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Conventions and notation

� By N = {1, 2, . . .} we denote the set of natural numbers, i.e., all positive integers, not
including zero.

� For any N ∈ N we write [N ] for the set {1, . . . , N} ⊂ N.

� For any set S ⊂ R and a, b ∈ R we write aS + b for the set {as+ b | s ∈ S}.

� When an index is omitted, we indicate this by writing a hat above the omitted part of
the expression. For example, a0 + . . .+ ai−1X

i−1 + ai+1X
i+1 + . . .+ anX

n can then be

written as a0 + ..âiX i..+ anX
n.

� If σ(t) : X → X is a function, we write σ(t)n for the n-fold product of σ(t) with
itself and σ(t)◦n for the n-fold composition of σ(t) with itself. So σ(t)2 = σ(t)σ(t) and
σ(t)◦2 = σ(σ(t)).

� Let P be a prime of some ring R and x ∈ R. We write vP (x) for the P -adic valuation
of x. For example, if R = F2JtK, P = (t) and x = t5 + t10 + t15 + . . ., then vP (x) = 5.
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Introduction

The Nottingham group Np was first defined in 1988 by D. Johnson and I. York [20], who
both resided in Nottingham at the time. The combination of it being easy to calculate with
and having interesting properties, has led to it becoming popular amongst group theorists
[11]. It has been used, for instance, to refute conjectures about profinite groups [18]. Fur-
thermore, number theorists have also taken an interest in this group, because it occurs as
wild ramification group of Fp((t)). In 1997 these two interpretations were brought together
by the proof and implications of the following theorem [26]:

Theorem 0.1 (Camina [10]). Every countably based pro-p group can be embedded, as a
closed subgroup, in the Nottingham group.

A consequence of this theorem is that every finite p-group must be a subgroup of the Not-
tingham group. However, so far not many explicit examples of elements of finite order have
been found [11]. The goal of this thesis is to find more examples and then especially examples
that are sparse. This property interests us because it forces the elements to have a relatively
straightforward structure, which might be possible to generalise. Besides, explicit elements
of the Nottingham group are also relevant in deformation theory (e.g. [3, p. 212]) and since
sparse elements are relatively easy to implement in a computer program, this gives an extra
motivation to look for such elements. An important invariant of elements of the Nottingham
group is their depth. The only sparse series of finite order that were known before this thesis
are of order 2 or 4 and have depths 2µ ± 1 [8] or 1 [4, 8], respectively.

In Chapter 1 all relevant definitions and propositions about the Nottingham group, sparse-
ness and automata are given and previous work is reviewed. Chapter 2 is devoted to giving
a new proof of Cobham’s Theorem in the language of digraphs. The theorem concerns a
characterisation of automatic sparse elements and the new proof can be used to determine
a growth constant in both the sparse and non-sparse case. Chapter 3 examines if the finite
order condition imposes certain structural conditions on the elements. Especially when the
order is 2 this turns out to be the case. These conditions are then used to make smart guesses
for other series of order 2 that might be sparse, which works for depths 2µ − 3. The other
guesses are not all sparse, as is proved in Chapter 4, based on a Galois theoretic condition
for sparseness combined with Newton polygons.
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Chapter 1

Prerequisites

In this chapter the prerequisites to understand the rest of the thesis are given. The first
section contains all specific terminology and some examples. The second section focuses on
the basics of algebraic graph theory and is only relevant to follow the proofs in Chapter 2.
It can, therefore, be skipped if the reader is either already familiar with the subject or not
as interested in the specifics. The third section gives a more extensive recap of previously
known results than was given in the introduction.

1.1 Nottingham group, p-automata and sparseness

Definition 1.1. Let p be a prime number. The Nottingham group Np is the subgroup of
Aut(FpJtK) consisting of the elements σ such that σ(t) = t + O(t2). The group operation is
composition.

Remark. Note that an element of Aut(FpJtK) is completely determined by the image of t.
Thus the same holds for Np.

That Np meets all the group axioms follows quite straightforwardly from the fact that
Aut(FpJtK) is a group. However, for intuitive understanding, it is still useful to calculate
some examples of inverses and compositions.

Examples. Note that the identity of Np is t. All examples are in N2.

� Define σK,1(t) := t + t2 + t3 + t4 + . . .. Then, σK,1 is its own inverse. This can be
deduced by calculating σK,1(t + t2 + . . . + tn) = t + tn+1 + O(tn+2) for each n ∈ N.
Alternatively a more combinatorial proof can be given. We may write σK,1(σK,1(t)) =
a1t + a2t

2 + a3t
3 + . . . and note that ai equals the number of compositions of i. For

example we get a3 = 4, because 3 = 1 + 1 + 1 = 1 + 2 = 2 + 1 = 3. Hence, ai = 2i−1,
which is zero modulo 2 for all i > 1 and a1 = 1.

� Define τ(t) := t + t2 + t4 + t8 + . . .. Then, τ−1(t) = t + t2 is its inverse. We can
calculate this by first taking τ−1(t) = t + O(t2). Since τ(t) = t + t2 + . . ., we see
that the next term of τ−1 should be t2. Using that we are in characteristic 2 we find
(t+ t2)2

n
= t2

n
+ t2

n+1
and thus, τ(t+ t2) = t+ 2t2 + 2t4 + 2t8 + . . . = t.
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� We can also calculate some compositions of these elements.

σK,1(τ
−1(t)) = t+ 2t2 + 3t3 + 5t4 + 8t5 + 13t6 + 21t7 + . . . = t+ t3 + t4 + t6 + t7 + . . . ,

τ−1(σK,1(t)) = t+ 2t2 + t3 + 2t4 + t5 + 2t6 + t7 + . . . = t+ t3 + t5 + t7 + . . . .

From this we conclude that N2 is non-abelian.

Definition 1.2. We say a power series in FpJtK has finite compositional order N if N ∈ N
is the smallest integer such that σ◦N(t) = t.

In previous example we saw that σK,1 was its own inverse. Therefore, the finite compositional
order of σK,1 is equal to 2. Any conjugate of σK,1, such as τ ◦σK,1 ◦ τ−1, also has order 2, but
these are (in general) quite cumbersome to calculate. However, the next proposition shows
that any power series of finite compositional order must be in Np and have order some power
of p.

Proposition 1.3. Let σ(t) = a0 + a1t + a2t
2 + . . . ∈ FpJtK be of finite compositional order

N > 1. Then a0 = 0, a1 = 1, σ has infinitely many terms and N = pr for some r ∈ N.

Proof. That a0 must equal 0 holds because otherwise composition of power series is not well
defined. Infinitely many terms are needed, because if σ(t) were a polynomial of degree n > 1,
the degree of σ◦N(t) would be nN instead of 1. The fact that a1 = 1 and N = pr can be
proved by analysing the coefficients of σ◦N , as follows.
Suppose σ(t) = a1t + ad−1t

d−1 + O(td) with ad−1 ̸= 0. It is easy to calculate that σ(t)◦N =
aN1 t + NaN−1

1 ad−1t
d−1 + O(td). This must equal t, so p must divide N . Now suppose that

N = q · pr with q ∈ N and coprime to p. Then the series σ(t)◦p
r
has order q, which tells

us that it is either the identity or p divides q. We assumed q to be coprime to p and may
conclude q = 1 and N is a power of p. We also need aN1 = ap

r

1 ≡ 1 mod p, which by Fermat’s
little theorem implies a1 = 1.

Another consequence of the proposition is that no polynomial has finite compositional order.
Therefore τ−1, as defined in previous example, has infinite order. The same must then hold
for τ , even though this element does have infinitely many terms.

One way to construct elements of the Nottingham group with a lot of structure is by using
p-automata.

Definition 1.4. Let p be a prime. A p-automaton is a finite directed multigraph for which
the following hold:

� each vertex is labelled by an element of Fp.

� one vertex is additionally labelled with ‘Start’.

� each vertex has p outgoing edges, that are all labelled with a different element of
{0, 1, . . . , p− 1}.

� an edge labelled with 0 connects two vertices with the same label.

� each vertex can be reached from the start vertex. (This is called accessibility.)

From a p-automaton we can, in a natural way, construct a sequence. If for a certain sequence
there exists such a p-automaton we call that sequence automatic. This is made precise in
the following definition.
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Definition 1.5. Let k ∈ Z, p a prime and (bi)i≥0 a (finite) base-p expansion of k, in symbols
k =

∑n
i=0 bip

i. Suppose we are given a p-automaton. From the ‘Start’ vertex consecutively
follow the edges labelled by b0, b1, . . . , bn and suppose we end up at vertex v. Define ak to
equal the label of v in Fp. Then (ai)i≥0 is called an automatic sequence.

Remark. The fourth property of a p-automaton implies that an automatic sequence does
not depend on which base-p expansion one takes for an integer. For instance writing 5 =
1 · 1+ 0 · 2+ 1 · 4 will give the same value for a5 as writing 5 = 1 · 1+ 0 · 2+ 1 · 4+ 0 · 8. This
property is therefore also called leading zero invariance.

Definition 1.6. An automatic series is a formal power series σ(t) ∈ FpJtK such that for
some automatic sequence (ai)i≥0 in Fp we have:

σ(t) = a0 + a1t+ a2t
2 + a3t

3 + . . . .

Examples. We use the two 2-automata in Figure 1.1 and write (ai)i∈Z≥0
and (bi)i∈Z≥0

re-
spectively for the automatic sequences generated by (a) and (b).

� First of all one should check that both automata meet all the requirements of Definition
1.5.

� Suppose we are interested in calculating a13 and b13. In binary 13 = 1101, so we must
follow the arrows labelled by 1, 0, 1 and 1 consecutively. In (a) we end up in the vertex
at the bottom labelled with 0 and in (b) in the top right vertex labelled with 1. Hence,
a13 = 0 and b13 = 1.

� Using this method for all i ∈ Z≥0 we get (ai) = (0, 1, 1, 0, 1, 0, 0, 0, 1, . . .) and (bi) =
(0, 1, 0, 0, 1, 0, 0, 0, 0, . . .). This leads to the series t+t2+t4+t8+. . . and t+t4+t13+. . .,
respectively.

� In fact, we can see directly from the automaton in (a) that ai = 1 if and only if i is
a power of 2; the only paths that lead to a non-zero labelled vertex are the ones with
edges labeled by 0, 0, . . . , 0, 1(, 0, . . . , 0), here the zeroes between the brackets account
for the leading zero invariance. A similarly simple description of (b) is not possible,
but we will see later on that it generates a so-called Klopsch’s series.

0 1

0

0

1

1

0

0, 1

Start

(a)

0 1 1

0 0 0

Start

1

0

0
1

0
1

00

0, 1

11

(b)

Figure 1.1: Automata for the series (a) τ(t) = t+ t2 + t4 + . . . and (b) σK,3(t) as given in [9,
Figure 1].
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The amount of structure automatic series contain is best described by a theorem of G.
Christol stating that a series is automatic if and only if it is algebraic, as follows.

Definition 1.7. Let p be a prime and σ(t) ∈ FpJtK. We say that σ is algebraic if it satisfies
the polynomial equation F (t,X) = 0 for some F (t,X) ∈ Fp[t,X].

Examples. All series we have seen so far are actually algebraic. The following examples are
all taken from N2.

� All polynomials p(t) are algebraic since they satisfy X − p(t) = 0.

� The series σK,1(t) = t+ t2 + t3 + . . . is algebraic since it satisfies (t− 1)X + t = 0.

� The series τ−1(t) = t+ t2 + t4 + . . . is algebraic since it satisfies X2 −X + t = 0.

Theorem 1.8 (Christol [13]). A power series in Np is automatic if and only if it is algebraic.

The proof of Christol’s theorem is constructive in the sense that given an algebraic equation
one can construct the automaton and vice versa. This is also how Figure 1.1b was determined.

As one can imagine, having finite compositional order also requires some structure. In [4,
Remark 1.6] it was pointed out that every series of finite order is in fact automatic (and thus
algebraic). Hence, in our search for elements of finite compositional order, we only have to
consider automatic series.

Another interesting property elements of the Nottingham group can possess is sparseness.
It tells us something about the extent of non-zero coefficients and is based on the support of
an element.

Definition 1.9. Let σ(t) be a power series in FpJtK for some prime p, then its support is
defined to be the set

E(σ) = {k ∈ Z | ak ̸= 0}.

Furthermore, we write E(σ)N for the set E(σ) ∩ [N ].

Definition 1.10. A power series σ(t) in FpJtK is (r-)sparse if

#E(σ)N = O(log(N)r)

for some r ≥ 0. The infimum of such r is called the rank of sparseness of σ. In the case that
σ(t) is automatic, the corresponding p-automaton and automatic sequence are also called
(r)-sparse.

Examples. Let σK,1 and τ be as defined in previous examples.

� Any polynomial has a finite support and is therefore sparse of rank 0.

� The support of σK,1 is E(σK,1) = N and therefore #E(σK,1)N = N . Thus, σK,1 is not
sparse.

� The support of τ is E(τ) = {1, 2, 4, 8, . . .} and therefore

#E(τ)N = #{1, 2, . . . , 2⌊log2(N)⌋} = O(log(N)).

Thus, τ is sparse of rank 1.
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In previous examples it was quite easy to recognise whether a series was sparse or not.
This might not always be the case, for instance if the support is a union of several sets all
growing polylogarithmically. The following definition and proposition give one way to make
this distinction and will be of relevance in the automatic sparse case. Both rely partially on
Definitions 1.17 and 1.18 of the next section.

Definition 1.11. Let r be a non-negative integer and v0, . . . , vr, w0, . . . , wr some p-ary words,
with all wi non-trivial. Then their simple sparse set is the set

{vrwxr
r · · · v1wx1

1 v0 | xi ∈ Z≥0} ⊂ Z≥0.

If either |vr| ≠ 0 or |wr| ≠ 0, we say the simple sparse set has rank r.

Remark. The previous definition is not universal in the sense that different sources use
different terminology. For a brief discussion see [9, p. 14].

Proposition 1.12. Let E be a simple sparse set of rank r. Then there exists some constant
C > 0 such that for sufficiently large N the following holds:

#(E ∩ [N ]) ≥ C log(N)r.

Proof. By definition we can write E as {vrwxr
r · · · v1wx1

1 v0 | xi ∈ Z≥0} for some p-ary words
v0, . . . , vr, w1, . . . , wr, where wi is non-trivial for all 1 ≤ i ≤ r. Write z for the sum of the
lengths of v0, . . . , vr and li for the length of wi, and define L := max(li).

For all N ∈ N there exists an integer k ≥ 0 such that pLk+z ≤ N < pL(k+1)+z. The number
of elements in E ∩ [N ] is then larger than or equal to the number of elements in E ∩ [pLk+z],
so it will suffice to examine this number.
Let (x0, . . . , xr) ∈ Zr+1

≥0 so that x0+ . . .+xr = k. Then vrw
xr
r · · · v1wx1

1 v0 has length less than
or equal to Lk + z and thus, has size less than pLk+z. Note that each solution (x0, . . . , xr)
leads to a unique size of vrw

xr

r · · · v1wx1
1 v0, so the number of such solutions gives a lower

bound. There are exactly
(
k+r
r

)
of such solutions and we find

#(E ∩ [N ]) ≥ #(E ∩ [pLk+z]) ≥
(
k + r

r

)
≥ 1

r!
kr.

We also know that L(k + 1) + z > logp(N), so k > 1
L
(logp(N) − z − L). Since r, L, z and p

are constants we quickly see that, for sufficiently large N , we can find some constant C such
that

#(E ∩ [N ]) ≥ C log(N)r.

From this proposition one may conclude that, if the support of a series is equal to a finite
union of simple sparse sets, the series is sparse. It should be remarked, though, that the
converse does not hold: there are certainly sparse series whose supports are not equal to a
union of simple sparse sets. In fact, sparseness does not force a series to have any kind of
predictable structure at all, but this changes when we add being automatic (or equivalently,
algebraic) to the mix.

Proposition 1.13 (Szilard, Yu, Zhang and Shallit [28], [9] Cor. 3.10). A series σ is au-
tomatic and r-sparse if and only if its support is a finite union of pairwise disjoint simple
sparse sets of rank at most r.
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In Chapter 2 we will see a proof of this proposition.

Remark. In the automatic case we can now give a more quantitative description of what
it means for a series to be ‘easy to implement’. When the simple sparse sets of a series
are determined it takes O(log(N)) time to calculate its first N coefficients. Whereas for a
non-sparse automatic series this would take roughly O(N logN) time.

Additionally, sparseness also imposes a condition on the automaton. By a theorem of A.
Cobham any automatic series is either sparse or it support grows fractionally in N . A.
Szilard, S. Yu, K. Zhang and J. Shallit showed that the sparse case holds if and only if the
automaton contains a tied vertex.

Definition 1.14. Let v be a vertex of some p-automaton. Then v is called tied if the
following two properties hold:

(i) there exists a (possibly empty) walk from v to a vertex with a label other than 0.

(ii) there exist two different walks of the same length from v to itself.

Theorem 1.15 (Cobham [14], [28]). An automatic series σ(t) ∈ FpJtK is sparse if and only
if a corresponding automaton does not contain any tied vertices. Furthermore, if it is not
sparse #EN(σ) ≥ Nα for some α ∈ (0, 1] and sufficiently large N .

This theorem will also be proved in Chapter 2.

1.2 Digraphs and linear algebra

We will need some more general (algebraic) graph theory. Here we will renew the necessary
definitions.

Definition 1.16. LetG = (V,E) be a graph. Then a walk W consists of vertices v0, v1, . . . , vn
in V and edges e1, e2, . . . , en in E so that ei is an edge between vi−1 and vi for each i. If we
also require that all vertices are distinct, W is called a path.

Definition 1.17. Let G be a graph and W some walk in G consisting of n edges. Then we
define the length l(W ) of W as n.

Definition 1.18. Let W be a walk in some p-automaton, such that the edges of W are
consecutively labelled by b1, b2, . . . , bn. Then we define the size |W | of W by

b1 + b2p+ b3p
2 + . . .+ bnp

n−1.

Examples. The walk with v0 equal to the start-vertex that we use to determine am has size
m and length ⌊logp(m) + 1⌋.
For each vertex v in a p-automaton and each integer m there is exactly one walk of size m
that does not end in a zero-labelled edge and starts at v.

