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Accelerating Sum Types Rick van Hoef

Abstract
Parallel array languages are programming languages that make it possible to write highly parallel
programs without knowing the intricacies of parallel programming and hardware. In this thesis,
we present an optimization for the memory usage of parallel array languages, specifically geared
towards sum types. Sum types are algebraic data types with more than one constructor, which are
used to denote a choice between multiple different variants. Examples of applications of sum types
in parallel programs are material choices in a ray tracer and parameters to a fluid simulation. We
introduce a new representation of sum types that aligns with the struct-of-arrays memory layout
that parallel array languages commonly use. We show that this representation is close to optimal
with respect to memory usage, and that it is an improvement over existing representations that are
suited for a struct-of-arrays memory layout. This representation is implemented in the POSable
library, which generically converts non-recursive Haskell 98 data types to this representation.
Accelerate is a functional parallel array language embedded in Haskell that supports sum types.
The POSable library has been integrated in Accelerate, which shows the viability of the approach.
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1 Introduction and motivation
Parallel array languages make it possible to write highly parallel programs without knowing the
intricacies of parallel programming and hardware. This makes it possible for developers to write
high performance software with relative ease. Parallel array languages offer operations that are
performed on an entire array of data, like map, fold or stencil. These operations are executed in
parallel on a GPU or multicore CPU.

In this thesis, we present an optimization for the memory usage of parallel array languages.
This has the potential to improve the performance of memory bound programs. The optimization
we introduce is specific to sum types, algebraic data types with more than one constructor.

Sum types are common in functional programming languages like Haskell and ML. They rep-
resent a choice between multiple alternatives, each potentially of different types. A commonly
used sum type is the Maybe type (also known as an Option type in other languages). It has two
constructors, Just and Nothing. The former takes a single value, the latter takes no value. The
Maybe type can, for example, be used as the result of a search function. The result Just x than
signifies that a result has been found, and the result value is brought in scope as x, while Nothing
signifies that no result has been found.

Functional parallel array languages have only recently gained support for sum types [11, 23].
A drawback of current implementations of sum types in parallel array languages is the memory
usage. In this thesis, we propose a new, more efficient memory layout for sum types in parallel
array languages. This optimization has been applied to Accelerate, a parallel array language
embedded in Haskell.

Being a parallel array language, Accelerate is mainly concerned with arrays. Instead of applying
a function to a single value, a typical Accelerate program applies a function to an array of values.
Accelerate stores these arrays in a struct-of-arrays fashion. This means that for arrays of types with
multiple fields, multiple arrays are allocated, each containing values of a single type, corresponding
to the fields. For example, when a array of tuples is created by the programmer, this internally
leads to the creation of two arrays, one with the first element of each tuple, and one with the
second element of each tuple.

Figure 1: Memory layout of a value of type Float + Float in Accelerate. Depicted in the top
is the structure tree of type Float + Float. The sum is displayed as a circle with a
plus symbol in it. Displayed in green is one of the possible values of this type, where
the right constructor has been chosen. Depicted below are the allocated arrays and
their types. Illustrated in green are the arrays that hold values at the index where the
aforementioned value is stored. At each index only one of the arrays of Floats contains
a value. The other array contains an undefined and unused value at this index.

Arrays of sum types are represented similarly. For example, consider an array of Eithers,
another common sum type. When an array with values of type Either is created, the fields of the
Eithers are spread out over two arrays. The constructor choices are stored as an integer, called
the tag, in a separate array. This means that the creation of an array of Either Float Float
internally leads to the creation of 3 arrays, one with tags and two with floats. This is shown
visually in figure 1.

This representation is not optimal. At each index of the arrays, either the second or the third
array contains an undefined value that is never accessed, depending on the value of the tag. It
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would be far more efficient to only create 2 internal arrays, one with tags, and one with floats. A
visual example of this is shown in figure 2.

Another limitation of the current approach becomes visible when nesting sum types. In nested
data-types, the TAG values are spread out over different arrays. To perform a nested pattern
match on such a value, the hardware has to perform multiple memory accesses. It would be more
efficient to instead have a single TAG describing the whole nested structure.

Figure 2: Compact layout for a value of type Float + Float. Depicted in the top is the structure
tree of type Float + Float. The sum is displayed as a circle with a plus symbol in it.
Displayed in green is one of the possible values of this type, where the right constructor
has been chosen. Depicted below are the allocated arrays and their types. Two arrays
are allocated for this type, one of with tags, the other with Floats. Both arrays contain
a value at each index, no matter the value that is represented at that index.

In this thesis, we propose a memory layout for algebraic data types based on these concepts.
We compare this layout to existing and proposed memory layouts in section 3, and conclude that
our approach is close to optimal with respect to memory usage. This layout has been implemented
in a library, which is described in section 4. This library has been integrated in the Accelerate
compiler, as described in section 5. Finally, we discuss limitations of the library and the compiler
integration, and directions for future research.

In summary, we answer the following research question:

How can we efficiently represent sum data types in memory, in the context of data-
parallel array applications?

Our contributions are the following:
• A new representation of sum data types in memory, that is close to optimal with respect to

memory usage. This representation is specifically designed to align with a struct-of-arrays
representation of data. The representation is presented in section 3.

• A library, POSable, which generically converts non-recursive Haskell 98 data types to this
representation. This library is presented in section 4.

• An integration of this library in Accelerate. Although the integration is not yet complete,
it proves that it is possible to use the library in an array parallel language. The integration
is described is section 5.
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2 Background
2.1 Algebraic data types
Algebraic data types are types that can be defined by the programmer, in contrast to machine
types like Int and Float. These types have proven to be a powerful, convenient, and expressive
way of creating and organizing data, and have become a defining characteristic of functional
programming languages in particular. Algebraic data types can be divided in two categories:
sums and products. Common examples of the former are Either and Maybe. In listing 1 the
definition of Either is shown. It represents a choice between two different values, possibly of
different types. In a sum type only one of the values is present at the same time. Sum types are
denoted as a + b.

data Either l r = Left l
| Right r

Listing 1: The definition of the Either data type. The type has two type variables, l and r.
Either has two variants, called constructors: Left and Right. Both constructors have
a single type argument. The type of the Left constructor is l -> Either l r, and the
type of the Right constructor is r -> Either l r.

The other variety of an algebraic data type is a product type. The Point type shown in
listing 2 is an example of a product type. In a product type the values of all fields are present
at the same time. Product types are denoted as a × b. Most programming languages offer good
support for these types, in the form of tuples or structs.

data Point = Point Float Float

Listing 2: The definition of the Point data type. The Point type, in contrast to the Either type,
has only a single constructor (or variant). This constructor in turn has two values, both
of type Float.

A product type really is a specialization of a sum type, containing only one choice instead of
multiple. Conversely, sum types can contain products in each variant. In conclusion, algebraic
data types are types that are composed of other types. There are two ways of composing these
types; products and sums. A sum represents a choice between multiple variants, while a product
holds multiple fields at the same time.

2.2 Accelerate
Accelerate [5] is a parallel array language that is deeply embedded in Haskell. Accelerate provides
the programmer with a set of parallel array functions, like map, stencil and fold. By optimizing
these array functions for SIMD hardware, Accelerate achieves good parallel performance.

A deeply embedded language is a language that overloads features of the host language to
produce an abstract syntax tree (AST) of the the embedded language instead of directly executing
the code [13]. This AST can then be analyzed, optimized and compiled. This means that the
embedded language can leverage the parser, lexer and type checking facilities of the host language.
This in turn means programmers can use existing tooling, like IDE’s and language servers, to aid
in programming in the embedded language. The code of the embedded language can also be
interleaved with host language code, offloading certain tasks to the embedded language.

