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Abstract
Type families in Haskell allow the programmer to be more expressive on
the type level. Type inference on the other hand becomes more compli-
cated and the quality of error messages suffers. With the introduction of
Rhodium to Helium, we are able to introduce type families to the compiler
and use its techniques to improve error messages. To this end, we designed
a reduction trace that traces the applications of type families throughout
the type inference process. Furthermore, we designed an error message
structure and hints to help the programmer diagnose the error. Hints
were designed to help with permutation mistakes, warn the programmer
for apartness and suggest injectivity annotations when needed. The tech-
niques for error message improvement in Helium are certainly ready to
include type families. However, there is some terrain to win with respect
to comprehension of type error messages. Last but not least, the reduction
trace is not complete in the sense that it is not able to obtain a trace for
all programs.
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Chapter 1

Introduction

Haskell is a pure, lazy, statically typed, functional programming language that is designed to be suitable
for teaching, research, and applications [18]. These different use cases resulted in many features that were
implemented for Haskell over time. While a broad feature set increases the use cases for the language,
there is one drawback: the more features a language has, the more sources an error can originate from.
As a result, error messages often can become confusing for programmers. Not only does this happen to
programmers new to the language, the more advanced features in Haskell frequently baffle experienced
programmers as well. One such advanced feature is Type Families [29] (Section 2), that allow the
programmer to define functions on the type level. This feature opens up many extra ways to extend
type correctness and allows the programmer to provide a high degree of certainty with respect to the
correctness of a program.

Even though this feature is not meant to be used by novices in Haskell, even experienced programmers
had to learn to work with it. It is therefore important that errors, and more specifically type errors, are
clear and to the point. In the standard Haskell compiler, the Glasgow Haskell Compiler (GHC), this
is often a point of concern. Error messages tend to be confusing and deviate the programmer from the
exact source of the error. Currently, Helium [15] (Section 3.1) is a Haskell compiler that is specialized in
type error diagnosis. It uses a number of techniques to improve it. The compiler is not as extensive as
GHC and only covers a subset of the features that it offers. Recently, the type error diagnosis techniques
of Helium have been extended to work with one of the more advanced features of Haskell: GADTs [26].
A new type inference engine, Rhodium [4], has been designed to make the type error diagnosis techniques
in Helium compatible with the more advanced features that GHC implements. Of those features, GADTs
are currently the only one implemented.

Upon Rhodium, we have implemented Type Families in Helium. Using the type error diagnosis techniques
from Helium, we have designed ways to improve the type error diagnosis for Type Families in Helium
with respect to GHC. To this end, we extended the parser, static checks and type inference of Helium to
support Type Families. Furthermore, we designed a Reduction Trace that tracks how types using Type
Families are transformed throughout the type inference process. Finally, we designed and implemented
new heuristics for Helium that allow further reasoning over type errors concerning Type Families.

1.1 Relevance

Providing understandable type error messages in functional languages is hard. Especially when the type
system they work with becomes more and more advanced. This also applies to type families, which
introduce function applications to the type system, making it more complex. Furthermore, type families
introduce many rules to ensure termination and correct application. This introduces confusing situations
for the programmer. One such rule is the apartness rule (Section 4.4.1).

type family Loop a where

Loop [a] = Loop a

Loop a = a

loop :: Loop [c]

loop = 'X'

1



At first glance, a (novice) programmer would expect that Loop [c] would reduce to c by first applying

the first instance and then applying the second. The second instance is, however, never applied and GHC
gives the following error message:

main.hs:206:8: error:

• Couldn't match type ‘Loop c’ with ‘Char’

Expected type: Loop [c]

Actual type: Char

• In the expression: 'X'

In an equation for ‘loop’: loop = 'X'

• Relevant bindings include

loop :: Loop [c] (bound at main.hs:206:1)

|

206 | loop = 'X'

|

Loop c cannot be reduced because c can be instantiated as a list type in which case the first instance

would be applied. The apartness rule states that we must be completely sure that another instance could
never be applied. For type families, we only need a very simple example to cause the type inferer in GHC
to give a confusing error.

type family Foo a

type instance Foo Int = Float

wut :: Foo Float

wut = 6

Notice that the type Foo Float is not reducible by the type family. We thus expect that Foo Float

cannot be matched with the type Int from 6 . GHC, on the other hand, provides the following error
message:

main.hs:179:7: error:

• No instance for (Num (Foo Float)) arising from the literal '6'

• In the expression: 6

In an equation for 'wut': wut = 6

|

179 | wut = 6

|

GHC expects an instance of Num for Foo Float , which obviously is not there. This error does not
provide the main cause of the type error and instead takes the focus of the programmer off of it. In this
thesis, we use the techniques in Helium to clarify confusing type family rules and always provide the
correct source of the error.

1.2 Document overview

In chapter 2 we first provide a short introduction to Type Families to provide an idea of how they emerged
and what they are used for. In chapter 3 we discuss the current state of research with regards to existing
literature. This section excludes a detailed discussion on the implementation of Type Families as this is
discussed in chapter 4. Here, we focus on design choices made for Type Families in the GHC compiler and
the consequences for their expressiveness. Chapter 5 discusses type error messages that GHC provides
when certain errors are made concerning type families. We discuss what makes them confusing and how
they could be improved. Using the context gathered in these chapters, we introduce our research questions
in chapter 6. The next chapters introduce and discuss the work that has been done on improving type
error diagnosis for type families to answer the research questions. Chapter 8 introduces the reduction
trace implemented to keep track of type family applications. Chapter 9 introduces the main type family
heuristic designed to provide better error messages for left-to-right type family reductions. Next, chapter
10 discusses the heuristics implemented to provide better error messages regarding injective type families.
We finish the implementation section with a comparison of the error messages in Helium with the error
messages in GHC. This is done in chapter 11. Last but not least, we conclude our work in chapter 12 and
provide future work that can be done to improve on this work in chapter 13.

2



Chapter 2

Preliminaries: Type Families

In Haskell, a type family is a synonym for a type level function. Type level functions allow the programmer
to write entire programs at the level of types [29] and it allows the type inference system to infer different
types based on different arguments given to the type function. The idea is similar to a value-level function.
In this section, we discuss the different ways in which type-level functions can be defined in Haskell and
how they differ from each other. Readers with experience in type families could probably skip this section.
Knowledge of type classes in Haskell is assumed.

2.1 Functional Dependencies

Type level functions first arose with the introduction of Functional Dependencies [20]. A functional depen-
dency is an extension to multi-parameter type classes that allow the programmer to define dependencies
between different parameters. Let us use the following example.

class Collects e ce where

empty :: ce

insert :: e -> ce -> ce

member :: e -> ce -> Bool

At first glance, this class should not pose any problems and we should be able to create some nice
instances for it. However, a problem arises when considering empty. It has the following ambiguous type:

empty :: Collects e ce => ce

With ambiguous we mean that there is a type variable e on the left side of => but not on the right.
This results in the situation where the type inference system is not able to assign a type to e and is thus
not able to select the right type class instance to use. Functional dependencies can solve this problem by
redefining the class definition as follows.

class Collects e ce | ce -> e where

empty :: ce

insert :: e -> ce -> ce

member :: e -> ce -> Bool

Here, ce -> e means that ”ce uniquely determines e”. As a result, empty now becomes unambiguous
as the type inference system can now assign a type to e when ce is known. It is the job of the type system
to make sure that the dependency holds. Notice that this dependency can be seen as a nameless function
that, given a type for ce, returns a type for e. Thus, we see here the first form of a type-level function.

2.2 Associated Type Synonyms

Associated type synonyms [5] take the idea of functional dependencies and rewrite the syntax in such
a way that an actual type-level function arises. The definition of Collects can now be rewritten using
associated type synonyms as follows.

3



class Collects ce where

type Elem ce

empty :: ce

insert :: Elem ce -> ce -> ce

member :: Elem ce -> ce -> Bool

Notice that the element parameter e from the functional dependency is now encoded as Elem ce
which can be instantiated differently per class instance. Let us take the following instance for lists.

instance Collects [a] where

type Elem [a] = a

empty = []

insert x xs = (x:xs)

member = elem

Note that the element for [a] is defined as a. As a result, the type inference system will substitute the
type Elem [a] with a in functions like insert and member. Expressively, the definitions using functional
dependencies and associated type synonyms are the same. It is difficult to decide which one is better as
both options have their use cases.

2.3 Open Type Families

Open type families [29] take the idea of associated type synonyms and decouple it from type classes to
make them stand-alone. The main advantage here is that the type-level functions are now orthogonal to
other constructs. The syntax is quite straightforward. One defines a family and is then able to write
instances for it. For example, let us take the following type-level function Sum

type family Sum n m

type instance Sum Zero x = x

type instance Sum (Succ x) y = Succ (Sum x y)

which is similar to what one can write on value level. The most interesting use case for open,
independent type families like Sum is in combination with Generalized Algebraic Datatypes (GADTs).
A well-known example is the definition of a vector, as follows.

data Nat = Z | S Nat

data Vector el len where

Nil :: Vector el Z

Cons :: el -> Vector el len -> Vector el (S len)

Nat defines the natural number, which can be either zero or a successor. The Vector is defined with its
element type el and the length it has, len. Nil naturally has length Zero. Cons takes a new element (of
type el) and a vector and returns a new vector in which the length is increased. We can write functions
for such a vector. For example, we may concatenate two of them.

vconcat Nil l = l

vconcat (Cons x xs) ys = Cons x (vconcat xs ys)

To be able to define a correct type for this function, we need type-level computation as we need to
find the new length of the vector. For this we can use the Sum type family we defined earlier.

vconcat :: Vector e n -> e Vector e m -> Vector e (Sum n m)

Notice that the result type now sums the two lengths of the argument vectors. The type family
definition then ensures that the type inference process simplifies this to a simple type of type Nat.

4



2.4 Closed Type Families

Closed type families [8] allow the programmer to strictly group the instances of a type family together
in one statement. Outside of that statement, no other instances can be defined. This has one major
advantage in the sense that instances are allowed to overlap. As a result, a type family can become more
expressive. This is discussed in more detail in section 4. The syntax is quite straightforward. Consider
the example Append.

type family Append xs ys where

Append '[] ys = ys

Append (x:xs) ys = x : Append xs ys

Note that, outside of the where clause, no other definitions of Append are allowed.

2.5 Injective Type Families

Injective Type Families [34] allow the programmer to annotate whether a type family has injective
properties or not. Due to reasons explained in section 4, the type inference system does not infer if a
family has such properties but instantly dismisses any situation that requires it to be so. An injective
type family is able to infer some of its arguments based on the result type. Let us take the following
contrived example.

type family F a b = r | r -> b where

F Int Int = Bool

F Bool Bool = Int

F Int Bool = Int

We say that type family F is injective in its second argument b as specified by its annotation. This
means that the right-hand sides (rhs) of its instances determine only the second arguments on the
left-hand side (lhs). F is not injective in its first argument as its rhs does not determine it. Int as result
can be the result of Int or Bool as the first argument. The usefulness of injective type families will be
discussed in section 4.

2.6 Example usage of Type Families

Type Families may be used in many cases to enrich the type system. They are often used in combination
with GADTs because of the complexity of those data structures. We show this use case through an
example where we define a heterogenerous list.

type HList :: [Type] -> Type

data HList xs where

HNil :: HList '[ ]

(:&) :: x -> HList xs -> HList (x : xs)

h1 :: HList [Char, Bool]

h1 = 'x' :& False :& HNil

happend :: HList xs -> HList ys -> HList ??

happend HNil ys = ys

happend (x :& xs) ys = x :& happend xs ys

A heterogeneous list is a list that can contain values of different types and is constructed using a GADT.
It has a Nil case, which represents the empty list, and a Con case with which we may add new elements
to an existing list. h1 shows an example of how a heterogeneous list may be constructed. This example

becomes interesting when we want to define a function to append two heterogeneous lists: happend . To

be able to construct the result type, we must somehow append HList xs and HList ys . To this end,

we may define a type family:
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type Append :: forall a. [a] -> [a] -> [a]

type family Append xs ys where

Append '[ ] ys = ys

Append (x:xs) ys = x : Append xs ys

The type family performs exactly the same computation that happend does, only on the type level

instead of on the value level. We may now insert the type family in the type of happend to compute the

correct result type at compile time.

happend :: HList xs -> HList ys -> HList (Append xs ys)

happend HNil ys = ys

happend (x :& xs) ys = x :& happend xs ys
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Chapter 3

Literature review

3.1 Helium

Helium [15] is a user-friendly compiler designed especially for excellent support during learning the
functional language Haskell. This is achieved by providing high-quality error messages for every compile
stage. This has been proclaimed by, for example, Gerdes et al. [9]

”Helium gives excellent syntax-error and type error messages”

The quality of the error messages is achieved by a number of techniques, most notably the TOP framework
(Section 3.2.4) and later Rhodium (Section 3.2.5) in combination with a large number of heuristics. With
Rhodium, the Helium compiler is able to compile most of the Haskell 2010 standard including Generalized
Algebraic Data Types (GADTs). The compiler, in its current state, is thus not able to support many of
the language extensions that exist for Haskell today. Hage [11] shows that many of these extensions are
widely used, indicating the importance of adding support for them to Helium. At the time of writing,
Helium is in the process of being converted to support LLVM compilation instead of LVM [23] with
which it was originally built. Both LLVM and LVM currently support all the language constructs that
Helium supports except for GADTs, which are supported up to the type inference process with the use of
Rhodium.

3.2 Type Checking and Inference

Type checking and inferring is the process of respectively validating and inferring the types of a program. In
Haskell and many other languages, these processes are usually combined. Provided types in type signatures
are checked while other, non-specified types are inferred. Literature has devised many techniques, each
with its advantages and disadvantages. This section discusses some of the most well-known and most
important for this document.

3.2.1 Algorithms W and M

Algorithm W , as devised by Damas et al. [6], is an inference algorithm for the Hindley-Milner type
system as originally constructed by Hindley [17]. It is one of the most widely known type inference
algorithm. The algorithm itself is not very relevant for this thesis but some of its limitations are. The
most important of them all is that the algorithm has a bias in the order in which it checks and infers
types. For algorithm W , this happens in bottom-up order. As a result, it always reports the location of
the first inconsistency it encounters as the error. In many cases, this location may not be as relevant
or as useful for the programmer as other locations that are related to the error. Algorithm W was not
designed with type error diagnosis in mind and thus shows this left to right bias. Algorithm W also tends
to report errors quite late. As an alternative algorithm to W , algorithm M [22] is a top-down algorithm
for checking and inference of the Hindley-Milner type system. M is interesting because its top-down
approach may result in different errors than algorithm W when checking the same program. Algorithm
M tends, as directly opposed to W , to report errors in a quite early location. However, it still suffers
from a bias. It is hard, or even impossible, to decide which algorithm is better. M may provide a more
precise error location. W , on the other hand, may give more context to the error as it considers more
constraints before exiting.
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3.2.2 Constrained-based Type Inference

Constraint-based type inference is the process of generating type constraints from a given program and
then solving those constraints to obtain a solution. At the end of the process, the solution represents the
type of the whole program. The process of constraint-based type inference is described by Aiken and
Wimmers [1]. They state that, if a solution is found, the program that generated the constraints is type
correct. If not, the program contains an error and the compilation should exit.

In general, there are two ways that a set of constraints can be made inconsistent, as explained by
Zhang et al [40]. The first is when there are incorrect constraints present in the constraint set. This could
happen when a function is implemented incorrectly which results in spawning an incompatible constraint.
Zhang et al. call these incorrect hypotheses. An example of an incorrect constraint is Int ∼ Bool which
results in a type error as it can never be satisfied. The second way a constraint set can be inconsistent is
by the absence of constraints, or as Zhang et al. call it: missing hypotheses. In this case, the programmer
omitted necessary assumptions for the type inference system to continue. One such example is a missing
class predicate, like Eq a. This happens in the following function.

isEqualToFive :: a -> Bool

isEqualToFive = (==) 5

(==) requires a to be an instance of Eq a but the constraint is missing in the type signature.
Many constrained-based type inference systems have been devised in literature. For this thesis, we

discuss the three most relevant ones: OutsideIn(X), which is used in the Glasgow Haskell Compiler
(GHC) for Haskell; TOP, which is the inference system used in the current master branch of Helium; and
Rhodium, an adaptation of the OutsideIn(X) framework designed for better type error diagnosis. The
next sections discuss them in detail.

3.2.3 OutsideIn(X)

OutsideIn(X), as designed by Vytiniotis et al. [36], is a modular constraint-based type inference system
that supports local assumptions. The X resembles a constraint system that can be specified by the
language developers and is thus extensible and adaptable. The main advantage that this feature brings,
is that new language constructs and other features can be added later on. The system supports local
assumptions, which is crucial for constructs like GADTs. Each pattern match over a GADT constructor
may impose constraints that are only viable inside that pattern match and are therefore not allowed to
interact with any constraint that is part of another pattern match.

In its solving process, the solver distinguishes given and wanted constraints. Given constraints
represent existing knowledge, like a type signature. Wanted constraints represent the constraints that
need to be verified or inferred. Furthermore, it keeps track of whether type variables are touchable or not.
A touchable variable is allowed to be unified with a type. For example, in cases where a type variable is
polymorphic, this should not be allowed.

Because OutsideIn(X) is a constraint-based solver, the compiler for which it is implemented should
gather the constraints. OutsideIn then simplifies the constraints by looping over the following four
simplification stages:

• Canonicalization. This step obtains one constraint and tries to simplify the constraint to an
equivalent form. For example, a → b ∼ c → d becomes a ∼ c ∧ b ∼ d and Bool ∼ Bool becomes
ε. If a constraint cannot be simplified, an error is returned. An example of such a constraint
is Int ∼ Bool. The canonicalization rule is also able to return new touchables and a possible
substitution, may the constraint impose so.

• Interaction The interaction rule allows two constraints, that are either both wanted or both given,
to interact. The result of this interaction is a set of new constraints. As an example a ∼ b∧c ∼ a→ a
becomes a ∼ b ∧ c ∼ b→ b where we see that the fact that a is equal to b is applied in the other
constraint. Notice that we also return the original constraint. This is needed because a ∼ b may
need to interact with other constraints as well.

• Simplification The simplification step takes one given constraint and one wanted constraint and
allows the given constraint to interact in one way with the wanted constraint. It is important that
the given constrain is not modified and that it is not returned after the step. Apart from that, the
rule is similar to the interaction rule. In this stage, existing knowledge is applied to the wanted
constraint system.
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• Top-level react The top-level react rule allows the solver to apply top-level definitions (axioms)
to an atomic constraint. This is needed to simplify class constraints or type family constraints.
Constraints that need to be simplified by this step are, for example, F Bool ∼ Int or Eq Int where
F is a type family and Eq is a type class.

The exact implementation of these rules is determined by the parametric X and depends on the exact
constraint system used. The complete solver can be assigned the following type:

Q;Qgiven; ᾱtch 7→solve Cwanted  Qresidual; θ (3.1)

The inputs of the solver thus are:

• the axiom set Q,

• the set of given constraints obtained from the program Qgiven,

• the touchable variables ᾱtch that the solver is allowed to unify and

• the set of wanted constraints Cwanted that the solver is requested to solve.

The output of the solver is the set of residual constraints Qresidual that the solver could not solve and
a substitution θ that contains a substitution for a subset of ᾱtch. The judgment 7→solve represents the
solving of Cwanted using the set of touchables, axioms, and the given constraints. The reason why the
solver may return residual constraints is that local constraints may not yet be fully satisfied after the solver
is done simplifying the local constraint domain. Instead of making assumptions about the constraints, it
just passes them back, hoping that they will be solved in a future iteration.

3.2.4 The TOP Framework

TOP is a type inference framework written by Heeren [16]. TOP is a constraint-based type checker and
inferencer that is used in the Helium compiler. TOP has been built with type error diagnosis in mind,
which is also its main advantage. The framework achieves this by representing the constraint system in a
type graph which allows the framework to traverse the complete constraint system in an unbiased way
when considering the location of the error. Additionally, it implements type class directives (Section 3.4.1)
and specialized error messages (Section 3.4.2) to enable a programmer to specify directed error messages
for Domain Specific Languages (DSLs).

TOP allows for the usage of different constraint solvers and is able to emulate, for example, Algorithms
W and M. Through reordering constraints and the use of heuristics, the framework can return different
error messages for the same programs. A heuristic is a function that can indicate the likelihood that a
certain error has a specific cause. A heuristic is able to remove a constraint edge from the type graph to
find whether the removal of that edge, fixes the constraint system.

In TOP, every constraint can be annotated with specific information. This information is used by the
heuristic functions to improve their judgment on the likely cause of the type inconsistency. As adding new
annotations to constraints is quite easy, compiler programmers can simply construct new heuristics so
that new language features can benefit from the improved type error diagnosis that the TOP framework
brings.

Because the type graphs of TOP are quite sophisticated, they are only created when a type error is
found. The framework usually starts with a greedy solver after which a type graph is created if this solver
fails.

Type graphs in TOP The type graphs in TOP consist of a set of edges and vertices. In a simple type
graph, edges represent equalities between types (equality constraints) and vertices represent simple types,
which are either constants or variables. Figure 3.1 shows an example of a simple type graph where an
error occurs through the following constraint sequence:

Int ∼ a ∼ b ∼ c ∼ Bool

The error is formed by edges 1 to 4. These edges together form the so-called error path. Every edge in
this path may be the cause of the error and should be considered as such. Edge 5 is not part of the error
path as the equality b ∼ d has nothing to do with the error at hand.

