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In this project we tried to develop a machine learning method for learning the neu-
ronal activation patterns based on hemodynamic activity in the mouse brain, both
represented as functional connectivity optical intrinsic signal (fcOIS) imaging. The
goal of this method is to quantify the hemodynamic coupling in the brain and use it
to look for a disconnect in brains that are subject to pathology or aged.

For this, two deep learning architectures were developed which are both suited
to recreating data based on an encoded input. These architectures are the varia-
tional autoencoder (VAE) and the variational autoencoding generative adversarial
networks (VAE-GAN). These architectures use the hemodynamic data to create a re-
construction of the neuronal activity. As the fcOIS data consist of data which have
both spatial and temporal elements, a combination of convolutional and recurrent
layers is used in the architectures to try and learn the features in the data.

Unfortunately, the architectures did not produce satisfactory results. The samples
generated by the VAE suffered from mode collapse and the VAE-GAN produced
blurry results. The samples generated by the networks are not suited for further
investigation into the quantification of the coupling. We do show, however, that the
VAE performs slightly better in this task with the current parameters. Improvements
might be made by obtaining more data from the mice and by pre-training parts of
the architectures used.
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1 Introduction

In humans, brain function is imaged using functional magnetic resonance imaging
(fMRI). FMRI measures the blood oxygen level dependent (BOLD) signal, which is
the difference between how de-oxygenated blood (deoxyhemoglobin, HbR) in the
brain responds to the MR signal compared to oxygenated blood (oxyhemoglobin,
HbO) with MRI imaging, due to their different electromagnetic properties [1]. As
the blood transport the oxygen needed for the activations of neurons, this creates
increase in HbR when the neurons have fired as the oxygen is consumed and con-
versely an increase in HbO which carries the oxygen which aids the repolarisation
of the neurons. The hemodynamic activity in the brain is thus used as a proxy for
measuring the neuronal activity in the brain. The use of fMRI on small animals, like
mice, is difficult however. The size of the animal requires specialised MRI equip-
ment, making research on these animals difficult and expensive [2].

As an alternative to fMRI, functional connectivity optical intrinsic signal (fcOIS)
imaging can be used. This technique records the brain using microscopy, and thus
does not require expensive machinery like fMRI. The intrinsic signals are the mea-
surement of the activity in the microvasculature in the brain cortex. FcOIS is not lim-
ited to just recording the hemodynaimcs of the brain, but can also be used to record
neuronal activity directly. By being able to record the hemodynamic and neuronal
activity in the mouse, we can create models in mice in regards to the function of the
BOLD signal, which we can then apply to techniques used in humans.[3, 4]. Fur-
thermore, fcOIS is an invasive procedure, requiring surgery and injection of a virus
to modify the composition of the neurons. This is not desirable and humans, and
therefore fcOIS is more suited in animal research.

To record the neuronal activity in the brain, several options are available. One of
these is through the use of green fluorescent proteins (GFPs). GFPs emit a green
fluorescence light when excited by a trigger, for example an influx of ions, like with
GCaMP6. GCaMP6 is a an ultra-sensitive protein calcium (Ca2+) sensor, which can
be implemented in animals using either dye loading, a viral vector or through trans-
genics [5, 6, 7]. This allows for the recording of the entire brain cortex of awake mice.
Since the mouse skull is very thin, the brain activity can be recorded directly through
the skull after the skin is removed. The activity is then measured by recording the ac-
tivation of the calcium sensor, which itself is activated by neuronal activity. During
the depolarisation of the neuron, the concentration of Ca2+ in the neuron increases
due to the opening of voltage-gated ion-channels, letting Ca2+ into the neuron. This
leads to the fluorescence of the GCaMP6 sensor, which is then recorded using fcOIS
and shows which part of the brain is active [6].

FcOIS can be used to record the resting state networks in the brain. The resting state
network show the connectivity in the brain in the absence of external stimuli. These
networks have become more important as they become altered with certain medical
conditions, like Alzheimer’s. Being able to record default networks, or seeing the
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changes caused by neurological dysfunctions could help better understand these
conditions [8].

With fMRI imaging, the assumption is made that the hemodynamic activity and
the electrical activity in the brain are related (the neuro-vascular coupling), insofar
that one can be predicted form the other. Aging and (vascular) diseases are be-
lieved to have impact on this coupling. Understanding the impact of these causes
is important to correctly interpret data in both animal and human models. If the
assumption of conserved neuro-vascular coupling is not correct, this will lead to er-
roneous interpretation of fMRI data in humans with these afflictions [9]. Developing
a method that can quantify neurovascular coupling and investigate its changes with
either aging or pathology would enable a better understanding of the coupling, and
potentially a better interpretation of human data in populations that are subject to
pathology or aged. Due to the size and complexity of the data, machine learning
might pose an answer to this problem, and a method can be developed that can help
in quantifying this coupling.

1.1 Thesis Objective

The aim of this research will be to develop a method using machine learning to quan-
tify the mapping between the electrical activity and the hemodynamics in the brain.
This mapping will be based on data gathered from mice exhibiting GCaMP6 via
viral injection. Both neuronal (calcium) and hemodynamic (HbO and HbR) sponta-
neous activity will be recorded. Due to earlier success with electroencephalographic
and functional near-infrared spectroscopy data, where the resting state of the fNIRS
signal was predicted using the EEG data, and the complexity of the data, a deep
neural network architecture will be preferred [10]. In the data used for this research
however, spatial features are also available. Because of this, research will be focused
on architectures containing convolutional networks to learn these spatial features.
Since the data also has temporal features, some way to model a sequence will also
be needed. 3D convolutional networks have shown success in learning both these
features, and are also promising in this research [11].

The mapping we want to create would allow us to understand which part of the
neural activity, recorded by the calcium indicators, drives the hemodynamic activity.
The main research question we would like to answer is:

How could artificial intelligence techniques be used to quantify a disconnect between the
normal coupling, between hemodynamics and calcium, and abnormal/disease or age-related
coupling?

The following sub-questions will support the main research questions:

1. Which machine learning techniques can be used to interpret the data and learn the
coupling?

2. What neural network architectures are potentially viable for learning the coupling?

3. What processing is needed for the data to be used in the network while maintaining its
integrity?

4. How can the results generated by the network be validated?

5. Out of the HbO and HbR data, which is the better predictor for the neuronal activity?
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6. How can the neurovascular coupling be quantified using the results generated by the
learned models?

The first two questions form the theoretical background for the design of the models
and identify potential machine learning techniques to use. Question three answers
how the data that is available can be adapted for use in the training of the models
and how the integrity of the data can be maintained. The next two questions give in-
sight how the results of the network can be validated and which input data is better
for generating said results. Finally, we answer the question how the neurovascular
coupling can be quantified from the results generated by the models.

Answering these questions would help to understand the impact of the afflictions on
resting state networks and help confirm the assumption of conserved neuro-vascular
coupling.

1.2 Scope

This research is conducted over 30 weeks at Polytechnique Montreal within Labora-
toire d’imagerie optique et moléculaire (Laboratory of optical and molecular imag-
ing, LIOM). The project focuses on the analysis of data, produced by other members
of the laboratory, using machine learning. Due to time constraints, deep learning
networks are created using known architectures which can generate examples based
on the data mentioned before. No new data will be acquired, and existing data will
be processed as little as possible to preserve the integrity.