In the case of Accelerate, this means that parallizable tasks can be offloaded to be executed
on a parallel computing device (e.g. a GPU). This approach greatly reduces the amount of
(boilerplate) code that has to be written for typical data-parallel programs, compared to C-based
languages like OpenGL or CUDA. An example of a function written in Accelerate is shown in
listing 3. Except for its type, this function is equivalent to the Haskell implementation of the
same operation. Accelerate compiles this program to a GPU kernel that performs the zipWith
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operation in parallel and fold operation as a parallel tree reduction. It then loads both Vectors
into GPU memory and executes the kernel.

dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Listing 3: Computing the dot product of two vectors in Accelerate. Excepting the type annotation,
this is equivalent to the implementation of this function in plain Haskell. The type
however makes that the Accelerate version of the overloaded functions and operators
are selected by the Haskell compiler. Instead of directly executing the function, this
code creates an Accelerate AST that can be fed to the run function from one of the
backends. This backend then in turn executes the AST on the respective hardware.

In the previous example the Accelerate fold function is used. Its type is given in listing 4.
The function takes a function on Exps, a default value Exp a, and an Accelerate Array. It returns
another Array of one dimension less. The difference between Exp and Acc shows that there are two
levels of data in Accelerate. The outer level is that of Arrays, n-dimensional lists. Functions that
operate on these live in the Acc AST. The fold, zipWith and map are examples of this. The inner
level is that of the Exp AST, which contains scalar expressions and values. Arithmetic functions
list + and * are examples of this. No recursion is allowed in Exp expressions. Types have to
implement the Elt class to be admissable in Exp. This class constrains types to be non-recursive
and composed of machine types that Accelerate supports. Instead, recursive operations or loops
have to be performed on the outer level.

fold :: (Shape sh, Elt a)
=> (Exp a -> Exp a -> Exp a)
-> Exp a
-> Acc (Array (sh :. Int) a)
-> Acc (Array sh a)

Listing 4: The type of the Accelerate fold function. As most array functions in Accelerate, it
is shape-polymorphic. That is, it works on vectors, matrices, and arrays of higher
dimensions. The function takes an array of some dimensionality, applies a function on
the inner list, and returns an array of one dimension less.

Accelerate supports differently sized floating point and integer types as scalar values, together
with tuples and vectors of these. It also supports typical Haskell sum types [23], such as Maybe and
Either. User-defined sum and product types are supported too, as long they are non-recursive.

The supported scalar values in Accelerate are captured in the Elt class. This class can be
automatically derived for non-recursive Haskell 98 types as shown in listing 5.

data Option a = None
| Some a
deriving (Generic, Elt)

Listing 5: Deriving the Accelerate Elt class for a user-defined sum data type. Generic has to be
derived to make this possible, as the default implementation of the Elt class relies on
the Generic class.

Listing 6 shows a Accelerate function using sum data types. In this example, the Haskell find
function is implemented in Accelerate. This function takes a predicate function and return the first
element that matches the predicate. The Maybe sum type is used here to discern matching from
non-matching values. By implementing this function as a parallel map and fold, it is much faster
than the equivalent in plain Haskell for large arrays. Real-life examples of sum data types used in
Accelerate code are common Haskell sum types like Either and Maybe, but also user-defined sum
data types to represent parameters to fluid simulations [9] and ray tracers [8].
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find :: (Elt a, Elt b)
=> (Exp a -> Exp (Maybe b))
-> Acc (Vector a)
-> Acc (Scalar (Maybe b))

find f xs = fold firstJust Nothing_ $ map f xs

Listing 6: The implementation of the Haskell find function in Accelerate. The function maps a
predicate over an array, and then finds the first matching element with a fold. The
implementation of the firstJust function is not shown here, but follows directly from
its definition is Haskell.

Accelerate has been extended with a Foreign Function Interface [6], chunking operators [18]
and kernel fusion [22]. The compiler targets an intermediate language; LLVM [21], which in turn
targets multiple backends, including GPU’s and multicore CPU’s.

2.3 SIMD and struct-of-arrays
Accelerate is designed to be run on SIMD hardware. SIMD, or Single Instruction, Multiple Data,
is a computer chip architecture in which multiple compute units load their own data, but perform
the same instruction on this data. Modern CPU’s support SIMD operations with the SSE and
AVX instruction sets and can perform a single instruction on up to 16 32-bit numbers at the same
time [14]. Modern GPU’s however can perform a single operation on thousands of numbers at the
same time. For CPU SIMD instructions, it is required that the input data is stored in a contiguous
area of memory. In GPU’s this is not a requirement, but to get maximum performance, this is
still preferred.

Accelerate, and similar parallel array languages, store data in a struct-of-arrays (SoA) repre-
sentation [5, 11]. An arrays-of-structs (AoS) representation is more common in other languages.
Storing a list of records in a AoS representation means storing each record back-to-back in mem-
ory. Conversely, storing a list of records in a SoA representation means storing the first field of
each record in a contiguous area of memory, the second field of each record in another contiguous
area of memory, et cetera.

As an example, consider an array of Points, as defined in section 2.1. In the AoS layout,
the x and y coordinate of each point are stored together. In the SoA layout however, all the x
coordinates are stored together, and all y coordinates are stored together. Listing 7 and listing 8
show the definition of this array of Points in the AoS and SoA layouts respectively, as defined in
C.

struct {
float x, y;

} AoS[N];

Listing 7: A list of N points in the AoS representation, defined in C. In memory, x values and y
values are alternated.

struct {
float x[N];
float y[N];

} SoA;

Listing 8: A list of N points in the SoA representation, defined in C. In memory, all x values are
stored together and all y values are stored together.

A SoA representation generally leads to better performance in a SIMD environment. For
example, assume that a program performs some operation only on the x element of each point.
When the first x is loaded by an instruction, x and the values directly next to it are stored in the
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cache. The amount of values that are stored in cache depend on the size of a cache line, which is
typically 64 or 128 bytes wide. In a AoS representation, each cache line then contains both xs and
ys. In a SoA representation however, each cache line is filled with just xs, and twice the amount
of data can stay cached. This makes memory access cheaper, leading to better performance.

2.4 Representations of sum types
The previous section discusses how product types such as Point can be represented in memory.
In this section the represention of sum data-types is discussed.

Functional languages, like Haskell and ML, have traditionally had support for sum types. Those
are generally stored as a tag and a pointer, the former representing the constructor choice, while
the latter points to the fields of this constructor. In a lazily evaluated language, using pointers is
necessary, as the value might still have to be evaluated. Instead a thunk, an unevaluated function,
might reside at the pointer location.

In GHC, the tag is present in the info table (a heap object containing information about
values and thunks). Heap objects have a header that points into this info table. For types with
a small amount of constructors the tag is also stored in the unused bits of the pointer [20]. This
is not a memory optimization (the tag is still present in the info table), but rather a performance
optimization.

Support for unboxed sum types was added to GHC (Glasgow Haskell Compiler) in ver-
sion 8.2.1 [24]. Unboxed types are types that are represented in memory without the use of a
pointer [15]. As a consequence, unboxed types can not be undefined nor point to a thunk, which
means that functions that produce these types are evaluated strictly. Unboxed types are pri-
marily used to prevent pointer-chasing in Haskell, which optimizes application run time. This
also means the values are allocated on the stack rather than the heap. Unboxed sum types are
more space-efficient than tagged pointers, but the existing implementation in GHC does not pack
alternatives.