Definition 1.19. Let D = (V,E) be a digraph (i.e. directed graph). We call D a rooted
out-tree or an arborescence if there is a vertex v in V such that for each vertex w ∈ V there
is exactly one walk from v to w. The vertex v is called the root of D and if w has no outgoing
edges, it is called a leaf.
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Definition 1.20. Let D = (V,E) be an arborescence. Then the height of D is the maximal
length of a walk from the root v to some vertex w ∈ V .

v

Figure 1.2: An example of an arborescence with height 3, root v and 5 leaves.

Definition 1.21. Let D = (V,E) be a digraph with n vertices and suppose we have labelled
the vertices by v1, v2, . . . , vn. For 1 ≤ i, j ≤ n define ai,j to be the number of edges in E
going from vi to vj. The square matrix AD := (ai,j) is called the adjacency matrix of D.

The advantage of considering the adjacency matrix is that we can now use a bit of linear
algebra to analyse digraphs. In the following we will assume all matrices to be taken over R.

Definition 1.22. Let A be a matrix. We say A is positive if all entries are positive and that
A is non-negative if all entries are non-negative. The definition is analogous for vectors.

Definition 1.23. Let A be a square matrix. The set of distinct eigenvalues is called the
spectrum of A and denoted by Spec(A). The number

ρ(A) := max
λ∈Spec(A)

|λ|

is the spectral radius of A. Here |.| is the usual absolute value over C.

Definition 1.24. Let A be a square matrix. We say A is a reducible matrix if there exists
a permutation matrix P so that

PAP−1 =

(
X Y
0 Z

)
,

where X, Y, Z and 0 are non-trivial matrices and X and Z are square.
If A does not meet this condition, it is called an irreducible matrix.

Definition 1.25. A digraph D = (V,E) is called strongly connected if for each pair of
vertices u, v there exits a path from u to v. It is called weakly connected if there exists a
path from u to v or from v to u.

Lemma 1.26. A digraph D is strongly connected if and only of its adjacency matrix AD is
irreducible.

Proof. Assume that AD is reducible and that the vertices have been permuted such that

AD =

(
X Y
0 Z

)
. Suppose X and Z have dimensions mx×mx and mz ×mz, receptively, and

note that mx+mz = n. The zero-block in AD tells us that there does not exist an edge from
vi to vj for any mx + 1 ≤ i ≤ n and 1 ≤ j ≤ mx. Therefore, there cannot exist a path from

10



vn to v1 and D is not strongly connected.
Now suppose D is not strongly connected. There must be vertices v and u so that there is no
path from v to u. Define Vz to be the set of vertices w for which there exists a path starting
at v and ending at w and define Vx as the other vertices. Neither will be empty, since v ∈ Vz

and u ∈ Vx. Now permute the vertices in such a way that vi ∈ Vx and vj ∈ Vz implies i < j.
One checks that AD can then be written as in Definition 1.24 and is thus reducible.

1.3 Previous work

Before we talk about the known sparse series of finite compositional order, we should briefly
discuss the conjugacy classes in Np. It is a basic fact from group theory that the order of
two elements in the same conjugacy class must be the same. For elements of order p each
class can be characterised by the depth d and coefficient ad+1 of its elements.

Definition 1.27. The depth d of an element σ(t) in Np is vt(σ− t)− 1 and therefore lies in
N ∪ {∞}.

Proposition 1.28 (Klopsch [21] Prop. 1.2). Let σ1 and σ2 in Np have depth d, order p and
both be of the form t + atd+1 + O(td+2) for some non-zero a ∈ Fp. Then there exists some
τ ∈ Np such that τσ1τ

−1 = σ2.

B. Klopsch also gave a representative for each conjugacy class of order p, which exists if and
only if the depth is not divisible by p.

Definition 1.29. For each prime p, integer d ̸≡ 0 mod p and a ∈ F×
p we define a Klopsch’s

series by:
t

d
√
1− datd

= t+ atd+1 + . . . .

When p = 2 we denote these series by σK,d.

Remark. Since Klopsch’s series have finite order, they are algebraic. In fact they satisfy
the equation Xd(1− datd)− td = 0. For p = 2 it simplifies to Xd + (tX)d + td = 0.

In our search for sparse series of finite order p we now know that they will be conjugate to
some Klopsch’s series and focus on finding a representative for each pair (d, a).

In the introduction it was mentioned that the only sparse series of order p known previously
were of order 2 and depths 2µ ± 1. See Section 3.2 for their exact definitions.

Theorem 1.30 ([8] Prop. 10.2.1.). For all depths d = 2µ±1 and µ ∈ N there exists a sparse
automatic series of order 2. These series will be denoted by σS,d.

Example. The series σS,1 = t+ t2 + t3 + t6 + t7 + . . . and σK,1 = t+ t2 + t3 + t4 + . . . both
have order 2 and depth 2. Hence, there must exist some τ ∈ N2 so that τσS,1τ

−1 = σK,1.
It is in general hard to determine these τ and it is not even known if τ can or cannot be
transcendental.

For elements of order higher than p a similar classification of conjugacy classes is possible,
see [24]. This classification is based on the depths of σ, σ◦p, . . . , σ◦pn−1

, where pn is the order
of σ. However, since this thesis does not focus on any explicit examples of higher orders, we
will not elaborate on it here.
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Chapter 2

Automatic sparseness

In this chapter we will examine automatic series more closely. By a theorem of A. Cobham
[14] any automatic series σ(t) is either sparse or E(σ)N grows faster than Nα for some α > 0.
Originally, the proof of this theorem was given in the terminology of formal languages, which
makes it hard to read from a graph theoretic perspective. In the first section we give a
different proof using an idea of A. Szilard, S. Yu, K. Zhang and J. Shallit [28] about a
correspondence between sparseness and tied vertices. From the structure of this proof we
can also determine the rank of sparseness of σ or the order of growth α for E(σ)N . Section
2 and 4 will be devoted to this, respectively. In Section 4 we will see that the supremum of
values for α is always the logarithm of an algebraic integer. In Section 3 we prove all the
details needed for Section 4 and in Section 5 we will calculate α for several series of finite
compositional order.

2.1 Identifying sparseness by the automaton

We will prove that we can see whether an automatic series is sparse by looking solely at the
automaton. Namely, the series will be sparse if and only if the automaton contains no tied
vertices. Besides, we will see that in the case that an automatic series is not sparse, E(σ)N
will grow as a fractional power of N . First we need the following two lemmas.

Lemma 2.1. Let W1 and W2 be two walks in a p-automaton of length n and m respectively.
Suppose that the last vertex of W1 equals the first vertex of W2. Then these walks can be
composed to a walk with size

|W1 ◦W2| = |W1|+ pn|W2|.

Proof. That the walks can be composed is clear. Now suppose W1 has edges labelled by
b1, . . . , bn and W2 has edges labelled by c1, . . . , cm. Then W1 ◦ W2 has edges labelled by
b1, . . . , bn, c1, . . . , cm and thus its size becomes

b1 + b2p+ . . . bnp
n−1 + c1p

n + . . .+ cmp
n+m−1 = |W1|+ pn|W2|.

Lemma 2.2. Let v be a vertex that is not tied but does have a walk to a vertex labelled
non-zero. Then there can be at most one walk from v to v that does not contain v a third
time.
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Proof. We will prove this lemma by contradiction. So suppose there are two distinct walks
W1 and W2 starting and ending in v that do not contain v a third time. Because v is not
tied, these two walks cannot have the same length. Define the length of Wi to be xi and
assume without loss of generality that x1 < x2. Since W1 and W2 start and end in v, they
can both be combined with each other. Consider the walks W1◦W2 and W2◦W1. The length
of both these walks is x1 + x2 and they also still start and end in v. Furthermore, they are
not the same walk, since, the first walk will have a vertex v at spot x1 and the second walk
will not, because W2 would then contain a third v. We have constructed two different walks
from v to v of the same length. This contradicts the fact that v is tied and we may conclude
that no such W1 and W2 can exist, which proves the lemma.

Theorem 2.3. Let σ(t) be an automatic series in FpJtK, then one of the following must hold:

� the p-automaton contains a tied vertex and there is an α ∈ (0, 1] such that #E(σ)N ≥
Nα for sufficiently large N .

� the p-automaton of σ contains no tied vertices and σ is sparse.

Proof. First we will prove that if the p-automaton contains a tied vertex then we can find
α > 0 such that #E(σ)N ≥ Nα for sufficiently large N . Secondly we will show that if the
p-automaton does not contain any tied vertices then, #E(σ)N = O(log(N)r) for some r ≥ 0
and thus σ will be sparse. Note that this proves the theorem, since it is obvious that the
p-automaton always either contains at least one tied vertex or does not contain any tied
vertices at all.

Let v be a tied vertex in a p-automaton that results in the automatic series σ(t). By
connectivity we know that there must be some walk Ws from ‘Start’ to v. Because v is tied
we also have distinct walks W1 and W2 going from v to v with equal length. Finally, we
know that there is a walk We from v to a vertex labelled non-zero. We write z, x and y for
the lengths of Ws,W1 and We respectively. Before we start the proof we take a closer look
at We. Suppose We contains only zero labelled edges. Then We only contains vertices with
the same label as v and thus v is non-zero itself. So, W1 and W2 are both walks from v to a
non-zero vertex. Because W1 and W2 are distinct, we know at least one of them must contain
a non-zero labelled edge, thus we might as well choose We to be this walk and assume that
We contains a non-zero labelled edge. Furthermore, if the last edge of We is labelled by zero,
we may remove this edge because of the leading-zero-invariance and thus we may assume
that We does not end in a 0.

Start

v ̸= 0

W1

W2

Ws We

Figure 2.1: A tied vertex and its walks.

13



Now we can find a lower bound on the size of E(σ)N using the tied vertex v. Namely, for
each k ∈ Z≥0 we have that the set

{|Ws ◦Wi1 ◦Wi2 ◦ . . . ◦Wik ◦We| : ij ∈ {1, 2} for 1 ≤ j ≤ k}

is a subset of E(σ). Note here that we used that Ws starts at Start and ends in v, that W1

and W2 both start at and end in v, and that We starts at v and ends in a non-zero vertex.
Also notice that all choices of k and ij give walks of different sizes, because the walks are
different and do not end with a zero-edge. Hence, by Lemma 2.1, for each k we find in this
way 2k unique elements in E(σ) that all lie between pz+y+(k−1)x and pz+y+kx. Even better,
we find at least 2k − 1 elements in E(σ)N for N = pz+y+(k−1)x.
Define B := 1

x
logp(2), let 0 < α < B and N a sufficiently large integer. Then there is some k

such that N lies between pz+y+(k−1)x and pz+y+kx. Using previous observations we find that,

#E(σ)N ≥ 2k − 1 = pxkB − 1 ≥ (pz+y)αpxkα ≥ (pz+y+xk)α ≥ Nα,

where we use that N (and therefore k) is sufficiently large for the second inequality. We have
now shown that, if the p-automaton contains a tied vertex, then #E(σ)N ≥ Nα for some α,
proving the first part of the theorem.

To prove that σ being sparse implies the automaton has no tied vertices we will first examine
the structure that such a p-automaton can have.
Let v be any vertex of the automaton, then by Lemma 2.2 we have three cases:

(i) v is labelled by 0 and every walk from v goes to a 0,

(ii) there is a walk from v to a vertex labelled non-zero, but not a walk from v to v,

(iii) there is a walk from v to a vertex labelled non-zero and exactly one walk from v to v
that does not contain v a third time.

In case (i) we can assume that all edges going outwards of v go to v itself. In case (iii) we
know the walk from v to v is a cycle. If w is a vertex on this cycle, then the cycle also gives
a walk from w to w and thus w is a case-(iii) vertex as well. Since a vertex cannot belong
to two cycles, we can group case-(iii) vertices together by their cycle. In a similar manner
we will group case-(ii) vertices together by arborescences. To do this we might first need
to enlarge our p-automaton a bit. Suppose two distinct edges arrive at the same vertex or
the same cycle and neither of these edges is part of a cycle. Then we take this vertex/cycle
and all of the p-automaton that can still be reached from this vertex/cycle, and copy it.
We attach one of the copies to the first edge and the other copy to the second edge. Now
the two edges do not go to the same vertex or cycle any more. This can be done for all
such pairs of edges throughout the p-automaton, until there are none left. Because there
are only finitely many such pairs, we will still have a p-automaton in the end, that in fact
produces the same automatic sequence. This construction ensures that every case-(ii) vertex
has at most one ingoing edge. So, if we group together case-(ii) vertices that can be reached
through each other without passing a case-(iii) vertex, these form an arborescence inside
the graph. Furthermore, the construction also ensures that each cycle can be reached by
at most one sequence of earlier cycles. With that in mind we can view our p-automaton
as a bigger arborescence, where the vertices are the cycles made of case-(iii) vertices, the
edges are the (possibly empty) arborescences made of case-(ii) vertices and the leaves are
the case-(i) vertices. Also see Figure 2.2.
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S

Figure 2.2: An example of a p-automaton without tied vertices viewed as cycle-arborescence.
All the case-(i) vertices and their edges are not drawn.

Before we start with the computational part of the proof, we will introduce some important
constants and labels based on the new structure of the p-automaton. We define s as the
number of cycles there are and label them C1, C2, . . . , Cs. For each Ci write li for the number
of vertices it contains and define l := min(li). Also, let r be the height of the p-automaton
viewed as cycle-arborescence, or in other words r is the maximum number of cycles one can
pass through consecutively.

Now we will examine how many integers there are in E(σ)N with N = pk+1 − 1 for some
integer k ≥ 1. Note that the integers m < pk+1 are exactly the integers for which the value
of am can be determined by taking k+1 steps in the p-automaton. Write k+1 = xl+y with
0 ≤ y < l. Since all the case-(i) vertices are labelled by 0, it will suffice to give an upper
bound on the number of different walks of length k + 1 that end in a case-(ii) or case-(iii)
vertex.
Let v be any case-(ii) or -(iii) vertex. There is a unique sequence of cycles, Ci1 , Ci2 , . . . , Cij ,
with j ≤ r, the walk has to pass through in order to end up at v. We will proceed with
induction on j. If j is either 0 or 1 (where the first can only happen if v is a case-(ii)
vertex), the length (k+1)-walk to v must be either unique or non-existent. Now suppose we
already know that there are O(log(N)j−1) walks to some vertex u in the cycle Cij−1

(induction
hypothesis). To extend such a walk to v we can either take the shortest walk to Cij and cycle
in Cij until our steps are gone, or we can cycle 1, 2, . . . , x times in Cij−1

and then go to Cij .
This gives (x+1)O(log(N)j−1) ways to end up at v. We had N = plx+y, so x+1 = O(log(N))
and, by induction, we get that there are O(log(N)j) walks of length k + 1 to v. Since there
are finitely many vertices in our p–automaton we also get E(σ)N = O(log(N)r) and σ(t) is
sparse.

In the proof we just saw, we constructed a p-automaton that can be viewed almost as an
arborescence but then with cycles instead of vertices and actual arborescences instead of
edges. The following definition makes this precise and generalises the notion for digraphs.

Definition 2.4. Let D = (V,E) be a weakly connected digraph. We call D a cycle arbores-
cence if for each v ∈ V one of the following holds:

(i) all outgoing edges of v are self-loops, and v has exactly one other ingoing edge.

(ii) any path starting at v does not end at v, and v has exactly one ingoing edge.
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(iii) there exists a unique path from v to v, and on this path exactly one vertex has two
ingoing edges, the others have one ingoing edge.

The only exception is the root vertex, which has one ingoing edge less.

Remark. The options for v coincide with the case-(i), -(ii) and -(iii) vertices as defined in
the proof. To see this one should note that a case-(i) vertex has p self-loops and p > 1, so it
is never simultaneously in the third category of the definition.

Remark. Theorem 2.3 can also be used to see if some element σ(t) of FpJtK is an automatic
series. Namely, if #E(σ)N is not O(log(N)r) for any r and there also does not exist any α
such that #E(σ)N ≥ Nα for sufficiently large N , then a p-automaton for σ both has to and
cannot contain a tied vertex, so it does not exist.
For an example of this, define σ(t) ∈ FpJtK by a0 = 0, a1 = 1, a2 = 0, a3 = 0 and for N > 3,
aN = 0 if and only if ⌈log(N)log(log(N))⌉ = ⌈log(N − 1)log(log(N−1))⌉. Then E(σ)N grows as
log(N)log(log(N)) which is not O(log(N)r) and neither grows as fast as Nα for any α > 0. So
σ meets the requirements and cannot be automatic.

2.2 Determining the rank of sparseness

We will use the proof of Theorem 2.3 to look at automatic sparse power series and say
something about their rank of sparseness. Recall that the rank of sparseness for a series σ
is the infimum of r such that #E(σ)N is in O(log(N)r). The proof of Theorem 2.3 directly
gives an upper bound for this r, namely the height of the cycle arborescence. It turns out
this is also a lower bound and therefore equals the rank.
The idea will be to construct disjoint simple sparse sets of rank at most r. These grow like
log(N)r, which will give us our lower bound. We will make this precise in the following
lemma.

Lemma 2.5. Suppose σ is an automatic sparse power series with a cycle arborescence of
height r. Then we can write E(σ) as a finite union of disjoint simple sparse sets of rank at
most r. Moreover, at least one of those sets will have rank equal to r.

Proof. We will first prove that we can write E(σ) as a finite union of disjoint simple sparse
sets of rank at most r and then that we must have at least one set of rank exactly r.

Let v be some vertex in the p-automaton that is labelled non-zero. By the structure of
the cycle arborescence we found in the proof of Theorem 2.3, there is a unique sequence of
cycles, Ci1 , Ci2 , . . . , Cij , one can pass through consecutively to end up at v. Also, there are
the following unique walks: a0 from ‘Start’ to Ci1 , ak from Cik to Cik+1

for all 1 ≤ k ≤ j − 1
and aj from Cij to v. Write αk for the walk of the cycle Cik . All the ways to reach v from
‘Start’ are

{ajα
xj

j · · · a1αx1
1 a0 | xi ∈ Z≥0}.