1.3 Chapter Overview

This thesis is structured into two main sections. The first is the literature review
which is covered by Chapter 2. This forms the theoretical background which is fur-
ther expanded upon in the following chapters. The next section will be about the ap-
plication of the theory discussed in Chapter 2 and will cover the remaining chapters.
In Chapter 3, the data is discussed. This covers the acquisition of the data, the sub-
sequent processing into the data files used by this research and the final preparation
before it is used for training. Next, in Chapter 4, the neural network architectures
and network training method are discussed which is followed by the analysis of the
models (Chapter 5) the results they produce. Finally, the results are summarised in
Chapter 6 which is followed by the discussion, potential future work and the answer
to the main research question in Chapter 7.
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2 Literature Review

The aim of this research is to use machine learning to build a model that learns the
mapping between the hemodynamic and the neuronal activity. Due to the complex-
ity and volume of the available resting state data, a machine learning approach is
preferred. We have either the option to choose for conventional machine learning,
where features are designed manually and the distribution is learned, or for a deep
neural network, where through a series of layers with multiple nodes the features in
the data are found automatically whereupon the distribution is learned.

2.1 Machine Learning

Conventional machine learning (i.e. machine learning without the use of deep arti-
ficial neural networks) has in the past been good a finding complex patterns in data.
This has always required good feature extractors, which require expert knowledge
and manual work before the machine learning techniques can be used.

With these features models like Linear Regression, Support Vector Machines and K
Nearest Neighbours can be trained either for classification or for regression. Perfor-
mance with classification models has traditionally been decent with well designed
features [12]. Regression is very sensitive to the distribution of the original data.
Linear models will not work on data which can not be linearly separated, requiring
more complex models like SVMs [13].

Images add another level of complexity, as we are often not sure what features we
should look for in data and the features themselves are more complex. This makes
using traditional machine learning for processing images harder, as we would need
to design features which would capture the data distribution well. Ideally we would
want a way for the models to learn the features themselves.

Representation learning gives us the tools to create machine learning systems which
are able to do that. These systems take the input data and build representations of
them, preserving the important features. By stacking these features after each other,
they can be combined to learn complicated features in the data [14].

Traditional machine learning does not have any model capable of this, however. Fur-
thermore, there are no models which are able to generate complex data distributions
[13].

2.2 Deep Learning

In recent years, deep learning has become a large field within artificial intelligence
research. It has shown itself to be a good method to learn the underlying distribution
of data without explicit labeling of the data, thus performing unsupervised learning
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[15, 16]. One of the key differences of deep learning compared to conventional ma-
chine learning is that deep learning automatically learns the features present in the
data [15]. This means that expert knowledge to design feature extractors is no longer
needed and features that are too complicated to design manually or even to be no-
ticed by humans can still be learned. Due to the multi-layer architecture in deep
neural networks, representations are learned in each layer and build upon in subse-
quent layers, creating complex representations of the data [14].

Since the data used for this research will be recordings of brain activity in the form
of a video, an application of deep learning that sparks immediate interest is that of
video prediction [17, 18]. These networks predict the next frame in a video based on
the frames that have come before, thus making use of both the spatial and temporal
aspects of the data.

A distinction to the conventional approach of these models is that we are not inter-
ested in predicting the next frame however. We are interested in predicting what the
neuronal activity will look like based on the hemodynamics. This therefore requires
a multi-modal approach. Furthermore, this problem entails that we try to predict
domain A (neuronal activity) based on domain B (hemodynamics). Image-to-image
translation is an area which focuses specifically on this problem. Pang et al. [19]
have done a survey on the latest development within the field of image-to-image
translation, including multiple multi-modal approaches of a two domain problem,
or even approaches for more than two domains.

Both these ideas are worth considering for further development and evaluation.
Since the image-to-image methods do not have a temporal component, something
which our data does have, we can look to the video prediction networks to try and
combine architecture elements from both approaches. This leads to a few consider-
ations of different types of architectures, namely the variational autoencoder (VAE)
[20] and the generative adversarial network (GAN) [21]. Later sections will cover
these in more detail and give arguments as to why they might be suited to this prob-
lem.

Based on the data we have, two deep learning techniques can be combined to take
advantage of the temporal and spatial structure of the data. Convolutional neu-
ral networks have been shown to have great affinity for spatial data, due to their
restricted local connections which allows them to learn local features in the data.
They outperform humans on tasks like image recognition and can generate images
that are almost impossible to distinguish from real images [15, 22, 23]. The second
technique is the recurrent neural network. These networks have good performance
in sequential data due to the input being handled in a sequence and nodes in this
network have an internal state so that previous information can be reused to influ-
ence the next prediction [15]. The two techniques will be discussed in more detail in
Section 2.2.1.

2.2.1 Deep Learning Techniques

Deep learning involves the creation of an artificial neural network with one or more
’hidden’ layers, together with an input and an output layer. Each layer of the net-
work has multiple nodes and these nodes are connected to each other using weights
with non-linear activations, the most common of which is the rectified linear unit
(ReLU) due to its performance in training speed [24, 15]. The weights in the network
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are then tuned using stochastic gradient descent (SGD), making use of backpropa-
gation of error to correct the weights based on the error obtained by comparing the
difference of the prediction of the network with the actual ground truth [25]. By
repeating this process with enough data we approach a set of weights which have
the best generalised performance. Note that this might be not be the optimal set of
weights for the training data as this can lead to the over fitting of the training data
to the network.

This section will cover the three primary techniques under consideration to be im-
plemented in the network to be designed. First convolutional neural networks will
be covered, which are suited for spatial data and automatic feature learning. Next,
deconvolutional networks are discussed which are used to generate new samples
based on either noise or representations. Finally, we will cover recurrent neural net-
works, which have an affinity for sequential data.

Convolutional Neural Networks

Convolutional neural networks work by spatially restricting the possible connec-
tions in the network. Instead of a fully-connected network where every node is con-
nected to every other node in the previous and consequent layer, the connections are
restricted to the immediate neighbours of the unit of interest. Taking the example of
an image, this works by having a filter, an n× n matrix, pass over the image pixel-
by-pixel and multiplying this filter with the pixels it is passing over, see Figure 2.1.
The resulting image representation is called a feature map. Mathematically speaking
this operation is called a discrete convolution and it is where the technique gets its
name from.

The filters are then trained through backpropagation, adjusting them based on the
error obtained at the end of the network, just as one would do with a fully con-
nected network [26]. The result of this operation is then passed through a non-linear
activation, usually the ReLU. By having multiple convolutional layers in sequence,
more complicated features (filters) can be learned. This hierarchy is inspired by how
the visual cortex ventral path works [15]. After the generation of each feature map,
a pooling operation can be performed. Since neighbouring pixels in images usu-
ally contain similar information, the feature map representation can be compressed
by applying a pooling operation. This operation takes a subset the image of a spe-
cific dimension (n× n) and takes the maximum of these values. This is called max-
pooling [15]. In the context of this research, convolutional networks are a good fit
due to the inherent spatial nature of the video data and the automatic feature extrac-
tion it can perform on this data. We do have to keep in mind that noise needs to be
eliminated out of the training data as we do not want to learn features based on this
noise.

Deconvolutional Neural Networks

While convolutional networks learn the features present in the data by creating
smaller but deeper representations of the input data, deconvolutional networks at-
tempt to do the opposite. They take an input which is small and deep and attempt
to scale this up to a bigger representation which has less filters. The final layer of
this network can then be used to create samples which resemble the original target
data, for example images. These layers are thus essential for generative models, and
have been used multiple generative deep learning architectures [20, 21, 15].
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FIGURE 2.1: Visual representation of the convolution operation.

The training of these layers is similar to that of convolutional networks. Each layer
has multiple filters that are used to generate the features present in the image. These
filters are trained using backpropagation of the error gradient. Each subsequent
deconvolutional layer thus builds up a hierarchy of features, where each layers can
learn more complicated features based on the ones it has been presented from the
previous layer, similar to convolutional layers. By continuing this process through
multiple layers, the complex representations can be turned into a image at the final
layers [27].