Such a simple type graph can be extended to, for example, support type application. As a result,
type applications like τ1 τ2 are supported. Such an application is visually represented by square vertices
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Figure 3.1: An example of a simple type graph (taken from [3]).

Figure 3.2: An example of an extended type graph (taken from [3]).

with an @ inside them. The extended type graph abandons the convention that all vertices represent
types and that every edge represents an equality.

Figure 3.2 shows an example of an extended type graph. To left and right of id, we see how a type
application is visualized for a→ a and x→ y. The → can be seen as a function that takes two arguments.
In the type graph, we notice that it is indeed visualized as a nested application where → is first applied
to x and then (x→) is applied to y to form x→ y.

Inconsistencies in type graphs are found by the introduction of derived edges during type inference.
These edges are created based on combinations or simplifications of existing equalities in the graph. For
example, we could have the equalities a ∼ A and a ∼ B. A derived edge created from these equalities
would be A ∼ B. As the constructors A and B are different, we would notice an inconsistency. An error
would then be reported.

3.2.5 Rhodium

Rhodium is a type inference framework written by Burgers et al [4] and aims to bring the best of
OutsideIn(X) and the TOP framework together. As TOP does not support local assumptions and type
families, the Helium compiler was not able to deal with them. Rhodium extends the OutsideIn(X)
framework to support type graphs and the accompanying heuristics that were written for Helium. Like
OutsideIn(X), Rhodium supports the parametric X and assumes nothing about the constraint system.

The X written for Rhodium in Helium is heavily based on the X written in Cobalt [31], a small
experimental type inference system written by Alejandro Serrano. The name Rhodium originates from the
fact that the next element on the periodic table after Cobalt, is Rhodium. The X in Cobalt has support
for type families implemented as far as the use of open type families. Type synonyms are regarded as
very simple type families.

Rhodium itself implements the same simplification rules as OutsideIn(X). Its main difference is that,
instead of working with sets of constraints, it works on a type graph. Based on the specified X, an initial
type graph is built. After each simplification step, this graph is updated to include the newly obtained
constraints. The type graphs in Rhodium are extended to work with local assumptions and with given
and wanted constraints. In the graph, every constraint edge has a priority and a grouping assigned to it.
The priority determines whether the constraint is given or wanted. The grouping of a constraint edge tells
the inference system in what local domain it resides and thus with what other constraints it may interact.
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In comparison to the solving algorithm of OutsideIn(X), Rhodium does not apply substitutions during
the solving process. The reason for this is the fact that, for optimal type error diagnosis, we would want
all original constraints to remain intact so that they still closely represent the original program. Applied
substitutions would be hard to revert.

Type graphs in Rhodium As mentioned, type graphs in Rhodium are extended to hold priorities and
groupings for vertices and edges due to local constraints. Next to the incorporation of type application,
like in the type graphs for TOP, type graphs in Rhodium also support multiparameter type classes and
type families. Type families are implemented using the application edge. Figure 3.3 shows a visualization
of the implementation in a type graph. The edges are numbered from 0 to n. The zero edge is always

Figure 3.3: Type families in a type graph (taken from [3]).

linked to the vertex containing the family name F . The rest of the edges are linked to the argument
types of the type family application. The numbers determine the order of the arguments.

3.3 Type Error Diagnosis

Type error diagnosis is the process of explaining why a type error occurred in a program and helping
the programmer locate and fix the error. This process usually consists of three phases [32, 33]: blaming,
reparation and explanation. Blaming is the phase that decides what parts of the program are responsible
for the error. The reparation phase suggests ways in which the error can be repaired. This may happen
by removing, changing, or adding a new constraint. Last but not least, the explanation phase is concerned
with providing the error and possible (hints towards) solutions that could help the programmer repair
the error. This phase explains why the error was thrown in the first place.

3.3.1 What are good errors?

Yang et al. [39] provide a manifesto that gives seven criteria that should be respected when designing
error messages for a type inference system.

1. Correct. Both the detection and the reporting of an error should be correct. An error should
only be detected when the formal specification of the language specifies that the program is in an
erroneous state. This property is therefore quite strict. The soundness proof of the language should
specify exactly when an error should occur. All reported errors should contribute in some way to
the type conflict.

2. Precise. Each conflicting site should be located in the smallest useful amount of source text. The
source text should therefore also be relevant. The relationship between the conflicting type and the
site from which it was inferred should be simple and clear.

3. Succinct. The error report should maximize useful information and minimize non-useful information.
There is a subtle balance between the two. Long and verbose explanations are tedious to read while
short and terse explanations are hard to understand. Furthermore, assigning an error message
to one of these specifications is open to interpretation. For a novice programmer, a longer, more
explanatory, error may be useful whereas for an expert programmer, a shorter, more concise error
is enough.

11



4. A-mechanical. An error report should not reproduce large amounts of counter-intuitive mechanical
inference. In other words, the underlying inference process should not become visible to the user.
GHC, the standard compiler for Haskell, often breaks this rule and shows error messages with type
variables in them that do not occur in the program but were inferred during type inference.

5. Source-based. This rule goes hand in hand with rule 4. Only code from the source program
should be used in the error message and no core syntax from any intermediate languages should be
shown. This introduces a hard problem for embedded Domain-Specific Languages (DSLs) as the
language that they are built on, becomes an intermediate language. However, the compiler does not
know this and the errors are completely based on this base language.

6. Unbiased. The error should not depend on any particular order of inference of constraints. This
rule is irrevocably violated by algorithms W and M which introduce a bias during type inference
itself, as explained in section 3.2.1. Yang et al. use f x = (x 1, x True) as an example where x may
have two types. The error message should not point out x 1 or x True as the mistake but should
report both and let the programmer decide which to blame.

7. Comprehensive. Ideally, all sites that contribute to the error should be reported. This way, the
programmer can reason about the error from the reported sites without having to look at other
parts of the program to locate the exact location of the error.

Yang et al. continue by introducing two types of improved type error diagnosis systems: Explanation
systems and Error reporting systems or Reparation systems as they are called by Heeren [16]. Furthermore,
the literature introduces two other systems under the names of Type error slicing and Interaction systems.

3.3.2 Explanation systems

Explanation systems focus on providing a better explanation of how the type inference leads to a type
error. There have been several error explanation systems.

Wand Wand [37] designed a system that keeps a recording of the pieces of code that contribute to
the type deductions. This information is used to explain why the errors happen. The records are a
combination of function applications and substitutions that cause the error. Each such application is
reported. Where the inconsistency is found depends on the order of traversal of the syntax tree during
analysis. Furthermore, the number of candidate error sites is also decided by the programming style.

Yang Yang [38] proposes a system called UAE that eliminates the left-to-right bias of algorithms W
and M and can point out all type conflicts automatically. Each sub-expression in an application is typed
independently and results in an assumption environment. Such an assumption environment contains the
local type constrains for every variable in the sub-expression. All assumption environments are unified at
the top level of the Abstract Syntax Tree (AST), removing the bias. When UAE fails, algorithm M is
used over the remainder of the program to find the most fine-grained error site.

Yang, Michaelson, and Trinder Yang et al. [21] discusses the differences between how a type infer-
ence algorithm sees polymorphic types and how humans perceive them. The bias that W introduces
is often not the way we humans would infer the type of a function. A human often focuses more on
known type literals and uses these to infer the types and tends to avoid type variables at all. Yang et al.
designed a new inference algorithm H that stores human-like explanations for the types that are inferred
and mimics the identified human inference techniques. It is built on top of UAE . The explanations that
are generated are, according to the paper, both succinct and non-repetitive.

Yang et al. [39] argue that, based on their manifesto, explanation systems often fail on several key
points.

• They are not succinct. Sometimes, the textual explanation has so much information, that it
becomes rapidly tedious. The explanations are often found too detailed to be of real help.

• Explanations are mechanical. Because the systems try to explain the inference steps, type variables
are often used in the explanation messages. To understand these, the programmer must have
knowledge about the underlying inference process, which is often not the case.
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• Not source-based. The explanations use text obtained from the AST, rather than the original
program text.

• Biased. Most systems are based (at that time) on the W algorithm, which has a left to right bias.

3.3.3 Reparation systems

Reparation systems try to report the most appropriate location for a type inconsistency. One site is
selected from a list of candidate locations because it is believed to be the location of the mistake [16].

Johnson and Walz Johnson et al. [19] introduce a maximum flow approach to determine the most
likely cause of the type error. They recognize that error indications should be complete but parsimonious:
the user should only see everything that contributed directly to the error but nothing more. The user
should be drawn to the correct anomalies. The paper notices that in the case of an error, the variables in
the error are used correctly most of the time and that only a small number of uses are conflicting. They
thus want to draw the attention of the user towards those small numbers, where the error most likely
resides.

McAdam McAdam [24] uses a graph to represent types of fragments of the program. Vertices in the
graph can either be a program fragment or can represent a type. The paper shows that it is possible to
extract assumption environments from these graphs, using the techniques from Bernstein et al. [2] and
thus reducing bias in the type inference process. The graphs can be traversed to find an explanation for
the type error.

Yang et al. [39] tested several repair systems against their manifesto. Most techniques were fairly
mechanical, meaning that the underlying type inference system was visible in the error messages. What is
interesting to note, is that most systems do not have a bias. Through the use of UAE or other techniques,
the systems can select a single location for the error, by considering all locations with equal probabilities.
As a result, the bias often disappears.

3.3.4 Program slicing

In a type error slicing system, the type inconsistency is reported as a set of contributing program points.
Such a set of points is called a program slice [10] and contains the location of the actual mistake. Other
parts of the program thus do not need further inspection from the programmer. These systems do not
use standard textual output but editors and other visualization tools to highlight parts of a program.

Schilling Schilling [28] uses a carefully chosen function to show how difficult it is to pinpoint the exact
location of a type error in the source code. GHC often only reports one error where there may be more
culprits. Multiple pieces of code can be adapted to solve the error. Program slicing means that all parts
of the program that contribute to the error should be highlighted. Changes to these locations may remove
the error. Schillings method does not use a type inference system in its back end. When this is the case,
a constrainted based type inference system would be the best option because of the fact that constraints
are easier to link to the source code.

Haack and Wells Haack et al. [10] recognize that algorithms W , M and UAE often fail to identify
the real location of a type error, albeit giving different locations. The algorithms identify one node of
the AST that participates in the type error, but will often be the wrong node to blame. The presented
algorithm is able to compute minimal type error slices by calculating minimal unsolvable constraint sets
of equality type constraints. This constraint set is then used to highlight the linked source code. To this
end, the algorithm introduces labeled unification which is similar to a basic unification algorithm apart
from the fact that labels are added to the constraints to keep track of the location in the source program.
These labels are similar to what is used for TOP and Rhodium.

Heeren [16] discusses that program slices give a truthful impression to quickly discover the actual
problem in the program. It is however questionable whether the technique should be used as a stand-alone
type error diagnosis system. A disadvantage of the technique is that types are no longer related to the
expressions in the source code which means that the programmer should be completely aware of the
types.
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Figure 3.4: Example of a debugging session with Chameleon (taken from [16])

3.3.5 Interaction systems

Interaction systems aim to narrow down the location of a type error by interacting with the programmer.
The advantage of the technique is that the system can become aware of the programmer’s intentions and
assumptions. An interactive system can help debug the system and guide the user to the location of the
error.

A well-known interactive system is Chameleon, as designed by Stuckey et al. [35]. The system contains
an interactive programming environment to debug type errors. It supports Haskell with some extensions
and can be used as a front-end to existing Haskell compilers. The typing problem is mapped to a set of
constraints. Each type constraint has the program code attached that is responsible for the restriction.
Constraint handling rules (CHRs) are then used to manipulate the set of constraints at hand. This is
done by either simplifying or propagating them. In case of an inconsistency, the minimal unsatisfiable set
of constraints is determined, which are then used to underline parts of the program that contain an error.
This works similarly to the approach Haack et al. used. Using this information, the system may request
reasons why a certain type was chosen for a certain part of the program and thus obtain more information
about the exact location of the error. Figure 3.4 shows an example debugging session in Chameleon.

3.3.6 Heuristics

As discussed in sections 3.2.4 and 3.2.5, both TOP and Rhodium use heuristics to increase error reporting
quality. Both systems could be classified reporting systems that try to report the most relevant error. In
this process, a heuristic is a function that can indicate the likelihood that a certain error has a specific
cause. Knowing the cause greatly helps in the quality of the error report. Hage and Heeren [12] propose
two types of heuristics: filter heuristics and voting heuristics. Both types of heuristics work over an error
path that has been gathered after an inconsistency has been found in the constraint system.

Filter heuristics Filter heuristics are allowed to remove certain constraints from the error path. They
are given a list of constraints that form the error path and determine which constraints are still able to
be blamed. An example of a filter heuristic is the Avoid unwanted constraints heuristic. This heuristic
uses information given to the constraint to remove constraints that should never be blamed. This is,
for example, needed in case of a let binding. When an error occurs in one, the complete let binding
should never be blamed. The cause of the error always occurs somewhere in the let body. Therefore, the
constraint that represents the complete body should be removed.

Voting heuristics A voting heuristic is allowed to vote on the likeliness that a certain error is caused
by a certain constraint. The heuristic is presented one constraint at a time and is allowed to attach a
weight to it that represents how sure it is that the considered constraint is to blame. The function that
performs this is called the selector. The selector is different for each defined voting heuristic. When the
selector does not find the error for which it is designed, no weight is returned. All the voting heuristics
compete against each other. The constraints with the highest weights are chosen to remain in the error
path. All other constraints are removed.
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3.4 Type error diagnosis for DSLs

Domain-Specific Languages or DSLs are languages that are restricted to a specific domain. Such a
language could be embedded in other existing programming languages, such as Haskell, in which case we
call it an embedded DSL. Embedding a DSL in an existing language brings forth the advantage of reusing
the techniques that are already implemented. Some techniques that can be reused are code generation,
optimization, and type checking.

Type checking an embedded DSL poses a problem, however. An embedded DSL is often coded as a
library. When a type error occurs, the underlying implementation of the library in the mother language
is revealed. The programmer often finds no support in such error messages as they are often complicated
and form no relation with the actual program that the programmer is writing. In an ideal world, the
type system displays an error designed for the DSL. In his Ph.D. thesis, Serrano describes this process in
detail [32].

3.4.1 Type class directives

Hage and Heeren [13, 16] describe type class directives as a way to guide type errors in DSLs that use
type classes. They propose four different directives that each allow the builder of the DSL to specify how
type classes defined in the DSL may be used. First, they propose the never directive which indicates
that a certain type class instance can never occur. An example would be Eq (a→ b) as it is impossible
to check whether two functions are equal. The next directive they propose is the close directive, which
specifies that all instances of this type class are known and no other may be specified. Some defined
type classes in a DSL are meant to be untouched and with this directive the user receives a specialized
error that no instance can be created for such a type class. The disjoint directive states that a type can
never be an instance of multiple classes at once. This directive always specifies pairs of type classes. One
example of a pair of type classes that may be assigned this directive is Fractional and Integral because
a number can be Fractional or Integral but not both. Finally, they specify the defaulting directive which
can be used to guide the type inference system in case of ambiguity. Let us take the following example
program: main = show []. the function show is part of the type class Show but how do we know, based
on the information at hand, what instance of Show to use? We are not, and this is where the defaulting
directive helps us. It allows us to specify the defaults in case the type inferencer runs into an ambiguous
case.

3.4.2 Specialized error messages

The old Helium compiler allows programmers of DSLs to specify specialized type rules that are able
to induce specialized error messages tinkered to make sense towards the DSL. Such type rules can be
provided externally and no tinkering with the type inferencer itself is needed. Specialized type rules are
specified in a .type file and have been designed by Hage and Heeren [14]. Let us consider the following
example as taken from their paper:

x :: t1; y :: t2;

----------------------------

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function

t2 == Parser s a2 : right operand is not a parser

a1 == a2 : function cannot be applied to parser’s result

This type rule is written for the <$> operator for parser combinators. The rule starts with defining
the argument and result types of the function inside a deduction rule. Based on the type variables defined
in this rule, the programmer is then able to define constraints together with error messages that should
be shown when they are violated. For example, it is expected that t1 should be a function type and that
t2 should be of type Parser s a2. During the definition of constraints, it is also possible to define new
type variables, like a1 and a2, and to use them in new rules. The rule a1 == a2 specifies that the result
type of the parser in y must be equal to the argument that the function x defines.

Phasing Through phasing, the exact order of the type inference process can be guided. As a result,
the programmer can design the type inference process in an intuitive way. Our previous example now
would look as follows [14].
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x :: t1; y :: t2;

---------------------

x <$> y :: t3;

phase 6

t2 == Parser s1 a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

phase 7

s1 == s2 : parser has an incorrect symbol type

phase 8

t1 == a1 -> b1 : left operand is not a function

a1 == a2 : function cannot be applied to parser’s result

b1 == b2 : parser has an incorrect result type

Phases 1 to 5 are default phases of the type inferencer that will be executed before the specialized type
rule. Notice that that inferencer will now execute phases 6 to 8 after one another. As a result, the type
inferencer will first check whether t2 and t3 are of type Parser (phase 6). Next, it will check whether
the symbol types are equal (phase 7), and last but not least, it will check whether the flow of argument
and result types are correct (phase 8).

Siblings Last but not least, a specialized type rule can specify sibling functions. A sibling function is a
function that is very similar to the function for which the type rule is written. Often, such functions may
be erroneously switched up by the programmer. For example, (:) and ++ are often switched up. When
told that these functions are siblings, the type inferencer may try to switch out one function for the other
and check if that solves the type error.
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Chapter 4

Implementation of Type Families in
GHC

This section describes how the static checks and type inference are designed for type families. Before
we can improve type error diagnosis for type families with the toolset that Helium provides, we need to
implement Type Families as a language construct. The design is heavily based on the GHC compiler for
Haskell as Helium is meant to mimic GHC as closely as possible. This section first shortly describes the
use of type families in the type inference process. It then proceeds to discuss general static checks that
the compiler will have to perform. We then consider open, closed, and injective type families separately
and discuss their general usage in the type inference process and important static checks that ensure
their correct behavior and termination. Finally, this section discusses how the X in Rhodium should be
extended to incorporate the type inference rules for type families.

4.1 Type families in type inference

During type inference, type family instances are considered top-level axioms that represent a left-to-right
rewrite rule to simplify a type family application to its definition. Which instance is chosen depends on
the arguments given to the family. How a definition is chosen depends on the type of type family that
is being used. We discuss the implementations in their respective sections. A simple example should
illustrate the simplification of types using type families.

type family F a

type instance F Int = Float

type instance F Float = Int

f :: (F Int) -> Float

The type of function f will be simplified by type family F through its first instance F Int. The new type
of f becomes Float -> Float as per the definition of the type instance.

4.2 General static checks

The static checks discussed in this section should hold for every flavor of type family. As an associated
type synonym may only appear open, section 4.2.3 naturally does not hold for closed type families.

4.2.1 Unique names

The first static check that must be implemented, is one that already exists for other top-level constructs,
like data definitions and type classes: there may only be one declaration of a certain name. This is not
only true among type families alone. This rule should apply across every type of top-level construct.
Therefore, if a name is already used for a type family, it cannot be used to declare a new data type or
type class and vice versa.
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4.2.2 Arities of instances

The arity of a type family is the number of arguments with which it is declared. For example,

type family F a b

has an arity of two. Every instance that is made for this type family should fully saturate this arity.
Therefore, all type instances for F , should be defined with two arguments.

type instance F Int Bool = Float -- Correct!

type instance F Bool = Bool -- Incorrect, missing one argument!

type instance F Int Bool String = Int -- Incorrect, too many arguments!

The first type instance definition is a correct one, the arity is fully saturated. The second one misses
an argument and is thus incorrect. Naturally, too many arguments are also incorrect, as the third case
shows.

4.2.3 Arguments of associated type synonyms

According to Chakravarty et al [5], the arguments of an associated type synonym must match the instance
head type parameters that they are linked to. This is best explained using an example, as taken from
their paper.

class C a where

type S a k

instance (C a) => C [a] where

type S [a] k = (a, k a)

Here, the class declaration specifies that the type parameter a is used in both the class head and the
associated type synonym. Every instance made henceforth should resurrect this declaration. The instance
instantiates a to [a] and therefore the first argument of S must also become [a]. Notice that k is not
present in the instance head and is thus not subject to this restriction.

4.3 Open type families

As mentioned in section 2.3, type family instances for open type families may be declared anywhere as
long as the original declaration is known. Associated type synonyms and open type families have the
exact same behavior except for the static check discussed in 4.2.3.

4.3.1 Instance application

Applying an instance of an open type family to a family type is quite straightforward. The simplification
process checks whether the given type unifies with a type family instance based on its arguments. If this
is the case, the family type is substituted by the instance definition on the right-hand side of the instance
and the inference process continues. If not, then a new instance is tried. When no instances are able to
simplify the type, the inferencer may potentially produce an error as further type inference may fail.

4.3.2 Static checks

The static checks we discuss in this section are restrictions imposed to guarantee a decidable confluence
for the top-level instances of type families. The checks guarantee that the type inferencer will always be
able to deterministically determine which instance can be used to simplify a given type. Furthermore, we
discuss checks that guarantee termination of the type inference process. As a result, the type inferencer
always finishes in finite time.

