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Abstract

In this thesis we look at the Stochastic Electric Vehicle Scheduling Problem. In this
problem we are given a set of trips, and we need to schedule vehicles such that each trip is driven.
We apply this problem to electric buses, where we want to minimize the operating cost taking
the battery life into account. Here, we want to make our schedules more robust against delays.
These delays could be caused by, for example, various traffic conditions, or passenger loads, as
these factors have an effect on the driving time. Thus, in order to make our schedules more robust
against these delays, we use stochastic driving times instead of deterministic driving times. Not
only the driving time itself could be a source of delays, but also the energy consumption. Bus
drivers have different driving styles, which effect the energy consumption, and thus the time
needed for charging. Thus, we also consider the energy consumption to be stochastic.

To achieve this, we use a combination of simulated annealing and simulation. Here, we use
simulation to calculate the cost of a solution. This, however, comes with a performance penalty.
Thus, we try different methods of determining how many simulations we need, such that we
still make a correct choice about which solution is better. The techniques we consider here
are: Optimal Computation Budget Allocation, Indifference Zones, and a method we developed
ourselves, which uses t-tests.

We show that the use of some of these methods can increase the runtime performance while
performing similar in terms of their final score. Furthermore, with our use of stochastic driving
times, we see in increase in the punctuality of the buses, and they also arrive a bit earlier at the
start of their trip. However, we also see a slight increase in operating cost, as we need slightly
more buses compared to when we use deterministic driving times.
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Chapter 1

Introduction

In an effort to make the world more sustainable, electrification in the public transport sector
is becoming more and more important. More specifically, everywhere in the Netherlands diesel
buses are replaced for their electric counterparts. This, however, is not as easy as it might sound,
as it introduces more constraints when scheduling these buses. In their current status, electric
buses are constrained in their range, and thus they need to be recharged during the day. This
is not a problem for diesel buses, as they could generally drive the whole day on a single tank.

Introducing range restrictions on the buses leads to various scheduling problems. For example,
these electric buses need to be recharged, or their batteries need to be swapped during the day.
This means that we can look into optimizing the locations of such ‘service points’. Scheduling
electric buses becomes more difficult compared to scheduling diesel buses, as we now not only
need to determine the routes for the buses, but also when to recharge the vehicle.

There already exist several solutions to this problem. However, most of these solutions assume
deterministic driving times. However, this is not a realistic assumption, as traffic conditions and
passenger loads vary from day to day, which will cause delays. In this thesis, we will look at
scheduling these electric buses, where we investigate this extension of using stochastic driving
times in order to make our schedules more robust against these delays. Not only the driving
times are a source for delays for these buses, because the driving behaviour of a bus driver could
mean that he uses more electricity, which causes longer charging times. Thus, we will also take
this behaviour into consideration. A more exact description of this problem will be given in the
next section. After that, we will discuss several solution approaches to this problem, and we
will also give an outline of the rest of this thesis.

1.1 Problem Description
In the Vehicle Scheduling Problem (VSP), we are given a set of trips. These trips consist
of a departure and arrival location, a starting time, and a driving time. Thus, these trips could,
for example, represent a timetable for buses in a city. The goal is then to schedule vehicles such
that every trip is driven. For this, we want to minimize the cost of using these vehicles. Such
costs typically consist of a fixed cost of using the vehicle, a cost per kilometer driven, and a cost
per block. A block is a set of trips driven after each other without going back to the garage.
A cost for these blocks is included to penalize situations where a bus only drives a single trip
before going back to the garage. In this case, we consider only one depot location. All the
vehicles must start and end at this location, as the vehicles will be parked here overnight. We
also assume that all vehicles are identical.

As mentioned before, we could also apply this problem to electric vehicles, giving us the E-
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CHAPTER 1. INTRODUCTION 2

VSP problem. However, since these electric vehicles have less range than their non-electric
counterparts, we need to think about charging strategies for these vehicles. These strategies
could come in various forms, such as battery swapping technologies, or charging at specified
recharging stations. We will focus on the latter strategy, as the use of this is more widespread
and battery swapping technologies do not seem to exist yet. We also do not expect battery
swapping technologies to be used soon. When recharging the battery, we take the battery life
into consideration, as certain strategies significantly degrade the battery life resulting in more
maintenance costs. We do this by looking at the effect of charge cycles on the battery life. For
this, we calculate the cost of charging a battery and minimize this cost. Furthermore, we will
only be looking into charging the batteries at specified locations. For this, we will not consider a
capacity constraint on these recharging locations. However, we will be taking the non-linearity
of the charging time into account.

Usually, when solving these VSP (or E-VSP) problems, we assume deterministic driving times.
However, in practice this assumption is often violated, as buses drive in various traffic conditions
in which delays may occur. Furthermore, weather conditions or other factors can introduce more
passengers leading to higher dwell times, which causes higher driving times. These delays can
cause various issues, such as delay propagation in our network or inconveniences for the end-user,
as it results in longer waiting times, delayed arrivals, and possibly missed transfers.

We do not expect that the charge required depends much on the driving time, as the distance
driven remains the same, but it will affect the time left for charging. This could result in further
delays or the risk of running out of charge. To cope with this risk, we ensure that a bus leaving
a charging location has enough energy to reach the next charging location. Note that this could
result in the bus not departing on time.

Due to different driving styles of the bus drivers, our energy consumption does differ between
these drivers. This could also result in longer charger times and buses not departing on time,
resulting in potential delays. To take this into account, we need to make the energy consumption
stochastic as well.

Taking all these potential delays into account allows us to create a schedule that is more robust
against this behaviour. However, this means that our driving times become stochastic. The goal
of this thesis is to find a good way to create such a robust schedule for electric buses, taking
these stochastic driving times into account. Thus, in this case we want to make our schedule
robust against delays, meaning that delays will not cause massive issues.

To measure the robustness, we look at the starting times of a trip, because a delayed vehicle
would start its next trip late when there is not enough slack between the trips. We also apply
some non-linearity to this measure such that being 10 minutes late is penalized significantly
more compared to being just 1 minute late.

All in all, this means that we schedule electric buses on a given set of trips, where we minimize
operational costs, the robustness penalty, and a cost for the battery lifetime. These operational
costs consist of a fixed cost for using a vehicle, a cost per kilometer driven, and a cost per driven
block. The robustness penalty is as explained before, where we penalize buses that start their
trip later than planned. For the battery lifetime, we use the cost of a battery and calculate the
effect of charging on the lifetime of the battery. We use this to calculate the cost of charging,
that we minimize in order to maximize the lifetime of the battery.

1.2 Solution Approach
A more classical way to deal with stochastic driving times, is to include some slack based on
the distribution of the driving time. This slack time could be based on a factor multiplied



CHAPTER 1. INTRODUCTION 3

by the mean of the distribution, or a certain percentile of the distribution. With this, all the
stochastic driving times could be converted back into deterministic ones. This results, however,
in an approximation where the different trips do not affect each other. Also, the variance of the
distribution is only somewhat accounted for, as we will not encounter the more extreme delays
that realistically still could occur. Thus, this approximation does not necessarily represent
reality very well.

A better way to deal with stochastic driving times is to work with the expected start- and end-
times of a trip given the trips that are driven before it. However, it is not easy to compute these
values. To solve this, we could try to estimate these values by assuming normal distributions
[16]. Another way to estimate these values is by using simulations in a local search algorithm
[25]. In this thesis we will focus on the latter approach.

To solve the E-VSP problem, we use the simulated annealing approach used by ten Bosch et
al. [24]. This method is based on a column-generation approach by van Kooten Niekerk et
al. [26]. For this, each column represents the trip of a single vehicle. However instead of solving
a pricing problem to find new columns, we use simulated annealing to find a schedule and use
the trips in this schedule as columns. We recombine these trips into a final solution using an
ILP-solver.

Lastly, we will also need to determine what distributions to use for the driving times. For this,
we worked closely with Qbuzz, a bus company from The Netherlands, who provided data and
insights of their operations. With their information we determined various sources for delays in
the driving times. Furthermore, we also determined that we would need a simulation where the
driving times are dependent on each other. The idea here is that people taking the bus in the
morning, will also take the bus back in the afternoon. Thus, if we have higher passenger demands
in the morning, we will also see these passenger demands in the afternoon, likely resulting in
higher driving times both in the morning and the afternoon.

1.3 Outline
In Chapter 2 we will first discuss the relevant literature for this problem. Then, in Chapter 3
we will set out our research question and further goals for this thesis. Furthermore, we will
also discuss the approach we will take to reach these goals. In Chapters 4 and 5 we will go
into the details of our model, where we discuss our local search approach and its extension
with simulation into account. Furthermore, we will discuss various options of increasing the
runtime performance of our simulation in Chapter 6. We will also analyze historic driving times
in Chapter 7. Lastly we will run some experiments to test our model in Chapter 8, which we
will discuss in Chapter 9.



Chapter 2

Literature Overview

In recent years, the E-VSP problem is studied more and more. A recent study of Perumal et
al. [18] divides the research into the different challenges related to the planning and scheduling
of electric vehicles and how different studies overcome those challenges. When it comes to
the scheduling of electric vehicles, we can think of this as scheduling vehicles with resource
constraints, as the vehicles are limited in their range. In 1983, Raff [20] showed that the VSP
problem with any resource constraint is NP-hard. In 2007, Wang and Shen [27] added fuelling
time constraints to the VSP problem, where they specifically focus on electric vehicles. For the
recharging of these electric vehicles, multiple different technologies can be considered [5, 13]. For
example, Chao and Xiaohong [3] developed a genetic algorithm to solve the E-VSP problem with
battery swapping stations. Other approaches mainly focus on recharging stations, which could
either provide slow- or fast-charging capabilities. Wen et al. [28] present a large neighbourhood
search heuristic for solving E-VSP with recharging stations, where they assume the charging
time to be linear. They also allowed for partial recharging. However, this assumption of linear
charging times is not realistic and, as shown by Olsen and Kliewer [14], may lead to infeasible
routes, or too large charging gaps. Van Kooten Niekerk et al. [26] incorporated such non-linear
charging times and proposed a column-generation approach to solve E-VSP.