This is a simple sparse set of at most rank r, because j must be smaller or equal to the
height of the cycle arborescence. We can do this for all non-zero labelled vertices. Note that
the simple sparse sets we obtain must be disjoint, because they reach different end points in
the p-automaton.
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Now we still need to show that there is at least one vertex such that the simple sparse set
we obtain has exactly rank r. Recall that we can find r cycles Ci1 , . . . , Cir through which
we can pass consecutively by the definition of height. Also, recall that for any vertex w in
Cir there must exist a walk from w to some non-zero vertex v, because, otherwise w would
have been a case-(i) vertex instead of a case-(iii) vertex. So, for this particular vertex v,
we find that its corresponding simple sparse set must have rank exactly r. This proves the
lemma.

Theorem 2.6. Let σ(t) be a sparse automatic series in FpJtK with cycle arborescence of
height r. Then the rank of sparseness of σ is r.

Proof. From the proof of Theorem 2.3 we know that #E(σ)N = O(log(N)r), so the rank of
sparseness of σ is at most r. Now we need to show that the rank cannot be smaller.

Lemma 2.5 tells us that E(σ) contains a simple sparse set E of rank r and Lemma 1.12 then
gives a constant C so that for sufficiently large N ,

#E(σ)N ≥ #E ∩ [N ] ≥ C log(N)r.

Since log(N)r is not in O(log(N)r−ε) for any ε > 0 we conclude that there does not exist
any r′ < r such that σ has rank at most r′. In other words, r is the infimum we are looking
for and σ has rank of sparseness equal to r.

Corollary 2.6.1. If σ(t) is an automatic sparse series, then its rank of sparseness is an
integer that is attained.

Proof. From Theorem 2.6 we know the rank is the height of a cycle arborescence, which is an
integer. In the proof of Theorem 2.3 we saw that if r is the height of the cycle arborescence,
then #E(σ)N = O(log(N)r). So indeed, the rank is attained.

Example. In Figure 1.1a we saw an automaton for a sparse power series. This automaton
is already in the cycle arborescence form with two cycles (the self-loops at the top vertices).
These cycles can be used consecutively, so the height is 2 and we can conclude that the rank
of sparseness is 2.

2.3 Bounds on the number of walks

Here we state the definitions and lemmas we will need to give an upper bound for α in the
next section. The focus will lie on bounding the number of loops with certain length for a
tied vertex. Intuitively it makes sense that α depends on this; if there are more loops of a
certain length we can construct more walks via the tied vertex to a non-zero vertex.

Definition 2.7. Let u and v be vertices of a (di)graph and k a non-negative integer. Define
Ωk(u, v) as the number of walks of length k, starting at u and ending at v. When u = v we
also write Ωk(v). Furthermore, the number of walks of length less or equal to k is denoted
by Ω≤k(u, v), that is Ω≤k(u, v) :=

∑k
i=0 Ωi(u, v).
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Remark. The number of walks of certain length in a (di)graph can also be determined by
its adjacency matrix. Namely, if u and v are two vertices of some (di)graph with adjacency
matrix A, then the number of walks of length k from u to v corresponds to (Ak)u,v. Therefore,
Ωk(u, v) = (Ak)u,v.

The remark shows us that we can use linear algebra to analyse Ωn(v). We will see that the
spectrum and especially the spectral radius of certain matrices will be of importance.

Perron-Frobenius theory deals with the spectra of matrices that are either positive or non-
negative and irreducible. The results are quite numerous and can be found for instance in
[25, Chapter 8]. The following proposition assembles the parts needed in this section.

Proposition 2.8. Let A be any non-negative irreducible matrix. Then

(i) the spectral radius ρ(A) of A is positive and contained in Spec(A). Also, it is a simple
eigenvalue.

(ii) there exists a positive right-eigenvector x⃗ corresponding to the eigenvalue ρ(A).

Proof. See [25, Perron–Frobenius Theorem p. 673].

Perron-Frobenius theory cannot be used immediately. This is because, given any p-automaton
or digraph, the adjacency matrix is not necessarily irreducible. In fact, it is known that the
adjacency matrix is irreducible if and only if it corresponds to a strongly connected digraph,
that is a digraph such that there is a path from u to v for any two vertices u and v. For each
vertex v of a certain p-automaton we will be able to look at a subdigraph that is strongly
connected. The idea is based on the observation that any vertex on a walk from v to v must
be strongly connected to v. Indeed, suppose W is some walk from v to v and u any vertex
on W , then clearly there is a path going from v to u and a path from u to v. Even better,
if w is yet another vertex strongly connected to v, we can also construct a path from u to w
and w to u by going via v. What we see here is that all vertices involved in walks from v to
v are strongly connected to each other. It now makes sense to look at the subdigraph that
only consists of vertices that are strongly connected to v and the edges between them.

Definition 2.9. Let D = (V,E) be a digraph and v ∈ V . Define

� the set of vertices Vv := {u ∈ V | there are paths from u to v and from v to u},

� the set of edges Ev := {(u,w) ∈ E | u,w ∈ Vv}.

Then Dv := (Vv, Ev) is called the strongly connected subdigraph of D at v. Its adjacency
matrix will be denoted by Av, its spectral radius by ρv and the positive normalized right
eigenvector belonging to ρv by x⃗v. The spectral radius will also be called the spectral radius
of v.

Remark. Note that previous definition relies on Proposition 2.8, since we assume x⃗v to exist
and be unique.

Finally, before we state and prove our first theorem, it is important to note that the number
of walks from v to v of length n in Dv is the same as it was in D. This follows from
the observation we made before that any such walk must consist solely of vertices that are
strongly connected to v. Therefore we still have that Ωn(v) = (An

v )v,v.
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Theorem 2.10. Let D = (V,E) be some p-automaton and v any tied vertex of D. Then
there exists some constant C > 0 so that

(i) for all n ∈ N we have Ωn(v) ≤ ρnv .

(ii) for infinitely many n ∈ N we have Ωn(v) ≥ Cρnv .

Proof. Consider the strongly connected subdigraph Dv of D at v. By Perron-Frobenius we
get the equation Avx⃗v = ρvx⃗v, which can easily be extended to An

v x⃗v = ρnv x⃗v for any n ∈ Z≥0.
Because we are interested in the walks from v to v, we study the row corresponding to vertex
v of this equation. Without loss of generality we may assume this to be the first row and
write u2, . . . , um for the other vertices in Vv. This gives us the following expression:

Ωn(v)xv,1 + Ωn(v, u2)xv,2 + . . .+ Ωn(v, um)xv,m = ρnvxv,1.

Since xv,i > 0 and Ωn(v, ui) ≥ 0 for all i, it is immediate that Ωn(v) ≤ ρnv for all n. The other
inequality needs a bit more consideration. By the pigeon hole principle, we get that for all n
we either have Ωn(v)xv,1 ≥ 1

m
ρnvxv,1 or there is some i ≥ 2 such that Ωn(v, ui)xv,i ≥ 1

m
ρnvxv,1.

For the second case we look at some path Pi from ui to v. This path must exist, since the
digraph is strongly connected. It should be clear that Ωn+l(Pi)(v) ≥ Ωn(v, ui) which then
leads to

Ωn+l(Pi)(v) ≥
(

xv,1

mxv,i

ρ−l(Pi)
v

)
ρn+l(Pi)
v .

The path Pi does not depend on the value of n and therefore we can fix a choice for each
2 ≤ i ≤ m. Furthermore, let P1 be the empty path. Taking the constant

C := min
1≤i≤m

(
xv,1

mxv,i

ρ−l(Pi)
v

)
we indeed get that for infinitely many n,

Ωn(v) ≥ Cρnv .

Observe that this does not necessarily hold for any n, since we might need to take a step of
length l(Pi) to get there.

Corollary 2.10.1. Let v be a tied vertex of some p-automaton, then its spectral radius is
bigger than 1.

Proof. Since v is tied, we know there is some N ∈ N for which ΩN(v) ≥ 2. Theorem 2.10
now implies ρv ≥ N

√
2 > 1.

Corollary 2.10.2. For any tied vertex we have

sup
n∈N

(
logp(Ωn(v))

n

)
= logp(ρv).

Proof. From Theorem 2.10 we get

sup
n∈N

(
logp(ρ

n
v )

n

)
≥ sup

n∈N

(
logp(Ωn(v))

n

)
≥ sup

n∈N

(
logp(Cρnv )

n

)
.
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The left side becomes logp(ρv) and the right side supn∈N(
logp(C)

n
) + logp(ρv). Since n gets

arbitrarily large and logp(C) is a negative constant, the first term will go to zero when
taking the supremum. So both the lower and upper bound are logp(ρv), which proves the
corollary.

Lemma 2.11. Let D = (V,E) be a p-automaton, v1, . . . , vs vertices in V and k some positive

integer. Define ρ := max1≤j≤s(ρvj) and let Kk ⊂ Zs
≥0 consist of the solutions k⃗ = (k1, . . . , ks)

to k1 + . . .+ ks = k. Then, for all k ∈ N,

Wk :=
∑
k⃗∈Kk

s∏
i=1

Ω≤ki(vi) = O(ks−1ρk).

Proof. We will prove this theorem by induction on the number of tied vertices s. To keep
the notation uncluttered we assume ρv1 ≥ . . . ≥ ρvs and therefore ρ = ρv1 . This can be done
without loss of generality.

For s = 1 we get that Wk = Ω≤k(v1) =
∑k

i=0 Ωk(v1). Theorem 2.10 provided ρi as an upper
bound for each Ωi(v1) so that

Wk ≤
ρk+1 − 1

ρ− 1
≤ ρ

ρ− 1
ρk = O(ρk).

The last step uses ρ > 1. This proves the induction basis.

Now suppose we know the lemma holds for any s − 1 tied vertices and any k (induction
hypothesis). We will prove that it also holds for s tied vertices. First we take out the last
factor of the product in Wk to get

k∑
j=0

Ω≤j(vs)
∑

k⃗∈Kk−j

s−1∏
i=1

Ω≤ki(vi),

where Kk−j is now a subset of Zs−1
≥0 instead of Zs

≥0. For each j of the summand we can
bound both factors, respectively by O(ρj) and O(ks−2ρk−j), using the induction basis and
induction hypothesis. This adds up to

Wk =
k∑

j=0

O(ks−2ρk) = O(ks−1ρk).

By the principle of induction, this proves the claim.

Corollary 2.11.1. There exists a constant C ′ > 0 so that, for infinitely many k and some
1 ≤ j ≤ s,

Wk ≤ C ′ks−1Ωn(vj).

Proof. Theorem 2.10 shows that for any tied vertex v there are infinitely many k such that
ρkv ≤ 1

C
Ωk(v). The result now follows directly from Lemma 2.11.
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2.4 An upper bound for non-sparse series

In this section we will prove two theorems. The first gives a supremum of all values α for
which #E(σ)N ≥ Nα holds. The second shows that this supremum can be expressed as the
logarithm of an algebraic integer. To state and prove these results we will use the theory
developed in Section 2.3.

Theorem 2.12. Let D = (V,E) be a p-automaton, V ′ ⊂ V the set of tied vertices and σ(t)
its automatic series. Define

B := max
v∈V ′

(logp(ρv)).

Then
sup{α > 0 : #E(σ)N ≥ Nα for sufficiently large N} = B.

Proof. In the case that V ′ is empty we get an empty maximum as definition for B. However,
the supremum over the allowed α is empty as well, since σ(t) will be sparse. So from now
on we may assume V ′ is non-empty.

We will first prove that B gives an upper bound for the values that α can take. Secondly we
will show that B is indeed the best we can do to give such an upper bound. To prove these
two things we heavily rely on the fact that by Corollary 2.10.2 B is equal to

sup
x∈N,v∈V ′

(
logp(Ωx(v))

x

)
. (2.1)

Let α be any value less than B. By (2.1) we know that there must exist some v ∈ V ′ and

x ∈ N such that α ≤ logp(Ωx(v))

x
̸= 0. We follow the same proof as for the first part of Theorem

2.3, except now we have Ωx(v) walks, W1, . . . ,WΩx(v), to choose from for Wi1 , . . . ,Wik and
therefore, there are at least

(Ωx(v))
k − 1

Ωx(v)− 1

distinct values in #E(σ)N if N = p(k−1)x+y+z. Since Ωx(v) does not equal 1, we can choose
k and therefore N large enough such that #E(σ)N ≥ Nα.

Now suppose that α > B, then it suffices to prove that there exist arbitrarily large N such
that Nα ≥ #E(σ)N . In other words, there must be infinitely many of such N . We will show
that any N = pk, where k meets the condition of Corollary 2.11.1 and is sufficiently large,
has this property.

The proof will be by contradiction. So assume α = B+ ε for some ε > 0 and #E(σ)N ≥ Nα

for all N sufficiently large. We know from 2.1 that B ≥ logp(Ωx(v))

x
holds for all x ∈ N and

v ∈ V ′. In particular it holds for x = k. Now let N = pk and k sufficiently large, then we
can rewrite this as

#E(σ)N ≥ pkBN ε ≥ Ωk(v)N
ε.

On the other hand we can also give an upper bound for #E(σ)N . Recall that #E(σ)N counts
the walks of length k that start at ‘Start’ and end in a non-zero vertex. Any such walk has
a certain structure and we will be able to estimate the number of walks with this structure.
Let s ≥ 0 be an integer and v1, . . . , vs ∈ V ′ all distinct. We define the following sets:
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(i) the set Ω(Start, v1)(V
′) consisting of walks from ‘Start’ to v1 not passing through any

tied vertex.

(ii) for 1 ≤ i ≤ s the set Ω(vi) consisting of walks from vi to vi.

(iii) for 1 ≤ i ≤ s− 1 the set Ω(vi, vi+1)(V
′) consisting of walks from vi to vi+1 not passing

through any tied vertex.

(iv) the set Ω(vs,End)(V
′) consisting of walks from vs to any non-zero vertex and not

passing through any tied vertex.

Now let W be any walk from ‘Start’ to a non-zero vertex. There exists some integer s ≥ 0
and v1, . . . , vs distinct in V ′ such that we can take a unique element of all above defined sets
and that W is a composition of these walks. Note that there is only one possibility for a
composition, since the begin and end vertex of each walk are known. However, the choice of
v1, . . . , vs is not necessarily unique, but we will only need existence.

A p-automaton has a finite number of vertices and therefore of tied vertices. This implies
there are at most (|V ′| + 1)! choices for s, v1, . . . , vs. Since we are only interested in walks
of length k, one of those combinations must give the largest number of walks of length k.
From now on we write s, v1, . . . , vs for this combination. We will continue by estimating the
number of walks that can be written as a composition of elements of the sets defined before.
Recall from the proof of Theorem 2.3 that the number of walks between two vertices is either
of order O(log(N)r) for some integer r, or includes a tied vertex. This gives an estimate for
the cardinality of the sets of (i), (iii) and (iv) when we also require the length to be at most
k. This leaves k′ ≤ k steps for the walks in the sets of (ii). Note that the number of elements
of length at most ki for any such set equals Ω≤ki(vi). Define Kk := {(k1, . . . , ks) ⊂ Zs

≥0 |
k1 + . . .+ ks = k}, then we get

#E(σ)N ≤ (|V ′|+ 1)!O(log(N)r)
∑
k⃗∈Kk

s∏
i=1

Ω≤ki(vi).

Now we can use Corollary 2.11.1 to see that

#E(σ)N ≤ Cks−1Ωk(v) logp(N)r = CΩk(v) logp(N)r+s−1

for some tied vertex v, constant C > 0 and infinitely many k. Putting everything together
we have

Ωk(v)N
ε < #E(σ)N ≤ CΩk(v) logp(N)r+s−1,

for infinitely many N = pk. However, since logp(N)r+s−1 will grow slower than N ε, there
will exist some sufficiently large N such that Ωk(v)N

ε > CΩk(v) logp(N)r+s−1 ≥ #E(σ)N , a
contradiction. We conclude that there does not exist a sufficiently large N such that for all
n ≥ N it holds that #E(σ)n ≥ nα if α is bigger than B. Hence B is indeed the supremum
of all α for which this condition does hold.

Remark. Theorem 2.12 tells us that any α < B works and that any α > B does not
work. However, it says nothing about α = B. As can be seen in Figures 2.3a and 2.3b,
either situation occurs. In both examples we have B = log2(2)

2
= 1

2
and in the first we see

#E(σ)N ≥ N
1
2 for all N ≥ 1, whereas in the second #E(σ)N ≤ N

1
2 for infinitely many N .
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Figure 2.3: Two 2-automata for which the corresponding power series σ(t) has either (a)

#E(σ)N ≥ N
1
2 = NB for all N or (b) #E(σ)N < N

1
2 = NB for infinitely many N . In case

(a) this can be seen by noting #E(σ)4k+1 = 2k+1 =
√
4k+1 for all k ∈ Z≥0, and in case (b)

by noting #E(σ)4k = 2k−1 for all k ∈ Z≥0.

Proposition 2.13. Let B be defined as in Theorem 2.12. Then

(i) B can be written as logp(β) with β an algebraic integer.

(ii) B is either transcendental or rational.

Proof. The first claim follows quite directly from Theorem 2.12. We know that B = logp(ρv)
for some tied vertex v of the automaton. Also, ρv is in the spectrum of Av by Proposition
2.8 and therefore a zero of the characteristic polynomial pv(X) of Av. A characteristic
polynomial is always monic and pv(x) must have integer coefficients, because Av only has
integer entries by definition. So ρv is integral and taking β = ρv proves the first part.

For the second part we use the Gelfond-Schneider Theorem of which a proof can be found
in [22, Appendix 1, Corollary 2]. It states that for any two algebraic numbers a, b such that
a ̸= 0, 1 and b is irrational, ab is transcendental. Since pB = β is algebraic, we find that B
cannot be an irrational algebraic number and the second claim follows.

Example. Klopsch’s series σK,3 has three tied vertices and all have a spectral radius of
√
2

(See Figure 1.1b). Hence, we find that B = log2(
√
2) = 1

2
.

Definition 2.14. Let ρ > 1 be an algebraic integer in R such that all other roots of its
minimal polynomial have smaller absolute value than |ρ|. Then ρ is called a Perron number.