Futhark [11], a functional parallel array programming language in the ML family, supports sum
types [28]. Like Accelerate, it uses a struct-of-arrays representation, and spreads out the fields
of sum types over multiple arrays. Support for packing alternatives is not yet present, although
an approach has been proposed [10]. The proposed idea is to sort the fields of the different
constructors by type, in order to pack equal types in a single array.

In the imperative world, sum data types are often defined as tagged unions. Languages like
C and C++ give the programmer the freedom to construct such data types in a memory efficient
manner, but without the compile time safety guarantees that functional languages provide. Rep-
resenting arrays of sum types in a struct-of-arrays layout, which is more suited for data-parallel
applications, is possible, but with the same drawback.

Rust has good support for sum types, which are called enums in the language [27]. Enums are
stored in a similar fashion to tagged unions. Both the tag and the fields are efficiently packed into
a single struct, and the compiler provides strong type safety guarantees. However, Rust does not
have support for representing arrays of these types in a struct-of-arrays format.

The different representations can be summarized and divided up in four different categories:

Tag and Pointer

This is the common approach taken by most functional programming languages. A sum data
type is represented by a tag, representing the constructor choice, and a pointer to the fields of
the chosen constructor. In a lazy evaluated language, this layout is necessary, because instead
of a value, a thunk (an unevaluated function) can lie behind a pointer. Following pointers is a
somewhat costly operation, especially on GPU’s, making this representation suboptimal for use
in parallel array languages. On the upside, the fields can be packed efficiently, only taking up the
minimal amount of space required for the fields of the chosen constructor. Because Accelerate
lacks pointers, this approach cannot directly be used in the language. Instead of using a pointer,
an index into an array could be used however.
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Unboxed

Functional array-based languages with sum type support, like Accelerate and Futhark, spread the
constructors of sums over multiple arrays. That means that multiple arrays are allocated for a
sum type, each representing a separate part of the sums. The tags, representing the constructor
choices, are put in the first array, and other arrays represent a single field of a single constructor
each.

This approach is not very memory-efficient, as at each index of the arrays at least part of the
fields are unused. The unboxed sum types in Haskell also belong to this category, as all fields
are aligned next to each other in memory, without pointers involved. Haskell does not use a
struct-of-arrays representation however. The Unboxed layout is shown in Figure 3.

Figure 3: The memory layout of the type (Float1 + Float2) + (Int32 × Float3) in the unboxed
sums representation. Sums are displayed as a circle with a plus symbol in it, products
as a circle with a cross in it. The sums are transformed into a product-like structure.
The choices of nested sums (+b) are represented with a separate array of tags.

Tagged Union

This is the common approach taken by C-like languages, representing the sum type as a tag, and
directly adjacent in memory, unions of the fields of each constructor. This approach does not use
pointers, preserving some memory. The width of a tagged union in memory depends on memory
padding (alignment to memory addresses) or packing (no alignment) and the target architecture.

In a struct-of-arrays memory layout the fields of a single constructor have to be mapped to
separate arrays. This means that per array types have to be padded to the width of the largest
inhabitant. An example of this layout is shown in Figure 4.

Figure 4: The memory layout of (Float1 +b Float2) +a (Int32 × Float3) in the tagged unions
representation. Sums are displayed as a circle with a plus symbol in it, products as a
circle with a cross in it. The sums are transformed into unions. The choices of nested
sums (+b) are represented with a separate array of tags.
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Sorted Fields

This approach, which has been proposed by Troels Hendriksen [10] but (as far as we know) never
implemented, sorts the fields by type, and can be used in a struct-of-arrays representation. This
is more efficient than the Unboxed approach, but is generally less efficient than a tagged union.
An example of this layout is shown in Figure 5.

Figure 5: The memory layout of (Float1+bFloat2)+a(Int32×Float3) in the sorted fields represen-
tation. Sums are displayed as a circle with a plus symbol in it, products as a circle with a
cross in it. The choices of nested sums (+b) are represented with a separate array of tags.
The Float3 and Int32 in the second constructor of +a have swapped places compared
to the order in which they are defined. The chosen ordering (TAG > Float > Int32) is
arbitrary, and any other ordering could have been possible.

The different approaches are compared in section 3.

2.5 Type level programming
In Haskell, it is possible to write functions not only on the value, but also on the type level. This
makes it possible to express dependencies between the types of a function. In turn, this makes it
possible to enforce stronger static guarantees on a program. Type functions are used frequently
in the library presented in section 4.

In order to understand how type level functions work, it is important to understand kinds.
Each value in Haskell has a type. The value 1 has the type Int 1, the value "Hello World! has
type String. Each function in Haskell also has a type. The function && has the type Bool ->
Bool -> Bool, the function map has the type (a -> b) -> [a] -> [b]. All of the types in Haskell
also have a kind, the type of a type. The kind of Int, String, && and map is Type, also denoted
with *.

Data types can have more complex kinds. The kind of the Maybe type is Type -> Type. It
takes a type, and returns a type. When a type is applied to Maybe, for example the Int type, it
returns the type Maybe Int. The kind of Maybe Int is just Type.

Haskell, with the right language extensions enabled, supports kinds that are not just combina-
tions of Type and arrow (->). Listing 9 shows the definition of the natural numbers, Peano style.
By enabling the DataKinds [30] language extension, the constructors and types are lifted to types
and kinds respectively. This means there is a kind Nat of which the inhabitants are the the types
Zero, Succ Zero, et cetera.

data Nat = Succ Nat
| Zero

Listing 9: The Nat data type defines the natural numbers, Peano style. The Nat type is lifted to
the Nat kind by enabling the DataKinds language extension. Similarly, its constructors,
Zero and Succ, are lifted from values to types.

1This is a simplification. The type of 1 can also be Float, or any other number type, depending on the context.
This is called overloading.
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In order to use types of this Nat kind, functions have to be defined that do not compute values,
but types. There are different sorts of type functions in Haskell, two of which are used in the
library presented in section 4. The first is closed type families [29], which are defined analogous
to normal functions. An example of a type family is the Sum type family, defined in listing 10. It
adds together two type level natural numbers, analogous to the + operator.

type family Sum (a :: Nat) (b :: Nat) :: Nat where
Sum Zero y = y
Sum (Succ x) y = Succ (Sum x y)

Listing 10: The Sum type family adds two natural numbers of kind Nat together, to produce a new
Nat.

Haskell also allows for the definition of types that depend on a type of which the kind is not
Type. This is enabled by the GADT [25] language extension. Listing 11 shows a GADT, a vector
that depends on a type of kind Nat. This natural number encodes the length of the vector, which
makes the length of the vector known statically.

data Vector n a where
Cons :: a -> Vector n a -> Vector (Succ n) a
Nil :: Vector Zero a

Listing 11: The Vector type, defined as a Generalized Abstract Datatype, or GADT. The type
is indexed by two variables. n encodes the lenght of the vector, a encodes the type of
the values in the vector.

In order to make use of the Sum type family, it has to be used in the type of some function. As
an example, with the ingredients defined above, it is possible to define a function to append two
vectors, shown in listing 12. In order to return a Vector type with the right length, the sum of
the lengths of the input types has to be calculated. The Sum type establishes this relation between
the input types and the return type of the append function.

append :: Vector n a -> Vector m a -> Vector (Sum n m) a
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

Listing 12: A function that appends two Vectors. In order to write the return type, a relation
has to be established between the input types. This is done with the Sum type family.