Confluence: Overlapping instances Open type family declarations and their instances can be
declared anywhere across different modules, given that the declaration is compiled before any of its
instances. As a result, we cannot assume anything about the order of occurrence. This affects the freedom
of defining type instances. Schrijvers et al [29] impose the restriction that instance heads may not overlap.
This restriction ensures that, during type inference, only one type instance can match, and thus confluence
is decidable. Consider the following type instances and function.
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type family G a

type instance G Int = Float

type instance G Int = Bool

f :: (G Int) -> Bool

To be able to correctly type the function f , G Int must be converted to a simpler type. However, two

type definitions for G Int exist. It becomes impossible for the type inference system to know which one
to choose, which violates the confluence rule. To ensure type system correctness, choosing the axiom
must be decidable and therefore type instance heads may not overlap. In case we have two type family
instances F σ̄1 ∼ τ1 and F σ̄2 ∼ τ2 where σ̄ represent the type arguments (lhs) and τ represents the type
family definition (rhs), we define these instances as non-overlapping if

1. ∃i : ¬(σ1,i ∼ σ2,i). There exists a pair of type arguments between the two instances that does not
unify,

2. or ∀i : (σ1,i ∼ σ2,i) ∧ θ(τ1) = θ(τ2). All arguments unify with each other and both result types are
equal after applying the resulting substitution.

In all other cases, two instances are overlapping. Let us clarify this with an example.

type instance F (a, Int) = [a]

type instance F (Int, b) = [b] -- overlap permitted

type instance G (a, Int) = [a]

type instance G (Char, a) = [a] -- ILLEGAL overlap, as [Char] /= [Int]

For type family F , a can be substituted with Int and b can be substituted with Int . We thus end
up in case 2. We end up with the substitution θ with a 7→ Int and b 7→ Int. Applying this substitution
yields us [Int] and [Int] for both result types respectively. They are equal and the overlap is thus

permitted. For G , we get a substitution θ with a 7→ Char and a 7→ Int which, after applying it, gives us

[Char] and [Int] respectively. This violates the rule and therefore is illegal.

Confluence: No type families in type family arguments This rule is analogous to normal, value
level, functions where it is required that the patterns use only variables or constructors, but not functions.
Therefore, the following example is illegal.

type family H a

type instance H (F a) = a -- Illegal, parameter has a type family

The intuition here is that it becomes difficult for the compiler to determine whether two type families
overlap. F a could be simplified using many instances, depending on the instance of a. Furthermore,

F a could simplify to a simple type for which another instance is defined. As a result, we end up in a
situation in which confluence is endangered.

Termination The main principle for establishing termination of the type inference process, is guaran-
teeing decreasing calls. Such calls guarantee that in each type inference step, the process gets closer to a
terminating state. Schrijvers et al [30] do not propose a state-of-the-art termination check but instead
pose three restrictions upon type family instances. For the following given type instance

type instance F t1 .. tn = t

we require that for each type family application (G s1 .. sm) in t , that

1. s1 .. sm do not contain any type family constructors,

2. the total number of symbols (data type constructors and type variables) in s1 .. sm is strictly

smaller than in t1 .. tn , and

3. for every type variable a , a occurs in s1 .. sm at most as often as in t1 .. tn .

The first rule requires that type families may not appear nested in the function body t . The reason for
this rule is to prevent increasing type families because of the recursive definition. In the example
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type instance F Int Int = G (F Int Int)

the type inference process may not terminate. A type family F Int Int is replaced by G (F Int Int) ,
after which we may apply the same instance again, continuously enlarging the type family. The second
and the third rule make sure that the function body of the type family always becomes smaller and
that no extra, possibly non-terminating constructs are introduced. These restrictions are quite harsh
and violate the completeness property of type families: not every instance that in theory would work,
is accepted by the compiler. For example, a constraint like a ∼ [F a] could not occur because of above
rules [30].

4.4 Closed type families

Closed type family instances may only be declared in the where clause of the original declaration. This
opens it up for the possibility of letting instances overlap. The instances declared in the where clause are
considered from top to bottom by the type inferencer when it tries to find a matching instance for a type.

4.4.1 Instance application

The main difference between open and closed type families is how instances are applied to types. As
described above, instances are considered from top to bottom. The introduction of this order allows
declared instances to overlap to a certain degree. Formally, as described by Eisenberg et al. [8], an
instance to use in a given type family application (the target) will be selected if and only if the following
two conditions hold:

1. There is a substitution from the variables in the lhs of the instance that makes the left-hand side of
the branch coincide with the target. Therefore, the instance must unify with the target. We say
that the target and the instance match.

2. For each previous instance (the ones defined above it), either the lhs of that instance is apart from
the considered instance, or the instance is compatible with the considered instance.

Where the first case makes immediate sense, the second introduces two new terms: apart and compatible.
We define and discuss them.

1. Apart . Two types are apart when one cannot simplify to the other, even after arbitrary type-family
simplifications. To provide a formal definition, we first need to introduce flattening of a type as
defined by [8, 36]. To flatten a type τ into τ ′, process τ in a top-down fashion, replacing every type
family application that is encountered, with a type variable. Two or more syntactically identical
type family applications are flattened to the same variable; distinct type family applications are
flattened to distinct fresh variables. With the notion of flattening, we can now formally define
apartness. For an instance argument type ρ and a target argument type τ , apart(ρ, τ) is defined as
follows. Let τ ′ = flatten(τ) and check unify(ρ, τ ′). If this unification fails, then ρ and τ are apart.
More succinctly: apart(ρ, τ) = ¬unify(ρ, flatten(τ)). The complete apartness check, applies apart
to all arguments of the type family application and instance: apart(lhsp, τ̄).

2. Compatible . The compatibility check is similar to how overlapping is checked for open type
families (section 4.3.2). Formally, two instances p and q are compatible iff Ω1(lhsp) = Ω2(lhsq)
implies Ω1(rhsp) = Ω2(rhsq). To check if this holds, we introduce the test compat(p, q) that checks
that unify(lhsp, lhsq) = Ω implies that Ω(rhsp) = Ω(rhsq). If unify(lhsp, lhsq) fails, compat(p, q)
holds vacuously. Notice that this definition is equal to the definition of overlap in section 4.3.2.

The definitions of apart and compatible are crucial to allow for overlap between the defined type family
instances. The apartness check ensures us that there is no way that a previous instance may be used to
simplify the target. Even though it may have been the case that the instance did not match. There are
situations in which, after further simplification of the constraint system, the previous instance will match.
Eisenberg et al. [8] show this with the following example.

type family Equal a b :: Bool where

Equal a a = True

Equal b c = False
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type family FunIf (b :: Bool) :: * where

FunIf True = Int -> Int

FunIf False = ()

bad :: d -> FunIf (Equal Bool d)

bad = ()

segFault :: Int

segFault = bad True 5

Without the apartness check, the following may happen. If we simplify Equal Bool d to False , we

can show that bad is well typed since FunIf False is () . But then segFault calls bad with d

instantiated to True which results in FunIf (Equal Bool Bool) . This reduces to Int -> Int and

as a result, bad does not type check. We wrongly reduced FunIf (Equal Bool d) to False because

it depends on how d is instantiated. The substitution for d may thus allow it to be reduced with the
first type family instance. In this case, the instances are thus not apart and the second rule should not
be applied yet.

However, when both instances would reduce to the same type family definition no matter to what
type a type variable is instantiated, then we should ignore the apartness check. This occurs when two
instances are found to be compatible.

4.4.2 Static checks

From the static checks discussed for open type families (section 4.3.2), all checks also hold for closed type
families, except for the one that checks for overlapping. In this section, we discuss one more static check
for closed type families, an optimization for the compatibility check, and a generalization for open type
families.

No top-level instances for closed families As already discussed, closed type families may not
introduce stand-alone instances. This should be checked before type inference.

Optimization: pre-compute compatibility There are cases in which the apartness check is not
needed during instance application. This is the case when two type family instances are not compatible.
According to the definitions of apart and compatibility, non-compatibility implies apartness. Thus, when
two instances are not compatible, we do not have to check their apartness.

Compatibility for open type families As mentioned, the compatibility check for closed type families
is equal to the static check for overlapping open type families. We generalize the overlapping check
for open type families thus as follows: two open type family instances p and q are overlapping when
compat(p, q).

4.5 Injective type families

An injective type family is a type family that has injective properties. Such properties allow the type
inference system to become more expressive, resulting in more programs being type correct. This section
first discusses what injectivity is and why it is not normally inferred for type families. We discuss
complications that may arise during type checking and inferring and how these are remedied using static
checks. Last but not least, we discuss what injectivity enables for type checking and inference.

4.5.1 Injectivity of type families

Stolarek et al. [34] formally define the injectivity of a type family as follows.

A type family F is n-injective (i.e. injective in its n’th argument) iff ∀σ̄, τ̄ : F σ̄ ∼ F τ̄ =⇒
σn ∼ τn.

Here, σ ∼ τ means that we have a proof of equality of types σ and τ . The definition thus tells us that if
we have a proof that F σ̄ is equal to F τ̄ , then we have a proof that σn and τn are equal. Moreover, if we
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know that F τ̄ ∼ τ ′ and τ ′ is known, we can discover values of the injective arguments τ̄n by looking at
the defining equation (the instance) of F that has rhs matching τ ′. The annotation for injective type
families is discussed in section 2.5.

Why not infer injectivity? Injectivity is not automatically inferred for both open and closed type
families. For open type families, inferring it is generally impossible. Equations may spread across modules
and can be added at any time. Inferring injectivity would be based only on those equations in the
declaring module which would lead to unexpected behavior as the next module may ruin the previously
found injectivity by introducing an instance that violates the above definition. Stolarek et al. [34] argue
that for closed type families, injectivity may be inferred but that it would be the wrong design decision
as it could lead to unexpected behavior during code refactoring. When injectivity is annotated, it is clear
to the programmer that the property is required for the program to compile. When it is inferred, the
programmer may be unaware that the program relies on an inferred-injective type family. The user may
add a new equation that breaks the injective property which then results in a large set of errors. Such
errors could be very distant and may even be in a different package. One can see that this would greatly
confuse the user. Therefore, type families may only be injective when they are declared to be so.

Verifying injectivity annotations Stolarek et al. [34] show that checking injectivity is more subtle
than it may initially appear. They present three ‘awkward cases’.

1. Injectivity is not Compositional . This case is best shown using the example from their paper.

type family F1 a = r | r -> a

type instance F1 [a] = G a

type instance F1 (Maybe a) = H a

type instance G Int = Bool

type instance H Bool = Bool

Sadly, there is no guarantee that F1 is injective as it is claimed to be by its annotation. Even

when G and H are. In our example, G and H are naturally injective, but F1 is not. We could,
for example, have the following type equality:

F1 [Int] ∼ G Int ∼ Bool ∼ H Bool ∼ F1 (Maybe Bool)

which shows that F1 is not injective and that injectivity is thus not a compositional property. A
composition of injective type families does not necessarily make the newly declared type family
injective.

2. The Right Hand Side cannot be a Bare Variable or Type Family Again, we illustrate this
case by using an example:

type family W1 a = r | r -> a

type instance W1 [a] = a

This type family does not satisfy the definition for injectivity of type families (section 4.5.1). We

clearly have a proof of W1 [W1 Int] ∼ W1 Int as defined by the instance. However, if W1 follows

the definition of injectivity, then we would also have a proof of [W1 Int] ∼ Int , which is plainly
false. Similarly, we can write a type family with an instance with a type family in its rhs.

type family W2 a = r | r -> a

type family W2 [a] = W2 a

For this family, we have a proof for W2 [Int] ∼ W2 Int which, according to the definition of

injectivity, would also give us a proof for [Int] ∼ Int which is also plainly false.

3. Infinite types. Again the paper [34] describes this case with an example.

type family Z a = r | r -> a

type instance Z [a] = (a,a)

type instance Z (Maybe b) = (b, [b])
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At first glance, one might expect the injectivity annotation to hold. (a,a) and (b, [b]) look
like they may never unify and cause any problems. However, type families themselves destroy this
idea. Let us consider the following type family.

type family G a

type instance G a = [G a]

We now choose a = b = G Int for type family Z . As a result, we obtain the following type
equality:

Z [G Int] ∼ (G Int,G Int) ∼ (G Int, [G Int]) ∼ Z (Maybe (G Int))

Applying our definition of injectivity on the first and last of this inequality gives us [G Int] ∼
Maybe (G Int), which is definitely unsound. GHC’s default behavior is that type family definitions
are restricted in the sense that the body type must be smaller than the type family application to
ensure termination. The static checks that ensure this are discussed in section 4.3.2.

4.5.2 Static checks

The static checks surrounding injective type families are tasked with verifying the injectivity annotation
given by the programmer and handling the discussed awkward cases. Stolarek et al. define the injectivity
check as follows:

1. For every instance F σ̄ = τ :

a τ is not a type family application, and

b if τ = ai (for some type variable ai), then σ̄ = ā.

2. Every pair of equations F σ̄i = τi and F σ̄j = τj (including i = j) is pairwise-n-injective.

Clause 1 deals with awkward case 2, by rejecting instances whose rhs is a bare type variable or function
call. In practice, this restriction is barely noticeable as any instance rejected by clause 1 would also be
rejected by clause 2 if there is more than one instance.

Clause 2 compares the instances of a type family pairwise. The intuition of the check is that two
equations are pairwise-n-injective if, when the rhs’s are the same, then the n’th argument on the left-hand
side is also the same. The sameness check over the rhs’s here naturally means that they need to be
unifiable. However, classic unification is not enough in this situation. Consider an example where the
type instance rhs contains a type family application.

type family G1 a = r | r -> a

type instance G1 [a] = [G a]

type instance G1 Int = [Bool]

Here we assume that G is another type family known to be injective. The rhs’s do not unify under
classical unification because of the lack of a unifying substitution. Therefore, such an algorithm would
accept G1 as injective. This would however be wrong: we might have an instance for G , G Int = Bool ,

in which case G1 is not injective. To fix this, we need a variant of the unification algorithm that
treats a type family application as potentially unifiable with any other type. Stolarek et al. [34] define a
pre-unification algorithm U(σ, τ) θ as defined in figure 4.1.

The algorithm takes two types, a and τ , and a substitution θ and returns either Nothing or Just φ,
where φ extends θ. The definition is similar to that of classical unification except:

• Equations (8) and (9) deal with the case of type function application: it immediately succeeds
without extending the substitution.

• Equation (7) allows U to recurse into the injective arguments of a type-function application.

• Equation (2) would fail in classical unification (the occurs check). In U , it succeeds immediately,
but without extending the substitution. This has to do with awkward case 3, which deals with
infinite types.

Last but not least, there is a small subtlety when checking closed type families. Consider the following
example:
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Figure 4.1: Pre-unification algorithm U (taken from [34]). The algorithm takes two types, a and τ and
performs pre-unification on them. The algorithm returns a substitution θ if it succeeds and nothing if it
fails. It is similar to classic unification except for the cases discussed in section 4.5.2.

type family G2 a = r | r -> a where

G2 Int = Bool

G2 Bool = Int

G2 a = a

G2 is injective. However, when we compare the rhs’s of the first and the third case, we obtain the
substitution [a 7→ Bool]. Applying this to the lhs of the third case results in the arguments not being
equal. However, the third equation cannot reduce with [a 7→ Bool] because it is overshadowed by the
second case. This condition is easy to check for. If after substituting the lhs’s, they are different, we
know that one of them cannot fire under that substitution, and thus there is no problem with injectivity.

We can now provide the complete definition for the pairwise-injectivity check. A pair of equations
F σ̄i = τi and F σ̄j = τj , whose variables are disjoint, are pairwise-n-injective iff either

1. U(τi, τj) = Nothing, or

2. U(τi, τj) = Just φ, and

a θ(σi n) = θ(σj n), or

b F θ(σ̄i) cannot reduce via equation i, or

c F θ(σ̄j) cannot reduce via equation j

cases b and c solve the subtlety involving closed type families. In case 1, the rhs’s do not unify. In case
two, they do and we need to check that both lhs’s are equal for the n’th argument.

4.5.3 Type inference

Proving that an injectively defined type family is indeed injective has several benefits for the type inference
process. First of all, it allows us to reduce the constraint F a ∼ F b to a ∼ b according to the original
definition of injectivity. More importantly, the inference system is now able to do this without having
to guess that F a and F b reduce to the same thing. Knowing a ∼ b may make some extra unifications
apparent, making the type family more expressive.

Secondly, suppose we have the following type family and instance:

type family F a = r | r -> a

type instance F [a] = a -> a

and we are trying to solve a wanted constraint F α ∼ (Int → Int), where α is a type variable in the
constraint solving process. The defined type instance would match with the type instance defined for
F and the instance becomes F [Int] = Int -> Int. Using this information and the fact that F is
injective, allows us to deduce the constraint α ∼ [Int] which again may make more unifications possible
during the constraint solving process. Notice that instead of matching on the lhs of F , we now match on
the rhs because the injectivity property tells us that every rhs has a unique lhs.
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Chapter 5

Type Error Diagnosis for Type
Families in GHC

This section describes the type error diagnosis quality for type families in the GHC Haskell compiler. We
focus on this compiler because it is the official compiler for Haskell and Helium aims to closely mimic the
Haskell standard implemented in it. The checks explained in section 4 take their toll on how intuitive
type families are in Haskell. Many cases that should generally be possible are not, to guarantee the
termination of the type inferencer and to keep the process decidable.

5.1 The difficulties

Overall, the difficult part in introducing type families for type error diagnosis, is that it becomes hard to
find the original type that has to do with the error. After a type family application has been applied, the
original type is gone and replaced by its definition. Furthermore, injectivity is often a difficult concept to
grasp for even the more advanced functional programmers. The reason why injectivity properties are
violated or why a non-injective type family is used as if they are injective is often hard to understand.
Last but not least, type families are considered as total functions in GHC. A type family application
is always accepted, even if there is no instance defined that can reduce it. When a type family is not
reducible, it is left residual. This section considers several example programs accompanied by the error
that is produced by GHC. We discuss for each its quality and how it could be improved.

5.2 Errors for static checks

Overall, errors considering the static checks for type families are quite clear in GHC. It must be said,
however, that these checks do not impose the difficulties that the type inference process imposes. Let us
first consider an example in which open type family instances conflict:

type family Element container

type instance Element Int = Bool

type instance Element Int = Bool

GHC returns the following error:

main.hs:177:15: error:

Conflicting family instance declarations:

Element Int = Bool -- Defined at main.hs:177:15

Element Int = Float -- Defined at main.hs:178:15

|

177 | type instance Element Int = Bool

| ^^^^^^^

The error mentions exactly where the error resides and which instance declarations are at fault. The
error blames line 177 specifically, however, which should not be needed. It may not be the wrongly
implemented instance. That should be for the programmer to decide. When we consider an overlapping
closed type family, the error converts into a warning:
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type family H a b where

H Int Int = Float

H Int Int = Int

main.hs:206:3: warning:

Type family instance equation is overlapped:

H Int Int = Int -- Defined at main.hs:206:3

|

206 | H Int Int = Int

| ^^^^^^^^^^^^^^^

Because closed type family instances are considered from top to bottom, there is no risk for non-
determinism during the type inference process. The only thing that may happen is that the program
does not type check due to choosing the wrong instance.

A simple not saturated instance also behaves as it should and returns an error:

type family H a b where

H Int Int = Float

H Int = Int

main.hs:206:3: error:

• Number of parameters must match family declaration; expected 2

• In the type family declaration for ‘H’

|

206 | H Int = Int

| ^^^^^^^^^^^

The location is provided correctly and the error notifies the programmer exactly of what is wrong.
However, when type variables are introduced, the error in GHC becomes confusing:

type family Append xs ys where

Append '[] ys = ys

Append (x:xs) = x : Append xs ys

main.hs:37:33: error:

Not in scope: type variable ‘ys’

Perhaps you meant ‘xs’ (line 37)

|

37 | Append (x:xs) = x : Append xs ys

|

The source of the error is that in the second case ys as an argument is missing. A static check should
catch this error by stating that the second case is not fully saturated. Apparently, a scope check for type
variables is conducted before this and throws this error before the saturation check is even applied. This
results in a confusing error from which the programmer now must deduce what the real problem is.

The errors related to the injectivity checks are well defined:

type family Y x = r | r -> x

type instance Y Int = Float

type instance Y Float = Int

type instance Y Bool = Int

main.hs:183:15: error:

Type family equation right-hand sides overlap; this violates

the family's injectivity annotation:

Y Bool = Int -- Defined at main.hs:183:15

Y Float = Int -- Defined at main.hs:182:15

|

183 | type instance Y Bool = Int

|
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Not only does the error provide the programmer with the information of which combination of instances
is erroneous, but it also provides a clear explanation. The right-hand sides overlap!

We leave out the rest of the static checks as they are quite trivial and GHC handles them well in terms
of error diagnosis. Furthermore, the error diagnosis during type inference is much more interesting and
harder to do, as we have seen in this document. We end this section with the notion that GHC apparently
expects every error to provide the line on which the error occurs. In case the error results from two
instances that conflict, this becomes confusing. It looks like GHC tells the programmer to blame exactly
that line while in practice, both instances may be to blame. Which one to fix should be up to the
programmer.

5.3 Errors during type inference

This section describes and discusses examples considering the difficulties mentioned in section 5.1. We
consider type errors that result from nested type families. Furthermore, we look at the situation in which
a type family is used injectively but is not annotated as such. We also consider situations in which the
type inference system assumes the type family to be total but no usable instances exist.

