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Abstract

The Firefighter Problem (FFP) on graphs is a model for fighting the spread of a fire through a city. At
each time step d nodes can be defended from the fire, before the fire spreads to all undefended nodes
adjacent to a burning node. In this thesis we investigate the application of State Evaluation to this
problem, creating an ANN called SEANN for this purpose. We also describe a second neural network,
called CLANN that solves FFP more directly by classifying which node should be protected at the
current time step. To solve the FFP we created several solvers that use some form of State Evaluation,
and we compare these to the optimal solution found by solving an ILP model and to a greedy algorithm
in case of trees. Our experiments show that State Evaluation works very well for FFP, especially a
Greedy State Evaluation algorithm that uses a Greedy Look-ahead algorithm to evaluate potential
future states. The CLANN network, however, performs worse than basic greedy heuristics.

Code at: https://git.science.uu.nl/n.l.c.lambooij/firefighter



1 Introduction

The Firefighter Problem (FFP) on graphs, originally proposed by Hartnell in 1995 [13], is a model for
the spread of fire through a network. Each time step the fire spreads further, while nodes of the network
can be defended by firefighters. Another interpretation of the problem is that it can model the spread
of a virus through a population, and this virus can be stopped from infecting new hosts by vaccinating
them. The goal is for the fire (or the virus) to consume as few points of the network as possible. Solving
this problem can give insight in situations where firefighters or vaccinations are in limited supply, when
it is important to most effectively vaccinate people so as to stop the spread of the virus.

Figure 1: The FFP on a graph, from time step t = 0 until the fire can no longer spread. Red nodes are
burnt, blue nodes are defended

A formal definition of FFP is the following: Given are a graph G = (V,E), and a set B ⊂ V of
burning vertices at time step 0. Often, |B| = 1. All other vertices are untouched. At each time step, d
untouched vertices can be defended (often, d=1), after which the fire spreads to all untouched vertices
adjacent to a burning vertex. This continues until the fire has burnt out: there are no more untouched
vertices neighbouring a burning vertex. All vertices that are not burnt, including the defended vertices,
are saved. An example of FFP playing out on a graph with 15 vertices can be seen in Figure 1.

The objective is generally to save as many vertices as possible, i.e. ensure the set of burning (or
burnt) vertices is as small as possible. Other variations of the problem include the weighted version,
where vertices have weights that correspond with the priority of saving them, and the same problem on
trees, where the root is the single initial burning vertex. For trees, the main objective is also to save as
many vertices as possible, but the aim can be to save as many leaves as possible as well. Another variation
is the Multi-Objective Firefighter Problem [17], where the weight of a vertex is a vector representing the
multiple objectives. For example, in a graph where the nodes represent buildings that need to be saved
from a spreading fire, a building can have a high social value, but a low historical value, or vice versa.

The Firefighter Problem is NP-Complete, for, amongst others, cubic graphs [16], and trees with
maximum degree three with a root of degree three [9]. The problem is easy for trees with a root of degree
two (and trivial with a root of degree one), and these instances can be solved in polynomial time.
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The Firefighter Problem can be interpreted as a game, where the player chooses vertices to be pro-
tected, attempting to save as many as possible. Following this line of thought, it is an interesting idea
to apply Game AI to the problem. For some of the most complex games such as Chess or Go, AI are
consistently defeating the best players in the world [24]. Applying some of the same techniques may
therefore result in solutions that are very close to optimal. The most fundamental difference to these
games and the FFP, however, is that at every time step of the FFP everything is fully known: it is a
single player game with full information.

One of the Game AI techniques used for (board)games is State Evaluation, which assigns a value
(generally between 0 and 1) to a state, representing how desirable it is for the (current) player. Here, a
state is a game state, which ranges from a board with game pieces on it, such as Chess, Checkers or Go,
to an agent in an environment that has as objective to move towards some kind of goal. The closer the
agent or player is to that goal, the higher the value of the current state. The value of a state can also be
calculated with probabilities: how likely is the player to win? In chess, for example, if approximately 54%
of matches are won by white when they use a particular starting move, the resulting state has a value of
0.54 for white (and 0.46 for black). The values assigned to potential next states can, among other things,
be used to prune the decision tree of the game, or as a heuristic in another algorithm.

For the Firefighter Problem, State Evaluation can be used to find the next best move, or to exclude
the worst moves from the search. Essentially, any heuristic does some form of State Evaluation, such
as a greedy heuristic that bases the value of a state only on the amount of burnt vertices, or something
much more complex that looks ahead multiple steps. When evaluating a state based on possible solution
strategies, there are multiple values that can be used: the worst possible outcome from this state, the
best, a valuation function that takes into account how many untouched vertices are still present in the
graph, or some aggregate of the results of the above. Another well-used method for State Evaluation is
applying an Artificial Neural Network to learn the value of a state [25, 21, 26], and these state evaluations
may also be used to train a different neural network to find a next move, using the evaluation of the
resulting state as feedback.

The above is precisely what we intend to do in this thesis: investigate how effective State Evaluation
using Artificial Neural Networks is for FFP. How we proceed to build the neural networks is described
in Section 4, as well as how we evaluate performance compared to methods that yield optimal solutions.
First we review some preliminary information on Artificial Neural Networks in Section 2, and explore
previous research on the FFP and on ANNs in Section 3. In Section 4 we discuss how we acquired our
data, the methods we use to evaluate our states, the algorithms we employ to solve FFP, and we describe
two Artificial Neural Networks: one for State Evaluation and one used as a solver for FFP. We will
conduct several experiments to test the viability of using State Evaluation to help solve the FFP. We
analyse the results of our experiments in Section 5. Finally we will draw conclusions and give some ideas
for future work in Sections 6 and 7.

Figure 2: A perceptron with a relu activation
function

Figure 3: A fully connected network architecture
with two hidden layers
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2 Preliminaries

2.1 Artificial Neural Networks

In this section we explain how Artificial Neural Networks are built, and how they learn. For more
information, see [22].

An Artificial Neural Network (ANN) is built from smaller components called a node or a perceptron.
Such a perceptron has one or more numerical inputs, generally between 0 and 1, which are weighted.
These weights are also values between 0 and 1, and generally give an indication of the importance of the
input value. These weighted inputs are then added together, and if this value exceeds a set threshold,
the neuron outputs 1, and otherwise 0. Instead of a threshold, a sigmoid or relu function can also be
used, in which case the output is some value between 0 and 1. A schematic image of a perceptron can
be seen in Figure 2.

The ANN consists of multiple layers of these perceptrons: First an input layer, the nodes of which
each have a single input value, and no adjustable weight (the weight is 1). This input layer is the size
of the actual input, for example, the amount of pixels of an image. Next comes some number of hidden
layers, generally at least one. In fully connected networks all input nodes are connected to all nodes of
the second layer, and all nodes of layer i are connected to all nodes of layer i+ 1. The last hidden layer
of the network is fully connected to the output layer. This output layer can consist of a single node, or
multiple nodes, each outputting a value between 0 and 1. These nodes represent the shape of the output
in some way, for example, if an ANN is meant to classify handwritten digits 0-9, the output layer would
have 10 output nodes. A diagram of this is visible in Figure 3.

The purpose of the network is to give the ‘correct’ output, given some input - whatever that may be.
To be able to do this, the network needs to train, that is, adjust its weights such that feeding an input
into the network results in the correct output. The training happens by giving the network training data:
many examples together with the correct answer. In a classification network with the task of recognising
the digits 0-9 this means that given a picture of a number 5, the fifth output node ideally outputs 1, and
the rest of the nodes output 0. The output of the network is correct if the fifth node has the highest
output. This does not necessarily have to be 1. The next step is to calculate the error: how far off
was the network with its guess? This error can be the Mean Squared Error (MSE) or something like
the Sparse Categorical Crossentropy, and is given as feedback to the network. Using the error and the
learning rate, the weights are updated with backpropagation: The weights leading to the output node are
updated first, then the weights in the layer before that, etcetera. The new weight is calculated according
to the following formula:

w′
ij = wij + ηδj

where wij is the current weight between nodes i and j, w′
ij is the new weight, η is the learning rate, δj is

the error of node j. This means that the weight is adjusted more when the error is higher, and less when
the error is low. The learning rate also influences how much the weight changes, with a higher learning
rate allowing for quicker learning, but a lower learning rate resulting in more precise adjustments.