Ten Bosch et al. [24] built on this approach, where they use simulated annealing to generate new
columns. They do this by generating multiple schedules using simulated annealing. Then, they
take all the vehicle tasks from these schedules and use the restricted master problem for column
generation to recombine these tasks into a single schedule. This approach is very successful
compared to column generation, where it is both faster and has a smaller integrality gap to the
LP-relaxation.

The use of some sort of local search to generate columns is used in similar problems. Sub-
ramanian et al. [22] use it to solve different variants of the vehicle routing problem, where they
show competitive results for the results of different vehicle routing problem instances. Pirkwieser
and Raidl [19] enhance a variable neighbourhood search in a similar way for the vehicle rout-
ing problem with time windows. Thus, they use a variable neighbourhood search to generate
columns. This approach was built upon by Parragh and Schmid [15], who use it in combination
with a large neighbourhood search for the dial-a-ride problem. They were able to find new best
solutions for different instances, while requiring less runtime.

Not much research has been done when it comes to E-VSP with stochastic driving times. Tang et
al. [23] propose a branch-and-price framework for solving E-VSP under both static and dynamic
traffic conditions. They do this by using a so-called buffer-distance, which makes sure that the
bus does not run out of charge while in traffic. Furthermore, while they propose a model to
avoid running out of charge due to the traffic conditions, they still use the average travel time
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CHAPTER 2. LITERATURE OVERVIEW 5

for cost and delay calculations. So, while they look at stochastic driving conditions, they still
solve it deterministically. When it comes to a charging strategy, their model ensures that buses
always leave the depot or a charging station with a fully charged battery. Furthermore, they use
a constant charging time, in order to reduce the number of variables in the model. Bie et al. [2]
use a Non-dominated Sorting Genetic Algorithm with the elitist strategy (NGSA-II) to solve
E-VSP for stochastic driving times. For their recharging strategy, they set a range in which to
keep the battery’s state of charge. They will then recharge a bus when it is idle, that is when it
is currently waiting for its next trip to start. For recharging, they make use of linear charging
times.

There is also some research done on incorporating stochasticity into similar optimization prob-
lems. Van den Akker et al. [25] adapt a local search algorithm for the Job Shop Scheduling
problem to include simulations of stochastic processing times. This approach worked well com-
pared to more classical methods of adding slack. However, these simulations are quite slow to
run. Passage et al. [16] look at the Stochastic Parallel Machine Scheduling problem
and approximate the expected makespan within the local search framework. They do this by as-
suming normal distributions. Then, using the results of Clark [6], you can compute the expected
maximum of two of these normally distributed random variables. Computing these estimations
is pretty quick, especially when compared to using simulation. Furthermore, this approach also
yielded better results than using simulation, unless we do a lot of simulations each iteration of
the local search, which slows down the algorithm.

Another way of improving the runtime of simulations in a local search algorithm, is by trying to
minimize the number of simulations needed while still doing enough simulations to make correct
decisions. In a local search framework, we constantly compare different solutions to each other in
order to select the best one. Note that to do this, we do not need to accurately calculate the score
of each solution as long as we can create a correct ordering of solutions. This is called Ordinal
Optimization [8]. One way to do this is by employing so-called Optimal Computing Budget
Allocation (OCBA). Yang et al. [30] did this for the Stochastic Job Shop Scheduling
problem. This works by not spreading all the simulations evenly over all solutions, but some
solutions get more simulations based on the variance of earlier results. Another technique for
Ordinal Optimization is by using Indifference Zones [1, 7, 12]. This is similar to OCBA, but
where OCBA maximizes the probability of a correct selection, Indifference Zones guarantee a
minimum for the probability of a correct selection [12].



Chapter 3

Goal

3.1 Research Questions
As mentioned in Chapter 1, we will be looking at the E-VSP problem with a focus on robustness.
For this, we need to create a model that incorporates stochastic driving times. Thus, in this
thesis we will focus on the question of creating a model to solve the E-VSP problem with
stochastic driving times by using simulation in a local search algorithm. Furthermore, we look
into combining the results of this local search algorithm with an ILP.

We expect the simulations to form a performance bottleneck in the local search, and hence
we need to explore techniques for optimizing this step, as this will likely lead to better results
more quickly. Thus, we will look into Ordinal Optimization techniques to find out what works
well for this problem. Furthermore, for our local search algorithm, we also want to answer
whether recombination of different solutions found by our local search algorithm leads to further
significant improvements.

We will not only create a model that solves this problem, but we also need to find out how
to accurately model these stochastic driving times. Thus, we need to analyse historic driving
times in order to find representative distributions. This analysis should also give an insight into
different conditions that should be modelled in the simulation, such as weather conditions or
dependencies on, for example, the driving times in the morning.

3.2 Methodology

3.2.1 Local Search

To answer our research questions, we will first need to develop a local search algorithm that
solves the E-VSP problem with deterministic driving times. For this, we will create a simu-
lated annealing algorithm based on the work of ten Bosch et al. [24]. Here, we will use two
neighbourhoods that are also used by ten Bosch et al. Namely, a 2-opt swap and a trips move
neighbourhood. These neighbourhoods will be further explained in Section 4.3.

As simulated annealing is not guaranteed to find optimal or near-optimal solutions, we will need
to run the algorithm multiple times for different seeds. We could also try slightly different input
parameters for each run. With this, we will get multiple solutions and thus a lot of possible
routes a vehicle can drive. We will also combine these routes into a single schedule using an ILP
to see how much this can improve our overall solution.

6



CHAPTER 3. GOAL 7

3.2.2 Simulation

To calculate the cost of a certain route a vehicle drives, we will use discrete-event simulation.
Here, we sample the duration of a trip or deadhead from distributions based on historic driving
times. We use these durations to schedule the event that marks the end of a trip or deadhead.
In this simulation we keep track of the delayed starting times and the state of charge of the
vehicle. Such a simulation will be run multiple times after which we use the average of the costs
as the cost of the vehicle task.

When comparing two solutions, we need to be careful that they are compared fairly, as the
randomness of the driving times can cause a bad solution to be lucky (i.e., it has a low cost in
the simulation), and consequently not being rejected. To make the comparison more fair, we can
apply a technique called Common Random Numbers (CRN) [11]. The idea of this technique is
to use the same realizations of driving times for both schedules. Further techniques that could
be used are, for example, cut-off sampling [25], although we would need to experiment with this
as it might interfere with the convergence of the simulated annealing [16]. In our model we will
not look at such techniques, thus we only employ CRN.

Using simulations in a local search algorithm is computationally relatively expensive. Thus, we
want to minimize the number of simulations needed while still using enough simulations to make
sure we select the better vehicle schedule. To reduce the number of simulations needed, we will
need to further explore Ordinal Optimization techniques to find out what works best in this
situation. Techniques to consider here are OCBA [30] or Indifference Zones [1, 7, 12]. However,
we will also test our own method, which uses t-tests to determine whether we need to simulate
more.

3.2.3 Modeling Stochastic Driving Times

For our simulation model, we need to know the distributions of the driving times of each trip.
We will analyse historic driving times in order to find these distributions. For this, we will also
consider wether these driving times are dependent on other external factors, such as weather
conditions or a delayed start of the trip. These dependencies could give us correlations between
subsequent driving times, but also between driving times over a whole day. Thus, with these
correlations we will be able to create more realistic simulations, which in turn could result in
more robust schedules. Lastly, we can also use these historic driving times to test the robustness
of a schedule in a real-world setting.



Chapter 4

The Hybrid Algorithm

4.1 ILP
To solve the E-VSP problem, we will use an ILP formulation as the basis. This ILP can be used
when using deterministic driving times. In order to easily extend this ILP for stochastic driving
times, we will already include the notion of (expected) lateness.

Let T̄ denote the set of trips that need to be driven, and let V be the set of all possible
tasks. Here, a task is a set of trips that can be driven by a single vehicle. When working with
deterministic driving times, this means that the vehicle can drive these trips without running
out of charge and can start every trip on time. In the stochastic case however, we drop the
requirement of starting a trip on time as this cannot be guaranteed. Thus, in this case, starting
a trip late will be penalized. In these tasks, we also account for the recharging itself, meaning
that we both account the recharging that is needed and the time it takes to recharge. To
calculate the recharging time, we take the same approach as van Kooten Niekerk et al. [26].
Thus, we assume the charging time to consist of two linear parts, where charging from 0% to
80% takes the same time as charging from 80% to 100%.

For a task v ∈ V , we define Cv to be the operating cost of this task. This operating cost consists
of the cost of a vehicle, a cost per driven kilometer, a cost per driven minute (this includes the
time waiting before the next trip can be driven), and a cost per driven block. Remember from
Section 1.1 that a block is a set of trips that are driven after each other without going back to
the garage. Lastly, we define Lv to be the lateness of the task and Dv to be the charging cost
of the task. We will further explain these two terms later.