Remark. It is actually possible to say slightly more about which values β can take. By
[23, Theorem 3], it must be an integer root of a Perron number and each such value can be
attained for some p that is sufficiently large. The proof of this theorem relies on Ergodic
theory, which is why we left the result out of Proposition 2.13.

2.5 Non-sparse series of finite order

In this section we briefly discuss some specific values B and β can take when the automatic
series is of finite compositional order. First we look at Klopsch’s series and then at some
examples that behave less nicely.
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Proposition 2.15. Let p be a prime, d a positive integer coprime to p and suppose −1/d
has p-adic expansion (b0, b1, b2, . . .) with period M . Define Mj, for 0 ≤ j ≤ p − 1, as the
number of bi with i < M that equal j. Then for any Klopsch’s series with depth d we have

B =

p−1∑
j=1

Mj

M
logp(j + 1).

Proof. Recall that Klopsch’s series are defined by

t
d
√
1− datd

= t+ atd+1 + . . . ,

with a ∈ F×
p . Using the p-adic expansion of −1/d, this can be rewritten as

t(1− datd)−1/d = t
∏
i=0

(1− datdp
i

)bi .

Since each bi ≤ p− 1, we get that each factor (1− datdp
i
)bi has bi + 1 terms. Now consider

E(σ)N where σ is Klopsch’s series for p, d and some fixed a and N = pM . It is easy to see
that E(σ)N has size (b0+1) · (b1+1) · · · (bM−1+1) =

∏p−1
j=0(j+1)Mj . To conclude something

about B or β we need to also know how the size of E(σ)N grows when N grows. For this
we use that (b0, b1, . . .) is purely periodic, since −1/d ∈ [−1, 0] ∩ Q and d is coprime to p.
Namely, let N ′ = pnM with n an integer, then we get that the size of E(σ)N ′ equals

(b0 + 1)(b1 + 1) · · · (bnM−1 + 1) =

p−1∏
j=0

(j + 1)nMj = (#E(σ)pM )n.

From this we see

β = M

√
#E(σ)pM =

p−1∏
j=0

(j + 1)Mj/M , and B =

p−1∑
j=0

Mj

M
logp(j + 1).

Note that β and B are independent of a.

Examples.

� When d = pn − 1, we get −1
d

equals (

n︷ ︸︸ ︷
1, 0, . . . , 0, 1, 0, . . .), an expansion with period n,

M0 = n − 1, M1 = 1 and Mj = 0 for all other j. So β = 2
1
n and B = 1

n
logp(2) and

thus B can become arbitrarily small, even for series of finite compositional order.

� Since p−1 is always a divisor of pn−1, we can also give a general expression for d = pn−1
p−1

.

Then −1
d

= (p − 1)(1, 0, . . . , 0), which has period n and M0 = n − 1,Mp−1 = 1 and

Mj = 0 for all other j. This leads to β = p
1
n and B = 1

n
.

� Using the relation (p2n − 1) = (pn + 1)(pn − 1) we find that, if d = pn + 1, then
(−1/d) = (p − 1, p − 1, . . . , p − 1, 0, . . . , 0, p − 1, . . .) with M = 2n, Mp−1 = n and

M0 = n. In this case we have β = p
1
2 and B = 1

2
.
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� Other divisors of pn − 1 can be described using a similar reasoning. For example,
take p = 5 and divisor 3. Then 3 does not divide p − 1 = 4, but it does divide
p2 − 1 = 24. Taking d = 24/3 = 8 we get M = 2, M0 = 1 and M3 = 1, so β = 41/2

and B = 1
2
log5(4) = log5(2). However, for p = 5 there does not exist any d such that

β = 4 and B = log5(4): the only possible periodic expression for this would be (3),
which equals −3

4
and cannot be expressed as −1

d
.

From the series in Table 2.1 we know what their automata and order are and thus we can
calculate B and β. The series σK,d are Klopsch’s series, the series σG,d are greedy series as
defined in Section 3.1 and all other series can be found in the Appendix.

series order B β

σK,2m−1 2 1
m

m
√
2

σK,2m+1 2 1
2

√
2

σK,23 2 4
11

11
√
24

σ◦2
CS 2 1 2

σV,1 2 ≈ 0.79845 real root of x5 − x4 − x2 − x− 2
σV,2 2 ≈ 0.79845 real root of x5 − x4 − x2 − x− 2
σV,3 2 ≈ 0.79845 real root of x5 − x4 − x2 − x− 2

σG,1 2 ≈ 0.69424 ϕ = 1+
√
5

2

σG,3 2 ≈ 0.69424 ϕ = 1+
√
5

2

σG,5 2 ≈ 0.55146 real root of x3 − x2 − 1
σmin 4 1 2
σCS 4 1 2
σJ 4 1 2
σ◦3
J 4 1 2

σ(1,5) 4 ≈ 0.85933 real root of x8 − 2x7 + x5 − x3 − x2 + 2x− 2

Table 2.1: Some series of finite order and their B and β.

Remark. The fact that σV,1, σV,2 and σV,3 all have the same value for B is not trivial. They
all commute, but we also know examples of sparse series that commute with non-sparse
series, such as σ◦3

CS, which commutes with σCS. It could be interesting to examine more
commuting series and their values for B and β.
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Chapter 3

The structure of the support

The goal of this chapter is to look if series of finite compositional order can be constructed
by analysing what the order implies about the structure of the support. In the first three
sections we examine the case p = 2 and give some proofs and results. In the fourth section
we try to generalise the ideas to p > 2. It turns out, however, that p = 2 is a lot more
straightforward than the rest. The main result is given at the end of Section 2, where we
describe new automatic sparse series of order 2 and depth 2µ − 3.

3.1 Structural lemmas and a greedy algorithm

In this first section we look at what we can say about the support of a series of order 2 in
general. This leads to some lemmas and propositions on which we base a greedy algorithm
to generate series of order 2. We prove that all greedy series exist and are algebraic, but will
later see they are not sparse.

Lemma 3.1. Let σ(t) ∈ F2JtK and k ∈ N. Write k uniquely as
∑m

i=i ri, with ri all powers
of 2 such that r1 < r2 < . . . < rm. Then

σ(t)k =
∑

e1,...,em∈E(σ)

te1r1+...+emrm .

Proof. Since k = r1 + r2 + . . .+ rm, we can rewrite σ(t)k as

σ(t)r1+r2+...+rm =
m∏
i=1

σ(t)ri =
m∏
i=1

σ(tri).

The last equality follows because all ri are powers of two. Expanding σ(tri) for each i as∑
di∈E(σ) t

eiri now proves the result.

Corollary 3.1.1. If σ(t) has depth d, then the two smallest values in E(σ(t)k) are k and
R(k, d) := k + 2v2(k)d.

Proposition 3.2. Suppose σ(t) ∈ N2 has compositional order 2 and depth d. Then there is
an integer m ∈ E(σ)\{1} such that v2(m) < v2(d+ 1).
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Proof. We will prove this by contradiction. Suppose for all k ∈ E(σ)\{1, d + 1} we have
v2(k) ≥ v2(d + 1), then also R(k, d) > R(d + 1, d). Recall that σ◦2(t) =

∑
k∈E(σ) σ(t)

k and

note that σ(t) cancels all terms tk of each σ(t)k if k > 1. Hence the expansion of σ◦2(t) is of
the form t+ tR(d+1,d) +O(tR(d+1,d)+1) and σ is not of order 2.

Proposition 3.2 yields a new proof for a known result about possible depths of finite order
elements.

Corollary 3.2.1. If σ(t) is of finite compositional order, its depth cannot be even.

Proof. From the Proposition 3.2 it is clear that a series of compositional order 2 cannot have
an even depth. We know that any element in N2 of finite order has order 2

r for some r ∈ N.
Suppose that σ has even depth d, by a similar reasoning as in previous proof we find that
the depth of σ◦2 is R(d + 1, d) − 1. Clearly R(d + 1, d) − 1 is still even and therefore σ◦2

also cannot have order 2. By an inductive argument on r this shows that σ cannot have any
order of the form 2r and we conclude σ cannot have finite compositional order if its depth is
even.

In the case that d+ 1 is not divisible by 4 we can even explicitly give an odd element in the
support.

Proposition 3.3. Let σ(t) in N2 have compositional order 2 and suppose its depth is d with
v2(d+ 1) = 1. Then 2d+ 1 is the smallest odd number in E(σ)\{1}.

Proof. From Proposition 3.2 we know E(σ)\{1} contains an odd element and thus a smallest
odd elementm. First supposem < 2d+1, then R(m, d) < R(d+1, d). It is easy to see that for
all m′ ∈ E(σ) with m′ ̸= 1,m we have R(m′, d) > R(m, d) and therefore the term tR(m,d) will
not be canceled in σ◦2, a contradiction. Now suppose m > 2d+1, then R(m, d) > R(d+1, d)
and, similarly as in the previous case, the term tR(d+1,d) will not be canceled. We conclude
that m = 2d+ 1 and indeed, R(2d+ 1, d) = R(d+ 1, d).

Definition 3.4. Let p(t) ∈ Fp[t] be a polynomial of degree n ∈ N and σ(t) ∈ FpJtK. We say
p(t) can be extended to σ(t) if p(t) ≡ σ(t) mod tn+1.

Lemma 3.5. Let p(t) ∈ t + t2F2[t] of depth d and degree n, and define d2 as the depth of
p(p(t)). Assume d2 < n+ d, then p(t) cannot be extended to an element in N2 of order two.

Proof. Suppose that d2 < n + d, then clearly p(t) itself is not an element of order two.
Define the polynomial q(t) = p(t) + tm with m > n. We will prove that q(q(t)) still has
depth d2 < n + d < m + d. By induction this proves that, for any power series σ(t) that
extends p(t), the depth of σ(σ(t)) has to be the same as for p(p(t)) and thus σ(t) cannot be
an order 2 element.

Note that q(q(t)) =
∑

k∈E(q)(q(t))
k. Let k be an integer in the support of q unequal to 1.

We know that k ≥ d+ 1 and m > 1 and therefore, using the binomium of Newton,

q(t)k = p(t)k +O(tm+k−1) = p(t)k +O(tm+d).

When k = 1 we obviously get p(t) + tm. Plugging this into the first equation we find

q(q(t)) = tm + p(p(t)) + p(t)m +O(tm+d).
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Since p(t) = t + td+1 + O(td+2), we find in a similar way that p(t)m = tm + O(tm+d) and
because m+ d > n+ d ≥ d2 + 1, we get q(q(t)) = p(p(t)) + O(tm+d) = t+ td2+1 + O(td2+2).
Hence the depth of q(q(t)) is still d2 independent of the choice for m.

Suppose we have a certain polynomial p(t), which we suspect to be extendable to an order 2
element σ(t) of N2. The goal is to find σ(t) and the first step is to find the term of smallest
degree of σ − p, in other words the next monomial tm. The proof of Lemma 3.5 shows that
m ≤ d2 − d + 1 needs to hold. Ideally we would also like σ(t) to be sparse and thus have
relatively few terms. A straightforward strategy, based on greedy choice algorithms, would
now be to take m as big as possible for each following term. This motivates the following
definition.

Definition 3.6. Let σ(t) ∈ t+ t2F2JtK and define d2 as the depth of σ(t)◦2. We call τ(t) =
σ(t) + td2−d+1 or just d2 − d+ 1 the greedy choice for σ(t).

The next theorem gives an idea of when we can, cannot or must use the greedy choice.

Theorem 3.7. Let p(t) ∈ t+ t2F2[t] of depth d > 0 and degree n, so that p(p(t)) has depth
d2. Suppose there is an m ∈ N for which p(t) + tm can be extended to an order two power
series. Then one of the following holds:

(i) m is even and strictly smaller than d2 − d+ 1.

(ii) m is odd, equals d2 − d+ 1 and the depth of q(q(t)) is strictly larger than d2.

Proof. The depths of p(t) and p(t) + tm are the same, so Corollary 3.2.1 tells us that d
is odd and d2 − d + 1 ≡ d2 mod 2. We already concluded that m ≤ d2 − d + 1 from
Lemma 3.5. For the first statement it therefore suffices to show that if d2 is even, choosing
m = d2 − d + 1 gives a contradiction. This contradiction will also follow from Lemma 3.5,
because the new polynomial will have degree d2−d+1, but its second composite keeps depth
d2 and d2 − d + 1 + d > d2. The proof of the second statement uses a similar contradiction
for odd m < d2 − d+ 1.

Assume d2 is even and let q(t) = p(t) + tm be the greedy choice, so m = d2 − d+ 1. By the
same argument as in the proof of Lemma 3.5, we find (p(t) + tm)k = p(t)k +O(tk+d2−d). We
consider three cases, k = 1, k = d + 1 and k > d + 1. When k = 1 it is immediate that we
get p(t) + tm. When k > d + 1 we find p(t)k + O(td2+2), which is enough to show that the
depth of q(q(t)) stays d2. For k = d+ 1 we look at the binomial expansion and find

(p(t) + tm)d+1 = p(t)d+1 +

(
d+ 1

1

)
p(t)dtm +O(t2m+d−1) = p(t)d+1 +O(td2+2).

For the second equality we used that d+1 is even and m ≥ 2, so 2m+d−1 = m+d2 ≥ d2+2.
We can now express q(q(t)) =

∑
k∈E(q) q(t)

k as:

q(q(t)) = tm + p(p(t)) + p(t)m +O(td2+2).

Recall that the smallest two elements of E(p(t)m) are m and R(m, d) = m + 2v2(m)d >
m+ d = d2 + 1. Therefore p(t)m = tm +O(td2+2) and we find

q(q(t)) = p(p(t)) +O(td2+2).
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We see that indeed, the depth of q(q(t)) stays d2 and we have arrived at our contradiction.

To prove the second statement we will use the same tactics as we did for the first. We did not
use that m was even until the very last step. Therefore, if we take m odd and not necessarily
the greedy choice, we still find

q(q(t)) = tm + p(p(t)) + p(t)m +O(td2+2).

However, in this case the smallest elements of the support of p(t)m arem andR(m, d) = m+d.
If m is smaller than d2−d+1, we find R(m, d) < d2+1 and thus the depth of q(q(t)) becomes
m + d − 1. Obviously m + d − 1 < m + d, which contradicts that q(t) can be extended by
Lemma 3.5. If m equals d2 − d + 1, we find that R(m, d) = d2 + 1, so the second term of
p(t)m cancels the second term of p(p(t)) and therefore q(q(t)) indeed has higher depth than
p(p(t)) had. Finally, we already saw that m cannot be bigger than d2 − d+ 1, which proves
the second part.

Remarks.

� Theorem 3.7 shows that, if m is an odd element of the support of some σ of order 2
and if p(t) is a polynomial of degree at most m−1 such that p(t) ≡ σ(t) mod tm, then
m must be the greedy choice for p. In other words, any odd integer in the support
must have been the greedy choice at some point and the even elements of the support
uniquely determine the odd elements.

� Theorem 3.7 also gives a condition to be able to apply the greedy choice. Namely,
whenever d2 is even we cannot use it and will instead be obliged to take m even. If
the minimum of d2, R(m, d) − 1, R(d + 1,m − 1) − 1 and R(s,m − 1) − 1, with s the
smallest odd element of the support, then occurs an odd number of times, it is equal
to the depth of q(q(t)). Except for d2, all these options are odd.

Corollary 3.7.1 (Greedy Algorithm). Let d ∈ 2N− 1 and p0(t) = t + td+1 ∈ F2[t]. For all
n ≥ 0 define pn+1(t) = pn(t) + tmn, where mn is the greedy choice for pn. Suppose mn is
always odd, then limn→∞ pn(t) = σ(t) ∈ N2 has order two.

Definition 3.8. For each positive odd integer d we define σG,d as the series of depth d that
results from the greedy algorithm as defined in Corollary 3.7.1. This series is called the
greedy series of depth d.

From Corollary 3.7.1 we see that greedy series of odd depth d is well defined if and only
if mn is odd for all n. This seems a bit of a strong requirement, since pn(t)

◦2 will also
always contain terms of even degree. However, in Theorem 3.12 we will prove the existence
of σG,d(t), which implies that mn must always be odd. The strategy will be to guess an
algebraic equation F (t,X) = 0 and show that X = σG,d(t) must be a solution.

I used the greedy algorithm to write a computer program in C# and calculate σG,d for all
odd d < 500 modulo tN with N = 216 + 1. These series do not seem to be sparse for any
depth and a proof of this will be given in Chapter 4. For each n-th power of two I checked
how many terms σ contains that are of degree less than 2n. So far this seems to always grow
like βn with β ∈ (1, 2). See Table 3.1 for some of the computational results. Before we prove
the general case we will first look at the example σG,1. In Table 3.1 this series stands out,
because the computed terms of the sequence |E2n(σG,1)| − 1 equal Fibonacci numbers. It
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n
d

1 3 5 7 9 11 31 33 99

1 1 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0
3 3 1 1 0 0 0 0 0 0
4 5 2 2 1 1 1 0 0 0
5 8 3 3 1 2 1 1 0 0
6 13 5 5 2 3 2 1 1 0
7 21 7 7 3 4 2 1 2 1
8 34 12 10 5 6 3 1 3 1
9 55 19 17 9 9 4 1 5 2
10 89 31 25 13 13 7 2 8 3
11 144 49 38 19 22 11 3 11 5
12 233 80 58 32 33 18 5 17 8
13 377 129 87 52 53 28 9 26 11
14 610 209 131 85 83 46 17 41 18
15 987 337 196 139 131 73 33 62 25
16 1597 546 293 222 205 118 49 96 38

Table 3.1: For several depths d the number of elements in E(σG,d)2n\{1}.

therefore seems likely that β = ϕ, the golden ratio. To prove that this is indeed the case we
will need the following lemma.

Lemma 3.9 ([8], Lemma 10.2.2). If a polynomial F (t,X) = 0 ∈ F2[t,X] is symmetric in
t and X, that is F (t,X) = F (X, t), and when regarded as an algebraic equation in X over
F2((t)), has, for some d ≥ 1, a unique solution σ ∈ N2 of depth d, then σ is of order 2.

Proposition 3.10. Define F (t,X) = X3 + (tX)2 + t3. Then σG,1 exists, F (t, σG,1(t)) = 0
and β(σG,1) = ϕ.