Haskell also supports the definition of infix type operators. Instead of the Sum type defined
above, the addition of two naturals can also be defined with the + operator, as shown in listing 13.
The TypeOperators language extension has to be enabled to define and use this function.

type family (+) (a :: Nat) (b :: Nat) :: Nat where
Zero + y = y
(Succ x) + y = Succ (Sum x y)

infixl 6 +

Listing 13: A type function that adds together two natural numbers, as an infix type operator. In
order to define and use this function, the TypeOperators language extension has to
be enabled.

It is not necessary to define type level naturals and addition. Instead, this functionality can
be imported from the various GHC libraries. This also makes it possible to write the type Succ
Zero as just 1. The GHC libraries also support type level lists, including a list syntax that looks
like the value-level syntax.
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It is sometimes useful to convert a type of kind Nat to its equivalent value. That is: convert
the type 1 :: Nat to the value 1 :: Integer. The natVal function, part of the KnownNat class,
is able to do exactly this. The KnownNat constraint is automatically derived for simple Nats by
GHC. This however is not done for compound types, which is where the GHC plugin KnownNat
Solver [2] comes in. This plugin can generate KnownNat constraints for compounded Nats. For
the type function shown in listing 14 it generates the constraint KnownNat (Length xs). This
works because the plugin knows how to add up Nats, and is able to perform recursive calculations.
To prevent infinite calculations at compile time, a maximum recursion depth is set. The plugin
makes working with Nats more ergonomic, as there is not need to pass complex constraints around
or prove properties of natural numbers to the compiler.

type family Length (xs :: [a]) :: Nat where
Length '[] = 0
Length (x ': xs) = Length xs + 1

Listing 14: A type function that calculates the length of a type list. The kind of the single
argument xs is a list of a’s. The result kind is Nat, a kind containing all natural
numbers as type. The '[] and ': types are the type equivalent of [] and :. The +
type adds two natural numbers together.

The Finite library [17] makes use of the type level Nats, by restricting the values of the Finite
type to be lower than the value of its Nat type argument. This makes it possible to, for example,
limit the index to a vector of length n to Finite n, which can statically prevents out-of-bounds
errors.

Haskell also supports associated types [4], which make it possible to add a type (or type
function) to a class. Each instance of this class has to give a definition of this type. This makes
it possible to express class functions in terms of the associated type.

2.6 Data type generic programming
Haskell supports datatype generic programming [3], a way of abstracting over the structure of
a data type. This makes it possible to write functions that are polymorphic over the structure
of a data type. The schoolbook example for such a function is show, which returns a string
representation of some value. A programmer can instantiate this function for their own datatype
by using the deriving statement, as shown in listing 15.

data Maybe a = Nothing
| Just a
deriving (Show)

Listing 15: Deriving the Show class for the Maybe type. The Show class is one of the stock derivable
classes, which exist since Haskell 98. The show function from this class is commonly
used for debugging, as it creates a string that shows the structure of some value.

In Haskell 98, only a select amount of classes can be derived (Bounded, Enum, Eq, Ord, Ix,
Read and Show). Implementation of these is left to the compiler. In order to let programmers use
the deriving mechanism for their own classes, the language has been extended [19]. This makes it
possible to define a default implementation for the functions of a class. The deriving statement
for user defined classes selects the default implementation of these functions.

Creating a default implementation of a class however is not really useful if nothing is known
about the derived type. To write a default implementation for the show function, for example, it
is important to know the amount and names of the constructors, and the amount of fields they
contain. The Generics class was introduced to make this information available to the programmer.

The Generics class can be derived from a datatype by the compiler, and gives structural
and nominal information about the type. Its from function returns a structure based on the :*:
and :+: types, for product and sum types respectively. Writing separate implementations for
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the different types make it possible to ‘pattern match’ on the structure of the type. This makes
writing default implementations of classes more powerful. The GHC Generics representation of
the type Maybe Int is shown in listing 16.

D1 (C1 U1 :+: C1 (S1 (Rec0 Int))) x

Listing 16: Simplified GHC Generics representation of Maybe Int. It is simplified in the sense that
all meta data (like constructor names) have been removed from the representation. The
D1 type represents data types, the C1 type represents constructors, :+: represents a
binary sum, U1 represents unit, S1 represents a ‘record selector’.

Representing a type as binary sums and products however makes it relatively hard to perform
some operations. Something relatively simple, like counting the amount of constructors of a
data type, can lead to quite a lot of (boilerplate) code. The sums-of-products (SOP) approach
instead captures the structure of data types as a sum-of-products. This means that each type is
represented as a list of lists, where the outer list represents the constructors, and the inner list the
fields of this constructor. This makes it more intuitive to write generic programs. The generics-
sop library provides a set of combinators on the SOP structure that capture idiomatic generic
code. Additionally, the library separates metadata (like constructor names) from the structure of
the datatype, enabling generic programs to ignore meta-data, or instead provide their own. The
generics-sop representation of the type Maybe Int is shown in listing 17.

NS (NP I) '[ '[], '[Int]]

Listing 17: generics-sop representation of Maybe Int. The SOP type represents a sum of products,
I is the type level identity function.

Instead of writing instances for each type, the generics-sop library makes it possible to use
pattern matching to bring the structure of a type. The outer type list, the product, is captured
by the NP type. The inner type lists, the sum, is captured by the NS type. The definition of these
types is shown in listing 18. For example, Just 1, a value of the Maybe Int type as shown above,
is represented with the value S (Z (I 1 :* Nil)).

data NP :: (k -> Type) -> [k] -> Type where
Nil :: NP f '[]
(:*) :: f x -> NP f xs -> NP f (x ': xs)

data NS :: (k -> Type) -> [k] -> Type where
Z :: f x -> NS f (x ': xs)
S :: NS f xs -> NS f (x ': xs)

Listing 18: The definition of the NP and NS types in the generics-sop library. Both type have the
same kind, taking a type function that maps a k to a type and a type lists of ks, and
returning a type. NP is analogous to a list, with a Nil and a :* constructor, the latter
being the cons operator. NS is defined as an index to the type level list, with a the
zero and successor constructor, Z and S respectively.

An example of a SOP program is shown in listing 19. This function is an implementation
of the equality operator (==). The eq function creates a SOP structure from the two values, and
applies the EqS function to the SOP structures. The EqS function in turn compares if the same
constructor is chosen. The chosen constructor is represented by applications of Z and S. If an
equal amount of S’s is applied, the same constructor was chosen. If this is the case, it applies
the EqP function to the inner product, otherwise it returns False. The eqP function compares the
values of the inner products to each other. While the heterogeneous lists containing the fields
of the product is not empty, the head elements are compared, and the function recurses over
the tail. When the heterogeneous lists are empty, True is returned. The generics-sop library
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contains many functions that capture typical generic programming idioms, making it possible to
write very concise functions. These are not used in this example in order to show the usage of the
constructors of NP and NS.

eq :: (All2 Eq (Code x), Generic x) => x -> x -> Bool
eq x y = eqS (unSOP $ from x) (unSOP $ from y)

eqS :: (All2 Eq xss) => NS (NP I) xss -> NS (NP I) xss -> Bool
eqS (Z xs) (Z ys) = eqP xs ys
eqS (S xss) (S yss) = eqS xss yss
eqS _ _ = False

eqP :: All Eq xs => NP I xs -> NP I xs -> Bool
eqP Nil Nil = True
eqP (I x :* xs) (I y :* ys) = x == y && (eqP xs ys)

Listing 19: An implementation of == with use of generics-sop.
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3 Representing Sum Types Efficiently
In this section we present a new memory representation for sum data types, suited for a struct-
of-arrays layout. Next, the theoretical optimal size of a data type is discussed. Finally, we
compare the different existing and proposed representations (see section 2.4) against the theoretical
optimum and show that our representation is memory efficient.