Let xv be the decision variable that task v ∈ V is included in the schedule, and let α and β be
some constant. We use the parameter rvt to indicate if trip t ∈ T̄ is included in v. Then our
objective is to

minimize
∑
v∈V

xv(Cv + αLv + βDv). (4.1)

Which is subject to the constraints:∑
v∈V

rvtxv = 1 ∀t ∈ T̄ , (4.2)

xv ∈ {0, 1} ∀v ∈ V. (4.3)

Here, Equation (4.2) ensures that we drive every trip in the final schedule and Equation (4.3)
sets the domain of our decision variables.

8



CHAPTER 4. THE HYBRID ALGORITHM 9

Lateness When using deterministic driving times, we require that a vehicle can drive its tasks
without starting a trip late. This means that Lv = 0 for all v ∈ V . However, in the stochastic
case, we do not know when a trip ends, thus we need to penalize tasks where trips are likely to
start late. For this, we define two cost variables Cl1 and Cl2 , with Cl1 ≤ Cl2 . For a trip t ∈ T̄
with a planned starting time of pt and an actual starting time of at, we define the lateness cost
of this trip as

lt =

Cl1(at − pt) if at − pt < M,

Cl1M + Cl2(at − pt −M) otherwise.
(4.4)

Note that we do not allow trips to start earlier than their planned starting time, thus at ≥ pt.
Furthermore, M is constant such that being less than M minutes late is less costly than being
more than M minutes late, as then the Cl2 cost factor will be used. In our research we will use
M = 3. Then Lv is defined as the sum of the expected values of lt for the trips t that are driven
in task v.

Charging Cost In order to reduce the maintenance costs of the electric buses, it is important
to take the battery longevity into account. For this, we penalize tasks with a high Depth-of-
Discharge (DoD), which percentage value is used to indicate how much a battery is discharged.
To account for this, we use the cost factors found by van Kooten Niekerk et al. [26]. Let Cbattery
denote the cost of buying a new battery, then they define the cost of a charge cycle as

c(x) = e2.519x

4825.4Cbattery, (4.5)

where x ∈ [0, 1] denotes the DoD. To calculate the cost of charging the vehicle, they use the
formula

c(s, f) = c(s)− c(f) = e2.519s − e2.519f

4825.4 Cbattery, (4.6)

with s, f ∈ [0, 1] and s ≥ f . Here, s denotes the DoD when we start charging and f denotes the
DoD when we are done with charging. Then we define Dv as the sum of these charging costs
of each charging session along the route. For this we assume that we need to fully charge the
bus at the end of its route. The cost of this is also included in Dv. Note that for this charging
cost we only consider the cost related to battery deprecation. It does not include the cost of the
electricity itself.

Charging strategy To have a valid task, we need to make sure that buses do not run out of
charge along their route. For this, we need to define a charging strategy. For this we will charge
the vehicle whenever possible for as long as possible. Thus, if a bus needs to wait for its trip to
start at a place at which it can also charge, it will charge until either the battery is full or it
needs to start the trip. Note that this charging strategy also minimizes the DoD over the whole
trip. When working with stochastic driving times, we need to extend this strategy a bit. A trip
might run longer than expected, resulting in not enough time to charge the battery in order to
reach the next charging location. Thus, when charging, we charge for as long as possible, but
we also make sure that we can reach the next charging location without running out of charge.
This may result in running late for the next few trips, but that is better than being stranded
somewhere along the route.

4.2 Simulated Annealing
To find tasks that can be used in the ILP described in the previous section, we will make use
of a local search algorithm in the form of simulated annealing. For this we start with an initial
solution sinitial where every vehicle drives just one trip. Using the neighbourhoods that will be
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described in Section 4.3, we generate new solutions that are accepted with a certain probability.
Given the cost of the current solution c, the cost of a potential new solution cnew, and the
temperature T , we could define this acceptance probability as

P(c, cnew, T ) =

1 if c > cnew,

e
c−cnew

T otherwise.
(4.7)

Furthermore, every Q iterations the temperature is decreased by a factor α. We continue
iterating until we reach the stopping condition.

In our algorithm, we will start with this simulated annealing strategy and after a certain amount
of time switch over to a more greedy hillclimb algorithm. A hillclimb algorithm accepts a new
solution if and only if it is better than our current solution. In our case, we switch over to this
hillclimb algorithm when T reaches 1. The acceptance probability function that represents this
behaviour is

P(c, cnew, T ) =


1 if c > cnew,

0 if T < 1 and c ≤ cnew,

e
c−cnew

T otherwise.

(4.8)

Then, after a set number of iterations the best solution gets returned. The pseudocode of this
algorithm is provided in Algorithm 1. In here, we assume that GenerateNeighbour(s) returns
feasible neighbours of a solution s, and that Random(0, 1) returns a random value x that is
distributed uniformly on the interval [0, 1]. Furthermore, the function Cost(s) calculates the
cost as defined in Equation (4.1) for a solution s. This can be done deterministically or by using
simulation, in which case the mean cost is returned.

Algorithm 1 Simulated annealing algorithm we use for finding good schedules.
Require: An initial solution sinitial

procedure SimulatedAnnealing
s← sinitial
sbest ← s
while stop condition is not met do

▷ Generate new solution ◁
snew ← GenerateNeighbour(s)
if Q iterations since last temperature reduction then

▷ Reduce the temperature ◁
T ← T · (1− α)

▷ Accept new solution with the acceptance probability from Equation (4.8) ◁
if P(Cost(s), Cost(snew), T ) ≥ Random(0, 1) then

s← snew
▷ Also check if we found a new best solution ◁
if Cost(s) < Cost(sbest) then

sbest ← s
return sbest

To generate multiple different schedules, we execute this simulated annealing procedure mul-
tiple times with different input parameters. This is also called multistart simulated annealing.
Examples of these input parameters are the initial temperature, the cooling rate, or the seed for
the random number generator. However, we will only be changing the seed between different
simulated annealing runs. Varying these parameters ensures that we find different solutions, of
which the best solution could be selected. However, we will also make use of the simulated an-
nealing with recombination technique used by ten Bosch et al. [24]. This technique combines all



CHAPTER 4. THE HYBRID ALGORITHM 11

the tasks from the different solutions in the set V , such that we can use the ILP from Section 4.1
to find a solution.

4.3 Neighbourhoods
For our local search we use two neighbours which are selected with equal probability. These
are the 2-opt swap and move range neighbour. When generating a new neighbour, we need to
make sure that it results in a feasible solution. If this is not the case, the neighbour is rejected,
and we generate a new one until it results in a feasible schedule. A solution is feasible if all its
vehicles correspond to a valid task as described in Section 4.1. This means that none of the
vehicles run out of charge, and, in case of deterministic driving times, every trip starts on time.
Furthermore, we also need to make sure that all trips are served. However, since our neighbours
do not delete trips from the solution, we will always serve all the trips as long as we start with
a solution that serves all trips.

2-Opt swap The 2-opt swap neighbour selects two random vehicles v1 and v2 from the solution.
Furthermore, it selects a random time t. It will then swap the trips that occur after t in v1 with
the trips that occur after t in v2. This is also illustrated in Figure 4.1.

v1

v2

t

Figure 4.1: Example of the 2-opt swap neighbour.

Move range Our second neighbour, the move range neighbour, also selects two random
vehicles v1 and v2 from the solution. Then, it selects a range of trips R from v1 and tries
to move these trips to v2. This is illustrated in Figure 4.2. Note the set R can contain all the
trips in v1, which results in v1 and v2 being merged into one vehicle.

v1

v2

R R

Figure 4.2: Example of the move range neighbour.



Chapter 5

Robustness

In order to create schedules that are robust against different traffic conditions and passenger
loads, we introduce stochastic variables to the problem. This means that we need to find the
expected total cost. However, this is not easy to compute, thus as is mentioned in Section 1.2,
we estimate this by using simulation. We simulate a vehicle schedule multiple times and then
take the average score of these runs.

To test the robustness of a schedule in various traffic conditions and passenger loads, we make
use of stochastic driving times. Because on a day which is more busy, a bus accumulates
more dwell time (that is the time it is stationary at a stop) resulting in a higher total driving
time. Furthermore, different traffic conditions also result in different driving times. As different
bus drivers have different driving styles, the energy consumption between bus drivers is slightly
different. Thus, we also try to account for this by making the energy consumption also stochastic.
This will be further explained in Section 5.3.

5.1 Simulation
To simulate a schedule, we make use of discrete-event simulation. Each vehicle (or task as it
is defined in Section 4.1) consists of subtasks. These are the trips, deadheads, and the trips
from and to the garage that need to be driven in order to complete the task. We call trips from
and to the garage pull-outs and pull-ins respectively. A subtask has a specified driving time,
which might be stochastic. Furthermore, trips and pull-outs also have a planned starting time
and are not allowed to start earlier than this time. The discrete-event simulation consists of
two events: the start of a subtask and the end of a subtask. It starts by scheduling the start
of the first subtask. The ‘start subtask’ event will schedule the end of the subtask making use
of the stochastic driving time. Then, the ‘end subtask’ event will either schedule an event for
starting the next subtask or ending the simulation. This is also illustrated in the event diagram
in Figure 5.1. Note that in our model the driving times of each of the buses do not directly
influence each other, thus for our implementation we can simulate each bus individually.

Start
Subtask

End
Subtask

End
Simulation

Figure 5.1: Event diagram to simulate a single vehicle.