5.3.1 No injectivity annotation

When a type family is annotated with an injectivity annotation, the compiler knows that this condition
should hold and checks it. The errors returned when this check fails, are good. This, however, becomes
another story when it is the other way around. If a type family that is not declared with an injectivity
annotation, is used in an injective way, the compiler forgets that there is the possibility that it could be
injective after all. We show this using the following example:

type family Foo a

type instance Foo Char = Bool

type instance Foo Int = Double

type instance Foo Float = Int

class Bar t where

clsF :: Foo t

instance Bar Char where

clsF = True

main :: IO ()

main = print (clsF :: Bool)

Type family Foo complies with the injective property r -> a but is not annotated as such. The

function main wants to print clsF which is explicitely typed as a bool. Because we know Foo is

injective, we see that Foo t ∼ Bool should substitute t with Char because we can read the type
family from right to left. However, as we discussed in section 4.5.1, the type inference system does not
infer injectivity. This is not a problem if the error notifies the programmer correctly of the situation.
GHC does not do this and provides the following error instead:

main.hs:117:3: error:

• Couldn't match expected type: Foo t

with actual type: Foo t0

NB: ‘Foo’ is a non-injective type family

The type variable ‘t0’ is ambiguous

• In the ambiguity check for ‘clsF’

To defer the ambiguity check to use sites, enable AllowAmbiguousTypes

When checking the class method: clsF :: forall t. Bar t => Foo t

In the class declaration for ‘Bar’

|

117 | clsF :: Foo t

| ^^^^^^^^^^^^^
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A good thing is that the error mentions that the type family Foo is not injective. This could, however,
mean two things: the type family does not have injective properties, which it obviously has, or the
type family is not annotated as an injective type family. The error means the second situation but
nonetheless, this may confuse the programmer. Furthermore, the error introduces the type variable t0

as an ambiguous type variable. t0 is not part of the source program which, according to section 3.3.1, is

a bad thing. This t0 was introduced in the ambiguity check that GHC performs on type signatures.

In the ambiguity check, the constraint Foo t ∼ Foo t0 is created and type-checked. Because Foo

is not injective, this fails as we are not able to create the constraint t ∼ t0 using the injectivity
property. The second bullet point is where the confusion really starts. The compiler suggests turning
on AllowAmbiguousTypes to fix the error, which is a language extension that allows more freedom with
respect to ambiguous types. In this case, however, the error is not solved. Turning on the extension
results in the following error:

main.hs:110:15: error:

• Couldn't match expected type ‘Bool’ with actual type ‘Foo t0’

The type variable ‘t0’ is ambiguous

• In the first argument of ‘print’, namely ‘(clsF :: Bool)’

In the expression: print (clsF :: Bool)

In an equation for ‘main’: main = print (clsF :: Bool)

|

110 | main = print (clsF :: Bool)

| ^^^^

The ambiguity problem remains. The site blamed, however, is now different. Instead of the class
declaration, the error now blames clsF in main . The inference system is not able to solve the constraint

Foo t ∼ Bool . While this is certainly true and closer to the true cause of the error, we are still not
quite there yet. The true source of the error, lacking an injectivity annotation, is now completely missing.
A better error message would mention that Foo misses the injectivity annotation that enables the type
inference system to solve this problem. The message could also provide a hint containing injectivity
annotations that could work.

It could also be the case that an injectivity annotation was given, but that it is not expressive enough
to solve the constraint. Then, we could provide a similar error, hinting towards the correct annotation.

5.3.2 Type families as total functions

Morris et al. [25] describe how type families, as implemented in Haskell, are always assumed total. Type
families are open and extensible, so assuming they are total should be counterintuitive. Instead, one
might see type families as partial to the extent of the type instances written for them. As a result of this
totality, GHC sees a type family application as a type itself. This results in some interesting cases which
we will introduce using an example:

type family Y x

type instance Y Int = Float

-- type instance Y Float = Int

-- type instance Y Bool = Int

test :: Y Float -> Y Float

test x = x

test2 :: Y Float -> Int

test2 x = x

test3 :: Y Float -> Y Bool

test3 x = x

Type family Y only has one instance defined: Y Int . In a partial sense, this would mean that Y could

only be correctly used with Int as its argument. Sadly, this is not true: the function test type checks!

Y Float is seen as a type and as a result, we obtain the constraint Y Float ∼ Y Float which reduces
to ε and thus poses no problems in the type inference system. The function test2 does not type check
and throws the following error:
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main.hs:188:11: error:

• Couldn't match expected type ‘Int’ with actual type ‘Y Float’

• In the expression: x

In an equation for ‘test2’: test2 x = x

|

188 | test2 x = x

| ^

The error tells us that Int does not match with Y Float , which is correct, the types are not the
same. It however fails to mention the cause of the error, which is important: the programmer may have
forgotten to create the instance for Y Float .

GHC also becomes confused when type checking function test3 . It gives the following error:

main.hs:191:11: error:

• Couldn't match expected type: Y Bool

with actual type: Y Float

NB: ‘Y’ is a non-injective type family

• In the expression: x

In an equation for ‘test3’: test3 x = x

|

191 | test3 x = x

| ^

The error that is given blames the fact that Y is not injective. Although this is true and Y indeed does
not have an injectivity annotation, this does not matter. Y has one instance and thus it is injective.
Furthermore, the error has a different cause: both Y Bool and Y Float are not reducible. The type
inference system tries to match them which fails. Instead of the current error, the error should mention
the fact that the applications are not reducible to ground types because no instances exist.

Finally, we discuss a piece of program obtained from stack overflow1.

type family X a = fa | fa -> a

convert :: X a ~ X b => a -> b

The type family X is injective in the argument a. The function convert represents the definition for
injectivity as discussed in section 4.5.1. At first glance, it would appear that this definition would type
check, as the injectivity for X is defined. At a second glance, there is no instance defined for X that would
possibly be able to reduce X a ∼ X b. The error given by GHC is thus as follows:

main.hs:162:13: error:

• Could not deduce: a ~ b

from the context: X a ~ X b

bound by the type signature for:

convert :: forall a b. (X a ~ X b) => a -> b

at main.hs:161:1-30

‘a’ is a rigid type variable bound by

the type signature for:

convert :: forall a b. (X a ~ X b) => a -> b

at main.hs:161:1-30

‘b’ is a rigid type variable bound by

the type signature for:

convert :: forall a b. (X a ~ X b) => a -> b

at main.hs:161:1-30

• In the expression: x

In an equation for ‘convert’: convert x = x

• Relevant bindings include

x :: a (bound at main.hs:162:9)

convert :: a -> b (bound at main.hs:162:1)

1https://stackoverflow.com/questions/55543598/why-is-this-injective-type-family-not-actually-injective
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|

162 | convert x = x

| ^

The error is a mouthful and is confusing in many ways. First of all, it talks about rigid type variables. A
definition that is not known by many programmers. It talks about how these type variables are bound,
which could help but is not understandable for a novice programmer. The most interesting part of
this error is the point where it mentions that a ∼ b cannot be deduced from X a ∼ X b. Injectivity
is accepted by the compiler but the most trivial injective function is not! The trick here is to add the
instance type instance X a = a . Injectivity cannot be used to define instances. Furthermore, when

this instance is added, the injectivity annotation becomes unnecessary as the constraint X a ∼ X b can
be reduced by simply using left-to-right rewrite rules.

5.3.3 Nested type family applications

First, let us consider a piece of program in which type families are used in a nested way:

type family H a b where

H Int Int = Float

H Float Float = Int

type family J a

type instance J Int = Int

wrongFunction :: H (J Float) (J Int)

wrongFunction = 1

When performing type inference, the system should first reduce J Float and J Int to simpler types

before H can be reduced. In this situation, J Float does not have an instance that can reduce it,
which is exactly what the type inference system should mention. GHC instead throws the following error:

main.hs:218:17: error:

• No instance for (Num (H (J Float) Int))

arising from the literal ‘1’

• In the expression: 1

In an equation for ‘wrongFunction’: wrongFunction = 1

|

218 | wrongFunction = 1

| ^

Instead of noticing that J Float cannot be reduced, GHC instead sees H (J Float) Int as a type,
which again is the result of the fact that type families are seen as total functions. GHC misses an instance
of Num for this new type because it should be the type of the value 1. This is far from the actual cause

of the error. As a result, the programmer may not notice that no instance for J Float exists.
Next, consider the following contrived type family definitions and functions:

type family H a b where

H Int Int = Int

H Float Float = Int

type family J a

type instance J Int = Int

f :: Int -> H (J Int) (J Int)

f x = x + 1

wrongF :: Bool

wrongF = f 2 == True

The function f type checks. J Int reduces to Int and H Int Int then reduces to Int which is

the result type. Next, wrongF uses f in an equality, which naturally does not type check. The error is

as follows:
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main.hs:221:10: error:

• Couldn't match type ‘Int’ with ‘Bool’

Expected: Bool

Actual: H (J Int) (J Int)

• In the first argument of ‘(==)’, namely ‘f 2’

In the expression: f 2 == True

In an equation for ‘wrongF’: wrongF = f 2 == True

|

221 | wrongF = f 2 == True

| ^^^

The first line of the error is definitely correct: Int could not be matched with Bool as required by
== . The next lines could, however, confuse the programmer. The error tells us that it expected the type

Bool and that the actual type is H (J Int) (J Int) . The first line shows the reduced type Int ,
whereas the third line shows its original version which is probably obtained from the type signature. The
relationship between them might not be directly clear and may have gotten lost in the type inference
process. Helium uses an algorithm called the Binding Group Analysis to determine the order in which
certain pieces of code need to be type-checked. The idea is as follows: a function a may use a certain
function b in its definition. For a to be type-checked, we need to have the type for b. Therefore, the
type of b needs to be inferred before a. The process of obtaining this order is what Helium calls the
binding group analysis. Type checking subprograms apart from each other has one disadvantage: the
intermediate inference steps are lost when the correct type for a binding group has been found. Only the
final type is used in the next binding group. The potential type family application steps may also get lost
which results in the loss of valuable inference information which may help the programmer understand
the error.
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Chapter 6

Research questions

The main goal of this thesis is to improve type error diagnosis for type families in Haskell. Section 4 shows
that the implementation of type families is not trivial and that type families become quite restricted
to ensure termination and to keep it decidable. As a result, type families become less intuitive for the
programmer. Section 5 shows that error quality concerning type families also suffers. Often errors do
not point to the right cause, which results in confused programmers. Type family applications relate to
their applied definitions but this relation is not always clear in type errors in GHC. All in all, the errors
produced by GHC do not comply with the manifesto by Yang et al. [38] as discussed in section 3.3.1.

Helium in combination with Rhodium allows us to implement type inference of type families with the
use of type graphs. Currently, these type graphs already support them. As a consequence, we are able to
devise heuristics for them to improve type error diagnosis. We, therefore, want to answer the following
main research question in this thesis.

Research question How can causes of type errors involving Type Families be discovered and explained
using heuristics?

We aim to answer this question by improving type error diagnosis for all three versions of type families
including associated type synonyms. The devised heuristics should be compatible with all heuristics that
are currently defined for Helium. All versions of type families are currently not implemented in Helium.
As a result, the static checks discussed in section 4 and the type inference for type families need to be
implemented. Furthermore, we would like to keep track of type family application steps to be able to
provide better error messages. The reason behind this is discussed in section 5.3.3. We thus pose two
sub-questions that are needed to answer the main research question.

Sub question 1 How can the different versions of type families be implemented to work concurrently
in Helium?

Sub question 2 How can we keep track of type family application steps throughout the type inference
process?

Implementing the different versions of type families as one package allows the compiler and, more
specifically, the type inference system to reason about why a certain type of type family has been chosen.
Keeping track of the type family application steps also provides more information on the type error
diagnosis process. By implementing type families in Helium and devising heuristics for them, we aim to
improve the type errors shown and discussed in section 5. Some of these heuristics are based on the type
family application steps that are stored.
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Chapter 7

Implementation of Type Families in
Helium

This section describes how Type Families have been implemented in Helium. The implementation follows
the implementation of Type Families in GHC as close as possible. Because the implementation of the
parser in Helium was straightforward, we omit its explanation from this report. We discuss how type
family information is elicited from the Abstract Syntax Tree (AST) of Helium. Next, we discuss the data
structures used and we discuss why the saved information is needed. Next, we provide a list of the static
checks that have been implemented. For several of these, we need a unification algorithm. We discuss
this algorithm and its possibilities. Furthermore, we discuss a new axiom that helps us to implement
closed type families. Last but not least, we discuss how the X of the type inference engine is implemented
for type families.

7.1 Information Elicitation

After parsing the type families, we store them in a convenient format so that we may easily reach all
information needed for the static checks. We introduce two data structures. One in which we store Type
Family declarations and one in which we store Type Family instances. The data structures are given in
code snippet 7.1 and code snippet 7.2.

data TFDeclInfo = TDI {

tfdName :: Name -- name of the type family

, argNames :: Names -- names of the arguments

, tfdType :: TFType

, injective :: Bool

, injNames :: Maybe Names -- possible names that are injective

, classIdx :: Maybe [(Int, Int)] -- possible indices of tf args linked to class args (ATS)

, classDName :: Maybe Name -- possible name of the accompanying class

} deriving (Show, Eq)

Code Snippet 7.1: Data structure for a Type Family declaration

The name of the type family, the names of their arguments and the type of the type family are stored
respectively in tfdName , argNames and tfdType . The type of tfdType is defined as visible in code

snippet 7.3 and determines what type of type family we are dealing with. The type family may be open,
closed, an associated type synonym (ATS), or a type synonym. Furthermore, we store whether the type
family is injective and in which arguments. A type family does not have to be injective. Therefore,
this attribute is a Maybe type. Last but not least, we store the potential name of a type class and the

indices of those variable names that are linked to certain variable names of a class. This information
is only relevant when we are dealing with an Associated Type Synonym and is empty otherwise. This
information is stored in classIdx and classDName .
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data TFInstanceInfo = TII {

tfiName :: Name

, argTypes :: Types

, defType :: Type

, tfiType :: TFType

, priority :: Maybe Int -- priority inside closed type family

, classTypes :: Maybe Types -- class types in case of ATS

, classIName :: Maybe Name -- class name of accompanying class

, preCompat :: [Int] -- compatible precomputations.

, tfiRange :: Range

, closedDeclName :: Maybe Name

, varNameMap :: Maybe (Map Int Name)

} deriving (Show, Eq, Ord)

Code Snippet 7.2: Data structure for a Type Family instance

In TFInstanceInfo , we store information obtained from type instance ’s. Again, we store the

type family name to which the instance belongs. Next, we store the argument types (lhs) in argTypes

and the definition type (rhs) in defType . We also store the type of type family. The priority is only

relevant for Closed Type Families and determines the order in which the instances are placed under the
declaration. For associated type synonyms, we want to determine if types match for those variables that
are equal in the class and ATS definition. We therefore save the types assigned to the ATS instance.
preCompat saves the indices of other instances under the same closed type family declaration with which

the instance is compatible. This information is used during the type inference process to determine if an
instance may be used to apply a certain type family. Last but not least, we employ a varNameMap that

contains the names used in the Type Family declaration related to their index. We use this to retrieve
the names when we build the injectivity annotation hint.

data TFType

= Open -- open type family

| Closed -- closed type family

| ATS -- associated type synonym

| TypeSyn -- type synonym

deriving (Show, Eq, Ord)

Code Snippet 7.3: Data structure for the type of Type Family

The complete definitions of these data structures can be found in the file TypeFamilyInfos.hs in

the repository of the Helium compiler.

7.2 Implemented static checks

We list the static checks for Type Families currently implemented in Helium in table 7.1. For each, we
describe their goal and on which types of Type Families they apply. We do not consider type synonyms.
We also omit a detailed explanation per static check as we already discuss them in section 4. The
implementation of the static checks can be found in the file TypeFamilies.hs in the folder static checks.

7.3 Unification algorithm in Helium

For the compatibility check and the pairwise injectivity check, we need to perform different types of
unification, as explained in sections 4.3.2 and 4.5.1. To this end, we implemented a unification algorithm
in Helium that is able to perform matching, unification and pre-unification or a combination of matching
and pre-unification, called pre-matching. The algorithm is heavily based on the standard unification
algorithm by Robinson [27] and its implementation is similar in form to the (larger) one in GHC. The
exact implementation of the algorithm can be found in the file Unify.hs situated in the type inference

folder of the Helium compiler.
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Name Restriction Applies on

No identical vars
No equal pairs of variable names may

exist in a type family declaration
All

Injective variables
All variables in the injectivity annotation

must be defined. Also goes for the result var.

Injective

type families

Duplicate type families
A name for a top level declaration may only

be used once.
All

ATS variable alignment
For ATSs, their arguments must align with

their respective class instances.
ATSs

Undefined type families
Instances must always have a corresponding

declaration
All

ATS not in class
ATS instances must always be defined in the

corresponding class instance
ATSs

ATS not in correct class

ATS instances must be defined in the class

instance corresponding to the one for which

they were defined

ATSs

Type family defined

under class instance

Non ATS type family instance situated under

class instance.
Open / Closed

Open instance for closed
An open instance may not be created for a

closed type family.
Closed

Wrong instance under

closed

Only instances corresponding to the

declaration may be present under a closed

type family declaration

Closed

Instance Saturation
All arguments of a type family must be

saturated
All

Var occurs check All variables in the RHS must occur in the LHS All

Termination guarantees
Non injective type family termination

guarantee checks
Non injective

Compatibility check
Checks if there are pairs of overlapping

instances

Open /

Closed (warning)

Pairwise injectivity check
Checks if instances comply with the injectivity

rules (using algorithm U)

Injective

type families

Table 7.1: All implemented static checks for type family declarations and instances.

7.4 Axiom for Closed Type Families

To handle the ordered application of closed type families, we introduced a new type of axiom to the
constraint environment of Helium: the Axiom Closed Group. The axiom is a wrapper around a set of
type family axioms. It holds the name of the family that the axioms belong to and the axioms created
from the instances belonging to that (closed) type family. This construct allows us to handle the axioms
from a closed type family in an ordered fashion and makes it simple to perform the necessary apartness
and compatibility checks between them. The set of axioms in the Axiom Closed Group is always ordered
equally to the way the instances are ordered in the source code. Simply put, the Axiom Closed Group
represents an ordered list containing the instances of a certain closed type family.

7.5 The X for Type Families in Helium

All the static checks discussed in section 4 and listed in table 7.1 make sure that the implementation
of type families is type safe, decidable and make sure that the type inference process terminates. This
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section discusses how the X for Rhodium in Helium is implemented and why certain decisions were made.
Some parts of the implementation remained unchanged with respect to the definitions given by Burgers
et al. [4]. This section first discusses the extension of the constraint environment of X and then discusses
the implementation of X per simplification rule as explained in section 3.2.3. For reference, the constraint
environment is implemented in the file RhodiumTypes.hs and the X in RhodiumInstances.hs .

7.5.1 Constraint environment

The constraint environment, as described by Vytiniotis et al. [36] and implemented by Burgers et al. [4],
is extended on two parts: the axioms and monotypes. Because type families are defined at top level, we
extend the axiom definition Q with the following rule:

Q :: = ...

| ∀[ᾱ]. τ ∼ F ξ̄

where ᾱ denote the touchable type variables and τ denotes the type that represents the type instance
body. This type is subject to the restrictions posed by the static checks. F ξ̄ represents the type family
name and its arguments. ξ denotes a type family free type. This agrees with the restrictions imposed
on type family instance arguments as described earlier in this section. This axiom is spawned when the
programmer defines a type instance in the program.

Furthermore, the monotype definition is extended to incorporate type family applications in types:

τ ::= ... | F τ̄

where F is the type family name and τ̄ represent the types the F is applied to.

7.5.2 Canonicalization

For type families, the canonicalization rule has the task to deal with type family applications that
contain type family applications in their arguments. In other words, nested type families. Furthermore,
the canonicalization rule implements one of the simplifications that injective type families allow. In

canon(tv ∼ τ1τ2) Family in application

where unfamily(τi) = (ᾱi, ξi, Qi) = (ᾱ1ᾱ2, {tv ∼ ξ1ξ2} ∪Q1 ∪Q2)

canon(F τ̄ ∼ τ ′) Nested type families

where unfamily(τi) = (ᾱi, ξi, Qi) = (ᾱ1..ᾱn, {F ξ̄ ∼ τ ′} ∪ (
⋃n

i Qi))

canon(F τ̄ ∼ F σ̄) Injectivity

where injArgs(F τ̄) = (τ̄ ′)

where injArgs(F σ̄) = (σ̄′) = (ε, {τi ∼ σi | τi ← τ̄ ′, σi ← σ̄′})

Figure 7.1: Canonicalisation rules for type families (partly taken from [3])

figure 7.1, the canon rules for type families are given. The first two rules handle nested type families.
Nested type families are handled by the unfamily function. Vytiniotis et al [36] call this procedure
flattening and it is similar to the flattening procedure described in section 4.4.1. The rule is of the shape
unfamily(τ) = (α, ξ,Q), where τ may contain a type family application. Every type family application in τ
is replaced by a fresh type variable β, henceforth known as a β-variable, while the shape of the constraints
remains the same. The constraint Q contains equalities of the form β ∼ F τ̄ with a fresh β for every type
family F τ̄ . Take as an example unfamily(F Int→ G Bool) = ({α, β}, α→ β, α ∼ F Int∧ β ∼ G Bool).
The variables α and β are freshly introduced and replace the occurrences of the type families F and G.