The above method is a gradient descent method of optimizing the weights of the network. Gradient
descent methods work very well as optimizers for ANNs: they adjust the weights of the network in
small steps in an attempt to find an optimal value. When this optimal value is found, the error has
been minimized, hence gradient descent. Stochastic Gradient Descent (SGD) [2] is an adaptation where
not the entire data set is used to calculate the gradient, but a random subset. This strongly reduces
computation time, and most other optimizers are based on it, such as those offered by the Tensorflow
Keras package that we use in our experiments.

In more complex networks not all layers are fully interconnected, which may save training time. The
nodes that are connected tend to have some problem-specific reasoning behind it, often with multiple
hidden layers to aggregate the information from earlier layers. The output layer can have multiple nodes,
or just a single node. When classifying, the output layer has as many nodes as there are ‘options’, e.g.
10 nodes when we are trying to recognize single digit handwritten numbers. Another alternative is to
have a single output node, which outputs a value between 0 and 1. This value describes something about
the input, such as the value of the current state, hence the use of ANNs for State Evaluation. An ANN
can also be pruned [4], whereby a percentage of the weights are set to 0. This is a technique to combat
overfitting, and will also decrease the amount of time necessary for training. Overfitting is what happens
when the network fits very well on the training data, but performance on the test data is going down.
The network is learning how to deal with the individual cases of the training data, rather than general
rules applicable to all inputs.
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Figure 4: Optimal strategy vs. greedy strategy

3 Previous Work

3.1 Firefighting on Trees

For the Firefighter Problem on trees, it is generally assumed that the root of the tree is the single burning
vertex at the start. At each progressive time step, the fire burns one layer deeper than the previous,
continuing until no more vertices can be burnt. For the Firefighter Problem on trees, it is always optimal
to save nodes that are adjacent to burning nodes, as any node that is not adjacent to a burning node can
be saved by protecting its ancestor that is adjacent to the fire.

The Firefighter Problem was first suggested by B. Hartnell [13], who subsequently investigated how
well a simple greedy algorithm (always protect the vertex with the most descendants) performed on
trees [14]. He proves that this strategy saves at least half as many nodes as an optimal strategy, and that
this bound is tight. The proof is constructed as follows:

In the first move, the greedy algorithm saves at least as many vertices as the optimal move, since the
greedy algorithm saves as many vertices as possible. At any subsequent time step, either the above is the
case again, or the optimal move protects more vertices because the greedy algorithm already defended
an ancestor of the optimal vertex.

Define SA to be the set of vertices saved by the optimal moves on which the greedy move saves at least
as many vertices as the optimal move. Define Greedy as the set of nodes saved by the Greedy algorithm.
It follows that |Greedy| ≥ |SA|. Define SB as the set Sopt \ SA where Sopt is the set of nodes saved by
making only optimal moves.

As the moves resulting in SB are optimal, the greedy algorithm would choose those moves if they were
available. If the greedy algorithm cannot choose the optimal vertex to save, it saves fewer vertices on its
corresponding move. The only reason for a move not to be available is for an ancestor to have already
been defended. Thus, the vertices of set SB have already been saved by the greedy algorithm. It follows
that |Greedy| ≥ |SB |. From here we can conclude: |Greedy| + |Greedy| ≥ |SA| + |SB | ⇔ 2|Greedy| ≥
|Sopt| ⇔ |Greedy| ≥ 1

2 |Sopt|.
The proof of the tightness of this bound shows a worst-case scenario, see also Figure 4: a root node

r is burning, and one of its two children, v and w must be protected. w has n children, all leaves, and
thus n descendants. v has one single child, which has one single child, etcetera, forming a chain of n+ 1
vertices, excluding v, giving vertex v n + 1 descendants. This means that v will be protected by the
greedy algorithm. In the next step, vertex w will burn, after which only one of the children of w can be
protected. This strategy therefore saves n + 2 vertices in total. The optimal strategy, however, defends
vertex w first, and in the next time step it will defend the single child of v. This saves 2n vertices in
total, making this a fraction n+2

2n of optimal, which for large numbers approaches 1
2 [14].

Since then, both exact approaches and approximation algorithms have been investigated. An in-
credibly useful resource for this is the recent survey by Wagner [27], which expounds on what has been
happening in the field since the last survey by Finbow and MacGillivray [10]. This 2021 survey touches
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on the results of the research done on the complexity of FFP, discusses approximation algorithms, Fixed
Parameter Tractability (FPT) of FFP, heuristic approaches, surviving rates of graphs, and variants of
the problem.

In their 2008 paper, Cai et al. [6] study the Firefighter Problem on trees, and present a (1 − 1/e)-
approximation algorithm. They base their approach on the LP relaxation of the problem, giving the
nodes fractions of firefighters. They then give each node a probability of being saved, based on these
fractions and using randomized rounding. They also give several FPT algorithms.

Bazgan et al. [3] continue in the line of Cai et al., and investigate parameterizations of the Firefighter
Problem on general graphs and trees where d ≥ 1 nodes can be defended per time step. They investigate
the following parameterizations: saving k vertices, protecting k vertices, and saving all but k vertices.
Their results show that for each of these cases the problem is W[1]-hard.

3.2 Population Based Search methods

The most common representation of a solution to FFP is represented as a permutation of nodes, the order
of which determines which node gets protected when. In population based search methods the population
consists of many such lists of nodes, and both simple and more complex mutation and crossover operators
can be executed on them. As the entire solution space is incredibly large, we need some clever way to
search this space. One such ways is to apply Ant Colony Optimization, as Blum et al. do in their 2014
paper [5]. Their algorithm starts with many initial solutions and improves upon those by using heuristic
information. This approach is subsequently hybridized with CPLEX, by giving CPLEX the result from
ACO as initial solution. This yields better results than either CPLEX or ACO on their own.

In his papers [17], [18], [19] and [20], Krzysztof Michalak focuses mainly on solving the multi-objective
Firefighter Problem by using evolutionary algorithms. The genetic operators used in [17] are designed to
generate list permutations, ensuring that no node can occur twice in the same solution. He investigates
the effectiveness of the operators compared to each other, using auto-adaptation: Operators that perform
well get a higher and higher probability of being used. He continues his line of research with the Sim-EA
Algorithm in [18], again using Operator Auto-adaptations for the Multi-Objective Firefighter Problem.
The way the Sim-EA Algorithm differs from the previous evolutionary algorithm is that the Sim-EA
algorithm makes use of multiple populations of specimens between which specimens might migrate to
exchange information, instead of a single large population. This algorithm is then compared to the
MOEA/D algorithm, which is a different evolutionary algorithm.

A third paper [19] by the same author investigates the performance of a heuristic local search algo-
rithm, ED-LS, on the multi-objective Firefighter Problem. The approach is hybridized with Evolutionary
Algorithms, using ED-LS to improve upon the solutions found by the EA.

3.3 Using Artificial Neural Networks for State Evaluation in games

In their 2009 paper, Tomizawa et al. [26] use State Evaluation for the game Go, applying an Artificial
Neural Network, which they have called ‘TG361G’. The network gives an expected winning probability
for either black or white, and is trained using game states from human expert’s game records, with as
feedback the actual result of the game (1 for winning, 0 for losing). The resulting expected winning
probability can then be used to find a good next move. The architecture of the network makes use of
local patterns of stones that can be good or bad, and each hidden unit is assumed to have its receptive
4 × 4 patch on the go board (with overlapping patches). This will reduce the number of weights that
would have to be learned if the network were fully connected. The resulting network has a 95% accuracy,
using a training data set of about 600 000 examples.

