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Abstract

Brain-computer interfaces (BCIs) are systems that provide a direct pathway between
the electrical activity in the brain and an external computer. Such interfaces enable
the control of applications by analyzing brain signals and translating them into the
desired command of the user. BCIs have been mainly used to replace or restore abil-
ities to people disabled by neuromuscular diseases. A specific type of BCI is visual
evoked potential (VEP) based BCI which uses visual stimuli to evoke a response in the
brain. VEP-based BCIs that use non-periodic stimuli are known as code-modulated vi-
sual evoked potential (cVEP) based BCI and have been widely used to control visual
speller-based applications that allow users to communicate. Several approaches have
been used to decode cVEPs from brain signals. Machine learning (ML) algorithms
like linear discriminant analysis (LDA) and canonical correlation analysis (CCA) have
been widely used in decoding cVEPs. More recently deep neural networks (DNNs)
have also been used to decode cVEPs by extracting high-level features from the data.
In general for BCIs, subject-to-subject and session-to-session variability is a big chal-
lenge. Although certain ML techniques have been proposed to deal with this issue,
DNNs have the potential to perform significantly better in this aspect. In this research,
the within-subject and leave one subject out (LOSO) performance of DNNs are inves-
tigated in terms of accuracy and speed of classification. Improvements in the LOSO
performance of the DNN model is further probed using transfer learning to the specific
subject. Optimization of the time required for classification is also examined using dy-
namic stopping methods. Further introspection and visualization of the feature space
learned by the model provides an understanding of the spatial and temporal patterns
present in cVEP data. The performance of the DNN model is also compared with other
prominent approaches (CCA, EEG2Code and EEG-Inception) for decoding c-VEP re-
sponses from EEG data.
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Chapter 1

Problem Statement

Rare conditions such as locked-in syndrome affect one percent of people who have a
stroke and lose their ability to use certain motor functions as well as their ability to com-
municate. Late-stage amyotrophic lateral sclerosis (ALS) patients also lose their abil-
ity to communicate and control their environments. Brain-computer interfaces (BCIs)
[1] have emerged as a possible solution to help such people communicate. One such
paradigm is noise-tagging BCI also known as code-modulated visual evoked poten-
tial (c-VEP) BCI that uses pseudo-random bit sequences for stimulation [2, 3]. c-VEP
based BCI systems have been widely used for speller BCIs [4] where individual sym-
bols are displayed on a screen with each target class of the stimulation sequence being
overlayed on the corresponding symbol. The stimuli are a series of flashes with a
black frame representing a ‘0’ in the sequence and a white frame representing a ‘1’
in the sequence. When a user overtly attends to one of the symbols, brain responses
are evoked corresponding to the flashes in the stimulation sequence that was attended
to. A response to a flash in the stimulation sequence is time-locked and occurs around
100ms post-stimulation. Typical c-VEP based BCI systems distinguish between the
brain responses to various target classes of stimulation sequences by either decoding
responses to individual flashes (on-off) or by decoding the entire stimulation sequence
directly from the data. The ability to distinguish between the evoked responses is aided
by the design characteristics of stimulation sequences having low auto-correlation and
cross-correlation properties. The responses to such stimulation are typically read using
electroencephalography (EEG) with electrodes placed on the scalp of the user.

Several machine learning approaches have been used for decoding c-VEPs from
brain signals. However, BCI systems typically need to be calibrated for every new
user and in some cases even for new sessions with the same user. This cross-session
and cross-subject variability of data hinders the performance of a c-VEP based BCI
system and its effects are more profound in other VEP domains. Such variability could
arise due to several factors such as misplacement of electrodes on the users’ scalp,
poor signal-to-noise ratio (SNR), low spatial resolutions, etc. Most existing models
predict responses to individual events (on-off) present in the stimulation sequence from
epoched data (i.e response data corresponding to an individual flash sampled from trial
data) [3, 5]. These individual responses are then combined to build a template response
for the corresponding stimulation sequence. However, such algorithms have found it
challenging to obtain a model that generalizes well to unseen data.



4 Problem Statement

A solution to this problem is a convolutional neural network (CNN) [6] that de-
codes the entire stimulation sequence directly from the trial data as well as the target
class of the corresponding stimulation sequence. The proposed dual-objective CNN
model is capable of learning representations of c-VEP based responses in the data irre-
spective of the subject. Such a model would be able to perform generalized decoding of
brain responses to c-VEPs independent of the subject and could be further fine-tuned
in real-time using transfer learning [7] to learn subject-specific representations. Al-
though training neural networks is time-consuming, once trained they are extremely
fast at making predictions and allow for predicting the stimulation sequence from the
brain responses very rapidly. The proposed model is also designed to be able to decode
the stimulation sequence from arbitrary durations of data as input with dynamic stop-
ping. This allows for shorter durations of data as input and makes predictions faster
taking into account the responsiveness of a BCI system which plays a crucial role in
providing a good user experience. Further introspection of the learned weight param-
eters in such a model would provide insights into the spatial and temporal patterns in
c-VEP EEG data. Applying transfer learning to the model would also give an under-
standing of the extent of fine-tuning required in terms of the amount of calibration data
needed for the network to classify unseen subject data accurately.

1.1 Research Questions

• Does the proposed dual-objective CNN model obtain higher performance when
tested on within-subject and cross-subject data compared to other models (CCA,
EEG2Code and EEG-Inception) in terms of both accuracy and information trans-
fer rate(ITR)

- Does the performance of the model vary between the target classes of modu-
lated gold codes used as stimulus

- Can the model allow c-VEP based BCI systems to be used asynchronously by
performing non-control state detection (the state at which stimulation sequence is
absent)

• How explainable is the model in terms of spatial and temporal patterns obtained
from its learned weight parameters on the c-VEP EEG data

• What is the extent of fine-tuning required in terms of the amount of calibration
data needed for the network to classify unseen subject data accurately

• Does dynamic stopping based on the confidence score of the model improve clas-
sification speed without a significant trade-off in accuracy (i.e. a higher informa-
tion transfer rate (ITR)



Chapter 2

Background

2.1 Brain-computer interfaces

Brain-computer interfaces (BCI) allow subjects to interact with a computer without us-
ing muscular control. This enables motor-disabled people to translate their intentions
into application commands helping them regain their communication ability or to con-
trol systems required for daily life. Recent work on BCIs have studied expanding its
use cases to neurorehabilitation [8], cognitive training [9] and mental state monitoring
[10].

There are different kinds of BCI based on the modality of the brain signals being
recorded. Completely invasive BCIs [11] place micro-electrodes directly into the cor-
tex having the potential to measure the activity of individual neurons. Non-invasive
EEG-based BCIs use sensors that are placed on the scalp to measure electrical po-
tentials generated by the brain. The electrodes measure minute aggregated electrical
activities of populations of neurons beneath it. Semi-invasive BCIs usually use electro-
corticography (ECoG) where electrodes are placed on the exposed surface of the scalp
providing a higher spatial resolution, better signal-to-noise ratio and a wider frequency
range than non-invasive BCIs.

Non-invasive BCIs typically use EEG to read the macroscopic electrical activity
of the surface layer of the brain. EEG allows to record data from the brain at a high
temporal resolution at a low cost and is very portable. However, EEG provides a low
spatial resolution and there are a lot of challenges involved with decoding EEG data.
The amount of data recorded for a specific experiment is usually restricted to a couple
of sessions limiting the amount of data that is acquired. In addition, the signal recorded
is weak with a low signal-to-noise ratio as the electrical activity is recorded from the
scalp. There is also considerable variation between responses to the same stimuli be-
tween different subjects and even for different sessions for the same subject. The data
recorded could also be inaccurate due to several factors such as incorrect electrode po-
sitioning and incorrect performance of the task by the subject.



6 Background

2.2 Event related potential (ERP)

BCIs that serve for control and communication applications typically rely on time-
locked responses to certain events which are known as event-related potentials (ERP)
[12]. ERPs are specific time series patterns recorded from the brain that are time-locked
to the presentation of a stimulus. The subject’s volitional attention to one of the possible
target classes of stimuli allows the BCI to detect the ERP. Based on the (a)periodicity
of the stimuli used, there are two kinds of evoked potentials. Visual evoked potentials
obtained when using periodic stimuli are known as steady-state visual evoked potentials
(SSVEPs) and evoked potentials resulting from non-periodic stimuli being presented
to the user are called broad-band visual evoked potentials or code-modulated visual
evoked potentials (c-VEPs). SSVEPs have been traditionally used in BCI systems due
to their simplicity and speed. They are also known as frequency modulated VEP (f-
VEP) as they assign a different stimulation frequency for each specific command and
can be decoded in the presence of broadband noise [5]. However, the performance
of SSVEP based BCI does not match muscle-based control nor the adequate level of
reliability. Broad-band evoked potentials are hypothesized to be more robust to noise
due to a broad-band response in the frequency domain and can be decoded even in the
presence of narrow-band interference. The non-periodic stimuli are also designed to
have minimal auto-correlation and cross-correlation properties hypothesizing that the
evoked potentials to the specific stimuli are uncorrelated themselves. However, the
responses may not always be uncorrelated even when modelling the brain as a linear
system and such effects are more prominent under the assumption that the brain behaves
as a non-linear dynamic system.

2.3 c-VEP based BCI system

c-VEPs were first proposed by Sutter [13] as an experimental communication system
for severely disabled people. Wei et al. [14] further used c-VEPs as communication
applications for subjects suffering from amyotrophic lateral sclerosis (ALS). Using an
invasive electrocorticographic system (ECoG), subjects were able to spell 10-12 words
per minute. This work was further carried over to EEG-based BCIs by Bin et al. [2]
using only one EGG channel (i.e. Oz) showing that c-VEP based BCI systems could
attain an accuracy of 91% and an ITR of 92.8 bits/min as compared to the traditional
SSVEP based BCI systems that only obtained an 85% accuracy and an ITR of 39.7 bit-
s/min [2]. Martínez-Cagigal et al. [15] gives a detailed overview of c-VEPs and the
approaches that have been used for decoding c-VEP responses.

On a typical c-VEP based speller application, responses are recorded to stimuli that
are pseudo-random binary noise sequences (PRNS) or codes where a ’1’ represents a
white frame and ’0’ represents a black frame. Each symbol on the virtual keyboard is
associated with a specific stimulation sequence. The virtual keyboard displays target
and non-target symbols to the user with associated flash sequences overlayed on each
of the corresponding symbols. By attending to a specific symbol, the associated stimu-
lation sequence evokes the corresponding response in the brain which is recorded using
EEG. Stimuli can be decoded from such responses thereby classifying the correspond-
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ing symbol the user attended to. c-VEP based BCI systems allow for high decoding
performances and reduced calibration times.

