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Abstract

No consensus exists on the equations that govern the dissipative dynamics of anti-

ferromagnets. In particular, from phenomenological considerations (H. Y. Yuan,

Liu, et al. 2019) one expects inter-sublattice damping terms in the sublattice

dynamics. These terms are not present in the Landau-Lifshitz-Gilbert equations

that are commonly used to describe individual sublattice dynamics. In this thesis,

we present a Caldeira-Leggett approach within the Keldysh path integral formal-

ism to base the dissipative equations for two-sublattice antiferromagnets on a

more microscopic description. From this, we argue that the dissipative dynamics

are determined by the specific form of system-bath structure through which the

system dissipates. We recover phenomenological equations in the quasi-classical

limit and find that the presence of inter-sublattice damping terms originate from

the thermal coupling between the sublattices. Remarkably, we find that in a spe-

cial case the Néel order is a dissipation-free mode. Subsequently, we argue that

the existence of dissipation-free modes is a more general phenomenon and will

occur in systems composed of two subsystems where the bath is shared between

the two subsystems.
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1 Introduction

While the world today thrives on data acquisition and computation power, reduction of

energy consumption becomes more vital than ever. Spintronics is a research field focus-

ing on a new territory of (spin-)electronic devices that increase memory and processing

capacity, while decreasing demand of power.

Whereas conventional electronic devices utilise the property of electric charge of

electrons or other charge carriers, spintronics exploits the spin degree of freedom of these

particles through spin-polarised currents (currents in which the spins have a preferred

direction). For instance, it is possible to create a magnetic memory from ferromagnets,

which are materials in which all spins align, see figure 1a. Labelling a ferromagnet

where all spins point in a given ‘up’-direction as ‘1’ and a ferromagnet where all spins

pointing in the opposite direction as ‘0’, one can create a magnetic binary code. Then,

a digit can be changed by sending a spin-polarised current through the ferromagnet,

upon which its direction is switched, hence the code is changed. Such a magnetic

memory does not suffer from information loss through ionising radiation, as is the case

for conventional charge-based memory. However, by perturbation of external magnetic

fields, even this ferromagnetic based memory can lose its information.

For antiferromagnets, this problem is much less relevant. Antiferromagnets are

materials that have an intrinsic magnetic ordering: neighbouring spins in a lattice

energetically favour to arrange themselves in a way that the total magnetisation is

vanishingly small, see for a simple example figure 1b. Whereas for ferromagnets the

magnetic field of all spins add up to an significant effective total magnetisation, in

antiferromagnets the magnetic moment of each lattice cell is cancelled by the opposing

spin directions and consequently, the net magnetisation field of an antiferromagnet

is zero. On the one hand, it is hard to experimentally manipulate such materials

due to their lack of net magnetisation. For this reason, Louis Néel, the originator of

antiferromagnetics, famously declared that antiferromagnets are ‘interesting but useless’

(Néel 1970). On the other hand, this means the material is largely resistant to the

influence of external magnetic fields for the same reason.

Therefore it is of no surprise that since the discovery of spin transfer torque and

anisotropic magnetoresistance (Xu, Wang, and Xia 2008; Núñez et al. 2006; Wei et al.

2007; Haney and MacDonald 2008), there has been enormous interest in antiferromag-

netic spintronics. Continuing on the above example of a magnetic memory, it is possible

to switch the antiferromagnetic ordering by sending a current through the antiferro-
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Figure 1: Simple two-dimensional examples of ferromagnetic ordering (a) and anti-
ferromagnetic ordering (b). Whereas in ferromagnets spins will align, they will anti-
align to their neighbouring spins in an antiferromagnet, leading to systematic alterna-
tion between up- and down-spins.

magnet whose field acquires, due to the spin-orbit coupling, the same periodicity as

the antiferromagnet lattice (Wadley et al. 2016). This allows for electric writing and

readout of the magnetic storage memory.

Other notable discoveries and development within antiferromagnetic spintronic

over recent years include for example spin pumping (Cheng, J. Xiao, et al. 2014) which

is the generation of spin-polarised currents, ultra-fast control over spin states up to

terahertz regime (Kampfrath et al. 2011; Cheng, D. Xiao, and Brataas 2016) and the

research into skyrmions in antiferromagnets (Barker and Tretiakov 2016).

This short overview is not meant to be exhaustive, but may serve to convey one

message: due to its unique properties, antiferromagnetic spintronics may pave the way

for key technology of the future.

However, it is in this light peculiar that there is no consensus on the fundamental

equations that describe antiferromagnetic dynamics. In particular, no universal agree-

ment exist on the exact form for dissipation. To investigate this matter, it will be

useful to first understand the dynamics of the ferromagnet. On a macroscopic level, the

dynamics of a ferromagnet can be described by a single parameter; its magnetisation

M. This is the collective field of all the spins in the material, that in (in the simplest

case) point in the same direction. The magnetisation dynamics of a (macro)spin with

magnetisation M is described by the Landau-Lifshitz-Gilbert (LLG) equation (Gilbert

2004),

Ṁ = M×H− α0M× Ṁ , (1.1)
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b)
a)

Figure 2: Diagrammatic representation of the LLG-equation: a magnetisation M will
align to an external field H (a) while rotating around it (b).

where H is an effective magnetic field that includes the external field, the exchange field

and the anisotropy field and α0 is the damping parameter. The first term describes the

precession of the spin around the external field, while the second term describes the

alignment to the external field, see figure 2. For an antiferromagnet, there is no univer-

sally accepted counterpart to the LLG equation. Nevertheless it is clear that, because

there are multiple spin-directions, there are more order parameters in such a system.

A convenient way to organise the description of the antiferromagnet is to divide it into

sublattices: each sublattice consist of all spins pointing in one particular direction. In

this thesis, we focus on two-sublattice antiferromagnets — the antiferromagnets with

a structure like in figure 1b. Hence we have two order parameters, which are the

macrospins S1 and S2. They are the collective field of all spins pointing in the same

direction.1 However, we can equivalently formulate the system in an average magnetisa-

tion M = 1
2
(S1 +S2) and the Néel vector N = S1 −S2. As the spins tend to anti-align

in an antiferromagnet, usually |N| ≫ |M| and the Néel vector is the crucial order

parameter that is physically loosely interpreted as the ‘amount of antiferromagnetism’.

By considering a Rayleigh dissipation functional in the Lagrangian of a general

N-sublattice antiferromagnet, it has been shown that in general the antiferromagnetic

1In this thesis, the quantities S1 and S2 generally refer to the macrospins of the sublattices. Nev-
ertheless, the formalism presented is not only valid in the large-spin limit, but is quite general; the
result can, at least in principle, also be applied to atomic and subatomic bosonic particles.
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dynamics is governed by N equations of the form (H. Y. Yuan, Liu, et al. 2019)

Ṡi = Si ×Hi − Si ×

(
N∑
j=1

RijṠj

)
, (1.2)

where Rij are, due to the second law of thermodynamics, strictly non-negative elements

of a real dissipation matrix R. Note that each sublattice has its distinct effective field

Hi. For the two-sublattice antiferromagnet, the dissipation matrix is given by

R =

(
α αc

αc α

)
. (1.3)

The diagonal elements are identical due to the sublattice permutation symmetry that

is assumed. That is, we assume the interchange between S1 and S2 should not affect

the dissipative dynamics of the system. For the same reason the matrix is symmetric

(Rij = Rji). The equations of motion for the two-sublattice antiferromagnet are

Ṡ1 = S1 ×H1 − αS1 × Ṡ1 − αcS1 × Ṡ2 (1.4a)

Ṡ2 = S2 ×H2 − αS2 × Ṡ2 − αcS2 × Ṡ1 . (1.4b)

The significance of this result is the appearance of inter-sublattice damping terms.

These terms have anti-damping characteristics, which means they increase the lifetime

of excitations in the antiferromagnet, see figure 3. This can be intuitively understood by

recognising that for an antiferromagnetic interaction, the velocity Ṡ1 is approximately

opposite to the velocity of the other spin Ṡ2. Hence the inter-sublattice term reduces

the damping effect of the (intra-sublattice) Gilbert damping term. Written in terms of

magnetisation and Néel order, the dynamical equations are given by

Ṁ = 2M× (Hm − αmṀ) +
1

2
N× (Hn − αnṄ) , (1.5a)

Ṅ = M× (Hn − αnṄ) +N× (Hm − αmṀ) . (1.5b)

Here we defined the effective field as subject to the magnetisation as Hm = 1
2
(H1+H2)

and the effective field for the Néel vector as Hn = H1 − H2. Moreover, the damping

parameters for the magnetisation and the Néel order are given by αm = (α+αc)/2 and

αn = (α− αc)/2 respectively.2

2Note the difference to the original paper due to the difference in magnetisation definition.
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c)

Figure 3: Diagrammatic representation of the phenomenological dynamics for an anti-
ferromagnet: spins S1 and S2 align to an external field H through the intra-sublattice
Gilbert damping term (a) while precessing around the external field (b). Moreover,
the inter-sublattice Gilbert damping terms (c) are opposed to damping and cause an
anti-damping force to occur. Note that for simplicity of illustration, in this diagram it
is assumed H = H1 = H2: only an external field contributes to the effective field of
both spins.

The dissipation matrix eq. (1.3) is especially useful to calculate the energy dissi-

pation rate of the system; it is given by (H. Y. Yuan, Liu, et al. 2019)

Ė = −
∑
i,j

RijṠi · Ṡj = α(Ṡ2
1 + Ṡ2

2) + 2αcṠ1 · Ṡ2 = 2(α + αc)Ṁ
2 +

α− αc
2

Ṅ2 , (1.6)

where the energy dissipation is considered in terms of sublattices as well as in terms of

the magnetisation and Néel order.

The phenomenological equations of motion are a very general account of anti-

ferromagnetic dynamics; many previous approaches are special cases by choosing the

damping parameters to have specific properties. For example, some (Takei et al. 2016)

use αm = 0, while others use αm = αn (Cheng, J. Xiao, et al. 2014). From the per-

spective of the sublattices, also different approaches are used: one may choose αc = 0

with α finite (Kittel 1951), or α = αc (Baryakhtar and Danilevich 2015), amongst other

possibilities.

The general dynamics as described above are results of a quasi-classical phe-

nomenological approach: they are derived by assuming a general dissipation functional

in a classical Lagrangian. In other words, the approach does not specify the physical
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process that explains the dissipative behaviour of antiferromagnets. Consequently, such

a model is not able to explain why the choice for specific values is suitable in some sys-

tems, while other models benefit from the choice of what appears to be very different

assumptions. Moreover, from general scattering theory and first-principle calculations,

it has been shown that at least in certain antiferromagnets, αm ≫ αn, which is contrary

to many assumptions listed above (Liu et al. 2017).

The goal of this thesis is to understand the more fundamental physical process

that underlies the dissipative behaviour of two-sublattice antiferromagnets, by analysis

of the thermal structure that is necessary for dissipation. First and foremost, we will

argue that the dissipative behaviour of two-sublattice antiferromagnets is determined

by the system-bath structure that gives rise to this dissipation. Not only will such a

fundamental understanding provide a theoretical foundation to the phenomenological

equations; moreover, it can explain the origin of the different phenomenological assump-

tions to the dissipative dynamics. Lastly the results may give physical explanation to

the above-mentioned first-principle calculations for the damping of the antiferromag-

netic modes.

This research includes several aspects: first, a quantum theory for dissipative spin

systems needs to be developed. It is important that this theory is able to re-derive the

phenomenological equations of motion. The construction of such a theory will be the

subject of chapter 2. After this, dissipative antiferromagnets can be modelled in this

theory. However, as will become clear, the construction of a model is not trivial: based

on different physical assumptions, different models arise. Of course, this is exactly the

argument in this thesis: the goal is to argue that the damping behaviour depends on

the dissipative structure of the system, hence on the physical assumptions underlying

the model. Therefore, in chapter 3 we will develop these models and compare them

to the phenomenological equations. Remarkably, eqs. (1.4) are recovered in the model

where both spins couple to the same thermal bath, but we find that there are no inter-

sublattice damping terms when the spins couple to separate thermal baths. These

findings indicate that the inter-sublattice damping, and therefore the magnon lifetime,

is dependent on the thermal separation between interacting antiferromagnetic layers.

Moreover, it will turn out that under specified circumstances, our theory predicts

that the Néel vector will be a dissipation-free mode of the system. In chapter 4, this

result is generalised by arguing that this phenomenon is not unique to antiferromagnets,

but will arise in many systems with an analogous dissipative structure. Lastly, the thesis

ends with a summary of the results and an outlook on further research in chapter 5.
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2 Theory for Dissipation and Spin Dynamics

In this thesis, we are interested in the dynamics of dissipative interacting (macro-)spins

from a microscopic perspective. The description and behaviour of such systems requires

a special physical theory: first, it needs to be a theory that is able to include dissipation

of quantum systems, and second, this theory should include the possibility to describe

the dynamics of spin systems. Lastly, since the quasi-classical behaviour of the spin

systems plays an essential role in our research, we wish to construct a theory that is

able to restore the quasi-classical limit quite straightforwardly.

To meet these requirements we use the Caldeira-Leggett model, which accounts

for dissipation in quantum systems by considering the composite of the system and

its environment (Caldeira and Leggett 1983). In this thesis we consider this model

formulated in terms of the closed-time contour or Keldysh formalism, which is a general

theory for non-equilibrium quantum systems. The exposition by Kamenev is being used

as principal guide (Kamenev 2011). A major benefit of the Keldysh approach is that

it is expressible as a path integral formulation. Therefore, quasi-classical dynamics can

be derived from the action with techniques analogous to Lagrangian mechanics.

Nevertheless, the Keldysh formalism in its standard form does not include a treat-

ment of spin dynamics. A theory for the dynamics of spin systems is non-trivial, as even

the classical dynamics of spin cannot be treated in standard Hamiltonian mechanics.

Yet, a path integral formalism for spin systems can be formulated by the definition of

spin coherent states. In this thesis we follow the derivation by (Altland and Simons

2010) and extend it to the Keldysh formalism.

In section 2.1, we will first derive the spin path integral and define the key concepts.

After that, the dynamics of two interacting spins is considered in section 2.2. This

illustrates the general methods of application of the spin path integral in this research

and serves as a basis for all forthcoming models. Subsequently in section 2.3 dissipation

is included into the theory. We introduce the Keldysh formalism through the derivation

of the dissipative dynamics of a single spin.

2.1 Construction of the path integral

We will derive the path integral formulation for a system that depends on two spins

Ŝi (i = 1, 2), which in general may interact with each other, described by the system’s
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Hamiltonian Ĥ = Ĥ(Ŝ1, Ŝ2).
3 The Hilbert space of spin states can be constructed by

a basis of spin coherent states {|g̃i⟩} (i = 1, 2), where {|g̃1⟩} is the basis of the Hilbert

space of S1, and similarly, {|g̃2⟩} is the basis of the Hilbert space of S2. Conceptually,

the state |g̃i⟩ = g̃i |↑⟩ is a rotation of the maximum weight state |↑⟩ by an element

g̃i ∈ SU(2). Hence the state |g̃i⟩ is interpreted as living on a sphere. The |↑⟩-states
of the two spins are different states in principle; however, since this state is defined by

the choice of quantisation, we can choose them to be in the same direction. Moreover,

external fields will be introduced later on that will be the same for all spins in the

system. Consequently, these external fields suggest a simple choice the quantisation

direction.

Any spin state on the sphere can be represented by a rotation of the Euler angles

ϕi, θi and ψi of the |↑⟩-state, see figure 4. In other words, we can write any state |g̃i⟩
in terms of the Euler angles as (Altland and Simons 2010, section 3.3)

|g̃i⟩ = e−iϕiŜ
z
i e−iθiŜ

y
i e−iŜ

z
i ψi |↑⟩ , (2.1)

where by definition we have Ŝzi |↑⟩ = Si |↑⟩; Si is the maximal eigenvalue of the Ŝzi .

Loosely speaking, this eigenvalue is the ‘magnitude of the total spin’ of the system

under consideration, and in our model it is the radius of the sphere.