Recurrent Neural Networks

Due to the data used in this project being a sequence of recorded images, Recur-
rent Neural Networks (RNNs) can be used in the network design. RNNs have been
shown to work well with sequential data, such as sentences, especially in machine-
translation and text prediction [28, 29]. The network works by having nodes which
have recurrent connections. These recurrent connections carry information about a
previous time step into the current one, see Figure 2.2. This allows for information
to be remembered and used in future activations. Each of these nodes can be seen
as a self contained unit and every previous or subsequent unit can be viewed as
its own network [15]. This is the main difference compared to fully-connected or
convolutional networks, as these networks do not have the notion of state.

Advances in the training process and architecture of RNNs have lead to networks
which have state of the art performance in a variety of problems [30, 31, 32]. Through
these advances a new type of recurrent unit was created, the long short-term mem-
ory (LSTM) unit. This unit has better performance both for training and predictions,
and has largely replaced traditional recurrent units. [33, 15]. The main issue with
traditional RNNs is that they are not good at keeping track of long term dependen-
cies. For example, if something at the start of a long sequence is important for the
end of sequence, RNNs will lose this dependency. LSTMs are designed to keep this
information persisting in the unit so that it might be used in later time steps. It does
this by having an additional connection which is used to propagate the cell state
throughout time, while having only minimal operations performed on it [33]. The
cell state is visualised in Figure 2.3 as the horizontal line through the top.
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FIGURE 2.2: Illustration of a RNN, unrolled through time.

FIGURE 2.3: Illustration of an LSTM chain, unrolled through
time.

Gated Recurrent Units (GRUs) have also been considered. The argument for using
them is similar performance to LSTM while having less parameters [34]. This would
be beneficial in a large network as it would potentially reduce the complexity of
training the network. Further research into the GRUs has shown however that in
tasks where deep context understanding is required LSTMs outperform the GRUs.
Furthermore, the LSTMs also have a tendency for a higher true positive rate, which
is desired in this research [35].

2.2.2 Deep Learning Architectures

As mentioned in Section 2.2, there are two deep neural network architectures that
are possible candidates for this research. These architectures are the autoencoder
and the generative adversarial networks, both of which are generative models. The
next sections will cover these architectures in more detail.

Generative Models

Since the goal of the project is to produce new data based on existing data, the ob-
vious choice for neural network models are the generative models. These models
try to generate new synthetic data based on the learned posterior distribution of
the data. Formally, this is done by estimating the posterior distribution through the
Baysian rule: P(Y|X) = P(Y)×P(X|Y)

P(X)
, where P(X) is the probability of of observing

data X, P(Y) is the prior and P(X|Y) is the likelihood of observing the data given the
prior. This prior can take on any form, but in the case of the variational autoencoder
(VAE) and the generative adversarial network (GAN) this is a latent representation
z, sampled from a multivariate Gaussian distribution. The likelihood then takes the
form of P(X|z).

By the Baysian rule, both models need to learn the likelihood P(X|Y) to estimate the
posterior distribution. However, the VAE and the GAN both approach the learning
of the posterior differently. VAEs learn the likelihood distribution directly through
the loss function (Equation 2.1). By minimising the reconstruction error, the lower



10 Chapter 2. Literature Review

likelihood bound is estimated and used to estimate the posterior distribution. Due
to the min max game used to train GANs (Equation 2.2), the generator minimises
the difference between P(X) and P(X|z). It has thus directly learned how to create
the posterior distribution, and implicitly learned the likelihood distribution.

Furthermore, both of these models are trained in an unsupervised manner, meaning
they do not need labelled data to be trained. This is a very useful property when
large unstructured datasets are used.

Autoencoders

Autoencoders are a type of network where it tries to generate reconstructions by
compressing the input data into a latent space, and then using that latent space to
recreate the input. The auto encoder consists of two parts: the encoder Eϕ(x), used
to generate the latent representation z = Eϕ(x), and the decoder Dθ(z), which uses z
to try and recreate x by x̂ = D(z). Training is done by passing the data through the
network and adjusting the parameters based on the reconstruction error between
the ground truth samples and the reconstructions. This reconstruction is usually the
mean squared error. The goal of an autoencoder is not to recreate perfect reconstruc-
tions however, this would be of limited use in the real world. What we are interested
in is the properties of the latent space z. By creating a latent space which has less di-
mensions than the data, we force the network to capture the most important features
of the data. This follows from that fact that if the latent dimension would be bigger
than the data, it would be able to just copy over the data into the latent dimension,
not learning from the the data, but rather remembering it. These features can then
be used to generate new examples from data which has not been seen before by the
network [14].

Variational Autoencoder Traditional autoencoders encode the data into a latent
space, which is very sparse. Much of the latent representations sampled from this
space will not be able to generate accurate reconstructions. This is due to the latent
space not being regularised over all the examples used to train the network. To fix
this issues, Kingma et al. [20] introduced the variational autoencoder. It constrains
the latent space to conform to a normal distribution, regularising the latent space.
Furthermore, instead of giving the latent representation for each input sample, it
calculates a mean and log variance for it. This can then be used to create a distribu-
tion, and sample it to create the latent representation. Due to this random sampling
however, it is difficult to propagate the gradient through the network for training.
Kingma et al. [20] fixed this by reparameterising the latent space to be a function of
the encoders output. This is known as the reparameterisation trick. Another bene-
fit of sampling a distribution for creating the latent space, compared to them being
given, is that the network becomes better for generative tasks. Since the latent space
is restricted to a normal distribution, random samples drawn for a normal distribu-
tion can also generate meaningful examples.

To train a variational autoencoder a loss is calculated consisting of two parts repre-
senting the goals of the network. The first goal (first term in Equation 2.1) is that the
latent space should be normally distributed. To achieve this, the Kullback-Leibler
divergence between the approximate posterior distribution of Eϕ(z|x) and an as-
sumed prior normal distribution is calculated. Minimising this loss means that the
posterior distribution is as close to a normal distribution is possible. A loss of zero
at this term means that the posterior distribution is a perfect normal distribution.
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The second goal (second term in Equation 2.1) is the same as with the regular au-
toencoders, namely that we want to create accurate reconstructions using the mean
squared error. Because the prior is a standard Gaussian, the second term of the loss
function reduces to the mean squared error between the input of the encoder and
the output of the decoder. Both losses together form the total loss of the network
[20].

L(θ, ϕ; x(i)) ≃ 1
2

J

∑
j=1

(
1 + log((σ(i)

j )2)− (µ
(i)
j )2 − (σ

(i)
j )2

)
+

1
L

L

∑
l=1

log Dθ(x(i)|z(i,l))

where z(i,l) = µ(i) + σ(i) ⊙ ϵ(l) and ϵ(l) ∼ N (0, I)
(2.1)

Autoencoders have been used with success in areas which require sequential data,
like machine translation, and have made extensive use of LSTM networks [29, 10].
In Sirpal et al. [10], a similar problem to the one posed in this research was faced.
They tried to predict the resting state hemodynamic parameters (HbO, HbR and Hb
total) based on resting state EEG signal in humans. This problem also incorporates
the neurovascular coupling, as the fNIRS data used is reliant on this phenomenon.

In the (VAE) architecture used, they integrate both LSTM as well as convolutional
layers. This is done to learn the sequential structure of the EEG data as well as to
automatically learn the features in the data [10]. They did not however, have the
amount of spatial data available that the fcOIS in this research data has. With this
data available, better features could be extracted by the convolutional layers of the
architecture making an autoencoder a strong candidate as a solution to our problem.

Encoder 
 

Latent 
Space Decoder 

 

FIGURE 2.4: Illustration of the autoencoder architecture.