Artificial Neural Networks for State Evaluation are also used for General Game Playing, which is
concerned with playing classes of games, instead of one specific game. This means that no game-specific
information can be used to train or tweak the Neural Network. In the paper ‘Neural Networks for State
Evaluation in General Game Playing’ by Daniel Michulke and Michael Thielscher [21], they initialize the
ANN in such a way that it is correctly able to classify goal conditions without training. This is then
used to identify the similarity of non-terminal states to goal states, which gives a value to those states.
Their method works very well for individual games, but when applied to general games performance goes
down, which indicates overfitting.
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3.3.1 Integer Linear Programming

A different way to represent the Firefighting Problem is to model it as an ILP, as Develin and Hartke do in
their 2007 paper ‘Fire containment in grids of dimension three and higher’ [7]. It is more comprehensively
described in Blum et al. [5] as follows:

ILPFFP :

bv,t =

{
1 if vertex v ∈ V at time step t where 0 ≤ t ≤ T is burnt

0 otherwise

dv,t =

{
1 if vertex v ∈ V at time step t where 0 ≤ t ≤ T is defended

0 otherwise

max |V | −
∑
v∈V

bv,T

subject to

bv,t + dv,t − bv′,t−1 ≥ 0 ∀v ∈ V , v′ ∈ N(v) and 1 ≤ t ≤ T (1)

bv,t + dv,t ≤ 1 ∀v ∈ V and 1 ≤ t ≤ T (2)

bv,t − bv,t−1 ≥ 0 ∀v ∈ V and 1 ≤ t ≤ T (3)

dv,t − dv,t−1 ≥ 0 ∀v ∈ V and 1 ≤ t ≤ T (4)∑
v∈V

(dv,t − dv,t−1) ≤ D ∀1 ≤ t ≤ T (5)

bv,0 = 1 ∀v ∈ Binit (6)

bv,0 = 0 ∀v ∈ V \Binit (7)

dv,0 = 0 ∀v ∈ V (8)

bv,t, dv,t ∈ 0, 1 ∀v ∈ V and 1 ≤ t ≤ T (9)

Here, T denotes the upper bound for the amount of time steps until the fire burns out, N(v) denotes
the set of vertices adjacent to v, D denotes the amount of firefighters that can be used per time step,
and Binit denotes the set of vertices that is burning at time step 0. Constraint 1 ensures the burning of
vertices and constraint 2 ensures that a burning vertex cannot be defended and vice versa. Constraints
3 and 4 ensure that a burnt vertex and a defended vertex stay that way, respectively. Constraint 5
limits the amount of defended vertices per time step to D. Constraints 6, 7 and 8 all describe the initial
conditions of the graph: the vertices of set Binit are burnt, and no others, and none of the vertices are
defended. Finally, constraint 9 ensures that the variables bv,t and dv,t have either value 0 or 1. With this
model, an ILP-solver like CPLEX [15] or Gurobi [11] can be used to solve the problem.

In our experiments, we have included one additional constraint:∑
v∈V

dv,t − dv,t−1 ≤
∑
v∈V

bv,t−1 − bv,t−2 for 0 ≤ t ≤ T (10)

This constraint ensures that no more vertices are defended after the graph is burnt out. This is not a
necessity to ensure correctness of solutions, but to know how many time steps the graph took to burn
out. This was especially useful for figuring out how varied our generated graphs and trees are.
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4 Methods

The main area of research of this thesis consists of two aspects: State Evaluation for the Firefighter
Problem, and several ways of solving the Firefighter Problem using State Evaluation.

4.1 Hardware and software

The hardware used for all experiments is a desktop computer, with a Intel(R) Core(TM) i5-8600K CPU
@ 3.60 GHz with 16GB RAM and a NVIDIA GeForce GTX 1070 graphics card. Our experiments are
coded in Python, using the gurobipy package from Gurobi [12] for the solving of ILPs, and using the
Tensorflow [1] Keras packages to construct, train and use two ANNs.

Figure 5: Solution lengths of optimal solutions
of graphs of 25 nodes

Figure 6: Solution lengths of optimal solutions
of graphs of 50 nodes

Figure 7: Percentage of burnt nodes of graphs of
25 nodes when solved optimally

Figure 8: Percentage of burnt nodes of graphs of
50 nodes when solved optimally

4.2 Generating Data

To train and test an ANN, we need data: trees and graphs to learn from and test the ANN with. This
data set consists of 30000 randomly generated trees and the same amount of graphs. These 30000 trees
and graphs are divided equally in six different types, to ensure a varied data pool. We will generate a
separate test set of 6000 trees in the same manner. We will now describe the generated data set in more
detail.

4.2.1 Initial Graphs

The generated graphs are Erdös-Renyi graphs, with expected degrees ranging from 2.5 to 5 with a step
size of 0.5. This creates a large variety of graphs, where some are not fully connected, and some will be
so dense that most nodes will burn very quickly. The initial burning node is chosen at random from the
nodes of the graph with degree at least 2. Figures 5 and 6 show a histogram of how many time steps
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it takes for the graphs of 25 and 50 nodes to burn out. For most graphs of 25 nodes this takes 4 time
steps, and for most graphs of 50 nodes it takes 5 time steps. Figures 7 and 8 show a histogram of the
percentage of the vertices of graphs of 25 and 50 nodes burn. Most graphs burn for more than 80%, with
another peak at around 10%.

4.2.2 Initial Trees

The first random trees we generated were Prüfer trees [23], choosing a random node with at least three
children as root node, which is also the node burning at time step 0. The resulting trees did not provide
enough variation. These trees were mostly solvable in two time steps, with very few vertices burning.
While it is a good thing to have a portion of trees that burn very little, for those ‘easy’ instances to make
up the entire data set is not representative of trees as a whole. Therefore we also generated trees of n
nodes using Algorithm 1.

Algorithm 1: Generating random trees

input : number of nodes n
output: A randomly generated tree

1 Create a tree T with a root with 3 children
2 for i = 4 to i = n− 1 do
3 Attach a new node i to one of the existing nodes depending on probability distribution P
4 return T

Figure 9: Solution lengths of
optimal solutions of trees of 25

nodes

Figure 10: Solution lengths of
optimal solutions of trees of 50

nodes

Figure 11: Solution lengths of
optimal solutions of trees of 100

nodes

For all of these trees, the root node is the initial burning node. The probability distribution P in line
3 of Algorithm 1 is one of the following, where M is the current set of nodes of the graph, km the current
degree of node m ∈M , and dm the depth of node m ∈M , where the depth of the root node is 1:

1. Pm = 1
|M | ∀m ∈M . The new nodes are attached to the existing nodes randomly.

2. Pm = km∑
v∈M kv

∀m ∈ M . The new nodes are attached with a probability proportional to the

amount of neighbours an existing node already has. New nodes are thus more likely to be attached
to nodes that already have a lot of neighbours.

3. Pm = 1∑
v∈M

km
kv

∀m ∈ M . Here the probability of attaching a new node to a node m is reverse

proportional to the amount of children an existing node already has, meaning that new nodes are
more likely to be attached to nodes that have very few neighbours.

4. Pm = dm∑
v∈M dv

∀m ∈ M . Here the deepest nodes are more likely to receive children, creating a

deep tree.

5. Pm = 1∑
v∈M

dm
dv

∀m ∈ M . Here the nodes closest to the root are more likely to receive children,

creating a shallow tree.

This method ensures that there are many varied trees in the data set, with varying solution lengths.
Figures 9, 10, and 11 show histograms of the solution lengths of optimal solutions of trees of 25, 50, and
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Figure 12: Percentage of burnt
nodes of trees of 25 nodes when

solved optimally

Figure 13: Percentage of burnt
nodes of trees of 50 nodes when

solved optimally

Figure 14: Percentage of burnt
nodes of trees of 100 nodes when

solved optimally

100 nodes respectively. The difference between Prüfer trees and the combined data set of trees is clear:
Prüfer trees are generally solvable in fewer time steps, and are therefore easier to solve at all. This also
becomes clear in Figures 12, 13, and 14, which show histograms of the percentage of burnt nodes of trees
of 25, 50 and 100 nodes respectively when they are solved optimally. The peak of the ‘all trees’ graph
around 10% is largely caused by the peak of the Prüfer trees around this percentage. This is especially
visible for trees with 50 and 100 nodes, where the histograms are much flatter above 30%, showing a far
more even division of burnt nodes across the instances.

Figure 15: Depth of trees of 25
nodes

Figure 16: Depth of trees of 50
nodes

Figure 17: Depth of trees of 100
nodes

The distribution of the depth of the trees can be seen in Figures 15, 16, and 17. The depth distribution
of Prüfer trees is much more even compared to that of all trees. This ties in with the low solution lengths:
if a tree is very deep, then it does not branch as much. The fire will thus spread to fewer vertices each
time step compared to a tree where nodes have many children, and is overall easier to extinguish.

4.2.3 Extending the Graphs and Trees

Having generated the initial graphs and trees, we extend them into (partially) solved graphs and trees, to
enable SEANN (see Section 4.4) to learn from sub-optimal and partially solved FFP graphs. We do this
according to Algorithm 2. We start with one of the initially generated graphs, and at each time step we
defend a node, burn the graph, calculate its current value, and take a snapshot, until the graph is burnt
out. To calculate the value of the snapshot, we solve the graph optimally, which gives us the number of
nodes burnt in the optimal case: b. We then use the following formula to find the value of the snapshot:
v = (n − b)/n, where n is the amount of nodes in the graph. This function does not take into account
any worst-case scenarios, or how many time steps it would take to reach the optimal solution. We chose
this function because it is the objective truth: it is the value of the best possible state reachable from
the current state.