The basic intuition one must keep in mind is that the dynamics of spin describe a

massless particle moving on the unit sphere. This movement is described by the angles

ϕi and θi. The Euler angle ψi will only rotate the spin vector around its own axis, which

has no consequence on the dynamics and no physical meaning. In other words, ψi is a

gauge freedom of the system. This means we can define a simpler representation of the

spin coherent state by

|gi⟩ = e−iϕiŜ
z
i e−iθiŜ

y
i |↑⟩ (i = 1, 2) , (2.2)

which is related to the first representation by |g̃i⟩ = |g⟩ e−iSiψ2 .

Now let us look at the properties of the spin coherent states. Each set of spin

coherent states form a complete basis of their respective Hilbert space:

C

∫
dgi |gi⟩ ⟨gi| = 1 (i = 1, 2) . (2.3)

3Although not of interest in this research, the number of spins may be extended to an arbitrary
number M. The derivation in that case is analogous to the one presented here.
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Figure 4: Visualization of the spin coherent state. The Euler angles ϕi and θi rotate
the vector around the sphere, while ψi is a gauge parameter, since it only rotates the
vector around its own axis.

Although the details do not concern us here, note that this is actually a rather special

integral; it assigns a volume measure to the group SU(2). For our purposes, the constant

C can be set to unity without affecting the physical results.

Since all spins are initially defined within their own Hilbert space, the combined

system is described by the tensor product of these spaces. Consequently the following

resolution of unity also holds:∫
dg1 dg2 |g1⟩ ⊗ |g2⟩ ⟨g1| ⊗ ⟨g2| = 1 . (2.4)

From now on, the tensor product symbol ⊗ will be omitted for brevity, although it is

important to keep in mind that operators related to Ŝi will only act on states |gj⟩ if

i = j.

Now we will construct the path integral for a general Hamiltonian Ĥ = Ĥ(Ŝ1, Ŝ2).

In order to achieve this, we consider the transition amplitude Z = Z[S1,S2]

Z = ⟨g1,N | ⟨g2,N | e−iĤt |g1,0⟩ |g2,0⟩ ≡ ⟨gN | e−iĤt |g0⟩ , (2.5)

where |g0⟩ ≡ |g1,0⟩ |g2,0⟩ is the shorthand notation for the initial states of the two



2 THEORY FOR DISSIPATION AND SPIN DYNAMICS 10

subsystems and |gN⟩ ≡ |g1,N⟩ |g2,N⟩ for all final states. Then this transition amplitude

is split into N time intervals of ∆t = t
N
, where N limits to infinity:

Z = lim
N→∞

⟨gN | e−iĤ∆te−iĤ∆t . . . e−iĤ∆t︸ ︷︷ ︸
Ntimes

|g0⟩ . (2.6)

Subsequently, between each exponential a resolution of unity is inserted:

Z[{Ŝi}] = lim
N→∞

∫ N∏
j=0

(
dgj
)
⟨gN | e−iĤ∆t |gN−1⟩ ⟨gN−1| e−iĤ∆t |gN−2⟩ . . . ⟨g1| e−iĤ∆t |g0⟩ .

(2.7)

This allows us to consider transition amplitudes of infinitesimal time individually:

Zj = ⟨gj+1| e−iĤ∆t |gj⟩

≃ ⟨gj+1| 1− iĤ∆t |gj⟩

= ⟨gj+1|gj⟩ − i∆t ⟨gj+1| Ĥ |gj⟩+ 1− ⟨gj|gj⟩ ,

(2.8)

where the added terms in the last line cancel each other. However, the presence of the

1 allows us to re-exponentiate. This results in

Zj ≃ exp

{
∆t

(
⟨gj+1|gj⟩ − ⟨gj|gj⟩

∆t
− i ⟨gj+1| Ĥ |gj⟩

)}
, (2.9)

where we deliberately rewrote the expression, such that the appeared fraction is remi-

niscent of a discrete derivative. Yet, we must not be misguided by our notation. If we

would disregard our shorthand notation, the numerator is written as

⟨gj+1|gj⟩ − ⟨gj|gj⟩ = ⟨g1,j+1| ⟨g2,j+1|g1,j⟩ |g2,j⟩ − ⟨g1,j| ⟨g2,j|g1,j⟩ |g2,j⟩

= ⟨∆g1,j|g1,j⟩+ ⟨∆g2,j|g2,j⟩+ ⟨∆g1,j|g1,j⟩ ⟨∆g2,j|g2,j⟩ ,
(2.10)

where in the second line, we introduced the notation ⟨∆gi| ≡ ⟨gi+1| − ⟨gi|. Moreover,

we reordered the terms in order to recover the independent infinitesimal change of each

state. As a consequence, an additional correlation term appears. This means that

the nominator of the infinitesimal transition amplitude eq. (2.9) actually considers all

orders of change in the spin coherent states simultaneously.

However, when we will perform the limit in eq. (2.7) explicitly, ∆t = t
N

goes to

zero. In this limit, only first order ∆-terms in the denominator do not vanish. Hence

the higher order correlations can be disregarded and we exactly get the required discrete
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derivatives. As a consequence, the final expression of the path integral in the continuum

limit is given by

Z[{Ŝi}] =
∫

Dg exp{iS} , (2.11)

where Dg = limN→∞
∫ ∏M

i=0

∏N
j=0

(
dgi,j

)
, and the action S is given by

S =

∫
dt
(
−i ⟨ġ1|g1⟩ − i ⟨ġ2|g2⟩ − ⟨g1| ⟨g2| Ĥ |g1⟩ |g2⟩

)
, (2.12)

where ⟨ġj| denotes the time derivative of the state ⟨gj|. The first two terms in the

action are Berry phase terms or Berry connections, which are a result of the geometrical

trajectory of each spin state inside its Hilbert space (Berry 1984). As will become clear

what follows, these terms play the role of kinetic energy inside the action. The third

term is the Hamiltonian, evaluated in the eigenbases of the spins, that describes the

interaction between the two spins.

The spin path integral that we derived, and the action in particular, is the starting

point of this research. Although the path integral allows for calculations of quantum

mechanical transition amplitudes in principle, we are primarily interested in the quasi-

classical behaviour of spin systems. These can be derived from the action by taking

the variation with respect to the dynamical variables, which is equivalent to calculating

the Euler-Lagrange equations. However, it is crucial to realise what quantities are

actually the dynamical variables in our action: not the spin vectors themselves, but

the coordinates that parameterise the spin coherent states are the relevant variables.

These are the Euler angles ϕ1, θ1 and ϕ2, θ2 of the two spins respectively.

We can find an explicit form for the Berry connections (see appendix A), which is

given by

⟨ġ|g⟩ = −iSϕ̇(1− cos θ) , (2.13)

where S is the maximal eigenvalue of Ŝz.

The expectation value of a spin operator is defined by

Si ≡ ⟨g̃| Ŝi |g̃⟩ . (2.14)

and from the definition of the spin coherent states, it follows that the spin vector Si is
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the vector on a sphere with radius Si: (see also appendix A)

Si = Si

sin θi cosϕi

sin θi sinϕi

cos θi

 , (2.15)

i.e. Si is the product of Si and a vector on the unit sphere. This result is consistent

with the intuition of spin being a rotating vector of fixed length.

2.2 Dynamics of two interacting spins

In this section we calculate the dynamics of two antiferromagnetically interacting spins

in the spin coherent state formulation. This serves two ends: first, this is the basis of

all our following models, and second, it illustrates the practice and details of the spin

coherent states. Starting from the interaction defining Hamiltonian, we will derive the

quasi-classical equations of motion.

The antiferromagnetic coupling of spins Ŝ1 and Ŝ1 is described by the Heisenberg

Hamiltonian

ĤS = +JŜ1 · Ŝ2 , (2.16)

where J is a positive coupling constant. Using the main result of the previous section,

the action is of the form

S =

∫
dt
(
−i ⟨ġ1|g1⟩ − i ⟨ġ2|g2⟩ − J ⟨g1| Ŝ1 |g1⟩ · ⟨g2| Ŝ2 |g2⟩

)
. (2.17)

Nevertheless, to continue we have to derive the explicit form of the action in terms of

the spherical coordinates θ1, ϕ1 of S1 and θ2, ϕ2 of S2. The Berry connections are given

by eq. (2.13). Using eq. (2.15) and the substraction formula for cosine, the interaction

is in spherical coordinates written as

⟨g1| Ŝ1 |g1⟩ · ⟨g2| Ŝ2 |g2⟩ = S1S2(sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2) . (2.18)

In total, the action in the Euler angle representation is given by

S = −
∫

dt
[
S1ϕ̇1(1− cos θ1) + S2ϕ̇2(1− cos θ2)

+ JS1S2 (sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2)
]
.

(2.19)
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We are interested the quasi-classical equation of motion. This corresponds to finding

the path that is weighted the heaviest in the path integral, which is the solution that

extremises the action. Hence we can take the variation of the action, or equivalently,

we calculate the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (2.20)

for any generalized coordinate q. In our case we get four equations of motion, from

θ1, ϕ1, θ2 and ϕ2:

θ1 : S1ϕ̇1 sin θ1 = +JS1S2(sin θ1 cos θ2 − cos θ1 sin θ2 cos(ϕ1 − ϕ2)) (2.21a)

θ2 : S2ϕ̇2 sin θ2 = +JS1S2(cos θ1 sin θ2 − sin θ1 cos θ2 cos(ϕ1 − ϕ2)) (2.21b)

ϕ1 : S1θ̇1 = −JS1S2(sin θ2 sin(ϕ1 − ϕ2)) (2.21c)

ϕ2 : S2θ̇2 = +JS1S2(sin θ1 sin(ϕ1 − ϕ2)) . (2.21d)

From these equations, we want to restore vectorial equations of motion for S1 and S2.

To acquire these, we calculate the time derivative of the spin vectors in terms of the

Euler angles and decompose it into a simpler vector and a rotation ϕ around the z-axis:

Ṡi = Si

θ̇i cos θi cosϕi − ϕ̇i sin θi sinϕi

θ̇i cos θi sinϕi + ϕ̇i sin θi cosϕi

−θ̇ sin θi

 = S1

cosϕ1 − sinϕ1 0

sinϕ1 cosϕ1 0

0 0 1


θ̇1 cos θ1ϕ̇1 sin θ1

θ̇1 sin θ1

 .

(2.22)

The equations of motion for θ1, eq. (2.21a), and ϕ1, eq. (2.21c), can be inserted

in the vector, to get for Ṡ1:

Ṡ1 = −JS1S2

sin θ1 cos θ2 sinϕ1 − cos θ1 sin θ2 sinϕ2

cos θ1 sin θ2 cosϕ2 − sin θ1 cos θ2 cosϕ1

− sin θ1 sin θ2 sin(ϕ1 − ϕ2)

 . (2.23)

The cross product of the two spins is in terms of the components is given by
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straightforward computation as

S1 × S2 = S1S2

sin θ1 cos θ2 sinϕ1 − cos θ1 sin θ2 sinϕ2

cos θ1 sin θ2 cosϕ2 − sin θ1 cos θ2 cosϕ1

− sin θ1 sin θ2 sin(ϕ1 − ϕ2)

 . (2.24)

Comparing, it is clear that the time derivative, up to the prefactor, exactly corresponds

to the cross-product. The components of Ṡ2 are exactly the same but opposite in sign,

which can be seen by simply swapping the indices (1 ↔ 2) in above equation. Therefore

we end up with the compact equations of motion:

Ṡ1 = −Ṡ2 = −J(S1 × S2) . (2.25)

We find the expected result: two antiferromagnetically coupled spins act on each other

as magnetic fields and move anti-parallel to each other. In other words, the two spins

will rotate around their common axis.

2.3 Dissipation

Having established the formalism and techniques for the modelling of spin dynamics,

in this section we will develop the Keldysh formalism to describe energy dissipation in

quantum field theory, and for spin systems in particular.

In short, the Keldysh formalism, in this thesis used in its functional form, is a

general framework for non-equilibrium field theory. Its main feature that makes treat-

ment of non-equilibrium systems possible is the closed-time contour. Where standard

field theory evaluates the evolution of a system from infinite past to infinite future,

Figure 5: Illustration of the Keldysh contour: starting in initial state ρ̂(−∞) at t = −∞,
the system is evolved with evolution operator Û to time t, where observable Ô is
measured. Then the system evolves to t = ∞, and subsequently it evolves backward to
the initial state at t = −∞. (figure from Kamenev 2011.)
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the closed-time contour additionally considers the backwards evolution from future to

past, creating a closed ‘time contour’, see figure 5. This involves doubling all degrees of

freedom in the system under consideration, as one splits the contour at t = +∞ into a

forward and backward evolution. The integral over this closed-time contour is denoted

as
∮
K
dt.

Although counter-intuitive, this backwards evolution is required for all field the-

ories, in principle. However, in standard equilibrium quantum field theory, all pertur-

bations are adiabatically switched on from the infinite past to time t, and in turn are

adiabatically turned off from time t to the infinite future. One assumes that the net

effect is that the system in the infinite future is back in its ground state; it has acquired

a phase factor at most. The backward evolution then is equivalent to accounting for this

phase factor, which is the same as removing the vacuum bubbles in the diagrammatic

approach (Kamenev 2011, p. 3).

Contrarily, in non-equilibrium quantum field theory, the perturbations are not

guaranteed to be adiabatic. As a consequence, even when the disturbance is turned

off, the system may end up in another state than the ground state at t = ∞. In other

words, the backward evolution must be included.

Dissipation of quantum systems can be treated in the Keldysh formalism by making

use of the Caldeira-Leggett approach. This is a method of treating quantum dissipation,

where the system is coupled to a reservoir of harmonic oscillators. Subsequently, these

oscillators are integrated out to obtain the effective dissipative dynamics of the system

in question (Caldeira and Leggett 1983). We will follow this approach for a macro-spin

S in a magnetic field.

First, we will derive the dissipative action for one spin S coupled to a bath of

harmonic oscillators. The significance of this example lies not so much in the physical

interest; rather, the techniques to be developed and objects to be defined will be used

extensively throughout the rest of this thesis.