To integrate this into our simulated annealing algorithm described in Section 4.2, we need
to replace the cost function that is used. Instead of calculating a deterministic score, it will
simulate the given solution a few times and return the average of these results. However, when

12
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comparing two solutions, we need to make sure that they are compared fairly. Specifically, the
randomness of the driving times and energy consumption can cause a worse solution to be more
‘lucky’ and outperform the better solution. In order to make comparisons more fair, we employ
a technique called Common Random Numbers (CRN) [11]. With this technique, we make sure
that both solutions get the same realizations of driving times, thus solutions cannot gain an
advantage by drawing shorter driving times. However, this technique is not applicable to the
energy consumption, which we will explain further in Section 5.3.

5.2 Simulating Driving Times
To simulate the driving times, we first need to find appropriate distributions for these driving
times. We will go into further detail about this in Chapter 7. As we also explained in Section 1.2,
we want to create a simulation where the driving times are also dependent on each other. This
way we can create scenarios where, for example, longer driving times in the morning also lead
to longer driving times in the evening. This allows us to create days with higher passenger
demands that could lead to higher driving times over the whole day. To accomplish this, we
generate instances of simulated driving times. These contain the simulated driving times of all
the trips in the timetable. Thus, within an instance, we simulate a whole day based on expected
passenger loads. We explain the distributions we use for this in Section 7.3.

We create different instance types for multiple scenarios. First of all, we have a scenario for
‘normal’ days. These are days with an average passenger load and mostly average driving times.
But, as we want our schedules to be more robust against delays, we will also create scenarios
for busier days, where we have more passengers and thus more above average driving times. By
simulating on a mix of these scenarios, we make our schedules more robust against these busy
days, while maintaining a good schedule under more normal loads.

Within our simulation, we randomly select one of these instances and simulate the whole schedule
with the selected instance. Before running the simulations, we can also decide how many of each
of the instance types we want to simulate per run. This will be set beforehand, such that we
always run the simulation with the same distribution of instance types. This way we also ensure
that each instance type is accounted for.

5.3 Simulating Energy Consumption
In our simulation, we account for different bus drivers having different driving styles, and thus
different energy consumption figures. However, since we do not create a crew schedule, we need
to estimate this, as we do not know who is driving when. In our simulation we create three
scenarios. We have scenarios for drivers with below or above average energy consumption and
a scenario for a driver with average fuel consumption. Then, before the vehicle pulls out of the
garage, we select one of these scenarios randomly. Thus, we simulate one of the available driving
styles. In our simulation we assume that these driving styles do not have an influence on the
driving time. This might not be a completely realistic assumption, but we do not expect the
driving style to have a big effect on the driving time.

As drivers need breaks, there are possibilities along a route where bus drivers can be swapped.
However, the places where this can happen are not known in our simulation. Therefore, we
allow these driver swaps at the start of every trip. However, to make sure that drivers are not
swapped too frequently, a driver needs to drive the bus for at least 2 hours before he is allowed
to be swapped. After these 2 hours we will try to swap the drivers as soon as possible, but since
we only employ three different driving styles, this will not always lead to a change in energy
consumption.
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Note that this approach does not allow for CRN to be used on these stochastic energy con-
sumptions, because some buses will drive a different route. This could be solved by using the
same driver scenario over the whole solution, but this could lead to unrealistically large energy
usage, and thus we will probably overestimate the amount of charging that is required. Another
approach could be to select a driver scenario per task, however this could lead to an excessive
number of driver swaps. Furthermore, because the vehicles between solutions drive different
routes, we do not have the same deadheads in each solution. Thus, the driven distance is differ-
ent between solutions. For these reasons we will not use CRN for these driver scenarios in our
model.



Chapter 6

Required Number of Simulations

The use of simulations to calculate the cost of a solution is a computationally expensive task;
especially compared to calculating the cost with deterministic driving times. Thus, in order
to increase the runtime performance of our local search method, we want to minimize the
number of simulations we perform. However, we still need to make sure that we perform enough
simulations in order to make ‘correct’ decisions. In other words, we want to minimize the number
of simulations while still making sure that we perform enough simulations to make sure we select
the better solution.

The simplest way to compare two solutions, is by performing an equal number of simulations on
both solutions and comparing the averages of those results. In order to do this we need to find
out how many simulations are generally needed such that we generally select the better solution.
Note that the simulated annealing framework sometimes accepts worse solutions, thus we do not
have to be perfect in deciding which solution is better. However, this decision still has to be ‘good
enough’, because otherwise the simulated annealing will have difficulties converging to an optimal
solution. The number of simulations we need to compare two solutions, generally depends on
the difference in quality of the solutions we compare. Sometimes we need few simulations, while
other times you need many simulations. With a constant number of simulations, this means
that we need to find a balance between simulating too much, sacrificing computation time, and
simulating too little, potentially sacrificing the quality of the final solution.

In order to improve the performance of our algorithm, we will try different techniques to de-
termine how many simulations are needed while comparing the solutions. In Section 6.1 we
will explain Optimal Computation Budget Allocation and in Section 6.2 we explain Indifference
Zoning. Lastly, in Section 6.3, we explain a technique that uses paired t-tests to determine how
many simulations are needed.

6.1 Optimal Computation Budget Allocation
The general idea of Optimal Computation Budget Allocation (OCBA) is to divide a budget of
simulations between the solutions we compare such that we maximize the probability of a correct
selection. For this we implemented the algorithm described by Chen et al. [4]. For this algorithm
we define three parameters: n0, ∆, and N . These are the initial number of simulations, the
budget increase per step, and the maximum budget respectively. The algorithm first simulates
each solution n0 times. It will then repeatedly distribute ∆ simulations over the solutions until
we hit our computation budget N .

In our simulated annealing, we are comparing two solutions with each other. Let N1 be the
number of simulations we used for the first solution and N2 the number of simulations we used

15
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for the second solution. This means that after the initial simulations, we have n0 = N1 = N2.
Furthermore, s2

1 and s2
2 denote the sample variances of the corresponding solutions. Without

loss of generality, we assume that the first solution is currently better than the second one.
Using the results of Chen et al. [4], we will allocate the additional ∆ simulations using the rule:

N1
N2

= s1
s2

. (6.1)

Note that we have already done some simulations, thus we need to update the previous values
of N1 and N2 such that we better approximate the ratio s1

s2
.

A potential drawback of this allocation framework is that it does not allow us to implement
CRN. For CRN we would need both solutions to get the same number of simulations, which this
framework does not guarantee.

6.2 Indifference Zones
Indifference Zones (IZ) work differently compared to OCBA in that they guarantee a minimum
probability of correct selection. This comes at the cost of not having a maximum number of
simulations per iteration, as we cannot guarantee that the required minimum probability of
correct selection is reached within those simulations. Of course, we could still set a maximum,
but then we are not always certain about the probability of correct selection. For this we define
an IZ width δ∗ and a confidence value α. If two solutions are within δ∗ units of each other, the
decision maker considers them to be the same, or “indifferent”. Then IZ procedures guarantee
the following [9]:

P(CS) = P(Solution 1 is observed as best | µ1 + δ∗ ≤ µ2) ≥ 1− α. (6.2)

Here, P(CS) denotes the probability of correct selection, and µ1 and µ2 denote the mean scores
of solutions 1 and 2 respectively.

One such procedure that minimizes the probability of correct selection is Rinott’s two-stage
procedure [21]. It does this by first simulating each solution n0 times. Then, it calculates the
sample variances of each solution s2

i . Lastly we can calculate the number of simulations we need
for a solution i as follows:

Ni = max

n0,


(

hsi

δ∗

)2

 . (6.3)

In here, h denotes the solution to Rinott’s double integral

∫ ∞

0

∫ ∞

0
Φ

 h√
(n0 − 1)( 1

x + 1
y )

 f(x) dx


k−1

f(y) dy = 1− α, (6.4)

where k denotes the number of solutions we compare, and f denotes the probability density
function of the χ2 distribution with n0 − 1 degrees of freedom. On modern computers this
integral can be solved quickly, however tables for h are also available in [29]. Lastly, each
solution gets simulated an additional Ni−n0 number of times, after which the solution with the
lowest mean is selected.

This procedure has later been adapted by Yoon and Bekker [31] into the following procedure:

1. Simulate each of the k solutions n0 times and calculate the sample means x̄i and sample
variances s2

i . Furthermore, let I be the set containing all the solutions, let Ni = n0, and
let b = argmini x̄i.
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2. Delete solution i (i ̸= b) from I if

Ni ≥


(

h1si

δi

)2
 and Nb ≥


(

h1sb

δi

)2
 , (6.5)

and delete solution b from I if

Nb ≥


(

h1sb

δi

)2
 for all i ̸= b. (6.6)

Here, δi = max{δ∗, x̄i − x̄b}, and h1 is the solution to the integral

∫ ∞

0

∫ ∞

0
Φ

 h1√
(Ni − 1) 1

x + (Nb − 1) 1
y

 fNi−1(x) dx

 fNb−1(y) dy = 1− α

k − 1 , (6.7)

where fn(x) denotes the probability density function of the χ2 distribution with n degrees
of freedom.

3. If |I| = 0, stop and return solution b as the best solution.

4. Else give each solution in I one additional simulation. Update the sample mean and
variance of each solution. Furthermore, for each i ∈ I, set Ni ← Ni + 1. We also restore I
such that it includes all solutions, and update b = argmini x̄i and go back to Step 2.

Yoon and Bekker [31] show that Equation (6.2) holds for this procedure, while it needs signific-
antly fewer simulations compared to Rinott’s procedure. Note that in this algorithm the value
of h1 can be pre-computed (as can the value h in Rinott’s double integral).

