
a model is trained to fix a box around an object. A visual
representation of the IOU formula is shown in Figure 8.
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IOU is implemented as follows:

IOU(y pred, y true) =
|abs(y pred · y true)|

|y true|+ |y pred| − |abs(y pred · y true)|
(5)

with abs as the absolute value.

Figure 8: Graphic representation of the IOU.

The formula for the fourth metric, the no fire ratio, first
converts the y pred and y true to their opposite (Eq.6), then
it follows a similar formula as the fire ratio.

imageI(image) =

{
if pixel > 0.5 0

else 1
(6)

NO FIRE RATIO(y pred, y true) =
|thr(y predI) · thr(y trueI)|

|thr(y trueI)|
(7)

Figure 9: The figure shows an example of the process to
calculate the no fire ratio of a predicted image, given its ground
truth. The no fire ratio of this example is 0.75.

The fifth metric is the dice coefficient, Eq.1. The last two
metrics are rough indicators for the model’s training progress.

The no fire ratio is used to validate the model in the case
of overfitting or underfitting. For instance, a high value of
no fire ratio and a low value for the fire ratio shows that
the model is reaching a local minimum by predicting only
zeros (the most present class in the dataset). Training the
model to achieve a high no fire ratio results in an unrealistic
model. Given the dataset distribution, independent factors that
could cause a fire (i.e. human intervention, sudden weather
changes, climate change) or missing data, the possibility that
a wildfire could start in a non fire pixel area is realistically
always higher than zero (excluding areas in which a fire cannot
ignite). Therefore, training the model only on the assumption
that certain conditions result in a non fire area could be biased
and realistically not possible.

IV. EXPERIMENTS

A. CNN Optimisation

To achieve optimal results for the CNN architecture, as
seen in Figure 5, parameters such as number of inner blocks,
number of incremental filters in the inner blocks’ convolutional
layers, learning rate and dropout are optimised following a grid
search method. Everything is programmed in Python using
tensorflow (Martı́n Abadi et al. 2015) on Colab with a single
Tesla T4. The following values are explored:

Parameter Values

No. inner blocks {0, 2, 4, 6, 8}
No. incremental filters {10, 20}
Dropout {0, 0.1, 0.3, 0.5}
Learning rate {0.01, 0.001, 0.0001}

Table III: Search space for the CNN’s parameters.

By incremental filters is meant that the number of filters
per successive convolutional layer increases by an x amount.
Each combination of parameter runs for 30 epochs. The run
time is between 15 min to 1 hour. Runs are pruned if the fire
ratio of the epoch is 0 after 4 epochs. This behaviour is due to
the model getting caught in a local minima. After ruling out
bad parameter combinations, the optimal models are run for
5 times, creating a confidence measurement of their results.

B. CNN variability

Every time a CNN is initialised, new weights are assigned to
its inner layers. This creates variability in the predictions. To
validate the model, the variability of the CNN is calculated by
initialising and training 10 different models with the optimised
parameters defined in section IV-A. The computation of the
results follows these steps: first, the output of the predictions
undergo a threshold as shown in Figure 9. Secondly, the output
of 10 models is summed for each image. Thirdly, The mean
of each picture is calculated. An illustration of this process is
shown in the following Figure 10.
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Figure 10: The picture shows an example of how the CNN
variability is calculated given 10 outputs from the different
models.

C. Comparing architectures
In this section, the CNN architecture is compared to a U-

net and an autoencoder. The latter two models are trained
with the same dataset as the CNN. U-net and autoencoder
are optimised with a grid search approach. The search space
for the parameters is listed in Table IV. The two optimiser
used for the two models are the Adaptive moment estimation
(Adam) and the Stochastic gradient descent (SDG).

Parameters

Model Optimisator Learning rate

Autoencoder {Adam, SDG} {0.01, 0.001, 0.0001}
U-Net {Adam, SDG} {0.01, 0.001, 0.0001}

Table IV: Search space parameters for the autoencoder and
the U-Net.

D. Feature Analysis
In this paragraph, the model’s response to input adulteration

is analysed. The aim of this experiment is to reduce the number
of redundant features in the dataset and understand which of
these are relevant to predict a risk of wildfire. Decreasing the
size of the dataset also allows to increase the total number
of trained samples. Machine learning methods are known
for being data-eager. Therefore, more samples could increase
accuracy and generalisation of the model. This experiment is
performed on the evaluation set. For each of the 19 features
and for each 10 variation values, a new evaluation dataset is
created. Given the validation set, for each feature a minimum
and a maximum value is extracted by examining all samples.
These are called featmin and featmax. A positive or negative
amount of variation to the feature is calculated as follows:

variation(amount) =
featmax − featmin

100
∗ amount (8)

adulterated feature ={
if feature + variation(amount) > featmax featmax

if feature + variation(amount) < featmin featmin

(9)

After calculating the new value of the feature, this is
constrained between featmin and featmax.