The dynamics of each harmonic oscillator in the bath is governed by the familiar

Hamiltonian

Ĥα =
p̂2
α

2mα

+
mαω

2
α

2
x̂2
α . (2.26)

Here, mα en ωα are the mass and oscillation frequency of the oscillator α which has

momentum p̂ and position x̂. Energy dissipation of the spin Ŝ is described by minimal
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coupling of the spin to each of these bath particles:

Ĥc =
∑
α

γαŜ · x̂α , (2.27)

where γα is the coupling strength between oscillator α and the spin. Moreover, we

have to assume that there is coupling to some external field H, which in general can

be time-dependent. If there was not such a field, there would be no preferred (lowest

energy) direction of the spin and therefore no energy dissipation. For this purpose, it

is convenient to chose H = (0, 0, H)T with H positive. Note that this choice does not

lead to loss of generality; actually this external field fixes the z-direction and hence the

coordinate system. The total Hamiltonian then is given by:

Ĥ = −Ŝ ·H+
∑
α

γαŜ · x̂α +
∑
α

(
p̂2
α

2mα

+
mαω

2
α

2
x̂2
α

)
. (2.28)

Following the path integral procedure of previous section, we arrive at the Keldysh

partition function

Z[S,xα,pα] =

∫
dg

(∏
α

∫
dxαdpα

)
eiS . (2.29)

Note that the spin integral of previous section has to be combined with the standard

Feynman path integral over the phase space of all harmonic oscillators. The action is

S =

∮
K

dt

[
− i ⟨ġ|g⟩+S ·H−

∑
α

γαS ·xα−
∑
α

(
p2
α

2mα

+
mαω

2
α

2
x2
α − pαẋα

)]
, (2.30)

where the contour integral K refers to the Keldysh contour. As explained above, this

contour goes from the infinite past to the infinite future, and backwards to the infinite

past. Note that as a consequence of the path integral procedure, all operators turn into

their expectation value within the action. Given that the dependence on the momenta

is quadratic in the action, we recognise that its dependence in the path integral is

Gaussian and we can integrate them out, using the identity∫
dx√
2π
e−

1
2
xTAx+xT J =

e
1
2
JTA−1J

Det(A)
, (2.31)

where J is a vector and A a matrix with non-zero eigenvalues that have a non-negative
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real part. First, we perform the Gaussian integration over momenta to get

S =

∮
K

dt

[
− i ⟨ġ|g⟩+ S ·H−

∑
α

γαS · xα +
∑
α

mα

2

(
ẋ2
α − ω2

αx
2
α

) ]
. (2.32)

By partial integration, the dynamics of the oscillator α can be written as

mα

2

∮
K

dt
(
ẋ2
α − ω2

αx
2
α

)
=
mα

2

∮
K

dtxα
(
−∂2t − ω2

α

)
xα . (2.33)

Hence the dynamics of the oscillators can collectively be written in one propagator, that

we define as:

G−1
α (t) ≡ mα

2
((i∂t)

2 − ω2
α) . (2.34)

Inserting the propagator, the action acquires the form

S =

∮
K

dt

[
− i ⟨ġ|g⟩+ S ·H+

∑
α

[
−γαS · xα + xTαG

−1
α (t)xα

] ]
. (2.35)

In this form, it is apparent that the position-dependence of the harmonic oscillators in

the action is also quadratic. As a consequence, these degrees of freedom can also be

eliminated by a second Gaussian integration. This results in the dissipative action:

S =

∮
K

dt

[
− i ⟨ġ|g⟩+ S ·H+

∮
K

dt′S(t)α(t− t′)S(t′)

]
. (2.36)

In principle, this action describes the dissipative dynamics of the spin S. However, we

must investigate into the structure of the newly defined dissipation propagator α(t −
t′) to learn how energy dissipation affects the system exactly. First, the dissipation

propagator in eq. (2.36) is defined as

α(t− t′) = −1

4

∑
α

Gα(t− t′) , (2.37)

where Gα(t− t′) is an operator such that G−1
α (t) is its inverse. To find an explicit form

for the dissipation operator, we have to use the defining characteristic of the Keldysh

formalism; we have to analyse the behaviour of the propagator on the closed-time

contour.
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First, we split the Keldysh contour into its positive and negative time part, such

that we have

S =

∮
K

dtL =

∫ +∞

−∞
dtL+ +

∫ −∞

+∞
dtL− =

∫ +∞

−∞
dt[L+ − L−] , (2.38)

where L is the total Lagrangian. This is the above-mentioned doubling of degrees of

freedom: now for every dynamical quantity, for example the spin S, there appear two

quantities in the action: the forward quantity S+ and the backward quantity S−. Now

the crucial step to gain physical insight into this matter is to perform a Keldysh rotation

on all dynamical fields, again illustrated by the spin S:

Scl =
1

2
(S+ + S−) ,

Sq =
1

2
(S+ − S−) .

(2.39)

The first, Scl, is called the classical field, while the second, Sq, is refered to as the

quantum field. Moreover we redefine S ≡ (Scl,Sq)T and the same for all xα and H. In

other words, all quantities are defined in (cl, q)−space now. After this split, rotation,

and introduction of (cl, q)−space, the inverse propagator G−1
α has turned into a matrix

in (cl, q)−space:

G−1
α =

(
0 (G−1

α )A

(G−1
α )R (G−1

α )K

)
, (2.40)

where (G−1
α )K is the Keldysh part, which is a regularisation, whose specifics are not

relevant in our discussion at this stage. The advanced [retarded] part are given by

(G−1
α )R[A] = 1

2
mα((i∂t ± iη)2 − ω2

α). Here and in the following, the expressions are read

in upper signs (+) for the retarded part and lower signs (−) for the advanced part.

Furthermore, η = (2τ)−1 is the inverse mean lifetime of the bath modes and is assumed

to be infinitely small: it makes sure the Green’s functions evaluate the retarded and

advanced part of the trajectory. This infinitesimality is a consequence of the fact that

the bath modes are assumed to have infinite lifetime τ .

Implementing the Keldysh rotation, the action looks like

S = 2

∫ ∞

−∞
dt

[
− i ⟨ġ|g⟩+ STσ1H+ γ2

∫ ∞

−∞
dt′ST (t)α(t− t′)S(t′)

]
, (2.41)
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where σ1 =

(
0 1

1 0

)
is the first Pauli matrix, which is just a result of the Keldysh

rotation and the fact that we write all quantities in (cl, q)−space. In practice, this

means the dot product of two vector quantities multiply the quantum component of

the first with the classical component of the second and vice versa.

The object under investigation, the dissipation propagator, also has turned into a

matrix in (cl, q)−space and has the form

α(t− t′) =

(
0 αA(t− t′)

αR(t− t′) αK(t− t′)

)
. (2.42)

We are primarily interested in the explicit form of the retarded and advanced dissipation

propagator, as these parts contain the dissipative dynamics. (The Keldysh dissipation

propagator contains the fluctuation, that are necessarily present due to the dissipation-

fluctuation theorem.) Therefore, by eq. (2.37), we first have to find the explicit form

of Gα(t− t′). The Fourier transform of (G−1
α )R[A](t) is given by

(G−1
α )R[A](ω) =

mα

2

∫
dt
(
(i∂t ± iη)2 − ω2

α)
)
e−iωt =

mα

2
((ω ± iη)2 − ω2

α) (2.43)

Using eq. (2.37), the dissipation propagator αR[A](t− t′) in Fourier space then is

αR[A](ω) = −
∑
α

1

2mα

1

(ω ± iη)2 − ω2
α

. (2.44)

This is the explicit form we were looking for. We see that the propagator has a familiar

Green’s function structure and contains simple poles that depend on the oscillation

frequency of the bath particle. However, we are not so much interested in the specifics

of each particle on the spin system individually, as on the dissipative physics that the

bath creates as a whole. To this end, we introduce the spectral density function, defined

by

Jα(ϵ) = π
∑
α

γ2α
ωαmα

δ(ϵ− ωα) . (2.45)

This quantity can be understood as specifying ‘how much states there are at energy ϵ,

and how easy it is for the system to transfer energy to these states’. Making use of the

shifting property of the Dirac delta function, we can rewrite the dissipation propagator
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as an integral over energy:

αR[A](ω) = −
∫ ∞

0

dϵ

2π

ϵJα(ϵ)

(ω ± i0)2 − ϵ2
. (2.46)

The spectral density function specifies the type of bath we are considering. Given the

form of a certain spectral density, we can (depending on how nice the specific form

is) explicitly calculate the integral to find an closed-form expression for the dissipation

propagator.

In this thesis, we will model our bath as an Ohmic bath. This means the bath has

a linear spectral density, and in general will lead to linear dissipation terms in the quasi-

classical equations of motion. Hence it can be viewed as a first order approximation to

the bath behaviour. The spectral density function for an Ohmic bath is explicitly given

by

Jα(ϵ) = α0ϵΘ(ϵ) , (2.47)

where α0 is a proportionality constant and Θ(ϵ) is the Heaviside step-function, indi-

cating that we are only considering positive ϵ. Plugging this in to the equation of the

propagator, we get

αR[A](ω) = −α0

∫ ∞

0

dϵ

2π

ϵ2

(ω ± i0)2 − ϵ2
. (2.48)

This integral can be evaluated by complex integration, see appendix B. The result is

αR[A](ω) = ±1

2
iα0ω + αR[A](ω = 0) . (2.49)

The last term can be ignored: it is an ω-independent constant that does not contribute

to the dynamics (again, see appendix B). To find an explicit time-dependent solution,

we perform an inverse Fourier transform, giving

αR[A](t− t′) = F−1(αR[A](ω)) = ∓α0

2
δ(t− t′)∂t . (2.50)

This form of the dissipation propagator finally allows for evaluation inside the action.

For now, we ignore the contributions from the Keldysh part of the propagator, because

we are interested in the noiseless dynamics only. Alternatively, this disregard of fluc-

tuations can be understood as the first order approximation of the dynamics, as the

Keldysh part depends on the square of the quantum components (Kamenev 2011, p.34).

Note however that noiseless dynamics is not equal to the classical trajectory: not only
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quantum fluctuations are ignored; moreover, classical fluctuations as dictated by the

fluctuation-dissipation theorem also vanish (one should take the limit ℏ → 0 according

to (Kamenev 2011, section 4.1) to find the classical dynamics including fluctuations).

Inserting the resulting expression for the dissipation propagator gives us the action

S = −2

∫ ∞

−∞
dt
[
i ⟨ġ|g⟩ − Sσ1H− α0

2
SχṠ

]
. (2.51)

Here and in the following, χ =

(
0 1

−1 0

)
, where the minus sign comes from the sign

difference between αR(t− t′) and αA(t− t′). This matrix will always appear when these

propagators are evaluated. This matrix does not have a special physical value; it only

means the quantum component of S are multiplied with the classical component of Ṡ

and minus vice versa.

Let us rewrite the action now such that we can find the quasi-classical equations

of motion. First note that∫ ∞

−∞
dt
(
SχṠ

)
=

∫ ∞

−∞
dt
(
SclṠq −SqṠcl

)
=

∫ ∞

−∞
dt

d

dt

(
SclSq

)
− 2

∫ ∞

−∞
dtSqṠcl , (2.52)

where the first integral on the right hand side vanishes as it is a total derivative.

Furthermore, the Berry phase term is given by:

⟨ġ|g⟩ =
〈
ġ+
∣∣g+〉− 〈ġ−∣∣g−〉 = −iSiϕ̇+(1− cos θ+) + iSiϕ̇

−(1− cos θ−) . (2.53)

Then rotating to Keldysh space gives

⟨ġ|g⟩ = −2iS
[
ϕ̇cl sin θcl sin θq + ϕ̇q(1− cos θcl cos θq)

]
. (2.54)

Hence the action is given by

S = −2

∫ ∞

−∞
dt

[
i ⟨ġ|g⟩ − SqH+ α0S

qṠcl

]
. (2.55)

Note that by eq. (2.39) we have that Hq = 0 while Hcl = H. Straightforward calcula-
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tion gives the explicit forms of the classical and quantum fields:

Scl =
1

2
(S+ + S−) =

sin θcl cos θq cosϕcl cosϕq − cos θcl sin θq sinϕcl sinϕq

cos θcl sin θq cosϕcl sinϕq + sin θcl cos θq sinϕcl cosϕq

cos θcl cos θq

 ; (2.56)

Sq =
1

2
(S+ − S−) =

cos θcl sin θq cosϕcl cosϕq − sin θcl cos θq sinϕcl sinϕq

sin θcl cos θq cosϕcl sinϕq + cos θcl sin θq sinϕcl cosϕq

− sin θcl sin θq

 . (2.57)

The action explicitly written in Euler angle coordinates is given by:

S = −2

∫ ∞

−∞
dt

[
− S

[
ϕ̇cl sin θcl sin θq + ϕ̇q(1− cos θcl cos θq)

]
− SH sin θcl sin θq

+ α0S
2
[
sinϕq[θ̇q sin 2θcl sinϕq + ϕ̇cl cosϕq(cos 2θq − cos 2θcl)]

+ θ̇cl cos2 2ϕq sin 2θq
]] .

(2.58)

To derive the quasi-classical equations of motions, we can calculate the Euler-Lagrange

equations. However, in this formalism, when we wish to compute the equations of

motion for the classical coordinates (as opposed to the quantum coordinates), we should

vary the action with respect to the quantum coordinates and regard the quantum

fluctuations as small, i.e. setting the quantum coordinates to zero. This means the

quasi-classical equations of motion are given by calculating

0 =

(
d

dt

∂L

∂ϕ̇q
− ∂L

∂ϕq

)∣∣∣∣
ϕq=ϕ̇q=θq=θ̇q=0

(2.59a)

0 =

(
d

dt

∂L

∂θ̇q
− ∂L

∂θq

)∣∣∣∣
ϕq=ϕ̇q=θq=θ̇q=0

(2.59b)

Computation gives

θq : Sϕ̇ sin θ = −SH sin θ + α0S
2θ̇ (2.60a)

ϕq : Sθ̇ = −S2α0 sin θϕ̇ (2.60b)

These are the quasi-classical equations of motion for the spins, where we dropped the
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cl superscripts on the coordinates. To find a solution for Ṡ, we can write it again

according to eq. (2.22) and substitute the solutions to the Euler-Lagrange equations in

the vector:

Ṡ = S

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


θ̇ cos θϕ̇ sin θ

θ̇ sin θ



= SH

sin θ sinϕ

sin θ cosϕ

0

− S2

−θ̇ sinϕ− ϕ̇ sin θ cos θ cosϕ

θ̇ cosϕ− ϕ̇ sinϕ sin θ cos θ

ϕ̇ sin2 θ


(2.61)

We see that the first term is the cross product with the external field H = (0, 0, H), and

the second term is exactly the form of the cross product of S with its time derivative.

Therefore the resulting equation of motion is

Ṡ = S×H− α0S× Ṡ (2.62)

This is precisely what we would expect from a spin that dissipates energy: the first

term describes the rotation around the external field, while the second term describes

the alignment to the external field. In other words, we recovered the LLG-equation as

described in chapter 1, see eq. (1.1). However, this is only the quasi-classical limit of our

microscopic approach that in principle is able to describe the quantum dynamics of the

system; first, from the path integral, one can in principle derive quantum correlation

functions. Secondly, in the derivation of the quasi-classical equation of motion we

ignored the quantum and classical fluctuations in the system. Including these would

let us obtain a Heisenberg-Langevin equation.

From eqs. (2.25) and (2.62), we may see a pattern emerging: all quantities of which

the classical component multiplies the quantum component of the spin in the action (see

eq. (2.55)), turn into a cross product in the quasi-classical equation of motion. Indeed,

this is the case in general, the proof of which is included in appendix C. This simplifies

our derivation significantly: from now on, we may directly read off the quasi-classical

equations of motion from the action, without intervention of the Euler coordinates.
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2.4 Summary

In this chapter, we have constructed the mathematical formalism to describe dissipative

spin dynamics. First, in section 2.1 we derived the spin path integral for two spins,

eq. (2.12), by the use of spin coherent states. In section 2.2, we calculated the path

integral for the Heisenberg Hamiltonian specifically, which in the quasi-classical limit

indeed reproduces the expected equations of motion for two antiferromagnetically cou-

pled spins. Then in section 2.3, we included dissipation to the formalism by considering

the spin path integral within the Keldysh formalism, in order to couple the system to

its environment according to the Caldeira-Leggett approach. By integrating out the de-

grees of freedom of the bath, we obtained a dissipative action from which we recovered

the Gilbert damping term in the quasi-classical limit. Here, we made some important

assumptions: first, we have modelled the bath by a collection of non-interacting har-

monic oscillators. Second, we assumed that the bath obtains a Ohmic energy spectral

density in the continuum limit. Third and lastly, we have ignored the Keldysh part of

the bath propagator, which includes the quantum and classical fluctuations.

With this formalism, we can model the dissipative dynamics of interacting spin

systems. In the next chapter, we will use this to model two-sublattice antiferromagnets

and to describe their dissipative dynamics.
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3 Dissipative Spin Systems

In the previous chapter, we considered a system of two interacting spins. In this section,

we will submerge this system into a thermal environment; in other words, we will

model the dissipation of such a system. Dissipation is introduced into the system by

the coupling to a surrounding thermal bath of harmonic oscillators, according to the

Caldeira-Leggett method, which was also developed in the previous section.

However, it is not immediately clear how this coupling should be constructed in the

case of two interacting spins. One of the possible approach es is to view the two spins as

independent dissipative systems. This means each spin has its own thermal surrounding

to which energy is dissipated. Therefore, energy dissipation of the total system would

be modelled as the dissipation of the first spin in one bath, and of the second spin

in another bath. Hence this approach requires the presence of two different baths.

This scenario is potentially applicable to synthetic antiferromagnets, where often the

sublattices are separated by a magnetically neutral metal.(Duine et al. 2018) Depending

on the properties of this barrier, the environments of the two spins may be different to

certain degrees in such systems. Furthermore, this model may be applicable to bilayer

Van der Waals magnets, where each magnetic layer has its own thermal environment.

Another approach would be to couple the entire system to a single thermal bath.

That implies that the spins will be in the same environment, since they are coupled

to the same particles. For instance, this could be a model to approximate the system

of crystalline two-sublattice antiferromagnet, where one material (the antiferromagnet)

is modelled as two interpenetrating sublattices. Hence, the assumption of a common

thermal bath can be justified by the (close to) identical spatial and thermodynamical

properties of the two sublattices.