Proof. Since we want to be able to calculate β, it will be convenient to have the automaton
of σG,1. Using the Magma program in [7], we start by calculating what the automaton of a
solution of depth 1 to F (t,X) = 0 is. This gives the unique automaton as shown in Figure
3.1. It now suffices to show that this automaton generates the series σG,1.

First note that if we follow the edges labeled by (0, 0), we end up in a vertex labeled by 0,
for which both outgoing edges are loops. Hence any integer divisible by 4 cannot be in the
support. We also end up in this vertex if we follow (0, 1, 0, . . . , 0, 1), showing that 2 is the
only integer in the support that is 2 modulo 4. Therefore, besides 2, the support consists
solely of odd integers. Additionally we know that the automaton must generate a series of
order 2, because of Lemma 3.9 and the uniqueness of the solution. Theorem 3.7 implies that
any odd integer in the support of a series of order 2 must have been the greedy choice at
some point. Thus a series of order 2 having the described support structure must be a greedy
series. We conclude that σG,1 exists and equals the series generated by the automaton. It is
immediate that F (t, σG,1) = 0 and easy to calculate β = ϕ using Theorem 2.12.
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Remark. The same procedure can be followed for any depth d, as long as Magma can still
calculate the automaton. For d = 3 and d = 5 this has been done, using the polynomial
Xd+2 + (tX)d+1 + td+2. This led to β = ϕ and β equal to the real root of x3 − x2 − 1,
respectively.

0

1 0

1 0 1

1
0

1

00

1

0

1

1

0

Start

0, 1

Figure 3.1: The automaton for the series σG,1, which is a solution to X3 + t2X2 + t3.

For the general case we need a specific formulation of Hensel’s Lemma.

Theorem 3.11 (Hensel’s Lemma, [17] Theorem 7.3). Let R be a ring that is complete with
respect to the ideal m, and let F (x) ∈ R[x] be a polynomial. If a is an approximate root of
F in the sense that

F (a) ≡ 0 mod F ′(a)2m

then there is a root b of F near a in the sense that

F (b) = 0 and b ≡ a mod F ′(a)m.

If F ′(a) is a non zero-divisor in R, then b is unique.

Corollary 3.11.1 ([5], Theorem 3.4). Let k be a perfect field with characteristic p > 0. Let
F (t,X) be a polynomial in k[t,X], and denote its derivative with respect to X by F ′. We
assume that we are given a nonnegative integer ρ and a polynomial f̄(t) such that F (t, f̄(t)) ≡
0 mod t2ρ+1 and F ′(t, f̄(t)) ̸≡ 0 mod tρ+1.
There exists a unique series f(t) ∈ kJtK congruent to f̄(t) modulo tρ+1 for which F (t, f(t)) =
0.

Proof. Take R to be the ring kJtK, which is complete with respect to the maximal ideal (t).
Let g be the smallest integer that is not congruent to −1 modulo p, such that the coefficient
ag+1(t) of Xg+1 in F (t,X) is non-zero. Such a g must exist, because otherwise F ′(t,X)
is always zero. Then F ′(t,X) = ag+1(t)X

g + O(Xg) and we have two possibilities, either
f̄(0) = 0 and vt(ag+1) + g ≤ ρ or f̄(0) ̸= 0.

First, suppose f̄(0) = 0. Any element in kJtK of the form a + O(t) with a ∈ k\{0} is a
unit. Hence F ′(t, f̄(t))2(t) equals the ideal (t)2g+1 ⊃ (t)2ρ+1. This shows that f̄(t) is an
approximate root of F and because F ′(t, f̄(t)) is unequal to zero, Hensel’s Lemma provides
a unique series f(t) ≡ f̄(t) mod tg+1 that is an actual root of F . Left to prove is that these
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series are also congruent modulo tρ+1. Define k to be the largest integer for which f(t) ≡ f̄(t)
mod tk+1, we will prove k ≥ ρ. Write

f̄(t) ≡ f1t+ . . .+ f2ρt
2ρ and f(t) ≡ f1t+ . . .+ fkt

k + hk+1t
k+1 + . . .+ h2ρt

2ρ.

Suppose p divides some integer i and look at the difference between f̄(t)i and f(t)i. Taking
such a power can be seen as summing over the terms fj1t

j1 · · · fjitji for all possibilities to make
i choices in the set {1, . . . , 2ρ}. Whenever the only chosen integers are smaller than k + 1,
this term will also exist for the other series and thus be canceled. Besides, if some integer in
{1, . . . , 2ρ} is chosen exactly once, the number of permutations that lead to the same result
will be divisible by i. In other words the coefficient in front of this term will be divisible
by the characteristic and disappear. Hence, the term of smallest degree in f̄(t)i − f(t)i will
have at least degree 2k + i ≥ k + g + i > k + g.
Now, since both these series are a root of F modulo t2ρ+1, we know that F (t, f̄(t))−F (t, f(t))
is also zero for this modulo. However, we also find that

F (t, f̄(t))− F (t, f(t)) = ag+1(t)(g + 1)f g
1 (fk+1 − hk+1)t

k+g+1 mod tk+g+2.

So k + vt(ag+1) + g + 1 ≥ 2ρ+ 1 and because vt(ag+1) + g was at most ρ, we may conclude
that k ≥ ρ.

Now assume f̄(0) = a ̸= 0 and define h̄(t) := f̄(t) − a and H(t,X) := F (t,X + a). One
can easily check that H(t, h̄(t)) ≡ 0 mod t2ρ+1 and H ′(t, h̄(t)) ̸≡ 0 mod tρ+1. The first
case shows that there exists a unique series h(t) ≡ h̄(t) mod t2ρ+1 such that H(t, h(t)) = 0.
Clearly f(t) = h(t) + a is then the unique root of F (t,X) that is congruent to f̄(t).

Theorem 3.12. Let d be a positive even integer and define FG,d(t,X) := Xd+2 + (tX)d+1 +
td+2. Then σG,d exists and FG,d(t, σG,d(t)) = 0.

Proof. Since no ambiguity can arise we will drop the subscript of FG,d(t,X) and simply write
F (t,X).

The strategy will be to first prove F (t,X) has an order 2 solution of depth d. Then we
will show that this solution can have no even elements in the support, besides d + 1. By a
uniqueness argument this will imply the solution equals σG,d.

Lemma 3.9 tells us that if we show that F (t,X) has a unique root in N2 of depth d, this
series will have order 2. The existence and uniqueness both follow from Corollary 3.11.1.
For let σ̄(t) = t+ td+1 and ρ = d+ 1, then

F ′(t, σ̄(t)) = (t+ td+1)d+1 ≡ td+1 ̸≡ 0 mod td+2, and

F (t, σ̄(t)) = (t+td+1)d+2+td+1(t+td+1)d+1+td+2 ≡ td+2+t2d+2+t2d+2+td+2 ≡ 0 mod t2d+3,

where we used Lemma 3.1 to calculate the powers modulo t2d+3. The general solution will
be denoted by σ(t).

We will prove the second part by contradiction. Suppose E(σ)\{d + 1} contains an even
integer and let N be the smallest. Define the integers i1 < . . . < in, such that d + 1 =
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2i1 + . . .+ 2in and note that i1 > 0, because d+ 1 is even. By Lemma 3.1 the terms σ(t)d+2

and (tσ(t))d+1 can now be rewritten as:

σ(t)d+2 =
∑

e0,...,en∈E(σ)

te0+2i1e1+...+2inen , and

(tσ(t))d+1 =
∑

e1,...,en∈E(σ)

td+1+2i1e1+...+2inen .

Since σ(t) is a zero of F (t,X), any term of the form tx must occur an even number of times.
Thus, if x ̸= d+ 2, we want there to be an even number of solutions to the problem:

x = e0 + 2i1e1 + . . .+ 2inen with e0, . . . , en ∈ E(σ), or

x = d+ 1 + 2i1e1 + . . .+ 2inen with e1 . . . , en ∈ E(σ).

Since d + 1 ∈ E(σ), we can pair any solution (e1, . . . , en) of the second equation with a
solution (d + 1, e1, . . . , en) of the first equation and simplify the statement. Now we want
there to be an even number of solutions to:

x = e0 + 2i1e1 + . . .+ 2inen with e0, . . . , en ∈ E(σ), and e0 ̸= d+ 1.

Consider the case x = N+d+1. This value is even and therefore, any solution (e0, . . . , en) =
(E0, . . . , En) requires E0 to be even. By definition of N this implies E0 ≥ N . This only
leaves room for the solution; (e0, . . . , en) = (N, 1, . . . , 1), which indeed exists. Hence the
number of solutions is odd, which shows that N cannot exist and that E(σ)\{d+1} consists
solely of odd integers.

We now have two bits of important information about σ. It is a series of order 2 and depth
d and it has, besides d + 1, only odd elements in its support. In Theorem 3.7 we saw that
any odd element of the support must have been the greedy choice at some point. Hence,
any series with these properties must be the greedy series σG,d. This proves that the greedy
series exists for all odd d and F (t, σG,d(t)) = 0.

3.2 Sparse series of order 2

In this section we will generalise the greedy algorithm a bit to describe a new method for
finding series of order 2. This method yields new sparse series of depths 2µ − 3. To have
some more examples we will first define the known sparse series of order 2 that were also
mentioned in Theorem 1.30.

Definition 3.13 ([8] Proposition 10.2.1.). Take µ ∈ N. For d = 2µ − 1 > 1, define σS,d as
the power series with support

E(σS,d) = {1} ∪

{
d+ 1

d− 1

(
d ·
(
d+ 1

2

)k−1

− 1

) ∣∣∣∣∣ k ≥ 1

}
.

For d = 2µ + 1, define σS,d as the power series with support

E(σS,d) =

{
1− d+ d

∑
j∈J

2j(d− 1)k(j)

∣∣∣∣∣ ∅ ≠ J ⊂ {0, 1, . . . , µ− 1}, k : J → Z≥0

}
.
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For d = 2, define σS,d as the power series with support

E(σS,d) = {1} ∪ {2n − 2, 2n − 1 | n ≥ 2}.

The ranks of sparseness equal 1, µ and 1, respectively.

The ideas for the greedy algorithm followed from Theorem 3.7. This theorem also shows that
there is a clear distinction between even and odd elements in the support of an order 2 series.
The following consequence marks the importance of this result and gives a generalisation of
the greedy algorithm.

Proposition 3.14. Let E be any subset of the positive even integers. Then there can be at
most one subset O of the positive odd integers so that, σ ∈ N2, E(σ) = E ∪O and σ◦2(t) = t.
Moreover, N ∈ O if and only if it is the greedy choice for

∑
i∈E(σ)N−1

ti.

Examples.

� Taking E equal to {d+1} reduces this proposition to the greedy algorithm (Corollary
3.7.1) and thus leads to σG,d.

� Taking E = {2n − 2 | n ≥ 2} we will find the series σS,2. Here E can also be expressed
as the simple sparse set {1k10 | k ∈ Z≥0}.

� When d = 2µ − 1, the set E = E(σS,d)\{1} leads to σS,d. Here E equals the simple
sparse set {10µ−1(10µ−2)k0 | k ∈ Z≥0}.

� For d = 2µ + 1 we may take E as the subset of E(σS,d) with either 0 ̸∈ J or k(0) ̸= 0
to get σS,d. Here E consists of the union of multiple simple sparse sets.

An important question to ask is: which choices for E lead to sparse series? Obviously E
itself should be sparse and, since σ has finite order and therefore is automatic, it should
even be a union of simple sparse sets by Lemma 2.5. This is also what we saw in previous
examples. At the moment the best method we have is just making guesses. Taking E =
{2µ − 2} ∪ (2µ−1E + 2µ−1 − 2) for µ ∈ N, which equals {2, 4, 8, 16, . . . , } when µ = 1, led to
the following result.

Theorem 3.15. Let µ ≥ 2, d = 2µ − 3 and define

σM,d(t) := t+
∑
i≥1

∑
j≥0

t
2j(2(µ−1)i−1) 2µ−3

2µ−1−1
+1
.

Then σM,d is an order two power series of depth d that is 2-sparse.

Proof. Note that σM,d(t) is a zero of

F (t,X) = X2µ + t2
µ−1

X2µ−1

+ tX2 + t2X + t2
µ

.

By Corollary 3.11.1 for ρ = 2, we find that σM,d(t) is the unique series of depth d for which
this is the case. Also, this polynomial is symmetric in X and t, so, by Lemma 3.9, σM,d(t)
has order 2.

That σM,d(t) is 2-sparse can be seen directly from the formula.
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The simple sparse sets when µ ≥ 3 are

{1(1µ−20)k | k ∈ Z≥0} and {1(1µ−20)k11µ−3010k21 | k1, k2 ∈ Z≥0}.

For µ = 2 we get
{10k | k ∈ Z≥0} and {11k10k21 | k1, k2 ∈ Z≥0}.

In both cases the support satisfies the relation E = {1} ∪ E ∪ (2E − 1), which in a moment
we will be able to call a support relation.

3.3 Support relations

For some d ∈ 2N− 1 there have been found sparse series of depth d and order 2 in N2, but
not for all. It remains unknown whether such series even exist for all odd d. In this section
we analyse σS,d for d = 2µ ± 1 > 1, and show their supports have a structure where the
odds determine the evens. Since the odds are all greedy choices, this structure determines
the series completely. For other d we give possible ways to extend this structure and then
formulate a conjecture based on this.

Definition 3.16. Let E ⊂ N and suppose there exists O ⊂ N and α1, . . . , αn, β1, . . . , βn ∈ N
such that

E = O ∪ (α1E + β1) ∪ . . . ∪ (αnE + βn), (3.1)

with (αiE + βi) for 1 ≤ i ≤ n pairwise disjoint. We call (3.1) a support relation. If E is the
support of some σ(t) ∈ Np, we say σ satisfies a support relation.

Proposition 3.17. The series σS,d with d = 2µ + 1 is the unique series of order 2 that
satisfies the support relation E = O ∪ (2E + 2µ) with O ⊂ 2N− 1.

Proof. We will first prove that σS,d satisfies the support relation and then show uniqueness.

Since d − 1 and 2 are both even, it suffices to show that any even m is in the support of
σS,d if and only if m = 2e+ d− 1 for some e in the support. Every element m in E(σS,d) is
determined by a set J ⊂ {0, . . . , µ − 1} and a function k := J → Z≥0. One can check that
m is even if and only if 0 ̸∈ J or k(0) ̸= 0 and we will consider these two cases separately.
First assume 0 ̸∈ J , then we can rewrite m as

m = 2

(
1− d+ d

∑
j∈J

2j−1(d− 1)k(j)

)
+ d− 1.

Define J ′ := J − 1 ⊂ {0, . . . , µ− 1} and k′ : J ′ → Z≥0 by k′(j′) = k(j′ + 1). The element m′

of the support determined by J ′ and k′ indeed meets the requirement 2m′ + d− 1 = m.
Now suppose 0 ∈ J and k(0) ̸= 0, we can rewrite m as

m = 2

1− d+ d(d− 1)k(0) + d
∑

j∈J\{0}

2j−1(d− 1)k(j)

+ d− 1.

Substituting one factor (d − 1) of d(d − 1)k(0), shows that it is equal to d2µ−1(d − 1)k(0)−1.
Define J ′ := ((J−1)\{−1})∪{µ−1} ⊂ {0, . . . , µ−1} and k′ : J ′ → Z≥0 by k′(j′) = k(j′+1)
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if j′ ̸= µ− 1 and k′(µ− 1) = k(0)− 1. The element m′ of the support determined by J ′ and
k′ also satisfies 2m′ + d− 1 = m.
We have now shown that any even m is in the set 2E(σS,d) + d − 1. The other implication
says that any element in (2E(σ)+d−1) is in the support and can be proven in a similar way
by going from J to J + 1 and k(j) to k′(j + 1). This proves that σS,d satisfies the support
relation.

To prove uniqueness we will argue that there can be at most one set O ⊂ 2N− 1 such that
a set E satisfying the support relation E = O ∪ (2E + d − 1) is the support of a series of
order 2. To see this we use Theorem 3.7, which said that any odd integer in the support of
an order-two series is uniquely determined by the smaller elements in the support. Since an
even element is in E if and only if it is in 2E + d− 1, the same can be said about the even
integers. Hence any element in the support is uniquely determined by the smaller elements
and thus E must be unique.

Proposition 3.18. The series σS,d with d = 2µ − 1 is the unique series of order 2 that
satisfies the support relation E = O ∪ (2µ−1E+2µ−1) with O ⊂ 2N− 1. Furthermore, in this
case, O = {1}.

Proof. The proof of uniqueness follows exactly the same argument as in Proposition 3.17.
Therefore, we will concentrate on proving σS,d satisfies this support relation. It again suffices
to show that any m ∈ E(σS,d) is even if and only if it is in 2µ−1E(σS,d) + 2µ−1.

To minimize notation, define m(k) := d+1
d−1

(d · (d+1
2
)k−1 − 1). From the definition of σS,d

it is clear that the support now consists of 1 and all m(k) with k ≥ 1. All m(k) are
even, so we will show that they are exactly the set (2µ−1E(σS,d) + 2µ−1). When k = 1 we
find m(k) = d + 1, which equals 2µ−1 · 1 + 2µ−1. When k > 1 one can easily check that
m(k) = 2µ−1m(k − 1) + 2µ−1. We may conclude E(σS,d) = {1} ∪ (2µ−1E(σS,d) + 2µ−1).

We said before that we wanted to find order-two series σ such that the odd values in E(σ)
determine the even values. This is exactly what is stated in the previous two propositions,
the evens of σS,d are determined by a support relation E = O ∪ (aE+ b) because O ⊂ 2N−1
and a, b are both even. To get a better idea of what happens exactly and how to implement
this we will take a look at the example σS,5. Here we will also see how the odd integers are
determined by the greedy choice.