Generative Adversarial Networks

Generative adversarial networks (GANs) are, as the name implies, generative net-
works that have shown to have good performance in the image domain [21, 16]. In
a GAN two neural networks are being trained, one generator network G and one
discriminator network D. The generator is trying to capture the distribution of the
training data, and generate plausible examples based on noise sampled from a Gaus-
sian (the latent space, z in Fig. 2.5). The discriminator is being trained to recognize
if a sample that it is given is from the real distribution or if it is created by the gen-
erator. This results in a min max game between the generator and the discriminator,
making the network adversarial. The full value function is given in Equation 2.2.
The first term is the accuracy of the discriminator for the real data where the second
term is the accuracy of the discriminator on the generated data. This value function
is used to calculate the loss of the network and to compute the gradient. Subse-
quently, the full loss is used to train the discriminator and the only the second term
is used to train the generator of the network. Both the discriminator and the gen-
erator are trained separately, alternating between them. Because log(1− D(G((z))
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generates weak gradients at the start of training, the term can be reversed to max-
imise log(D(G(z)). In practise, this generates the same dynamics as the original
term, but the gradients are stronger in early learning. The theoretical optimum for
the network is reached when the discriminator reaches an accuracy of 0.5. At this
point the discriminator can no longer tell which data is generated and which is real,
assigning equal probability to both [21, 14].

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z))] (2.2)

Training
Data

Discriminator 

Generator

Adversarial LossReal or Fake?

FIGURE 2.5: Overview of the GAN architecture.

In the introduction paper of GANs from Goodfellow et al. (2014) [21], it is men-
tioned that they were not yet aware of the approaches by Kingma et al. (2013) [20]
in the development of the variational autoencoder, where both the neural networks
in the architecture are trained through backpropagation. The approaches are similar
however, in that they both have a differentiable (i.e. trainable through backpropa-
gation) generative network. The difference is that the autoencoder builds its latent
space through the encoder network whereas the GAN uses a fixed latent distribu-
tion, usually a standard Gaussian, which is sampled by the generator to generate its
target [21].

Merging VAEs and GANs

More work has been done to try and merge the two architectures to attempt to create
the best of both worlds. Where VAEs usually have a problem of generating blurry
examples, traditional GAN architectures have inherent instabilities which could lead
to mode-collapse, where the diversity of the original distribution is lost [21, 36].

Larsen et al. [37] propose a hybrid of the VAE en GAN architecture by adding an
encoder to the GAN and collapsing the decoder and the generator into the same
network as they fulfill the same role in their respective original architectures. The
proposed strength of the architecture lies in that it uses the learned feature repre-
sentations by the discriminator of the GAN for the reconstruction error used to train
the encoder. This replaces the element-wise error of the usual mean squared error
of VAEs with feature-wise errors. This allows the network to better capture the data
distributions that it is trying to learn, as element-wise distance measure are inade-
quate for complex data distributions like images [38].

To train the network, three criteria are used (Equation 2.3). The first Lprior (Equation
2.4), is the KL-Divergence (DKL) of the encoded latent space and a normal Gaussian.
This is equivalent to the regularisation term of the VAE. The second term, Ldislikel

(Equation 2.5), is the difference between the features of the data and the features of
the reconstructions as learned by the discriminator. This is used to replace the mean
squared error between the original data and the reconstructions, and thus replaces
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the reconstruction loss of the VAE. LGAN (Equation 2.6) is the final loss and this is
the summed binary cross entropy of the confidence of the discriminator between the
real data, the reconstructions and the samples generated from a random latent space
[37].

L = Lprior + Ldislikel + LGAN (2.3)

Lprior = DKL (q(z|x)||p(z)) (2.4)

Ldislikel = −Eq(z|x)[log p(Dl(x)|z)] (2.5)

LGAN = log(D(x)) + log(1− D(G(z))) + log(1− D(G(E(x)))) (2.6)
where x = real data, p(z) ∼ N (0, I) , q(z|x) = z ∼ E(x) ,

D is the discriminator, G is the generator, E is the encoder,
and DKL is the Kullback-Leibler divergence

The combined loss is not used to update all the parameters in the network. Better
performance was observed by not propagating LGAN to the encoder and and Ldislike
cannot be used to update the discriminator as would result in the collapse of the
network. Furthermore, Ldislike is weighed using hyperparameter γ when calculating
the loss for the generator. This is done to create a trade-off between the reconstruc-
tion abilities and the ability to fool the discriminator. Equation 2.7, 2.8 and 2.9 give
the update rules of the gradients for the different networks.

θE
+←− −∇θE(Lprior + Ldislikel ) (2.7)

ψG
+←− −∇ψG(γLdislikel −LGAN) (2.8)

ϕD
+←− −∇ϕDLGAN (2.9)

Since the target we try to generate in this research is an image with limited spatial
resolution, blurry images pose a problem for the accuracy of the result. By using
a GAN and its adversarial training this could be prevented, and it is therefore a
potential choice for use in this research. Since success with a VAE in comparable
problems already has been shown [10], extending it with components of the GAN to
increases image quality is a logical next step.

Encoder 
 

Latent 
Space

Generator

Discriminator 

Autoencoder
Generative Adversarial Network

FIGURE 2.6: Overview of the VAE-GAN architecture.



14 Chapter 2. Literature Review

2.3 Discussion

In this chapter, both machine learning techniques and architectures have been dis-
cussed. Due to lack of representation learning and generative models, traditional
machine learning cannot be used for this research, and deep learning needs to be
used. Convolutional neural networks are the most apt to use in this project as they
can automatically learn the features present in the data which is being used to train
net network. Recurrent connections are also useful as they can capture the tempo-
ral element of the resting state recording used in this research. Previous work has
already shown that this is an important element and to this end they will be imple-
mented in the architectures used for this project. Furthermore, the two architectures
that will be used in this research have been identified: the Variational Autoencoder
and the Variational Autoencoding Generative Adversarial Network. These architec-
tures will be compared en evaluated to see which performs best on the given data,
and if they can be used to generate accurate recreations of the original data.

2.4 Intermediate Conclusion

After reviewing the relevant literature we can give answers to the research questions
1 and 2:

1. Which machine learning techniques can be used to interpret the data and learn the
coupling?

2. What neural network architectures are potentially viable for learning the coupling?

The answer to the first question is that convolutional networks and recurrent neural
networks can be used to learn the features present in the data. Followed by deconvo-
lutional layers, which do the reverse of the convolutional layers, new samples based
on representations of the data can then be generated.

Due to the generative capabilities and success in previous research, the variational
autoencoder en the variational autoencoding generative adversarial network are the
most suited for this task, hereby answering the second question.
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3 Data

3.1 Data Acquisition

The data used in the project is collected during a different project which focused
on the effects of hypoxia on the resting state networks of neuronal activation and
hemodynamics in mice. Neuronal activity is measured in 7 mice with the help of
GCaMP/Calcium imaging, and hemodynamics are measure in 8 mice with intrin-
sic optical imaging. The gathering of the data spanned multiple weeks, with one
acquisition of 40 minutes per week, alternating between normoxia recordings (at-
mospheric oxygen, 21%) and hypoxia (either 12%, 10% or 8% oxygen) recordings.
This resulted in a dataset consisting of 28 normoxia and 28 hypoxia recordings for
neuronal activity, and 32 normoxia and 32 hypoxia recordings for hemodynamic ac-
tivity. This resulted in a dataset consisting of 24 normoxia recordings and 24 hypoxia
recordings. For training the model for normal resting state, only the first normoxia
recording is used, as subsequent hypoxia recordings could have potential influence
on the resting state. Furthermore, only minute 10-17.5 of each recording is taken.
This window is chosen as the first 10 minutes of the recording might be stressful for
the mice, influencing the recording. Choosing too big of window also leads to hav-
ing too much data to train the network effectively due to over fitting. The resulting
dataset for network training for healthy mice consists of 8 normoxia recordings (4
female, 4 male) with 10 minutes worth of recording per mouse [39].