In the following subsections, we will consider both possibilities. In section 3.1,

we will derive the quasi-classical equations of motions for a system where each spin is

coupled to a separate environment, while in section 3.2, we calculate the equations of

motion for the system where both spins are coupled to the same bath.

3.1 Separated thermal baths

We consider the two-spin system of section 2.1 where each spin is coupled to a thermal

bath and these baths are separate; this means we assume there is no connection between

the environment of S1 and S2. In other words, the Hamiltonian of the baths will consists
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Figure 6: Diagrammatic representation of the separated bath model. Spins S1 and S2

dissipate energy into their own bath, denoted by α and β respectively. The constants
γ1 and γ2 are the coupling strengths to the baths.

of two collections of oscillators:

ĤHO =
∑
α

(
x̂2
α

2mα

+
mαω

2
α

2
x̂2
α

)
+
∑
β

(
p̂2
β

2mβ

+
mβω

2
β

2
x̂2
β

)
, (3.1)

where the oscillators labelled by α will couple to Ŝ1 and the β-oscillators will couple to

Ŝ2. In turn, the coupling between the spins and the bath is given by

Ĥc =
∑
α

γ1,αŜ1 · x̂α +
∑
β

γ2,βŜ2 · x̂β . (3.2)

Note that the two spins are able to have different coupling constants with respect

to their bath. In the Hamiltonian and action, we will suppress the presence of an

external field H for notational ease. Although in general it will be there, from the

previous section we already know the dependence of the (quasi-classical) dynamics of

the spins on such fields, and dissipation does not affect this. Hence, we can add a term

Si×H in the equation of motion of spin i in the end without calculation. Furthermore,

the same reasoning is true for ĤS, the spin interaction Hamiltonian, which is given

by eq. (2.16), of which we know it will contribute a term ±S1 × S2 in the dynamical

equations. Consequently, the remaining relevant part of the Hamiltonian for calculating

the dissipative properties of the separate bath model is given by Ĥ = ĤHO + Ĥc.

Substituting the total Hamiltonian in the action (see eq. (2.12)), we find that the



3 DISSIPATIVE SPIN SYSTEMS 27

action is given by

S =

∮
K

dt

[
− i ⟨ġ1|g1⟩ − i ⟨ġ2|g2⟩ −

∑
α

γ1,αS1 · xα −
∑
β

γ2,βS2 · xβ

+
∑
α

(
xTαG

−1
α (t)xα

)
+
∑
β

(
xTβG

−1
β (t)xβ

)]
.

(3.3)

The action now contains the Berry connection of each spin, the spin-spin coupling, the

two spin-bath couplings, and finally the two ensembles of harmonic oscillators. Note

that the momentum dependence is already integrated out in the exact same way as in

the previous section. This system is diagrammatically illustrated in figure 6. Just like

in section 2.3, we can integrate out all degrees of freedom of the baths. Since the baths

are not connected, we can just perform this procedure twice: once for each bath. This

results in the action

S = 2

∫ ∞

−∞
dt

[
− i ⟨ġ1|g1⟩ − i ⟨ġ2|g2⟩+

∫ ∞

−∞
dt′S1(t)α(t− t′)S1(t

′)

+

∫ ∞

−∞
dt′S2(t)β(t− t′)S2(t

′)

]
,

(3.4)

where α(t−t′) is defined in eq. (2.37) and β(t−t′) is analogous with index replacements

α → β. Due to the difference in coupling constants between γ1,α and γ2,β, α and β

are in general not the same. As in section 2.3, we assume that both baths have an

Ohmic spectral density and that again the quantum corrections are small. Hence we

can immediately write down the action:

S = −2

∫ ∞

−∞
dt

[
i ⟨ġ1|g1⟩+ i ⟨ġ2|g2⟩+ α0S

q
1Ṡ

cl
1 + β0S

q
2Ṡ

cl
2

]
. (3.5)

Here, we already performed the integration by parts according to eq. (2.52). Making

use of appendix C, we can write down the equations of motion directly:

Ṡ1 = S1 ×H− JS1 × S2 − α0S1 × Ṡ1 , (3.6a)

Ṡ2 = S2 ×H− JS2 × S1 − β0S2 × Ṡ2 . (3.6b)



3 DISSIPATIVE SPIN SYSTEMS 28

Note that we recovered the presence of the external field H and the spin interaction

term that we suppressed earlier for convenience. We find two LLG-equations where

the spins act upon each other as external field, although with a minus sign; this is the

anti-ferromagnetic interaction. The interaction terms are not affected by the presence

of dissipation in the system. Due to the fact that each spin is coupled to a different

bath, the proportionality constants of their Gilbert damping term are in general not

equal to each other.

3.2 Shared thermal bath

Now we will derive the quasi-classical equations of motion for the case that the subsys-

tems S1 and S2 are coupled to one single bath, that is, their thermal environment is

completely identical. This system is diagrammatically presented in figure 7.

As in the previous section, we will suppress the coupling to the external field and

the spin interaction in the Hamiltonian, to only recover these terms in the dynamical

equations. Hence, the relevant Hamiltonian of this system consists of the dynamics

of the harmonic oscillators and the coupling between the spins and the bath: Ĥ =

ĤHO + Ĥc. The harmonic oscillator Hamiltonian is now given by:

ĤHO =
∑
α

(
p2
α

2mα

+
mαω

2
α

2
x2
α

)
, (3.7)

The crucial difference with the previous approach is that there is only a single bath

now; the α-oscillators couple to both Ŝ1 and Ŝ2 equally. Hence the coupling between

the spins and the bath is given by

Ĥc =
∑
α

γα

(
Ŝ1 · xα + Ŝ2 · xα

)
. (3.8)

We now want to compute the action for our total Hamiltonian. This is carried out

analogously to the case for separate baths, by substituting the Hamiltonian in the

action:

S =

∮
K

dt

[
− i ⟨ġ1|g1⟩ − i ⟨ġ2|g2⟩ −

∑
α

[
γα

(
Ŝ1 + Ŝ2

)
· xα − xαG

−1
α (t)xα

] ]
. (3.9)

When we will perform a Gaussian integration over the oscillator positions now, we see

we have to treat the sum of the two spins as one object now. By Gaussian integration,
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Figure 7: Diagrammatic representation of the shared bath model. Spins S1 and S2

dissipate energy into their shared bath, denoted by α. The constant γ is the coupling
strength to the baths.

we get:

S =− 2

∫ ∞

−∞
dt i ⟨ġ1|g1⟩+ i ⟨ġ2|g2⟩

+ 2

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ (S1(t) + S2(t))α(t− t′) (S1(t

′) + S2(t
′)) ,

(3.10)

where we also split the Keldysh contour and rotated to (q, cl)-space. This means the

propagator α(t− t′) now couples the spins dissipatively to themselves, but also to each

other. Figure 7 illustrates the dissipative structure of this action: from the figure as well

as from the action it is evident that S1 and S2 are coupled to the bath in an identical

matter. Assuming the bath is Ohmic, and using the results of the previous chapter, we

arrive at the action

S = −2

∫ ∞

−∞
dt

[
i ⟨ġ1|g1⟩+ i ⟨ġ2|g2⟩+ α0

(
Sq1Ṡ

cl
1 + Sq2Ṡ

cl
2 + Sq1Ṡ

cl
2 + Sq2Ṡ

cl
1

)]
. (3.11)

Again we can directly read off the equations of motion by employing the result of

appendix C. The full equations of motion for two spins coupled to the same environment,

including the spin interaction and coupling to the external field, are

Ṡ1 = S1 ×H− JS1 × S2 − α0S1 × Ṡ1 − α0S1 × Ṡ2 (3.12a)

Ṡ2 = S2 ×H− JS2 × S1 − α0S2 × Ṡ2 − α0S2 × Ṡ1 (3.12b)

Comparing to the result of previous section, we see that sharing the same bath actually

makes a truly significant difference: although the first two terms are identical to the

case for seperate baths (when α0 = β0), now additional inter-sublattice damping terms
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have appeared in the equations of motion.

3.3 Bath comparison and analysis

In the previous two sections, we calculated the dynamical equations for two different

systems: first for the system where two interacting spins are each coupled to their own

bath, and second for the system where two interacting spins are both coupled to the

same single bath. The most apparent and significant result is the difference in presence

of the inter-sublattice damping terms; only for the shared bath they occur. In this

section we will further analyse this significant structural difference. First, we will take

a different perspective by translating the problem into terms of the magnetisation and

the Néel order. Then, we will consider the consequences of the combination of both

models, which will naturally lead to the third point, which is the comparison to the

phenomenological approach, discussed in section 1. Lastly, we will shortly discuss how

the bath model may be advanced into a more realistic description of the environment.

3.3.1 Magnetisation and Néel order

More insight in the physical properties of both systems can be obtained when we rewrite

the solutions into the average magnetisation M = (S1 + S2)/2 and the Néel order

N = S1 − S2.

For the separate bath, the quasi-classical equations of motion in terms of the

magnetisation and the Néel order are given by

Ṁ =− α0 + β0
2

(M× Ṁ+
1

4
N× Ṅ) +

α0 − β0
4

(M× Ṅ−N× Ṁ) +M×H

(3.13a)

Ṅ =− (α0 − β0)(M× Ṁ+
1

4
N× Ṅ) +

α0 + β0
2

(M× Ṅ−N× Ṁ) , (3.13b)

+N×H− 2JN×M .

It seemed we have worsened the situation: it is hard to derive a picture of the general

dynamics of the system from these equations. In order to compare the separate bath

model to the shared bath model, and to achieve more insight in these equations of

motion, let us assume that the energy spectral density of the baths α and β are the same,

that is α0 = β0. This assumption corresponds to the assumption of symmetry under

sublattice permutation, that is, the assumption that the system behaves equivalent
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when the sublattices are interchanged.

Alternatively this assumption may be understood as follows: the terms remaining

in the equations after assuming α0 = β0 are the strongest contributions to the general

dynamical equations (3.13) in the case that the environment of the sublattices is similar,

although not identical. In other words, we assume that the spectral density J(ϵ) of the

two baths are (close to) equal.

Under the assumption α0 = β0, the equations of motion reduce to

Ṁ = −α0(M× Ṁ+
1

4
N× Ṅ) +M×H , (3.14a)

Ṅ = −α0(M× Ṅ+N× Ṁ)− 2JN×M+N×H . (3.14b)

From this form of the equations, the dynamics become apparent. The magnetisation

evolves according to a Gilbert damping term, a Néel vector Gilbert damping term

and the precession around the external field. The Néel Gilbert damping term will

generally be an anti-damping term, since it points roughly in the opposite direction

of the magnetisation Gilbert damping. The Néel order on the other hand does not

obtain a Gilbert damping term, but terms that depend on both the magnetisation and

the Néel vector, and their time derivatives. Moreover, the Néel order does not only

precess around the external field, but additionally around the magnetisation through

the Heisenberg coupling.

Straightforward calculation gives the equations of motion for the magnetisation

and Néel vector for the shared bath model:

Ṁ = −2α0M× Ṁ+M×H , (3.15a)

Ṅ = −2α0N× Ṁ− 2JN×M+N×H . (3.15b)

Comparing to the quasi-classical eqs. (3.14 for the separate bath model, we see the

consequence of the presence of inter-sublattice damping terms in the shared bath model:

the dynamics of the average magnetisation do not depend on the Néel vector at all now.

The only contributions to the dynamics are the rotation around the external field and

a Gilbert damping term, that aligns the magnetisation with an external field. In short,

the dissipative dynamics of the magnetisation obey the LLG-equation. Contrarily, the

Néel vector does not obtain a Gilbert damping term. Together with the precession

around the external field and the magnetisation vector, there is a term −2α0N × Ṁ,
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that is clearly induced by the bath. However, this is not a dissipative term in the sense

that it pushes the Néel vector to equilibrium. One way to see this, is to insert the

dynamic equation for the magnetisation into the bath-induced term. Using the triple

product expansion, we find that

N× Ṁ = N×
(
− 2α0M× Ṁ+M×H

)
= −2α0

(
(N · Ṁ)M− (N ·M)Ṁ

)
+
(
(N ·H)M− (N ·M)H

)
= −2α0(N · Ṁ)M+ (N ·H)M ,

(3.16)

where in the last line, two terms vanished by the fact that M and N are perpendicular

when |S1| = |S2|, which is the case for antiferromagnets. As a consequence, the bath-

induced term in the Néel vector dynamics always moves the Néel vector according

to the direction of the magnetisation. Effectively this amounts to a deviation of the

Néel vector, where the magnitude of deviation (from its ‘dissipation-free position’; the

position without the bath-induced term) is determined by α0 and the strength and

direction of the external field H. This type of movement is also known as nutation:

where precession is the change of the Euler angle ϕ (see figure 4 for reference), nutation

is the change of the angle θ, which results in a typical ‘wobbly’ motion, see figure 8.

However, these additional dynamics do not have a net effect of bringing the Néel vector

closer to equilibrium. In other words, the bath-induced term is not a dissipative term.

Furthermore, upon relaxation, the magnitude of the nutation will reduce to zero.

This can be seen from the equations of motion (3.15): the magnetisation relaxes to its

equilibrium state (alignment with the external field) and hence it will stop precessing.

As a consequence Ṁ goes to zero and in turn the bath-induced term in eq. (3.15b)

becomes zero; the nutation fades away. Because the Néel vector does not have a dissi-

pative term, it will stay in precession around the external field and the magnetisation

vector.

Remarkably, the Néel vector has turned out to be a dissipation-free mode in the

shared bath model. For the separate bath model, there is no such dissipation-free mode;

even when the two baths are similar (α0 = β0), the extra terms in eqs. (3.14) still lead

to dissipation of the Néel vector. This interesting result will be the subject of next

chapter, in which we will generalise it.
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Figure 8: The effect of dissipation on the Néel vector in the shared bath model: subfigure
(a) illustrates the precessing motion around H as a consequence of the last term in eq.
(3.15b). Subfigure (b) shows the effect of the bath-induced term, which is, according to
eq. (3.16) to always change the Néel vector according to the magnetisation. Combining
these effects, subfigure (c) gives the resulting nutation-like behaviour. Note that for
simplicity of the figure, we omitted the dynamics given by the second term in eq.
(3.15b), which is the preciesion of the Néel vector around M. Quantities are not to
scale.

3.3.2 Three baths

As we discussed above, both the shared bath model and the separate bath model are

ideal cases: in real systems the sublattices probably will have some thermal contact,

but do also not have a completely shared bath. Therefore, a more general model can

be constructed by the combination of above models. In other words, we consider a

system where each spin has its own thermal bath, denoted by α and β for S1 and S2

respectively, and a shared bath, now denoted by κ; see figure 9. The calculation of the

action follows quite trivially from the composition of the previous approaches. Ignoring

the non-dissipative terms for the moment, the dissipative action for this system is

Sdiss = 2

∫ ∞

−∞
dt

∫ ∞

−∞
dt′

[
(S1(t) + S2(t))κ(t− t′) (S1(t

′) + S2(t
′))

+ S1(t)α(t− t′)S1(t
′) + S2(t)β(t− t′)S2(t

′)

]
.

(3.17)

Here, the separated baths are denoted by α and β in accordance to section 3.1. The

shared bath propagator is denoted by κ and likewise the proportionality constant of

the energy spectral density is κ0.
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Figure 9: Diagrammatic representation of the three-baths model. Spins S1 and S2

dissipate energy into their own bath, which are denoted by α and β respectively. In
addition, they share the third bath denoted by κ. The constants γ, γ1 and γ2 are the
coupling strengths to the baths.

The equations of motion for this system are a straightforward combination of the

equations of motion for the separated bath and the shared bath:

Ṡ1 = S1 ×H− JS1 × S2 − (κ0 + α0)S1 × Ṡ1 − κ0S1 × Ṡ2 (3.18a)

Ṡ2 = S2 ×H− JS2 × S1 − (κ0 + β0)S2 × Ṡ2 − κ0S2 × Ṡ1 (3.18b)

The structure of these equations is as expected from the previous two sections: while

the separate baths are only contributing to the Gilbert damping, the shared bath also

contributes the inter-sublattice damping terms. Stated differently, the three bath model

is a generalisation of the previous two models to which the latter are special cases. To

illuminate on this point, we will assume sublattice symmetry again, such that α0 = β0.