The features land cover is excluded from this experiment
because it would require more investigation and does not suit
the format of this experiment.

After the feature analysis, the CNN is trained without
features that are assumed to be redundant. This step validates
the previous analysis.

E. Spatial dependence

Creating a wildfire risk assessment model able to work over
the entire planet is challenging. The dataset fed to the model
needs to include a variety of samples from different areas of
the world. Multiple factors could ignite a fire in different parts
of the world: human intervention, lack of fire management,
weather, etc. In this section, the area’s characteristics influence
on the model’s ability to generalise and predict the risk of a
wildfire is studied. Asia is added to this test. Each set of tests is
done by first excluding one geographical area (this composes
the validation set, 150 samples), then an equal number of
samples per area constructs the training set (900 samples).
Figure 18 depicts the location for each sample in the dataset
of this experiment.

V. RESULTS

All results presented in this section are computed on the
validation set. The latter has been constructed with regard to
samples overlap, being independent from the training set.

Figure 11 shows five areas in which the model predicts
wildfires. Starting from the first image to the left. The CNN
is able to locate the area near to the fire, although covering it
partially. The second picture covers one of the fires entirely
while missing the other. For the third image, the model catches
all the fire instances overshooting. In the fourth sample the
model is not able to locate the fire. In the last picture, the
model successfully cover the location of the fires.

A. CNN optimisation

The CNN architecture has been designed with the prospect
of near real-time capabilities. Following a grid search method
with the parameters in Table III, the model is optimised. For
practical reasons, the results in Table V are split between one
of the number of filters.

Models Fire ratio No fire ratio Dice coefficient IOU

Model 1 0.82 0.87 0.0059 0.0029
Model 2 0.80 0.86 0.0059 0.0029

Table V: The table presents results for the CNN parameters’
optimisation. For practical reasons, runs were split between
10 and 20 filters. Model 1 has parameters: 6 blocks, 10 incre-
mental filters and a dropout of 0.3. Model 2 has parameters:
4 blocks, 20 incremental filters and a dropout of 0.5.

Initial results show that the models with 0 inner blocks
and a dropout of 0 underfit. These are excluded from deeper
investigations. After 20 epochs, all models highly fluctuate
with all three learning rates, but optimal results are achieved
with the two lowest learning rates. Therefore, an exponential
decaying learning rate with an initial value of 0.0008 is set
for all optimisation runs.
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Figure 11: These five pictures are an example of five predictions from the CNN. In red is shown the fire ground truth, while
the gradient from white (0.0) to black (1.0) represents the output of the model.

B. CNN variability

10 different CNNs were generated and tested on the valida-
tion dataset. The summary of the findings are shown in Figure
12. In order to obtain a representative graph, 10,000 values for
each class have been randomly taken out of the results.

Figure 12: The graph shows the variability of the model on its
predictions. In red, the fire instances predicted by the model
and in blue the non fire instances predicted.

Looking at the Figure 12, is visible that over all the fire
predicted by the model, around 20 % of these are wrongly
labelled. The same case is for the no fire instances. In the bar
plot, samples are mostly spread between the top and bottom
with few instances in the middle.

Figure 13: The image is an sample computed by the 10 models.
It is calculated using the method illustrated in Figure 10.

Figure 13 shows the calculated spatial variability obtained
by 10 models on a single sample from the validation set. The
prediction of the models coincide with most of the true ground
fire instances. The fire ratio score for this sample is 0.78.

C. Comparing architectures

After optimising the autoencoder and the U-Net, both mod-
els showed poor results with the Adam optimiser. Therefore,
the SDG optimiser is used for both models. The autoencoder
and the U-Net performed best with a learning rate of 0.1 and
0.01, respectively. After their optimisation, all three models
are compared in this section and results are shown in Table
VI.

Models Fire ratio No fire ratio Dice coefficient IOU

CNN 0.82 0.87 0.0059 0.0029
U-Net 0.51 0.52 0.0037 0.0018
Autoencoder 0.55 0.60 0.0036 0.0018

Table VI: This table shows results for a CNN, a U-Net and an
autoencoder that are trained and evaluated to predict the risk
of wildfires.