The optimal solution used to calculate the true evaluation value is acquired by using Gurobi to solve
ILPFFP (see Section 3.3.1). Each snapshot, together with its value, is saved in our database of examples
for SEANN to learn from.

In step 5 we choose a node to defend. This node is not necessarily the optimal node, because we want
SEANN to learn from graphs that have vastly different values. To this end, we must choose sub-optimal
nodes to defend, and for each snapshot this ‘node to defend’ is chosen in one of the following four ways:
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Algorithm 2: Extending generated graphs

input : initial graph G
output: A set of partially solved versions of G, with their value v′G

1 S ← ∅
2 vG ← the value of graph G
3 S ← S ∪ (G, vG)
4 while G is not burnt out do
5 n← node to defend
6 G′ ← G where:
7 node n is defended
8 all untouched nodes adjacent to a burning node in G, are burnt
9 vG′ ← the value of graph G′

10 S ← S ∪ (G′, v′G)
11 G← G′

12 return S

1. Optimal. Every time step the optimal node is chosen, resulting in the optimal solution. This node
is found by solving ILPFFP .

2. Randomly. Every time step a node (that is not yet burnt or defended) is chosen at random to be
the next defended node.

3. Highest degree. Every time step the node with the highest degree (that is not yet burnt or defended)
is chosen to be the next defended node. Ties are broken arbitrarily. This will result in solutions
that are occasionally quite good, but rarely optimal.

4. Lowest degree. Every time step the node with the lowest degree (that is not yet burnt or defended)
is chosen to be the next defended node. Ties are broken arbitrarily. Choosing the node with the
lowest degree will always result in a bad strategy: the lowest degree vertices are vertices with a
single connection, and saving the vertex they are connected to (if possible) is always better, since
this saves two vertices instead of one.

These four ways of choosing which node to defend result in very varied partial solutions. SEANN should
be able to learn to recognize bad states, good states, and every kind of state in between. Unfortunately,
to create a sufficient amount of trees of 200 nodes or graphs of 100 nodes, it would take more than 2000
hours with the current setup. Thus, in our experiments, the largest graphs we examine have 50 nodes,
and the largest trees have 100 nodes.

The extended graphs and trees also have an ordered version, where the first node is the node with
the most neighbours, the second has the second most neighbours, and so on. This is to test whether such
an ordering has any effect on the ability of a neural network to learn from these trees. The graphs and
trees are also all extended into random versions, where the nodes are ordered randomly, to pad out the
data set even more. The resulting graphs and trees are, of course, isomorphic to their original version,
but the resulting adjacency matrix will be very different.

4.2.4 Classification Data

To train CLANN (see Section 4.5), yet another data set is required, because the labels of the examples
for the network need to contain the evaluation values of the nodes that can be chosen to be defended by
the network. For this we adapt the extended data set. For all of the graphs with partial solutions in this
data set, we use SEANN to find the value of each possible next state of the graph. This results in a list
of n values: one value for each node i in case node i is defended in the current time step. If node i cannot
be defended, because it is already burnt or defended, the corresponding value is 0. The node with the
highest value is (theoretically) the node that should be defended.

This classification data set can be used in two ways, and the way they differ is in the feedback given
to the network. The network can be given the feedback that all output nodes but the one corresponding
to the best vertex should output 0 and the node corresponding to the best vertex 1. The second option
is to use the State Evaluation values directly, giving those as feedback to the network. This way the
network learns that there are more options that are good. Unfortunately, the results from training with
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the State Evaluation values directly were less than satisfactory: the network could not find any patterns
in the data. This means that in our research we only give CLANN the feedback on which node should
have the highest output. Since we only tell the network which is the best node to protect, we can also use
absolute data: Instead of using SEANN to tell us which node is best, we can solve the instance optimally,
and take the first node of the solution as the best node, and thus the node to protect. The results of this
experiment can be found in Section 5.2.1.

4.3 State Evaluation

To evaluate the state of an FFP instance, there are many options: one can use a simple and fast algorithm
to find a solution to a particular state of the problem. This solution s can be used as an indicator of the
value of the state: we know that the optimal solution to the instance is at least as good as s. Another
way to do state evaluation is to use an Artificial Neural Network. The network receives many examples
of states with varying values, and learns characteristics associated with higher and lower values. In this
thesis we will use four different algorithms to determine the value of a state in the Greedy State Evaluation
(GSE) algorithm. GSE is a simple solver that uses a second algorithm to determine the value of possible
next states, choosing the move that results in the state with the highest value. The full pseudocode is
displayed in Algorithm 3. These are the algorithms used in line 12:

1. The Greedy algorithm, as described by Hartnell in [14]. This algorithm can only be used on trees,
and thus we will only evaluate tree instances of the FFP with it. The combination of the GSE
solver with the greedy algorithm as state evaluator will be called GSE-Greedy.

2. The Greedy Look-ahead algorithm (GLA), also only usable on trees. It is based on the greedy
algorithm, but instead of looking only at the vertices that will be burnt in the next step, we also
look at the vertices that will be burnt in the step after. The full algorithm is shown in Algorithm
4. The resulting solver is GSE-GLA.

3. The first ANN, SEANN, see Section 4.4, resulting in GSE-SEANN.

4. A random algorithm, that simply picks a random untouched node to protect. We are using this as
a control group, to see how well the other state evaluators perform. The resulting solver will be
called GSE-Random.

Algorithm 3: Greedy State Evaluation (GSE)

input : An instance tree of the FFP
output: An ordered list of vertices that form a solution to the input

1 S ← Initialize an empty ordered list
2 while true do
3 frontLine← get all the untouched nodes adjacent to a burning node
4 if length(frontLine) = 0 then
5 return S
6 if length(frontLine) = 1 then
7 v ← frontLine[0]
8 S.append(v)
9 return S

10 values← Initialize an empty list
11 for v ∈ frontLine do
12 value← StateEvaluation(S ∪ {v})
13 values.append(node : value)

14 bestNode← argmax(values)
15 defend vertex bestNode
16 S.append(bestNode)
17 burn all untouched nodes adjacent to a burning node
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Algorithm 4: Greedy Look-ahead (GLA)

input : An instance tree of the FFP
output: An ordered list of vertices that form a solution to the input

1 S ← Initialize an empty ordered list
2 while true do
3 frontLine← get all the untouched nodes adjacent to a burning node
4 if length(frontLine) = 0 then
5 return S
6 if length(frontLine) = 1 then
7 v ← frontLine[0]
8 S.append(v)
9 return S

10 greedyP ick ← vertex from the frontLine with maximum weight
11 secondLine← the next layer of nodes
12 if length(secondLine) < 2 then
13 S.append(greedyP ick)
14 defend vertex greedyP ick

15 else
16 bestWeightY et← weight(greedyP ick)
17 bestNodeY et← greedyP ick
18 for n1 ∈ frontLine do
19 for n2 ∈ secondLine do
20 if n1 is not the parent of n2 then
21 if weight(n1) + weight(n2) > bestWeightY et then
22 bestNodeY et← n1

23 bestWeightY et← weight(n1) + weight(n2)

24 S.append(bestNodeY et)
25 defend vertex bestNodeY et

26 burn all untouched nodes adjacent to a burning node

4.4 The first ANN: SEANN

The first ANN is used for State Evaluation, and is hereafter named SEANN. The input SEANN receives
is a graph, represented as an adjacency matrix, with for every node two extra [0, 1] markers indicating
whether a node is burnt or defended. This input is then fed through two layers of hidden nodes: a
larger first hidden layer and a smaller second one. To determine the optimal sizes of those layers, the
best optimizer and learning rate, we have done extensive parameter tuning, see Section 4.4.1. SEANN
is trained using the set of generated training data, and tested with the set of generated test data, see
Section 4.2. For SEANN we also investigate the effects of pruning and ordering the data.

4.4.1 Parameter tuning for SEANN

The parameter tuning for SEANN determines the learning rate, the optimizer, and the size of the layers
to use. In both SEANN and CLANN we use two layers, the respective sizes of which are L1 and L2.
To find out which values to use for these parameters, we tried out all combinations of values found in
Table 1. To do this, we used a training data set of extended trees with 25 nodes, consisting of 460 874
examples. This data set was further cut into five equal parts, to be used for cross-validation: SEANN is
trained on four fifth of the data set, and tested on the remaining examples. This is done for each fifth
of the data set, and the result are aggregated. This is done to ensure that the separation of the data
set into training data and test data cannot be especially ‘lucky’ or ‘unlucky’, resulting in a network that
performs worse or better than it might have with a different part of the data set.