Then, we define the bath parameter

ξ ≡ κ0
α0 + κ0

. (3.19)

This parameter is interpreted as a measure for how much of the environment is shared

between the sublattices and it ranges from 0 to 1. When κ0 = 0, ξ = 0 and the model

describes fully separated baths. On the contrary, the model describes a shared bath

model when α0 = 0, which means ξ = 1.
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3.3.3 Comparison to the phenomenological approach

Using the definitions established above, we may rewrite the dynamical equations into

Ṡ1 = −JS1 × S2 − α
(
S1 × Ṡ1 + ξS1 × Ṡ2

)
, (3.20a)

Ṡ2 = JS1 × S2 − α
(
S2 × Ṡ2 + ξS2 × Ṡ1

)
, (3.20b)

where α = κ0 + α0 is the phenomenological damping parameter that quantifies all

damping terms and ξ = αc/α is the inter-sublattice damping parameter.

Comparing to the phenomenological equations (1.4), it may be noted that ξ = αc/α

and hence the bath parameter is equivalently interpreted as the system’s amount of

inter-sublattice damping, relative to the amount of Gilbert damping. As ξ is also the

measure for how much the bath is shared, this parameter eminently illustrates that in

the current microscopic approach, the inter-sublattice damping terms in antiferromag-

netic dissipative dynamics is due to the bath structure of the system.

Quantitatively, the model predicts that in general, the inter-sublattice damping

will never be greater than the Gilbert damping terms. This stems from the fact that

in the shared bath model, these contributions are equal, and the separate bath model

does only contribute to the Gilbert damping.Both models are not only the limits of

the three-baths model, but also are special cases of the phenomenological equations as

presented in section 1. The shared bath is the special case that α = αc (as for example

used by (Baryakhtar and Danilevich 2015)), while the separate bath model is the special

case that αc = 0 and α finite, as used by (Kittel 1951).

The equations of motion for the average magnetisation and Néel vector are given

by

Ṁ = −α(1 + ξ)M× Ṁ− α(1− ξ)

4
N× Ṅ+M×H ; , (3.21a)

Ṅ = −α(1− ξ)

2
M× Ṅ− α(1 + ξ)

2
N× Ṁ− 2JN×M+N×H , (3.21b)

where we used the relation αm = (α + αc)/2 = α(1 + ξ)/2 and αn = (α − αc)/2 =

α(1− ξ)/2.

From first principle calculations it was shown that in several crystalline antifer-

romagnets the magnetisation damping is 1 to 3 orders of magnitude bigger that the

Néel damping (H. Y. Yuan, Z. Yuan, et al. 2021). In terms of the bath parameter, this
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damping ratio is in our model given by

αm
αn

=
1 + ξ

1− ξ
. (3.22)

Hence, we see that indeed the damping ratio is determined by the bath structure, and

that its value increases when ξ goes to 1, that is, when the bath is increasingly shared.

Even more, we may invert this expression to find the bath parameter when the damping

ratio of a particular antiferromagnet is known:

ξ =
αm

αn
− 1

αm

αn
+ 1

=
αm − αn
αm + αn

≈ 1− 2
αn
αm

, (3.23)

where the approximation is valid when αm/αn ≫ 1. This shows that the bath structure

asymptotically approaches a shared bath when the damping ratio increases.

In our model, we can calculate the energy dissipation rate by making use of the

phenomenological theory presented in chapter 1. For the three-baths model, the energy

dissipation rate is given as function of the bath parameter by

Ė(ξ) = 2α(1 + ξ)Ṁ2 + α
1− ξ

2
Ṅ2 . (3.24)

Again it becomes clear that in the shared bath model (ξ = 1) no energy dissipation

rate is due to the Néel vector. This will be further discussed in the next chapter.

3.3.4 Advanced bath models

The three-baths model presented above accounts, by its ability to describe any com-

bination of the shared and separate baths, for a very wide range of phenomenological

dynamics. It is also possible to include some time dependence in the bath parameter

ξ(t) to account for baths for which the coupling to the system is time-dependent. Nev-

ertheless, the fact remains that this model is a basic approximation to the behaviour

of thermal baths in real systems.

One of the simplifying assumptions that are implicitly made in the derivation of

the shared bath model as well as the separate bath model is the ‘ideal’ behaviour of

the baths; we assume there is no interaction between the bath oscillators themselves.

However, in real systems, the bath is not composed of abstract harmonic oscillators, but

it consists for instance of electrons or phonons, or any other (quasi-)particles. These
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baths will in general have some self-interaction; moreover they are themselves coupled

to other modes in the system.

Of course the goal of our model is not to describe all the interactions of all excita-

tions in the system; here, we are mainly interested in the dissipation of the antiferro-

magnetic parameters. However, taking into account further interactions in the system,

it may be the case that in the separate bath model, inter-sublattice damping terms still

will appear due to the coupling of the baths themselves. In other words, this possibility

can be explored in first approximation by coupling the baths in the separate model.

Although an extensive account of these considerations does not serve the goal of this

thesis, an introduction into this model (and its problems) is given in appendix D.

3.4 Summary

In this section, we have investigated into a microscopic model for the dissipation of

two-sublattice antiferromagnets. The first important result is that in our model, the

phenomenologically predicted inter-sublattice damping terms have their physical origin

in the presence of a shared thermal environment between the sublattices. Secondly,

the most general model we considered is presented in section 3.3.2 and consists of the

system coupled to three baths: both sublattices are coupled to a shared bath, while

each sublattice is also coupled to its own bath. Within this model, we have defined

the bath parameter ξ that indicates how much the environment is shared between the

sublattices. Furthermore, this parameter was then related to the damping ratio within

real antiferromagnets in eq. (3.23), which quantitatively states the hypothesis we estab-

lished: the dissipative behaviour of the modes within the two-sublattice antiferromagnet

is determined by the system-bath structure.
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4 Dissipation-Free Modes

The results in this chapter were partly published in Seters et al. 2022.

In section 3.3.1 we recognised that in the shared bath model, the Néel vector actu-

ally does not contribute to the dissipation of the system. This result is also clear from

eq. (3.24), where Ė(1) does not depend on the Néel order. It is important to notice

that this result is unique for ξ = 1; in other words, the dissipation-free Néel order does

not occur in any other system than the shared bath model. Reversely, it may be argued

that the occurrence of such a dissipation-free mode is not a unique property of two-

sublattice anti-ferromagnets, but that it is a consequence of the shared bath structure

itself, regardless of the specific system. In this section, we will explore this hypothesis

and argue that there will be a dissipation-free mode when identical subsystems couple

according to the shared bath model. Additional conditions that must be satisfied will be

specified in the course of the argument.

To demonstrate that the presence of dissipation-free modes is a property peculiar

to the shared bath model, we will consider the dynamics of two dissipating interacting

(bosonic) particles in the Keldysh formalism. From this, we will recover a dissipation-

free mode of the system. Afterwards, we illustrate why one can (in hindsight) expect a

dissipation-free mode in the shared bath model, and lastly, we discuss how the results

in this chapter may be applied in experimental situations to engineer low-dissipation

modes.

4.1 Dissipation-free modes for two coupled particles

First, we will show that in a system of two coupled quantum particles that dissipate

energy into a single shared bath, a dissipation-free mode like the Néel vector for the

antiferromagnet will exist. For this purpose, we consider the Hamiltonian

Ĥo =
p̂21
2m

+
p̂22
2m

+ V (q̂1, q̂2) , (4.1)

where q̂1, p̂1 and q̂2, p̂2 are the positions and momenta of the two particles, respectively.

For now, the potential V (q̂1, q̂2) is very general; it may include any position-dependent

one-particle potentials and any interaction potential. Just like for the antiferromagnetic

systems in previous sections, dissipation of this composite system will be modelled by
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the coupling to an environment, described as a collection of harmonic oscillators. This

coupling consists of the subsystems each coupling to their shared thermal bath, since

this is the bath structure in which we expect dissipation-free modes to arise. The bath

Hamiltonian is given by

Ĥb =
∑
i

(
p̂2i
2mi

+
miω

2
i

2
x̂2i

)
, (4.2)

and the coupling of the system to the bath by

Ĥc =
∑
i

γi x̂iq̂1 +
∑
i

γi x̂iq̂2 . (4.3)

In analogy to previous sections, we will construct a path integral within the Keldysh

formalism. In this case however, we deal with the more familiar Feynman path integral

over positions of the particles, Z =
∫
Dq1Dq2 exp[iS], where the Keldysh action is given

by

S =

∮
K

dt
(m
2
(q̇21 + q̇22)− V (q1, q2)

)
+

∮
K

dt

∮
K

dt′
(
q1(t)+q2(t)

)
α(t−t′)

(
q1(t

′)+q2(t
′)
)
.

(4.4)

The first part of this action is recognised as the ‘non-dissipative Lagrangian’ L = T−V ;

it is simply the kinetic energy minus the potential energy of the particles. The second

part of the action we will refer to as the dissipative part of the action, where we already

integrated out all bath degrees of freedom according to section 2.3, see the derivation

from eq. (2.31) to eq. (2.36). The propagator α(t − t′) here is exactly the same

dissipation propagator as defined in eq. (2.37). This is no surprise, since we have

integrated out the same type of bath as in section section 2.3 and the coupling of the

subsystems to the bath is analogous.

From the action, we can already guess the form of the dissipation-free mode that

will appear: the dissipative part of the action only depends on the linear combination of

coordinates q1+q2. Therefore, we define the change in coordinates to the centre-of-mass

coordinate Q and the relative coordinate q as

Q =
q1 + q2

2
,

q = q1 − q2 .
(4.5)
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Note that mass m does not appear in these definitions, since we assume the mass of

both particles are equal. We call these coordinates the eigenmodes of the system.

Rewriting the action in the newly defined coordinates, we get

S =

∮
K

dt

(
m

2
(2Q̇2 +

1

2
q̇2)− V̄ (Q, q)

)
+

∮
K

dt

∮
K

dt′Q(t)α(t− t′)Q(t′) , (4.6)

where V̄ (Q, q) = V (Q + q/2, Q− q/2). Clearly, the dissipative part of the action only

depends on the centre-of-mass coordinate of the system. To derive the quasi-classical

equations of motion, we first rewrite the action according to the Keldysh rotation into

classical and quantum components:

S = 2

∫ ∞

−∞
dt

(
m

2
(2Q̇clQ̇q +

1

2
q̇clq̇q)− 1

2

(
V̄ (Qcl +Qq, qcl + qq)− V̄ (Qcl −Qq, qcl − qq)

))
+2

∫ ∞

−∞
dt

∫ ∞

−∞
dt′
(
Qcl(t)αA(t− t′)Qq(t′) +Qq(t)αR(t− t′)Qcl(t′)

)
,

(4.7)

where we used the fact that in the Keldysh rotation, the dissipation propagator obtains

the form given by eq. (2.42). Here we disregarded the effect of the Keldysh part of

the dissipation propagator. As specified above, the (cl)-coordinates specify the quasi-

classical dynamics, which are found by taking the variation of the action with respect

to the quantum components, and setting the quantum components to zero afterwards.

This procedure results in the following quasi-classical equations of motion:

mQ̈(t) = −1

2

∂

∂Q
V̄ (Q, q)−

∫ ∞

−∞
dt′αR(t− t′)Q(t′) ; (4.8a)

mq̈(t) = −2
∂

∂q
V̄ (Q, q) . (4.8b)

Indeed, the effect of dissipation is only present in the quasi-classical equation for Q(t);

we recognise Newtons second law F = ma in both equations, with an additional bath-

induced term in the first equation.

If we would choose the bath to be Ohmic (J(ϵ) = α0ϵ), as we did in the anti-

ferromagnetic case, we would find a linear dissipation term −α0Q̇(t) that for example

characterises the dissipation associated with Brownian motion (Caldeira and Leggett

1983). However, as is clear from the structure of the equations, the fact that only the

centre-of-mass coordinate is affected by the dissipation within the system is not at all
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dependent on the choice of bath.

Nevertheless, on closer inspection it is not ensured that the relative coordinate q is

indeed entirely unaffected by the dissipation of the system. Since the potential V̄ (Q, q)

is allowed to include interaction terms, it may be possible that the term ∂V̄ (Q, q)/∂q(t)

depends on Q (the simplest example being V̄ ∼ qQ). Therefore, we find a restriction

on the space of possible systems that can obtain a dissipation-free mode: the potential

must be separable in its eigenmodes according to

V̄ (Q, q)
!
= V̄ (Q) + V̄ (q) = V ((q1 + q2)/2) + V (q1 − q2) . (4.9)

In other words, the relative coordinate will still obtain indirect dissipation when it

is coupled to the centre-of-mass coordinate through the potential. This requirement

of separability on the potential can be viewed as the requirement that the system’s

dynamics can be decomposed in an ‘extrinsic motion‘ (centre-of-mass) and an ‘intrinsic

motion’ (relative).

In multiple systems this is indeed the case. For example, one may consider two

identical linearly-coupled harmonic oscillators. Their potential is given by V (q1, q2) =

mω2
0q

2
1+γq1q2+mω

2
0q

2
2, and one can rewrite this into the centre-of-mass coordinate and

the relative coordinate as V̄ (Q, q) = (2mω2
0 + γ)Q2 + (mω2

0/2 − γ/4)q2. Furthermore,

if systems are coupled through a spring-like potential V (q1, q2) = k(q1 − q2)
2 this can

be written in terms of the relative coordinate as V (q) = kq2. Also inverse distance

potentials, such as the gravitational and Coulomb potential are trivially rewritten into

a potential of the relative coordinate only.4

Hence, the main concern is to write the non-interacting dynamics in terms of the

eigenmodes; the terms that describe the one-particle dynamics must be expressible in

the composite eigenmodes Q and q nevertheless. From above discussion it is already

clear that, for the kinetic energy to be separable, we require that both subsystems

have identical mass. For the one-particle potential of each subsystem, more nuanced

conditions hold, see appendix E.

4It is in this context worth mentioning that the Heisenberg Hamiltonian we used in the case of
antiferromagnets also satisfies eq. (4.9): JS1 · S1 = J(M ·M− 1

4N ·N).
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Figure 10: Illustration of dissipative and dissipation-free modes for two coupled oscilla-
tors (illustrated as pendulums). The bath degrees of freedom are illustrated by the grey
ball and the linear oscillator-to-bath coupling is illustrated by springs. The oscillation
is between upper and lower figures. Oscillations of the centre-of-mass coordinate (a)
exert a force (black arrows) onto the bath degrees of freedom and, in turn, dissipates
energy by exciting bath modes. In contrast, in relative coordinate oscillations (b) the
forces on the bath modes balance each other and, in turn, the bath modes are not
excited and no energy is dissipated. (Figure adopted from Seters et al. 2022)

4.2 Physical intuition on the dissipation-free modes

Both in section 3.2 and section 4.1, we found a dissipation-free mode when dissipation

is modelled by the coupling to a thermal bath that is shared by both subsystems.

From the second of these, one may develop a physical intuition on the nature of these

dissipation-free modes. After all, we have proved that under certain (ideal) conditions,

these dissipation-free modes exist, but the physical understanding remains to be shown.

In order to do so, it is useful to interpret the particles of previous subsection

as being coupled (classical) pendulums. The calculation of the dynamics of two (non-

dissipative) coupled pendulums is a popular problem and often involves the introduction

of an in-phase coordinate and an out-of-phase coordinate to decouple the dynamical

equations. Not coincidentally do these coordinates correspond to the centre-of-mass

coordinate and the relative coordinate introduced here, respectively.

Interpreting the centre-of-mass dynamics as in-phase motion, it becomes clear why

this is the dissipative mode: both pendulums move in unison, exerting always an equally

directed force onto each bath oscillator to which they are both coupled (i.e. all the

oscillators in the shared bath). As a consequence, this mode loses energy to the bath.