2.4 Code families and event-types

Random binary stimulation sequences need not have optimal correlation properties be-
tween them and therefore using a family of codes with suitable auto-correlation and
cross-correlation properties is important. However, finding such a family of codes is
not trivial [5]. Traditional approaches use pseudo-random binary sequences that have
low auto-correlation values for non-zero circular shifts. Each target class is then en-
coded with the time-delayed version of the original sequence [2]. In c-VEP based BCI
systems, m-sequences (maximal length sequences) are often used due to their optimal
auto-correlation properties [16]. Such sequences are generated by linear feedback shift
registers (LSFR). A 63-bit m-sequence is typically adequate for modulating up to 32
target commands, however longer m-sequences are required for using more targets.

Isaksen et al. [17] compared three code families (m-code, gold-code and barker-
code) and concluded that there was no single one that outperformed all the others across
subjects. However, for each subject there did appear to be an optimal code that obtained
higher accuracy as compared to the other codes. Yasinzai and Ider [18] found that the
best results were obtained when using codes with short flashes with enough time be-
tween them to ensure that the responses did not overlap. They also found that when
repeating flashes of the same length, the responses become weaker with each repeti-
tion. Nagel et al. [19] found that optimal results were obtained for codes containing 7
up-down changes for every 15 bits of code.

Modulated gold codes have the special property of being composed of entirely ’01’
and ’10’ subsequences. This restricts the stimulation sequence to be only up or down
for at most 2 bits at a time. Such stimulation sequences have limited repetitions of the
same flash but not the recommended time between flashes to prevent overlap. They are
derived from combinations of preferred m-sequence pairs. For m-sequences generated
with a polynomial order m, 2m + 1 gold codes could be obtained. (e.g. 65 gold codes
for a preferred pair of 63-bit m-sequences). For c-VEP based BCI systems, such stimu-
lation sequences are generated prior to the experiment. The gold codes ensure minimal
correlation statistics and are further multiplied with a double-bit clock which retains
correlation properties but removes low spectrum content.

Another aspect of consideration is the interpretation of events in the stimulation se-
quence. The definition of events in the stimulation sequence is called the event-type.
Considering every ’1’ (i.e. illuminated display state) in the stimulation sequence as an
event is referred to as the ’simple’ event-type. Other event-types include the ’duration’
event-type where events are defined to be short (010) and long (0110) flashes and the
’contrast’ or ’change’ event-type where every rise (01) and fall (10) in the stimulation
sequence are defined as events. Modelling patterns in the stimulation sequence as mul-
tiple events (e.g. long and short flashes) allows for learning more complex non-linear
relationships in the c-VEP responses. Figure 2.1 depicts different choices of event-
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types for a 126-bit gold code (2.1s of data at 60Hz) with optimal correlation properties.

(a) Simple event-type where every ’1’ in the code is modelled as an event

(b) Duration event-type where short (010) and long (0110) subsequences
in the code are modelled as separate events

(c) Contrast event-type where every rise (01) and fall (10)
in the code are modelled as separate events

Figure 2.1: Event-types. Adapted from Exploring code families and event-types for cVEP BCIs, by J.
Janssen, 2021



Chapter 3

Related Work

In this chapter, an overview of the previous work done in related areas is detailed. These
sections will give context to the approaches used in later chapters.

3.1 Traditional approaches

Yasinzai and Ider [18] conducted studies on single-edge VEP responses aimed at pre-
dicting the complete c-VEP response to a stimulation sequence using the superposition
of responses to individual events in the stimulation sequence. Correlations between the
predicted and real ERPs of the corresponding stimulation sequence alone were not able
to obtain the desired performance as low correlation coefficients were obtained (e.g.
ρ: 0.46). Using a series of constraints that enabled the generation of handcrafted su-
perposition optimized pulse (SOP) sequences, a high correlation between the predicted
and real ERPs were obtained (e.g. ρ: 0.79) [15]. They also concluded that although
there are non-linear interactions in the c-VEP responses generated to corresponding
stimulation sequences, a linear superposition of individual events could obtain accu-
rate predictions for optimized stimulation sequences generated beforehand. Alterna-
tive classification methods for decoding c-VEP responses include direct correlation of
the c-VEP response with the corresponding stimulation sequence for single trial data
[20], support vector machines (SVM) [21–23], one-class SVM (OCSVM) [24–27], lin-
ear discriminant analysis [28–30] or naive Bayesian classifiers [31]. However, such
models typically reported a loss in performance when the number of target classes was
increased.

3.2 Canonical correlation analysis

Recent studies have aimed at improving regression approaches to decoding c-VEP re-
sponses from EEG by inferring responses to individual events (e.g. flashes). Learned
responses to individual events are further used to predict c-VEP responses to different
target classes of stimulation sequences.

Thielen et al. [5, 32] proposed reconvolution which generates templates for each
user by building up responses to individual events. This approach is based on the
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linear superposition hypothesis which states that the response evoked by a sequence
of events is the linear summation of the evoked responses to individual events. The
encoding model learns responses at the level of individual events (i.e. flashes) and
is able to generate predictions of responses to full stimulation sequences. There are
two steps involved in reconvolution, the estimation-step and the generation-step. In
the estimation-step, the full response to a stimulation sequence is decomposed into
one or several VEPs (e.g. one for each possible duration of flash). In the generation
step, these decomposed responses are combined to generate full template responses.
This approach improved on the method proposed by Yasinzai and Ider [18] (limited
to single channel data) by utilizing canonical correlation analysis (CCA) that is used
along with reconvolution to simultaneously optimize a temporal filter (i.e. transient
responses to individual events) and a spatial filter that transforms multiple channels
of EEG data into a single channel [33, 34]. CCA optimizes the spatial filter and the
temporal filters in one run with the objective of maximizing the correlation between the
spatially filtered data and the generated template. Once the CCA model is trained, new
unseen data can be classified by first spatial filtering it using the learned spatial filter
and then matching it to one of the generated templates. This matching is performed by
using Pearson’s correlation between the spatially filtered data and each of the individual
templates corresponding to the target classes of stimulation sequences and choosing the
class with the highest correlation. This method trained with 36 Gold codes achieved
a mean online accuracy of 86.0% and a mean information transfer rate (ITR) of 66.4
bits/min in a speller application. Although the duration of the calibration is significantly
reduced in c-VEP based BCIs, an adaptive version of the encoding model was proposed
to limit the calibration data to none at all or at most a minute [5]. However, completely
eliminating the calibration step is not always preferred. For certain user groups, a
short calibration phase might provide a covariance estimate that boosts the convergence
speed of the system. Results showed that this model was able to reach the same speed
and accuracy as the supervised calibrated version. However, without calibration the
CCA approach suffers a loss in cross-subject performance.

3.3 Deep learning

Nagel et al. [19, 35, 36] utilized linear ridge regression models based on sliding
windows to develop EEG2Code and Code2EEG. EEG2Code takes the c-VEP re-
sponse as input and the predicts the stimulation sequence that was used to generate
it. Code2EEG takes a stimulation sequence as input and predicts the associated EEG
response. Responses to random stimulation sequences were used to calibrated the mod-
els. EEG2Code combined with CCA achieved performances around 90% [15] for of-
fline experiments when decoding responses to 1000 different random stimulation se-
quences.

The method discussed previously assumed linearity (i.e. linear in the model param-
eters) in the combination of single events to c-VEP response templates. Although this
has proven adequate for modelling c-VEP responses, previous research has shown that
the brain behaves as a non-linear dynamic system [18, 37]. In order to take the non-
linearity of the system into account, Nagel and Spüler [3] combined EEG2Code with
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deep learning. This enabled their model to learn non-linear relationships between the
events in the stimulation sequence and c-VEP responses. The model architecture con-
stituted of a convolutional neural network (CNN) and was trained with 384s of data in
each trial. On offline experiments using a speller application, the model obtained an
accuracy of 98.5% when differentiating between 32 targets [15]. Their model relied
on predicting individual flashes from epoched data. However, combining predictions
at the flash-level for epoched data from a trial to estimate the target class of the stimu-
lation sequence was not robust enough to obtain high cross-subject performance.

Santamaría-Vázquez et al. [38] proposed a model consisting of a convolutional neu-
ral network (CNN) with inception blocks which allows learning temporal patterns at
different time scales along with depthwise convolutions (single convolutional filter for
each channel) for spatially filtering the multi-channel EEG data. Results of the model
trained on a population of subjects on an unseen subject showed accuracies near 90%.

3.4 Transfer learning

One of the major issues that a c-VEP BCI model faces is that a training stage is re-
quired for obtaining training data to calibrate its learned weights parameters to adapt it
to a specific subject. Ying et al. [39] proposed a Riemannian geometry-based transfer
learning algorithm for c-VEP based BCIs that could effectively reduce the calibration
time without sacrificing classification accuracy. Santamaría-Vázquez et al. [38] em-
ployed transfer learning where a model trained on a population of subjects was used
to predict target classes of stimulation sequences for an unseen subject. The model
was adapted to each subject for optimizing the subject-specific performance. Although
the accuracy was already quite high before adapting the model to the specific subject,
fine-tuning the model using small amounts of data from the specific subject enables
the model to be more stable by learning subject-specific features. Results of studies
that applied transfer learning for SVM and LDA models did not achieve an adequate
generalization performance [23, 30].

3.5 Dynamic stopping

Many studies utilized adaptive stopping techniques to dynamically stop the model once
it has converged and emit an output [3, 5, 33, 36]. An efficient dynamic stopping ap-
proach enables the model to perform at a desired level of accuracy without significantly
increasing the time required for making a prediction. These approaches used threshold
comparison techniques where the model emitted a target class of stimulation sequence
when an optimized measure exceeded a value defined a priori. The measures were ob-
tained from either the correlation coefficients ρ between the c-VEP response data and
the learned templates, logistic regression models [40] or transformation into p-values
[3, 36]. Other studies used the difference between the first highest and second high-
est correlation [32]. They applied their algorithm using a sliding window approach
allowing their model to make predictions before the end of a cycle. Certain algorithms
also applied automatic threshold calibration techniques that enabled their models to be
optimized unnoticed by the subject. Dynamic stopping approaches also facilitate the
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modelling of asynchronous BCI systems to provide self-paced control to the subject.
BCI systems are typically synchronous, i.e. they continually produce output predictions
based on the EEG activity without a voluntary decision from the subject. A non-control
state detection permits the model to monitor the subject’s attention and detects whether
the subject wants to actively select a command using the c-VEP BCI system. Cer-
tain studies provided an asynchronous stage to their BCI system by avoiding command
selections that did not surpass a certain threshold.