3.1.1 Ethics Statement

All surgical procedures were approved by the Animal Research Ethics Committee of
the Montreal Heart Institute and were performed according to the recommendation
of the Canadian Council on Animal Care.

3.1.2 Acquisition Process

The acquisition process consists of two major parts. The first is the preparation of
the mice and the other being the recording setup.

Mice Preparation

A total of eight mice were used in the acquisition (4 female, 4 male). The sex is
not thought to have influence on the resting state and thus no distinction is made
between for the purpose of this research.

Mice were injected with a virus to spread the GCaMP6s indicator throughout the
brain. After this a minimum of 5 days passed before proceeding to the next step of
implementing the surgical window. The surgical window needs to be implemented
on top of the skull so the optical recording can be made. This is done by anaes-
thetising the mouse, cutting away the skin in the area where the window needs to
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be implemented and fixing the window to the skull using dental cement. A titanium
head bar is also glued to the head so that the mice can be fixed in place during the
recordings [39].

Recording Setup

The imaging equipment used consists of the LightTrack OiS200 system (Labeotech
inc.) with multicolour interlacing leds for recording the different datasets (GCaMP
and intrinsic optical imaging). Red, green and amber LEDs (535 nm, 590 nm, 620
nm), are used to illuminate the brain for the recording by CMOS sensors to create
the data used for the hemodynamic calculation and a blue led (475 nm) is used to
excite the GCaMP indicators and record the calcium activity. CMOS sensors are used
to capture the data at 80 hz total, giving 20 hz per colour channel for the 4 colours.
The final recording is made over a 10x10 mm area of the mouse brain, captured at
a resolution of 192x192 pixels [39]. The processing of this data is described in next
section.

3.2 Data Processing

After capturing the raw recordings the four colour channels need to be processed
into the hemodynamic and calcium activity files. For this, a pipeline was developed
which processes the recordings to the final files used in this project freely available
at https://github.com/marl1bakker/Hypoxia).

The first step is the co-registration of the recording. This corrects the recording for
any movement of the mice by lining up the frames of the recording so that the brain
is in the same position in every image.

Using the same techniques as described in Valley et al. [40], the hemodynamic sig-
nals are calculated. Because oxygenated (HbO) and deoxygenated (HbR) blood have
different absorption rates from the LEDs, the difference can be calculated when as-
suming the baseline values of the blood present in the mouse brain (60 µM HbO, 40
µM HbR). This produces the HbO and HbR recordings used in training the models.

Next, the calcium data is corrected for hemodynamic fluctuations by using the data
obtained from the red, green and amber LEDs. The modified Beer-Lambert law is
used to calculate the estimate of changes of hemoglobin which is then regressed onto
the calcium data. This eliminates most of the hemodynamic influence on the calcium
data [40]. The data is then normalised to obtain the the percentage of fluorescence
change (∆F/F) across the recording. Finally, to correct for non-physiological arte-
facts like illumination or camera noise, global signal regression is applied to the data
[41].

3.3 Data Preparation

To use the data for training, a custom interface is written so the binary files are con-
verted to an array, and this array is cut to five minutes required for training. This is
done to prevent the network overfitting on too much data and to keep some data for
validation purposes. A mask corresponding to the recording is then loaded to mark
which area of the image is the actual mouse brain. This mask is applied to the array
to remove the noise present in the image around the brain. Afterwards the array is
normalised between 0 and 1.

https://github.com/marl1bakker/Hypoxia
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The different data files (HbO, HbR and Ca) are loaded into a custom Dataset class of
Pytorch where the data is kept for the duration of the training. Due to this, the data
can easily be integrated with the Pytorch framework and its data transformations.
Finally, custom indexing is implemented to account for the hemodynamic delay in
the brain. When a certain index of the calcium data is picked, representing a specific
frame at a specific time, the corresponding HbO and HbR data are delayed. This
delay is controlled by a hyperparameter for the dataset.

3.4 Intermediate Conclusion

After reviewing the data and determining how it is structured an answer can be
given to research question 3.

3. What processing is needed for the data to be used in the network while maintaining its
integrity?

Since the data has already thoroughly been processed for different research, little
further processing is needed to prepare the data for training. The only additional
step added is re-scaling all the values present in the matrices of the data between 0
and 1 so they are inline with what is expected by the deep learning frameworks.
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4 Deep Learning

Due to the complexion and large size of the dataset, hand engineering features to
learn from the the data is too costly. To learn these features, representation learning
using a deep neural network is needed. Because of this, two network architectures of
generative models have been chosen, which are able to create recreations of the orig-
inal dataset: the variational autoencoder (VAE) and the variational autoencoding
generative adversarial network (VAE-GAN). The implementation of these architec-
tures will be discussed in the next section of this chapter, followed by the training
strategy and finally the use of the network to attempt and produce the desired re-
constructions of the data.

4.1 Architectures

The neural network architectures chosen are the variational autoencoder and the
variational autoencoding generative adversarial network, both discussed in Section
2.2.2. Both architectures make use of deep convolutional networks to learn the fea-
tures present in the data, compressing these features to a latent space, which is in
turn used by the decoder/generator to create recreations of the original images.
These architectures are chosen so that unseen hemodynamic data can be encoded
and used to generate the corresponding neural activity.

The goal of the architecture is to reproduce the distribution of the calcium activity
Pca. Samples from this distribution are recreated by reconstruction from a sample
for the latent distribution Pz. This latent distribution is generated by encoding the
hemodynamic data. This hemodynamic data is represented by either PHbO or PHbR;
oxygenated blood or the deoxygenated blood data respectively. This turns the ar-
chitectures used into multi modal networks where they translate between the hemo-
dynamic modality into the neuronal activity modality. Since the architectures used
train by measuring the losses over the relationship between Pz and Pca the input to
the encoder network does not need to be the target that is attempted to be recreated.
The goal of this setup is for the encoder to learn and try to encode the relevant fea-
tures of the hemodynamic such that it can be used to learn the neuronal activity, thus
learning the hemodynamic coupling.

4.1.1 Variational Autoencoder

The variational autoencoder follows the standard design as first presented by Kingma
et al. [20], shown in Figure 2.4. The architecture works by encoding data samples
from either x = PHbO or x = PHbR into the latent distribution by P(z|x) = Eϕ(x). The
latent distribution is then sampled to create the latent representation z, which is used
in the recreation of the calcium data by x̂ = Dθ(z). Instead of using the input data
from PHbO or PHbR as the ground truth for the loss calculation in the network, we use
the data from Pca. This now means that the features learned from the hemodynamic
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data are used to recreate the calcium data. This slightly alters the loss function from
Equation 2.1, modifying the second term. Instead of the reconstruction loss using
the input data, it uses data from the calcium dataset where the sample is taken that
is d amount of frames earlier than the hemodynamic data. The modified equation is
given in Equation 4.1.