Example. For σS,5 we are given the support relation E = O ∪ (2E+4). Since 1 is always an
element of the support, we immediately get {1, 6, 16, 36, 76, . . .} ⊂ E(σS,5). Define the power
series τ0(t) = t+ t6+ t16+ . . . and set O0 = {1}, then τ0(t) satisfies E(τ0) = O0∪(2E(τ0)+4).
This series does not have order 2 and the depth of τ0(τ0(t)) equals 15. This gives a greedy
choice of 15−4 = 11, which shows {11, 26, 56, 116, . . .} is also a subset of the support of σS,5.
Define O1 = {1, 11} and let τ1(t) be the series that satisfies the support relation E =
O1 ∪ (2E +4). Then τ1(t) = t+ t6 + t11 + t16 + t26 + . . . and the depth of τ1(τ1(t)) is 45. The
greedy choice now becomes 41 and we may define O2 = O1 ∪ {41}.
Generally speaking, for each n ≥ 1, we calculate d2(τn−1) (the depth of τ ◦2n−1), define On =
On−1∪{d2(τn−1)−4} and τn as the series that satisfies the support relation E = On∪(2E+4).
Then σS,5 will be the limit of τn as n goes to infinity.
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The previous algorithm will also work for all other σS,d with d = 2µ±1 and, more interestingly,
for other support relations E = O ∪ (aE + b) of which we do not yet know if there exists
an order-two series that satisfies the relation. If these series exist, they will be of depth
a + b − 1. We might, though, need to make one slight addition to the algorithm: if τ ◦2n
has infinite depth, we define On+1 = On, or equivalently σ = τn. Also the same caution
is necessary as with the greedy algorithm: a series that satisfies the support relation only
exists if d2(τn) is always odd. We can therefore now state the following conjecture, which we
will later on prove for all cases where a is a power of 2 and b ≥ −a+2

3
.

Conjecture 3.19. Let a > 0 and b > −a be even integers. Then there exists a unique
element in N2 of order 2 that satisfies the support relation E = O∪(aE+b) with O ⊂ 2N−1.

In Propositions 3.17 and 3.18 we already proved the uniqueness in the specific cases a =
2, b = 2µ and a = b = 2µ−1. This argument is relatively simple to generalise, which we will
do in the next proof. Besides, we will give a new criterion to determine the sparseness of a
series, depending only on the set O of the support relation.

Theorem 3.20. Let a > 0 and b > −a be even integers, then there exists at most one element
σ in N2 of order 2 that satisfies the support relation E = O ∪ (aE + b) with O ⊂ 2N − 1.
Furthermore, σ is sparse if and only if O is sparse.

Proof. Suppose such a series σ and set O exist. Since all elements in O are odd, Theorem
3.7(i) tells us that an odd integer m is in O if and only if it was the greedy choice for the
polynomial p(t) ≡ σ(t) mod tm of degree at most m − 1. Hence, if for all integers smaller
than m we have decided whether they are in the support, then it is also uniquely determined
whether m should be in it. The same conclusion holds if m is even; it is determined by
a, b and the elements of O. Therefore we find that the support, and thus σ, is uniquely
determined.

For the second claim we note that the left implication is immediate: O is a subset of the
support of σ and thus, sparse whenever σ is. For the other implication we may assume O
to be sparse of some rank r. In mathematical notation: |O ∩ [N ]| = O(log(N)r). Define a′

strictly between 1 and a and suppose N is equal to (a′)k. To bound the number of even
elements, we look at how many iterations each odd element m can have gone through, while
staying smaller than N . After j iterations we get an element of at least size ajm + aj−1

a−1
b.

Since b ≥ −a+ 2 this is always bigger than

ajm− aj + 1 +
aj − 1

a− 1
> aj(m− 1) + aj−2.

When m ≥ (a′)i+1, there can be at most k− i iterations. If k is large enough, we can assure
the same thing for m = (a′)i, and in particular m = 1. We find that the number of odd
elements that went through at least j iterations is at most |O(a′)j | = O(jr). There can have
been at most k iterations so far and we find |E(σ)N | = O((k + 1)r) +O(kr) +O((k− 1)r) +
. . . + O(2r) + O(1) = O(kr+1) = O(log(N)r+1), from which we conclude that σ is sparse of
rank at most r + 1.

To check if the existence claim of the conjecture might fail, I wrote a computer program
in C#. The program follows the steps as described in previous example about σS,5. For
all a + b − 1 = d < 100 and a ≤ 32 it is possible to calculate these series modulo tN for
N = 211 + 1. See Table 3.2 for some of the results.
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(a, b) (2, 0) (4,−2) (6,−4) (6,−2) (8,−4) (4, 2) (4, 6) (4, 8) (6, 6) (8, 6)

n
d

1 1 1 3 3 5 9 11 11 13

1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 1 1 1 1 1 1 1
3 4 3 3 1 1 1 1 1 1 1
4 8 4 6 2 2 2 1 1 1 1
5 16 6 9 2 3 3 2 1 1 2
6 32 9 15 2 5 5 3 2 2 3
7 64 14 35 7 7 8 5 3 3 4
8 128 21 72 16 11 13 8 4 7 6
9 256 32 134 33 17 21 13 6 10 9
10 512 48 266 75 24 34 21 8 21 13
11 1024 73 494 151 35 55 34 12 47 19

Table 3.2: For several series σ that satisfy a support relation E = O ∪ (aE + b) so that
O ⊂ 2N− 1 and σ might be of order 2, the depth d and the number of elements in O ∩ [2n]
are given.

Examples.

� (a, b) = (2, 0): In Section 3.3 we will see that taking a a power of two and b = 0 will
lead to a Klopsch’s series. In Section 2.6 we saw that in those cases β = m

√
2, which is

what we also see here.

� b = 6: Based on this data alone it seems likely that in the cases that b = 6 the value
of β should be 2. Whereas in all the other cases displayed (besides (2, 0)) it looks like
β < 2. Considering also the data not displayed, it seems likely that all supports where
a is not a power of two grow like O(2n) and all series where a is a power of two grow
like O(βn) with β < 2.

� (a, b) = (4, 2) and (4, 6): Just like with σG,1 we recognise the Fibonacci-series and thus
would expect β = ϕ. This is indeed the case as we will see at the end of this section.

For σS,d it is already known that they are algebraic by the equations F (t,X) = (tX)2
µ−1

+
X + t when d = 2µ − 1 > 1 and F (t,X) = (tX)2

µ
+ X2µ−1 + t2

µ−1 when d = 2µ + 1. We
will generalise this, with a new proof, in the next two theorems for a any power of two and
b ≥ −a+2

3
.

Proposition 3.21. Let a be a power of two and b ≥ a an even integer. Then F(a,b) :=
(tX)b +Xb−a+1 + tb−a+1 has a unique solution in N2 of depth a + b − 1. This solution has
order 2 and satisfies the support relation E = O ∪ (aE + b) with O ⊂ 2N− 1.

Proof. Before we begin the reader should remind oneself of the notation .. ̂ .., introduced at
beginning of this thesis. Furthermore, the polynomial F(a,b) is denoted by F and this proof
will follow the same strategy as the proof of Theorem 3.12.

By Lemma 3.9 and Hensel’s Lemma we find the existence and uniqueness of a series σ(t) ∈ N2

of depth a + b − 1, order 2 and so that F (t, σ(t)) = 0. Corollary 3.11.1 is here used with

38



σ̄(t) = t+ ta+b and ρ = b− a. Then

F ′(t, σ̄(t)) = σ̄(t)b−a+1 ≡ tb−a ̸≡ 0 mod tb−a+1 and,

F (t, σ̄(t)) ≡ 0 + tb−a+1 + tb−a+1 ≡ 0 mod t2b−2a+1.

(This only shows that σ(t) ≡ σ(t) ≡ t mod tb−a+1, but it can easily be shown, by analysing
F (t,X), that the depth of σ must be a+ b− 1.)

We will prove by contradiction that this σ satisfies the support relation E = O ∪ (aE + b).
It suffices to show that an element in E(σ) is even if and only if it is in aE(σ) + b. Let N
be the smallest even integer such that one of the following holds:

(i) N ∈ E(σ) but N ̸∈ aE(σ) + b.

(ii) N ̸∈ E(σ) but N ∈ aE(σ) + b.

In other words, N is the smallest contradiction to the previous statement. Furthermore,
define M := N−b

a
. In case (i) M ̸∈ E(σ) and in case (ii) M ∈ E(σ).

Now let i1 < i2 < . . . < in and l all be integers, such that b = 2i1 + . . . + 2in and a = 2l.
Define j to be the smallest index for which ij ≥ l and m := ij − l. We can now write b− a
as:

2i1 + ..2̂ij ..+ 2in + (2ij−1 + 2ij−2 + . . .+ 2l).

Note that the term between brackets equals zero if ij = l. We will first only consider the
case where ij > l and thus m ≥ 1.
Using this equation we can write (tσ(t))b and (σ(t))b−a+1 as follows:

(tσ(t))b =
∑

e1,...,en∈E(σ)

tb+2i1e1+...+2inen , and

(σ(t))b−a+1 =
∑

e0,..êj ..,en+m∈E(σ)

te0+2i1e1+..2̂ij ej ..+2inen+2ij−1en+1+...+2len+m .

Because σ(t) is a solution to F (t,X) = 0, any term of the form tx must occur an even number
of times. Thus, for all x ̸= b− a+ 1 there have to be an even number of solutions to:

x = b+ 2i1e1 + . . .+ 2inen with e1, . . . , en ∈ E(σ), or

x = e0 + 2i1e1 + ..2̂ijej..+ 2inen + 2ij−1en+1 + . . .+ 2len+m with e0, ..êj.., en+m ∈ E(σ).

Consider x = b− a+N . Then in case (i) we find the solution e0 = N, e1 = ..êj.. = en+m = 1
and in case (ii) the solution e0 = a + b, e1 = ..êj.. = en+m−1 = 1, en+m = M . We will now
prove that all other possible solutions come in pairs. Suppose therefore that there is another
solution and first consider the case that it solves the first equation. Then the solution is
of the form (e0, . . . , en) = (E0, . . . , En). Because 2ij > a, we must have Ej < M . By
the definition of N this implies aEj + b ∈ E(σ). One can now check that e0 = aEj + b,
en+1 = . . . = en+m = Ej and ei = Ei for all 1 ≤ i ≤ n and i ̸= j, gives a different
solution. Secondly consider the case that the solution solves the second equation but is not
of the form en+1 = . . . = en+m and e0 = aen+1 + b. Then the solution can be written as

(e0, ..êj.., en+m) = (E0, ..Êj.., En+m). Since b− a+N is even, so is E0, and a+ b ≤ E0 < N

39



and En+m < M . Therefore, by definition of N , there exists some E ′
0 in the support such that

E0 = aE ′
0+ b and aEn+m+ b must be in E(σ). Let 1 ≤ k ≤ m be the largest index for which

En+k ̸= E ′
0, this index exists because we excluded the specific case where it does not. One

may check that e0 = aEn+k+b, ei = Ei for all 1 ≤ i ≤ n+k−1 and i ̸= j, en+k = E0, ei = Ek

for all i ≥ n+ k+1 is a different solution. Note that if we had started with the constructed
solution instead of (E0, ..Êj.., En+m), this method would have constructed (E0, ..Êj.., En+m),
so we have now paired all solutions.
Before we draw any conclusions we go back to the case m = 0. We then want an even
number of solutions to

x = b+ 2i1ei + . . .+ 2inen with e1, . . . , en ∈ E(σ), or

x = e0 + 2i1e1 + ..2̂ijej..+ 2inen with e1, ..êj.., en ∈ E(σ).

Let x = b − a + N again, in case (i) the solution e0 = N, e1 = ..êj.. = en+m = 1 still holds,
but in case (ii) we now need to take e1 = ..êj.. = en = 1 and ej = M . We can pair a solution

(E1, . . . , En) with Ej < M to (aEj + b, E1, ..Êj.., En) with aEj + b < N . This describes all
possible solutions.

Thus, when x = b − a + N , we have an odd number of terms of the form tx, showing that
F (t, σ(t)) ̸= 0. This is a contradiction and we may conclude that N does not exist and
therefore σ(t) must satisfy the support relation E = O ∪ (aE + b) with O ⊂ 2N− 1.

Proposition 3.22. Let a be a power of two and a > b ≥ −a+2
3

an even integer. Then
F(a,b)(t,X) := (tX)a−1+Xa−b−1+ ta−b−1 = 0 has a unique solution in N2 of depth a+ b− 1.
This solution has order 2 and satisfies the support relation E = O∪(aE+b) with O ⊂ 2N−1.

Proof. By Lemma 3.9 and Corollary 3.11.1 we find the existence and uniqueness of a series
σ(t) ∈ N2 of depth a+b−1, order 2 and so that F (t, σ(t)) = 0. To see this take σ̄(t) = t+ta+b

and ρ = a− b− 1, then

F ′(t, σ̄(t)) = ta−1(t+ ta+b)a−2 + (t+ ta+b)a−b−2 ≡ ta−b−2 ̸≡ 0 mod ta−b−1 and,

F (t, σ̄(t)) = t2a−2+t3a+b−3+O(t4a+2b−4)+ta−b−1+t2a−2+O(t3a+b−3)+ta−b−1 ≡ 0 mod t3a+b−3.

Since ρ ≥ a − b − 2 and 2ρ + 1 ≤ 3a + b − 3, it works. (Actually, we only get σ(t) ≡ t
mod ta−b, but, with a simple calculation, one may show that σ(t) ≡ t+ ta+b mod ta+b+1 as
well.)

Define O = E(σ) ∩ 2N − 1 and assume σ(t) does not satisfy the support relation E =
O ∪ (aE + b). Then there exists a smallest even integer N such that one of the following
holds:

(i) N ∈ E(σ) but N ̸∈ E(σ) + b.

(ii) N ̸∈ E(σ) but N ∈ aE(σ) + b.

Define M as N−b
a

, then in case (i) M ̸∈ E(σ) and in case (ii)M ∈ E(σ).

Note that because σ(t) is a zero of F (t,X), it is also a zero of (tX)F (t,X) = (tX)a+tXa−b+
ta−bX. When X = σ(t) we want each term tx to occur an even number of times. We will
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examine this for x = a − b + N . The expansion of tσ(t)a−b can only consist of monomials
with odd degree, since a− b is even. For the other two terms we know:

(tσ(t))a =
∑
e∈E

ta+ae, and

ta−bσ(t) =
∑
e∈E

ta−b+e.

Hence, we want there to be an even number of solutions to the problem:

x = a+ ae with e ∈ E, or

x = a− b+ e′ with e′ ∈ E.

When N ∈ E(σ) we have e′ = N as the only solution and when M ∈ E(σ) we only
have e = M . Thus the number of solutions is odd instead of even, a contradiction. We
may conclude that N does not exist and therefore that σ must satisfy the support relation
E = O ∪ (aE + b).

Definition 3.23. Denote the unique solution to F(a,b)(t,X) = 0 of depth a+b−1 by σ(a,b)(t).

Remarks.

� The polynomials in Theorems 3.21 and 3.22 only differ by a factor (tX)b−a+1, which is
necessary to make all powers positive.

� In Proposition 3.22 the cases −a+2
3

> b > −a are excluded. This is because Hensel’s
Lemma is in general not able to provide the unique solution when we input σ(t) =
t+ ta+b. However, when a+ b− 1 ≡ 2x − 1 mod 2x for some x ≥ 2, we can calculate
the next 2x−1 monomials of σ(t)a−b−1 leading to a bigger upper bound for 2ρ+1. One

may prove that for those cases the bound for b can be improved to b ≥ −(2x−1)(a−1)−1
2x+1

.

As an example take a = 16 and b = −8. We have −a+2
3

> b > −3a+2
5

and find
a− b− 1 = 23 ≡ 3 mod 4. Hence F(16,−8)(t,X) = (tX)15 +X23 + t23 = 0 has a unique
solution in N2 of depth 7, order 2 and satisfying the support relation E = O∪(16E−8)
with O ⊂ 2N− 1.

� Using Proposition 3.3 we may also improve the bound for b in the case that v2(b) = 1.
Defining σ(t) now as t+ ta+b + t2a+2b−1 and noting a− b− 1 ≡ 1 mod 4 one can show
that F(a,b)(t, σ(t)) ≡ 0 mod t5a+3b−5. Thus any b ≥ −3a+2

5
works.

Examples. As we did with the greedy series, the algebraic equations for the series satisfying
support relations can be used to calculate their automata. With the help of an automaton it
can then be checked if a certain series is sparse and, if it is not, what its growth numbers B
and β are. For the examples that were already discussed earlier in this section, this has been
done and the results and two of the (smaller) automata can be found in Table 3.3 and Figure
3.2. None of the series were sparse, unfortunately. Noteworthy is that (a, b) equal to (4, 2)
and (4, 6) indeed have β = ϕ. Also, for (a, b) = (8, 6) the minimal polynomial could have been
guessed, because in Table 3.2 we find the recursive relation An = An−1 + An−3 when n ≥ 5.
Furthermore, in Figure 3.2a it is possible to spot the support relation E = O ∪ (8E + 6),
because when we follow the edges labeled (0, 1, 1) from ‘Start’, we end up where we began
and thus e ∈ E if and only if 8e + 6 ∈ E. The automaton in Figure 3.2b is a bit harder
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(a, b) d Minimal polynomial of β β B
(2, 0) 1 x− 2 2 1
(4,−2) 1 x4 − x3 − x2 + x− 1 ≈ 0.59729
(8,−4) 3 x6 − x5 − x3 + x2 − 1 ≈ 0.44240
(4, 2) 5 x2 − x− 1 ϕ ≈ 0.69424
(4, 6) 9 x2 − x− 1 ϕ ≈ 0.69424
(4, 8) 11 x6 − x4 − x3 − x2 + 1 ≈ 0.48673
(8, 6) 13 x3 − x2 − 1 ≈ 0.55146
(16, 14) 29 x4 − x3 − 1 ≈ 0.46496

Table 3.3: For several series that satisfy a support relation E = O ∪ (aE + b) and are the
solution to F(a,b)(t,X) = 0 as given in either Theorem 3.21 or Theorem 3.22, their depth d
and their B and β.

0 0

0 0

0

1

0, 100

0

1

0

11
1 0

1

Start

(a)

0 0

1 1

1

0

1

10 1

1 0

0

0, 1

1
1

1

0

0

0

Start

(b)

Figure 3.2: The automata for the series which are a solution to (a) (tX)7 +X + t = 0 and
satisfies the support relation E = O ∪ (8E + 6), and (b) X5 + (tX)3 + t5 = 0 and satisfies
the support relation E = O ∪ (4E − 2).

to dissect this way, but also doable. Firstly, note that there are no elements divisible by 4
in the support. Therefore we can distinguish two cases for e ∈ E: either e is odd or it is 2
modulo 4. In the first case compare following the edge (1) with following (0, 1, 0) and in the
second case compare (0, 1) with (0, 1, 1, 0). In both cases these edge sequences lead to the
same vertex and therefore, e ∈ E if and only if 4e− 2 ∈ E.