Looking at table VI, the CNN outperforms the U-Net and
the autoencoder achiving a fire ratio of 0.82. The autoencoder
has slightly better performances than the U-Net for the fire
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ratio and the no fire ratio. This will be further discussed in
the next section.

D. Feature analysis

A range of values were added or subtracted to each feature
in the validation dataset. This resulted in different outputs from
the model. Figure 14 shows results for the fire ratio metric.

Figure 14: The scatterplot presents the fire ratio results from
the variation in each feature. The baseline is the CNN’s
performance without feature alterations. Positive increments
have a green color scheme, while negatives have a blue color
scheme.

Looking at Figure 14, a x% amount increase or decrease
for a feature is not equivalent to a x% amount increase or
decrease in the fire ratio. Out of all the features, history of soil
temperature, history of humidity, U and V wind component
and LAI low and high show strange patterns. These are
iteratively removed from the dataset in order to verify their
relevance (Figure 17).

The second set of results is shown in Figure 15, while Figure
17 shows the elimination process step by step. Removing u
and v components of the wind results in a slightly lower fire
ratio score than the baseline. Removing the history humidity
feature increases the confidence interval of the results while
decreasing its score. Removing the history of soil temperature
decreases the fire ratio score of the model. Finally, removing

wind and LAI features increases the fire ratio score. Therefore,
these features are not relevant for the fire risk assessment task.

Figure 15: The figure show results for the fire ratio metric by
removing some features from the dataset. Each set of tests is
run for 5 times and its confidence interval is shown by the
line over the bars.

E. Spatial dependence

Six test sets are generated for this experiment. The results
for inferring the geographical area of Africa, Asia, Australia,
Europe, South America and the USA are shown in Figure 16.

Figure 16: The bar plot shows the fire ratio of different trained
CNNs. Each set of tests is run for 5 times and its confidence
interval is shown by the line over the bars.

Looking at Figure 16, the score for excluding an area is
not uniform across all areas. The best score which is close to
previous baseline results, is achieved by inferring on the US
area with a score of 0.64. The worst scores are on the Asian
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and European areas, 0.8 and 0.1 respectively. Australian, South
American and African areas obtain a fire ratio of 0.50, 0.38
and 0.32 respectively.

VI. DISCUSSIONS

A. Data

The samples gathered from GEE do not cover the entire
globe either because there is no satellite data available or there
have not been fire instances in the area. But mostly, it would
convolute the research. One issue with the retrieving images
from GEE is the presence of identical fire instances in multiple
images. Randomising the sampling could cause wrong results.
A better sample selection could be achieved by designing a
better GEE algorithm. Images have been manually selected
with reference to the date and location of extraction, creating
an imbalanced number of samples per areas.

Looking at Figure 11, the model seems to gain a knowledge
of where a fire could happen. Fires could be mislabelled due
to missing data, fires not started by natural events, etc.

B. CNN optimisation

The exponential learning rate seems to aid the models,
achieving consistent results after 30 epochs. Fluctuation is
caused by the learning rate being too large, this leads the opti-
miser into missing the local minima, circulating it. Observing
Table V, the CNN with 6 inner blocks and 10 incremental
filters per convolutional layer achieved optimal results in
predicting the risk of wildfires. This model was more capable
of generalising. The higher number of filters results in an
increase of the model’s complexity, performing slightly better
on the training set but not on the evaluation one. The model
with 10 incremental filters is used for consecutive tests.

C. CNN variability

Looking at the Figure 12, the CNN’s results confirm previ-
ous shown results in Table V. The CNNs do not seem to have a
high variance over their results. The count of scores that are in
between 0.2 and 0.8 relative to the total number of instances
is not high (around 2,500). This underlines that the model
can label wildfires confidently with some margin of error.
These mislabelled fires could also be humanly induced such as
accidental or intentional (as an attempt to reduce critical fuel
in a forest). The events cannot be predicted or even in most
cases, recorded. Furthermore, the low uncertainty presented in
the graph emphasises the model’s ability to generalise. This
factor is essential when building a ML algorithm at global
scale.

D. Comparing architectures

Table VI compares the three models over the fire risk
assessment task. The CNN performs best by achieving a score
of 0.82 and 0.87 for the fire ratio and the no fire ratio,
respectively. Comparing the CNN with the autoencoder: the
CNN has 16 times more parameters than the autoencoder. This
allows the former to learn a bigger number of patterns. Addi-
tionally, dropout and batch normalisation layers aid the CNN

to a better regularisation. The U-Net interestingly achieves
mediocre results in the fire risk assessment task. This could be
due to a lack of dropout layers, although the model already
contains batch normalisation layers to improve its regulari-
sation capabilities. The U-Net and the autoencoder use two
different layers in their architectures in order to expand back
the images. The U-Net implements a Conv2DTranspose layer,
this is a convolutional layer merged with an upscaling method.
Both components have weights to learn. The autoencoder
instead makes use of a UpSampling2D layer. The latter simply
uses a nearest neighbour method to expand back the images.
The excessive amount of parameters to learn compared to an
autoencoder could be the source of poor performances in the
U-Net.