L(θ, ϕ; x(i)) ≃ 1
2
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log Dθ(k(i−d)|z(i,l))

where z(i,l) = µ(i) + σ(i) ⊙ ϵ(l) , ϵ(l) ∼ N (0, I) ,
k = calcium data and d = hemodynamic delay

(4.1)

Multiple networks are trained to see which data is relevant for generating the neural
activity. One network is trained with the HbO data, another with the HbR data and
an extended architecture is created (Fig. 4.1) which uses both the HbR and the HbO
data to make the reconstructions. This architecture uses two encoders which both
produce half the latent space representation used in that network. These represen-
tations are then concatenated and used by the decoder to create the reconstructions.
This means that for these networks the latent space size is doubled compared to the
networks which use a single encoder. This also modifies the loss function as we now
have to account for the two encoders. While the reconstruction loss is still the same
for both encoders, a new term is added to regularise the latent distribution of the
second encoder, shown in Equation 4.2.
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where z(i,l) = µ(i) + σ(i) ⊙ ϵ(l) , ϵ(l) ∼ N (0, I) ,
k = calcium data and d = hemodynamic delay

(4.2)
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FIGURE 4.1: Overview of the expanded autoencoder architec-
ture.

To see how much the latent dimension influences the generation and to find which
is suitable for this task, every network is trained with dimension sizes, 256 and 512.
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The values of 256 was chosen as this was used in previous research [10]. The data
used here, however, has more dimensions and thus might need more room for en-
coding the latent representation. Because of this the value of 512 has been chosen.

Network Structure

Encoder The encoder is a deep convolutional network with two flat outputs. It
takes the input data en passes it down through the convolutional layers, learning
the features in the data. Afterwards, the data is flattened and through two fully
connected layers it is fed into the two output layers. These output layers represent
the mean and log variance of the latent distribution and are together are used to
create the latent distribution z and to calculate the KL-Divergence loss of the latent
distribution compared to a normal Gaussian distribution. The full structure of the
network is shown in Table 4.1. In the extended architecture, the encoder structures
are identical.

Decoder The decoder is made up of the reverse convolutional structure as the en-
coder. Before this, however, two LSTM layers take the input of the network, a latent
representation z. For the expanded architecture this is a concatenated latent repre-
sentation from both encoders. After the LSTM layers the representation of the input
is fed trough a fully connected layer and reshaped to match the input expected by
the first deconvolutional layer. The deconvolutional layers then try and reconstruct
the image in the likeness of the calcium data. Due to the deconvolutional layers be-
ing prone to generating noise pattern over the data, a final layer with a stride of one
has been added to try and mitigate these effects [42]. A full overview of the design
of the decoder is shown in Table 4.1.

Encoder Decoder

3×3 32 conv. ↓, BNorm, ReLU Latent dim LSTM
3×3 64 conv. ↓, BNorm, ReLU Latent dim LSTM
3×3 128 conv. ↓, BNorm, ReLU 36864 FC, BNorm, ReLU
3×3 256 conv. ↓, BNorm, ReLU 3×3 128 conv. ↑, BNorm, ReLU

4× latent dim FC., BNorm, ReLU 3×3 64 conv. ↑, BNorm, ReLU
2× latent dim FC., BNorm, ReLU 3×3 32 conv. ↑, BNorm, ReLU

Latent dim FC., mean 3×3 32 conv. ↑, BNorm, ReLU
Latent dim FC., log variance 3×3 1 conv. ↑, Sigmoid

TABLE 4.1: Layers of the networks in the VAE.

Network Training

VAE are traditionally jointly trained using one optimiser [43] and this will also be the
case in this research. For the optimiser, the Adaptive Movement Estimation (ADAM)
optimiser is used as according to its creator it is well suited to problems which have
many parameters and big datasets [44]. Furthermore, ADAMGrad is also used to
preempt any non-convergence issues which may arise in ADAM [45]. The learning
rate α was set to 0.001 as recommended by Kingma et al (2017) [44]. Further training
details relevant for both networks are discussed in Section 4.2.
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4.1.2 VAE Generative Adversarial Network

The variational autoencoding generative adversarial network follows the design by
its creators, Larsen et al. [37], shown in Figure 2.6. Similar to the VAE, the input data
gets encoded into the latent distribution P(z|x) = Eϕ(x) and samples get recon-
structed using the generator x̂rec = Gθ(z). After this however, the the reconstruc-
tions are used for the adversarial training process of the GAN. The discriminator Dη

is used to decide if the sample that the network is given is real or not. This is also
done for samples generated for x̂gen = Gθ(ẑ) where ẑ ∼ N (0, I), the latent repre-
sentation randomly drawn from a Gaussian. Combined with the discrimination of
the calcium data, this results in the adversarial loss of the network. This does mean
that, similar to the VAE, the input data is not used as the ground truth as we want
to reconstruct the calcium data. We are not interested in the generations of the net-
work, as we want to control what the output will be using the encoding, but they
are used to improve the generator. Since the latent space generated by the encoder is
regularised using a standard Gaussian, the random distribution used for x̂rec and the
encoded latent space are similar and should result in similar samples. This is useful
for training the discriminator. Due to this changes the loss functions are modified
slightly and the modified ones are given in Equation 4.5.

FIGURE 4.2: Failed reconstruction using the dislike loss with learned
features.

During the initial training of the network it was found that using the dislike loss
(Equation 2.5) with the learned representations resulted in unstable training. We
have two hypotheses as to why this happened with the data we had. The first is
that the discriminator was under trained. If this is the case, the discriminator has
not learned the features well enough to distinguish between the real data and the
generated samples. Since these learned features are also used to train the encoder
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and the generator, this might result in a feedback loop which would ultimately result
in the bad samples generated (see Figure 4.2). The other hypothesis is that since the
data is noisy itself, it could lead to the discriminator learning the noise and then
over fitting in it. While we have made attempts to try and remedy the issue with the
original loss calculation in mind, unfortunately, due to time constraints, we were not
able to solve it. The results improved however, when instead of using the learned
features to calculate the dislike loss calculation, we swapped to a more traditional
mean squared error reconstruction loss between the generated samples x̂rec and the
ground truth. This resulted in more stable training and qualitatively better results.
This resulted in another modification of the loss formulas, shown in full in Equation
4.4.

L = Lϕ
prior + L

ψ
prior + Ldislike + LGAN (4.3)

Ldislike = log Gθ(k|z) (4.4)
LGAN = log(D(k)) + log(1− D(G(z))) + log(1− D(G(E(x)))) (4.5)

where x = hemodynamic data, p(z) ∼ N (0, I) , k = calcium data ,
D is the discriminator, G is the generator, and E is the encoder

Analogous to the VAE, the VAE-GAN is also trained using the three different datasets:
The HbO, the HbR and the combined dataset. For the combined dataset the VAE-
GAN architecture was also extended using an additional encoder to create half the
latent space representation, see Figure 4.3. This was then concatenated from both
encoders to create the full latent representation. Because of this, the loss formula
changes slightly, adding another prior loss to the full loss calculation to regularise
the latent space of the second encoder, as shown in Equation 4.3.

HbO Encoder 
 

Latent 
Space

Generator

Discriminator 
HbR Encoder

 

FIGURE 4.3: Overview of the VAE-GAN architecture.

Network Structure

Encoder The encoder(s) follows the same structure as the encoder from the VAE. It
uses a combination of convolutional and fully connected layers to output the mean
and log variance of the latent representations corresponding to the input data. This
is then turned into the latent representation used for the generator and to calculate
Lprior.

Generator Since the generator has the same function as the decoder in the VAE,
this structure is also the same. The generator takes the encoded or the randomly
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sampled latent representation, and generates the reconstructions. The only differ-
ence is that is uses the hyperbolic tangent as output as this is deemed more stable in
GANs [16]. Finally, this network has also added a final deconvolutional layer with a
stride of one to combat artifact creation in the images [42].

Discriminator The discriminator is made up of multiple convolutional layers which
try and learn the features of the input that it is trying to discriminate. This is fol-
lowed by two fully connected layers, the final one of which has a one neuron out-
put for discrimination. In contrast to the other networks, the discriminator uses
LeakyReLU for the activation as the results in more stable GAN training [16]. The
final layer has no activation as the loss function used (binary cross entropy) is more
efficient with logits as input. The full structure of the networks are shown in Table
4.2.