3.6 Critical reflection

Most of the above studies relied on template-matching algorithms [3.1, 3.2] that use
some sort of similarity or distance metric to maximize the correlation between the EEG
data input to the model and the learned templates (i.e. the c-VEP responses to stim-
ulation sequences). CCA was most often used to combine information obtained from
multiple channels of EEG data. Certain studies [5] also poses the question of whether
a c-VEP response can be modeled by the convolution of one basic flash VEP or if the
duration of the flash has to be taken into account. Such studies have used basic VEP lin-
ear superpositions in generating full templates to recorded c-VEP responses although
they state [18] that non-linear interactions contribute a major role in this process. Such
models are prone to being not robust without calibration as they are optimized sequen-
tially and due to the non-stationarity of EEG data [41]. Due to low spatial resolutions,
poor signal-to-noise-ratio (SNR) and volume conduction in EEG data, the stimulation
sequences are not directly reflected in the c-VEP responses and are subject to variabil-
ity. Robustness to within-subject variability of the c-VEP response data across multiple
sessions and cross-subject variability forces the model to require a calibration phase
to achieve adequate performance. Predicting individual flashes from epoched response
data which are then combined to obtain a prediction for the target stimulation sequence
also consumes much more time than predicting the target stimulation sequence directly
from arbitrary durations of data.

Deep learning has shown its potential to learn representations that generalize well
over unseen data in domains like natural language processing and image classification
[38]. CNN architectures for c-VEP based BCI allow for learning non-linear relation-
ships in the EEG data and also optimizes multiple components together instead of doing
it sequentially. These networks are designed to optimize multiple spatial and temporal
filters in a hierarchical manner. Whereas current models based on correlation predict
outputs at the flash level (i.e unique events in the stimulation sequence), deep learning
models permit learning temporal structures in the c-VEP response data at the level of
trial data. Explainable deep learning models [3] in terms of the spatial and temporal
patterns obtained from the learned weight parameters could provide insights into the
non-linear generation of c-VEP responses. Deep learning models obtain higher cross-
subject performance than traditional approaches in terms of accuracy which could be
further optimized using transfer learning where the pre-trained network can be fine-
tuned to data from an unseen subject. DNNs allow making predictions of the target
stimulation sequence directly from arbitrary lengths of data. Hence the prediction time
is much less compared to the standard approaches that rely on predicting responses
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to individual flashes in the stimulation sequence using epoched data. Assuming such
DNNs provide a speed-up compared to standard approaches, incorporating dynamic
stopping based on confidence scores of the model could potentially improve the speed
of classification and thereby optimize the information transfer rate (ITR) even further.
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Methods





Chapter 4

Data

4.1 8-channel dataset

The first dataset used to evaluate the performance of the model was recorded by Thie-
len et al. [5]. A total of 30 subjects participated in the experiment. 20 target classes of
modulated gold codes [42] of length 126 bits were pre-defined as stimuli. The exper-
iment was based on synchronous control with each trial having a fixed time interval.
The EEG data was recorded with 8 sintered Ag/AgCl active electrodes (FpZ, T7, O1,
POz, Oz, Iz, O2, T8) at a rate of 512Hz with a Biosemi ActiveTwo amplifier. The codes
were displayed on a monitor with a refresh rate of 60Hz and so required 2.1s to present
a unique stimulation sequence. Each such sequence was repeated 15 times for a total
trial length of 31.5s with an inter-trail time of 1s. The data recorded during the inter-
trial time is also used for predicting a non-control state where stimulation is absent.
The experiment was conducted using a calculator application with 20 symbols. Each
subject completed 5 EEG runs with each run consisting of 20 trials corresponding to
each of the 20 target classes. A total of 100 trials were conducted for each participant,
with 5 trials for each stimulation sequence making the dataset balanced. For the non-
control state, 75 instances of 1s of inter-trial data were collected. Figure 4.2 depicts the
recorded EEG channels according to the 10/20 system of placement of electrodes.

Figure 4.1: Stimuli and experiment where targets were cued
with a green color within a 1s inter-trial interval and trials
lasted 31.5 s. Adapted from From full calibration to zero train-
ing for a code-modulated visual evoked potentials brain com-
puter interface, by J. Thielen et al., 2021

Figure 4.2: 8-channel EEG cap. Adapted
from A Deep Learning approach to
Noise Tagging, by S. Geurts, 2021
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4.2 256-channel dataset

The second dataset used to evaluate the performance of the model was recorded by
Ahmadi et al. [43]. 5 subjects participated in the experiment and 36 target classes of
modulated gold codes [42] of length 126 bits were pre-defined as stimuli. The subjects
were seated at a distance of 60cm from a 17-inch LCD screen with a refresh rate of
60Hz. The EEG data were recorded with a 256-electrode Biosemi cap with gel elec-
trodes at a rate of 360Hz with a Biosemi ActiveTwo amplifier. A stimulation sequence
required 2.1s to present to the user with each such sequence being repeated 2 times
for a total trial length of 4.2s with an inter-trial time of 0.5s. The stimuli consisted of
a flickering matrix-layout keyboard with 36 symbols. Each symbol flickered between
black and white frames according to the modulated gold codes. The flickering pattern
hence consisted of two types of events, a short flash and a long flash. Each subject
completed 3 EEG runs with each run consisting of 36 trials corresponding to each of
the 36 target classes. A total of 108 trials were conducted with each participant, 3 tri-
als for each bit-sequence making the dataset balanced. Figure 4.3 depicts the recorded
EEG channels according to the Biosemi-256 electrode layout.

Figure 4.3: 256-channel EEG cap. Adapted from Biosemi, https://www.biosemi.com/headcap
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Implementation

An environment yaml file is used to install all the required dependencies for the code
which is coded using Python 3.9.7. The code can be obtained directly from GitHub
using a URL to the repository (https://github.com/rohitvk1/Deep-Learning-for-cVEP-
based-BCI-systems). The neural networks are implemented using Keras on TensorFlow
2.5.0. The training of the model is done on a PC running Windows 11 with an Intel
Core i7-10875H CPU, 16GB of RAM, and an Nvidia GeForce RTX 2070 GPU with
8GB of VRAM.

The following sections describe the methods used for decoding c-VEP responses
from EEG data. At first, standard data preprocessing approaches are used (i.e. remov-
ing EEG channels with a high standard deviation from the mean, filtering the EEG data
to a specific frequency range, resampling the data, augmenting the data with Gaus-
sian noise, and standardizing the data between a specific range). Since full trial data
consists of responses to multiple repetitions of the same stimulation sequence, such
repetitions are separated during preprocessing. The preprocessed data is further passed
to the decoding pipeline where multiple models are compared. The proposed model
architecture is a dual-objective CNN that can predict both the target class of the stimu-
lation sequence as well as decode the bits in the stimulation sequence directly from the
data. The model uses a masking layer to be able to predict stimulation sequences from
an arbitrary duration of input data. This avoids the standard approach of epoching the
response data to obtain predictions for individual flashes and further combining them
to obtain a target stimulation sequence prediction. The model trained on a population
of subjects is further fine-tuned to an unseen subject by using cross-subject transfer
learning where the last layers of the model used for classification are retrained to ob-
tain subject-specific weight parameters. Dynamic stopping is also incorporated into
the model based on the confidence scores of its predictions to improve the classifica-
tion speed and thereby the information transfer rate (ITR) even further. The weight
parameters of the trained model are also visualized using various algorithms to obtain
an explainable model that provides insights into the spatial and temporal patterns in the
data. The predictions made by the model are further evaluated using various metrics
(e.g. accuracy, f1-score, ITR, etc). Since the model can handle data of arbitrary dura-
tion, the performance of the model using these metrics can also be evaluated over time
with the corresponding data. The performance obtained by the dual-objective CNN is
compared with various models which include CCA, EEG2Code and EEG-Inception.
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5.1 Data Preprocessing

The following subsections detail the preprocessing stage of the pipeline. The raw EEG
data is preprocessed to improve the signal-to-noise ratio (SNR) of the recorded c-VEP
responses.

5.1.1 Removing bad channels
Outliers among the EEG channels recorded are removed by discarding channels that
are more than 3 standard deviations away when averaged across trials for each specific
subject. A threshold of 3 standard deviations is selected so that only the channels
with extreme outliers get rejected. This stage of preprocessing assumes that the data
is Gaussian distributed and is not applied to the 8-channel dataset due to the limited
number of channels recorded. Figure 5.2 illustrates the channels obtained as outliers in
the 256-channel dataset for subject 1 and subject 2 respectively.

5.1.2 Filtering
The data is further preprocessed using a high-pass Butterworth filter of the second order
at 2Hz to reject noise at lower frequencies and a low-pass Butterworth filter of the sixth
order at 30Hz to reject noise at higher frequencies in the EEG data [5, 44, 45].

5.1.3 Resampling
The data is also downsampled from the recorded frequency to 240Hz being a multiple
of 60. This is because the frame rate of the monitor used for stimulation during the
experiments was 60Hz. For the CCA model, the data is downsampled to 60Hz to
match the size of the structure matrix which is correlated with the input data. The data
is also downsampled to 60Hz for the EEG2Code model so that the number of epoched
data instances corresponded to the length of the stimulation sequence. [5, 44, 45].

5.1.4 Slicing
During the experiment, a full trial consisted of 31.5s of datapoints for the 8-channel
dataset and 4.2s for the 256-channel dataset. Each full trial consisted of repetitions of
responses to 2.1s of stimulation. These repetitions were sliced so that c-VEP response
to each repetition of the stimulation sequence is considered a separate trial. This al-
lows to learn temporal patterns of importance when classifying c-VEP response data at
smaller time scales and increases the number of trials that the models can be trained on.
Each sliced trial of the recorded data consisted of 504 datapoints for each channel at
240 Hz (.i.e 2.1s of data). Although the tail of response to the previous repetition leaks
into the successive repetition apart from the first instance, it is ignored and all repeti-
tions are treated the same.

For data input to the EEG2code model that performs a flash-level prediction on
corresponding durations of response data, the sliced data is further split into epochs of
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250 ms of data per window. The number of datapoints in each window was explicitly
chosen based on [33] where the transient responses to a flash were shown to be mostly
contained in the first 250ms of the c-VEP response. Since the c-VEP response requires
more time than that required for presenting a new event, there is an overlap between
the epochs. The time required to present a new event is approximately 1/60 seconds
(i.e. 17 ms) as the frame rate of the monitor used for stimulation is 60Hz. Therefore,
an epoch has 250 - 17 = 237ms overlap with the following epoch.

5.1.5 Standardization
The sliced data is standardized or rescaled for all neural network models so that the
variables in the data have the same scale. Each channel in the recorded EEG data is
standardized by removing the mean and scaling to unit variance. Standardization allows
the models for learning more robust representations which might not be possible if the
data does not resemble Gaussian distributed data. Figure 5.1 depicts the data prepro-
cessing performed on the 8-channel EEG data (band-pass filtering, slicing, resampling
and standardization) recorded from channel POz of subject 1.