We implemented this procedure into our simulated annealing, and made a few changes in order
to improve the performance. In early experiments we found the calculations in Step 2 to be
quite expensive. Thus, in Step 4, instead of giving each solution in I one additional simulation,
we give each solution ∆ additional simulations. While this could lead to simulating more than
is necessarily needed, overall it improved the performance quite a bit. We further improved the
runtime performance by introducing a maximum number of simulations to be run per iteration.
This does break the guarantee in Equation (6.2), but we do not see a significant score difference
in our early experiments. Here, the score is the outcome of our objective function. We show
this in Figure 6.1, where we see that increasing the maximum number of simulations from 100
to 1000 results in similar scores, while being much slower. This is likely due to the fact that
simulated annealing does not always pick the better solution. Thus, as long as the scores are
still close to each other it does not seem to matter that we might not be completely sure which
solution is better. We will further test this in Section 8.2.3.

Lastly, the procedure does not allow for CRN to be implemented, since there is no guarantee that
each solution gets an equal number of simulations. However, by also simulating the solutions
that are not in I in Step 4, each solution would get an equal number of simulations. Since we
are only comparing two solutions (thus k = 2), we expect that this does not impact our runtime
performance too much, while we get the benefits of having CRN.

6.3 T-Test
Both the OCBA and IZ procedures are designed for comparisons of k solutions. However, in
our simulated annealing, we will only be comparing 2 solutions (k = 2). Thus, we developed a
simpler third method for determining how many simulations are needed. This method works by
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Figure 6.1: Comparison between the score and runtime of different simulated annealing runs
for a different maximum number of simulations in the IZ procedure. The other parameters
in this experiment are n0 = 10, ∆ = 10, and α = 0.1. The used datasets are explained in
Section 8.1.

performing a paired samples t-test to determine if two solutions are the same. Since we make
use of CRN, two solutions with the same random numbers become dependent, justifying the use
of the paired samples t-test.

For this procedure, we select four parameters: the initial number of simulations n0, the number
of additional simulations ∆, the maximum number of simulations N , and a confidence parameter
α. The procedure is as follows:

1. Simulate each solution n0 times.

2. Let x̄ and s2 be the sample mean and sample variance of the paired difference in score
between each simulation respectively. Then calculate

t = x̄√
s2

n

, (6.8)

where n is the number of simulations we ran for a single solution.

3. Use the calculated value of t in a two-sided t-test with n−1 degrees of freedom to determine
the p-value. Thus,

p = 2Fn−1(−|t|), (6.9)

where Fn−1 is the cumulative distribution of the Student’s t-distribution with n−1 degrees
of freedom. Then if p < α or 2n ≥ N , stop and return the solution with the lowest mean
as the best solution.

4. Otherwise, simulate each solution an additional ∆ number of times and return to Step 2.
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A possible way to further improve the runtime performance of this procedure, is to consider that
the simulated annealing algorithm does not always select the solution with the better score. Let
paccept be a random value that is uniformly distributed on the interval [0, 1], that is used to denote
the acceptance probability for the current iteration. Then our simulated annealing algorithm,
Algorithm 1, would accept a new solution if c − cnew ≥ T ln(paccept) and T ≥ 1. Consider
two solutions whose scores are not significantly different. Then, if their difference is significantly
higher than T ln(paccept), we can stop simulating further as we know that the simulated annealing
algorithm will accept the neighbour. Thus, we also created an extended version of our t-test
procedure. If this extended procedure does not find a significant difference between the two
solutions, it also checks if the difference between the two solutions is significantly greater than
T ln(paccept). The updated procedure for this is as follows:

1. Simulate each solution n0 times.

2. Let x̄ and s2 be the sample mean and sample variance of the paired difference in score
between each simulation respectively. Then calculate

t1 = x̄√
s2

n

, (6.10)

where n is the number of simulations we ran for a single solution.

3. Use the calculated value of t1 in a two-sided t-test with n − 1 degrees of freedom to
determine the p-value. Thus,

p1 = 2Fn−1(−|t|), (6.11)
where Fn−1 is the cumulative distribution of the Student’s t-distribution with n−1 degrees
of freedom. Then if p1 < α or 2n ≥ N , stop and return the solution with the lowest mean
as the best solution.

4. If T ≤ 1, go to Step 5. Otherwise, we perform another t-test to see if the difference between
the two solutions is significantly greater than T ln(paccept). For this, calculate

t2 = x̄− T ln(paccept)√
s2

n

. (6.12)

Then,
p2 = Fn−1(−t2). (6.13)

If p2 < α, we stop and return the solution with the lowest mean, which is the new solution.
Otherwise, we continue to the next step.

5. Simulate each solution an additional ∆ number of times and return to Step 2.

6.4 Integration in Simulated Annealing
In our simulated annealing, we have at most two solution comparisons per iteration. Once to
evaluate the new neighbour, and, when this new neighbour is accepted, we check if this new
neighbour is better than our current best solution. For the first comparison it is important to
do enough simulations in order to make a ‘correct’ decision. Otherwise, the simulated annealing
might have a hard time converging to a good optimum. However, when comparing for the best
solution, it might be enough to do just a few simulations. Note that we should always resimulate
the best solution, otherwise a bad solution might get lucky getting selected as the best solution
and not being replaced with a better, but unlucky solution afterward. For this comparison we
will test if it makes a difference in solution quality if we use the same method for calculating the
number of simulations to perform as our first comparison, or if we can use fewer simulations in
this comparison.



Chapter 7

Driving Time Analysis

7.1 Dataset
In order to find a good distribution for the driving times, we analysed historic driving times.
This data is mainly from the region of Dordrecht, The Netherlands, and was provided by Qbuzz,
the bus company that serves this region. We looked at driving times in this region from the year
2019. This data contains the information about the delay at the start of a trip, the planned
driving time of the trip, the actual driving time of the trip, the dwell time during the trip, and
the length of the trip. Furthermore, it contains 27 different routes with an average length of
11.8km and on average 22 stops. In total this dataset contains 77 937 trips.

To analyse these driving times, we will first remove some outliers from the dataset. For this,
we require the dwell time to be bigger than or equal to 0 and not bigger than the total driving
time, as values outside this range are simply not possible. Furthermore, we look at the average
speed of the bus. This has to be between 0 and 80 kilometers per hour. Lastly, we also filter
trips based on their delay at the start of the trip. We observed some trips to start exactly 1
hour before or after their planned time, suggesting an error in linking the bus with the exact
trip they drove. Thus, we filter out trips based on the z-score of their delay at the start. The
z-score is the number of standard deviations by which this value is above or below the mean
of the observed values. Thus, in this case, it is the number of standard deviations a certain
delay at the start is above or below the average delay at the start. For this we will filter out
trips where the z-score of the delay at the start is bigger than 2.5. After filtering, our dataset
contains 76 485 different trips.

7.2 Variables
To create distributions for the driving times, we first investigate different sources for variation
in the driving times. For this, we look into the time of day, the weather conditions, and also the
effect of the dwell time.

7.2.1 Time of Day

One source of variation in the driving times is the time of day. Traffic conditions vary over the
day, where mornings and afternoons are usually more busy due to people commuting to work or
back home. For the same reasons, we also expect there to be more passengers, thereby increasing
the dwell time and thus the total driving time. These variations are already accounted for in
the bus schedule, as illustrated in Figure 7.1, where we observe higher planned driving times in
the morning and late afternoon.

20
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Figure 7.1: Example of planned driving times over a single day. The blue lines indicate the
time periods defined in Table 7.1.

Looking at the full data, we extract the average driving time as a percentage of the planned
driving time. This is plotted in Figure 7.2, where we grouped each trip by the hour it departs in.
In this figure, we do not see big differences in these percentages over the whole day. However,
we will still create different distributions for different periods of the day. We base this division
on the work of Patnaik et al. [17] and the planned driving times. For our simulation we will use
the time periods defined in Table 7.1. These time periods are also indicated by the blue lines in
Figures 7.1 and 7.2. These time periods largely correspond to the time periods used by Qbuzz
for, for example, their deadhead driving time calculations. The main difference here is that we
make use of more time periods.

Figure 7.2: Average driving time plus/minus two times its standard deviation as a percentage
of the planned driving over a whole day. The blue lines indicate the time periods defined in
Table 7.1.
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Table 7.1: Time periods used

Time Period Description
Early Morning 4:00 till 6:59
Morning Peak 7:00 till 8:59
Late Morning 9:00 till 11:59
Early Afternoon 12:00 till 14:59
Afternoon Peak 15:00 till 17:59
Evening 18:00 till 19:59
Late night 20:00 and later

7.2.2 Weather

Another variable we investigated is the effect of the weather on the driving times. For this we
expected the driving times to be higher on days with bad weather. The reasoning behind this
is that we expect more people to be taking either public transport or go by car, thus increasing
driving times due to traffic conditions and higher passenger loads.

To test this hypothesis we used the hourly weather data of 2019 made publicly available by the
KNMI [10]. For this, we used the readings from the weather station in Rotterdam. We use
information about the duration of rainfall (DR) and the total amount of rainfall (RH) during
the timeblock of an hour. For every trip, we calculate the duration and total amount of rainfall
during the day the trip took place, the morning of the day the trip took place, and the hour
in which the trip departed. For this, we define rain during the morning to be any rain that
falls between 6:00 and 9:00, while rain during the day is defined as any rain that falls between
6:00 and 20:00. We performed correlation tests on these variables and the driving time, using
Pearson’s correlation coefficient. These coefficients are shown in Figure 7.3. These tests indicate
no relationship between the driving time and various variables indicating rainfall.

Figure 7.3: Pearson’s correlation coefficients between various rainfall parameters and the
driving time.