Before tuning with these parameters, we tried multiple other optimizers, but many of these showed
the problem of vanishing gradients: the weights of the network became so low that the output for all
inputs was zero. The Adagrad (from ADAptive GRADient descent) optimizer adapts the learning rate
for every weight. This means that the network can be both quick and precise in adapting its weights. If
a weight is far from its optimal value, it can be adapted much quicker, and if it is close, the adjustments
should be small, so as not to overshoot the mark. The learning rate given to Adagrad is the initial
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Table 1: Parameter tuning of SEANN: values of variables, where n is the amount of nodes of the graphs
currently being trained on.

Optimizer Learning rate L1 L2
Adadelta 0.5 n2 ∗ 1 n ∗ 10
Adagrad 0.4 n2 ∗ 2 n ∗ 20

0.3 n2 ∗ 3 n ∗ 30
0.2 n2 ∗ 4 n ∗ 40
0.1 n2 ∗ 5 n ∗ 50
0.05
0.01

learning rate, the starting point from which they are adapted. For more information on Adagrad, see [8].
The Adadelta optimizer is an extension of Adagrad that seeks to optimize the adaptation of the learning
rate even further. This optimizer technically does not need an initial learning rate, but we found that
setting one anyway improved its performance. More information on Adadelta can be found in [28].

4.4.2 Results of parameter tuning for SEANN

SEANN has the following parameters: optimizer, learning rate, and layer sizes, as discussed in the
methods section. The effect of these parameters are measured in the loss and accuracy of the network.
The loss is the Mean Absolute Error (MAE), and this value should be as low as possible. The accuracy
is 1− the Mean Squared Error (MSE), and should be as high as possible. These errors are calculated by
comparing the network output to the ground truth value that is acquired from the optimal solution of
the input instance.

Figure 18: Parameter tuning SEANN: layer sizes

As visible in Figure 18, layer size L1 has the biggest impact on the accuracy of the network, as the
slope along this axis is much steeper than that of the second layer. For the size of the second layer of
the network, smaller is better. Even though larger values for L1 have a higher performance, we did not
attempt a larger layer size than n2 ∗5, because of the impact on the size of the network, and the ability of
the hardware to handle it. Which optimizer to use with what learning rate was more difficult to determine.
Using the found layer sizes of L1 = n2 ∗ 5 and L2 = n ∗ 10 for the second, Adagrad with a learning rate
of 0.3 and Adadelta with a learning rate of 0.5 seem to perform equally well, both reaching an accuracy
of 0.9985, as is visible in Figure 19. When looking at the loss instead of the accuracy, as in Figure 20, it
is clear that Adagrad with a learning rate of 0.3 performs slightly better, while Adadelta performs better
overall, even with suboptimal learning rates. The differences between the two best optimizer/learning
rate combinations are very small, and as ANNs deal with a degree of randomness, this difference is not
large enough to give a definitive answer on which performs better. For my experiments, however, we have
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Table 2: Network sizes SEANN

Graph size Dataset size L1 size L2 size
25 500000 n2 ∗ 5 n ∗ 10
50 250000 n2 ∗ 5 n ∗ 10
100 25000 n2 ∗ 1.5 n ∗ 5

chosen to use the Adagrad optimizer with a learning rate of 0.3, because even though Adadelta might
perform marginally better with the optimal learning rate, the difference is so small it hardly matters. We
conclude that the following parameters will be used in our experiments with SEANN:
Optimizer: Adagrad
Learning rate: 0.3
L1: n2 ∗ 5
L2: n ∗ 10

Figure 19: Parameter tuning SEANN: learning
rates

(accuracy: 1-MSE)

Figure 20: Parameter tuning SEANN: learning
rates

(loss: MAE)

Due to the limitations of our hardware, we were forced to adjust our parameters for larger graphs.
As the graphics card could not handle the large size of the network combined with the size of the data
set, these were adjusted according to Table 2.

4.5 The second ANN: CLANN

The second ANN is used for classification, as it ‘classifies’ which node to protect given an instance of
FFP that is not yet burnt out. This network is hereafter named CLANN. CLANN receives the same
input as SEANN, and also has two hidden layers, but the output is a layer of n nodes: one node for each
vertex of the input graph. The node with the highest output will be the node that is protected in the
current time step. If this node cannot be protected because it is already protected or burnt, the second
best node is protected, and so on.

For the feedback used for CLANN there are three options:

1. Using absolute data: the actual best node according to the optimal solution has a feedback value
of 1, and the rest of the nodes have a value of 0.

2. Using SEANN: the node with the highest evaluation value has a feedback value of 1, the rest of the
nodes have a value of 0.

3. Using SEANN: The feedback of the network consists of the SE value SEANN gives every node.

Options 1 and 2 give a standard feedback to a classification network, but option 3 is more complex. Our
attempts to make this work were unsuccessful: the performance of the network remained very low, and
often tried to defend nodes that were already defended or even burnt. Using absolute data is then the
obvious choice, and Section 5.2.1 supports the use of this measure.
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4.5.1 Parameter tuning for CLANN

The purpose of CLANN is fundamentally different from the purpose of SEANN. It stands to reason that
the parameters that work well for SEANN may not work as well for CLANN. The first of these parameters
to test is the optimizer. Of all the optimizers available in the Tensorflow Keras package, the Adagrad and
SGD optimizers show no vanishing gradients, exploding gradients or cases where the network outputs
the same values regardless of input data.

We then varied the learning rates, and with the optimal learning rate found, we varied the layer sizes.
Table 3 displays all the values investigated.

Table 3: Parameter tuning of CLANN: values of variables, where n is the amount of nodes of the graphs
currently being trained on.

Optimizers Learning rates hidden layer 1 hidden layer 2
Adagrad 0.01 n2 ∗ 4 n ∗ 10
SGD 0.05 n2 ∗ 5 n ∗ 20

0.1 n2 ∗ 6 n ∗ 30
0.2 n ∗ 40
0.3 n ∗ 50
0.4

4.5.2 Results of parameter tuning for CLANN

CLANN has the same four parameters as SEANN: optimizer, learning rate, and the sizes of layers 1 and 2.
The search for optimal values for these parameters is somewhat less extensive, and some similar results
can be found. The effect of the parameters is measured in the loss: Sparse Categorical Crossentropy
(SCC) and the accuracy: Sparse Categorical Accuracy (SCA). Sparse Categorical Crossentropy uses the
following equation to calculate the loss:

Loss = −
n∑

i=0

yi ∗ log ŷi,

where n is the size of the output, yi is the target value for output node i, and ŷi is the network output.
In SCC it is not necessary to give the network all values for the output nodes, only to indicate which
node should have output 1. The other output nodes are automatically set to having 0 as output value.
The Sparse Categorical Accuracy is calculated by dividing the number of correct predictions by the total
number of predictions. Again, the loss should be as low as possible, whereas the accuracy should be as
high as possible.

For CLANN we first determined what the optimizer and learning rate of the network should be. Our
expectations after tuning the parameters for SEANN were that these variables would have the most
impact on the network. We start our process of parameter tuning using size L1 = n2 ∗6 for the first layer,
and L2 = n ∗ 20 for the second layer. These values were both just one step larger than the optimal layer
sizes for SEANN, and as the output layer of CLANN is size n, we expected the layer sizes need be larger
as well. As is displayed in Figure 21, 0.05 is the best learning rate for this network for both optimizers.
The optimizers themselves perform similarly, with Adagrad having a slightly higher accuracy with the
chosen learning rate and layer sizes. The SGD optimizer outperforms Adagrad on higher learning rates.

Using these two optimizers with learning rate 0.05, we investigated what the best layer sizes would
be. In Figures 22 and 23 the six plots show the combinations of optimizer + first layer size, with L2
on the x axis and loss or accuracy on the y axis. It is clear that Adagrad performs better in terms of
accuracy, with the best two options being Adagrad with L1 = n2 ∗ 5 and Adagrad with L1 = n2 ∗ 6.
Looking at the graph of the loss as well, we chose to use the Adagrad optimizer with L1 = n2 ∗5, because
while L1 = n2 ∗ 6 might perform slightly better for layer size L2 = n ∗ 50, a smaller network is preferable.
The size of the second layer needs to be greater for CLANN than for SEANN, and either L2 = n ∗ 40 or
L2 = n ∗ 50 seems to be optimal. As some of the accuracy starts going slightly down with L2 = n ∗ 50,
and the loss goes slightly up, L2 = n ∗ 40 is the value of choice, especially as a smaller network will train
slightly faster and take up less RAM and less memory on the graphics card.