E. Feature analysis

Looking at Figure 14, each feature alteration is discussed
here:

• When the Elevation increases, the risk of wildfire incre-
ments as well. This trend starts to reach a saturation
when the vegetation becomes scarce at high altitudes.
Additionally, the risk decreases for lower altitudes.

• Negative variation to Hist. LAI reduces the fire risk
because if there is an absence of fuel there is a lower
probability of a fire. Positive variation equals more
leafage, which increases the risk of fire.

• Positive increments to Hist. FAPAR grow the probability
of fire due to plants being dry, while negative variations
decrease the fire risk because trees are moisturised.

• The risk of wildfires increase with higher LST. Although
it may be the case for the areas in the dataset, this is
not true everywhere in the world (e.g. in deserts and the
north and south Pole).

• Hist. LST behaves like LST but with a lower fluctuation
to variations.

• Soil temperature acts similarly to LST, due to equal
characteristics.

• Negative and positive variations do not seem to have a
clear trend for the Hist. soil temperature feature. Positive
increments reduce the risk of wildfire, possibly due to
high-temperature areas (e.g. a fire cannot happen in the
desert). Negative increments do not give clear feedback.
This feature is excluded for redundancy and analysed in
the next test.

• With an increase in Precipitations there is a lower risk of
fire, due to a higher probability of a wet vegetation, re-
ducing the risk of ignition. The decrease in precipitations
does not change the output. This could be because the
variation leads the feature to reach its minimum level of
precipitations or the baseline is already at its minimum.
Therefore, the probability of fire is the same.

• Alterations to the Hist. precipitations reflect an identical
behaviour as the previous feature.

• Positive variations to Air pressure result in a lower risk
of wildfire, while negative variations reveal an interesting
pattern. This behaviour could underline a bias in the
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dataset, which is mostly composed of instances between
low and medium altitudes, with a few high altitudes. In
this case, decreasing air pressure does not change the fire
risk due to it already being at its minimum. Increasing
the air pressure lowers the fire risk due to the few fire
samples at high altitudes.

• U and V wind features do not seem to respond well
to either positive or negative variations. This feature is
excluded for redundancy and analysed in the next test.

• Increasing the Humidity lowers the risk of wildfires.
Given more moisture in the air, fires are less probable.
Negative variations do not create clear feedback on the
results. It could be due to a lack of data or that the
baseline humidity is at its lowest.

• The Hist. humidity seems to reflect the previous feature
but the negative variation presents a surprising pattern.
This feature is excluded for redundancy and analysed in
the next test.

• LAI high and low do not respond well to alterations
and do not present reasonable patterns. These two are
excluded for redundancy and analysed in the next test.

• The NDVI feature presents an unexpected response to
values more than 10%. This could be because the feature
reaches its maximum or minimum, and the model is
clueless. For the increase of 10%, the risk of fire is
decreased due to water being in the vegetation. While
for a decrease of 10%, the risk of fire increases, since
the vegetation lacks water.

• Evapotranspiration seems to respond well to variation.
Positive increments result in a lower risk of fires. This is
due to the vegetation being in good condition. Negative
increments increase the risk of fires, given drier vegeta-
tion.

• History fire reveals an interesting pattern. The more fires
happened in the area over the past years, the higher the
risk of wildfires. Although presumably, after a wildfire
there is no much fuel to burn. Looking at the gathered
dataset, most fires are extracted around the same hot
spot areas, years after years. It may suggest a bias in
the data, a lack of fire management or a combination of
natural characteristics that make these areas susceptible
to wildfires.

Removing history soil temperature and history humidity
decreases the ability of the model to predict the risk of fires.
Although these features present interesting patterns in the
previous test, they seem to be relevant for the problem. Their
strange behaviour could be given by irregularities in the data
or problems of compatibility with the experiment. The wind
components seems to be redundant for this task. The direction
of the wind could be for instance more suited to predict where
the fire could expand. LAI components are unnecessary due to
NDVI, Evapotranspiration, History LAI and History FAPAR
features that already give higher spatial resolution insights on
the vegetation status. Excluding wind components and LAI
features improves the model, gaining a better fire ratio score

over the baseline.