3.1 Recursive Tagged Union
In this thesis we propose and implement a recursive variant of tagged unions. Tagged unions are
described in more details in section 2.4. A limitation of Accelerate is that no loops or recursion
are allowed in scalar expressions. This limitation can be used to represent nested sum types more
efficiently. Because recursion is disallowed, each data type is of finite size, and recursing into fields
is thus a finite operation. By recursing over a datatype and gathering all constructor choices, a
single tag can be created which describes the whole structure. Other representations create a new
tag for a nested sum instead. In the same vein all fields can be gathered, which can be represented
as a compact product of unions. Each union in the product then becomes the width of the largest
inhabitant. Each of these unions can be translated to a separate array, with a union type, in an
struct-of-array memory representation.

A simple sum type like Either Int Float is represented with a single tag with two inhabitants,
and a single union of Int and Float. A more complex, nested, sum type like Either (Maybe Int)
(Maybe Float) is represented with a single tag with four inhabitants (Left Nothing, Left Just,
Right Nothing, Right Just). Again, its fields are represented with a single union of Int and
Float. A product type containing sum types also has a single tag. The type (Maybe Int, Maybe
Float) is represented with a single tag with four inhabitants ((Nothing, Nothing), (Nothing,
Just), (Just, Nothing), (Just, Just)). Its fields are represented with two unions of a single
element (Int and Float). An visual example of this layout is shown in Figure 6.

Figure 6: The memory layout of (Float1 +b Float2) +a (Int32×Float3) in the Recursive Tagged
Union representation. Sums are displayed as a circle with a plus symbol in it, products
as a circle with a cross in it. The first union contains the first machine type in each
constructor, the second union contains the second machine type in each constructor.
The choices of nested sums do not require an extra array of tags.

Shallow pattern matching on this representation can be a little less efficient compared to tagged
unions, because each pattern can match multiple tags, and the tags of nested sum types have to
be rebuild after a pattern match succeeds. This problem can be partially eliminated by using
reachability analysis (see section 6.2). In contrast, nested pattern matching on this representation
is more efficient than on other representations, because only a single memory access is needed to
retrieve the types of the fields of the whole data structure.
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3.2 Theoretical efficiency
We compare the space usage of these approaches with the minimal amount of memory that should
be reserved for a type. The minimal amount of bits needed to store a data type can be calculated
by adding the amount of bits needed to represent the constructor choices in the datatype to
the amount of bits needed to store the fields. The minimal amount of bits needed to store the
constructor choice of some sum type can be calculated by taking the the log2 of the amount of
constructors. This number then has to be rounded up to a whole number. The minimal width of
a product is equal to the sum of the widths of its fields, while the minimal width of a sum is equal
to the maximum of the widths of its fields. This can be summarized as:

width(x) =
⌈

log2(|x|) +
|x|

max
i=0

{|x[i]|∑
j=0

width(x[i][j])
}⌉

(1)

This definition is recursive, which means base cases are needed. These can be found in machine
types, which have a statically known width. Recursive data types such as lists do not have a
statically known width.

3.3 Comparison
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Tag and Pointer 72 or 104 104 104 or 136 168 144 or 208
Unboxed 40 72 104 216 152
Tagged Union 40 40 72 136 80
Sorted Fields 40 40 104 104 80
Recursive Tagged Union 40 40 72 136 72
Minimum bits needed 33 33 65 97 66

Table 1: The amount of bits reserved for some common sum data types in different representations,
compared to the minimum amount of bits needed. Tags are assumed to be one byte wide,
as most hardware does not permit addressing smaller offsets. The calculations hold for
a struct-of-arrays representation. See Appendix A for the full calculations. ‘Float?’ is
notation for the type ‘Float + undefined’, commonly referred to as an option type (Maybe
in Haskell).

Table 1 shows the amount of bits that have to be reserved for some common sum data types
in different representations. The minimum amount of required bits per type is also shown. From
the small selection of types some trends emerge. Using pointers has significant memory overhead
compared for smaller types. For larger sum types the Unboxed approach takes up the most space.
The Tagged Union, Sorted Fields and Recursive Tagged Union approaches all perform quite well.
For most of the compared types, these approaches are within byte rounding difference from the
minimum width. The Sorted Fields approach shines when the fields of the different constructors
have the same types, no matter the order. The Tagged Union and Recursive Tagged Union perform
very similar, although there is an edge to the recursive approach for recursive types.

The theoretical results in table 1 show that the Recursive Tagged Union approach performs
quite well compared to other representations. It scales better with larger sum types that have

Utrecht University, Princetonplein 5, 3584CC, Utrecht, Netherlands Page 16



Accelerating Sum Types Rick van Hoef

different types in the constructors compared to the Sorted Fields approach. A combination of the
approaches would be even more memory efficient, as described in section 6.3.
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4 The POSable library
The Recursive Tagged Union approach has been implemented in the POSable library [12], which
generically calculates this memory layout for non-recursive Haskell-98 data types. POSable uses
generics-sop [7] as a generics library, which represents data types as Sums of Products (as
discussed in section 2.6). The POSable library represents data types as a (tagged) Product of Sums
instead, hence its name. The library is available under the BSD-3-Clause license on GitHub [12].

This section first describes the goal of the library, and the constraints that influenced the
design of it. It then discusses the POSable class, which captures the Recursive Tagged Union
layout in a Haskell class. An example implementation of this class for a non-polymorphic data
type is given in section 4.3. In section 4.4 this implementation is generalized to a polymorphic data
type. In the next section, the generic implementation is explained, building on the polymorphic
implementation. In the last section, limitations of the library are outlined.

4.1 Goal and constraints
The goal of the POSable library is to calculate, for some type, the information a compiler needs in
order to store that type in the Recursive Tagged Union layout. The library encodes the Recursive
Tagged Union layout in types, making this information available statically. By using strict types,
the library has strong correctness guarantees.

Embedded compilers need to be able to lift values from plain Haskell to their internal language,
and back. Since the POSable library is used by an embedded compiler, it also needs to be able to
lift values to its representation type, and back. The library provides functions to perform these
operations.

The library provides its representation type and the conversion function as part of a type class.
This makes it possible to write a generic implementation for it, while allowing users to override
the default behavior.

It is important that this class is derivable by the user. This makes it possible for a programmer
to create their own types, and use them in Accelerate, without having to know how the repre-
sentation works. A deriving statement cannot bring compound constraints into scope. Simple
superclass constraints, of the form Superclass a => Class a, are fine however. This limitation on
the class constraints come with some additional complexity, explained in section 4.5. Only non-
recursive types need to be derivable, as recursive types cannot be represented in the Recursive
Tagged Union layout.

The library is built in a reusable way, which makes it possible to integrate it in other projects.
This means that the code in the library is not specialized to Accelerate. Because different languages
can have different sets of machine representable types, the set of these types is provided in a class.
A library user can extend this class with types of their liking. This means no assumptions are
made about which types are machine representable.

4.2 Representing types
The POSable library captures the Recursive Tagged Union representation of a type, and the
functions to convert values from and to this representation, in the POSable class. This class
contains all information Accelerate needs to transform a list of some type into an efficient SoA
representation. This section explains the associated types and functions of this class.

4.2.1 Choices

In the Recursive Tagged Union representation all constructor choices in a type are represented
with a single natural number. The value of this number is bounded by the amount of choices in
the the data structure, which can be calculated at compile time. The POSable library captures
this maximum value in the associated type Choices. This type is of kind Nat. To constraint
values under this bound, the Finite library [17] is used. Its main type, also named Finite, takes
a type argument of kind Nat, and bounds its possible values to be less than this type. As an
illustration, the possible values of type Finite 3 are 0, 1 and 2.
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To get the tag belonging to some value, the choices function is used. This function has the
type type x -> Finite (Choices x).