Due to the limitations of our hardware, we were forced to adjust our parameters for larger graphs.
As the graphics card could not handle the large size of the network combined with the size of the data
set, these were adjusted according to Table 4.
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Figure 21: Parameter tuning CLANN: learning rates
(accuracy: SCA)

Figure 22: Parameter tuning CLANN: layer sizes
(accuracy: SCA)

Figure 23: Parameter tuning CLANN: layer sizes
(loss: SCC)

4.6 Solving the FFP

We now have several ways to solve the FFP:

1. Solving ILPFFP , see Section 3.3.1.

2. Using the GSE algorithm, see Section 4.3, Algorithm 3.

(a) GSE-SEANN: GSE with SEANN as evaluator.

(b) GSE-Greedy: GSE with the Greedy algorithm as evaluator.

(c) GSE-GLA: GSE with Greedy Look-ahead as evaluator.

(d) GSE-Random: GSE with the random solver as evaluator.

3. The Greedy algorithm (in case of trees).

4. The Greedy Look-ahead algorithm (in case of trees), see Section 4.3 Algorithm 4.

5. Using a second ANN: CLANN, see Section 4.5.
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Table 4: Network sizes CLANN

Graph size Dataset size Layer 1 size Layer 2 size
25 500000 n2 ∗ 5 n ∗ 40
50 250000 n2 ∗ 5 n ∗ 40
100 25000 n2 ∗ 2 n ∗ 5

At first glance, the GSE-Greedy and Greedy Look-ahead algorithms seem to do the same thing: both
look one layer ahead and evaluate that layer. However, GSE-Greedy applies the Greedy algorithm to
each untouched node adjacent to a burning node, from which an evaluation value can be calculated. The
Greedy Look-ahead algorithm on the other hand, evaluates how many nodes can be saved in the current
move and next move combined. The evaluation of the nodes is thus purely based on their weight, and
not on what nodes may be saved in steps beyond the current step and the one after that. This means
that the GSE-Greedy algorithm makes its decision based on more complete information, and therefore
we expect its performance to be slightly better than that of GLA. We expect the GSE-GLA algorithm
to perform even better, as the evaluation values of GLA are more accurate than those of GSE-Greedy.
With more accurate State Evaluation, the GSE algorithm has a higher performance.

The GSE-Random algorithm, which is an objectively ‘bad’ evaluator, is added to investigate the
influence of a ‘good’ evaluator. As with the other GSE variants, it will give a value to all possible next
states, but these values are unreliable. We can however expect that better states will have a higher value
and worse states a lower one, but not that the best state has the highest value. Especially in trees,
GSE-Random will likely pick nodes to defend that are close to the fire, for these save the most vertices
in the current move. In this, the GSE-Random solver has some similarity to the Greedy algorithm. We
therefore expect the performance of GSE-Random to be on average only slightly worse than that of the
Greedy algorithm.

5 Results

Using the discussed state evaluators and solvers for the FFP problem, we will conduct several experiments.
We will compare several methods of State Evaluation, the effects of pruning the network and ordering
the graphs. We will also compare the ways of solving the FFP, and evaluate CLANN. Here, too we will
study the effect of ordering the graph, and we will look at how much of a difference the use of absolute
data makes. Lastly, we will compare graphs and trees, looking at the performance of the GSE-SEANN
and CLANN solvers when trained on a mixed data set, and when trained on graphs but tested on trees,
and vice versa.

5.1 State Evaluation

5.1.1 Different evaluators

Table 5: Loss and Accuracy of State Evaluators on trees

Treesize Evaluator Loss (MAE) Accuracy (1-MSE)

25

SEANN 0.0216 0.99911
Greedy 0.003 0.9998
GLA 0.0011 0.9999
Random 0.0993 0.9741

50

SEANN 0.0255 0.99863
Greedy 0.0043 0.9998
GLA 0.0014 0.9999
Random 0.1269 0.9597

100

SEANN 0.0434 0.99667
Greedy 0.0047 0.9998
GLA 0.0018 0.9999
Random 0.1275 0.959
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We use four different evaluators in the GSE algorithm. In Table 5 we can see that the Greedy evaluator
performs very well, and even better than SEANN. The random evaluator has the lowest performance,
though the accuracy is still very high. The GLA evaluator performs very close to optimal. This is likely
due to the fact that the state evaluation algorithm looks at the layer one step away from the fire, and
the GLA algorithm looks a further two steps ahead. Since most trees of 25 nodes do not go deeper than
four layers, root included, this is almost equivalent to a brute force approach. This does not explain
why the GLA evaluator performs equally well on larger trees. For all tree sizes both Greedy and GLA
perform very well. It is important to note that the differences between the evaluators are very small.
From this high level of accuracy we can draw the conclusion that a state of FFP is quite easy to evaluate.
As the evaluation process takes very little time in case of the Greedy, GLA and Random evaluators, this
technique may prove very fruitful in the solving of the problem. Unfortunately, it takes SEANN much
longer to evaluate a state of FFP, especially as the network needs to be trained before any evaluations
can take place. We hypothesize that SEANN will make different mistakes than Greedy or GLA, and thus
will likely perform better on instances that are particularly difficult for these algorithms.

Interestingly, the Random evaluator performs rather well. What this tells us is that the current move
makes much more of a difference to the solution than any future moves.

5.1.2 Effects of pruning

Table 6: Effect of pruning on Loss and Accuracy of SEANN

Graph Type Pruning? Loss (MAE) Accuracy (1-MSE)

trees (25)
yes 0.0266 0.99863
no 0.0251 0.99866

graphs(25)
yes 0.0435 0.99481
no 0.045 0.99445

trees(50)
yes 0.0362 0.99743
no 0.0363 0.99744

graphs(50)
yes 0.0492 0.99247
no 0.052 0.99248

trees(100)
yes 0.0737 0.99003
no 0.0801 0.98865

We pruned our model using the pruning step available in the Keras package of Tensorflow, with an
initial sparsity of 50%, and a final sparsity of 80%. These values are given in the example shown in the
documentation of the package, and we found they work well for our purposes. The most prevalent effect
of pruning SEANN is the speed with which the network learns. For most graph types the loss decreases
and the accuracy improves, see Table 6. This happens because pruning is a method used to combat
overfitting, and this positive effect, though small, is visible in our data as well. The positive effect of
pruning seems more prevalent with larger trees and with graphs. This may be the case because it is
more difficult for the network to learn from these, as can be observed in Table 5. With larger trees, the
accuracy of SEANN goes down slightly. Another factor is the decreasing size of the dataset the network
learns from with increasing graph size. Overfitting becomes more of a problem with a smaller dataset,
and thus measures against overfitting are more effective in these cases.

5.1.3 Effects of ordering the data

When comparing the loss and accuracy of SEANN using the original data set to that of the ordered data
set, it is immediately clear that ordering the vertices by degree has a positive effect on both. This is
indicated in Table 7, where we can see improvements in both the loss and accuracy of SEANN when it is
trained and tested on ordered graphs. This effect increases with the size of the graphs, showing that the
degree of a vertex in combination with its status (burnt/defended/untouched) is an important indicator
for the network of the value of the input graph. This also gives rise to the idea that incorporating more
metadata in the input of both SEANN and CLANN may be useful to help the network learn.
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Table 7: Effect of ordering of graphs on Loss and Accuracy of SEANN

Graph Type Ordered? Loss (MAE) Accuracy (1-MSE)

trees (25)
no 0.0266 0.99863
yes 0.0216 0.99911

graphs(25)
no 0.0435 0.99481
yes 0.037 0.99615

trees(50)
no 0.0362 0.99743
yes 0.0255 0.99863

graphs(50)
no 0.0492 0.99247
yes 0.0359 0.99515

trees(100)
no 0.0737 0.99003
yes 0.0434 0.99667

Table 8: Effect of using absolute data on the solutions acquired using CLANN

Graph Type Absolute data? Average % burnt Average runtime (s)

trees (25)
no 39.61 0.102
yes 38.1 0.102

graphs(25)
no 72.39 0.143
yes 72.23 0.142

trees(50)
no 41.89 0.209
yes 40.71 0.2

graphs(50)
no 82.62 0.25
yes 82.36 0.272

5.2 Solving the FFP

5.2.1 Using absolute data

Table 8 shows the results of training CLANN with absolute data or with the data acquired by using
SEANN. Here, we only use feedback options 1 and 2 discussed in Section 4.5. As is clear, the difference
in the average percentage of burnt vertices is quite minimal. For trees there is around 1% difference, and
for graphs it hardly seems to make any difference at all. This means that SEANN does a very good job of
evaluating the states of the examples used to train CLANN, as will be further confirmed in Section 5.2.2.
Because using the absolute data is slightly better, and because we do not have to generate classification
data for larger graphs, we use absolute data to train CLANN in the rest of our experiments.