To see why this is the case, we looked at the driving times under various rain conditions. For
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this we looked at the average rain intensity in millimeters per hour. We do this both for the
whole day (excluding the night) and within a certain hour. We use the rain intensity as this
would be the most accurate classifier within the available data. Another factor that could be
taken into consideration is, for example, the size of the rain droplets. However, we do not have
data for that and, furthermore, this is usually not reported in the weather reports, so we do not
expect this to be a major factor when people decide how they travel.

We classify an average rain intensity of 3mm/h or less to be light rain, and higher values are
classified as rain. The driving times under these conditions are shown in Figure 7.4. In here there
are not always significant differences between rain or no rain. We also note that the amount
of rain does not predict the driving time very well, as a lot of rain could lead to lower driving
times compared to a bit of rain.

Figure 7.4: Mean driving times with their 95% confidence interval under different rain condi-
tions during the day. Here light rain has an average rain intensity of 3mm/h or less, while it is
more than 3mm/h for rain.

From this we conclude that we cannot use these weather patterns in our simulations, because
it remains unclear how they influence the driving times. We saw that in some scenarios there
do not seem to be significant differences, while in others heavier rain did not necessarily lead
to higher driving times. This could be due to passenger behaviour, where for some weather
conditions people go by bus rather than by bike, while for other weather conditions people just
stay at home. We could not verify this behaviour as we do not have access to passenger data
for this route. Thus, we do not include these weather patterns in our simulations, as we can not
draw conclusions from our current data.

7.2.3 Passengers

The last variable we looked at is the effect of passenger numbers on the driving times. While we
do not have exact passenger data, we do have information about the dwell times, which give an
indication of how busy a trip is, because more people moving in or out of the bus leads to longer
dwell times. Furthermore, calculating Pearson’s correlation coefficient between the driving time
and the dwell time, we found a coefficient of 0.6907, showing a correlation between the driving
time and the dwell time.

To get a better understanding of how the driving times are influenced and by how much, we
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group the dwell times into three categories. For each line variant we calculate the 70th and 90th
percentiles of the dwell time and use these to categorize the dwell time of a specific trip. Then
we create three groups with driving times. Group 1 contains driving times, where the dwell time
is below the 70th percentile of that trip. Group 2 contains driving times, where the dwell time
is above the 70th percentile of that trip and below the 90th percentile of that trip. Lastly, group
3 contains the remaining driving times. Grouping on these categories gives us insight into the
mean and standard deviation of these driving times. These are shown in Table 7.2.

Table 7.2: Mean and standard deviation of the driving time (as percentage of the planned
driving time) grouped by the dwell time category.

Driving time (% of planned driving time)
Mean Standard deviation #Trips

Group 1 91.77 9.23 53 519
Group 2 95.72 7.54 15 285
Group 3 99.45 8.62 7 681

From this table we can already see some differences between the driving times with the different
dwell times. To confirm that these differences are also significant, we performed Welch’s unequal
variances t-test. Our null-hypothesis in these tests is: “The means of the driving times from the
two tested dwell time categories are equal.” For these tests we will use α = 0.005, which is lower
than the usual 0.05, because we perform multiple t-tests. The p-values for these tests are shown
in Table 7.3. Note that some of these values are 0.0, meaning that they are too small to be
represented by a 64-bit floating point number. All these p-values are lower than our chosen α,
thus these means of the driving times in these categories are significantly different. Note these
p-values seem exceptionally low, which is due to the number of trips in each category.

Table 7.3: p-Values of Welch’s unequal variances t-test we performed on the driving times in
the different dwell time categories.

Group 1 Group 2 Group 3
Group 1 − 0.0 0.0
Group 2 0.0 − 7.69 · 10−219

Group 3 0.0 7.69 · 10−219 −

For our implementation it is important to know if there are any patterns in which these higher
dwell times happen. For example, are there certain days on which most of the trips encounter
higher dwell times? We mainly looked at patterns over a whole day, as our simulation model
simulates driving times for a whole day. From Figure 7.5 we can see that these higher dwell
times can occur at pretty much any time of the day, except for very early in the morning or
late at night, when there are not many bus trips anyway. This is especially visible in the bigger
confidence intervals past 19:00. Furthermore, the increase in driving time looks pretty consistent
between the categories.

Grouping the trips of each day together, the average dwell time percentile seems to be very
consistent with a mean of 0.5049 and a standard deviation of 0.0517. Relating this with the
driving time, we find Pearson’s correlation coefficient to be 0.3540, indicating that there is some
positive correlation. This could be due to some cancellation happening when averaging dwell
times and driving times over a whole day. For example, a line might be extremely busy in
one direction, but not busy at all in the other direction. Thus, in the average driving times of
this line, we might not see the full extend as to how busy it was. We would need to further
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Figure 7.5: Mean driving times with their 95% confidence interval for different dwell time
categories.

investigate the data to verify this behaviour. Furthermore, our simulation model then also needs
to incorporate such information when simulating driving times. Thus, we generate driving time
instances as described in Section 5.2. The distributions used for how often a busy day occurs
and the driving times on that day will be further explained in the next section.

7.3 Distributions
For our final implementation we fit different distributions on the driving times for trips departing
in the time periods defined in Table 7.1. Based on Section 7.2.3, we will only use driving times
with a dwell time that is less than the 70th percentile of the dwell time for that trip. This is
to create a baseline distribution, that is not influenced by the more busy days. Then, in our
simulation model, we set a probability to generate driving times for a busy day, in which case
all simulated driving times are multiplied by a set factor. We base these factors on the results
shown in Table 7.2. Thus, with a 20% probability we will generate driving times that are 5%
higher and with a 10% probability we will generate driving times that are 10% higher.

We fitted normal distributions for the driving times in each period. These fits are shown in
Figure 7.6. For some time periods, we used a single normal distribution to fit the data to, but
for others we used a combination of two normal distributions to create a better fit. Thus, these
distributions are a mixture of the distributions N(µ1, σ2

1) and N(µ2, σ2
2) with the weights p and

1− p respectively. The parameters we use for these distributions are given in Table 7.4.

In our simulation, we only use these distributions to generate the driving times of trips, which
means that deadheads and trips to and from the garage still use deterministic driving times.
This is partly because we do not have data for these driving times, but these driving times vary
less in general, since they are not influenced by passenger loads. These deterministic driving
times still vary over the day to account for different traffic conditions; we vary these according
to specified time periods given in our input data.

All in all, we use the distributions shown in Figure 7.6 for generating driving times of trips, and
use deterministic driving times for trips from and to the garage and for deadheads. Furthermore,
we simulate busy days by multiplying the generated driving time with a certain factor. Here we
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Figure 7.6: Histograms and the fitted probability density function of the driving time distribu-
tion for each time period. Here the density is the probability of a certain driving time occurring.

Table 7.4: Parameters of the fitted driving time distributions.

p µ1 σ1 µ2 σ2

Early Morning 1.00 0.924 0.055
Morning Peak 0.87 0.934 0.055 0.740 0.075
Late Morning 0.84 0.944 0.055 0.760 0.067
Early Afternoon 0.79 0.963 0.053 0.790 0.072
Afternoon Peak 0.93 0.950 0.063 0.740 0.061
Early Evening 0.94 0.945 0.062 0.740 0.050
Late Night 1.00 0.917 0.065

generate driving times which are 5% higher with a probability of 20%, and with a probability
of 10% we generate driving times that are 10% higher.



Chapter 8

Experiments and Results

8.1 General Setup
In this chapter we will compare the performance of our stochastic E-VSP model with the determ-
inistic one. We will also compare the different methods for calculating the number of simulations
required, which are described in Chapter 6. For this we use several instances from various re-
gions in The Netherlands. These instances are from the regions of Dordrecht, Groningen, and
Utrecht. The instances are provided by Qbuzz, which is the bus company that serves these
areas. We implemented our algorithms in C# .NET 6.0, and we use IBM ILOG CPLEX version
22.1 for solving our ILPs. We run the algorithms on a computer with an Intel® Core™ i5-6400
quadcore processor, with 16 GB of RAM.

Table 8.1: Overview of the used datasets and their parameters.

Dataset #Trips #Lines Battery Capacity (kWh)
dmg 631 8 232
gn345 463 3 184
qlink 590 3 160
zst 317 2 232

For all our simulated annealing runs, we use a starting temperature T = 10 000 and a cooling
rate α = 0.0001. To get the scores for the columns in the recombination, we simulate each
simulated annealing 1 000 times, where we use CRN such that everything is evaluated on the
same driving times.

To compare the different final solutions found by our algorithm, we simulate each solution 1 000
times. We do not employ CRN in these simulations. Thus, each solution is simulated on different
driving times. However, due to the number of simulations we use, we do not expect this to result
in unfair comparisons, as the number of simulations should reduce the variance in score. When
comparing solutions created with deterministic driving times, we also simulate these 1 000 times
using stochastic driving times.

8.2 Required Number of Simulations
To compare the methods for calculating the required number of simulations described in Chapter 6,
we mainly look at the running times and scores of different simulated annealing runs. The run-
ning time is measured inside our program as the wall-clock time of the simulated annealing

27
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run. This only includes work that is done within our simulated annealing run and thus excludes
something like data reading and parsing.

An overview of the tested methods and their parameters is provided in Table 8.2. Note here
that for the “Equal” methods when the maximum number of simulation is, for example, 100,
each solution is simulated half that number, thus 50 times. Furthermore, we included a method
where simulations are equally divided and CRN is disabled, in order to understand the effect of
CRN on the simulated annealing. Lastly, with “TTest2” we refer to our extended t-test method,
thus the t-test method that potentially performs an additional t-test based on the acceptance
probability. These parameters are chosen such that for each method they should provide a good
tradeoff between runtime performance and the final score.