4.2.2 Fields

The fields of a type are captured at the type level as a list of lists, similar to how generics-sop
represents types. The outer list represents a product, while the inner lists represent sums. This
list of lists of types is stored in the Fields associated type. Its kind is [[Type]]. For example,
the fields of Either Int Float is represented by [[Int, Float]]. Since the outer list represent a
product, this is only a product of one element. This makes sense, as both constructors of Either
have a single field, which in turn are machine types. The inner list, the sum, contains both of these
fields. This also makes sense, as only one of the fields can be present at the same time. Note the
different embedding order of the list-of-lists compared to the generics-sop library. In that library,
Either Int Float is represented as [[Int], [Float]].

To show the recursive aspect of the representation, consider the type Either (Int, Float)
(Maybe Double). By recursing into the nested types, all fields are gathered in a single structure.
The type is represented by [[Int, Undef, Double], [Float, Undef]]. The Undef type here
is used when a Sum potentially holds no value, for example when the Nothing constructor from
the Maybe type is chosen. The Int and Float fields of the left constructor end up in different
sums. This is necessary, as the values are present at the same time. When instead the right
constructor of Either is chosen, the second sum does not contain a value. This is denoted with
Undef. Depending on the chosen constructor of Maybe the first sum contains a Double or an
Undef.

To capture the product-of-sums structure at the value level, the Product and Sum types are
used. Products contain a value for each type in the type list, while Sums only contain one value
from the type list. This is similar to NP and NS from the generics-sop library. The Product
type is of kind [[Type]] -> Type, while the Sum type is of kind [Type] -> Type. The Product
type constrains its values to the Sum type. See listing 20 for the definitions of the Product and
Sum types.

data Sum :: [Type] -> Type where
Pick :: Ground x => x -> Sum (x ': xs)
Skip :: Ground x => Sum xs -> Sum (x ': xs)

data Product :: [[Type]] -> Type where
Nil :: Product '[]
Cons :: Sum x -> Product xs -> Product (x ': xs)

Listing 20: Sums and Products

To capture the set of types with a statically known width, ground types, the Ground class is
introduced (see listing 21). The library only adds one inhabitant to this class (Undef), giving the
users of the library the freedom to choose their own set of ground types. Sums can only contain
types that implement Ground. This constraint makes it necessary to introduce the Product and
Sum types, instead of reusing the NP and NS types.

class (Typeable a) => Ground a

Listing 21: The Ground class, which captures the set of types that can occur as a type in the
Fields of an instance of the POSable class. This set is extensible by the user of the
POSable library. The class requires Typeable as a superclass, which makes it possible
for library users to inspect the type at runtime (see section 6.4).
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4.2.3 The POSable class

The choices and fields as defined above are captured in the POSable class. This class contains
two associated types, one for Choices and one for Fields. These are then used as the result of
the choices and fields functions respectively. It is also possible to convert back to the original
type, which is captured in the fromPOSable function. See listing 22 for the definition of this class.

class POSable x where
type Choices x :: Nat
type Fields x :: [[Type]]

choices :: x -> Finite (Choices x)
fields :: x -> Product (Fields x)

fromPOSable :: Finite (Choices x) -> Product (Finite x) -> x

Listing 22: The POSable class

4.3 Mapping a simple type
Implementation of the POSable class for a non-polymorphic data type is fairly easy. Consider
the datatype Either Int (Float, Double). The type contains two possible choices, Left and
Right. This means that the Choices type should be 2. The corresponding choices function
should return 0 when the Left constructor is chosen, en 1 when the Right constructor is chosen.
The Finite type makes sure that only these values are admissible as the values of choices.

The definition of the fields is a little more involved. The type Either Int (Float, Double)
contains a product of two types. This means that the outer list is of length two. In the first sum
(the first element of the outer list), the first field of each constructor is stored. These elements are
Int and Float, from respectively the Left and Right constructor. In the second sum, the second
field of each constructor is stored. The Left constructor however does not have a field in the
second position. Instead, the Undef type is used here. The second sum thus contains Undef and
Double. Taking this altogether, the Fields type becomes [[Int, Float], [Undef, Double]].

The corresponding fields function should return a Product corresponding to the type. If the
Left constructor is chosen, the Int it contains is put in the first element of the product. The Int is
also the first element of this sum, which is denoted by not skipping any element, but immediately
using Pick. To give a value to the second element of the Product, the Undef constructor has to
be used. The Undef type is again the first element of the Sum, and again the Pick constructor can
be used immediately. If instead the Right constructor is chosen, there are two values in scope.
The first, of type Float, is stored in the first sum, while the second, of type Double, is stored
in the second sum. Both are in the second place of their respective sums, which means the Skip
constructor is applied once to put them in the second position.

The implementation of POSable for the Either Int (Float, Double) type is summarized
in 23. This implementation assumes that Int, Float and Double are part of the Ground class.
The implementation of the fromPOSable function is a straightforward inverse of the choices and
fields functions.

4.4 Mapping polymorphic types
To map all data types to the POS representation, polymorphic types need to be considered. For
example, it should be possible to define an instance for Either a b, where a and b are variables.
This instance can then be used by all concrete types of the form Either a b for which a and
b have an instance for POSable. This means no separate instances need to be defined for Ei
ther Int Float and Either Float Int, but just one instance suffices. This section explains the
implementation of POSable for polymorphic types.
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instance POSable (Either Int (Float, Double)) where
type Choices (Either Int (Float, Double)) = 2
type Fields (Either Int (Float, Double)) = '[ '[Int, Float], '[Undef, Double]]

choices (Left _) = 0
choices (Right _) = 1

fields (Left x) = Cons (Pick x) (Cons (Pick Undef) Nil)
fields (Right (x,y)) = Cons (Skip (Pick x)) (Cons (Skip (Pick y)) Nil)

fromPOSable 0 (Cons (Pick x) (Cons (Pick Undef) Nil)) = Left x
fromPOSable 1 (Cons (Skip (Pick x)) (Cons (Skip (Pick y)) Nil)) = Right (x,y)

Listing 23: An instance of the POSable class for Either Int (Float, Double). This type consist
out of a sum and a product, showing the construction of both. The fromPOSable
function is the inverse of the choices and fields functions.

4.4.1 Choices

In order to implement POSable for a polymorphic type, the Choices type and choices function
have to be implemented. Both have to be implemented in terms of the nested type(s).

To implement Choices for a type like Either a b, the sum of Choices a and Choices b has
to be calculated. On the value level, when the Left constructor is chosen, the value of choices
is equal to the choices value of the nested type. When the right constructor is chosen however,
the amount of Choices in the left constructor has to be added. This functionality is provided by
the Finite library as the combineSum function, displayed in listing 24.

-- | 'Left'-biased (left values come first) disjoint union of finite sets.
combineSum :: KnownNat n => Either (Finite n) (Finite m) -> Finite (n + m)
combineSum (Left (Finite x)) = Finite x
combineSum (Right (Finite x)) = Finite $ x + natVal (Proxy @n)

-- | Take a 'Left'-biased disjoint union apart.
separateSum :: KnownNat n => Finite (n + m) -> Either (Finite n) (Finite m)
separateSum (Finite x) = if x >= (Proxy @n)

then Right $ Finite $ x - (Proxy @n)
else Left $ Finite x

Listing 24: The combineSum and separateSum functions from the Finite library. The former
combines two Finite’s by calculating the index in the disjoint union between the two
sets. The latter reverses this operation.