The third rule handles injectivity. It first checks whether the type family at hand is injective. This
is determined beforehand. The rule uses a function of the form injArgs(F τ̄) = (τ̄ ′) which obtains the
injective arguments τ̄ ′ from a type family F τ̄ . The rule then creates new equality constraints for each
pair of injective arguments of the type family as per the definition of injectivity (section 4.5.1).
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7.5.3 Interaction

Figure 7.2 shows the interaction rules as given by Burgers et al. [4]. Notice that all types on which the
interact rule works must be type family free, as denoted by the use of ξ. The flattening of type families in
equations opens up more possible interactions between those equations and other constraints [36].

interact(τ1 ∼ τ2, τ1 ∼ τ2) = τ1 ∼ τ2
interact(tv ∼ ξ1, tv ∼ ξ2) = tv ∼ ξ1 ∧ ξ1 ∼ ξ2
interact(tv1 ∼ ξ1, tv2 ∼ ξ2)

where tv1 ∈ fv(ξ2) = tv1 ∼ ξ1 ∧ tv2 ∼ [tv1 7→ ξ1]ξ2

interact(tv ∼ ξ,D ξ̄)

where tv ∈ fv(ξ̄) = tv ∼ ξ ∧D [tv 7→ ξ]ξ̄

interact(D ξ̄,D ξ̄) = D ξ̄

interact(tv ∼ ξ1, F ξ̄ ∼ ξ2)

where tv ∈ fv(ξ̄) or tv ∈ fv(ξ2) = tv ∼ ξ1 ∧ F [tv 7→ ξ1]ξ̄ ∼ [tv 7→ ξ1]ξ2

interact(F ξ̄ ∼ ξ1, F ξ̄ ∼ ξ2) = (F ξ̄ ∼ ξ1) ∧ (ξ1 ∼ ξ2)

Figure 7.2: Interaction rules (taken from [3])

The interaction rules introduce two new rules that involve (flattened) type families. The first interacts
tv ∼ ξ1 and F ξ̄ ∼ ξ2. The rule allows the type variable tv to be substituted inside the type family
arguments and definitions ξ and ξ2. The second new rule and the last rule in figure 7.2 allows the
interaction of two type family constraints that are applied equally. This should result in the fact that
their definitions ξ1 and ξ2 should be equal, which is why the new constraint (ξ1 ∼ ξ2) is created.

We introduce one additional rule for injective type families. If the last rule in figure 7.2 fails, we may
check if ξ1 and ξ2 are equal. If this is the case, we may introduce evidence that the injective arguments
to F are equal. We may thus introduce those new equalities. We formalize this new rule as follows:

interact(F ξ̄1 ∼ ξ3, F ξ̄2 ∼ ξ4) = (F ξ̄1 ∼ ξ3) ∧ {ξ1 ∼ ξ2 | ξ1 ← ξ̄1, ξ2 ← ξ̄2}
where equal(ξ3, ξ4)

(7.1)

7.5.4 Simplification

The simplification rules are very similar to the interaction rules as explained in section 3.2.3. We therefore
shortly focus on the two rules that this simplification step introduces. These are visible in figure 7.3.

simplify(F ξ̄ ∼ ξ1, F ξ̄ ∼ ξ2) = ξ1 ∼ ξ2
simplify(tv ∼ ξ1, F ξ̄ ∼ ξ2)

where tv ∈ fv(ξ̄) or tv ∈ fv(ξ2) = F [tv 7→ ξ1]ξ̄ ∼ [tv 7→ ξ1]ξ2

Figure 7.3: Simplify rules for type families (taken from [3])

The first rule simplifies two type family applications with the exact same arguments. The only
difference with the interact version of this rule is that the given, left-most constraint is not returned as it
is not needed further in this phase of the simplification process. The same goes for the second rule.

7.5.5 Top-level react

Next to the canonicalization rule, the top-level react is the most interesting rule when introducing type
families. As mentioned, type families introduce a new type of axiom in the form ∀[ᾱ]. τQ ∼ FQ ξ̄Q which
represents a type instance. This rule is used to react with type family applications in the constraint
system. The top-level react rule for type families performs the following steps, given a constraint of the
form F ξ̄ ∼ ξ. Note that all types must have been made family free.
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1. We loop over all axioms that are defined in the constraint system and check if, for axiom ∀[ᾱ]. τQ ∼
FQ ξ̄Q and type family application F σ̄, F = FQ. If not, we consider the next axiom.

2. If F = FQ, we will try to unify ξ̄Q ∼ ξ̄, where the variables ᾱ are considered touchable and may
thus be unified to another type. This allows us to apply a type application on a more general type
instance.

3. If step 2 is successful, the resulting substitution θ is returned. The result of the top-level react call
is then θτQ ∼ ξ where we apply the substitution θ to the definition of the type family axiom ξQ.
We thus replace F ξ̄ with its definition.

4. If step 2 is unsuccessful, we return to step 1 and loop further over the known axioms. When no
matching axiom is found after all have been considered, the constraint is left residual.

The above steps work well for open type families, as there is no order implied. For closed type families,
we utilize the Axiom Closed Group as explained in section 7.4. Because type family names are unique, we
can extend the axiom loop function to also search for axiom groups. When such a group is found, we
only need to loop over the axioms inside it. Furthermore, because we know it represents an ordered set of
axioms from a closed type family, we can check the axioms in order. This also allows us to perform the
compatibility and apartness checks over the complete group as explained in section 4.4.1. Compatibility is
computed before the type inference process.

Top-level improvement When the type family that we want to simplify is injective, and the above
process fails, we may attempt to perform a top-level improvement. When, again, given an axiom of the
form ∀[ᾱ]. τQ ∼ FQ ξ̄Q and a contraint of the form F ξ̄ ∼ ξ, we perform the following steps:

1. We attempt to pre-match ξ and τQ. Pre matching describes the combined process of matching and
pre unification. In short, we use the pre unification algorithm (figure 4.1) while only keeping the
types in one order. If pre matching fails, we return. Else, we obtain the resulting substitution subst
and advance to the next step.

2. We apply subst on the axiom family FQ ξ̄Q and check if it matches with its original version. This is
important because it ensures that injectivity is indeed correct [34]. Again, if it fails, we return.

3. At this point, we may create new evidence based on the injective properties of the type family. We
apply subst over the injective arguments in ξ̄Q to create ξ̄′Q. We then build a set of new constraints
as follows:

injConstr = {ξ′Q ∼ ξ | ξ′Q ← ξ̄′Q, ξ ← ξ̄} (7.2)

4. We return the set of constraints injConstr and F ξ̄ ∼ ξ. This constraint may be improved using the
constraints in injConstr but may also be left residual in some form after type inference is complete.
This, however, introduces a subtlety. It may the case that F ξ̄ ∼ ξ may not be able to be improved
at all. In this case we do not want to perform above steps on it again as this will not provide new
information. We, therefore, annotate the constraint with the notion that top-level improvement
was already applied. This prevents the type inference system from looping.
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Chapter 8

Tracing Type Family applications:
the Reduction Trace

Type family applications may introduce new type families. Furthermore, type families may occur as
arguments to other type families in annotated types. It may therefore take several type family applications
before a base type is reached. During these applications, several intermediate types are created that are
not present in the source code. This is intentional but poses a problem if such an intermediate type may
not be reduced further. The resulting type error will contain a type that is not present in the source code,
which may confuse the programmer. Furthermore, when a type family is fully reduced and the resulting
base type creates an error, it may also be hard to find the original type as the previous steps are lost
after type inference completes (Section 5.3.3). To this end, we implemented a system that traces changes
concerning type families. We carefully choose the word change as the trace should also mention changes
to type family arguments as a result of injective properties. This section discusses what we expect from
the so-called Reduction Trace in terms of its requirements. Furthermore, we discuss its implementation in
the Helium compiler and the difficulties that arose from it. Last but not least, we conclude this section
by discussing the effects of these difficulties.

8.1 Design requirements

We first list the requirements for the design of the Reduction Trace. In essence, we should adapt the
current structure of the type inference system as little as possible. The trace should act as an extension
of the existing system. We introduce the following requirements.

• The Reduction Trace should be complete. The trace should always find the reduction path
from start to finish. Furthermore, no steps should be excluded. The first type in the trace should
be the type that is present in the erroneous constraint. The last type should be present in the type
signature that belongs to the function or other expression in which type inference goes wrong. That
way, we may present a novice programmer with a clear step-by-step application sequence of the
type family.

• The trace should be presented in a type error clearly. The steps that are part of the trace
should be presented one by one with potential extra information that explains why the step was
taken. For example, what instance was applied? How often was it applied and why?

• The trace should be able to distinguish between different reductions. The trace should
contain standard left-to-right applications where an instance is simply applied. Next to that, it
should also contain argument injections where argument information, possibly obtained by the
injective properties of the type family, is inserted.

• The trace should be able to be squashed. This requirement is meant to improve the readability
of the trace information in the type error. In some cases, a type family instance may be applied
multiple times in a row. In this case, it is not helpful if each of the applications shows the exact
information. In such a case, we can group those applications. In other words: we squash the trace.
Squashing the trace is only viable when multiple left-to-right applications of the same instance are
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performed. Argument injections do not need this as the operation is always performed once with a
certain set of constraints and is not linked to certain instances.

• The Reduction Trace should be an extension of the existing system. The trace should
be gathered during the steps of the type inference system. We impose this requirement as we do
not want to adapt the existing type inference system, which is based on a logic that is both sound
and complete. This is a matter of not wanting to re-invent the wheel: we attempt to find a way to
retrieve new information from the type inference process without changing its core.

The trace becomes a core part of type error messages in Helium, with a main role in the type error
messages related to type families. We, therefore, use this section to discuss the reduction trace in a
standalone fashion. The utilization of the trace will be discussed in sections 9 and 10, where the heuristics
related to type families are introduced.

8.2 Implementation

This section explains and discusses the implementation of the Reduction Trace. We first explain the data
structures we use and where they are situated in the type inference process. Next, we explain how we
obtain reduction steps during type inference. Last but not least, we discuss how we build a complete
trace from the steps obtained. The data structures can be found in RhodiumTypes.hs in Helium. Most

functions built to work on the data structures can be found in ReductionTraceUtils.hs .

8.2.1 Monotypes and a reduction step

The constraint environment in Helium contains monotypes with which basic types can be expressed. The
monotypes are defined as in figure 8.1.

Monotypes τ ::= α variables

| τ1τ2 type variable application

| A constants

| F τ̄ type families

Figure 8.1: The definition of monotypes in Helium

During type inference, type family monotypes can be applied to axioms defined for type family F . To
build a trace of these applications, we extend the monotypes with a reduction step. The goal of this step
is to save a potential application and thus reduction, of a type family. We add this step to monotypes,
because every monotype may potentially be the result of a type family application. Furthermore, it allows
us to quickly see if a type is the result from a type family reduction. This has its use when checking if a
type family was to blame for a type error.

In the basis, a reduction step saves two types: the type before, and the type after the reduction. It also
saves the type of reduction that was applied. We currently have two types of reductions: a left-to-right
application and an argument injection. Both correspond to a way that a type family may progress towards
a base type. The left-to-right application corresponds to when a type family is applied to an instance
based on its arguments (hence left to right). The before type is the type family before application. The
after type is the result after application. The argument injection step deals with changes to a type family
when we may fill in argument variables due to injective properties. The before type is the type family
without its new arguments. The after type is the same type family with its new arguments inserted.

The type of reduction may be extended by adding extra information about the reduction step. For
example, in the case of a left-to-right application, we add the instance that was applied. The extra
information may be shown when printing the reduction trace or used for potential other means, like
finding reductions that apply the same instance to a type family.

Last but not least, we introduce the Reduction Trace, which is a list of reduction steps that describes
how a type family is reduced throughout the type inference process. We formalize the data structures as
implemented in Helium in figure 8.2.

The location in the LeftToRight reduction type holds the location of the instance that was applied in
the source code. τ represents the lhs of the instance and τ ′ represents the rhs. For ArgInjection, τ and
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ReductionType rt ::= LeftToRight (τ , τ ′) location left to right reduction

| ArgInjection (τ , τ ′) argument injection

ReductionStep rs ::= Step τ τ ′ rt one reduction step

ReductionTrace trace ::= [(rs, Int)] the reduction trace

Figure 8.2: The reduction trace data structures

τ ′ represent the monotypes of the constraint related to the argument that was inserted. Last but not
least, notice that the ReductionTrace saves an integer with every reduction step. This tells us how often
a certain step was applied and is larger than one when the trace is squashed. We discuss squashing in
section 8.2.3.

8.2.2 Obtaining steps during type inference

We obtain reduction steps at two points during type inference: during top-level reaction of a type family
and at the interaction of a variable constraint with a type family constraint. The first saves a LeftToRight
reduction step and the second an ArgInjection.

A LeftToRight reduction step is only saved when we find that an instance application succeeds. Given
the constraint F ξ̄ ∼ τ and axiom ∀[ᾱ]. τQ ∼ FQ ξ̄Q, we thus only do so if map unify {ξ ∼ ξQ | ξ ←
ξ̄, ξQ ← ξ̄Q} succeeds. If so, as explained in section 7.5.5, we create the new constraint τ ′Q ∼ τ where τ ′Q
is the substituted version of τQ. We extend τ ′Q with the following step:

Step τ ′Q (F ξ̄) (LeftToRight (FQ ξ̄Q, τQ) loc(axiom)).

The step holds the initial and the result monotypes related to the type family in the obtained constraint.
One may ask why it is needed to again save τ ′Q as it is the type that is extended. This is more a decision
for convenience. We do not have to pass on the full monotype when constructing the trace in this way.
The reduction type is always LeftToRight because we are at the only location where a left-to-right instance
application can occur in the type inference engine. loc is a function that retrieves the location of the
axiom. In Helium, the axioms are extended with the TFInstanceInfo obtained from the AST in which
the location of the instance in the source code is saved.

An ArgInjection reduction step is built in a specific case during the interaction phase of the type
inference system. It is introduced in the following rule:

interact(tv ∼ ξ1, F ξ̄ ∼ ξ2)

where tv ∈ fv(ξ̄) or tv ∈ fv(ξ2) = tv ∼ ξ1 ∧ F [tv 7→ ξ1]ξ̄ ∼ [tv 7→ ξ1]ξ2

This rule inserts new information obtained for arguments of a Type Family. As explained, this may
be due to the injective properties of the type family. Whether this is the case or not does not matter as
we always want to show any changes to the type family to the programmer when an error occurs. When
we insert the reduction step, however, is quite subtle. First of all, we only do so if tv ∈ fv(ξ̄) because we
will only substitute an argument of F when this is the case. Furthermore, we do not add a reduction
step when tv is a β-variable. As explained in section 7.5.2, such variables are only introduced during
the flattening process which allows the type inference process to consider nested type family separately.
When we encounter a β-variable in this rule, we are only undoing a flattening step which is introduced by
the type inference system and should thus not be shown to the programmer. To conclude, we introduce
the following reduction step to the type F [tv 7→ ξ1]ξ̄ when tv ∈ fv(ξ̄) and tv 6= β:

Step (F [tv 7→ ξ1]ξ̄) (F ξ̄) (ArgInjection (tv, ξ1)).

The after type is the same type family as the before type with its arguments substituted by the first
constraint given to the interact rule. The ArgInjection reduction type saves this constraint to be able to
show it in a potential error later on.
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8.2.3 Building a Reduction Trace

After the type inference process is complete, an arbitrary amount of types may have a reduction step
inserted. The idea is that when such a type is part of an erroneous constraint, we may use the reduction
trace built from the step inside the type to obtain more information about the error. If no extra info is
obtained, we may as well show the trace to the programmer to provide more insight. To do this, we first
must construct a trace from the step we may retrieve from the type. The trace is constructed in two
phases, executed on a certain type τ .

Phase 1: following reduction steps We first follow the reduction steps one after the other. This
phase checks whether type τ contains a reduction step. If it does, the step is simply added to the trace.
We then obtain the before type from the step (type τ ′ in figure 8.2) and start anew. With every cycle,
the step is placed after the steps obtained earlier. At some point, a type is reached without a reduction
step. In this case, we inspect the type and check if it is a type application or a type family. These sorts
of monotypes are recursive and thus contain monotypes that may in turn contain reduction steps. We
consider these in the second phase. If the type does not contain recursive monotypes, we return.

Phase 2: diving deeper First of all, it is important to note that the reduction steps of recursive
monotypes do not know that they were part of another type family or type application. This is due
to the flattening that happens during type inference: every type family is considered separately. For
the recursive monotypes, we first perform the steps like in Phase 1, where we obtain all reduction steps.
These types may recurse, in which case we perform phase 2 as well. We, however, need to be careful
when we obtain the trace. The steps inside the trace do not contain the type they were part of. We thus
need to insert the steps back into the higher-level type. Let us show this situation with an example. Let
us have the following type families

type family H a b where

H Int Int = Float

type family J c where

J Int = Int

and the type H (J Int) (J Int). During type inference, this type is flattened to H beta1 beta2 with
constraints beta1 ∼ J Int and beta2 ∼ J Int . J Int reduces to Int but does not know that it

was initially part of H . Luckily, inserting a trace back into a higher level type is not difficult: we loop
over every step in the trace and encapsulate the after and before types in the higher level type. To be
able to do this, we need to know what the argument was that the type belonged to. For type families, we
therefore keep track of which arguments were already processed. We therefore also choose to present the
traces within these arguments from left to right.

Last but not least, we discuss the possible length of a trace. Overall, a trace is limited in length. In
many type family applications the amount of nesting is limited and there are often not many applications
needed. However, there are cases where a trace might become too long. Furthermore, if we want to show
a trace in a type error, we would want it to be concise as otherwise, we may risk that the error becomes
unreadable. We, therefore, add the possibility for the trace to be squashed. In short, this means that
we merge two steps in the reduction trace when we consider them equal. But when are two steps equal?
The current implementation defines equality of two steps as the equality of their ReductionType. Note
that this includes the equality of possible arguments to the ReductionType in question. For example, the
LeftToRight reduction type also requires the applied instance and its location to be equal. Let us make
the idea more concrete be introducing an example. Let us have the following type family:

type family Loop a where

Loop [a] = Loop a

Loop a = a

and the type Loop [[[[Int]]]]. It is clear that the result type after type inference is Int. However,
it takes five top-level react phases to reach this conclusion of which four use the exact same instance.
Showing these four steps separately is unnecessary as it makes the error message fairly large and shows
no new information. We, therefore, squash these four steps and instead mention in the error how often
the instance was used. The after and before types of the new Step become the after step of the first step
and the before step of the last step in the sequence.
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8.2.4 Showing a Reduction Trace

Now that we have a Reduction Trace, we need to define how to show it. To this end, we reuse functionalities
that Helium already possesses. A reduction trace is added to the type error similar to how a hint is
added. A hint may be added to any error message, just like we want a reduction trace to be added to
any error message. However, it is not needed for every error message that Helium is able to display. We,
therefore, want to decouple the reduction trace from the error message to allow the maintainer of the
compiler to decide where a reduction trace may be added. Type constraints in Helium are extended with
the so-called ConstraintInfo structure that allows us to add any property to a constraint. For reduction
traces, we add the WithReduction property, which allows us to add a reduction trace to a constraint at
any moment. This reduction may (or may not) be shown in an error message later.

Currently, the reduction trace is shown as an enumerated list of steps. How a step itself is shown
depends on the type of the step. The implementation in Helium allows that the show instances may
be different per type of reduction. This makes it simple to possibly add more types of reduction and,
more importantly, to perfect the way a certain step is shown to the user. To show the way a LeftToRight
reduction step is show, we revisit the type family Loop from the previous section.

1. Applied : Loop a = a

From : (149,5)

Step : Int <- Loop Int

Reason : left to right application

Amount : 1 time

2. Applied : Loop [a] = Loop a

From : (148,5)

Step : Loop Int <- Loop [[[[Int]]]]

Reason : left to right application

Amount : 4 times

Notice that one step tries to tell the story of what happened. A certain instance was applied, which is
situated somewhere in the source code, that resulted in a certain change to the type. Furthermore, it
mentions the reason why this change was possible. Last but not least, notice that the second step was
applied four times. The steps are ordered in such a way that each step comes closer to the original type
family. We chose this ordering because the first step is now closed to the origin of the potential error in
which the trace may be shown. From there, the programmer may read as far back as he or she likes. To
show an example of an ArgInjection reduction step, we introduce the following type family:

type family Foo a b c = r | r -> c

type instance Foo Char Char Char = Bool

type instance Foo Float Bool Int = Int

Notice that the type family is injective in the third argument. We introduce the following constraint:
Foo t v t ∼ Bool and obtain the following trace:

1. Applied : t ~ Char

On : Foo t v t ~ Bool

Step : Foo Char v Char <- Foo t v t

Reason : argument injection

Amount : 1 time

Because we were able to find proof for t ∼ Char due to the injective properties of Foo , we were able
to ‘fill in’ the t . Instead of an instance that was applied, we may now say that new proof in the form of
constraint was. Notice that we do not have a location now, as that would be strange for a constraint.
The fact that we show constraints in this trace step makes the error message that it might be included
in mechanical. This criteria is part of the manifesto by Yang et al. [39] and states that no information
from the type inference process should be shown. In this case, however, we deem it necessary because
the constraints provide valuable information about what happens to the type family. This is the goal of
the trace. We show more examples of the reduction trace when we discuss the heuristics built for type
families.