Encoder Generator

3 × 3 32 conv. ↓, BNorm, ReLU Latent dim LSTM
3 × 3 64 conv. ↓, BNorm, ReLU Latent dim LSTM

3 × 3 128 conv. ↓, BNorm, ReLU 36864 FC, BNorm, ReLU
3 × 3 256 conv. ↓, BNorm, ReLU 3 × 3 128 conv. ↑, BNorm, ReLU

4 × latent dim FC., BNorm, ReLU 3 × 3 64 conv. ↑, BNorm, ReLU
2 × latent dim FC., BNorm, ReLU 3 × 3 32 conv. ↑, BNorm, ReLU

Latent dim FC., mean 3 × 3 32 conv. ↑, BNorm, ReLU
Latent dim FC., log variance 3 × 3 1 conv. ↑, Tanh

Discriminator

3 × 3 32 conv. ↓, BNorm, LeakyReLU
3 × 3 64 conv. ↓, BNorm, LeakyReLU
3 × 3 128 conv. ↓, BNorm, LeakyReLU
3 × 3 256 conv. ↓, BNorm, LeakyReLU

2048 FC., BNorm, LeakyReLU
1 FC.

TABLE 4.2: Layers of the networks in the VAE-GAN.

VAE-GAN Training

The VAE-GAN is trained by an optimiser for each network, for a total of 3 or 4
optimisers, in the case of the extended architecture. Each of these optimisers is the
ADAM optimiser [44] with a learning rate α of 0.001. ADAMGrad [45] was also
enabled to preempt the non-convergence issues. The training algorithm from the
original paper is used where the losses for each network are calculated according
to Equations 2.7, 2.8 and 2.9 [37]. The different networks are trained in sequence,
first the encoder parameters get updated, followed by the generator and finally the
discriminator. Further training details will be discussed in the next section.

4.2 Network training

As mentioned in the previous sections, the networks are trained by using either the
HbO data, the HbR data or both. This is done because some of the data might be
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better indicator for the calcium activation, as HbO might be influenced by cardio-
vascular activity, creating confounds, whereas HbR is a direct effect of the neuro
vascular coupling. In loading the dataset the entire hemodynamic datasets are de-
layed by 44 frames, to account for the hemodynamic delay that follows after neural
activation. The value of 44 is chosen as 2.2 seconds is the average delay in hemo-
dynamic activity in awake mice. As the data is recorded in 20hz per channel, the
resulting delay would be 44 frames.

The data used for training is 5 minutes (minute 12.5-17.5) of the first normoxia
recording of a mouse. When trying to train the network with data from multiple
mice, the network training became very unstable, unable to produces sensible re-
sults. This is due to the different mice not having the same brain size and position in
the images, making it hard to capture the fine details of the neuronal activation. For
the validation data, 2.5 minutes (minute 10-12.5) were used.

The networks are trained for a total of 200 epochs. This much training likely results
in over fitting of the network however, so every 10 epochs the networks are saved.
After training we use the validation data recorded during training to find out when
the validation losses start to diverge from the training losses. The model closest to
the epoch where the diversion gets noticeably worse is loaded to generate the results
of the models. This is the model which has the best generalisation performance to
the evaluation set. For the monitoring of the training, every epoch a sample for x̂rec
is saved for both the training an validation data to qualitatively evaluate the training
process.

The VAE-GAN paper notes it uses a batch size of 64 for training [37]. We have limited
the batch size to 32 however, as an increased batch size lead to computational issues,
especially in memory usage.
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5 Model Analysis

Based on the architecture and training process of the previous chapter, multiple
models were trained to attempt to reconstruct the neural activity. The reconstruc-
tion of this neural activity, visualised through the GCAMP indicators, is done using
the HbO, HbR data or both combined. The layers of the network were fixed, and
between the models the latent dimension and the training data type was switched.
These options were varied for both architectures.

5.1 Model Selection

Before evaluation, a model first needs to be chosen. For every 10 of the 200 epochs
for training, the network was saved for future use. To select one of these models we
need to evaluate the training performance. As mentioned in Section 4.2, a validation
set was used during training to keep track of the generalisation performance. After
training all the networks, this data was used to determine which of the saved models
is the best performing one. For every network design a model was chosen, and the
choices are shown in tables 5.1a and 5.1b. This choice is based on the minimum
validation loss and evaluation of the training graphs, see Appendix A and B. Most of
the networks have epoch 200 as their optimal epoch. This indicates that 200 epochs
was not enough to find the best parameters and training should have progressed
longer. Due to limited time and computational resources this was not possible.

VAE Both HbO HbR

256 200 200 200
512 200 200 200

(A) Optimal epochs of the VAEs.

VAE-GAN Both HbO HbR

256 200 180 200
512 200 190 200

(B) Optimal epochs of the VAE-GANs.

TABLE 5.1: Optimal epochs of the different network designs.

5.2 Evaluation Criteria

To evaluate the results of the network, two evaluation criteria were used: The mean
squared error (MSE) and the structural similarity index (SSIM). Each of these criteria
measure image quality compared to the ground truth.

The mean squared error has been discussed before in Section 2.2.2, where it is the
main training target of the autoencoders. Indeed, the autoencoders use the MSE
to guide their reconstructions in the right direction. This is a very basic measure,
but it gives a good indication and is widely used in a variety of fields [38]. Its goal
is to compare two signals, in this case images, and give a quantitative comparison
between the two. This comparison is usually made between the ground truth and a
generated sample. This will also be the case here, the original ground truth images
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will be compared to generated samples. Equation 5.1 shows the details of the MSE
computation.

MSE(x, y) =
1
N

N

∑
i=1

(xi − yi)
2 (5.1)

The structural similarity index was conceived to create a metric which can measure
the structural consistency of an image compared to another one. This means that
nonstrucutral distortions, like a change in luminance or contrast, do not impact the
similarity of an image. This is in line with what we humans consider to be similar,
as an object stays the same object even if the object is more bright. By measuring just
the structure of the image, we can see if it is the same in the samples even though
the network generating the sample might have introduced some nonstructural dis-
tortions. SSIM is used widely in the image processing domain, including in infrared
imaging and MRI imaging [38].

SSIM works by sliding a window over the image which computes three local ele-
ments of the images patches. These elements are the similarity of luminance l(x, y),
the similarity of the contrasts c(x, y) and the similarity of the local structures s(x, y).
The final score is then computed by averaging all the values across the image, giving
a score between 0 and 1 where 1 is the highest score, being the most similar. The full
details of the SSIM computation is given in Equation 5.2. µx and µy are the local
sample means of x and y, σx and σy are the standard deviations of the local sample
x and y and σxy is the local cross correlation of x and y without their means. C1, C2
and C3 are small positive constants for numerical stability.

S(x, y) = l(x, y) · c(x, y) · s(x, y) =(
2µxµy + C1

µ2
x + µ2

y + C1

)
·
(

2σxσy + C2
σ2

x + σ2
y + C2

)
·
(

σxy + C3
σxσy + C3

) (5.2)

5.3 Comparing the samples

To compare the samples, the optimal model was loaded and used to generate a batch
of samples. This batch has the same batch size used in training, 32 images. These
images are generated by feeding the HbO and/or HbR data into the network to
obtain the reconstructions. For the VAE-GANs, only the encoded latent dimension
was used as we want more control of the output. The same batch of images was used
for all the networks to try and make a direct comparison between the networks. This
batch is shown in Figure 5.1.