5.1.6 Augmentation
Since the number of repetitions in each trial for the 256-channel dataset is compara-
tively less than the 8-channel dataset, data augmentation is used to increase the number
of trials that the model can be trained on so as to reduce overfitting. Data augmenta-
tion is performed by adding Gaussian noise with a mean of 0 and a standard deviation
of 1 to the data and concatenating it to the sliced data trials. For the addition of noise
to have a consistent effect on the model, it is required to standardize the data prior to
augmentation so that the noise has the same smearing effect on the data from multiple
trials. If random noise is added before scaling the data, then the data would need to be
rescaled again. The noise is added to the data only during the training of the model and
not during evaluation.

5.1.7 Training and testing strategy
The data is further split into subsets for training, validation and testing. Specifically 5-
fold chronological cross validation is used for the 8-channel dataset and 3-fold chrono-
logical cross validation is used for the 256-channel dataset. Each trial in a fold consists
of repetitions of the stimulation sequence. Such repetitions are split after generating
the folds so that each fold contains all the repetitions of the corresponding trials.

For the 8-channel dataset which consisted of 100 trials for each subject (with 15
repetitions of the stimulation sequence in 1 trial), the data was split into 5 folds with
20 trials in every fold. Each of the 20 trials consisted of 31.5s of data representing
the corresponding 20 target classes of stimulation sequences. The non-control state
data collected is also split into folds and concatenated with each control state data fold
such that the additional target class is as representative as every other target class in
each fold. For the 256-channel dataset, which consisted of 108 trials for each subject
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(with 2 repetitions of the stimulation sequence in 1 trial), the data was split into 3 folds
with 36 trials in every fold. Each of the 36 trials consisted of data representing the
corresponding 36 target classes of stimulation sequences.

When training the models for obtaining within-subject performance, each fold is
left out for testing, whereas the data from the other folds are split into 75% training and
25% validation subsets after shuffling with the same proportion of target stimulation
sequences in both subsets. When training the models for obtaining LOSO (i.e. leave
one subject out) performance, data from each subject is held out for testing, whereas
the data from the other subjects are split into 75% training and 25% validation sub-
sets after shuffling with the same proportion of target stimulation sequences in both
subsets. This split is performed over trials so that data being used for training and vali-
dation are representative of trial data across all subjects. The test data from each subject
that is left out is further split into the same chronological folds used for evaluating the
within-subject performance. When training the models for obtaining cross-subject per-
formance, data from each specific subject is used for training and further tested using
data from each other subject.

The train data subset is used for training the network to learn the weight parameters
required for classifying the data. The validation data subset was used for hyperparame-
ter optimization and to prevent the network from overfitting by observing how well the
network generalizes. The testing data subset was used for evaluating the performance
of the trained model on unseen data.

Figure 5.1: Data preprocessing for 8-channel dataset (channel Oz)

Figure 5.2: Removing bad channels from the 256-channel dataset
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5.2 Data Visualization

For visualizing the structure in the recorded high-dimensional EEG data, t-Distributed
Stochastic Neighbor Embedding (t-SNE) is used. t-SNE is an unsupervised, non-linear
approach used for visualizing and exploring high-dimensional data [46]. t-SNE differs
from principal component analysis (PCA) by preserving only small pairwise distances
or local similarities. Since PCA is a linear technique that aims to maximize variance,
large pairwise dependencies are preserved which could lead to poor visualizations of
non-linear structures in the data.

The t-SNE algorithm models the probability distribution of the neighbors around
each point using a euclidean distance measure. In the high-dimensional space this is
modelled as a Gaussian distribution whereas in the 2-dimensional output space for vi-
sualization, it is modelled as a t-distribution. The objective of the algorithm is to find
a mapping onto the 2-dimensional output space that minimizes the difference between
these distributions over all the points. If the target classes are well-separated by t-SNE,
there is a high likelihood that machine learning algorithms and neural networks will be
able to learn a mapping from an unseen data point to its ground truth. The main param-
eter of the t-SNE algorithm is perplexity which corresponds to the number of nearest
neighbors when matching the distributions for each point and it defaults to 30. The
learning rate defaults to 200 and the gradient calculation algorithm utilizes the Barnes-
Hut approximation.

Figure 5.3 depicts the clusters obtained by the t-SNE algorithm in a 2-dimensional
output space for channels POz, Iz, Oz and O1 from the 8-channel dataset for subject 1.
From this visualization, it is quite evident that the c-VEP response data gets clustered
corresponding to the target classes especially for channels closer to the occipital region
of the head. The non-control state data recorded (i.e. corresponding to target class 21)
gets grouped away from the other clusters corresponding to the target classes in the
control state data. For subjects within the 8-channel dataset that the models perform
poorly on A.1.1, clusters corresponding to the target classes are not obtained by the
t-SNE algorithm.
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Figure 5.3: t-SNE for 8-channel dataset

5.3 Neural Network

The following subsections detail the neural network model used for feature extraction
and command decoding from the preprocessed c-VEP response data.

5.3.1 Model architecture
The model architecture proposed for decoding c-VEP response data is a convolutional
neural network (CNN) with two objectives being optimized simultaneously. CNNs
have been widely used for EEG processing [3, 47] and have shown exceptional results
for synchronous c-VEP based spellers. However only [38] have used deep learning
models for decoding the subject’s non-control state in a c-VEP based speller. Decod-
ing the non-control state allows the model to work as an asynchronous system that can
differentiate between when the subject is actively using the speller (control state) and
when the subject is not paying attention to the speller (non-control state).

The architecture of the dual-objective CNN model is depicted in Table 5.1 and is
composed of a hierarchy of convolutional blocks. The first block performs spatial fil-
tering on the preprocessed data using 2D convolutions along the spatial axis (i.e. along
the channels). The second and third blocks perform temporal filtering on the data with
decreasing kernel sizes (.i.e. receptive field sizes) to extract features that are repre-
sentative of local structure in the data at different temporal scales. These blocks that
extract temporal features have kernel sizes that correspond to window sizes of 200ms
and 100ms respectively. The stride parameter in each convolution block is used to
downsample the data. Lastly, the output block combines the information extracted
by the previous blocks into a few high-level features. These high-level features are
classified with a softmax output to obtain a target class prediction (.i.e minimizing cat-
egorical crossentropy loss) as well as a sigmoid output over the last layer of neurons
(.i.e minimizing binary crossentropy loss) whose length corresponds to the length of
the stimulation sequence, allowing the model to decode the stimulation sequence di-
rectly along with the target class of that stimulation sequence. The model consists of a
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masking layer at the beginning of the network to allow the classification of input data
of varying durations by ignoring regions of the input data (that have been set to 0) in
further processing layers. This opens the possibility for obtaining faster predictions by
incorporating dynamic stopping into the model. The model is also designed to reduce
overfitting by using dropout regularization layers with a dropout rate of 0.25. Addition-
ally, batch normalization and tanh activations were used to improve the performance of
the network. The model was trained for 100 iterations along with early stopping which
monitored the validation loss and used a batch size of 128. The weights parameters of
the model are saved in each iteration where an improvement in validation target class
accuracy is obtained.

In contrast to previous work [3, 33] that performed predictions at the flash-level,
the proposed model allows for learning more robust features by classifying data at
the level of stimulation sequences similar to the EEG-Inception model proposed by
Santamaría-Vázquez et al. [38]. However, the proposed model is designed to optimize
a dual-objective function in the output block allowing the model to obtain predictions
for both the target class of the stimulation sequence as well as decode the stimulation
sequence directly from the preprocessed data. This enables the model to obtain more
robust predictions with shorter durations of data.

Table 5.1: Dual-objective CNN architecture details

Block Type Kernel Filters Strides Output Connected to
IN Input - - - 504 x n x 1 M
M Masking - - - 504 x n x 1 C1
C1 Conv2D 1 x n 8 1 504 x 1 x 8 B1
B1 BatchNorm - - - 504 x 1 x 8 DO1

DO1 Dropout - - - 504 x 1 x 8 C2
C2 Conv2D 48 x 1 8 2 252 x 1 x 8 B2
B2 BatchNorm - - - 252 x 1 x 8 A1
A1 Activation - - - 252 x 1 x 8 DO2

DO2 Dropout - - - 252 x 1 x 8 C3
C3 Conv2D 12 x 1 4 2 126 x 1 x 4 B3
B3 BatchNorm - - - 126 x 1 x 4 A2
A2 Activation - - - 126 x 1 x 4 DO3

DO3 Dropout - - - 126 x 1 x 4 F
F Flatten - - - 512 D
D Dense - - - 126 DO4

DO4 Dropout - - - 126 O1, O2
O1 Dense - - - 126 -
O2 Dense - - - t -

Column "Type" describes the class used to implement each block in the Keras framework.
‘n’ refers to the number of channels whereas ‘t’ refers to the number of target classes.
The model trained on the 8-channel dataset has 85919 parameters of which 85879 are
fitted during training whereas the model trained on the 256-channel dataset has 89808
parameters of which 89768 are fitted during training.
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5.3.2 Control state detection
For the 8-channel dataset for which the non-control state data is available, the model is
designed to predict both the control and non-control states allowing the speller applica-
tion to work as an asynchronous system. The non-control state data is added as an extra
target class along with the classes corresponding to the stimulation sequences for the
model to perform classification on. This permits the system to start a new trial without
selecting a symbol on the screen when the subject is not overtly attending to the sys-
tem. When the subject is actively trying to select a symbol on the screen, the model
outputs a probabilistic score for each target class of stimulation sequence. The symbol
corresponding to the target class of stimulation sequence with the highest confidence
score output from the model would be selected by the system.

5.3.3 Feature explainability
Methods for allowing feature explainability in neural networks have become an es-
sential component for analyzing model validation performance. Such methods ensure
that the classification performance of the model is driven by the relevant features in-
stead of noise or artifacts in the data. For the proposed dual-objective CNN model,
two methods are used for visualizing the learned spatial and temporal patterns respec-
tively. These methods are performed on within-subject data to obtain visualizations for
subject-specific spatial and temporal patterns.

For visualizing the spatial patterns learned by the model in its first convolutional
layer, the kernel weights in this layer are obtained. Since interpreting the convolu-
tional kernel weights is quite difficult due to the cross-filter map connectivity between
layers, the number of spatial filters in the first convolutional layer is restricted to 1 (a
special case of model architecture for obtaining insights into the spatial patterns) while
ensuring that the decrease in the number of spatial filters does not cause a significant
trade-off in accuracy. Once the learned kernel weights that correspond to the number
of channels are obtained from the spatial filtering layer, the spatial patterns for any trial
data are computed by multiplying the covariance matrix of the data with the learned
spatial filter weights. These spatial patterns are representative of the channels in the
recorded data that contributed most to the extracted spatial features.