For product types, instead of summing, the Choices have to be multiplied. The values should
not be multiplied however. For example, in the type a + b × c + d, there are two tags in the left
operand of the product, and two tags in the right operand. The values of these tags are 0 and 1.
The product should contain tags 0, 1, 2 and 3. We achieve this result by taking the index in the
cartesian product of the two finite sets of the operands. Simpler put, we use the left operand as
the outer iteratee, and the right operand as the inner iteratee. This means that in the previous
example tags 0, 0 becomes 1, 0, 1 become 1, 1, 0 becomes 2 and 1, 1 becomes 3. This is calculated
by the combineProduct function from the Finite library, displayed in listing 25.

4.4.2 Fields

In order to implement POSable for a polymorphic type, its Fields type and fields function also
have to be implemented. Both have to be implemented in terms of the nested type(s).
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-- | 'fst'-biased (fst is the inner, and snd is the outer iteratee) product of
-- finite sets.
combineProduct :: KnownNat n => (Finite n, Finite m) -> Finite (n * m)
combineProduct (Finite x, Finite y) = Finite $ x + y * natVal (Proxy @n)

-- | Take a 'fst'-biased product apart.
separateProduct :: KnownNat n => Finite (n * m) -> (Finite n, Finite m)
separateProduct (Finite x) =

(Finite $ x `mod` (Proxy @n), Finite $ x `div` (Proxy @n))

Listing 25: The combineProduct and separateProduct functions from the Finite library. The
former combines two Finite’s by calculating their index in the cartesian product of the
two sets. The latter reverses this operation. separateProduct is a rather expensive
operation, use of which should be prevented in hot code paths if possible.

For a product type, this means concatenating the Fields of the nested types. Consider the
following polymorphic type: a + b × c + d. The fields of the inner sums are represented as [[a,
b]] and [[c, d]]. The fields of this type should be mapped to [[a, b], [c, d]]. This means
this Products should be concatenated. To perform type level concatenation the type function ++
is used. The value equivalent of this is simply also a concatenation.

For a sum type however, the Fields should not be concatenated, but zipped instead. Consider
the polymorphic type (a×b)+(c×d). The fields of the inner products are represented as [[a],[b]]
and [[c], [d]] These fields should be mapped to [[a, c], [b, d]]. This is achieved by zipping
sum concatenation over the outer products. This is done by the type function Merge. This type
level version of zip keeps the length of the longest list, and appends the shorter list with Undefs
to match the length. The definition of Merge is shown in listing 26. On the value level, the same
operation is achieved with the merge function.

To zip fields on the value level, it is needed to know on the structure of the type level lists
at runtime. This is problematic, as only one of the components of the sum is in scope (that of
the chosen constructor). Either an implicit (constraint) or explicit (value) representation of the
other constructors needs to be in scope. In the POSable library this is achieved by the adding
the emptyFields function to the POSable class, which returns a ProductType value. The Pro
ductType value represents the type of a Product, and is build up from SumTypes, which in turn
represent the type of the Sums. In the generics-sop library a similar problem is solved with an
implicit representation (in the form of the SListI class). This approach however does not work
in this context, as this brings in scope compound superclass constraints, which have to be avoided
in order to make the class derivable.

type family Merge (xs :: [[Type]]) (ys :: [[Type]]) :: [[Type]] where
Merge '[] '[] = '[]
Merge '[] (b ': bs) = (Undef ': b) ': Merge '[] bs
Merge (a ': as) '[] = (a ++ '[Undef]) ': Merge as '[]
Merge (a ': as) (b ': bs) = (a ++ b) ': Merge as bs

Listing 26: The type function Merge. This function zips two type lists, keeping the length of the
longest list, while filling the shorter list with Undefs to match the length.

With the tools described above, an instance of POSable for polymorphic Either can be created.
The implementation of POSable as shown in listing 27. The implementation of fromPOSable is
not discussed above, but follows directly from the implementation of choices and fields.

4.5 Generics
The POSable class has default definitions for each associated type and function, which are im-
plemented in the GPOSable class. Default definitions make a class derivable by a user (if the the
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instance (KnownNat (Choices l), POSable r, POSable l)
=> POSable(Either l r) where

type Choices (Either l r) = Choices l + Choices r
type Fields (Either l r) = Merge (Fields l) (Fields r)

choices (Left x) = combineSum (Left (choices x))
choices (Right x) = combineSum (Right (choices x))

fields (Left x) = merge (Left (fields x, emptyFields @r))
fields (Right x) = merge (Right (emptyFields @l, fields x))

fromPOSable n x = case separateSum n of
Left n' -> Left (fromPOSable n')

(splitLeft x (emptyFields @l) (emptyFields @r))
Right n' -> Right (fromPOSable n')

(splitRight x (emptyFields @l) (emptyFields @r))

Listing 27: An instance of POSable for the polymorphic Either type. The Choices of the argu-
ment types are summed together, and the choices function is implemented in terms
of combineSum. The equivalent for Fields are the Merge type and merge function.
The fromPOSable function is implemented in terms of the separateSum and split
functions. These perform the reverse of combineSum and merge respectively.

language extension DeriveAnyClass is enabled).
The implementation of the GPOSable class relies mostly on the functions (both value- and

type-level) that are built for polymorphic types. Most of these functions are binary, and are
generalized to operate on lists. This is because types with all possible amounts of constructors
and amounts of fields in these constructors need to be handled. Because it is not possible to create
a higher order type family in Haskell, mapping these functions over lists is done by creating a new
type function that performs the mapping. For example, to map the Choices type over a list, the
MapChoices type is created. If higher order type level functions were supported, this could be
written as Map Choices instead.

A derivable statement cannot rely on complex constraints being in scope, but only constraints
brought in scope by other deriving statements. The derivable class should thus only have simple
superclass constraints of the form Superclass a => Class a. The POSable class however, has
constraints on the inhabitants of the type lists in Fields, and on the Choices.

By capturing the Ground constraint on the inhabitants of Fields in the Product and Sum
types, the first problem is circumvented. The KnownNat constraint on Choices however is brought
in scope in a different manner. Although the Finite class could have been adapted to bring in
scope the KnownNat constraint, this would have brought along some boilerplate. Instead, the GHC
KnownNatSolver plugin [2] is used. This plugin is discussed in more detail in section 2.5. A similar
solver would make it possible to use this trick for type lists, but, as far as we known, this does not
exist yet. Instead, the emptyFields function is used to bring in scope the structure of a type list.

Not all types can derive POSable. Examples of types that cannot are recursive types like lists
and machine types. Recursive types are not supported by design, as the Recursive Tagged Union
representation does not allow recursive types. Machine types however should be supported, as
these are the obvious candidates for Ground types. These types however do not have an instance of
Generic, which is needed to derive POSable. Instead, the instances for these types are generated
with Template Haskell [26]. The mkPOSableGround can be called by a POSable user to generate
the POSable instance for their Ground types.

4.6 Limitations
In the current implementation of the library, product types are represented with a single tag. This
is the most memory efficient representation, but can be less ideal for performance, because it relies
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on the seperateProducts function (see listing 25). This function uses the relatively expensive
div and mod operations. Whether this is relevant depends on the use case. Possible solutions to
this problem are discussed in section 5.5 and 6.2.

Haskell does not support multiple default implementations of a class. This makes it necessary
to use Template Haskell to create POSable implementations for Ground types (the mkPOSable
Ground function). Having multiple default default implementations (and way to disambiguate
between them) would prevent the need for Template Haskell here.