F. Spatial dependence

Studies mentioned in Section I based their work on a single
geographical area or generalise their method to the entire
globe. This approach is due to multiple dependent and inde-
pendent variables that contribute to the start of a fire. Looking
at Figure 16, it is clear that although there is knowledge
inferred, there is also a difference in the characteristics that
could cause a wildfire in every area. The CNN can easily
predict wildfires in the USA. The latter presents geographical
elements in common with some of the other geographical
areas. This allows the model to infer with little difficulty.
Australia, South America, Africa and the USA have common
characteristic patterns. Europe and Asia wildfires do not seem
to be inferred as easily as other areas. This could be because
wildfires are managed differently (e.g. leaving no time for data
logging) or the characteristics of a fire differ from other areas.
The CNN achieves a fire ratio of 80% on the validation set.
The latter is mostly composed of samples from the US area.
Looking at the spatial dependence results, these areas seem to
be easily predicted by the model. This dataset split was not
intentional. An alternative area combination for the validation
set should cause a lower fire ratio score. Lastly, building
different models for different areas around the world could
be as optimal as a global model. One instance in which this
statement is not true is the following example. Given climate
change and rising temperature, new areas around the globe are
starting to present wildfires. These areas do not have enough
wildfire data. A global model could be easily deployed over
these areas achieving optimal results.

VII. CONCLUSION

The evolution of machine learning techniques and the easy
availability of satellite data create a perfect combination to
better develop models able to predict extreme events and
potentially save catastrophes.

In this research, a CNN capable of assessing a wildfire risk
over the entire globe is built. This is achieved by building a
dataset with multiple features and feeding this to the algorithm.
Furthermore, this architecture is light enough to be integrated
in a near real-time pipeline while achieving a resolution of
1000m/pixel.

Gathering data from different areas around the world and
with multiple features is challenging. Special effort has been
invested in creating training and validation set with indepen-
dent samples.

The CNN architecture achieves a good trade-off between
the score of the four metrics and the number of weights to
learn. Various parameters have been used for the optimisation
task. As experiments show, this type of architecture is better
suited than a U-Net or an autoencoder for risk assessment
of wildfires. The U-Net architecture tested here showed poor
results. A different one could give better results.

Experiments on the variability of the model shows it can
correctly classify a risk of fire around 80% of the time.
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Uncertainty in the model could be reduced by increasing the
number of training samples. Mislabelled fire instances could
be related to external and independent events.

Features are easily analysed by studying their response to
positive or negative variations on the validation set. Out of 20
features, 4 are removed due to redundancy. Deleting features
improves the model. These experiments have not been done
by training the model excluding features iteratively. Therefore,
different methods could have different results.

Each area around the world has different geographical char-
acteristics. This makes building a robust global algorithm very
challenging. Inferring knowledge in some areas seems to be
easier than in others, mostly because of similar characteristics
or because there is more clear data available.

Overall, this research has shown that a simple CNN can be
successful in predicting the risk of wildfires in areas around the
globe. Improving this technique and using it on a larger scale
could save damage to the economy, properties, wildlife and
humans. This especially holds true in areas with poor wildfire
management. Although there are some drawbacks regarding
the availability and frequency of the data, satellite data is an
essential resource for this and other similar applications. An
attempt to deploy the model on GEE has been made, but given
time constraints and the high cost, it has been dismissed.

Future work will focus on:
• improving the GEE algorithm for extracting samples such

that there is no overlap between samples;
• exploring higher temporal and spatial resolution sources,

for instance PlanetScope Dove. It provides daily high
resolution images (between 3m and 5m/pixel). High costs
are expected with this type of workflow;

• comparing multiple loss functions (e.g. Tversky Loss,
Lovasz Hinge Loss, Combo Loss);

• further investigating the feature space of the dataset by
first iteratively deleting a feature from the dataset and
then training the model;

• inspecting in more details the reason why the model
mislabels a fire instance as a no fire instance;

• deploying the model on GEE.
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VIII. APPENDIX

Instances type Instances

Training no fire 35,927,786
fire 72,214

Validation no fire 5,988,466
fire 11,534

Table VII: Dataset classes distribution.

Figure 17: The figure show the complete results for the fire
ratio metric by removing some features from the dataset. Each
set of tests is run for 5 times and its confidence interval is
shown by the line over the bars.

Figure 18: The image shows the location of the samples
that compose the training and validation sets for the spatial
dependence tests.
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