The out-of phase motion on the other hand corresponds to the oppositely directed
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Figure 11: Illustration of dissipative and dissipation-free modes for two coupled spins;
for z-components only. The bath degrees of freedom are illustrated by the grey ball and
the linear spin-to-bath coupling is illustrated by springs. The motion of the average
magnetization (a) exerts a force (grey arrows) onto the bath degrees of freedom and,
in turn, dissipates energy by exciting bath modes. In contrast, the motion of the Néel
vector (b) does not excite the bath, as forces exerted onto the bath degrees of freedom
always balance each other; in turn, the Néel vector is a dissipation-free mode. (Figure
adopted from Seters et al. 2022)

movement of the pendulums. This amounts to a net force of zero onto each bath

oscillator; the forces are always equal but opposite in direction. In other words, the out-

of-phase motion cannot lose any energy to a bath oscillator to which both pendulums

are coupled in equal strength (again: the shared bath). This phenomenon is illustrated

in figure 10.

In other words, the relative coordinate is a dissipation-free mode because the cou-

pling to the bath is always orthogonal to its motion (in some abstract (Q, q)-space).

Actually, this is already clear from the form of the coupling Hamiltonian, eq. (4.3).

Rewriting this into the system’s eigenmodes, we obtain Ĥc =
∑

i γix̂iQ̂i, from which it

is directly clear the relative coordinate simply does not couple to the bath.

Recalling the antiferromagnet in the shared bath, we see that in a similar way

only the magnetisation couples to the bath in eq. (3.8). Comparing to the system

of coupled pendulums, we may now also understand from a microscopic perspective

how a dissipation-free mode arises in the antiferromagnet. Since the relation of the

magnetisation and the Néel vector to the sublattice spins S1 and S2 is identical to the
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relation of the centre-of-mass and relative mode to the individual pendulums, the mag-

netisation and Néel vector can identically be interpreted as some in-phase motion and

out-of-phase motion. As this concerns precessing vector dynamics in three-dimensional

space now, this analogy is harder to visualise. However, as is clear from figure 11, the

effect of the z-component of the spins on the bath degrees of freedom can for instance

be illustrated to show the analogy to the pendulum system.

Although eq. (3.24) already showed that the presence of a dissipation-free mode

was unique to the shared bath model, from this discussion one may also understand

on a physical level why this is the case. If there are additional baths that are not fully

shared, the relative coordinate [or Néel vector] dissipates by the fact that q1 and q2 [or

S1 and S2] are coupled to different bath oscillators. Hence the force exerted on such

an oscillator cannot be cancelled out. On the level of the Hamiltonian this amounts to

the fact that a separate bath coupling (see for example eq. (3.2)) cannot be rewritten

in terms of Q [or M] only. Also the coupling strength of the subsystems to the bath

should be equal; otherwise, one encounters a similar problem.

4.3 Applications

The results discussed in this section make clear that the presence of dissipation-free

modes is unique to systems where subsystems couple to a shared bath only. When the

subsystems also couple to some separate baths, all eigenmodes are dissipative. More-

over, we showed that the dissipation-free mode can turn into a indirectly dissipating

mode, when it is coupled through the potential V (Q, q) to the dissipative eigenmode.

Contrariwise, one may revert these statements to apply them in the design of

physical low-dissipation modes. Although in real physical systems, the bath between

subsystems is never completely shared, our results indicate that one can reduce the

dissipation rate of one of the modes by designing the system such that the common bath

of the subsystems increases, and the separate dissipation channels are reduced. This can

for example be achieved by reducing the physical distance between the subsystems or by

increasing the mean free path of excitations within the total system-bath configuration.

Furthermore, the potential of, and coupling between the subsystems must be de-

signed in such a way that one can decompose the coupling between the systems in the

eigenmodes of the composite system according to eq. (4.9), insofar that is possible. In

other words, terms in the potential that are not separable in the eigenmodes must be

as much suppressed as possible.
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In crystalline antiferromagnets, both conditions are already full-filled to a large

extent: as the sublattices are physically inter-located, it is plausible to assume that

they are mainly coupled to a shared bath. Furthermore, we already noted that the

Heisenberg Hamiltonian is indeed separable in the eigenmodes. As a consequence,

our results may explain why the damping of the magnetisation mode is found to be

much higher than the damping of the Néel order in scattering theory and first-principle

calculations (Liu et al. 2017).

In real systems, one may also encounter the problem that the subsystems are not

completely identical; they do not have the same mass for instance. In that case, one

may define a new set of eigenmodes by introducing the possibility that the subsystems

are differently coupled to the bath. For example, in the case of two interacting non-

identical particles, the Hamiltonian of the particles and the system-bath coupling is

given by (the Hamiltonian is written in terms of velocities rather than momenta for

clarity of the argument)

Ĥ =
1

2
m1

(
ˆ̇q21 +

m2

m1

ˆ̇q22

)
+ V (q̂1, q̂2) +

∑
i

γ1,ixi

(
q̂1 +

γ2,i
γ1,i

q̂2

)
. (4.10)

Then, by designing the coupling of the subsystems to the bath such that approximately

γ2,i/γ1,i =
√
m2/m1 holds, the Hamiltonian may be rewritten in the eigenmodes Q =

q̂1 +
√
m2/m1q̂2 and q = q̂1 −

√
m2/m1q̂2:

Ĥ =
1

4
m1

(
ˆ̇Q2 + ˆ̇q2

)
+ V̄ (Q̂, q̂) +

∑
i

γ1,ixiQ̂ . (4.11)

In other words, the non-identicality of the subsystems may be artificially compensated

by differing the couplings to the bath. However, it must be noted that this has also

consequences for the potential; the mass ratio m2/m1 will necessarily appear in the

potential of q2 and in all interaction terms between the subsystems.

Lastly, given the results for two-particle systems, one may wonder whether dissipa-

tion-free modes can also exist in dissipative N -particle systems. While this is possible

in principle, these dissipation-free modes will often not correspond to physical normal

modes of the system, as the form of the potential gets more restricted in more-particle

systems. Nevertheless, like the two-particle system, one may use the results for N -

particle systems to engineer low-dissipation modes. An overview of this generalisation

is given in appendix F.
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4.4 Summary

In the formulation of the dissipative dynamics of antiferromagnets, we discovered the

presence of a dissipation-free mode in the system under the condition that the bath

of the sublattice is completely shared. In this section, we have generalised this result,

by arguing that it is not so much a peculiar property of the antiferromagnet, as it is a

result of the system-bath structure in composite systems. The presence of dissipation-

free modes can be traced to the linear coupling of each subsystem to the same set

of bath particles. Furthermore, for a truly dissipation-free mode, it is required that

the potential is separable in the eigenmodes of the system according to eq. (4.9). By

illustration of two coupled pendulums, we gained physical insight into the occurrence

of dissipation-free modes, and why it is a property unique to the shared bath model for

dissipation. Lastly, we discussed how these observations can be used to experimentally

design low-dissipation modes, and how the theory can be slightly adjusted to account

for non-identical subsystems.
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5 Summary and Outlook

Understanding of the dynamics of antiferromagnets is crucial in the development of

antiferromagnetic spintronic devices, such as digital memory and information processing

tools. In this thesis, we have tried to understand the dissipative dynamics of two-

sublattice antiferromagnets from a microscopic perspective, by modelling dissipation

according to the Caldeira-Leggett approach. In order to do so, we used the path

integral for spin-coherent states within the Keldysh formalism, as was presented in

chapter 2. The strength of the combination of these formalisms is that we can use all

the advantages of the functional formulation of quantum field theory, while at the same

time we are able to derive the quasi-classical dynamics from the action. Especially this

last property was important in this thesis, since it allowed the comparison between our

current approach and phenomenological considerations from (H. Y. Yuan, Liu, et al.

2019).

In chapter 3 multiple models for the dissipation of the two-sublattice antiferromag-

net were considered: while the separate bath model describes the dissipation of each

sublattice as the coupling to their own separate bath, the shared bath model considers

the coupling of both sublattices to the same bath. Remarkably, the inter-sublattice

damping terms, as predicted in the phenomenological approach, are only present in the

shared bath model. Hence, our results indicate that the inter-sublattice damping terms

are due to an environment that is shared between the two sublattices.

Furthermore, we considered the slightly more general case where there is a shared

bath, as well as two separate baths. In this three-baths model, the bath parameter ξ

indicates how much of the environment between the two sublattices is shared, ranging

from completely separate (ξ = 0) to completely shared (ξ = 1). The resulting dynamical

equations (3.20) allow direct comparison to the phenomenological equations (1.4), and

we see that ξ = αc/α: the bath parameter indicates how much inter-sublattice damping

the system obtains, relative to the (intra-sublattice) Gilbert damping.

As we expect that the physically inter-located sublattices in a crystalline antifer-

romagnet mainly have a shared bath, our three-baths model may explain by eq. (3.23)

why the damping parameter of the magnetisation mode is found to be several orders of

magnitude higher than that of the Néel vector (Liu et al. 2017).

Moreover, in the shared bath model the Néel order turned out to be a dissipation-

free mode of the system. As this arises from the linear coupling of the two subsystems

to a shared bath, in chapter 4 we argued that the presence of dissipation-free modes
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is not confined to antiferromagnets, but holds for more general composite systems in

which two identical subsystems are linearly coupled to a shared bath. From these

considerations, we were able to deduce the conditions necessary for a dissipation-free

mode to exist. As a consequence, our results indicate how to engineer low-dissipation

modes in real systems.

According to our goal, we managed to provide a more fundamental understanding

of the dissipative dynamics of two-sublattice antiferromagnets: our results indicate

physical reasons for the variety of values for phenomenological damping parameters

that are chosen in different systems, and we have established a quantitative connection

between the bath parameter of the system and the damping parameters.

However, it has already been mentioned in 3.3.4 that the harmonic oscillator bath

is a first approximation to the behaviour of environments in real systems. Therefore,

the presented models may be advanced by replacing the oscillator bath by an elec-

tron bath or a phonon bath, for a more accurate description of metallic or insulating

antiferromagnets, respectively. Furthermore, an interesting direction to explore is the

generalisation to the so-called interacting bath models. An interesting approach is to

include an interaction between the baths in the separate bath model. The motivation

for these models is this: the current results imply that the inter-sublattice damping

terms are a consequence of the thermal connection between the two sublattices. Hence,

one expect that similar terms will arise when there is some indirect thermal coupling,

that is, the coupling of the two baths. An introduction to this topic is presented in

appendix D.

Another extension to the bath model is to consider the effects of non-Ohmic baths.

The Ohmic bath is a linear approximation to the bath behaviour that recovers linear

dissipation. However, it is clear that it is not physical; the energy spectral density

J(ϵ) = α0ϵ diverges at high energy. Hence, in real systems, there is necessarily a cut-off

at high frequencies. Recently, it has been shown how the high-frequency behaviour

of the bath leads to the presence of bath-induced spin inertia, that result in nutation

effects in the dynamics of ferromagnets (Quarenta 2022). In a similar way, one may

find these effects in antiferromagnets. The basic concepts and mathematical methods

are exposed in appendix G. In short, the high-frequency behaviour of the bath gives

rise to new dynamics. Even more, within this method, it is also possible to include

different types of low-frequency behaviour by changing the Ohmic spectral density to

sub-Ohmic or super-Ohmic densities (J(ϵ) = α0ϵ
p with p < 1 or p > 1 respectively).

Lastly, in the entire thesis, we ignored the fluctuations that according to the
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dissipation-fluctuation theorem necessarily occur in dissipative systems. However, it

has been shown that multiplicative noise can induce a change in the expected trajec-

tory (Volpe and Wehr 2016). In other words, the noiseless dynamics we have considered

are not necessarily equivalent to the classical dynamics in the case that this Stratonovich

drift is present in the system. Hence it is worthwhile to consider the inclusion of noise

in our results. This can either be done by considering classical fluctuations only (by

taking the limit ℏ → 0 in the action, see (Kamenev 2011, chapter 4)) or both classical

and quantum fluctuations, by considering the full contribution of the Keldysh part of

the bath propagator α(t− t′).

We have argued that the existence of dissipation-free modes is a property of

the shared bath model; when identical subsystems are coupled to a shared bath, a

dissipation-free mode will arise. In section 3.3 and chapter 4, and similarly in (Seters et

al. 2022), we demonstrated the presence of dissipation-free modes in antiferromagnets

and composite systems of identical (bosonic) particles. In other words, we established

that our hypothesis holds in the case of spins coupling to the bath by minimal spin-

position coupling and in the case of particles coupling to the bath by minimal position-

position coupling. Interestingly, a similar result was already found for qubits that are

coupled to the same environment (Duan and Guo 1998). However, we have not proved

a general theorem that applies to all composite systems and types of coupling (and it

is hard to imagine there could be such a theorem). Consequently, it is up to further

research to theoretically test this hypothesis for other physical systems. For instance,

one might consider systems of fermions and velocity-dependent coupling to the bath.
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A Berry Connections

In this appendix, we derive the form of the Berry connections that appear in the spin

path integral in terms of the Euler angles that parameterise the underlying Hilbert

space. In order to do so, we write the spin coherent states in their Euler angle repre-

sentation explicitly:

⟨ġ|g⟩ = ⟨↑| ∂t(eiθS
y

eiϕS
z

)e−iϕS
z

eiθS
y |↑⟩

= i ⟨↑|
(
eiθS

y

ϕ̇Ŝz + θ̇ŜyeiθS
y
)
eiϕS

z

e−iϕS
z

e−iθS
y |↑⟩

= iϕ̇ ⟨↑| eiθSy

Ŝze−iθS
y |↑⟩+ iθ̇ ⟨↑| Ŝy |↑⟩

= iϕ̇ ⟨↑| eiθSy

Ŝze−iθS
y |↑⟩ .

(A.1)

In the last line we used the fact that Sy |g⟩ = 0. Using the identity (Altland and Simons

2010, p. 138)

e−iϕS
i

SjeiϕS
i

= Sj cosϕ+ ϵijkS
k sinϕ (i ̸= j) , (A.2)

we get

⟨ġ|g⟩ = iϕ̇ cos θ ⟨↑| Ŝz |↑⟩ − i sin θ ⟨↑| Ŝx |↑⟩ = iϕ̇S cos θ, (A.3)

where Ŝx |g⟩ = 0 and S is the eigenvalue of Ŝz. We could do the same calculation for〈
˙̃g
∣∣g̃〉 which, due to the extra gauge term e−iψŜ3 would result in

〈
˙̃g
∣∣g̃〉 = iS(ψ̇ + ϕ̇ cos θ) . (A.4)

Choosing the gauge ψ̇ = 0 gives back the previous result. However, the gauge fixing

condition ψ̇ = −ϕ̇ is much more usual, such that we get

〈
˙̃g
∣∣g̃〉 = −iSϕ̇(1− cos θ) . (A.5)

Of course this does not affect the equations of motion, as this term merely adds a total

derivative to the action.