The batch of images is then used to compute the MSE and SSIM scores. The scores
are computed per image and averaged over the batch. This results in a more con-
sistent score and it prevents any outliers from generating results not representative
of the entire dataset. This also prevents any cherry picking of the data to present
misleading results.

5.4 Discussion

This chapter outlined two methods to evaluate the results presented in the next
chapter, the mean squared error and the structural similarity index. The optimal
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FIGURE 5.1: The fixed batch of samples used for the results.

models have been chosen by looking at the difference between the training and val-
idation loss. For the evaluation of the results the peak signal to noise ratio was also
considered, but considering that the original and the generated samples have the
same dynamic range, this would have yielded no new information compared to the
MSE [38].

5.5 Intermediate Conclusion

After this chapter we can answer the following sub question:

4. How can the results generated by the network be validated?

For the validation of the results of the networks we have chosen to use the mean
squared error and the structural similarity index. This will allow us to compare the
results of the different networks and architectures quantitatively and see which of
them produced the best samples.
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6 Results

After choosing the methods with which to validate the output of the trained net-
works we can now present the results of the different networks. This chapter will
show the results of the different networks, compare them between each other and
try to draw insight for the presented results.

6.1 Variational Autoencoder

As explained in Section 4.1.1, the VAE architecture was varied between two latent
space dimensions, 256 and 512, and the input was varied between HbO data, HbR
data and both combined. The resulting MSE and SSIM scores are thus generated
for each of these networks generating six values in total. The values for the MSE
and SSIM scores are shown in Tables 6.1a and 6.1b. The results show that the dif-
ferences in the scores is minimal. Furthermore, the generated images, while sharp,
are very similar, not close to the original which was supposed to be reconstructed.
An example of the images generated can be seen in Figure 6.1, these are the sam-
ples generated by the VAE with a latent dimension size of 512 and using both the
hemodynamic datasets. More results can be seen in Appendix C.

Both HbO HbR

256 0.00766 0.00765 0.00765
512 0.00767 0.00766 0.00766

(A) MSE Scores of the VAE

Both HbO HbR

256 0.76117 0.76146 0.76146
512 0.76110 0.76148 0.76150

(B) SSIM Scores of the VAE

TABLE 6.1: Resulting scores of the VAE

FIGURE 6.1: Example of the VAE results.
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FIGURE 6.2: Detail view of a single image.

6.2 Variational Autoencoding Generative Adversarial Network

Analogous to the VAE, the VAE-GAN has six different networks with the same vari-
ations. The resulting MSE and SSIM scores are listed in Tables 6.2a and 6.2b. These
scores are generated using the same image batch as before, seen in Figure 5.1. While
these scores show more variety then with the VAE, they are still very similar. The
generated results are blurry, which is not what we expected from GANs. Figure 6.3
shows an example of the images generated by the VAE-GAN, in this case the net-
work with a latent dimension size of 256 and both the HbO and HbR data. More
results can be seen in Appendix D.

Both HbO HbR

256 0.00805 0.00896 0.00866
512 0.00858 0.00816 0.00875

(A) MSE Scores of the VAE-GAN.

Both HbO HbR

256 0.73754 0.70463 0.71459
512 0.74243 0.73765 0.72000

(B) SSIM Scores of the VAE-GAN.

TABLE 6.2: Resulting scores of the VAE-GAN
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FIGURE 6.3: Example of the VAE results.

FIGURE 6.4: Detail view of a single image.
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7 Discussion

Now that the results of the networks are obtained, we can make a quantitative com-
pression between them and try to answer the the main research question:
How could artificial intelligence techniques be used to quantify a disconnect between the
normal coupling, between hemodynamics and calcium, and abnormal/disease or age-related
coupling?

7.1 Discussion of Results

Based on the results of the previous chapter, we can see that the variational autoen-
coders perform better overall, compared to the variational autoencoding generative
adversarial networks. The difference in the quantitative scores is low however, with
the average MSE difference only being 0.00086 and the SSIM varying by around 2%.
This indicates that both architectures perform the same when applied to this prob-
lem. This performance is not very good, however. The networks failed to produce
qualitatively satisfying examples of the calcium activity. This would indicate that the
networks have not learned the neurovascular coupling between the hemodynamics
and neuronal activity.

When looking at the qualitative results however, it would seem that the VAE is per-
forming better. The image is sharper and more details of the brain seem the have
been learned. The problem however, is that the all the generated images seem to be
(close to) the same, whereas the images that are supposed to be reconstructed show
a lot more variation. These results are interesting as we would have expected the
reverse to happen. GANs are usually better for generating sharper images but suf-
fer from mode collapse. It seems here that the VAE has suffered mode collapse but
generates sharper images. We theorize that the VAE tries to average the images too
much due to the use of the mean squared error as the target and a reduction of batch
size might alleviate the problem somewhat. Regarding the lack of sharpness of the
GAN, it would seem that the discriminator required more training before it could
effectively be used to guide the training of the GAN towards creating accurate sam-
ples. The earlier results in Section 4.1.2 and Figure 4.2 also support this conclusion
as with better learned features, the original method of using the learned similarity
metric would likely also perform better.

For the VAEs there seem to be no difference in using HbO and/or HbR data. The
scores of all the networks are very similar. For the VAE-GAN however, the SSIM
scores of the HbO and HbR networks were slightly lower than those of the combined
networks. This would support the conclusion that using more data in the network
provides better results, which has traditionally been true for machine learning [13].
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7.2 Intermediate Conclusion

Based on the discussion in the previous section we can now answer the final two sub
questions:

5. Out of the HbO and HbR data, which is the better predictor for the neuronal activity?

6. How can the neurovascular coupling be quantified using the results generated by the
learned models?

Since the scores for the VAEs regarding the different networks do not seem to differ
their seem to be no difference in using the HbO or HbR data. For the VAE-GAN
however, just using the HbO and HbR resulted in worse performing networks, while
using both the datasets resulted in better performing networks. This leads to the
conclusion that using both the datasets is the best solution and neither one is a better
predictor.

Unfortunately, due to time constraints we were not able to train a network which
can convincingly recreate neuronal activity from the hemodynamic data. We can
see that the brain itself can be recreated, but the details of the activity are missing.
This means that we cannot give a satisfying answer the final sub question. We have
considered several ideas, like co-registering the brain to the Allen Atlas to see if
the activations would match a certain brain region or creating a synthetic dataset
which would demonstrate certain known principles in the neurovascular coupling
like symmetry. Due to the lack of quality samples these however, these ideas did not
come to fruition.

7.3 Conclusion

With the results discussed and all the sub-questions answered we can now formulate
an answer to the main research question of this project:
How could artificial intelligence techniques be used to quantify a disconnect between the
normal coupling, between hemodynamics and calcium, and abnormal/disease or age-related
coupling?

We have shown that the variational autoencoder and the variational autoencoding
generative adversarial network with convolutional and recurrent layers are poten-
tially suited to producing recreations of the data. The results are not of the quality
so that they could be used for verifying the neurovascular coupling, however, they
do show potential. More work is needed to refine the networks and produce results
that would be satisfactory.

7.4 Future Work

Based on the insights gained during this projects there are multiple aspects that war-
rant further investigation to find an answer to the research question. The first of
these is knowing the exact hemodynamic delay of the mouse. In this research the
average of 2.2 seconds was used, but this value varies between different mice. More
accurate predictions could be made if the delay was measured exactly during the
acquisitions. This was not relevant for the project for which this data was acquired
however, so it was not measured.
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As we have seen with the generated samples from the VAE-GAN in Figure 6.3 and
the failed reconstructions using the learned similarity measure, the GAN could per-
form better if the discriminator was pre-trained on the calcium data. The instabilities
in the network seem to stem from the fact that the discriminator was not performing
adequately, and this might stabilise the network leading to better results.
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