Although the trace is squashed, we see from the examples that showing a trace takes up quite some
room. We deem this necessary to make sure that it is readable and that the reduction step takes is clear.
However, we recognize that an advanced programmer with lots of experience in type families may not
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need this extended trace. We, therefore, introduce the option to omit the trace from any type error that
may occur. Currently, programmers may add the --showtrace argument to the Helium command to
notify the compiler that they would like to see the full trace. This improves the quality of the error
message based on the succint criteria from the manifesto by Yang et al. [39]. An expert programmer may
not use the argument to get rid of the trace, while novice programmers may add the argument to get a
better understanding of what happened with the type families throughout the program.

Last but not least, we recognize that showing a list of steps may not be the best idea with respect to
the trace. Another way to show the trace is to build a graph-like figure that may link types (sometimes
within types) with each other to represent how type families were reduced. It is, however, cumbersome to
build such a figure in a pure text-based environment. We, therefore, chose to not explore the idea further.

8.3 The Curse of Non-linearity and other difficulties

At first sight, the implementation of the Reduction Trace seems valid and it works for the examples
given. However, there are cases in which it fails to build a trace from start to finish. In some cases, it
even fails to build a trace at all. In this section, we discuss several points of difficulty that haunt the
Reduction Trace. Most of these difficulties are related to the process of obtaining the reduction steps
during type inference. More specifically, type inference is not necessarily a linear process, where the
current implementation of obtaining reduction steps assumes that it is.

8.3.1 Order of phases

The phases of building a reduction trace as described in section 8.2.3 are executed in a fixed order.
Only when a type does not contain a reduction step, do we consider the possible traces in its recursive
arguments. However, a type family instance may contain a type family on its right-hand side. After
application, we may thus have a new type family inside a type which may be reduced to another type. As
a result, we have a type that has a reduction step and also contains a recursive type with a reduction step.
In this situation, the current implementation falls short. The order of phases should become more subtle.

8.3.2 Order of applications of a nested type family

When the type inference system type checks a nested type family, it first flattens it introducing β-variables
in the arguments of the type family and separate constraints for the type families that were first in the
earlier type family its arguments. Intuitively, one would expect that the type families that were positioned
in an argument of their parent are considered first. Linearly, from nested families to their parents. In
this sense, the constraints generated during flattening are first considered and (possibly) reduced during
the top-level react phase. Afterward, the result types of the nested type families may be reinserted in
the top-level type family which may then reduce. In many cases, the application of type families follows
this linear idea. However, there are situations in which this is not the case. We explain these using an
example:

type family Const a b where

Const a b = b

type family Id c where

Id c = c

tfconst :: a -> b -> Const a (Id b)

tfconst x y = x

We have two type families which represent the value-level funtions id and const of the type level. The

function tfconst contains a type error because Const a (Id b) reduces to b and x has type a .
We are however more interested in how the type family is reduced. Let us go over it step by step.

1. Const a (Id b) is flattened. We obtain the type Const a beta1 and the new constraint

beta1 ∼ Id b .

2. Id b is reduced to b and we obtain the constraint beta1 ∼ b .

3. Const a beta1 is reduced beta1 .
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4. beta1 is substituted with b in the constraint beta1 ∼ a to create the constraint a ∼ b where
we return an error.

Steps two and three violate the order in which most reductions take place. The top-level type family is
reduced before the reduced nested type family is reinserted. As a result, b only contains the step that it

was reduced from Id b . This situation only happens in case we have very general type families like

Const and Id that may be applied with any type and thus also with type variables. β-variables are
type variables and may thus be used to apply the instance. In situations like this, the trace becomes
incomplete as the reduction from Const has been forgotten during the type inference process.

We designed a fix by restricting top-level reaction that a type family may only attempt a reaction if
all its arguments are beta free. In other words, all possible nested type families inside a type family must
be considered first before the top-level family is reduced. In case a nested type family cannot be reduced,
the top-level family will also stay unreduced. We argue that this does not break the completeness and
soundness of the type inference system. The system remains complete as we do not allow fewer type
families to be type-checked. If a type family is fully reducible, the type inference system will still do so,
albeit in a different order. This also argues that soundness remains. In case a type family is not (fully)
reducible, the type inference system will still return an error. We found, however, that in some cases, the
error is a bit more general. Consider the following example:

type family Const a b where

Const a b = b

type family Id c where

Id Int = Int

tfconst :: a -> b -> Const (Id a) b

tfconst x y = x

Id is now less generic and only allows Int as an argument. As a result Id a in the type signature
will not be reducible. In case we still allowed β-variables to be in the type family arguments during
the top-level react phase, Const would still be reducible. We would get an error that tells us that

Id a is not reducible. In our new situation, Const will not be reduced, as it will remain in the

form Const beta1 b after flattening. After substitution, the type inference system will tell us that

Const (Id a) b in total is not reducible. We argue that this is not a problem as the situation is very
specific. Furthermore, as we will see when we discuss the designed heuristics: the type to blame is still
inside the type and can be blamed.

8.3.3 Erroneous substitutions and more order issues

From de thesis report by Burgers [3], we quote the following:

”We do not give any guarantees about the correctness of the substitution if the type graph is
inconsistent.”

In other words, we may not assume that the substitution is correct after the type inference system is
done and an error occurs. During the creation of the trace, we try to substitute some type variables to
check if the result type has a trace that we may potentially explore. This turned out to be dangerous
because it can cause looping. Especially when the substitution resulting from type inference is certainly
not correct. If the type variable we substitute is also present in the before type, we end up in a loop
because we eventually consider the type variable again. In the current implementation, we built in a
safety measure that stops the creation of the trace after a certain amount of going into recursion. This
amount is currently set to 50. We are therefore not able to guarantee that a reduction trace is created
when an error occurs related to a (partly) reduced type family. This situation may occur when there
are two type families present in the constraint system that are exactly the same. Like in the following
example.

type family Const a b where

Const a b = b
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type family Id c where

Id Int = Int

tfconst :: (Id a) -> b -> Const (Id a) b

tfconst x y = x

Even though Id a is not reducible, the following rule is applied during type inference:

interact(F ξ̄ ∼ ξ1, F ξ̄ ∼ ξ2) = (F ξ̄ ∼ ξ1) ∧ (ξ1 ∼ ξ2)

At a certain point during the type inference process, we have two constraints: Id a ∼ x1 and

Id a ∼ beta2 where x1 is the type variable related to the argument x in the code and beta2 is a

variable introduced after flattening. When we apply the rule above, we obtain the constraint x1 ∼ beta2 .

Eventually, this constraint interacts with Const beta2 b ∼ x3 to form Const x1 b ∼ x3 which can

reduce because it is not a β-variable. x3 is the type variable related to the x in the body. At some

point we end up with the constraint x1 ∼ b which creates the substitution [x1 7→ b] and lets the
creation of the reduction trace loop. This substitution is of course incorrect and is only created because
the constraint system itself is incorrect. The fact that beta2 is substituted for x1 however also poses
problems because it negates the fix we discussed in section 8.3.2. The order of applications of type families
again becomes non-linear and poses the same problems as before.

8.4 Conclusion

We introduced the Reduction Trace to be able to follow the type family applications during type inference.
The trace may be shown in a type error to provide more information to the programmer when a type
error occurs that has to do with a type family. We were able to gather steps of the Reduction Trace
during type inference without touching the core functionalities. We, however, found that the approach we
chose fails in more complicated constraint systems where the non-linear nature of type inference becomes
more clear. When referring back to the design requirements posed in section 8.1, we were able to satisfy
all but one. The current implementation of the Reduction Trace is not always complete because it is not
always possible to construct a full trace in a more complicated constraint system.
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Chapter 9

The Type Family Reduction
Heuristic

As explained in section 3.3.6, the task of a heuristic is to indicate the likelihood that a certain error has a
specific cause. The goal of the heuristic that we discuss in this section is to indicate the likelihood that
the error was caused by an erroneous reduction of a type family. This heuristic is a voting heuristic which
means that it is a selector that competes with others by assigning a weight that represents how sure it
is that a certain constraint is to blame. This section introduces a new selector or voting heuristic that
selects a constraint when it is sure it is to blame for an erroneous type family reduction sequence. We
first describe what the design should look like. Next, we discuss the implementation of the heuristic and
certain choices that were made in the process. Furthermore, we discuss the quality of the error report
that is shown after the heuristic wins the selection process. Last but not least, we discuss the interaction
that the new heuristic has with other, already existing, heuristics. In Helium, the exact implementation
can be found in TypeFamilyHeuristics.hs situated in the HeuristicsOU directory which in turn is

part of the StaticAnalysis directory.

9.1 Design Requirements

We list a few important requirements that the design of the type family reduction heuristic should abide
by. In essence, the new heuristic should fit easily within the existing heuristic environment and should
not clash with earlier, correctly working, heuristics. This interaction is discussed later. Furthermore, we
introduce the following design requirements.

• The heuristic should utilize the Reduction Trace. First of all, we would like to show the
reduction trace in a potential error report when this heuristic wins the selection process. More
importantly, we would like to use the reduction trace to expand the number of erroneous constraints
found to be related to a type family reduction. We can do this by following the reduction trace of a
type back to the beginning.

• The heuristic should handle nested type families correctly. In case an erroneous type
family contains type families in its arguments (nested type families), these families are (partly)
to blame for the fact that the type family was not reducible. The heuristic should consider these
families during the blaming process.

• The heuristic should attempt to find an explanation of why the error occurred. This
should be in the form of a hint given in the error report. In this thesis, we designed two specific
hints to two specific types of errors that a programmer can make. Furthermore, if a type family in
the erroneous constraint was not reducible without a specific known reason, it should be pointed
out.

In short, the heuristic should, when it fires, attempt to gather as much information as needed to construct
the resulting type error message. The heuristic should also invoke the correct blueprint for the error
message. This blueprint determines the form of the error, only to be filled by the information gathered
by the heuristic. The implementation for this heuristic needs a potential reduction trace and a set of
hints to fill in the blueprint.
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9.2 Implementation

We discuss the implementation of the heuristic by considering the steps it takes to reach a verdict on
whether type family reduction may be the cause of the error. At some point, the heuristic defines different
steps based on the exact form of the erroneous constraint that it receives. We therefore first discuss two
hints that were defined before we bring them into context in the heuristic. The two hints we defined are
the permutation hint and the apartness hint.

9.2.1 The permutation hint

The permutation hint aims to consider the arguments of a given type family. It is able to fire upon a
constraint of the following specific form: F σ̄ ∼ τ . When given to the heuristic, we know that F σ̄ was
not reducible. Furthermore, we know that the constraint system expects that it was reduced to τ . It may
be the case that the programmer messed up the order of the arguments given to the type family. The
permutation hint, therefore, tries if a permutation of the current order of arguments in σ̄ may fix the
constraint. We make the idea more concrete with the following example

type family Swap a b

type instance Swap Int Float = Int

f :: Swap Float Int

f = 4

where it is clear that the arguments are ordered incorrectly. The hint then provides us with the following
message:

Changing ”Swap Float Int” to ”Swap Int Float” helps to remove this type error.

It tells us that this action helps to remove the current type error. In this case, it even completely fixes
the error. However, in larger, possibly nested, type families there may be more problems that need to be
solved before a certain type error is removed. We thus can’t tell the programmer that the action fixes the
error. Notice that the hint always blames the type family in the type signature. Apart from the type
signature, we may in some cases also blame the body of the function or the instance of the type family.
We may, for example, say that Swap Int Float in the instance should have its arguments swapped.

This is cumbersome, especially when the instances of the type families are scattered over multiple code
files. Furthermore, changing around the arguments in the instance may break other functions that are
correctly implemented using the type family. We, therefore, choose to keep the hint local and blame the
type signature. It is often the case that the programmer writes the body of the function first and the
type afterward. We may therefore assume that the body is correct and the type signature needs fixing.

Implementation The implementation of the permutation hint is straightforward. First, the permu-
tations of the arguments of F are constructed. We recognize that constructing a set of permutations
is a costly operation. It is however rare that a type family is defined with more than three arguments
in which case the operation does not take too long. Next, the hint loops over these and constructs the
new constraint F σ̄′ ∼ τ where σ̄′ is the permutation. This new constraint is given to the type inference
system to check whether it is now correct. If it is, we construct the hint to form a message like the one
above and return If the constraint is still incorrect, we try the next permutation. If all permutations
fail with respect to these steps, no permutation hint is given. In case multiple permutations succeed,
the current implementation provides the first one found as hint. The others are discarded. Another
option is to provide all possible permutations in the error. This allows the programmer to choose the
permutation he or she might need. We argue that it is hard to determine which one of the permutations
the programmer meant when writing the code. We are not even sure if a permutation of the arguments is
what the programmer meant to do. However, in the future, it might be better to provide all possible
permutations at once instead of only the first one found.

9.2.2 The apartness hint

The apartness hint is only relevant in case a closed type family was not reducible. In some cases, the
culprit may be the apartness check (Section 4.4.1) that is performed when applying closed type family
instances. This may lead to confusing situations, like in the following example.
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type family Loop a where

Loop [a] = Loop a

Loop a = a

loop :: Loop [c]

loop = True

The body of the function loop is not relevant. At first sight, it seems like the type family in the

type signature is fully reducible. However, it gets stuck after it obtains Loop c from applying the first

instance. To be able to apply the second instance, the type inference system performs the apartness check
(Section 4.4.1) and finds that Loop c is not apart from Loop [a] . c may be instantiated as [c]

and therefore the instance Loop a = a may not be applied. The hint provides the following message.

type ”Loop c” is not apart from instance ”Loop [a]” at (148,5).

Loop c is an intermediate type that is the result of a type family application. Where this type came

from, becomes clear when this hint is put into the context of the type error message. When focussing on
the hint alone, notice that it specifically mentions which instance was not apart and mentions its location
so that the programmer may easily find it. The compiler does not decide whether the instance or the
type signature is to blame for the error. It is hard to find which of the two is to blame because the error
may arise because of many reasons. We, therefore, leave this for the programmer to figure out and show
the hint as a probable cause rather than a fix.

Implementation The hint first checks if the given type family is a closed one. If not, we may
immediately return as there is no way the apartness check can be an issue. If the type family in question
is closed, we try the specific top-level reaction again, this time with a flag that we want more information
returned. It also skips any top-level improvement as we do not need it. If the apartness check fails,
the top-level react phase now returns the instance and the location of the culprit. This information is
then used to construct the hint as given above. If the top-level react phase returns nothing, we do not
construct the apartness hint.

9.2.3 The heuristic

Now that we have discussed the hints that may be given, we continue to how the heuristic itself is set up.
First of all, the heuristic obtains the constraint from the path that is currently considered (one at a time),
henceforth known as the path constraint. Furthermore, the heuristic obtains the complete path so that it
can obtain the erroneous constraint, known henceforth as the erroneous constraint. Type families may
only occur in explicitly declared types and are in no way inferred. The path constraint may therefore
only be a constraint obtained from a type signature or other type annotation from the source code. In
Helium, such a constraint is encoded as an Instantiation Constraint. The heuristic thus checks whether
the path constraint is encoded as such. If not, we return. The main idea of the heuristic is that the
erroneous constraint is then checked against the path constraint. However, the erroneous constraint has
different forms that are each compared differently to the path constraint. We introduce and discuss each
form separately. Before we do so, we introduce the constructor in which the information gathered by the
heuristic, is saved. The constructor is part of the Property data structure in ConstraintInfo and looks as
follows.

Property p :: = . . .

| TypeFamilyReduction (Maybe τ1) τ2 (Maybe τ3) τ4 Bool

The monotypes τ1 and τ2 and similarly τ3 and τ4 form pairs. Each pair represents the original type
(uneven) and the obtained type (even) from the left and right sides of the constraint respectively. τ1 and
τ3 are encapsulated in a Maybe. We do this because a type does not necessarily need to be reduced from
a type family. The boolean is false if the constraint contains a type family that was not fully reducible
and true otherwise. Notice that a potential reduction trace is not saved in this constructor. We omit
the trace because the heuristic saves them in the WithReduction constructor (also part of Property) to
allow the trace to be used more generally. We may now introduce and discuss each of the forms of the
erroneous constraints.
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1. F σ̄1 ∼ G σ̄2. When we have two type families that need to be equal, we know that both were not
fully reducible. We also know that we cannot perform the permutation hint as we do not know
what the constraint system expects one type family to reduce to. We thus firstly substitute any
β-variable still present in both σ1 and σ2 to ensure that we have the complete original type. We
then obtain the reduction traces for both F and G and obtain the last type in the traces. If no trace
was found, the last type becomes the original type. Furthermore, the heuristic builds the apartness
hint, which can be done for each type family separately and does not need any extra information,
unlike the permutation hint. However, because the type families may contain nested type families,
we must try to build this hint for these as well. To this end, we recurse in the arguments of σ̄1 and
σ̄2 and build a nested apartness hint. The hints resulting from a more deeply nested family take
precedence because these are a cause of the fact that the parent family was not reducible. Note that
multiple hints may be formed. These are grouped and shown as one. Last but not least, we check if
one of the last types is part of the type annotation represented in the path constraint. If it is, the
heuristic knows it has found the constraint that it can blame. It adds the TypeFamilyReduction
constructor, the possible hints, and the possible reduction traces to the constraint info and returns.

2. F σ̄ ∼ τ . In case we have a constraint formed this way, we have more information on what the
type family should have reduced to in terms of a base type. This base type is τ . We also know
that we are still dealing with a non-reducible type family. In this case, we can perform both the
permutation and apartness hints. Furthermore, because σ̄ may contain nested type families, we
must again apply the hints recursively. For the apartness hint, this happens in the same way as
described in the previous case. For the permutation hint, the situation becomes difficult. To explain
this, we introduce the following example program.

type family Perm a b

type instance Perm Float Int = Int

type instance Perm Int Int = Char

p :: Perm (Perm Int Float) Int

p = 'N'

Notice that, if Perm Int Float becomes Perm Float Int , the type family may reduce and the

error is solved. We know this because Perm (Perm Int Float) Int ∼ Char and thus, based on

the instance, Perm Int Float ∼ Int . Notice that we use injectivity here to find more information
about the nested type family. We must, however, be careful because the type family is not annotated
as being injective. Using τ , we filter the type family instances on the rhs. If only one set of arguments
is returned, and thus only one instance complied, we may continue to recurse for the permutation
hint. Otherwise, we abort recursion because we can never be certain which instance to choose. For
the rest, the heuristic continues similar to constraint form 1: it obtains the trace from F σ̄ and τ
and determines, based on the last type from F σ̄ if it obtained the correct path constraint. If so,
we build the same constructor and return.

3. τ1 ∼ τ2. A constraint of this form is interesting because there is no type family present. However,
the erroneous constraint may very well be the result of a fully finished reduction. In this situation,
the reduction trace plays its part. In case τ1 or τ2 or both have a trace, we may find that the source
code was erroneous. We, therefore, try to obtain the last type from the traces, if they exist, and
perform the permutation hint on them. Notice that it does not make sense to perform the apartness
hint here, as there are no unreduced type families. We showcase the extra information that the
reduction trace brings with the following example.

type family Perm a b

type instance Perm Float Int = Int

type instance Perm Int Float = Char

p :: Perm Float Int

p = 'N'

The type Perm Float Int is reducible to Int which results in the erroneous constraint Char ∼
Int. The reduction trace sees that Int is reduced from Perm Float Int and sees that swapping
the arguments fixes the error. The hint thus becomes:
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Changing ”Perm Float Int” to ”Perm Int Float” helps to remove this type error

Again, the rest of the heuristic is straightforward where we check if the types are part of the path
constraint.

9.2.4 Choosing a graph modifier

In the heuristic system of Helium, a graph modifier is a function that adapts the graph in such a way
that the considered type error is removed from the constraint system that the graph represents. The
specific type of graph modifier that is applied is returned by a heuristic. A more detailed explanation
can be found in the thesis by Burgers [3]. A graph modifier is applied after a heuristic is chosen to
blame a certain error. The resulting graph may contain other errors that were in the original constraint
system that may in turn be considered and are considered by the blaming process. This improves the
comprehensiveness of the error reporting. For this heuristic, we decided to keep the standard graph
modifier, which removes the path constraint from the graph. In our case, the path constraint contains
the type signature or type annotation in which the problematic type family resides. Removing it has a
downside: any other errors present in the type signature vanish after the resulting graph is simplified by
the type inference system. The error reporting thus becomes not as comprehensive as we would have
liked.

We experimented with trying to substitute the type family in the type signature with the type that
was inferred. This worked to some extent but could introduce other errors that were a result of the initial
error related to the type family. As this error is not directly introduced by the programmer and does not
represent the main cause, this is not the behavior that we wanted. As a result, the standard modifier is
used and we accept the loss of comprehensiveness.

9.2.5 The error construction

After the heuristic passed its judgment on the error path, Rhodium decides if its result is the most likely
location for the error. If it is, the constraint info, adapted by the heuristic, is used to construct an error
message. In this section, we discuss the structure of this message with the use of a few code examples.
We first revisit the Perm example from earlier.

type family Perm a b

type instance Perm Float Int = Int

type instance Perm Int Float = Char

returnN :: Perm Float Int

returnN = 'N'

Type checking the function returnN returns the following error message.