5.2.2 Different Solvers

Tables 9, 10, and 11 show the performance of the different Solvers on graphs with 25, 50 and 100 nodes
respectively. The average runtime is the runtime of the algorithm excluding the time it takes to train
SEANN or CLANN in case of the GSE-SEANN and CLANN solvers. The ILP solver always gives the
optimal solution, so this is what we will compare performance against in terms of how many vertices are
burnt. For all three graph sizes, CLANN performs worst, and its performance goes down with the size of
the graph. CLANN is also the slowest of all the solvers. The solver with the best results is GSE-GLA,
performing very close to optimal for all graph sizes. In addition to this, it is also a rather fast solver,
faster than Gurobi and faster than either of the ANN solvers. The fastest solvers are Greedy and GLA,
solving instances as large as trees with 100 nodes in less than one thousandth of a second, and both are
quite good at solving FFP. In all cases, GLA burns less than 1% more than optimal on average, with
Greedy following close behind.

The GSE-Random solver exceeds all expectations in terms of performance, outperforming GSE-
SEANN on trees with 50 nodes and trees with 100 nodes. GSE-Random is relatively fast, but slightly
slower than the ILP solver. The reason for this is likely suboptimal coding: random number generation is
computationally quite heavy, and generating a large amount of random numbers at the same time is much
quicker than generating them individually. The latter is what happens in the GSE-Random algorithm,
as only a single graph is solved at a time, and only a single node is chosen to be protected at a time.
This makes it difficult to generate multiple random numbers in one go.

The Greedy solver is only 1
2OPT in theory, but in our data set we see that the Greedy algorithm is
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Table 9: Results of the algorithms on trees of size 25

Solver Average%burnt Average runtime (s)
ILP 33.96 0.007
GSE-GLA 33.96 0.004
GSE-Greedy 34 0.004
GLA 34.17 0.0
Greedy 35.32 0.0
GSE-SEANN 35.34 0.098
GSE-Random 35.59 0.006
CLANN 38.1 0.102

Table 10: Results of the algorithms on trees of size 50

Solver Average%burnt Average runtime (s)
ILP 29.3 0.021
GSE-GLA 29.31 0.013
GSE-Greedy 29.37 0.012
GLA 29.58 0.0
Greedy 30.84 0.0
GSE-SEANN 31.21 0.257
GSE-Random 31.09 0.022
CLANN 40.71 0.2

Table 11: Results of the algorithms on trees of size 100

Solver Average%burnt Average runtime (s)
ILP 26.73 0.076
GSE-GLA 26.74 0.046
GSE-Greedy 26.81 0.044
GLA 27.04 0.0
Greedy 28.26 0.0
GSE-SEANN 29.69 0.816
GSE-Random 28.45 0.091
CLANN 57.37 0.396

much better than that at solving a variety of random graphs. This means that the worst-case scenario
(see Section 3) does not occur very often in our data set, or that when it occurs, it is in a sub-tree of the
full tree. This mitigates the damage that choosing a sub-optimal node to defend can do.

We further investigate the performance of the State Evaluation algorithms, especially compared to
the Greedy algorithm, by looking at the 1% of graphs on which the Greedy algorithm has the worst
performance. Tables 12, 13 and 14 show the percentages of how many of the solutions to these graphs
were optimal, equal to Greedy, better than Greedy (but not optimal), or worse than Greedy. GSE-
Greedy and GSE-GLA perform best, each giving the most optimal solutions to all these ‘difficult’ graphs.
GSE-GLA gives optimal solutions for graphs with 50 and 100 nodes as well.

CLANN is the solver that most often gives a worse solution than Greedy on graphs of 25 nodes,
followed by GSE-SEANN and GSE-Random. These solvers are also the only ones to give solutions that
are worse than Greedy. This is not surprising, as all other algorithms are specifically guarded against
Greedy’s weakness by looking ahead in some way.

Both GSE-SEANN and CLANN perform better on smaller trees, but on trees with 100 nodes even the
GSE-Random algorithm outperforms them. This bodes ill for even larger graphs, and to be considered a
viable way of solving FFP, CLANN needs much improvement in this area.
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Table 12: Results of the algorithms on the 1% of trees with 25 nodes on which the Greedy algorithm
has the worst performance

Solver Optimal(%) Equal to Greedy(%) Better than Greedy(%) Worse than Greedy(%)
GLA 88.33 1.67 10 0
CLANN 60 0 30 10
GSE-Greedy 100 0 0 0
GSE-GLA 100 0 0 0
GSE-SEANN 28.33 56.67 8.33 6.67
GSE-Random 40 46.67 11.67 1.67

Table 13: Results of the algorithms on the 1% of trees with 50 nodes on which the Greedy algorithm
has the worst performance

Solver Optimal(%) Equal to Greedy (%) Better than Greedy (%) Worse than Greedy(%)
GLA 85 3.33 11.67 0
CLANN 20 5 50 25
GSE-Greedy 98.33 0 1.67 0
GSE-GLA 100 0 0 0
GSE-SEANN 35 45 11.67 8.33
GSE-Random 18.33 45 25 11.67

Table 14: Results of the algorithms on the 1% of trees with 100 nodes nodes on which the Greedy
algorithm has the worst performance

Solver Optimal(%) Equal to Greedy (%) Better than Greedy (%) Worse than Greedy(%)
GLA 83.33 1.67 15 0
CLANN 0 0 1.67 98.33
GSE-Greedy 96.67 0 3.33 0
GSE-GLA 100 0 0 0
GSE-SEANN 0 23.33 25 51.67
GSE-Random 15 36.67 23.33 25

As can be seen in Table 13, there is a single graph where GSE-Greedy does not perform optimally.
The graph in question can be seen in Figure 24. It is no surprise that this particular instance features
as one that the Greedy algorithm performs badly on: it shows exactly the worst-case scenario for the
Greedy algorithm. The Greedy solution defends nodes

2, 6, 13, 39

in order, saving 36 nodes. An optimal solution would be to protect nodes

1, 6, 7, 32

in order. This would save 43 nodes, and GSE-Greedy saves 41 nodes. Where GSE-Greedy goes wrong is
with the evaluation of node 1. The Greedy algorithm will choose to protect node 5 before node 6, resulting
in a lower overall evaluation. When evaluating node 3 the Greedy algorithm will choose to protect node
5 also, but this has a lower impact on the evaluation value, because node 1 has fewer children. This
also explains why GSE-GLA does solve this graph optimally: it can look one more step ahead, and thus
protects node 7 in time step 3, allowing node 6 to be protected in time step 2.

5.2.3 Graphs vs. Trees

The results of our experiments with training SEANN and CLANN on trees, graphs or a mix of both, and
testing on graphs and/or trees are reported in Tables 15 and 16. The most visible difference between the
graphs and trees is that in the graphs, almost twice as many nodes burn as in trees. This is unsurprising,
as trees have the advantage of being non-cyclical: from the root to any node there is only ever one
path. Training on graphs and subsequently testing on trees and vice versa is not as detrimental to the
performance of the ANN solvers as expected. It is even the case that the network trained on both (‘mixed’
in the tables) slightly outperforms the network that is both trained and tested on the same graph type.
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Figure 24: Tree with GSE-Greedy performing sub-optimally. Red nodes are burnt, blue nodes are
defended. Greedy solution: 2, 6, 13, 39. Optimal solution: 1, 6, 7

5.2.4 Effects of ordering the data

As seen in Section 5.1, ordering the graphs that SEANN learns from has a positive effect on the ability
of the network to evaluate the given state. The same is the case for CLANN, showing a decrease of burnt
vertices when using the CLANN Solver on trees and graphs of increasing sizes, as can be seen in Table 17.
The effect of ordering the data increases slightly with the size of the graphs, from 2.56% on trees with 25
nodes, to 5.11% on trees with 100 nodes. When looking at the results of the GSE-SEANN solver, which
can be seen in Table 18, we do not see such a difference. There seems to be a mild improvement in case of
graphs, but for the trees the algorithm seems to perform slightly worse. From this we can conclude that
while it makes a difference to the accuracy of both CLANN and SEANN, for the GSE-SEANN algorithm
the state evaluations of ordered graphs do not differ very much from those of non-ordered graphs, and
when they do, they may even cause the wrong next state to be given the highest value.