For visualizing the temporal patterns learned by the model in the successive tempo-
ral convolutional blocks, Gradient-weighted class activation mapping (Grad-CAM) is
used [48]. Grad-CAM uses the gradients of any target class being passed onto the final
convolutional layer to generate a coarse localization map highlighting the important re-
gions in the output of that layer for predicting the specific target class. Grad-CAM is
used for obtaining target class specific insights. Since Grad-CAM produces an intuitive
output, it has been widely used for providing insights into convolutional neural net-
works especially used for classifying images. To implement Grad-CAM for the c-VEP
response data, a model is created that maps the input data to the activations of the last
convolutional layer as well as the target class output prediction. The weight parameters
during training are loaded into the model. The activation functions in the output block
of the model are removed and the gradient of the top predicted class for the input data
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with respect to the activation (.i.e output feature map) of the last convolutional layer is
computed. This produces a vector where each entry is the mean intensity of the gradi-
ent over a specific feature map channel. Each channel in the feature map array is further
multiplied by the pooled gradients (i.e how important each channel is with regard to the
top predicted class) and summed over all the channels to obtain the heatmap class acti-
vation. For visualization purposes, this is further normalized to obtain heatmap values
between 0 and 1.

5.3.4 Transfer learning

One of the major problems when designing models for decoding c-VEP response data
is not being robust enough in terms of classifying different sessions for a certain sub-
ject and classifying data from a subject that the model has not seen before. Although
the proposed dual-objective CNN model is quite robust in terms of within-subject per-
formance as seen in Section 6, the LOSO (.ie. leave one subject out) classification
performance can be further improved for an unseen subject by using transfer learning
(.i.e fine-tuning) to calibrate the model to that certain subject.

Transfer learning is used for fine-tuning the learned weight parameters of the dual-
objective CNN model trained on a population of subjects to the specific subject that
was left out during training (.i.e optimizing the LOSO classification performance of the
model). The model is adapted to data from an unseen subject by first freezing all the
layers of the model except the output layers (i.e. softmax and sigmoid layers) which
are re-trained on validation data of the corresponding subject. This provides insights
into the extent of fine-tuning required in terms of the number of additional trials of
data required to adapt the model to an unseen subject. Transfer learning allows the
model to be adaptive and provides a calibration phase for the model to obtain optimal
subject-specific classification performance.

5.3.5 Dynamic stopping

Although the c-VEP response data corresponding to a stimulation sequence has a du-
ration of 2.1s, the model could obtain the correct target class prediction in a shorter
amount of time. The masking layer in the dual-objective CNN allows the network to be
able to handle arbitrary durations of input data although it is trained on the entire 2.1s
window of data in each trial. The information transfer rate (ITR) is an evaluation met-
ric devised for BCI systems that determine the amount of information that is conveyed
by a system’s output in terms of a trade-off between the time required for classifica-
tion and the accuracy obtained. The ITR combines the statistics of accuracy and speed
of classification as shown in equation 5.1 where P is the classification accuracy, N is
the number of target classes and S is the number of trials classified in time T (in min-
utes). The ITR obtained when evaluating the model over time-steps as shown in Figure
6.5 gives an intuition about how short the duration of input data could be while not
sacrificing the classification performance of the model.
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IT R(
bits
min

) = (log2N +P× log2P+(1−P)× log2(
1−P
N −1

))× S
T

(5.1)

To perform dynamic stopping for the model on both the 8-channel and 256-channel
datasets, the data is sampled every 100ms. The outlier in the confidence scores over
target classes for a particular trial is obtained by estimating the threshold for signifi-
cance given by the equation 5.2 where k corresponds to the scale required for outlier
detection and IQR is the inter-quartile range of the predicted probability scores. The
value of k is optimized as a hyperparameter using validation data and is chosen as 1.5.
This corresponds with the literature on outlier detection [49] as for most datasets 1.5
controls the sensitivity of the range and thereby the decision rule. A higher value of k
would make more outliers to be considered as datapoints whereas a lower value would
make some of the datapoints be perceived as outliers. The significant class obtained is
also observed every 100ms so that the model outputs a prediction when the same class
is emitted 4 times in a row. The probability value or confidence score for that particular
class has to also exceed a specific threshold which is optimized using the validation data
and is chosen as 0.6. The model incorporated with dynamic stopping is compared with
a ceiling performance where only the predicted class has to be the same as the target
class 4 times in a row and a static stopping rule. For static stopping, the stopping time
is optimized on the validation dataset for each subject thereby having a constant stop-
ping time for all trials within a subject in the test dataset. The dynamic stopping rule
based on outlier detection and confidence threshold is also compared with a simpler
dynamic stopping rule with just the confidence threshold. Both the dynamic stopping
rules emit a target class prediction only after observing 4 consecutive occurrences of
the same target class.

threshold = IQR× k+Q3 (5.2)



Part III

Results





Chapter 6

Evaluation

6.1 Dual-objective CNN

The following subsections detail the performance of the dual-objective CNN model
during training and over various evaluation metrics (accuracy, f1-score, information
transfer rate, etc) during testing on both the 8-channel dataset and 256-channel dataset.
Insights into the features learned by the model are also obtained by visualizing the
spatial and temporal patterns from the learned weight parameters. Furthermore, transfer
learning is used to optimize the performance of the model on an unseen subject and
dynamic stopping is utilized to improve the speed of classification thereby optimizing
the information transfer rate (ITR) of the model. The detailed evaluation metrics of the
model for individual subjects in both the datasets are depicted in Tables 6.2, 6.3, 6.4
and 6.5.

6.1.1 Performance during training
Figures 6.1 and 6.2 depicts the performance of the dual-objective CNN in terms of
training/validation loss and accuracy on the 8-channel and 256-channel dataset respec-
tively. For the 8-channel dataset, the model generalizes well between training and vali-
dation sets for both the within-subject and leave-one-subject-out(LOSO) case as shown
in Figure 6.1. However, for the 256-channel dataset the model overfits on the training
data especially in the within-subject case as seen in Figure 6.2. Here the model obtains
a training accuracy of 100% but attains a validation accuracy of only 40% after train-
ing for 100 iterations thereby affecting the generalization performance of the model on
unseen data. The reasons behind this overfitting on the 256-channel dataset is further
discussed in Subsection 6.1.2.

6.1.2 Accuracy
Figure 6.3 depicts the within-subject and LOSO category accuracy and sequence ac-
curacy averaged across all subjects for both the 8-channel dataset and 256-channel
dataset. The category accuracy is evaluated on the softmax output layer of the net-
work and the sequence accuracy is evaluated on the sigmoid output of the network over
126 output neurons (corresponding to the length of the stimulation sequence). Section
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Figure 6.1: Mean training history across folds on 8-channel dataset

Figure 6.2: Mean training history across folds on 256-channel dataset

A.1.1 illustrates the within-subject and LOSO accuracy for individual subjects in both
the datasets. Figures A.9 and A.10 depicts the cross-subject category accuracy obtained
on both the datasets. The cross-subject accuracy is indicative of the performance of the
model when trained on a particular subject and tested on every other subject in the cor-
responding dataset.

For the 8-channel dataset, as expected the mean within-subject accuracy is higher
than the mean LOSO accuracy as depicted in figure 6.3. This difference in accuracy
is observed to be statistically significant and the p-values along with the differences in
accuracy on comparing the within-subject performance with the LOSO performance
of the model is shown in Table 6.1. However, the mean LOSO performance is higher
than the within-subject performance for the 256-channel dataset. The individual sub-
ject performance provides an explanation to this observation as only 2 out of the 5
subjects in the 256-channel dataset obtained consistently high within-subject perfor-
mance. For subjects from the 256-channel dataset that performed poorly, the model
overfitted on the corresponding training data as seen in Figure 6.2 and hence the gener-
alization performance on the test data for those subjects were affected. These subjects
that exhibited overfitting in the within-subject case was observed consistently across
various neural networks (EEG2Code, EEG-Inception) as seen in Figure A.2. However,
CCA obtained consistently higher within-subject performance across subjects on the
256-channel dataset. Since the CCA model has far less parameters being optimized as
compared to the neural network models, the overfitting of neural network models for
the within-subject case in the 256-channel dataset could be attributed to noise in the
spatial dimensions that hampers the generalization performance on the validation and
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test sets. The LOSO performance for these subjects were higher due to the model being
able to use optimized spatial filters it learned from a population of subjects within the
dataset. The performance of the model in terms of sequence accuracy is comparable to
that of category accuracy as both objectives were optimized simultaneously.

Figure 6.3: Mean category and sequence accuracy across subjects

Datasets accuracy comparison (%) t-statistic α p-value
8-channel dataset 15.08 13.03 0.05 0.0
256-channel dataset -18.98 -8.2 0.05 0.001

Table 6.1: Significance testing on category accuracy between within-subject and LOSO for dual-
objective CNN using t-test

6.1.3 F1-score and Information transfer rate(ITR)
The f1-score is the harmonic mean between precision and recall and gives insights into
the predictive performance of the model in terms of both the probability of correct de-
tection of a target class and the ability to distinguish between the target classes (true
positive rate). Since both the datasets are balanced with the same distribution of corre-
sponding target classes, the f1-score does not provide a lot of additional information to
accuracy as seen in Figure 6.4. Section A.1.3 illustrates the within-subject and LOSO
f1-score for individual subjects in both the datasets.

The information transfer rate (ITR) is the amount of information transferred in time
and is used to measure the performance of communication in terms of both accuracy
and speed of classification. The within-subject and LOSO ITR for both the datasets
is depicted in Figure 6.4. Section A.1.2 details the within-subject and LOSO ITR for
individual subjects in both the datasets.
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Figure 6.4: Mean f1-score and ITR across subjects

6.1.4 Performance over time-steps
The masking layer in the neural network allows the model to ignore regions within the
data enabling it to perform predictions on input data of durations less than 2.1s. This
provides insights into the performance of the model at intermediary time-steps and al-
lows the incorporation of dynamic stopping into the model to increase the speed of
classification thereby optimizing the information transfer rate (ITR) of the model.

Figure 6.5 depicts the accuracy and information transfer rate (ITR) of the dual-
objective CNN model over time. The ITR over time-steps for the model gives insights
into when dynamic stopping could be performed so as to optimize the trade-off between
classification accuracy and time taken for classification. After first increasing, the ITR
decreases as it gets closer to 2.1s of data as the additional data points after the ITR
peaks does not give an optimal trade-off between further accuracy improvements and
time required for classifying more data points. Section A.1.2 details the within-subject
and LOSO ITR over time-steps for individual subjects in both the datasets.

Figure 6.5: Mean Accuracy and ITR over time-steps across subjects
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6.1.5 Confusion matrix
A confusion matrix is an N ×N matrix used for evaluating the performance of a clas-
sification model, where N is the number of target classes. The matrix compares the
actual target values with those predicted by the trained model. Figure 6.6 depicts the
within-subject confusion matrix for the target classes in the 8-channel dataset. The con-
fusion matrix is also normalized for comparing the performance of the model across the
ground truths and the predicted target classes. The high values along the diagonal of the
confusion matrix shows that the majority of predictions made by the model correspond
to the ground truth and further inspection of the confusion matrix shows no outliers in
terms of false positives and false negatives among the predicted target classes. Section
A.1.4 details the within-subject and LOSO confusion matrix across target classes for
both the 8-channel and 256-channel dataset. Since the model optimizes a dual-objective
function for predicting the stimulation sequence as well as the target class simultane-
ously, the within-subject and LOSO flash-level confusion matrices for both the datasets
are also depicted in Section A.1.4.