(270,1): Type error with type family reduction in explicitly typed binding

could not match :

type : Char

with : Int

reduced from : Perm Float Int

in definition : returnN

declared type : Perm Float Int

inferred type : Char

possible fix : Changing "Perm Float Int" to "Perm Int Float" helps

to remove this type error

full reduction : 1. Applied : Perm Float Int = Int

From : (266,1)

Step : Int <- Perm Float Int

Reason : left to right application

Amount : 1 time

First, notice that the title of the type error mentions in what type of language construct it resides. In
this case an ‘explicitly typed binding’. It also provides the location. Next, it mentions the constraint that
went wrong: the type inference system cannot match type Char with Int . What is new in this error is
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that it potentially mentions from what type family the type was reduced from. In this case, Int was

reduced from Perm Float Int which is present in the type signature. This information is obtained by
the heuristic in the TypeFamilyReduction constructor and is shown here. The constructor created by the
heuristic looks as follows

TypeFamilyReduction Nothing Char (Just (Perm Float Int)) Int True

where Char was not reduced from a type family and Int came from Perm Float Int. The type family
was fully reducible and we, therefore, have True as the last argument. Moving on, we see that the
error further specifies the location of the error by specifying the definition in which it occurred and by
specifying the differences between the declared type (in the type signature) and the type inferred by the
type inference system. We add this to provide context to the erroneous constraint mentioned at the start
of the error. Next, we notice the first hint in the context of the type error. The hint is a possible fix
generated by the permutation hint. Its suggestion is valid as Perm Int Float would reduce to Char ,
solving the type error shown above. This hint is added to the constraint info through the WithHint
construction, which was already implemented in Helium. Last but not least, the error shows the full
reduction of all types in the erroneous constraint. In this case, we only have one as only one type was
reduced from a type family. In other cases, there may be two reductions present. The full reduction part
of the type error shows the reduction trace in the way that was explained in section 8.2.4. In this specific
case, the reduction is quite simple and contains only one step.

The error message may provide multiple hints, like in the following contrived example program

type family Perm a b

type instance Perm Float Int = Int

type instance Perm Int Float = Char

returnN :: Perm (Perm Int Int) (Perm Float Float)

returnN = 'N'

from which the following error occurs.

(270,1): Type family in explicitly typed binding was not fully reducible

could not match :

type : Perm (Perm Int Int) (Perm Float Float)

with : Char

in definition : returnN

declared type : Perm (Perm Int Int) (Perm Float Float)

inferred type : Char

probable causes : "Perm Int Int" is not reducible. No matching instance

was found

"Perm Float Float" is not reducible. No matching instance

was found

The two nested type families in the type are not reducible. Both hints do not apply so, instead, the error
points out the type families as culprits because no applicable instance was found for them. Furthermore,
notice that the error does not blame the top-level type family. We do not have information on whether
it would have been reduced because it has unreduced type families as arguments. We thus choose to
not mention it. Lastly, note that no full reduction is present. This is because no applications have been
performed. This shows that the heuristic also fires if a type family is not reduced at all.

Last but not least, we consider Loop type family again.

type family Loop a where

Loop [a] = Loop a

Loop a = a

g1 :: Loop [c]

g1 = True

g2 :: Loop [Int]

g2 = True
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We discussed the apartness hint that occurs when we type-check function g1 . The hint shown in the

context of the type error looks as follows.

(152,1): Type family in explicitly typed binding was not fully reducible

could not match :

type : Loop c

reduced from : Loop [c]

with : Bool

in definition : g1

declared type : Loop [c]

inferred type : Bool

probable cause : type "Loop c" is not apart from instance "Loop [a]"

at (148,5)

full reduction : 1. Applied : Loop [a] = Loop a

From : (148,5)

Step : Loop c <- Loop [c]

Reason : left to right application

Amount : 1 time

In case of function g2 , apartness is not an issue. After Loop [Int] is reduced to Loop Int , Int is

apart from [a] and thus the instance Loop a = a may be applied. The error we obtain is that Int

does not match with Bool, inferred from the body. The complete error is shown below. Notice that we
now have a larger reduction of two steps and that the error thus becomes quite large. The reason why a
trace is potentially squashed should now be clear. Last but not least, notice that the different steps are
neatly positioned under one another and are numbered in order.

(155,1): Type error with type family reduction in explicitly typed binding

could not match :

type : Bool

with : Int

reduced from : Loop [Int]

in definition : g2

declared type : Loop [Int]

inferred type : Bool

full reduction : 1. Applied : Loop a = a

From : (149,5)

Step : Int <- Loop Int

Reason : left to right application

Amount : 1 time

2. Applied : Loop [a] = Loop a

From : (148,5)

Step : Loop Int <- Loop [Int]

Reason : left to right application

Amount : 1 time

9.3 Quality of Error Reporting

In this section, we test the error messages against the manifesto by Yang et al. [39]. We explained this
manifesto in section 3.3.1. We discuss each criterion and test how well our error messages do. We omit
an explanation of the unbiased criteria as this is more a result of the type graph that Helium uses than
the heuristic.

1. Correct. This criterion is linked to the performance of the type inference system. The system is
built using the specifications as given by Vytiniotis et al. [36] which is proven correct. Apart from
potential bugs present in the code, we may assume that the found erroneous constraint is correct.
Furthermore, if the types in a given program are incorrect, the inference system will find an error.
The reporting of the error in case of our heuristic always contributes to the problem if the problem
is linked to a type family. All cases of the erroneous constraint require at least one of the types to
be linked to a type family (using a reduction trace).
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2. Precise. The error concerning this heuristic is shown using the erroneous constraint and its context.
This context is often the type signature but may be any type annotation present in the code. This
type annotation holds the type family that was the source of the error. The location of the type
annotation is always given. Furthermore, the apartness hint mentions an instance from which a
type family was not apart. In this case, we also provide the precise location of this instance to the
programmer.

3. Succint. In our opinion, providing the types that don’t match in the context of the definition they
occur in is all relevant information. The full reduction that is given may help novice programmers
to understand what happened exactly with the type family they specified. As mentioned, we only
provide hints for the most deeply nested type families. These are the earliest errors and are one of
the reasons the parent type families cannot reduce. The fact that the parent type family cannot
reduce is not relevant to mention as the nested type family error should be solved first.

4. A-mechanical and source-based. The types in the erroneous constraint are fully substituted
back to hold only type variables and types that are present in the source code. Therefore, the
amount of a-mechanical information is limited. It is however possible that a type family is shown
that is not present in the source code as it was partly reduced. In this case, we show what type
family it was reduced from. The heuristic then requires that this type family is always present in
the source code. We have, however, not been able to completely test this due to restrictions on
features in the Helium compiler. The reduction trace shows constraints in case a type family is
subjected to an injective adaptation. In this case, however, we feel that this constraint provides
valuable information about the application of the type family.

5. Comprehensive. In case we obtain a type family with a nested type family as part of the erroneous
constraint, there are two erroneous constraints. If we have constraint F (G Int) Float ∼ Int and
G Int cannot reduce, we get the following two constraints:

(a) F β1 Float ∼ Int
(b) G Int ∼ β1

In essence, these are two erroneous constraints that result from the same error, namely that G Int
does not reduce. Due to the choice of graph modifier (Section 9.2.4), we lose the second constraint
after the heuristic blames the first one. We fixed this by considering nested type families during
hint generation as explained in this chapter. Furthermore, the graph modifier may remove other
erroneous constraints that occur from the type signature. We therefore cannot state that our
heuristic supports fully comprehensive error reporting.

9.4 Interaction with other heuristics

The type family reduction heuristic is added to an environment in which other heuristics already compete
to blame certain errors. We do not discuss these other heuristics in detail in this thesis but we discuss
those with which this heuristic interacts. We mainly focus on those heuristics that may fire if this heuristic
fails to do so or fire at the same time. In these cases, we elicited two situations in which this happens
that we discuss here.

9.4.1 Type signature is too general

When we remove the type family reduction heuristic from the voting heuristic environment, type family
related errors are caught by other heuristics. In case the erroneous constraint contains an unapplied type
family, it is labeled as a residual constraint. In this case, one of two things may happen, based on whether
the type family was partly applied or not or if it contains some type variables. Either the type error is
too general heuristic fires or the constraint is caught by the filter heuristics implemented in Helium. We
first present an example in which the type error is too general heuristic fires.

type family Perm a b

type instance Perm Float Int = Int

type instance Perm Int Float = Char
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returnN :: Perm (Perm Int Float) Float

returnN = 'N'

Here, Perm Int Float is reducible, but the result family, Perm Char Float , is not. The error is as
follows.

(262,1): Type signature is too general

function : returnN

declared type : Perm (Perm Int Float) Float

inferred type : a

hint : try removing the type signature

full reduction : 1. Applied : Perm Int Float = Char

From : (259,1)

Step : Perm Char Float <- Perm (Perm Int Float) Float

Reason : left to right application

Amount : 1 time

Notice that only the context information, namely the type signature, is shown. We thus lose some
preciseness in the error, namely what the exact error was. However, we do have a trace! In some heuristics,
the trace is also implemented as extra information, about which more in section 9.4.2.

In the other case, a similar error is returned but the constraint to blame is chosen by the filter
heuristics implemented in Helium. In the case of the following program

type family Perm a b

type instance Perm Float Int = Int

type instance Perm Int Float = Char

returnN :: Perm (Perm Int Int) (Perm Float Float)

returnN = 'N'

the participation ratio filter heuristic immediately blames the correct constraint and returns the following
error.

(262,1): Type signature is too general

function : returnN

declared type : Perm (Perm Int Int) (Perm Float Float)

inferred type : Char

which in essence only shows the context in which the error resides. The error loses preciseness and a
lot of helpful information surrounding the type family but it still points at roughly the right location.
Furthermore, notice that in this case, no reduction trace is provided. Currently, this is only implemented
for other voting heuristics.

In case a type family fully reduces but the resulting type takes part in a type error, we lose more
information if the type family reduction heuristic is turned off. Consider the following example

type family Perm a b

type instance Perm Float Int = Int

type instance Perm Int Float = Char

returnN :: Perm Float Int

returnN = 'N'

where Perm Float Int reduces to Int . The error becomes a simple type error that does not mention
the type family at all, like below.

(263,9): Type error in right hand side

right-hand side : 'N'

type : Char

does not match : Int

However, if another voting heuristic were to fire upon this erroneous constraint, we may have another
story.
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9.4.2 Reduction trace in other heuristics

This other story is discussed in this section. We already saw an error message, resulting from another
heuristic than the type family reduction heuristic, which showed a trace. In case the situation occurs
that the type error reduction heuristic fails to fire for some reason, or that another heuristic fires that
takes precedence, we would still like to show the potential reductions that took place. This provides
more information to the programmer that may help solve the error. Say we adapted the Perm example
program as follows.

type family Perm a b

type instance Perm Float Int = Int

type instance Perm Int Float = Float

returnN :: Perm (Perm Int Float) Int

returnN = 3.0

Perm (Perm Int Float) Int reduces to Int in two steps. The definition of returnN is of type

Float . We thus obtain the erroneous constraint Int ∼ Float. In such a situation, Helium defines the
sibling literals heuristic that suggests changing the float literal to an int literal. Currently in Helium, we
get the following error message.

(263,11): Type error in literal

expression : 3.0

type : Float

expected type : Int

probable fix : use an int literal instead

full reduction : 1. Applied : Perm Float Int = Int

From : (258,1)

Step : Int <- Perm Float Int

Reason : left to right application

Amount : 1 time

2. Applied : Perm Int Float = Float

From : (259,1)

Step : Perm Float Int <- Perm (Perm Int Float) Int

Reason : left to right application

Amount : 1 time

We add the reduction trace to this error to let it make more sense. The trace makes it clear that the
Int shown in the initial message was reduced from a type family in the type signature. Currently, we

expanded the following heuristics to include the reduction trace:

• the type signature is too general heuristic,

• the sibling literal heuristic,

• the sibling functions heuristic,

• the application heuristic,

• the variable function heuristic and

• the tuple heuristic.

9.5 Conclusion

The type family reduction heuristic is a general heuristic that handles constraints that relate to erroneous
type family reductions (or applications). To this end, the heuristic heavily relies on the reduction trace
discussed in section 8. The trace allows us to provide more detail about how the types in the erroneous
constraints were transformed during type inference. The quality of the given error message is quite high,
however, we had to compromise on the comprehensiveness of the error reporting. We recognized that
a fully reduced type family may trigger other heuristics in the heuristics environment of Helium. We,
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therefore, expanded those heuristics to also provide a trace if one were to be found in the given constraint.
Because the heuristic relies so heavily on the reduction trace and we discussed its shortcomings, there
are certainly situations in which the heuristic would fail to fire. In this case, other heuristics in the
environment will take over. This results in error messages that are less precise but point at roughly the
correct location. They may even show the reduction trace, as we saw in section 9.4.1.
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Chapter 10

The Type Family Injectivity
Heuristics

The fact that type families may be injective in Helium, means that the type system becomes more
expressive. More programs may be type correct or can be made type correct by introducing some sort of
injectivity. It also introduces more points of confusion for the programmer when type-checking a program
fails. In this section, we discuss two new heuristics that focus on the injectivity of type families. The
first, the Inject Untouchable Heuristic, signals when the programmer tries to inject an untouchable type
variable. The second, the Change Injectivity Annotation Heuristic, tries to suggest adding or changing
the injectivity annotation of a type family in case it may fix a certain type error. This section first lists a
set of design requirements. Next, we discuss the implementation of both heuristics. After that, we discuss
the quality of the error reporting that results from these heuristics and how they interact in the complete
heuristic environment.

10.1 Design requirements

The heuristics described in this section are more specific than the type family reduction heuristic in the
sense that they are built toward more specific situations. We may therefore see them as an extension of
this heuristic. For example, if the injectivity annotation heuristic fails to fire, the reduction heuristic
should back it up. The two heuristics explained in this chapter should be specific to their goal and
only fire when their specific requirements are met. We, therefore, explain the goals of these heuristics
separately before discussing their implementation and do not devise specific design requirements here.

10.2 Inject Untouchable Heuristic

In this section we discuss the Inject Untouchable Heuristic in detail. We discuss the reason why the
heuristic was designed and its goal in designing an error message. Next, we describe its implementation
in Helium.

10.2.1 Goal

When a type family is injective, new information may be found about its potentially previously unknown
arguments. Those arguments are in the form of a type variable. In OutsideIn(X) and Rhodium, a type
variable can be either touchable or untouchable. A touchable variable can be assigned a specific type
during type inference. An untouchable variable cannot be assigned a specific type. This difference is
introduced to be able to decide between whether a variable is quantified with an exist (∃) or a forall (∀)
respectively. In the latter, untouchable, case we may not assume that the variable is any specific type
because its enclosing type must be correct for any type that we may assign to the variable. In the version
of Haskell currently implemented in Helium, a type signature or annotation is implicitly quantified with a
forall. In that light, let us discuss the following example program.
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type family B a = r | r -> a

type instance B Int = Float

type instance B Float = Int

f :: B a -> Int

f x = x

At first glance, one might expect that this function type checks. The type inference system finds that
B a ∼ Int and, due to the injective properties of B, we may create B Float ∼ Int which in turn reduces
to Int ∼ Int. However, a is untouchable. As a result, the constraint a ∼ Float obtained during toplevel
improvement (Section 7.5.5), becomes erroneous. For novice programmers, this might be confusing.
Furthermore, this property of a type system is important to learn. To that end, we have designed this
heuristic to catch and explain this error.

10.2.2 Implementation

In this section, we continue with the program introduced above. To catch the specific error for which this
heuristic is designed, we need to annotate the constraint a ∼ Float with the information that it resulted
from a toplevel improvement. To this end, we extend the Property data structure in ConstraintInfo with
the following constructor

Property p :: = . . .

| ResultOfInjectivity τ1 τ2 c

where τ1 represents the type family, B a in our example, τ2 the right-hand-side, Int , and c the complete
constraint. We add the latter since it simplifies showing the constraint.

The construction of the heuristic is similar to the type family reduction heuristic in the sense that it
seeks to blame a type signature or type annotation. We construct a potential trace from τ1 and check
whether the last type from the trace or τ1 is in the type annotation. If so, we check whether the constraint
info from the erroneous constraint contains a ResultOfInjectivity constructor. If it does, we continue
to construct the hint. This hint tells the programmer that the program tried to inject an untouchable
variable. For our example program, the hint looks as follows.

could not assign ”Float” to ”a”. ”a” is quantified with an (implicit) forall and cannot be
assigned any specific type

It hits the nail on the head. It tells us that the injection is erroneous because a cannot be assigned
a type. After all, it is untouchable. On its own, the hint only provides information about a specific
constraint and gives no context to where it occurs. This context is given in the final error message. Last
but not least, notice that we provide the information that the forall may be implicit. We do this because
a type signature does not need an explicit forall in Haskell. If it is not the case, all variables in the
signature are implicitly quantified with a forall.

Last but not least, we discuss the complete error message that results from this heuristic. The heuristic
adds the following constructor to the properties of the constraint.

Property p :: = . . .

| InjectUntouchable (Maybe τ1, τ2) τ3

Here, τ1 contains the potential last type obtained from the trace. τ2 represents the family type, B a

in our example and τ3 contains the right hand side of the constraint, Int in our example. If the
InjectUntouchable property is found in the constraint info of the constraint, the following error is built.
We explain the structure of the error with the introduced example program.

(194,1): Could not reduce a type family in an explicitly typed binding further

could not match :

type : B a

with : Int

in definition : f

declared type : B a -> Int

inferred type : b -> b
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because : could not assign "Float" to "a". "a" is quantified with a

(implicit) forall and cannot be assigned any specific type

injectivity info : From : B a ~ Int

Got : a ~ Float

Notice that the structure of the error is similar to the structure that the type family reduction heuristic
induces. The reason for this is that the type of error is similar: we could not reduce a type family further.
The thing that changes is the reason why, in this case, erroneous injectivity. Notice that the hint is now
put into context. We now know where a is situated in the type signature. Next, the error adds injectivity
info that tells the programmer from where the constraint a ∼ Float comes from. This completes the link
from the because hint to the context provided by the error message.

10.2.3 Ambiguity check

In GHC, an ambiguity check is implemented which checks for every type signature or type annotation
if it is ambiguous. Simply said, an ambiguous type has a very low chance that it will type check. The
error caught with this heuristic is also caught by the ambiguity check in GHC. Helium currently does not
implement the ambiguity check, which means that this error is currently only caught by the heuristic.
However, even if the ambiguity check was implemented for Helium, this heuristic still has its use. In GHC
the ambiguity check may be turned off through the AllowAmbiguousTypes language extension. This has
its use in certain programs and it should also be an option in Helium. Therefore, we keep this heuristic
for if the ambiguity check was turned off in some future version of Helium.

10.3 Change Injectivity Annotation heuristic

The change injectivity annotation heuristic is a bit different from the other heuristic discussed in this
thesis in the sense that it focuses on adapting the type family declaration rather than blaming the type
signature on a certain function. In this section, we explain its goals and implementation in Helium.

10.3.1 Goal

With the possibility to give a type family injective properties, these properties may be used to fix programs
that were otherwise unfixable. Introducing an injectivity annotation to a type family declaration may
help fix type errors while having little impact on other existing code that uses the family. An injectivity
annotation only makes the type family more expressive, not less. The goal of this heuristic is to provide
a possible injectivity annotation if that annotation fixes the erroneous constraint. Note that this is a
suggestion and it is in no way certain whether it is what the programmer wants and needs. The context
of the program is not known and therefore we cannot use it to improve the message. Let us clarify the
goal by providing an example where the heuristic is applied.

type family Foo a where

Foo Int = Bool

Foo Char = Float

Foo is a very simple type family. The situation becomes interesting when we consider the following
constraint: Foo a ∼ Float. Currently, this constraint fails because the type family has no injectivity
annotation. We may therefore in no way inject a. However, by making argument a injective, the
constraint can be solved. Foo a ∼ Float becomes Foo Char ∼ Float which in turn is reduced to
Float ∼ Float.

10.3.2 Implementation

The heuristic only considers constraints of the form F σ̄ ∼ τ . σ̄ can contain any combination of type
variables or other types. The heuristic only fires if at least one possible annotation is found or if injectivity
could help but the type family violates its properties. To find a possible annotation the heuristic performs
the following steps:

1. We first check if τ unifies with any of the right-hand sides of the instances of type family F . If
there is no right-hand side with which it unifies, we may stop, as no injectivity can be applied.
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2. Next, the heuristic obtains type variables in σ̄ that are touchable and not already injective. We
call this set of variables ε̄. These variables may potentially be made injective to fix the erroneous
constraint. If there are none, we stop as we are not able to suggest new injectivity annotations.

3. From this set of touchables ε̄, we compute the powerset without the empty case P−∅(ε̄). For each
set of touchables inside the powerset, ε̄P , we check if adding the declaration variables respective
to their location in the injectivity annotation fixes the constraint. To do this, we first adapt the
injective axiom of F to hold these new declaration variables. Next, we check if the new injectivity
annotation passes the static checks for injective type families. If we don’t do this, we run the risk of
suggesting a new annotation that is then denied by the compiler during the static checks. If the
static checks pass, we type check the erroneous constraint again using the new set of axioms. If
that succeeds, we pass back ε̄P unioned with the variables that were already injective in the axiom.
This new set of variables will form one of the new annotations that will be shown in the hint of the
error message.

The heuristic checks all ε̄P in P−∅(ε̄) and obtains all that succeed. If, after having checked all possible
new annotations, some new annotations are found, these are listed inside a possible fix hint message. This
message is structured as follows, using the example above.

Add one of the following injectivity annotations to ”Foo”:
1: r → a

The only possible annotation that can be added is the one with the variable a. This is the only variable
of Foo . If we add this annotation, the error is fixed.