Table 8.2: Parameters for the different methods for calculating the required number of simu-
lations we are comparing. For an explanation of these parameters see Chapter 6.

Method n0 ∆ N α

Equal 20
Equal 50
Equal 100
Equal (no CRN) 100
OCBA 20 5 100
IZ 10 10 100 0.1
TTest 10 10 200 0.2
TTest2 10 10 200 0.2

To get a fair comparison between the different methods for calculating the required number
of simulations, all our runs use the same parameters for our simulated annealing. But, more
importantly, we run our simulated annealing for a constant number of iterations, meaning that
faster methods do not get a time advantage. This is also described in Section 4.2, but in short,
we run the simulated annealing until the temperature is below 1, after which we run a set number
of iterations in hillclimb mode.

8.2.1 Performance

In Figure 8.1, we show the runtime and score of the different simulated annealing runs for all
different methods for calculating the required number of simulations in Table 8.2. Here we see
a big difference when it comes to the scores of the methods that employ CRN compared to the
methods that do not employ this technique, which are OCBA and the equal method without
CRN. While we do think that the runtime of some of these methods that do not employ CRN
could be improved, we do not see how this could also improve the score, as the number of
iterations is constant.

To get a better overview of how the methods that do employ CRN compare against each other,
we only show these methods in Figure 8.2. In here, we see that the use of IZ or t-tests can lead
to runtime improvements while not scoring worse. From this figure we see that the IZ and the
different t-test methods are generally a bit faster, while scoring similar or even better compared
to the equal distribution with N = 100. In general, we see that the IZ and t-test methods
perform the best in terms of their score, where the t-test methods seem slightly faster.

8.2.2 Number of simulations

In the previous section we saw that the IZ and t-test methods perform very similarly both
runtime- and score-wise, where the single t-test might be a slight bit quicker. We also sampled
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Figure 8.1: Comparison of the score and runtime of various simulated annealing runs for
different methods for calculating the required number of simulations on different datasets.

Figure 8.2: Comparison of the score and runtime of various simulated annealing runs for
different methods for calculating the required number of simulations on different datasets. Here
we exclude all the methods that do not employ CRN.
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some iterations to see how many simulations a method used in that iteration. The results
for these three methods are shown in Figure 8.3. Note that we still use the parameter from
Table 8.2, thus the t-test methods are allowed more simulations in an iteration than the IZ
method. Here, we see that our extended t-test method uses the least number of simulations,
while the IZ method has a lot of situations where it uses its maximum number of simulations.

Considering the runtime performance of these methods in Figure 8.2, it seems that, compared
to the IZ method, the t-tests are quite a bit slower in determining wether more simulations
are required, although this might also be due to the fact that the IZ method is limited in its
maximum number of simulations. Furthermore, we also note that while the “TTest2” method
uses the least number of simulations of these three methods, it is not necessarily the fastest
overall.

Figure 8.3: Histogram of the number of simulations used in an iteration for different methods
for calculating the required number of simulations.

8.2.3 Hillclimb

In Section 6.2 we suggested that the use of simulated annealing allows us to be a bit more ‘sloppy’
when it comes to deciding which solution is better when deciding between two solutions that are
close to each other. That is, since there is a probability that the simulated annealing does not
select the better solution, it might not be necessary to be completely sure about which solution
actually is the better one. To test this, we compare our simulated annealing runs with only
doing hillclimb. Using an equal number of simulations for each solution as a baseline, we would
expect that the hillclimb with, for example, the IZ method to perform relatively better. We use
the equal distribution with N = 200 as a baseline, and test the IZ method and the t-test method
which performs a single t-test. In these tests we make sure that both the simulated annealing
and the hillclimb take about the same time. Futhermore, just as with the simulated annealing
runs, we perform multistart with the hillclimb runs, meaning that different hillclimb runs have
a different seed for the random number generator that is used for generating neighbours.

In Table 8.3 we compare the scores between various simulated annealing and hillclimb runs.
Here, a negative difference means that the hillclimb improves on the simulated annealing. From
these results it is not clear that the hillclimb with either the IZ or t-test method performs
relatively better than the hillclimb with the equal distribution. Thus, showing that we do need
to be somewhat sure about which solution is better. Although, it is also not clear if the methods
perform relatively worse, showing that our current ‘sloppiness’ when dealing with these close
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solutions might already be good enough.

Table 8.3: Mean scores of various simulated annealing runs compared to the scores of various
hillclimb runs.

Hillclimb Simulated annealing Difference
Dataset Method

dmg
Equal (N = 200) 35 686 36 144 −1.27%
IZ 35 730 36 462 −2.01%
TTest 35 322 35 724 −1.13%

gn345
Equal (N = 200) 79 698 78 391 1.67%
IZ 80 148 78 654 1.90%
TTest 79 845 78 391 1.85%

qlink
Equal (N = 200) 36 344 37 237 −2.40%
IZ 35 995 36 716 −1.96%
TTest 35 818 36 856 −2.82%

zst
Equal (N = 200) 25 162 24 540 2.53%
IZ 25 120 24 535 2.38%
TTest 25 161 24 619 2.20%

8.2.4 Best solution comparison

As we mentioned in Section 6.4, we also test wether we can use fewer simulations when comparing
the newly accepted neighbour with the best known solution. For this, we test two configurations.
One where we use the same method that is also used in the other comparison, and one where
we use just 10 simulations for each solution. We call this last configuration “E10”. We test
these configurations for the t-test methods, the IZ method, and for the equal distribution with
N = 50.

Comparisons of the scores and runtime performance for these configurations are shown in Fig-
ures 8.4 and 8.5 respectively. In here, we also show the 95% confidence interval for the means.
These comparisons show that switching to the E10 configuration reduces the runtime perform-
ance, while scoring very similar.

8.2.5 Recombination

In Section 8.2.1, we have seen the performance of the different simulated annealing runs for
different methods for calculating the required number of simulations. However, as described in
Section 4.2, we use a recombination technique to create a final schedule with these simulated
annealing runs. For some of the methods, we compare the results from different runs to see if
the used method has an effect on the recombination performance. In Figure 8.6 we show these
recombination scores for the IZ method, the t-test methods and the equal distribution with
N = 50. These results are similar to the results in Section 8.2.1. We will look more into the
effects of recombination in Section 8.3.1.

8.3 Stochastic E-VSP
We also test the robustness of our final solutions. For this, we will compare the use of stochastic
driving times with the deterministic driving times in our input data. These deterministic driving
times already contain some slack in order to make the schedule more robust. For the simulation
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Figure 8.4: Comparison of the scores of various simulated annealing runs for different methods
for calculating the required number of simulations and different configurations for comparing
the newly accepted neighbour with the current best solution.

Figure 8.5: Comparison of the runtimes of various simulated annealing runs for different
methods for calculating the required number of simulations and different configurations for
comparing the newly accepted neighbour with the current best solution.
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Figure 8.6: Scores of the solutions created with recombination, where we use the specified
method for the methods for calculating the required number of simulations in our simulated
annealing.

with stochastic driving times, we use the “TTest” method with the same parameters as in
Table 8.2.

First we compare the lateness, maximum DoD, and number of vehicles used. Averages of these
statistics over multiple runs are shown in Table 8.4. In this table, we use L to denote the set
containing the lateness values for each trip. We define the lateness as the difference between the
planned starting time of a trip and the earliest time a bus could depart for this trip, where a
positive value means the trip started late. Furthermore, these values are in minutes. This means
that L̄ denotes the mean lateness of all the trips, and we use L95 to denote the 95th percentile
of the lateness. We define the punctuality to be the percentage of trips that started on time.
Lastly, the column “Mean Late” denotes the mean of the set {x ∈ L | x > 0}. Thus, it is the
average number of minutes a bus starts late, given that it starts late. From these results we
see some reductions in the lateness of a trip, and also a reduction in the “Mean Late” statistic.
Furthermore, the other statistics seem more or less similar. We also checked these results with
our contact person at Qbuzz, confirming that these lateness values are similar to what they
encounter in practice.

8.3.1 Recombination

We also compare our simulated annealing runs with the results from the recombination. For
this, we compare the scores of the schedules. We use 15 simulated annealing runs for the
recombination. During our simulated annealing we keep multiple of our best solutions, which
are used for the recombination. From a certain point in our simulated annealing we will collect
the new best solutions, however after collecting a new best solution, we wait a few iterations
before collecting the next one. This is done in order to not collect solutions that just differ in
one neighbour. This means that we collect about 20 to 40 solutions per simulated annealing
run, which results in about 7 000 to 56 000 columns depending on the dataset we use. Note that
there may be duplicate columns in here, as we collect multiple solutions from the same simulated
annealing run. Lastly, we set the time limit of the ILP to 20 minutes in order to reduce the
total computation time.
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Table 8.4: Various statistics regarding the final solutions calculated with either deterministic
or stochastic driving times.