Figure 6.6: Within-subject normalized confusion matrix for category prediction on 8-channel dataset
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category sequence precision recall f1-score ITR
accuracy accuracy

S01 1.0±0.0 0.83±0.11 1.0±0.0 1.0±0.0 1.0±0.0 124.22±0.0
S02 0.86±0.04 0.81±0.02 0.86±0.04 0.86±0.0 0.85±0.04 90.81±7.36
S03 1.0±0.0 0.92±0.02 1.0±0.0 1.0±0.0 1.0±0.0 124.04±0.88
S04 0.97±0.02 0.9±0.03 0.97±0.03 0.97±0.0 0.97±0.03 117.51±5.65
S05 0.92±0.03 0.84±0.06 0.92±0.04 0.92±0.0 0.91±0.04 104.21±6.38
S06 0.97±0.03 0.88±0.04 0.96±0.04 0.97±0.0 0.96±0.04 116.15±7.43
S07 0.98±0.01 0.92±0.01 0.98±0.01 0.98±0.0 0.97±0.02 118.0±3.81
S08 0.97±0.01 0.87±0.04 0.97±0.01 0.97±0.0 0.97±0.01 116.29±3.97
S09 0.98±0.01 0.89±0.02 0.98±0.01 0.98±0.0 0.98±0.01 118.35±3.78
S10 0.74±0.05 0.75±0.02 0.75±0.05 0.74±0.0 0.74±0.05 69.97±8.09
S11 0.86±0.05 0.81±0.03 0.87±0.05 0.86±0.0 0.86±0.06 92.44±11.49
S12 0.28±0.17 0.6±0.05 0.29±0.17 0.28±0.0 0.28±0.16 15.2±15.62
S13 0.84±0.04 0.8±0.02 0.85±0.04 0.84±0.0 0.84±0.04 87.72±7.29
S14 0.98±0.01 0.89±0.02 0.98±0.01 0.98±0.0 0.98±0.01 118.54±3.89
S15 0.98±0.01 0.93±0.03 0.98±0.01 0.98±0.0 0.98±0.01 120.15±3.31
S16 0.98±0.02 0.93±0.02 0.98±0.02 0.98±0.0 0.98±0.02 120.14±5.05
S17 0.99±0.01 0.89±0.08 0.99±0.01 0.99±0.0 0.99±0.01 123.5±2.07
S18 0.99±0.01 0.95±0.01 0.99±0.01 0.99±0.0 0.99±0.01 122.69±2.75
S19 0.87±0.07 0.82±0.03 0.87±0.08 0.87±0.0 0.86±0.08 93.97±13.84
S20 0.88±0.05 0.82±0.02 0.89±0.05 0.88±0.0 0.88±0.05 95.93±10.41
S21 0.99±0.01 0.91±0.06 0.99±0.01 0.99±0.0 0.99±0.01 123.3±2.52
S22 1.0±0.0 0.77±0.04 1.0±0.0 1.0±0.0 1.0±0.0 125.49±0.0
S23 0.89±0.04 0.81±0.01 0.9±0.04 0.89±0.0 0.89±0.04 98.87±7.44
S24 0.97±0.02 0.89±0.05 0.98±0.02 0.97±0.0 0.97±0.02 117.31±5.36
S25 0.92±0.04 0.88±0.02 0.92±0.03 0.92±0.0 0.91±0.04 103.48±8.0
S26 0.88±0.06 0.81±0.02 0.88±0.06 0.88±0.0 0.87±0.06 95.41±11.79
S27 1.0±0.0 0.91±0.05 1.0±0.0 1.0±0.0 1.0±0.0 124.73±0.62
S28 0.98±0.01 0.89±0.02 0.98±0.01 0.98±0.0 0.98±0.01 118.34±3.46
S29 0.99±0.01 0.86±0.04 1.0±0.01 0.99±0.0 0.99±0.01 123.7±1.97
S30 0.85±0.03 0.81±0.01 0.86±0.03 0.85±0.0 0.85±0.03 90.59±5.66
mean 0.92±0.01 0.85±0.01 0.92±0.01 0.92±0.0 0.92±0.01 107.03±1.69

Table 6.2: Within-subject results of dual-objective CNN on 8-channel dataset

category sequence precision recall f1-score ITR
accuracy accuracy

S01 0.81±0.01 0.69±0.01 0.83±0.03 0.81±0.0 0.8±0.01 99.89±2.69
S02 0.13±0.05 0.55±0.02 0.11±0.06 0.12±0.0 0.11±0.05 3.12±4.41
S03 0.03±0.02 0.5±0.0 0.02±0.01 0.03±0.0 0.03±0.01 0.0±0.0
S04 0.9±0.06 0.74±0.03 0.92±0.06 0.9±0.0 0.89±0.06 119.98±13.6
S05 0.06±0.02 0.52±0.01 0.04±0.02 0.06±0.0 0.05±0.02 0.0±0.0
mean 0.39±0.02 0.6±0.01 0.38±0.02 0.39±0.0 0.37±0.02 44.6±2.81

Table 6.3: Within-subject results of dual-objective CNN on 256-channel dataset
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category sequence precision recall f1-score ITR
accuracy accuracy

S01 1.0±0.0 0.95±0.01 1.0±0.0 1.0±0.0 1.0±0.0 124.07±1.16
S02 0.58±0.07 0.71±0.02 0.6±0.06 0.58±0.0 0.58±0.07 46.63±9.16
S03 0.89±0.03 0.83±0.01 0.9±0.03 0.89±0.0 0.89±0.03 98.77±5.86
S04 0.62±0.23 0.73±0.07 0.63±0.23 0.62±0.0 0.62±0.23 56.29±32.16
S05 0.84±0.06 0.82±0.03 0.85±0.06 0.84±0.0 0.84±0.06 88.76±11.21
S06 0.94±0.03 0.87±0.02 0.93±0.04 0.94±0.0 0.94±0.03 109.66±6.12
S07 0.88±0.03 0.83±0.01 0.88±0.03 0.88±0.0 0.88±0.03 95.18±5.8
S08 0.8±0.19 0.82±0.08 0.8±0.19 0.8±0.0 0.8±0.19 84.6±33.77
S09 0.93±0.02 0.85±0.01 0.93±0.02 0.93±0.0 0.93±0.02 106.14±4.95
S10 0.35±0.06 0.65±0.02 0.37±0.08 0.35±0.0 0.35±0.06 18.96±6.58
S11 0.8±0.07 0.8±0.03 0.81±0.07 0.8±0.0 0.8±0.07 81.62±12.62
S12 0.42±0.33 0.66±0.11 0.42±0.33 0.42±0.0 0.42±0.33 35.46±39.38
S13 0.59±0.06 0.72±0.02 0.6±0.06 0.59±0.0 0.58±0.06 46.68±7.57
S14 0.64±0.09 0.74±0.03 0.66±0.09 0.64±0.0 0.64±0.09 55.39±13.64
S15 0.9±0.03 0.83±0.02 0.91±0.03 0.9±0.0 0.9±0.03 99.82±7.45
S16 0.88±0.05 0.81±0.02 0.88±0.05 0.88±0.0 0.88±0.05 95.74±9.73
S17 0.97±0.01 0.9±0.01 0.97±0.01 0.97±0.0 0.97±0.01 115.2±3.22
S18 0.93±0.05 0.87±0.04 0.93±0.05 0.93±0.0 0.93±0.05 106.83±12.25
S19 0.26±0.02 0.62±0.01 0.26±0.02 0.26±0.0 0.25±0.02 10.38±2.01
S20 0.75±0.05 0.77±0.02 0.76±0.06 0.75±0.0 0.75±0.05 72.59±8.92
S21 1.0±0.0 0.97±0.01 1.0±0.0 1.0±0.0 1.0±0.0 124.26±0.75
S22 1.0±0.0 0.96±0.01 1.0±0.0 1.0±0.0 1.0±0.0 125.24±0.51
S23 0.44±0.08 0.67±0.02 0.45±0.08 0.44±0.0 0.43±0.08 28.43±8.78
S24 0.66±0.09 0.73±0.03 0.66±0.09 0.66±0.0 0.65±0.09 57.27±13.24
S25 0.73±0.06 0.77±0.01 0.74±0.05 0.73±0.0 0.72±0.06 67.73±9.16
S26 0.54±0.07 0.71±0.02 0.55±0.07 0.54±0.0 0.54±0.07 40.76±8.5
S27 0.99±0.01 0.93±0.01 0.99±0.01 0.99±0.0 0.99±0.01 122.42±2.03
S28 0.92±0.04 0.85±0.02 0.93±0.04 0.92±0.0 0.92±0.04 105.38±8.43
S29 0.99±0.0 0.94±0.0 1.0±0.0 0.99±0.0 0.99±0.0 123.6±1.24
S30 0.74±0.02 0.77±0.0 0.75±0.02 0.74±0.0 0.73±0.02 70.06±2.86
mean 0.77±0.02 0.8±0.01 0.77±0.02 0.77±0.0 0.76±0.02 80.46±3.76

Table 6.4: LOSO results of dual-objective CNN on 8-channel dataset

category sequence precision recall f1-score ITR
accuracy accuracy

S01 0.7±0.05 0.69±0.01 0.71±0.05 0.7±0.0 0.68±0.06 79.46±8.5
S02 0.75±0.03 0.69±0.0 0.76±0.02 0.75±0.0 0.73±0.03 88.9±6.23
S03 0.25±0.01 0.58±0.0 0.23±0.02 0.25±0.0 0.22±0.01 14.16±0.65
S04 0.83±0.05 0.73±0.01 0.86±0.05 0.83±0.0 0.82±0.05 104.05±9.82
S05 0.34±0.09 0.62±0.02 0.32±0.08 0.34±0.0 0.31±0.08 25.55±10.1
mean 0.57±0.03 0.66±0.01 0.58±0.03 0.58±0.0 0.55±0.03 62.42±4.27

Table 6.5: LOSO results of dual-objective CNN on 256-channel dataset
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6.1.6 Feature explainability
The explainability of the dual-objective CNN model in terms of spatial and temporal
patterns are visualized for the within-subject case to gain insights into the subject-
specific spatial and temporal patterns obtained using the learned weight parameters of
the model.