If no new annotations were found, we know that there is no way that injectivity may help to solve
the constraint. In this case, the heuristic looks at every entry in the powerset, P−∅(ε̄), and obtains the
variables that are inside every entry ε̄P . These variables can be assigned the label ’culprit’. Every time
these variables are present, the injectivity checks fail. Knowing which variables these are, we may build a
clear message to show to the programmer. To show this, we adapt Foo as shown below.

type family Foo a

type instance Foo Int = Float

type instance Foo Char = Float

The hint given is a probable cause hint and looks as follows.

usage of type family ”Foo” requires argument ”a” to be injective, but ”a” currently can’t be

The first argument of Foo cannot be injected because it may assume two different types when the rhs of

Foo is of type Float. The family, therefore, violates the injective property and as a result, cannot be
made injective. The constraint Foo a ∼ Float cannot be fixed using injectivity of the type family.

The error message induced by the heuristic is similar to the message provided by the type family
reduction heuristic. The only thing that changes is the hint provided. The error provides the exact type
error in the context that it occurs in. Furthermore, it provides a reduction trace if one is present. The
complete error message given for our example with Foo when it may be injective, is given below.

(240,8): Type family in variable was not fully reducible

could not match :

type : Foo t

with : Float

in expression : clsF

declared type : Bar a => Foo a

inferred type : Float

possible fix : Add one of the following injectivity annotations to

"Foo":

1: r -> a

In case Foo cannot be injective in its (single) argument, the complete error looks as follows.
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(240,8): Type family in variable was not fully reducible

could not match :

type : Foo t

with : Float

in expression : clsF

declared type : Bar a => Foo a

inferred type : Float

probable cause : usage of type family "Foo" requires argument "a" to be

injective, but "a" currently can't be

Notice that the error looks similar with the only difference being that the hint has changed from a possible
fix to a probable cause. In case the heuristic is not able to find a new annotation, it is not able to provide
a fix. Instead, it calculates the cause of the error and shows it to the programmer.

10.4 Quality of Error Reporting

Because the error construction of both heuristics is similar to the error construction of the type family
reduction heuristic, we do not discuss every criterion of the manifesto by Yang et al. [39]. Instead, we
discuss two points of interest with respect to the inject untouchable heuristic.

10.4.1 Inject Untouchable Heuristic

The first criteria to discuss for the inject untouchable heuristic is preciseness. In case the type family in
the type signature contains two type variables that must be injected for type inference to succeed, Helium
currently only shows an error message for one. This violates the preciseness criterion that states that
every conflicting location should be mentioned. Like the type family reduction heuristic, this heuristic
removes the complete type signature from the type graph if it fires. As a result, other type variables that
are erroneously injected, may not be considered. Again, this is not limited to the type of error that this
heuristic considers. The removal of the type signature may impact whether another heuristic fires as well.

(194,1): Could not reduce a type family in an explicitly typed binding further

could not match :

type : B a

with : Int

in definition : f

declared type : B a -> Int

inferred type : b -> b

because : could not assign "Float" to "a". "a" is quantified with a

(implicit) forall and cannot be assigned any specific type

injectivity info : From : B a ~ Int

Got : a ~ Float

Last but not least, the error message is a bit mechanical. The injectivity info part of the error shows a set
of constraints, which is not source code based. Both constraints are generated during the type inference
process and are therefore mechanical. We, however, feel that these specific constraints provide valuable
information about what happened. Furthermore, they provide context for the hint that is given. Without
the injectivity info, the types Float and a are introduced suddenly and without a link to the type
error. We thus chose to include these constraints regardless of their impact on the a-mechanical criteria.

10.5 Interaction with other heuristics

The idea behind the heuristics discussed in this chapter is that they are targeted at more specific errors
concerning type families. These heuristics focus on injectivity problems. In case they do not fire, but the
error is type family related, we know that the error probably is not related to injectivity or can be fixed
with it. In this case, the error is caught by the more general type family reduction heuristic. The change
injectivity annotation heuristic only fires if the erroneous constraint is of the form F σ̄ ∼ τ . If the given
constraint is of that form and the heuristic does not fire, the probability that the type family reduction
heuristic fires is very high. It has a case for a constraint of that form and only does not fire if the type
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family in the constraint is not part of the type signature. We may therefore say that the type family
reduction heuristic acts as a fallback heuristic for the change injectivity annotation heuristic.

The inject untouchable heuristic does not have the type family reduction heuristic as a fallback
heuristic. It reacts on a constraint of the form tv ∼ τ where tv is a type variable. This constraint contains
a specific entry in its constraint info that causes the heuristic to fire. If its constraint info misses this
entry, it is hard to determine what other heuristic may fire. We suspect this will often be the type error is
too general heuristic. Especially if tv is untouchable. Then, the type variable is probably part of a type
signature to which the programmer tries to assign a specific type. This is not possible, as the variable is
quantified with a forall.

10.6 Conclusion

In this chapter, we discussed two more specific heuristics that are built to find type errors related to
the injectivity of type families. The inject untouchable heuristic is built to catch a type error for which
GHC uses the ambiguity check. As this is currently not implemented in Helium, we built this fallback
heuristic to catch the error and provide helpful information. The heuristic focuses on the situation where
the programmer tries to inject a type into an untouchable heuristic. The resulting error message violates
the manifesto by Yang et al. [39] in the sense that the provided injectivity info is a bit mechanical. We,
however, feel that this is needed to provide the necessary information to understand the error.

The second heuristic that was discussed, is the change injectivity annotation heuristic. This heuristic
diverts its focus from the type signature and instead tries to find if changing the injectivity annotation of
a type family might fix the erroneous constraint. The heuristic provides a link between non-injective
and injective type families. It is also able to suggest injectivity if the type family does not yet have an
annotation. The heuristic only fires if there is a possibility that injectivity may help by checking if the
rhs of the instance unifies with the rhs of the erroneous constraint. Furthermore, if no working injectivity
annotation may be found, the heuristic states this as a possible cause. It provides the arguments that
currently violate the property. If the heuristic does not fire at all, the type family reduction heuristic is
its most probable fallback due to the type of constraints both heuristics fire on.
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Chapter 11

Comparison of errors between GHC
and Helium

In this chapter, we compare the type error messages given in GHC with the type errors we designed in
Helium. For example, we discuss the differences and their effect on the understandability of the type error
that induced it. The examples remain simple, as Helium only supports type families in the simplest sense.

11.1 Example 1: Wut

The first example that we discuss, is a simple one. We introduce the following example program.

type family Foo a

type instance Foo Int = Float

wut :: Foo Float

wut = 6

Because Foo Float is not reducible, we obtain a type error because the constraint Foo F loat ∼ Int is
erroneous. This is the clearest message that the compiler can give. However, GHC gives the following
error message.

main.hs:179:7: error:

• No instance for (Num (Foo Float)) arising from the literal '6'

• In the expression: 6

In an equation for 'wut': wut = 6

|

179 | wut = 6

|

The error blames the fact that there is no instance Num for the type Foo Float . This error arises from

the fact that the compiler inferred the type Integer from the value 6 . This type has an instance of

Num and as a result, the compiler expects that one exists for Foo Float as well. Here, we see that GHC
heavily treats type families as normal, total, types for which instances can be written. In Helium, we
blame type family errors on type signatures and type annotations. In case a type family is not reducible,
Helium notices this and blames it. Helium, therefore, provides the following error message.

(274,1): Type family in explicitly typed binding was not fully reducible

could not match :

type : Foo Float

with : Int

in definition : wut

declared type : Foo Float

inferred type : Int

probable cause : "Foo Float" is not reducible. No matching instance was found
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The error mentions the type mismatch in its context as we explained when we discussed the heuristic.
Note that the error shows the exact probable cause, namely that Foo Float is not reducible. Overall,
this error provides more understanding of the actual error than the error that GHC gives. The error from
GHC is a result of the fact that it supports overloaded numerals. As a result, the compiler thinks that
Foo Float should have a numerical instance. Helium does not support overloaded numerals (in this

branch, at least) and therefore does not consider this. In case Helium would support this, we still think
that Helium gives the same type error. Two error paths would emerge from type inference and the path
of our current error would probably be the longest. Therefore, this error takes precedence and is shown.

11.2 Example 2: Loop

In case a type family is not reducible because the apartness check for closed type families fails, GHC does
not mention that this is actually the cause. To show this, we use the following, recurring, example.

type family Loop a where

Loop [a] = Loop a

Loop a = a

loop :: Loop [c]

loop = 'X'

After Loop [c] reduces to Loop c using the first instance, a programmer inexperienced with type

families might think that the next step will be the application of the second instance to form c . This,

however, does not happen because Loop c is not apart from Loop [c] . c is not apart from [a]

because c can be instantiated as [a] like we explained in section 9.2.2. GHC provides the following
error.

main.hs:206:8: error:

• Couldn't match type ‘Loop c’ with ‘Char’

Expected type: Loop [c]

Actual type: Char

• In the expression: 'X'

In an equation for ‘loop’: loop = 'X'

• Relevant bindings include

loop :: Loop [c] (bound at main.hs:206:1)

|

206 | loop = 'X'

|

The correct error is given but no context as to why Loop c is not reduced is given. Our error in Helium

does provide this context in form of the apartness hint that we discussed in section 9.2.2. The error looks
as follows.

(281,1): Type family in explicitly typed binding was not fully reducible

could not match :

type : Loop c

reduced from : Loop [c]

with : Char

in definition : loop

declared type : Loop [c]

inferred type : Char

probable cause : type "Loop c" is not apart from instance "Loop [a]" at (278,5)

full reduction : 1. Applied : Loop [a] = Loop a

From : (278,5)

Step : Loop c <- Loop [c]

Reason : left to right application

Amount : 1 time

Notice the probable cause hint given that tells the programmer that apartness was to blame for the failed
application of Loop c . Furthermore, our error provides the reduction trace that tells the programmer
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that the application of the first instance did succeed! This narrows down the field in which the programmer
has to search for the error. The first instance is at least not to blame!

11.3 Example 3: Injectivity

Using the next example, we showcase the differences in type error messages between GHC and Helium
that have to do with injective type families. We first compare error messages related to the error that the
inject untouchable heuristic catches. We use the same program that we used to showcase the heuristic in
section 10.2.

type family B a = r | r -> a

type instance B Int = Float

type instance B Float = Int

f :: B a -> Int

f x = x

Remember that a in B a cannot be injected because it is an untouchable variable. As a result, B a

cannot be reduced any further. GHC provides the following type error message.

main.hs:360:7: error:

• Couldn't match expected type ‘Int’ with actual type ‘B a’

• In the expression: x

In an equation for ‘f’: f x = x

• Relevant bindings include

x :: B a (bound at main.hs:360:3)

f :: B a -> Int (bound at main.hs:360:1)

|

360 | f x = x

| ^

The correct type error is provided without any explanation. Notice that the error locates the x in the
body of the function as the source of the error. It is, however, not certain that that is the location to
blame. It may as well be the x in the argument of the function. Helium provides an error message with
more context information, like below.

(301,1): Could not reduce a type family in an explicitly typed binding further

could not match :

type : B a

with : Int

in definition : f

declared type : B a -> Int

inferred type : b -> b

because : could not assign "Float" to "a". "a" is quantified with a

(implicit) forall and cannot be assigned any specific type

injectivity info : From : B a ~ Int

Got : a ~ Float

We discussed the contents of the message in section 10.2. In this section, we focus on the differences with
the message obtained from GHC. First, notice that the error given by Helium keeps the exact location of
the error more general. The declared type and inferred type of the function are given and it is up to the
programmer to locate the error. We do this to prevent leading the programmer to a piece of code that
has nothing to do with the error or is not the most specific location. Secondly, the error explains the
error and what the effect of injectivity was during type inference. From this, the programmer can learn
how injective properties of a constraint may introduce new constraints to make the type inference system
more expressive. The error in GHC does not provide such information.

11.4 Example 4: Injectivity annotations

Last but not least, we discuss the error messages that GHC and Helium give in situations where adding
or adapting injectivity annotations may fix the error. To this end, we introduce the type family Inj .
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type family Inj a b where

type instance Inj Int Float = Char

type instance Inj Float Float = Int

Notice that the type family has no injectivity annotation and is therefore considered not injective by both
GHC and Helium. Next, let us consider the constraint Inj a b ∼ Char . In this case the constraint

would be solved if both a and b were injective. Notice that this does not violate the requirements for
an injective type family. GHC gives us the following error.

main.hs:373:5: error:

• Couldn't match expected type ‘Char’ with actual type ‘Inj a0 b0’

The type variables ‘a0’, ‘b0’ are ambiguous

• In the expression: inj

In an equation for ‘x’: x = inj

|

373 | x = inj

| ^^^

The error mentions the correct erroneous constraint. Next, it mentions that ‘a0’ and ‘b0’ are ambiguous.
First of all, these type variables are introduced by the compiler during the type inference process and are
not present in the source code. For a programmer that is less experienced with what happens during
type inference, it is unclear what the zeroes mean. Last but not least, the error message mentions that
these variables are ambiguous, meaning that they are open to more than one interpretation. This is true.
We can never assign one exact type to these variables. For a novice programmer, however, this notion
can be confusing and difficult to understand. Why is this the case? In Helium, we remove the mention
of ambiguity altogether and focus on the real problem at hand: injective usage of the type family. The
Helium compiler gives the following error message.

(295,5): Type family in variable was not fully reducible

could not match :

type : Inj a b

with : Char

in expression : inj

declared type : InjC a => Inj a b

inferred type : Char

possible fix : Add one of the following injectivity annotations to "Inj":

1: r -> a b

The type mismatch is the same as in the message from GHC. The difference between the messages lies
in locating the reason for the error. The message from Helium can blame the lack of injectivity as the
cause. Compared to the message of Helium, which is more general, the message given by Helium is much
better. Helium even provides a possible fix that helps to solve the error. As we have shown in section
10.3, Helium also blames the lack of an injectivity annotation when one cannot be added. In this case, the
compiler tells the programmer that the injective usage of the type family cannot be solved by changing or
adding an injectivity annotation.
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Chapter 12

Conclusion

In chapter 6, we posed the following main research question:

How can causes of type errors involving Type Families be discovered and explained using
heuristics?

We have shown that it is possible to discover and explain type errors involving Type Families using the
techniques that Helium provides. The provided error paths from the type graphs are correct and provide
enough information to find out what went wrong. We added several heuristics that were specifically
designed to deal with the addition of Type Families. These heuristics add a new layer to the heuristic
environment of Helium using Rhodium. The errors related to Type Families were already caught by the
type inference system itself and we feel that the newly, specialized, heuristics allow the compiler to report
error messages of higher quality. They provide the programmer with hints toward a fix and give the
incentive to learn what happens with Type Families during type inference.

This incentive is enlarged by adding the Reduction Trace to error reporting, as an answer to the
second sub-question posed in chapter 6. By providing each reduction step of a Type Family in detail, the
programmer is able to see what effect certain properties, like injectivity, have on them during applications.
Obtaining this information from the type inference process is hard because type families are not necessarily
applied in order of nested first, parent after. Therefore, the currently implemented reduction trace is not
perfect. In case the compiler fails to construct one, it may fall back onto a less detailed error message.
We feel, however, that this less detailed error message still is an improvement when comparing it to the
default in Helium.

Last but not least, we answer the first sub-question as posed in chapter 6. We found that it was
relatively easy to implement all types of type families in Helium. An associated type synonym is simply
an open type family with some extra checks that relate to its parent type class. After these checks are
performed, it is simply considered an open type family. Closed type families required adaptations to
the type inference process. By adding the Axiom ClosedGroup, we were able to distinguish closed type
families from open ones. In the case of type error messages, the apartness hint was specifically designed
for closed type families. This check is only performed for this type of type family and is one that may be
confusing. Injective type families required a whole different set of static checks to be implemented. During
type inference, an extra step was implemented to find new information on type family arguments. This,
however, does in no way clash with the normal, left to right, application of type families. With respect to
type error messages, separate heuristics were designed that overrule the standard type family heuristic.
We feel that this was the right way to go because injectivity makes a type family more expressive. In case
the more specific injectivity heuristic fires, it means that this expressiveness is needed and we should
show it to the programmer.

All in all, the current implementation of Type Families in Helium, including the heuristics designed for
it, greatly improves the understandability of type error messages related to Type Families. As a last note,
we would like to mention that usage of Type Families in Helium is somewhat limited due to the absence
of language extensions like Data Kinds. Implementing such language features may result in revisiting the
type family heuristics as they are now.
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Chapter 13

Future Work

13.1 Improve the Reduction trace

One conclusion of this thesis is that the current implementation of the reduction trace is not perfect.
This has to do with the non-linear nature of the type inference system. We suggest researching other
approaches to obtain reduction steps and the trace. The type graph that Rhodium uses may, for example,
be reused to this end. The graph saves all constraints in the constraint system and their relations. To
this end, it also knows the parent and child constraints of every constraint. It may therefore be a good
idea to build an algorithm that walks the type graph to find a type family reduction trace.

13.2 Design a more specific graph modifier

The heuristics currently implemented for type families in Helium use a somewhat drastic graph modifier.
This modifier removes the complete type signature in which an erroneous type family resides. We suggest
that some way should be found to make this graph modifier more specific. We experimented with only
replacing the type that is the culprit of the error with the type that it should be. This has disadvantages.
For example, this approach may introduce new errors that were not there before. The new graph modifier
should be a more specific version of the current one and should not introduce artifacts.

13.3 Implement supporting language constructs for Type Fam-
ilies

The example programs given in this thesis are all using type families that are quite simple. The reason
for this is that Helium does not support many ‘supporting’ language constructs for type families. When
looking at GHC, we noticed that type families are often used in combination with language extensions
like ‘DataKinds’ and ‘UndecidableInstances’. DataKinds introduces a richer type system in which data
structures are lifted to kinds and their constructors to types. UndecidableInstances removes some of the
restrictions for type families with the risk of a looping type inference system. Both extensions, and there
are more, expand the power of type families greatly. The example type family we introduced in section
2.6, cannot be implemented in Helium because type family ‘Append’ requires the DataKinds extension.
We suggest researching how to implement these expanding extensions while preserving the type error
diagnosis quality that Helium now boasts.

13.4 Merge type family branch with other branches in the He-
lium repository

The Helium compiler has been, and is, a home for many great pieces of research. Sadly, we noticed
that all those researches are currently divided over many branches in the GitHub repository. After
some experimenting, we noticed that merging all this research will be quite a job. For example, a new
code generation backend has been designed that supports typing [7]. The research in this thesis only
implemented type families up to the type inference phase in Helium. As a result, the new code generation
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backend must be adapted to implement type families as well. Apart from this example, there are more
subtle difficulties that make merging all this research difficult. We, therefore, suggest allocating some
time and effort to do this.

13.5 Impredicative types

Rhodium allows us to implement a type system analogous to the one in GHC because both type inference
systems are the same logically. For GHC, research has been conducted on how to implement impredicative
types, types that allow universal quantifiers to appear anywhere in a type. For Helium, the next step
may be to implement impredicative types as well and to conduct research on how this affects the current
work done on type error diagnosis.

13.6 Other language extensions

Apart from the language extensions we mentioned in section 13.3, there are many others. The X in
Rhodium allows us to implement those. We may research developing a general framework for those
language extensions and how these extensions affect type error diagnosis. Furthermore, we may look
into designing heuristics for those extensions. It would be interesting to see if certain heuristics could be
turned off in case certain language extensions are not used. Notice that this could also be the case for the
type families implemented in this thesis.
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Appendix A

Setting up Helium

For those readers who want to try our work themselves, we provide the steps to build and run the
thesis-typefam branch of Helium . Helium relies on some other repositories, which need to be set

up first. All repositories are part of the Helium4Haskell organisation on Github. Every clone should be
positioned in the same parent folder.

1. Clone the Top library (https://github.com/Helium4Haskell/Top). Ensure that in Top.cabal ,

the line cabal-version: >=2 is removed. Otherwise, stack won’t build.

2. Clone the lvm library (https://github.com/Helium4Haskell/lvm) and checkout the branch
thesis-typefam-compatible . This branch is a modified version of an older commit ( fc80b24 )

that changes monoid instances to use the new semigroup instances.

3. Clone the Rhodium library (https://github.com/Helium4Haskell/rhodium).

4. Install the specific uuagc library. Instructions below:

(a) git clone https://github.com/noughtmare/uuagc.git

(b) cd uuagc

(c) git checkout mirage

(d) git pull

(e) cd uuagc/trunk

(f) cabal v1-install

5. Clone Helium itself from https://github.com/Helium4Haskell/helium and checkout the branch
thesis-typefam .

At this point, you have everything you need to run the compiler. In lib/Test.hs , you can find programs
and write your own. To build and type check your type family programs, perform the following steps:

1. cd src/ and run make . This generates the needed Haskell files from the .ag files in the code.
After you did this, you only have to repeat it if you adapt .ag files.

2. cd ../ and run the following large command:

stack run helium -j12 -- -b --stop-after-type-inferencing --gadts

--showtrace --outsideinx --basepath=./lib/ ./lib/Test.hs

This command requires some explaining. -j12 tells the compiler to run in multithreaded mode using 12

cores. You may adapt it to suit your machine. -b tells the compiler to only build the program, not run it.

--stop-after-type-inferencing lets the compiler stop after the type checking and inference phase.

Because type families are not incorporated in code generation yet, it is best to stop here. --gadts allows

you to write GADTs in your code, neat right? --showtrace is the argument that lets the compiler
show the full trace in an error message that contains it. Removing this argument results in removing
the reduction trace from the error messages. --outsideinx tells the compiler that Rhodium should be

used during type inference. Last but not least, we specify ./lib/ as the basepath for all the files that
compilation needs. Have fun with Helium!
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