Remark. In Table 3.3 the case (a, b) = (16, 14) has been included to illustrate a peculiarity.
Whenever a = 2n and b = a−2, it seems the minimal polynomial for β equals xn−xn−1−1.
Note that these series exactly have depths 2n+1 − 3 and that the sparse series in Theorem
3.15 had even support of the form E = {d + 1} ∪ (aE + b). If this is true for all n, it is
remarkable that these a and b have a lot of structure in both cases.

3.4 Generalisations to p > 2

In this section we look which ideas that we found for p = 2 can be generalized to other
primes p.
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Proposition 3.24. Let σ(t) = a0 + a1t + a2t
2 + . . . ∈ FpJtK and k ∈ N. Write k uniquely

as k =
∑m

i=i ri with r1 ≤ r2 ≤ . . . ≤ rm all powers of p such that each power occurs at most
p− 1 times. Then

σ(t)k =
∑

e1,...,em∈E(σ)

m∏
i=1

aeit
eiri .

Proof. Since k = r1 + r2 + . . .+ rm, we can rewrite σ(t)k as

σ(t)r1+r2+...+rm =
m∏
i=1

σ(t)ri =
m∏
i=1

σ(tri).

The last equality follows because all ri are powers of p. Expanding σ(tri) as
∑

ri∈E(σ) aeit
eiri

now proves the result.

Corollary 3.24.1. If σ(t) has depth d, then the two smallest values in E(σ(t)k) are k and
R(k, d) := k + pvp(k)d.

Proposition 3.25. Let σ(t) in Np have compositional order pn and depth d with vp(d+1) =
0. Then,

(i) either 2d+ 1 ∈ E(σ), or 2d+ 1 ∈ E(σ−1).

(ii) if e ∈ E(σ) and 1 ≤ e < 2d+ 1, then e ∈ E(σ−1).

Proof. (i) Using that the inverse of σ(t) is equal to σ(t)◦p
n−1 it is easy to check that σ−1(t)

also has depth d and order pn. Now suppose 2d+1 is not in the support of σ or of σ−1

and consider the following equation:

t = σ(σ−1(t)) =
∑

i∈E(σ)

(σ−1(t))i.

In the case that i = 1 ∈ E(σ) we do not get a term of the form at2d+1, but in the case
i = d+ 1 ∈ E(σ) we do get such a term, because R(d+ 1, d) = 2d+ 1. Any i > d+ 1
also does not give such a term, because R(i, d) > 2d+ 1 in those cases and i ̸= 2d+ 1.
Hence we find a contradiction and may conclude 2d + 1 is in either the support of σ
or of σ−1.

(ii) Let e < 2d+1 be the smallest element in E(σ)∪E(σ−1) that is not in E(σ)∩E(σ−1).
Without loss of generality, assume e to be in E(σ−1) and not in E(σ) then, σ(t) =
σ−1(t)− ate +O(te+1). Now consider

t = σ(σ−1(t)) =
∑

i∈E(σ)

(σ−1(t))i = σ−1(t) + σ−1(t)− t− ate +O(te+1).

The last equation holds because e < 2d+1, so (σ−1(t))i = ti+O(tR(i,d)) = ti+O(te+1)
if i ≥ d. Hence we get the equality t = t + ate + O(te+1), which is obviously false.
Therefore e cannot exist and the proof is finished.

Remark. The previous proposition does not really tell us anything about p = 2, since we
know that the depth d can never be divisible by p.
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In the case of p = 2 we looked at series that satisfied a support relation of the form E =
O ∪ (aE + b). This splits up the support in odd and even elements. Similarly we might be
able to split up the support for other primes into sets O1 ∪O2 ∪ . . . ∪Op, where Oi contains
all elements that are congruent to i modulo p. Obviously 1 has to always be in O1 and, to
be consistent, we might want to write the other Oi as aE + b again. The next Lemma tells
us that such a series cannot be sparse if there are multiple i ̸= 1 such that Oi ̸= ∅.

Proposition 3.26. Let E = O ∪ (α1E + β1) ∪ (α2E + β2) ̸= ∅ be a support relation with
α1, α2 > 1. Then E is not sparse.

Proof. Since E is nonempty there must be some element m in O. Let f(x) = α1x + β1,
g(x) = α2x+β2 andN = max{f ◦k(m), g◦k(m)} for some k ∈ N. Note that O(log(N)) = O(k)
and consider the set EN . This set must contain all elements h1 ◦h2 ◦ · · · ◦hk(m), where hi is
either f or g. Because (α1E+β1) and (α2E+β2) are disjoint, all these elements are distinct.
So EN contains at least 2k elements and thus |EN | ≠ O(kr) = O(log(N)r). In other words,
E is not sparse.

From this proposition we may conclude that the only sparse series in Np that satisfy a
support relation must satisfy E = O ∪ (aE + b) for some a, b ∈ N and with 1 ∈ O.

Another problem we run into while generalising the case p = 2, is that we do not have an
expression for the greedy choice anymore. There might though be a ‘logical choice’ that can
be expressed in d and dp, the depth of the pth composite of some series. In the following we
will first dissect the support relations for Klopsch’s series and then check whether or not O
could be defined as the set of ‘logical choices’.

Example: Klopsch’s series that satisfy a support relation

Expanding a Klopsch’s series as was done in the proof of Proposition 2.15, we may conclude
that its support does not depend on the coefficient ad+1 ∈ F×

p . Therefore, given some prime
p, we may speak about E(σK,d) without specifying which Klopsch’s series of depth d is taken.

Define O = E(σK,d) ∩ (pN − (p − 1)) and b0 ∈ {1, . . . , p − 1} such that b0 ≡ d−1 mod p.
Then for all depths d ̸≡ 0 mod p, it holds that E(σK,d) = O ∪ (O + d) ∪ . . . ∪ (O + b0d).
This follows because b0 is the first coefficient of the p-adic expression of −1

d
and thus the

congruence class of an element in the support is determined by which term we take from the
first factor (1 + td)b0 = 1 + b0t

d + . . .+ tb0d.
In the next proposition we will answer the question: when can we write each set (O + kd)
as (aE + b)?

Proposition 3.27. Let σK,d be a Klopsch series for some prime p and define b0 and O as
above. Suppose 0 < k ≤ b0 is an integer. Then (O + kd) can be written as (aE(σ) + b) if
and only if −1

d
= b00 . . . 00.

Proof. We know that the smallest element of O + kd is 1 + kd and if i > 0 is the smallest
index such that bi ̸= 0, we get 1+kd+pi as the second smallest element. So a+b = 1+kd and
a(1+d)+b = 1+kd+pid. From these equations we easily solve a = pi and b = 1+kd−pi. Now
let j be the smallest index such that bj ̸= 0 and bj+i ̸= bj. Then we find 1 + pj(bjd) ∈ E(σ).
This implies that pi+j(bjd) + 1 + kd ∈ E(σ) and we conclude that bj+i > bj. In particular
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this shows that bj+i is non-zero and thus pi+j(bi+jd) + 1+ kd is in the support. Now we can
reverse the iteration to get another element of the support:

1

pi
(pi+j(bi+jd) + 1 + kd− 1− kd+ pi) = pj(bi+jd) + 1.

This would however imply that bj is greater than bi+j, a contradiction. The only possibility
is that the period of −1

d
must be divisible by i and this implies, since i was also the smallest

index such that bi ̸= 0, that the p-adic expression must indeed be of the form b00 . . . 00.

Conversely, assume that −1
d

= b00 . . . 00 of period i. Let a = pi and b = 1+ kd− pi and take
x ∈ (O1 + kd). In this case we can express Klopsch’s series (for ad+1 ≡ −d−1) by

t

∞∏
i=0

(1 + td)b0p
i

= t(1 + td)b0
∞∏
i=1

(1 + tdp
i

)b0 .

Because x ∈ (O + kd), we can write x as 1 + kd + c1dp
i + c2dp

2i + . . . + cndp
ni, with

cj ∈ {0, 1, . . . , b0} and therefore x−b
a

= 1+c1d+c2dp
i+ . . .+cndp

(n−1)i ∈ (O+c1d) ⊂ E(σK,d).
From this we may conclude that (O + kd) ⊂ (aE(σK,d) + b).
For the other inclusion we take x an element in (aE(σK,d) + b). We may write x = 1 +
kd− pi + pi(1 + c0d+ c1dp

i + . . . + cndp
ni), which is indeed an element of (O + kd). Hence

(O + kd) = (aE + b) as we wanted.

Corollary 3.27.1. If d = pi−1
b0

∈ N for some i > 0 and b0 ∈ {1, . . . , p − 1}, the series σK,d

satisfies a support relation.

Examples.

� For p = 2 these depths are 2i − 1 and they satisfy the support relation E = O ∪ (2iE).
Here O consists solely of greedy choices as explained in Section 3.3.

� For p = 3 these depths are 3i − 1 and 3i−1
2

with b0 equal to 1 and 2 respectively.

� For p = 5 these depths are 5i − 1, 5i−1
2

, 5i−1
4

and 52i−1
3

with b0 equal to 1, 2, 4 and 3
respectively.

Examples. The goal here is to find a ‘logical choice’ how to determine O for a series σ that
satisfies a support relation. We use the following method. Let σK,d be the Klopsch’s series for
p = 3 with all coefficients either equal to 0 or 1 and suppose d is as in Corollary 3.27.1. Then
σK,d satisfies the support relation O∪(α1E+β1)∪(α2E+β2) for some α1, α2, β1, β2 ∈ Z. Write
1 = x0 < x1 < . . . for the elements in O and define On := {x0, . . . , xn} for all n ≥ 0. Let
τn(t) be the power series that satisfies the support relation E = On∪ (α1E+β1)∪ (α2E+β2)
such that all its coefficients are either 0 or 1. Define d3(τn) as the depth of τ ◦3n . How do
xn+1, d and d3(τn) relate?

� (d = 1) We have the support relation E = O ∪ (3E − 1) ∪ (3E) and find:

O = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, . . .},
d3(τn) + 1 = (8, 11, 14, 23, 20, 23, 32, 29, 32, 59, . . .),

d3(τn) + 1− xn+1 = (4, 4, 4, 10, 4, 4, 10, 4, 4, 28, . . .).
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What stands out is that those are all of the form 1 + 3k for some k and that d3(τn) +
1− 1, d3(τn) + 1− 4, d3(τn) + 1− 10 ∈ O for all n. However, a general structure is not
clear.

� (d = 2) We have the support relation E = O ∪ (3E) and find:

O = {1, 7, 19, 25, 55, 61, 73, 79, . . .},
d3(τn) + 1 = (27, 69, 33, 177, 69, 93, 87, . . .),

d3(τn) + 1− xn+1 = (20, 50, 8, 122, 8, 20, 8, . . .).

Here we may note that all are 2 mod 3 and that any integer of the form d3(τn)+1− 8
is in O but not necessarily equal to xn.

� (d = 4) We have the support relation E = O ∪ (9E − 4) ∪ (9E) and find xn+1 =
d3(τn)− 15 = d3(τn) + 1− 4d for all xn < 3000 (or equivalently n < 11).

� (d = 8) We have the support relation E = O ∪ (9E) and find:

O = {1, 73, 649, 721, 5833, 5905, 6481, 6553, 52489, . . .},
d3(τn) + 1 = (729, 5985, 801, 52641, 5985, 7137, 6633, 472545, . . .).

Here all integers that equal d3(τn)+ 1− 80 are in O (but not necessary equal to xn+1).

It seems hard to define any ‘logical’ and consistent choices based on these examples. However,
we did see that d3(τn) + 1− 4d is always in the support and also d3(τn) + 1− 10d might be
an interesting option.
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Chapter 4

The power of a Galois group

In [1] Albayrak and Bell gave a field-theoretic way to characterise sparseness. In Section 1 we
state and prove one direction of the theorem. In the second section we see that by the Galois
theoretic part of the characterisation we can, for all greedy series and some series satisfying a
support relation (as defined in previous chapter) prove that they are not sparse. The proofs
heavily rely on Newton polygons to determine the degree of the minimal polynomial.

4.1 Field theoretic conditions for sparseness

To prove the field theoretic conditions we will need the following two lemmas.

Lemma 4.1. Let F ′ = F (y)/F be a finite separable extension of function fields, and let
f(X) ∈ F [X] such that it is monic and f(y) = 0. Suppose P is a prime of F and satisfies

f(X) ∈ OP [X] and vP ′(f ′(y)) = 0

for all primes P ′ of F ′ above P . Then P is unramified in F ′/F .

Proof. This is a slight generalisation of Corollary 3.5.11 in [27]. We will assume this corollary
and prove the lemma follows.

Write ϕ(X) for the minimal polynomial of y over F . Then we can write f(X) = ϕ(X)g(X) for
some monic polynomial g(X) in F [X]. We will prove that ϕ(X) ∈ OP [X] and vP ′(ϕ′(y)) = 0
whenever f meets the criteria proposed in the lemma.
We can write

ϕ(X) = Xn + an−1X
n−1 + . . .+ a0 and g(X) = Xm + bm−1X

m−1 + . . .+ b0,

and define an = bm = 1 and ak, bk = 0 when k > n or k > m respectively. Now let
i ≥ 0 and j ≥ 0 be the largest integers for which vP (ai) and vP (bj) are minimal. Whenever
ϕ(X), g(X) ∈ OP we will have i = n and j = m and therefore 0 ≥ vP (ai) + vP (bj). Now
consider the coefficient of X i+j in the expansion of f . This coefficient can be written as

ai+jb0 + . . .+ aibj + . . .+ a0bi+j.

The P -adic valuation of this expression is greater or equal to the minimum of vP (akbi+j−k)
for 0 ≤ k ≤ i + j with equality if and only if the minimum is unique. By the definitions of
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i and j we see that the P -adic valuation must be 0 ≥ vP (ai) + vP (bj) ≥ 0. Thus we may
conclude that both ϕ(X) and g(X) are in OP [X].

For the second claim consider the derivative f ′(X) = ϕ(X)g′(X) + ϕ′(X)g(X). Because
ϕ(y) = 0 we get f ′(y) = ϕ′(y)g(y) and vP ′(ϕ′(y)) + vP ′(g(y)) = 0. Note that also vP ′(y) ≥ 0,
because otherwise

∞ = vP ′(0) = vP ′(ϕ(y)) = nvP ′(y) < 0.

Using that ϕ′(X) and g(X) are both elements of OP ′ we now find that vP ′(ϕ′(y)), vP (g(y)) ≥
0, from which we conclude that vP ′(ϕ′(y)) = 0.

Lemma 4.2. Let K be a field of characteristic p > 0 that contains Fpn and take k ∈ K. The
splitting field of Xpn −X + k over K then is Galois and has degree some power of p.

Proof. Suppose α is a root of the polynomial and take j ∈ Fpn . Then, α+j is also a root of the
polynomial, which shows that the polynomial is separable. Furthermore, K(α) = K(α + j)
and thus K(α) is the splitting field of Xpn −X+k. We immediately get that K(α) is Galois,
since it is the splitting field of a separable polynomial.
Clearly the degrees of K(α + j) over K for j ∈ Fpn are all the same, which shows their
minimal polynomials must have the same degree. Hence, the degree of K(α) over K must
divide pn and is thus a power of p.

Proposition 4.3 (Albayrak–Bell [1]). Let σ ∈ Np denote a power series that is algebraic
over Fp(t). Consider the field

F =
⋃
p∤ℓ≥1

Fp(t
1/ℓ),

where Fp is an algebraic closure of Fp. If σ is sparse, then the following conditions hold:

(i) σ is integral over Fp[t, t
−1];

(ii) the extension Fp(t)(σ)/Fp(t) is unramified outside of 0,∞;

(iii) the splitting field of σ over F has degree a power of p.

Proof. Whenever σ is sparse its support can be written as a finite disjoint union of simple
sparse sets as we saw in Lemma 2.5. Thus, we may then also view σ as the sum of multiple
series, that all have support equal to a simple sparse set. We will call these series simple
sparse series. With an inductive argument we will show that it suffices that properties (i)-
(iii) hold for simple sparse series, after which we prove that this is indeed the case. Notice
that these simple sparse sets do not necessarily contain 1 and therefore the proof needs to
work for all series in FpJtK and not only for those in Np.

Write σ = σ1 + . . .+ σr, where all σi are simple spares series and suppose properties (i)-(iii)
hold for all σi. Property (i) clearly also holds for σ, since the sum of a finite number of
integral elements is also integral. For the second property we use Corollary 3.9.3 from [27].
We know that

Fp(t)(σ) ⊂
r∏

i=1

Fp(t)(σi),

where
∏

is used to denote taking the compositum of fields, not the product. The corollary
implies that the right side is unramified outside of 0 and ∞, because this is the case for each
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individual field. The same then holds for any subfield.
Finally, for the third property, suppose we have proven that the splitting fields of σ1 + . . .+
σr−1 and of σr over F have as degree a power of p. Write F1 and F2 for these splitting
fields respectively and define F := F1 ∩ F2. The following degrees are now all powers of p:
[F2 : F ], [F1 : F ] and [F : F ]. By Proposition 14.4.19 in [16], we know F1F2 is Galois and

[F1F2 : F ] = [F1 : F ][F2 : F ][F : F ],

which is thus also a power of p. The field F (σ) is a subfield of F1F2 and because F1F2 is
Galois, so is the Galois closure of F (σ). With an inductive argument this shows σ meets
property (iii) when all simple sparse series do.

Now we will prove that all three properties hold for some simple sparse series σ. We know
that E(σ) = {vrwxr

r · · · v1wx1
1 v0 | xi ∈ Z≥0} for some fixed p-ary words v0, . . . , vr, w1, . . . , wr.