The expectation value of a spin operator is defined by

Si ≡ ⟨g̃| Ŝi |g̃⟩ (A.6)
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and it follows from eq. (A.2) and writing |g⟩ in terms of the Euler angles, that

Si = Si

sin θi cosϕi

sin θi sinϕi

cos θi

 . (A.7)
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B Ohmic Dissipation Propagator

The dissipation propagator for an Ohmic spectral density J(ϵ) = α0ϵΘ(ϵ) is given by

αR[A](ω) = α0

∫ ∞

0

dϵ

2π

ϵ2

ϵ2 − (ω ± iη)2
. (B.1)

Since the integrand is symmetric with respect to ϵ, we can equivalently calculate half

of the integral over the entire real domain:

αR[A](ω) =
α0

2

∫ ∞

−∞

dϵ

2π

ϵ2

ϵ2 − (ω ± iη)2
. (B.2)

Moreover, extending the domain of the integrand to the complex plane, we recognise

that it exhibits two simple poles; one at ϵ = ω ± iη and on at ϵ = −ω ∓ iη. Hence we

can make use of the residue theorem to calculate this integral. The contour is given

by the union of the arc integral with a radius limiting to infinity, and the symmetric

integral over the real line with bounds equally limiting to infinity:

αR[A](ω) =
α0

2

(∮
−
∫
Γ

)
dϵ

2π

ϵ2

ϵ2 − (ω ± iη)2
. (B.3)

The contour integral only encloses one of the two poles; the result is given by∮
dϵ

2π

ϵ2

(ϵ− ω ∓ iη)(ϵ+ ω ± iη)
= iRes(ϵ = ω ± iη) = ± i

2
(ω ± iη) . (B.4)

Note that the advanced propagator picks up an extra minus sign because the contour

integral for the negative imaginary pole is oppositely directed to the contour of the

positive imaginary pole, see figure 12. The arc integral is calculated as:∫ π

0

dθ

2π

i|ϵ|e3iθ

e2iθ − ω±iη
|ϵ|

2 =
|ϵ|
2π

(
eiθ − ω ± iη

|ϵ|
tanh−1

(
|ϵ|eiθ

ω ± iη

))∣∣∣∣π
0

(B.5)

= −|ϵ|
π

+
ω ± iη

π
tanh−1

(
|ϵ|

ω ± iη

)
. (B.6)

The arc-integral is then found by taking the radius |ϵ| within this expression to infinity:

lim
|ϵ|→∞

{
−|ϵ|
π

+
ω ± iη

π
tanh−1

(
|ϵ|

ω ± iη

)}
= − 1

π
lim

|ϵ|→∞
|ϵ| ∓ i

2
(ω ± iη) , (B.7)
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Figure 12: The contour integral over the complex plane for the retarded propagator (a)
and the advanced propagator (b). Both pick up the contribution of only one pole and
of the arc at infinity.

where we used that lim|ϵ|→∞ tanh−1
(

|ϵ|
ω±iη

)
= ∓π

2
. Therefore the propagator results in

αR[A](ω) = ±iα0

2
(ω ± iη) + αR[A](ω = 0) , (B.8)

where we defined αR[A](ω = 0) = α0

2π
limϵ→∞ ϵ. Although this term is infinite, there is no

ω-dependence, and as a consequence, it does not affect the dynamics of the system in

question. From eq. (2.41), it is clear that this term contributes a term proportional to

S(t)×S(t), which is evidently zero by the nature of the cross-product. When considering

the coupling of two spins, the term proportional to S1(t)×S2(t) that the infinite constant

would produce can be absorbed by redefinition of the Heisenberg coupling constant J .

Moreover, in section G.1 we introduce a renormalised coupling to the bath, that

produces the same dynamics. This renormalisation means that the infinite term does

not appear at all. Hence, we are justified to ignore the infinite contribution here.
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C Shortcut to the Equations of Motion

From the derivations in section 2.2 and 2.3 it becomes apparent that all inner products

of Sq with any classical field Acl in the action will correspond to a cross product of Scl

with Acl in the quasi-classical equations of motion. In this appendix, we prove that this

relation is true in general. This result is very useful, since it allows us to directly read

off the equations of motion from the action instead of doing increasingly complicated

calculations in terms of the Euler coordinates. For this proof we consider the action

S =
∮
K
dtL, where the Lagrangian after the Keldysh rotation is given in terms of the

classical and quantum fields by

L = i ⟨ġ|g⟩+ Sσ1A = −S
[
ϕ̇cl sin θcl sin θq + ϕ̇q(1− cos θcl cos θq)

]
+ Sq ·Acl + Scl ·Aq .

(C.1)

To find the most general result, we will assume that the vector A = (Acl,Aq) can be

any vector quantity or sum of vector quantities, including S itself or any order derivative

of S. First note that

A[cl/q](xcl, xq) =
1

2
(A+(x+)±A−(x−)) . (C.2)

Therefore, when we calculate the partial derivative to any quantum coordinate x, we

find that

∂A[cl/q]

∂xq
xq=0 =

1

2

(
∂A+

∂x+
∂x+

∂xq
± ∂A−

∂x−
∂x−

∂xq

)
xq=0 =

1

2

(
∂A+

∂x+
∓ ∂A−

∂x−

)
xq=0 , (C.3)

where x[+/−] = xcl ± xq. Hence, we see that the operation of setting the quantum

component to zero at the end of the calculation is equivalent to relabelling all +-fields

and −-fields to classical fields. Explicitly, this means

∂Acl

∂xq
xq=0 = 0 ,

∂Aq

∂xq
xq=0 =

∂Acl
xq=0

∂xcl
=
∂A

∂x
. (C.4)

Therefore we see we can ignore any derivative of a classical field and treat the derivative

of a quantum field as ‘normal’ derivatives. Moreover,

Acl(xcl, xq)q=0 =
1

2
(A+(xcl) +A−(xcl)) = A(x) . (C.5)
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Going back to our problem, we will split the Lagrangian and rewrite the Euler-Lagrange

equations as follows:

d

dt

∂i ⟨ġ|g⟩
∂ϕ̇q

q=0 =

(
∂Sq

∂ϕq
·Acl +

∂Scl

∂ϕq
·Aq+Sq ·

[
∂Acl

∂ϕq
− d

dt

∂Acl

∂ϕ̇q

]

+Scl ·
[
∂Aq

∂ϕq
− d

dt

∂Aq

∂ϕ̇q

])
q=0 ,

(C.6)

−∂i ⟨ġ|g⟩
∂θq

q=0 =

(
∂Sq

∂θq
·Acl +

∂Scl

∂θq
·Aq+Sq ·

[
∂Acl

∂θq
− d

dt

∂Acl

∂θ̇q

]

+Scl ·
[
∂Aq

∂θq
− d

dt

∂Aq

∂θ̇q

])
q=0 ,

(C.7)

where ′q′ refers to all quantum coordinates. Immediately we see the last two terms

of both equations are zero, as they are the Euler-Lagrange equations that describe

the independent dynamics of the general vector A with respect to the coordinate ϕ.

Moreover, applying the rules we found above and calculating the left hand side, the

Euler-Lagrange equations reduce to

−Sθ̇ sin θ = ∂S

∂ϕ
·A , (C.8)

Sϕ̇ sin θ =
∂S

∂θ
·A . (C.9)

The derivatives of S are given by

∂S

∂ϕ
=

− sin θ sinϕ

sin θ cosϕ

0

 ,
∂S

∂θ
=

cos θ cosϕ

cos θ sinϕ

− sin θ .

 (C.10)

Like before, we want to derive an expression for Ṡ, so according to eq. (2.22) we rewrite

Ṡ = S

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


θ̇ cos θϕ̇ sin θ

θ̇ sin θ
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= S

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1


 cos θ sinϕAx − cos θ cosϕAy

cos θ cosϕAx + cos θ sinϕAy − sin θAz

sin θ sinϕAx − sin θ cosϕAy


= −S×A ,

(C.11)

where in the second line we inserted the Euler-Lagrange equations and the last line

follows from straightforward computation. So, indeed we have verified that the inner

product with a vector A in the action corresponds to a cross product in the quasi-

classical equations of motion. The vector A can be any vector, including S itself or any

order derivative, since the independent dynamics of A are cancelled by its own dynamic

equation. Concluding, we have proved that we can directly read of the equations of

motion for S when we can write the action as the Berry connection plus a series of inner

products with S.
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D Interacting Baths

In section 3.3.2, we modelled the dissipation of an antiferromagnet by the coupling

to three baths; each sublattice coupled to its own bath and both coupled to a shared

bath, where the bath parameter ξ is indicative for how much the sublattices share

their environment. Although this model is fairly general, one may also consider a more

advanced model, where each sublattice dissipates into their separate bath, but these

bath are in turn interacting. Physically, one may for example imagine that the spins

couple to a phonon or electron modes, which are themselves interacting within the

material. In this section, we will present a first attempt for such a model. However, in

its current form, the model may be considered unsatisfactory, as tension arises between

different assumptions within the model. After the initial exposition to the model, these

questions will be discussed.

D.1 The interacting bath model

In this section we will explicate the interacting bath model as described above. The

basic idea is illustrated in figure 13; each spin is coupled to a bath, and moreover these

baths are coupled to each other. Like previous sections, the bath is modelled as a

collection of harmonic oscillators and coupling of the spins to the bath is described by

minimal coupling. In terms of a Keldysh action, this system is described by

Sdiss =
∮
K

dt

[∑
α

[
−γ1S1 · xα + xα(G

−1
1 )α(t)xα

]
+
∑
β

[
−γ2S2 · xβ + xβ(G

−1
2 )β(t)xβ

]
−
∑
α,β

(
xTαγαβxβ

) ]
.

(D.1)

Here, the first sum over α describe the bath dynamics of first bath and the coupling

to S1 with coupling constant γ1. The sum over β includes the similar bath dynamics

of the second bath and the coupling to S2 with coupling constant γ2. The propagators

(G−1
1 )α(t) and (G−1

2 )β(t) are defined by eq. (2.34). Then the two baths are minimally

coupled to each other by the last sum over α and β, where the coupling constants γαβ

indicate the coupling between a particle α and a particle β. Note that we did not

include the Heisenberg interaction and the coupling to effective fields, as we are only

interested in the dissipative structure of the action in this appendix.

Now we would like to perform a Gaussian integration over all bath variables. In
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Figure 13: Diagrammatic representation of the interacting bath model. Spins S1 and S2

dissipate energy into their own bath, denoted by α and β respectively. The constants γ1
and γ2 are the coupling strengths to the baths. Furthermore, the baths are minimally
coupled with coupling constant γc.

order to integrate both baths simultaneously, we rewrite the action into a vector form

with vectors of dimension 2N with the first N positions refer to the particles in the first

bath and the rest correspond to particles in the second bath. This gives us the action

Sdiss =
∮
K

dt

[
−

(
Xα

Xβ

)T (
γ11S1

γ21S2

)
+

(
Xα

Xβ

)T (
G−1

1 Γ

0 G−1
2

)(
Xα

Xβ

)]
, (D.2)

where Xα = (xα=1, . . . ,xα=N)
T and Xβ = (xβ=1, . . . ,xβ=N)

T are vectors of dimension

N , containing all degrees of freedom of the bath. Furthermore, with a some abuse

of notation, 1 is an N-dimensional vector with 1 at each entry, to ensure the right

matrix multiplication with the spin vectors. The matrices G−1
1 = Diag({(G−1

1 )α}) and
G−1

2 = Diag({(G−1
2 )β}) are matrices with the propagators for all bath oscillators on the

diagonal. Lastly, the interaction matrix Γ is defined by:

−
∑
α,β

(
xTαγαβσ1xβ

)
= XT

αΓXβ . (D.3)

In words, it is the block matrix with all interactions between the baths. Integrating out

the harmonic oscillators by Gaussian integration (see eq. 2.31)) will give us the action

Sdiss = 2

∫ +∞

−∞
dt

[
− 1

4

(
γ11σ1S1

γ21σ1S2

)T (
G1 −G1ΓG2

0 G2

)(
γ11σ1S1

γ21σ1S2

)]
, (D.4)

where we used the fact that(
G−1

1 Γ

0 G−1
2

)−1

=

(
G1 −G1ΓG2

0 G2

)
. (D.5)
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In the action, the diagonal matrix entries will just result in the dissipative self-coupling

of S1 and S2 respectively, such that under the assumption of Ohmic baths, we recover

Gilbert damping terms in the quasi-classical equations. Hence, only the mixed term is

new and of interest; this signifies that the two spins are coupled. Since this coupling

depends on the interaction matrix Γ, this coupling derives from the interaction of the

baths. We can define the interacting bath propagator :

∆ =
1

4

∑
i,j

σ1(G1)iiΓij(G2)jjσ1 . (D.6)

Using the Fourier transform of the Green’s functions, as calculated in eq. (2.43), this

quantity is explicitly given by

∆R[A](ω) = −
∑
i,j

γij
mαi

mβj

1

(ω ± iη)2 − ω2
αi

1

(ω ± iη)2 − ω2
βj

. (D.7)

Due to the unknown coupling constants γij between the two baths in this expression,

it is hard to obtain a simpler form of this equation. As a consequence, we will need to

make a simplificating assumption on the interaction of the baths. The most obvious and

basic assumption is that of equal coupling; if all the particles in the baths are evenly

strongly coupled to each other, that is, γij ≡ γc is constant, this equation is simply the

product of the two bath propagators. Introducing the bath spectral densities Jα(ϵ) and

Jβ(ϵ) of the first and second bath respectively allows as to rewrite the interacting bath

propagator as

∆R[A](ω) = −4γc

(∫ ∞

0

dϵ

2π

ϵJα(ϵ)

(ω ± iη)2 − ϵ2

)(∫ ∞

0

dϵ

2π

ϵJβ(ϵ)

(ω ± iη)2 − ϵ2

)
. (D.8)

Focusing on the case of Ohmic baths, from appendix B we know the dissipation prop-

agator is of the form:

αR[A](ω) = ±iα0

2
(ω ± iη) +

α0

2π
lim
ϵ→∞

ϵ . (D.9)
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Then the interacting bath propagator becomes

∆R[A](ω) = −γcα0β0

(
±iω − η +

1

π
lim
ϵ→∞

ϵ

)(
±iω − η +

1

π
lim
ϵ→∞

ϵ

)
(D.10)

= −γcα0β0

(
−ω2 ± 2iω

(
−η + lim

ϵ→∞

ϵ

π

))
+ . . . ,

where the ω-independent terms are disregarded, and we assumed the mean lifetimes

of the excitations in both baths are the same (η1 = η2 = η). From this equation, we

see a problem arising; whereas in non-interacting bath, the infinite term was neglected

because it does not contribute to the dynamics, in the interacting bath this is not the

case. The infinite term multiplies the dynamics the contributions of the other bath.

For this result to make physical sense, the infinite term in the linear ω-term has to be

cancelled. This means we require

η = −C + lim
ϵ→∞

ϵ

π
, (D.11)

such that

∆R[A](ω) = −γcα0β0
(
−ω2 ± 2iωC

)
+ . . . . (D.12)

Here, C is the (positive) finite remainder that is the proportionality constant to the

inter-sublattice Gilbert damping. However, as is clear from eq. (D.11), now η is in-

finitely big. This means our initial contour as calculated in appendix B is not correct;

there we assumed η to be small, or at least to be finite. In other words, we run into

an inconsistency in our approach: on the one hand, η must be infinite to prevent the

Gilbert damping terms to have infinite magnitude, which on the other hand contradicts

the assumption that η is finite in the calculation of the bath propagator.

Moreover, even without this paradox, it is already in the first place remarkable that

in this model, the presence of inter-sublattice damping terms seems to depend on the

lifetime of the bath, while this plays no role in the shared bath (where inter-sublattice

damping terms also arise).

One possibility to circumvent these difficulties is to formulate the theory in terms

of renormalised couplings, as is introduced in appendix G. In that case, the infinite

terms would disappear, but in return one obtains a far more complex coupling between

all the components of the system.
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E Conditions on a Dissipation-Free Potential

In chapter 4, we derived that for a dissipation-free mode in a two-particle system to

exist, the potential must satisfy the condition of separability, eq. (4.9). In this appendix,

we will derive the consequences of this condition for the one particle potentials V1(q1)

and V2(q2) for the first and second particle, respectively. More precisely, we will assume

that the potential can be written as a sum of two power series (for instance, the Taylor

expansions around the minima of the eigenmodes).

The general form of the potential satisfying the condition of separability is given

by

V (q1, q2) = V (q1 + q2) + V (q1 − q2) . (E.1)

Note that we dropped the 1
2
-factor for the centre-of-mass coordinate for notational

convenience; this does not affect the result in a significant way. Now, let us expand

both terms in the potential:

V (q1, q2) =
∑
n

an(q1 + q2)
n + bn(q1 − q2)

n . (E.2)

In principle, this sum can range from n = 0 to n = ∞, for example when it expresses

the Taylor series of an analytic potential. However, as in practice one usually only

considers to first few orders, this sum may only have finite terms. For each term, we

employ the binomial theorem to expand them as

V (q1, q2) =
∑
n

n∑
k=1

(
n

k

)(
anq

n−k
1 qk2 + (−1)kbnq

n−k
1 qk2

)
(E.3)

=
∑
n

n∑
k=1

(
n

k

)(
an + (−1)kbn

)
qn−k1 qk2 .

From the current form, we see that for every n, possible contributions to the one particle

potentials V1(q1) and V2(q2) come from the k = 0 and the k = n terms, respectively. In

other words, we can separate the potential by splitting the sum into two one-particle

potentials (which come from the k = 0 and k = n terms of the binomial sum) and

an interaction potential Vint(q1, q2) (which consists of the remaining n− 2 terms of the
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binomial sum:

V (q1, q2) =
∑
n

(an + bn)q
n
1 + (an + (−1)nbn)q

n
2 (E.4)

+
∑
n

n−1∑
k=2

(
n

k

)(
anq

n−k
1 qk2 + (−1)kbnq

n−k
1 qk2

)
(E.5)

≡
∑
n

V n
1 (q1) + V n

2 (q2) + V n
int(q1, q2) .