#Vehicles L̄ L95 Mean Late Punctuality Max DoD
Dataset Driving times

dmg
Deterministic 45.0 -3.8 2.0 2.9 89.5% 53.2%
Stochastic 52.2 -4.5 1.0 2.0 92.7% 58.3%

gn345
Deterministic 92.0 -2.3 1.2 4.7 93.4% 95.1%
Stochastic 94.0 -2.9 1.0 3.3 94.7% 95.2%

qlink
Deterministic 37.8 0.8 5.0 5.1 83.2% 52.9%
Stochastic 45.8 -3.0 1.6 2.7 91.8% 62.3%

zst
Deterministic 38.6 -5.9 0.0 2.4 98.4% 69.8%
Stochastic 37.4 -6.2 0.0 2.2 98.5% 70.0%

The results of this are shown in Table 8.5, where we note the average results for different
statistics. Note that the reported time includes both the recombination and the score calculation
of the columns, which is why some instances report a time that is above 20 minutes. Also, the
‘Improvement’ denotes the percentage improvement compared to the best simulated annealing
score, where a negative value means that the recombination did not improve compared to the
simulated annealing. Here we see that a few of our datasets run into the time limit of 20 minutes.
Furthermore, these are also the only tests with fairly big integrality gaps, and they do not show
an improvement compared to the simulated annealing. However, the results on the other tests
are quite promising as they show 1 to 3 percent improvements compared to simulated annealing.

Table 8.5: Various statistics regarding the performance of the recombination. Here ‘Gap’
denotes the gap to the LP relaxation, and ‘Improvement’ denotes the percentage improvement
compared to the best simulated annealing score.

#Columns Gap Improvement Time (s)
Dataset Driving Times

dmg
Deterministic 20 523.7 5.889% −2.377% 1 200.41
Stochastic 27 566.7 7.411% −3.425% 1 251.85

gn345
Deterministic 33 320.8 0.013% 1.545% 467.80
Stochastic 55 770.7 0.038% 2.372% 760.99

qlink
Deterministic 21 931.6 0.005% 3.645% 18.70
Stochastic 25 805.3 4.672% −1.237% 1 238.82

zst
Deterministic 7 037.4 0.009% 2.713% 74.39
Stochastic 23 271.2 0.010% 3.206% 245.42

8.3.2 Lateness

First we looked at the histogram of the lateness values (the set L) we encountered in our
simulations. This is displayed in Figure 8.7. There are a few things to notice in this figure.
First, we see that for most trips the bus is about 2 minutes or less too early, which is normal
and expected behaviour. We also see some peaks at −10 and −15 minutes. This is especially
clear in the qlink dataset. These peaks correspond to the frequency of some of the lines in these
datasets. We suspect that these peaks are due to the dataset not containing many lines, thus
the only way to increase robustness is to arrive one trip early. Furthermore, for every dataset
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there is also a big peak at 0 minutes. This is due to the buses charging until their trip starts.

Figure 8.7: Histogram of the set L.

We ran our algorithm with different penalty factors for the lateness, in order to get a better
overview of how the stochastic driving times compare to the deterministic driving times. Note
that in these tests we only change the value α in our objective function (Equation (4.1)).

For this, we first compare the punctuality in these solutions to the operating cost and to the
number of vehicles used. Here the punctuality is the percentage of trips that started on time.
These comparisons are shown in Figures 8.8 and 8.9 respectively. In these figures we see that
using stochastic driving times, we generally get solutions with a better punctuality, but they
use a bit more vehicles. This is also reflected in Figure 8.8, where we see higher operating costs
for the same punctuality. Note that the operating cost also contains a time component. Thus,
buses needed to wait for their trip to start increases the operating cost. However, in the case of
stochastic driving times, not waiting may induce a penalty for the lateness on the next trip.

We also compare the lateness itself. For this we look at the average lateness compared to the
operating cost and to the number of vehicles used. The results of these comparisons are shown in
Figures 8.10 and 8.11 respectively. These figures show results that are similar to the punctuality,
where we decrease the average lateness for a bit more vehicle usage, which is reflected in the
operating costs.

8.3.3 Depth of Discharge

We also ran our algorithm with different penalty factors for the DoD. Here, the lateness penalties
stayed constant. In Figure 8.12, we see the maximum DoD for different number of vehicles used
in the final solution. For most of the datasets, we see very similar results between the use of
stochastic and deterministic driving times. Meaning that the maximum DoD is more or less the
same for both deterministic and stochastic driving times. The main differences here are in the
number of vehicles a solution requires.
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Figure 8.8: Punctuality compared to the operating cost.

Figure 8.9: Punctuality compared to the number of vehicles used.
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Figure 8.10: Mean minutes late compared to the operating cost.

Figure 8.11: Mean minutes late compared to the number of vehicles used.
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Figure 8.12: Maximum DoD for different number of vehicles used.



Chapter 9

Conclusion

9.1 Summary
In this thesis we created a model to solve E-VSP with stochastic driving times. For this we used
a local search approach in the form of simulated annealing. We extended an existing simulated
annealing approach for the case of deterministic driving times with simulations, such that we
could use it with stochastic driving times. The use of these simulations forms a bottleneck in
the runtime performance of our local search, thus we explored different methods for calculating
the required number of simulations. With some of these methods we could keep number of
simulations and runtime low, while being confident about which solution to select.

Furthermore, we analyzed historic driving times to find out which distributions to use in our
model. For this, we explored different external factors that should be considered in these dis-
tributions. These factors are the time of day, the weather, and number of passengers. Here, we
determined that it is unclear how the weather influences the driving times. We used the other
two factors to create our final distributions.

9.2 Conclusion

9.2.1 Required Number of Simulations

When it comes to our simulation setup, we saw in Section 8.2.1 that the use of CRN is very
effective. In our case, it even seems the use of CRN is more or less required in order for the
simulated annealing to converge to a better score. Furthermore, when comparing the different
methods for calculating the required number of simulations, we saw in Figure 8.2 that both the
t-test methods and the IZ method are quite similar in terms of score and runtime performance.
They are also the best performers of all the tested methods. In Section 8.2.2, we note that the
t-test method uses the least number of simulations, meaning that, depending on the runtime
efficiency of the simulations, these could be the best choice. In our case, the simulations seem
quite efficient, and we seem more limited by how fast we determine if we need additional simu-
lations. Here, the IZ method seems to be much faster, but this is cancelled out by the need of
more simulations.

Comparing our t-test method to our extended t-test method, we saw a similar performance in
both score in runtime. Although our extended t-test method uses fewer simulations overall, the
required runtime for this was offset by the calculations for the extra t-test. So, in our case, the
use of the extended t-test did not improve the runtime. However, it could benefit other problems
where the simulations are less efficient in terms of computation time.
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Overall we can conclude that the use of these different methods can increase the runtime per-
formance while not giving up on solution quality. We have shown this in both the simulated
annealing performance and the recombination performance. Furthermore, we can achieve an
even better runtime performance by using relatively few simulations when comparing for the
best solution. In our case just doing 10 simulations per schedule did not reduce the overall score,
while running faster.

Lastly, we experimented with using only hillclimb in order to get a better understanding of how
we should handle solutions that are very close to each other. However, these tests did not yield
conclusive results. Futhermore, we only tested if we can be a bit ‘sloppy’ when it comes to these
solutions, but there are other options that could be explored. For example, one could take the
variance of the simulated solutions into account when deciding which solution is better.

9.2.2 Stochastic E-VSP

For the stochastic E-VSP problem, we see in Table 8.4 and Figure 8.7 a decrease in lateness
compared to using deterministic driving times. This is not only true for the average lateness, but
more importantly in the extreme cases. That is, we see reduction of the 95th percentile of the
lateness. From this we can conclude that the use these stochastic driving times indeed increases
robustness of our schedules. However, this comes at a small cost. In general these solutions
could require about the same number of vehicles, although on average solutions created with
stochastic driving times require a bit more vehicles. The additional number of vehicles required
in combination with the extra waiting time that is sometimes needed, is also reflected in the
operating costs, which increases compared to the use of deterministic driving times.

9.2.3 Recombination

From the results of the recombination of different simulations runs, we see improvements on the
solution quality of up to 3%. However, for some of our experiments the ILP ran into the time
limit of 20 minutes, where it didn’t find any improvements compared to the simulated annealing.
This is especially visible in the integrality gaps reported in Table 8.5, where the experiments
that ran into the time limit have a fairly big gap compared to the experiments that did not run
into this limit. It could be that, given more time, these instances also improve compared to the
simulated annealing, but they could also already be at their optimum. This would need to be
further verified with longer experiments. However, for the other instances, we can improve our
best solution quite quickly. Thus, although it is not always improving our best result, this extra
recombination step seems a good addition to our simulated annealing.

9.3 Future Research
We showed that our model for stochastic E-VSP is quite successful in creating more robust
schedules. This approach could be further enhanced to increase the usefulness of our results.
One of the assumptions we made for our stochastic driving times is that we use the distribution
for every line in every direction. This is not necessarily realistic, as there are lines that solely
cross city centers, but also lines over longer distances. Buses on these lines encounter very
different traffic conditions and thus could end up with different distributions for their driving
time. Our work could be extended to include a distinction between these different line types, but
would require more research into how these distinctions could be made and also the distributions
that are required.

Our model itself could also be further enhanced. For the simulated annealing we used the same
neighbours as ten Bosch et al. [24]. These neighbours are very simple and seem to deliver good
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results, but maybe more sophisticated neighbours could be added in order to find better solu-
tions. For this, it would also be interesting to see if adding these more sophisticated neighbours
has an effect on the recombination step. This recombination step also left us with some further
research questions. For example, we did not experiment with how we select our columns from
the simulated annealing. Simply always picking the best solution, might leave the ILP with not
much room to improve, but selecting a lot of ‘bad’ columns might unnecessarily increase the
total runtime.

Lastly, further research could also be done on the integration of the investigated methods for
calculating the number of simulations required into the simulated annealing. We did some
experiments on this with our extended t-test method, using the fact that simulated annealing
does not always select the better solution. However, further research could be done to answer the
question on what to do when we have solutions that are close to each other, and one solution is
not significantly better than the other. Although it is also the question if we need to do anything
about that situation.
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