6.1.6.1 Spatial patterns

The kernels learned by the model to perform spatial filtering and the corresponding
spatial patterns obtained by multiplying the learned kernel weights with the covariance
matrix of the test data are visualized in Figure 6.7 and 6.8. The size of the learned ker-
nels correspond to the number of channels in each dataset so as to separate the spatial
and temporal feature extraction in the neural network. This facilitates intuitive visu-
alizations of both the spatial and temporal patterns within the data. Since only the
magnitude of the kernel weights carry information whereas the sign of the weights do
not provide any additional information, such signs are corrected for when visualizing
the spatial patterns. The visualized spatial patterns provides insights into the channels
that were most informative for the model in classifying the data.

From Figures 6.7 and 6.8, as expected the spatial patterns are concentrated near the
occipital region of the head where the primary visual cortex lies that processes visual
information which is relayed by the retinas.

6.1.6.2 Temporal patterns

Figure 6.9 and 6.10 illustrates the visualizations obtained by the Grad-CAM algorithm.
These heatmaps provide insights into the regions of temporal importance within the
data thereby revealing temporal patterns that were most informative for the model in
classifying the data.

From Figure 6.9, it is evident that the model gives importance to the first and last
regions of the 2.1 window, whereas it does not learn any temporal information from the
region in between 0.8 and 1.1s. Therefore for the 8-channel dataset, dynamic stopping
algorithms would optimally stop around 0.9s for each trial. This gap in temporal infor-
mation in the within-subject case for the 8-channel dataset is also evident in the perfor-
mance of the dual-objective CNN over time-steps for individual subjects as shown in
Figures A.5 and A.14. The same pattern is also observed in the within-subject perfor-
mance over time-steps for various models (CCA, EEG2Code and EEG-Inception) as
well which suggests that this gap in temporal information is not model specific but in-
herent to the 8-channel dataset. For the 256-channel dataset, Figure 6.10 shows regions
of temporal importance intermittently along the 2.1s trial and no such prolonged gap in
temporal information is observed.
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Figure 6.7: Spatial filters and patterns for 8-channel dataset

Figure 6.8: Spatial filters and patterns for 256-channel dataset
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Figure 6.9: Temporal patterns for 8-channel dataset

Figure 6.10: Temporal patterns for 256-channel dataset
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6.1.7 Transfer learning

Transfer learning allows for fine-tuning the learned weight parameters of the dual-
objective CNN model trained on a population of subjects to a specific unseen subject.
Figures 6.11 and 6.12 depicts the extent of fine-tuning required in terms of the num-
ber of additional trials of data required to adapt the LOSO model to each of the unseen
subjects.

For both the datasets, the model required around 20 additional trials (each of dura-
tion 2.1s) to adapt its weight parameters for optimizing subject-specific performance.
For the 256-channel dataset, Figure 6.12 shows that there is a drop in accuracy in the
first few additional trials as the weights in the output layer of the network are re-trained
whereas it is not observed consistently across subjects for the 8-channel dataset. This
could be due to the model being more generalizable when trained on a large popula-
tion of subjects in the 8-channel dataset whereas it does not optimally converge for the
small population of subjects in the 256-channel dataset requiring for more variation
in the output layers of the model during re-training on an unseen subject. For opti-
mizing the LOSO performance of the model on an unseen subject to be closer to the
within-subject performance, the spatial filters and temporal filters of the model have to
be re-trained. However, this requires a lot of additional trials of data for the model to
converge and is not feasible for transfer learning with a limited duration of additional
data.

6.1.8 Dynamic stopping

Dynamic stopping permits the dual-objective CNN model to emit target class predic-
tions at much shorter durations than the input data duration of 2.1s. Figure 6.5 depicts
the duration of LOSO data required required to obtain the corresponding accuracy lev-
els. As the ITR peaks at around 80% accuracy, an intuitive duration that could be
selected for early stopping is 0.9s.

Figure 6.13 illustrates the performance metrics (accuracy, time and ITR) for various
early stopping approaches across subjects in both the datasets. The base approach cor-
responds to using no early stopping and predicting on the entire input duration of 2.1s
of data. Although the accuracy is highest for the base case as it has access to more data,
it does require the entire 2.1s resulting in the lowest information transfer rate (ITR).
The ceiling approach indicates the highest performance that could be achieved by the
static and dynamic stopping methods. On comparing the performance between the
static stopping and dynamic stopping approaches, it is observed that the dynamic stop-
ping approaches obtain higher accuracies than static stopping. Since the time required
for obtaining those accuracies when comparing the dynamic stopping approaches to
static stopping are lower for the 8-channel dataset and comparable for the 256-channel
dataset, the ITR for the dynamic stopping approaches are higher as compared to static
stopping. Both the dynamic stopping methods based on confidence thresholding and
outlier detection respectively shows similar performance.
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Figure 6.11: Transfer learning for 8-channel dataset

Figure 6.12: Transfer learning for 256-channel dataset
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Figure 6.13: Performance metrics for early stopping
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6.2 Comparison with other models

The following subsections detail the comparison in performance of the dual-objective
CNN model to the other models namely CCA, EEG2Code and EEG-Inception over
various evaluation metrics (accuracy, f1-score, information transfer rate, etc) during
testing on both the 8-channel dataset and 256-channel dataset.

6.2.1 Accuracy
On the 8-channel dataset, the dual-objective CNN outperforms both CCA and EEG2Code
in terms of within-subject and LOSO category accuracy. The improvement in accuracy
is statistically significant on using a t-test whose p-values along with the accuracy dif-
ferences as compared to the dual-objective CNN are reported in Table 6.6 with p-values
that are significant being in bold. The dual-objective CNN model also outperforms
EEG-Inception in terms of within-subject category accuracy, but the improvement in
category accuracy obtained for the LOSO case was observed to be not significant after
performing a t-test.

For the 256-channel dataset, the dual-objective CNN outperforms EEG-Inception in
terms of both within-subject and LOSO category accuracy. The improvement in accu-
racy is statistically significant on using a t-test whose p-values along with the accuracy
differences as compared to the dual-objective CNN are reported in Table 6.7 with p-
values that are significant being in bold. However, the dual-objective CNN performs
worse than CCA for the within-subject case and only outperforms EEG2Code for the
LOSO case in terms of category accuracy. The CCA model obtained higher accuracies
on the 256-channel dataset as compared to the dual-objective CNN, but the difference in
accuracy was not significant for the LOSO case. The EEG2Code model obtained higher
category accuracy as compared to the dual-objective CNN for the within-subject case
but this difference proved to be not significant after performing a t-test. Section A.2.1
details the within-subject and LOSO category accuracy across models for individual
subjects in both the datasets.

Figure 6.14: Mean category accuracy of all models across subjects
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Models Modes accuracy comparison (%) t-statistic α p-value
CCA within-subject -7.03 8.25 0.05 0.0

LOSO -16.19 6.84 0.05 0.0
EEG2Code within-subject -10.27 10.87 0.05 0.0

LOSO -43.66 25.64 0.05 0.0
EEG-Inception within-subject -7.14 9.84 0.05 0.0

LOSO -1.62 0.925 0.05 0.382

Table 6.6: Significance testing on category accuracy for 8-channel dataset between other models and
dual-objective CNN using t-test

Models Modes accuracy comparison (%) t-statistic α p-value
CCA within-subject +48.2 -21.73 0.05 0.0

LOSO +3.33 -1.59 0.05 0.186
EEG2Code within-subject +4.44 -1.84 0.05 0.14

LOSO -53.24 26.467 0.05 0.0
EEG-Inception within-subject -19.17 7.66 0.05 0.0

LOSO -13.98 5.78 0.05 0.004

Table 6.7: Significance testing on category accuracy for 256-channel dataset between other models and
dual-objective CNN using t-test

6.2.2 F1-score and ITR
Since the datasets are balanced with the same distribution of corresponding target
classes, the comparison of f1-scores obtained across models does not provide any ad-
ditional information on accuracy as seen in Figure 6.15. The ITR across models also
reflects the same information as accuracy. This is because the ITR when performing
predictions accounts for the time corresponding to the duration of input data which is
the same across all the models as the dual-objective CNN without dynamic stopping is
compared with the other models. Section A.2.2 details the within-subject and LOSO
ITR across models for individual subjects in both the datasets.

Figure 6.15: Mean f1-score of all models across subjects
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Figure 6.16: Mean ITR of all models across subjects

6.2.3 Performance over time-steps
Figure 6.18 depicts the comparison of accuracy and information transfer rate (ITR)
between models over time. Section A.2.3 details the within-subject and LOSO category
accuracy as well as ITR for individual subjects in both the datasets obtained by each of
the models. The accuracy differences between the models that proved to be significant
using a t-test are also reflected in the category accuracy at intermediate time points.

Figure 6.17: Mean category accuracy of all models over time across subjects

Figure 6.18: Mean ITR of all models over time across subjects
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6.3 Discussion

This section summarizes the insights from the results obtained by the dual-objective
CNN model in terms of the research questions posed in Subsection 1.1.

From Section 6.2, statistical significance testing using a t-test as seen in Tables 6.6
and 6.7 shows that the dual-objective CNN model outperforms CCA and EEG2Code
for the within-subject and LOSO case whereas it outperforms EEG-Inception for the
within-subject case on the 8-channel dataset as seen in Figure 6.14. However on the
256-channel dataset, the dual-objective CNN does not outperform the CCA model and
outperforms the EEG2Code model only on the LOSO case as seen in Tables 6.6 and
6.7. Subsection 6.1.1 suggests that overfitting on the training data is the reason behind
the poor generalization performance for the within-subject case on the 256-channel
dataset as depicted in 6.2. The reasons behind this overfitting were further elaborated
in Subsection 6.1.2. Nevertheless, on the 8-channel dataset, the dual-objective CNN
model still significantly outperforms flash-level predictive models as the neural net-
work model is designed to perform predictions at the level of trials (.i.e. stimulation
sequence level). The performance improvement is in terms of both accuracy and speed
(.i.e by incorporating dynamic stopping), thereby obtaining a better ITR as well.

The normalized confusion matrices depicted in Subsections 6.1.5 and A.1.4 with
high values along the diagonal indicate that most of the predictions made my the model
are either true positive or true negative. Further examination of the off-diagonal values
of the confusion matrices shows no outlier patterns in terms of false positives and false
negatives among the target classes of stimulation sequences.

Subsection 5.3.2 details the control-state detection for the 8-channel dataset which
allows the model to work as an asynchronous system. The non-control state data being
added as an extra target class (.i.e class 21 for the 8-channel dataset) permits the sys-
tem to start a new trial without emitting a prediction relating to a symbol on the screen
when the subject is not overtly attending to the task. The normalized confusion matri-
ces depicted in Subsections 6.1.5 and A.1.4 shows a high value (i.e close to 1) for the
non-control state data. This indicates that the model is able to differentiate between the
non-control state data and the control-state data with high accuracy. The ROC-curves
illustrated in Subsection A.1.5 shows a high AUC score (area under the curve) for the
target class corresponding to the non-control state data in the 8-channel dataset. This
indicates that the proposed model allows for high separability between the control-state
data and the non-control state data.