When n is even, the prefactors of both one-particle potentials are equal, since (−1)n = 1

in that case. On the other hand, for n odd, the nth term for particle one is determined by

the prefactor an+ bn, while the same term for the second particle has prefactor an− bn.

In other words, when the condition of separability holds, the one-particle potential for

both particles are equal in their even powers, while their odd-powered terms may in

general be different.

Moreover, from this expression it becomes clear that in general, the interaction

potential and the one-particle potentials are fully dependent on each other, since both

are determined by the set of constants {an, bn}. However, in special cases, there is still

freedom to choose the interaction potential independently. For example, when we only

consider n = 2 contributions to the potential, the potential is given by

V (q1, q2) = (a2 + b2)(q
2
1 + q22) + 2(a2 − b2)q1q2 , (E.6)

where we recognise that the one particle potentials and the interaction potential are

fully independent, as they are determined by orthogonal linear combinations of a2 and

b2. Importantly, the potential for two coupled identical harmonic oscillators may be

recovered from this form by choosing a2 + b2 = mω2
0 and a2 − b2 = γ/2.
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F Dissipation-free Modes in N-particle Systems

In chapter 4, we found that in dissipative system composed of two identical subsystems,

one expects a dissipation-free mode when both subsystems are coupled to the same

thermal bath. Furthermore, for a completely dissipation-free mode, the potential should

be separable in the eigenmodes of the system.

The presence of dissipation-free modes is not limited to 2-particle systems. In

this appendix, we will show that regardless of the amount of particles, one can find

dissipation-free modes when all subsystems couple to the same thermal bath and the

potential is separable in the eigenmodes. However, this comes with a cost; the poten-

tial becomes increasingly restricted when we require that the dissipative eigenmodes

correspond to some physical normal modes of the system’s dynamics.5

First, we derive the eigenmodes of the system from the dissipative action in an

analogous way as chapter 4. We consider a system composed of N particles with

position qi, (i = 1, 2, . . . , N) and velocity q̇i. Furthermore, we assume that all particles

have identical mass and that the potential is given by V ({qi}) ≡ V (q1, q2, . . . , qN). For

notational convenience, we introduce the vector notation q = (q1, q2, . . . , qN)
T . Lastly,

all particles are coupled to the same bath of harmonic oscillators with equal coupling

strength. As a consequence, the dissipative Keldysh action of this system is the N -

particle generalisation of eq. (4.4), and is given by

S =

∮
K

dt
(m
2
q̇2 − V ({qi})

)
+

∮
K

dt

∮
K

dt′ qT (t)Rα(t− t′)q(t′) . (F.1)

Here, the bath degrees of freedom are already integrated out. The dissipation propaga-

tor is given by eq. (2.37). Furthermore, we have introduced the dissipation matrix R

into the action (see eq. (1.3)), which due to equal coupling of all particles is a N ×N

all-ones matrix. Of course, from the action it is readily clear that the dissipative eigen-

mode will be the mode that is proportional to q1 + q2 + · · · + qN . However, let us be

more careful in finding the dissipation-free modes.

The eigenmodes of the dissipative system correspond to the eigenvectors of the dis-

sipation matrix. The eigenvectors of this dissipation matrix are easy to find; first, since

an all-ones matrix is equivalently written as R = 11T (with 1 being a N -dimensional

5In this appendix, we will refer to the modes of the dissipative part of the action as the (dissipative)
eigenmodes, which are not necessarily equivalent to the system’s normal modes, that we understand as
the modes of the total action (including kinetic and potential) that describe fully decoupled dynamics.
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vector of all ones), the first eigenvector is x1 = 1/
√
N with eigenvalue

√
N :

Rx1 =
1√
N
1(1T1) =

√
N1 . (F.2)

This is the eigenvector that will correspond to a dissipative mode. The reason for the

normalisation factor
√
N will be made clear below.

Furthermore, since all rows of R are identical, Rank(R) = 1 and consequently all

other eigenvalues of R are 0, such that the remaining eigenvectors are N − 1 linearly

independent solutions of the equation

0 = Rv = 11Tv = 1(1 · v) ⇒
∑
i

vi = 0 , (F.3)

where v is an eigenvector and vi its i
th entry. Clearly, there more than N − 1 possible

solutions to this equation. However, we should choose the eigenvectors such, that they

form a orthonormal basis. In that case, we can diagonalise the dissipation matrix R

into a diagonal matrix D and an orthogonal matrix A (such that A−1 = AT ) according

to R = ADAT . The entries of the diagonal matrix are given by the eigenvalues of

the dissipation matrix, D = diag(
√
N, 0, . . . , 0). The matrix A is composed of the

corresponding eigenvectors in its columns.

Now we introduce the change of coordinates to the eigenmodes of the system, of

which we claim they correspond to the eigenvectors of the dissipation matrix. We define

the eigenmodes as

x = ATq , (F.4)

where x is given by (x1, x2, . . . , xn)
T ; it is the vector composed of the n eigenmodes

of the system. Using this coordinate change, we can write the action in terms of the

dissipative eigenmodes as

S =

∮
K

dt
(m
2
ẋ2 − V̄ ({xi})

)
+

∮
K

dt

∮
K

dt′ xT (t)Dα(t− t′)x(t′) . (F.5)

Here we used the orthonormal property in the kinetic part; q̇T q̇ = ẋTATAẋ = ẋT ẋ.

Furthermore, the potential V̄ ({xi}) is shorthand notation for V ({
∑

j A
T
ijxj}). Lastly,

in the dissipative part, we inserted the diagonalisation of R and the coordinate change

to eigenmodes simultaneously, such that only the diagonal matrix remains.

Since D11 is the only non-zero entry of the diagonalisation matrix, it is manifest
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that x1 is the only dissipative mode in the system. However, just like for the two-

particle case, when we require that the other modes cannot indirectly dissipate through

coupling to x1, the potential should be separable into dissipative and dissipation-free

eigenmodes:

V̄ ({xi}) = V̄ (x1) + V̄ (x2, x3, . . . , xN) . (F.6)

Note that we do not require that no eigenmodes are coupled, but only that dissipation-

free modes are not coupled to dissipative modes. The quasi-classical equations of motion

for the eigenmodes are then given by

mẍ1(t) = − ∂

∂x1
V̄ (x1)−

∫ ∞

−∞
dt′αR(t− t′)x1(t

′) ; (F.7a)

mẍi(t) = − ∂

∂xi
V̄ (x2, x3, . . . , xN) (i = 2, 3, . . . , N) . (F.7b)

In the derivation, we required that the dissipation matrix R is diagonalised by an

orthogonal matrix. Actually, such a diagonalisation is unique (up to permutation of

the columns) and the orthogonal matrix A is given by

A =



1√
N

−1√
2

−1√
6

. . . −1√
N(N−1)

1√
N

1√
2

−1√
6

. . . −1√
N(N−1)

1√
N

0 2√
6

. . . −1√
N(N−1)

...
...

...
. . .

...
1√
N

0 0 . . . N−1√
N(N−1)


, (F.8)

such that R = ADAT . Note that except for the first, all columns add to zero, according

to eq. (F.3).

By the uniqueness of A, we find that irrespective of the potential, the eigenmodes

x2, x3, . . . , xN must always be the same. However, some arbitrary potential is probably

not separable into these modes; in other words, often the dissipative eigenmodes do not

correspond to the physical normal modes of the total system.

We could have chosen instead to diagonalise the dissipation matrix by a non-

orthogonal, but still invertible matrix P such that R = PDP−1. Then, we would have

much more freedom in the choice of eigenvectors, such that in some cases, we can choose

them to be also eigenmodes of the potential.

However, as q̇T q̇ = ẋTP TP ẋ, velocity-dependent coupling between the dissipation-
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free modes will necessarily arise when P TP ̸= I. As a consequence, when one wishes

to find dissipative eigenmodes that are the (decoupled) physical normal modes of the

system, one must use the orthogonal diagonalisation. As the dissipative eigenmodes

often do not correspond to these physical normal modes, it is often not possible to

find decoupled eigenmodes in a N-particle dissipative system. Only in the cases where

the dissipative eigenmodes defined by eq. (F.8) and eq. (F.4) correspond exactly to

the normal modes that decouple the entire dynamics, the dissipation-free coordinates

are true eigenmodes of the system, in the sense that they define completely decoupled

dynamics of the system.

In conclusion, we find that in a dissipative system where N particles are coupled to

a shared thermal bath, there is one dissipative mode, while there are N −1 dissipation-

free modes. However, as the potential of many N -particle systems cannot be written

in terms of these modes, they generally do not correspond to the eigenmodes of the

system. In that sense the two-particle case is a special case; there, the dissipative

and dissipation-free mode have a physical interpretation as centre-of-mass and relative

coordinate.
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G Renormalised Propagators and Non-Ohmic Baths

In this appendix, we consider renormalised coupling between the bath and the spins, as

is described in (Weiss 2012). In our discussion, we ignore the non-dissipative dynamics

of the spin system, since these are unaltered by an alternative approach to the dissi-

pative coupling. First, we consider the renormalised coupling for a two-spin system,

consisting of spins S1 and S2 as defined in previous sections, coupled to one and the

same thermal bath. After that, we will show that this approach can be used to find the

dynamics that result from the high-frequency behaviour of the bath. This result is fully

adopted from (Quarenta 2022); here, we only apply it to the case of antiferromagnets.

Lastly, the results for the shared bath system are easily translated into the dynamics

for the separate bath system.

G.1 Renormalised bath propagator

The action that defines the bath dynamics and the coupling of the spins to the bath is

given by

S = −
∮
K

dt
∑
α

mα

2

(
ẋ2
α − ω2

α

(
xα −

γα
mαω2

α

(S1 + S2)

)2
)
, (G.1)

where xα, ẋα,mα, ωα are the position, velocity, mass and angular frequency of the par-

ticle α respectively, and γα is its coupling strength to the spins.

As usual, the bath dynamics are integrated out by introducing the propagator

G−1
α (ω), which is defined by its Fourier transformG−1

α (t−t′) = mα

2
((i∂t)

2−ω2
α). However,

because of this new coupling, new terms appear, and the action reads

S = −
∮
K

dtdt′
∑
α

(S1 + S2)

(
γ2α
4
Gα(t− t′)− γ2α

2mαω2
α

)
(S1 + S2) . (G.2)

Therefore, we define a new propagator α′[R/A](ω) as

α′[R/A](ω) = −
∑
α

γ2α
2mα

(
1

(w ± iη)2 − ω2
α

+
1

ω2
α

)
= −

∑
α

γ2α
2mαω2

α

(
(w ± iη)2

(w ± iη)2 − ω2
α

)
.

(G.3)

The action in terms of the new propagator is given by

S =

∮
K

dtdt′(S1 + S2)α
′(t− t′)(S1 + S2) . (G.4)
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The explicit form of the propagator in time domain is found, as is usual at this point,

by introducing the energy spectral density J(ϵ) of the bath and Fourier transforming

by complex integration. First, by definition J(ϵ) = π
∑

α
γ2α

mαωα
δ(ϵ− ωα), such that the

propagator reads

α′[R/A](ω) = −
∫ ∞

0

dϵ

2π

J(ϵ)

ϵ

(ω ± iη)2

(ω ± iη)2 − ϵ2
(G.5)

Hence it becomes apparent why this type of coupling accounts for renormalisation: it

adds an inverse power of ϵ to the integral, which in the Ohmic case makes the integral

converge on the arc at infinity in the complex plane. Explicitly, choosing the Ohmic

bath J(ϵ) = α0ϵ gives

α′[R/A](t− t′) = −α0(ω ± iη)2
∫ ∞

0

dϵ

2π

1

(ω ± iη)2 − ϵ2
(G.6)

Since this integral is symmetric, it is equal to half of its value integrated from minus

infinity to infinity, and one can apply the reside theorem by considering integration

in the complex plane. The important difference with the non-renormalised propagator

α(t−t′) is that the arc does not contribute an infinite value. In this sense this propagator

is renormalised. Evaluation of the integral then gives the final result:

α′[R/A](t− t′) = ±iα0

2
(ω ± iη) . (G.7)

Hence, we find the same result as in appendix B without the infinite constant. In other

words, this calculation justifies the fact that earlier, we ignored this constant.

G.2 Bath-induced spin inertia

On the other hand, we may choose a bath that is more general than the Ohmic bath,

and contains higher powers in ϵ. In other words, we consider a spectral density

J(ϵ) = JO(ϵ) + Jhf (ϵ), (G.8)

where JO(ϵ) is the Ohmic contribution we calculated above, and Jhf (ϵ) = J(ϵ)− JO(ϵ)

is the remaining part of the spectral density. The contribution to the propagator of

this remaining part can be calculated:

α
′[R/A]
hf (t− t′) = (ω ± iη)2

∫ ∞

0

dϵ

2π

Jhf (ϵ)

ϵ

1

(ω ± iη)2 − ϵ2
(G.9)
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Since the Ohmic part is the first order of the energy spectral density, the remaining

part represents the behaviour at higher energies. Therefore, in the high frequency limit,

that is ϵ≫ ω, we can approximate the integral as:

α
′[R/A]
hf (t− t′) ≈ −(ω ± iη)2

∫ ∞

0

dϵ

2π

Jhf (ϵ)

ϵ3
= −ω2M . (G.10)

Here we defined the bath-induced spin inertia M , which is defined as the value of above

integral. This constant characterises the higher order energy behaviour of the bath,

including its cut-off structure. Furthermore, the infinitesimal contributions due to η

are ignored, as they play no relevant role below. With this renormalised propagator

that includes higher orders in energy structure, the quasi-classical equations of motion

of the system become

Ṡ1 = −JS1 × S2 − α0S1 × (Ṡ1 + Ṡ2) +MS1 × (S̈1 + S̈2) , (G.11a)

Ṡ2 = −JS2 × S1 − α0S2 × (Ṡ1 + Ṡ2) +MS2 × (S̈1 + S̈2) , (G.11b)

where the Heisenberg interaction terms are included into the dyanmics. Changing

variables to M = (S1 + S2)/2 and N = S1 − S2 gives

Ṁ = −2α0M× Ṁ+ 2MM× M̈ , (G.12a)

Ṅ = −2α0N× Ṁ+ 2MN× M̈− 2JN×M . (G.12b)

The quasi-classical equations of motion for separated baths (as described in section

3.1) including the bath-induced spin inertia terms are easily inferred from the above

result:

Ṡ1 = −JS1 × S2 − α0S1 × Ṡ1 +MS1 × S̈1 , (G.13a)

Ṡ2 = −JS2 × S1 − α0S2 × Ṡ2 +MS2 × S̈2 . (G.13b)

This is simply do to the fact that there is no dissipative inter-sublattice connection in the

separate bath model. In terms of the magnetisation and Néel order, the quasi-classical

dynamics are given by

Ṁ = −α0(M× Ṁ+
1

2
N× Ṅ) + 2M(M× M̈+

1

2
N× N̈) , (G.14a)

Ṅ = −α0(N× Ṁ+M× Ṅ) + 2M(N× M̈+M× N̈)− 2JN×M . (G.14b)
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G.3 Sub-Ohmic and super-Ohmic baths

In previous section, eq. (G.8) defines a general decomposition into the low-frequency

behaviour and the high-frequency behaviour. The high-frequency part gives rise to the

bath-induced spin intertia terms in the dynamical equations. By assuming the low-

frequency part to be Ohmic, we find the Gilbert damping and inter-sublattice damping

terms. However, in this decomposition it is not necessary to assume the bath is Ohmic

at low frequency: one may also consider the cases of sub-Ohmic and super-Ohmic

baths, where the bath spectral density shows power law behaviour J(ϵ) ∼ α0ϵ
p at low

frequency, where p < 1 for sub-Ohmic baths and p > 1 for super-Ohmic baths. However,

as is clear from eq. (G.5), the acquisition of a closed form for the bath propagator in

these cases depends on the specific value of p and requires closer consideration.
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