5.2.5 ANN-solvers vs. GSE-Random

When looking at the performance of the GSE-SEANN and CLANN solvers, we see in all above tables
that their performance is worse than that of simple greedy algorithms. While CLANN does perform
better than GSE-Random for smaller graphs, we would not recommend its usage the way it is now,
especially with faster, more accurate approximations such as GSE-GLA. The GSE-SEANN solver faces
similar problems. While its performance is markedly better than that of CLANN, it does not exceed
the performance of GSE-Random either, though by less of a margin than the CLANN solver. The
most significant drawback of both methods is the average time they take to solve a single tree, even
excluding the time it takes to train either network. This makes both methods unusable, as the point of
an approximation method is to be faster than an exact algorithm.

22



Table 15: Comparing graphs and trees of 25 nodes

Solver Testdata Trainingdata Average%burnt

GSE-SEANN

Trees
mixed 35.28
Trees 35.34
Graphs 35.69

Graphs
mixed 64.1
trees 64.65
graphs 64.24

CLANN

Trees
mixed 39.58
trees 38.1
graphs 48.99

Graphs
mixed 71.96
trees 72.08
graphs 72.23

Table 16: Comparing graphs and trees of 50 nodes

Solver Testdata Trainingdata Average%burnt

GSE-SEANN

Trees
mixed 31.29
Trees 31.21
Graphs 31.48

Graphs
mixed 72.93
trees 72.69
graphs 73.28

CLANN

Trees
mixed 42.1
trees 40.71
graphs 53.85

Graphs
mixed 82.36
trees 82.76
graphs 82.36

6 Conclusion

Several conclusions can be drawn from the results of our experiments. Firstly, it is possible to use
techniques from Game-AI to solve the FFP. The state evaluation works well, especially the GSE-GLA
solver, and SEANN can learn to evaluate states of an FFP instance with a high accuracy. Unfortunately,
CLANN does not perform as well as hoped, and thus we can conclude that modelling the question of
‘which node to defend at the current time step’ as a classification problem does not yield good solutions
for FFP. We did find that it does not make a large difference to SEANN or CLANN whether the input
graphs are trees or not. In fact, both networks seem to benefit from a combination of both, giving the
network more varied examples to learn from. Another factor that helps the network make sense of the
data is the ordering of the nodes of the input graphs. This shows that SEANN and CLANN benefit from
metadata, and that the degree of a vertex is important in determining whether it should be protected.

When comparing our approximation methods to the results of the ILP solver, we find that the average
run time of Gurobi is quite small, at least for the sizes of graphs and trees that we tested. For larger
graphs, this becomes much more of an issue, and approximation algorithms are thus more relevant. This
area is were the most headway can be made in the future. When considering the run time of the different
solvers, simple greedy algorithms are clearly superior to any other methods, at least on our data set.

Our data set is quite varied, but even more variation would likely have improved performance of
SEANN and CLANN even further. The variation present in the graphs were not optimal, as increasing
the average degree of the nodes mostly just caused more of the graph to burn, rather than providing
unique challenges as the variety of trees did.

An unexpected find is that the Greedy algorithm is not as bad in practice as it is in theoretical
analysis. On our database of random graphs it performs exceedingly well, saving less than two percent
fewer vertices compared to optimal. This result is far from the expected ‘half as good as optimal’ that the
analysis of the algorithm predicts. This means that on a data set of random trees, the ‘worst-case scenario’
is rather rare, and this makes the Greedy algorithm a very valid method of acquiring an approximated
solution of FFP quickly.
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Table 17: Effect of ordering of graphs on performance of CLANN

Graph Type Ordered? Average % burnt Average runtime (s)

trees (25)
no 38.1 0.102
yes 35.54 0.099

graphs(25)
no 72.23 0.142
yes 70.64 0.143

trees(50)
no 40.71 0.2
yes 37.84 0.188

graphs(50)
no 82.36 0.272
yes 80.71 0.23

trees(100)
no 57.37 0.396
yes 52.28 0.384

Table 18: Effect of ordering of graphs on performance of GSE-SEANN

Graph Type Ordered? Average % burnt Average runtime (s)

trees (25)
no 35.34 0.098
yes 35.7 0.098

graphs(25)
no 64.24 0.159
yes 63.9 0.154

trees(50)
no 31.21 0.257
yes 32.06 0.187

graphs(50)
no 73.28 0.379
yes 71.22 0.305

trees(100)
no 29.69 0.816
yes 30.23 0.78

7 Future Work

For future research we would suggest investigating ways to make SEANN and CLANN applicable to
larger graphs. The current model is not very scalable - though a better graphics card with more memory
would help. Increasing the amount of examples the network trains on may also yield better results, as well
as creating even more variation in the data set. Giving the ANNs more metadata, such as incorporating
the depth of nodes or their distance from the fire, to work with may also improve their performance.
Another idea is sampling: taking a sample (or multiple samples) of the graph and applying state evaluation
to a partial problem. This will largely solve the issue of scalability, but creates the question of how to
sample such that the sample is (or samples are) representative of the entire network.
As State Evaluation has been proven successful, finding more applications is an obvious next step. SE
may for example be used as part of a heuristic, or to find starting solutions to speed up an optimal solver.
Additionally, using smarter, more complex (approximation) algorithms than GSE may also prove fruitful.
Due to the positive results, further investigation into the GSE-GLA algorithm is of interest, especially for
larger graphs. For graphs with 25-100 nodes performance barely decreased when the graph size increased,
and it is worth investigating how far this trend may go.
Some of the SE algorithms proposed in this research, such as GSE-GLA, are fully deterministic. It is
easy to see that this solver runs in polynomial time, but we have made no attempt to investigate the
exact approximation ratio of this algorithm. This will be especially interesting as its performance on our
database is very good, and we ourselves have not encountered any obvious downside to the method, such
as is the case for the Greedy algorithm.
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Lozano. The firefighter problem: Application of hybrid ant colony optimization algorithms. In
Christian Blum and Gabriela Ochoa, editors, Evolutionary Computation in Combinatorial Optimi-
sation - 14th European Conference, EvoCOP 2014, Granada, Spain, April 23-25, 2014, Revised
Selected Papers, volume 8600 of Lecture Notes in Computer Science, pages 218–229. Springer, 2014.

[6] Leizhen Cai, Elad Verbin, and Lin Yang. Firefighting on trees: (1-1/e)-approximation, fixed parame-
ter tractability and a subexponential algorithm. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro
Fukunaga, editors, Algorithms and Computation, 19th International Symposium, ISAAC 2008, Gold
Coast, Australia, December 15-17, 2008. Proceedings, volume 5369 of Lecture Notes in Computer
Science, pages 258–269. Springer, 2008.

[7] Mike Develin and Stephen G. Hartke. Fire containment in grids of dimension three and higher.
Discret. Appl. Math., 155(17):2257–2268, 2007.

[8] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

[9] Stephen Finbow, Andrew D. King, Gary MacGillivray, and Romeo Rizzi. The firefighter problem
for graphs of maximum degree three. Discret. Math., 307(16):2094–2105, 2007.

[10] Stephen Finbow and Gary MacGillivray. The firefighter problem: a survey of results, directions and
questions. Australas. J Comb., 43:57–78, 2009.

[11] LLC Gurobi Optimization. Gurobi optimization, 2019.

[12] LLC Gurobi Optimization. gurobipy, the gurobi python interface, 2019.

[13] Bert Hartnell. Firefighter! an application of domination. In the 24th Manitoba Conference on
Combinatorial Mathematics and Computing, University of Minitoba, Winnipeg, Canada, 1995, 1995.

[14] Bert Hartnell. Firefighting on trees: how bad is the greedy algorithm? Congressus Numerantium,
145:187–192, 2000.

[15] IBM. Ibm ilog cplex optimizer, 2022.

[16] Andrew D. King and Gary MacGillivray. The firefighter problem for cubic graphs. Discret. Math.,
310(3):614–621, 2010.

25



[17] Krzysztof Michalak. Auto-adaptation of genetic operators for multi-objective optimization in the
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