When r = 0, σ is a monomial and thus all properties hold. Now suppose it holds for all
ranks up to r − 1 ≥ 0. Let k0 = ℓ(v0), k1 = ℓ(w1),m0 = |v0| and m1 = |w1|. Define τ to be
the simple sparse series with support equal to {vrwxr

r · · ·wx2
2 v10

k0 | xi ∈ Z≥0}. This series
has rank r − 1, so by the induction hypothesis the properties hold for τ . We will now prove
the following relation between σ and τ :

t(p
k1−1)m0−pk0m1σ(t)− σ(t)p

k1 = tp
k1m0−pk0m1τ(t).

Note that we may write the support of σ as:

{pk1x1j + (pk1(x1−1)+k0 + . . .+ pk1+k0 + pk0)m1 +m0 | x1 ∈ Z≥0, j ∈ E(τ)}.

Hence we can write the support of the first term on the left side of the equation as:

{pk1x1j + (pk1(x1−1)+k0 + . . .+ pk1+k0 + pk0)m1 − pk0m1 + pk1m0 | x1 ∈ Z≥0, j ∈ E(τ)}.

Similarly, the second term of the equation has support:

{pk1x1j + (pk1(x1−1)+k0 + . . .+ pk1+k0)m1 + pk1m0 | x1 ∈ Z≥1, j ∈ E(τ)}.

Which are exactly the same, except for the fact that in the first set x1 ≥ 0 and in the second
x1 ≥ 1. Furthermore, for each n in both supports the coefficient an ̸= 0 in front of tn will
be the same. So, if we subtract the second term from the first, only the cases with x1 = 0
will remain. This gives the support {j − pk0m1 + pk1m0 | j ∈ E(τ)}, which is equal to the
support of the (only) term on the right. Here a similar remark about equal coefficients holds
and we conclude that the relation between σ and τ indeed holds.

Because this relation is integral, it now immediately follows that σ is integral over Fp(τ)[t, t
−1]

and since property (i) already holds for τ it now also holds for σ.

The relation can also be used to prove the second property. Use Lemma 4.1 with the
function f(t,X) = Xpk1 − t(p

k1−1)m0−pk0m1X + tp
k1m0−pk0m1τ(t). For any prime P outside

of 0 and ∞ and P ′ above P , we see that f(t,X) ∈ OP [X] if and only if vP (τ(t)) ≥ 0 and
vP ′(f ′(σ)) = vP ′(t(p

k1−1)m0−pk0m1) = 0. Hence, P is unramified if P does not lie above 0 or
∞ and vP (τ(t)) ≥ 0. The last condition always holds by the following inductive argument.
If the rank of τ is zero (and therefore τ is a monomial) it is clear and else the induction
hypothesis tells us that there exists some polynomial g(X) ∈ OP [X] such that g(τ) = 0. As
is shown in the proof of Lemma 4.1 this implies vP (τ) ≥ 0.
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Defining c = −m0 +
pk0m1

pk1−1
and d = pk0m1

pk1−1
we can rewrite the relation between σ and τ to:

(tcσ)p
k1 − (tcσ) = tdτ.

Hence, tcσ is the zero of a polynomial of the form Xpn − X + k over F (τ), as in Lemma
4.2. Since F (τ, σ) is equal to the splitting field of this polynomial (also see the proof of the
lemma), it is Galois and has degree a power of p over F (τ). Furthermore, we already assume
that F (τ) has a degree over F that is power of p. This shows that the third property must
indeed hold for F (σ).

Going back to the series of order 2 that we found in Chapter 3, we will check if they meet
the criteria of Proposition 4.3. Recall that we defined two types of series: greedy series and
series that satisfied a support relation E = O ∪ (aE+b). By the algebraic relations we found
for greedy series and if a is a power of two, it is immediately clear that they all meet the
first criterium. About the other two we will say something in the next section on the basis
of their Newton polygons.

4.2 Newton polygons

Definition 4.4. Let F be a non-archimedean field that is complete with respect to some
valuation v and f(X) ∈ F [X] equal to

anX
n + . . .+ a1X + a0, with an ̸= 0.

We define the Newton Polygon of f , or NP(f), to be the lower convex hull in R2 of the finite
set of points

{i, v(ai) | 0 ≤ i ≤ n, ai ̸= 0}.
For each line segment we can determine its slope and multiplicity, i.e. the length of its
projection to the horizontal axis.

Since each slope is unique, it makes sense to talk about the multiplicity of a certain slope.

Example. Take the field F2JtK, which is complete with respect to (t), and consider the
polynomial F(8,6)(t,X) = (tX)6 +X + t. The set of points becomes {(0, 1), (1, 0), (6, 6)} and
in Figure 4.1 we can now see its complex hull. It consists of two line segments, one of slope
−1 and multiplicity 1 and one of slope 6

5
and multiplicity 5.

Theorem 4.5 ([2] p. 8). Let f ∈ F [x], and Λ ⊂ Q the set of slopes of NP(f). We may write

f = an
∏
λ∈Λ

fλ, with, fλ(x) :=
∏

f(y)=0,
v(y)=−λ

(x− y).

Then, fλ(x) ∈ F [x], and its degree is equal to the multiplicity of λ.

Theorem 4.6 (Dumas [15]). Let (a, b) and (a+ c, b+ d) be the start and end point of some
line segment of NP(f) with slope λ = d

c
. Suppose there exist gλ(x), hλ(x) ∈ F [x] of degrees

dg and dh such that
fλ(x) = gλ(x)hλ(x)

then, the point (a+ dg, b+ λdg) must lie in Z2.
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(0, 1)

(1, 0)

(6, 6)

Figure 4.1: The Newton polygon of F (t,X) = X6 +X + t at the prime (t).

Example. In the case that F (t,X) = (tX)6 + X + t we can now conclude that F (t,X)
has one zero with t-valuation 1 and 5 zeroes with t-valuation 6

5
. Also, we can write the

polynomial as F (t,X) = t6(F−1(t,X)F 6
5
(t,X)), where F−1(t,X) has degree 1 and F 6

5
(t,X)

has degree 5 in X. Both these polynomials are irreducible, since the polygon does not cross
any additional points on the lattice Z2.

Proposition 4.7. All greedy series and support relations series with a equal to a power of
2 meet the second criterium of 4.3.

Proof. Let P be some prime in Fp(t) besides 0 and ∞, σ the series in question and define F
as FG,d or F(a,b) divided by their lead coefficient. Then F (t,X) ∈ OP [X] and F ′(t, σ) = σn

for some n ∈ Z. We will show that vP ′(σ) = 0 for all P ′|P and then it follows from Lemma
4.1 that P is unramified.
Note that the Newton polygon of F (t,X) at P consists solely of a straight line segment on
the x-axis. Thus, by Lemma 4.5, any zero of F (t,X) has P -adic valuation 0. The series σ is
a zero of F (t,X) and since P ′ lies above P this shows vP ′(σ) = 0.

Theorem 4.8. Suppose a is a power of two, b an even integer, d > 0 an odd integer and
ℓ > 0 a square free integer. Define G(t,X) := FG,d(t,X) and F (t,X) := F(a,b)(t,X), then:

(i) G is irreducible over F2(t
1/ℓ).

(ii) When b ≥ a all irreducible factors of F over F2(t
−1/ℓ) have a degree that is a multiple

of b
gcd(ℓ(a−1),b)

.

(iii) When a > b > 0 all irreducible factors of F over F2(t
−1/ℓ) have a degree that is a

multiple of a−1
gcd(a−1,ℓb)

.

(iv) When 0 > b > −a all irreducible factors of F over F2(t
1/ℓ) have a degree that is either

a multiple of b
gcd(ℓ(a−1),b)

or a multiple of a−1
gcd(a−1,ℓb)

.

Proof. Note that all irreducible factors of G or F must lie in F2[t
1/ℓ, X] (case (i) and (iv))

or F2[t
−1/ℓ, X] (case (ii) and (iii)) because G and F , when divided by their lead coefficients,

themselves do. (Also see the argument given in the proof of Lemma 4.1.)

(i) We start by looking at the Newton Polygon of F at the prime t−1/(d+2), see Figure 4.2a.
The polygon has two line segments, one from (0,−(d+2)2) to (d+1,−(d+1)(d+2))
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(0,−(d+ 2)2)

(d+ 1,−(d+ 1)(d+ 2))

(d+ 2, 0)

(a)

(0, ℓ(−b+ a− 1))

(b− a+ 1, 0)

(b,−ℓb)

(b)

(0,−ℓ(a− b− 1))

(a− b− 1, 0)

(a− 1,−ℓ(a− 1))

(c)

(0,−ℓ(a− b− 1))

(a− b− 1, 0)

(a− 1,−ℓ(a− 1))

(d)

Figure 4.2: The Newton Polygons at t−1/ℓ of (a) F (t,X) = Xd+2+(tX)d+1+td+2 for ℓ = d+2,
(b)F (t,X) = (tX)b +Xb−a+1 + tb−a+1 when b ≥ a, (c) F (t,X) = (tX)a−1 +Xa−b−1 + ta−b−1

when a > b > 0, and (d) F (t,X) = (tX)a−1 +Xa−b−1 + ta−b−1 when 0 > b > −a.

and the other from (d + 1,−(d + 1)(d + 2)) to (d + 2, 0). Neither crosses any other
integer points and their multiplicities are d+ 1 and 1. Therefore, the only way that F
could be reducible, is if it has a zero q(t) in F2[t

1/(d+2)] of order vt−1/(d+2)(q) = −(d+1).
So the term of highest degree of q(t) should be a d+1

d+2
t(d+1)/(d+2). However, when looking

at the Newton Polygon of F at the prime t, we find that all its zeroes have vt(q(t)) = 1
and thus, the term of lowest degree should be a1t. This shows that q could not be a
polynomial in any fractional power of t and thus F stays irreducible over F2[t

1/(d+2)].
Now write g for the largest divisor of ℓ that is coprime with d+ 2. Then,

[F2(t
1/ℓ, t1/(d+2)) : F2(t

1/(d+2))] = g.

Since g and d+ 2 are coprime and extending F2(t
1/(d+2)) with σ has a degree of d+ 2,

we find that F stays irreducible over F2(t
1/ℓ, t1/(d+2)) and thus over all fields F2(t

1/ℓ).

(ii) In Figure 4.2b the Newton Polygon of F at t−1/ℓ is depicted. It has one line segment

of degree b and slope −ℓ(a−1)
b

. Any point (x, y) on the line is in Z2 if x is divisible by
b

gcd(−ℓ(a−1),b)
. The statement now follows directly from Theorem 4.6.

(iii) The Newton Polygon of F at t−1/ℓ now has a single line segment of degree a − 1 and
slope −ℓb

a−1
, see Figure 4.2c. Therefore, (x, y) is an integer point on the segment if x is

divisible by a−1
gcd(a−1,−ℓb)

.

(iv) The Newton Polygon of F at t−1/ℓ can be seen in Figure 4.2d. Note that since b > −a
the point (a−1, a−1) will always lie on the convex side of the dotted line. The polygon
has two line segments, one of degree a − 1 and slope −ℓb

a−1
and one of degree −b and

slope ℓ(a−1)
−b

. The statement now follows by the same ideas an in (ii) and (iii).

Corollary 4.8.1. (i) All greedy series are not sparse.
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(ii) Suppose b
gcd(a−1,b)

(when b ≥ a), a−1
gcd(a−1,b)

(when a > b > 0) or both (when 0 > b > −a)
are divisible by some odd prime squared. Then the series of order 2 that satisfies the
support relation E = O ∪ (aE + b) is not sparse.

Proof. By Proposition 4.3 it suffices to show that the degree of the splitting field of σ over
F is not a power of 2.

(i) The minimal polynomial of σG,d over F is just FG,d. It follows that [F (σG,d) : F ] =
d+ 2 which is odd and larger than 1.

(ii) Let q be the prime that divides the relevant constant twice. Then q must divide
[F (σ(a,b)) : F ] by a similar argument.

Proposition 4.9. Suppose a− b− 1 is equal to 3 and a > b > 0. Then σ(a,b) is not sparse.

Proof. In these cases the Newton polygon at t1/ℓ consists of two line segments. A segment
of slope −ℓ and degree 3 and a segment of slope λ(ℓ) := ℓ(a−1)

a−4
and degree a − 4. Since

vt(σ(a,b)) = 1 we know that it is a zero Fℓ(t,X) and not of F−λ(ℓ)(t,X). One can prove

that there is no ℓ such that Fℓ has a zero in F2[t
−1/ℓ]. Besides, all irreducible factors of

F−λ(ℓ) in F2Jt1/ℓK must have a degree that is divisible by a−4
gcd(ℓ(a−1),a−4)

. Hence, the minimal

polynomial of σ over F is of degree 3+x, where x is some multiple of a−4
gcd(ℓ(a−1),a−4)

for some
odd and square free integer ℓ. Whenever ℓ is odd we find that 3 + x is also odd. Therefore,
the minimal polynomial of σ(a,b) of F will be of odd degree greater or equal to 3 and σ(a,b)

cannot be sparse by Proposition 4.3(iii).

Examples. Especially the cases where b
gcd(a−1,b)

is a power of two and b ≥ a or 0 > b, seem
good candidates for sparse series. In fact, we have seen examples of both answers.

� When a = 2 and b = 2µ or a = b = 2µ−1 we get the series σS,2µ±1, which is sparse.
Note that b ≥ a here and b

gcd(a−1,b)
equals 2µ or 1 respectively.

� When (a, b) ∈ {(4,−2), (8,−4), (4, 8)} we saw at the end of Section 3.3 that σ is not
sparse. In all these cases b

gcd(a−1,b)
= b which is (up to a minus sign) a power of 2.

� When (a, b) = (4, 6) we also saw at the end of Section 3.3 that σ is not sparse. In this
case b ≥ a and b

gcd(a−1,b)
= 2.

Remark. We have not discussed any of the cases where b = 0 here. However, in Section 3.4
we saw that those all generate Klopsch’s series, which we know to not be sparse.

53



Chapter 5

Further research

(1) In Chapter 2 a new growth constant β was defined for non-sparse series σ. We know
that β is bounded by p and always equals the nth root of a Perron number. A natural
question to ask oneself is: given a certain prime p, does this describe all possible values
β can take? What about when we know the compositional order of σ? A known
problem in automaton theory is whether you can see what the order of an automatic
series is by only looking at its automaton. If the set of values β that one can take in
the finite order case is unequal to the set of values in the infinite order case, this gives
a partial answer to this problem.

(2) In Chapter 3 a new method to search for order 2 power series was described, by guessing
the subset of even elements of the support. So far there has not been found a non-
empty even set for which such a series does not exist. It would therefore be interesting
to try and prove or disprove the following conjecture:

Conjecture 5.1. Let E ⊂ 2N non-empty, then there exists exactly one σ ∈ N2 such
that E(σ) ∩ 2N = E and σ is of compositional order 2.

The proof of this conjecture might also lead to more insight in how the odd part of the
support depends on the even part, which could help us with finding more sparse series
of order 2. Even if this does not (yet) work, the new method can be used to guess more
sparse even sets and see if these result in any sparse series. This is of special interest
for all depths outside of 2µ ± 1 and 2µ − 3.

(3) In Section 3.4 we saw that it is not completely straightforward how to generalise the
method to p = 3. However, the way O was constructed for the Klopsch’s series did
not seem entirely without structure. Similarly there might exist structures for series
of order pn with n ≥ 2, starting with 4.

(4) In the beginning of Chapter 4 a field theoretic characterisation of sparse series by
Albayrak and Bell was mentioned. One way to find series σ of finite order is by using
Witt vectors and choosing a good uniformizer, see [8]. This choice also influences field
theoretic properties of σ. It would be nice to see if these two ideas could be combined
to see which uniformizers might or will definitely not lead to sparse series. We saw that
so far especially the third property of Proposition 4.3 was of importance, so a good
place to start is by calculating the splitting field over F for a known sparse series.
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Appendix

Here we will give the automata, algebraic equations and/or direct formulas of some non-
sparse series of finite compositional order. All the automata were calculated in [8] and
drawn using the Finite State Machine Designer [29]. When not stated otherwise, the series
were also defined by J. Byszewski, G. Cornelissen and D. Tijsma in [8].

The series σmin is defined as the unique zero in N2 of

F (t,X) = (t+ 1)3X3 + (t3 + t)X2 + (t3 + t+ 1)X + t3 + t.

It has order 4 and depth 1 and its automaton can be found in Figure 5.2a.

The series σ(1,5) satisfies the equation t2X3 + (t + 1)3X + t3 + t = 0 and is of order 4 and
depth 1. Its automaton can be found in Figure 5.4b.

The series σV,1 is a zero of t4X4 + t3X3 + X2 + (t + 1)X + t2 + t and σV,2 is a zero of
(t4 + 1)X4 + tX2 + t2X + t4. Then σV,3 is defined as σV,1 ◦ σV,2 and satisfies

t4X4 + (t+ 1)3X3 + t(t2 + t+ 1)X2 + (t+ 1)3X + t(t+ 1)2 = 0.

All have order 2 and they have depths 1, 5 and 1 respectively. They also commute with each
other, and hence exhibit an explicit embedding of the Klein group. Their automata can be
found in Figure 5.5, 5.6 and 5.1.

The series σCS was discovered by T. Chinburg and P. Symonds [12] and has order 4. Its
compositional inverse, σ◦3

CS was computed by Z. Scherr and M. Zieve [4, Remark 1.5], and is
in fact sparse.

σCS := t+ t2 +
∑
k≥0

2k−1∑
ℓ=0

t6·2
k+2ℓ,

σ◦2
CS = t+

∑
k≥0

2k−1∑
ℓ=0

t4·2
k+2ℓ.

σ◦3
CS =

∑
k≥0

(t3·2
k−2 + t4·2

k−2).

Their depths are 1, 3 and 1, respectively and the automata of σCS and σ◦2
CS can be found in

Figure 5.3.

57



Found by S. Jean [19] and a zero of F (t,X) = (t+ 1)X2 + (t2 + 1)X + t we have the series
σJ of order 4 and its compositional inverse:

σJ :=
∑
k≥0

t2
k

(t+ 1)3·2k−1
,

σ◦3
J =

∑
k≥0

t2
k+1−1

(t+ 1)3·2k−2
.

They both have depth 1 and the automata can be found in Figures 5.2b and 5.4a, respectively.
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