The explainability of the model in terms of spatial and temporal patterns are de-
picted in Subsection 6.1.6. The spatial patterns are representative of the channels in
the recorded data that contributed most to the extracted spatial features. As expected,
the spatial patterns are concentrated near the occipital region of the head where the pri-
mary visual cortex lies that processes visual information which is relayed by the retinas
as seen in Subsection 6.1.6.1. The Grad-CAM algorithm was used to obtain heatmaps
that provided insights into the regions of temporal importance within the data thereby
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revealing temporal patterns that were most informative for the model in classifying the
data. From the visualized temporal patterns as seen in Subsection 6.1.6.2, it is evident
that the model gives importance to the first and last regions of the 2.1 window, whereas
it does not learn any temporal information from the region in between 0.8 and 1.1s
for the 8-channel dataset. This gap in temporal information was further elaborated in
Subsection 6.1.6.1. For the 256-channel dataset, regions of temporal importance were
observed intermittently along the 2.1s trial and no such prolonged gap in temporal in-
formation was observed.

The extent of fine-tuning required to adapt the LOSO dual-objective CNN model
trained on a population of subjects to a specific unseen subject is depicted in Subsec-
tion 6.1.7. The proposed model was adapted to data from an unseen subject by first
freezing all the layers in the model except the output layers (.i.e softmax and sigmoid
layers) which are re-trained on validation data of the corresponding subject. For both
the datasets, the proposed model required around 20 additional trials (each of duration
2.1s) to adapt its weight parameters for optimizing subject-specific performance.

Dynamic stopping allowed the dual-objective CNN model to emit target class pre-
dictions at much shorter durations than the input data duration of 2.1s as seen in Sub-
section 6.1.8. From the performance metrics (accuracy, time and ITR) for various early
stopping approaches, it was observed that the performance of the proposed model im-
proved on the base performance (i.e. without dynamic stopping). On comparing the
performance between the static stopping and dynamic stopping approaches, it was ev-
ident that the dynamic stopping approaches obtained higher accuracies compared to
static stopping. Since the time required for obtaining those accuracies were lower for
the 8-channel dataset and comparable for the 256-channel dataset, the ITR for the dy-
namic stopping approaches were higher as compared to static stopping. Both the dy-
namic stopping methods based on confidence thresholding and outlier detection respec-
tively showed similar performance.
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Conclusions and Future Work

Deep learning has proved its potential for decoding full stimulation sequences directly
from c-VEP response data through this research. Convolution neural networks trained
on a dual-objective function for both decoding the bits in the stimulation sequence
and classifying the target class of stimulation sequence simultaneously significantly
improved on the performance of correlation based techniques that decoded at the flash-
level and neural networks with a single objective of classifying the target classes us-
ing only a softmax function in the output layer. The performance improvement is not
only limited in terms of accuracy but also the required time (i.e. by incorporating dy-
namic stopping) and thereby the information transfer rate(ITR) as well. The speed of
classification is improved in the proposed model by using a masking layer in the first
layer which along with the dynamic stopping rule enables the model to emit a predic-
tion in durations shorter than the trial time of 2.1s. The model can also be adapted
for subject-specific performance by using transfer learning. The spatial and temporal
patterns obtained using the learned weight parameters also gives insights into the cor-
responding patterns in c-VEP response data.

The disadvantages of the model include sensitivity to noisy data where the model
suffers loss in performance due to overfitting on the noise present in the training data
especially for the 256-channel dataset. This could be improved by extending the data
prepossessing pipeline of the model. Although separating the spatial and temporal fea-
ture extraction layers in the network allows for visualizing intuitive spatial and temporal
patterns in the data, it could create a bottleneck in the network. The gap in temporal
information (0.8s-1.1s) for the 8-channel dataset was consistent among all the models
(CCA, EEG2Code, EEG-Inception and dual-objective CNN) indicating that this gap in
temporal information is inherent to the dataset and not model-specific. However, a con-
clusive answer to the reason behind this gap in temporal information in the 8-channel
dataset could not be attained.

The proposed model could also be further improved by modifying the model archi-
tecture using Recurrent neural networks or Long short term memory units (LSTMs)
which uses a vector of hidden variables as memory to capture information from the
past for making current and future predictions. However, the naive implementation of
LSTMs in the model architecture for temporal feature extraction did not significantly
improve the performance of the proposed model and hence was not included in the
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obtained results. Generative adversarial networks (GANs) could also improve the sen-
sitivity of the network to noisy data and obtain higher performance for the subjects that
the proposed model was unable to generalize to. The data preprocessing part of the
pipeline could also be improved by incorporating it into an end-to-end model where
the learned parameters are used in the data preprocessing stage.
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Appendix

A.1 Dual-objective CNN (Results)

A.1.1 Accuracy

Figure A.1: Category accuracy of dual-objective CNN on 8-channel dataset
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Figure A.2: Category accuracy of dual-objective CNN on 256-channel dataset

Figure A.3: Sequence accuracy of dual-objective CNN on 8-channel dataset



A.1 Dual-objective CNN (Results) 53

Figure A.4: Sequence accuracy of dual-objective CNN on 256-channel dataset

Figure A.5: Within-subject accuracy over time-steps of dual-objective CNN on 8-channel dataset
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Figure A.6: LOSO accuracy over time-steps of dual-objective CNN on 8-channel dataset

Figure A.7: Within-subject accuracy over time-steps of dual-objective CNN on 256-channel dataset
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Figure A.8: LOSO accuracy over time-steps of dual-objective CNN on 256-channel dataset
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Figure A.9: Cross-subject accuracy of dual-objective CNN on 8-channel dataset
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Figure A.10: Cross-subject accuracy of dual-objective CNN on 256-channel dataset

Figure A.11: LOSO accuracy over time-steps of dual-objective CNN on 256-channel dataset
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A.1.2 Information transfer rate(ITR)

Figure A.12: ITR of dual-objective CNN on 8-channel dataset

Figure A.13: ITR of dual-objective CNN on 256-channel dataset
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Figure A.14: Within-subject ITR over time-steps of dual-objective CNN on 8-channel dataset

Figure A.15: LOSO ITR over time-steps of dual-objective CNN on 8-channel dataset
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Figure A.16: Within-subject ITR over time-steps of dual-objective CNN on 256-channel dataset

Figure A.17: LOSO ITR over time-steps of dual-objective CNN on 256-channel dataset
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A.1.3 F1 score

Figure A.18: F1 score of dual-objective CNN on 8-channel dataset

Figure A.19: F1 score of dual-objective CNN on 256-channel dataset
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A.1.4 Confusion matrix

Figure A.20: LOSO normalized confusion matrix for category prediction on 8-channel dataset
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Figure A.21: Within-subject normalized confusion matrix for category prediction on 256-channel
dataset
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Figure A.22: LOSO normalized confusion matrix for category prediction on 256-channel dataset
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Figure A.23: Within-subject normalized confusion matrix for sequence prediction on 8-channel dataset

Figure A.24: LOSO normalized confusion matrix for sequence prediction on 8-channel dataset
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Figure A.25: Within-subject normalized confusion matrix for sequence prediction on 256-channel
dataset

Figure A.26: LOSO normalized confusion matrix for sequence prediction on 256-channel dataset
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A.1.5 ROC Curve

(a) Subject 1 in 8-channel dataset

(b) Subject 2 in 8-channel dataset

Figure A.27: Within-subject ROC-curves on 8-channel dataset
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(a) Subject 1 in 8-channel dataset

(b) Subject 2 in 8-channel dataset

Figure A.28: LOSO ROC-curves on 8-channel dataset
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(a) Subject 1 in 256-channel dataset

(b) Subject 4 in 256-channel dataset

Figure A.29: Within-subject ROC-curves on 256-channel dataset
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(a) Subject 1 in 256-channel dataset

(b) Subject 4 in 256-channel dataset

Figure A.30: LOSO ROC-curves on 256-channel dataset
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A.2 Comparison with other models (Results)

A.2.1 Accuracy

Figure A.31: Within-subject category accuracy of various models on 8-channel dataset

Figure A.32: LOSO category accuracy of various models on 8-channel dataset
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Figure A.33: Within-subject category accuracy of various models on 256-channel dataset

Figure A.34: LOSO category accuracy of various models on 256-channel dataset
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A.2.2 Information transfer rate (ITR)

Figure A.35: Within-subject ITR of various models on 8-channel dataset

Figure A.36: LOSO ITR of various models on 8-channel dataset
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Figure A.37: Within-subject ITR of various models on 256-channel dataset

Figure A.38: LOSO ITR of various models on 256-channel dataset
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A.2.3 Performance over time-steps

A.2.3.1 CCA

Figure A.39: Within-subject category accuracy over time-steps of CCA on 8-channel dataset
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Figure A.40: LOSO category accuracy over time-steps of CCA on 8-channel dataset

Figure A.41: Within-subject ITR over time-steps of CCA on 8-channel dataset
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Figure A.42: LOSO ITR over time-steps of CCA on 8-channel dataset

Figure A.43: Within-subject category accuracy over time-steps of CCA on 256-channel dataset
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Figure A.44: LOSO category accuracy over time-steps of CCA on 256-channel dataset

Figure A.45: Within-subject ITR over time-steps of CCA on 256-channel dataset
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Figure A.46: LOSO ITR over time-steps of CCA on 256-channel dataset

A.2.3.2 EEG2Code

Figure A.47: Within-subject category accuracy over time-steps of EEG2Code on 8-channel dataset
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Figure A.48: LOSO category accuracy over time-steps of EEG2Code on 8-channel dataset

Figure A.49: Within-subject ITR over time-steps of EEG2Code on 8-channel dataset
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Figure A.50: LOSO ITR over time-steps of EEG2Code on 8-channel dataset

Figure A.51: Within-subject category accuracy over time-steps of EEG2Code on 256-channel dataset
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Figure A.52: LOSO category accuracy over time-steps of EEG2Code on 256-channel dataset

Figure A.53: Within-subject ITR over time-steps of EEG2Code on 256-channel dataset
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Figure A.54: LOSO ITR over time-steps of EEG2Code on 256-channel dataset

A.2.3.3 EEG-Inception

Figure A.55: Within-subject category accuracy over time-steps of EEG-Inception on 8-channel dataset
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Figure A.56: LOSO category accuracy over time-steps of EEG-Inception on 8-channel dataset

Figure A.57: Within-subject ITR over time-steps of EEG-Inception on 8-channel dataset
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Figure A.58: LOSO ITR over time-steps of EEG-Inception on 8-channel dataset

Figure A.59: Within-subject category accuracy over time-steps of EEG-Inception on 256-channel
dataset
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Figure A.60: LOSO category accuracy over time-steps of EEG-Inception on 256-channel dataset

Figure A.61: Within-subject ITR over time-steps of EEG-Inception on 256-channel dataset
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Figure A.62: LOSO ITR over time-steps of EEG-Inception on 256-channel dataset
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