Another limitation is that the Ground class cannot be extended by the library user with extra
functions. This makes it hard to integrate it in the type hierarchy of Accelerate (see section 5.2).
This problem presumably extends itself to other usages of the library. Sadly, this problem is not
solvable in Haskell, as it does not support parameterized libraries. A solution to this problem has
been proposed, namely Backpack [16], but this requires support from the package manager. Stack,
the package manager used by Accelerate, does not support Backpack. Currently, the problem is
circumvented by making the Typeable class an superclass of Ground, and using the runtime type
information this provides to convert the Ground types to Accelerate types. A more permanent
solution might be to integrate the library in Accelerate.
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5 Implementation in Accelerate
The POSable library has been partially integrated in Accelerate. This integration shows the
viability of using the approach in a parallel array language. A successful integration means that
the LLVM code Accelerate generates reserves less memory for sum types. To achieve this goal,
several parts of the compiler have to be changed.

The parts that are updated are the following: The default implementation of the Elt class,
which is used to represent data types, are replaced. Unions are added to the type hierarchy, as
are Undefs. The pattern matching code is updated to handle combined tags. New constructors
are added to the AST to handle unions.

Finally, the backends need to be updated to handle the new AST constructors. This part still
has to be implemented.

5.1 Mapping to Elt
Accelerate, unlike the POSable library, does not use the list kind to represent heterogeneous
vectors. Instead such structures are build up from binary tuples, with unit denoting the start or
end of the list. Such a tuple-list is called a cons or snoc lists, depending on the position of unit.
The kind of such a list is Type, which does not put any constraints on the type. The heterogeneous
list representing a type is stored in the EltR associated type of the Elt class. It is a list, not a
list-of-lists, as there are no unions in the Unboxed representation Accelerate uses.

The Elt class also contains a set of functions that convert a type from and to EltR. The class
has a generic implementation in terms of GElt, which is based on GHC generics.

In the existing version of Accelerate, singleton types, product types and sum types are all
represented differently. Singleton types, like Int and Float, are represented as their own type:
EltR Int == Int. Product types are represented as a snoc list: EltR (Int, Int) == (((), Int),
Int). Sum types are represented as a tuple of a TAG and a snoc list: EltR (Either Int Int) ==
(TAG, (((), Int), Int)).

The functions and associated types of the POSable class are mapped to the Elt class. The
alternative, replacing Elt by POSable, was considered to be too invasive of an operation, as lots
of the compiler code relies on the Elt class. This mapping consist of both type and value level
mappings. EltR is defined in terms of Fields and Choices and toElt in terms of choices and
fields. This replaces the default GElt implementation of Elt.

Defining EltR in terms of Choices and Fields means converting these higher-kinded types
to the Type kind. In the case of Choices this is done by converting it to the existing TAG type,
which is a type synonym for a byte-sized word. In the case of Fields, the type level outer list
has to be mapped to a cons list. The inner lists, containing the unions, are captured with a type
list by the UnionScalar type. This type is shown in listing 28.

data UnionScalar a where
PickScalar :: x -> UnionScalar (x ': xs)
SkipScalar :: UnionScalar xs -> UnionScalar (x ': xs)

Listing 28: The UnionScalar type, which captures a union of types as a type lists. The union
only has one (scalar) value at a time, with a type from the type list.

The list-of-lists structure is transformed to a cons list with UnionScalar containing the inner
lists by the FlattenProduct type family. This type family is shown in listing 29.

type family FlattenProduct (xss :: [[a]]) :: Type where
FlattenProduct '[] = ()
FlattenProduct (x ': xs) = (UnionScalar x, FlattenProduct xs)

Listing 29: The FlattenProduct which maps the Product type from the POSable library to tuple
lists, as used in Accelerate.
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Because singleton types and product types are represented differently in Accelerate, those are
handled separately. Using the product-of-sums representation for all types is infeasible because
of the many places in the Accelerate source code where the existing representation of singleton
and product types are used. The conversion from the POSable representation and the EltR
representation is done with the POStoEltR type family, as shown in listing 30.

type family POStoEltR (cs :: Nat) fs :: Type where
POStoEltR 1 '[ '[x]] = x -- singleton types
POStoEltR 1 x = FlattenProduct x -- product types
POStoEltR n x = (TAG, FlattenProduct x) -- sum types

Listing 30: The POStoEltR type function, which maps the Choices and Fields from the POSable
library to the snoc lists of Accelerate. Singleton types in Accelerate are not represented
as a list, but just as a type. Similarly, product types in Accelerate are represented
without bringing along their tag. The Finite type is replaced the by Accelerates TAG
type. This means some type safety is lost, but makes the integration less invasive.

The default implementations of the toElt and fromElt functions are implemented in terms of
POSable functions. The definitions of these functions follow the types. This means the functions
split on the form of the type, either singleton, tagless or tagged. A helper function is used to make
this distinction, while bringing the correct constraints in scope.

5.2 Type hierarchy
To use a type as a scalar value in Accelerate, it must be part of the type hierarchy. Both an
implicit (classes) and explicit (values) version of this type hierarchy exist, in this section we focus
on the explicit hierarchy. This hierarchy consist of representation types, values representing a
single type. The top of this hierarchy is named ScalarType. In the existing version of Accelerate,
this can be either a SingleType or VectorType. VectorType contains n elements of the same
SingleType. SingleType in turn contains all floating and integral types. TAGs and Undef are
handled separately, and are not part of the type hierarchy.

To integrate the POSable library, the representation types of TAGs and Undef needs to be added
as a type in the hierarchy. TAGType is added to the hierarchy as an integral type, as simple math-
ematical operations have to be applied to TAGs, like comparisons, additions and multiplications.
UndefType is added directly to SingleType, as there are no operations that should be applied
to Undef. Last but not least, UnionScalarType, the representation type of UnionScalar (see
listing 28), is added to ScalarType. This type fulfills a similar function as SumType in POSable,
but the types are represented as cons lists instead of type lists. The resulting type hierarchy is
shown in figure 7.

5.3 Pattern matching
The existing version of Accelerate generates an AST with Template Haskell for each constructor.
The generated AST has to closely follow the representation of the type in memory. As the
generated AST depends on the memory layout of the types, the pattern matching code has to be
rewritten completely. Instead of using Template Haskell, we approached this problem by creating a
new class, named Matchable, which has a default implementation that uses the constructs offered
by POSable. The resulting code is more readable and maintainable than the Template Haskell
original. The Matchable class is shown in listing 31.

The Matchable class contains two functions, build and match. The build function takes a
heterogeneous list of Exps, the types of which correspond to the types of the chosen constructor.
It builds a new Exp from the input Exps. The match function takes an expression and returns a
heterogeneous list of Exps, the types of which correspond to the types of the matched constructor.
The result is wrapped in a Maybe. This is necessary to make embedded pattern matching work in
Accelerate. This is a side effect of the fact that pattern matching, unlike other language features
like list and conditionals, are not yet overloadable in Haskell [31, 23].
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Figure 7: The type hierarchy of scalar types in Accelerate. Annotated in green are the additions
made to integrate POSable.

class Matchable a where
type SOPCode a :: [[Type]]

build :: KnownNat n => Proxy n -> NP Exp (SOPCode a !! n) -> Exp a

match :: KnownNat n => Proxy n -> Exp a -> Maybe (NP Exp (SOPCode a !! n))

Listing 31: The Matchable class. The associated SOPCode type is an alias for Code, from the
generics-sop library. To keep the Matchable class open for implementation, the
SOP.Generics class is not a superclass of Matchable, making aliasing Code neces-
sary. The !! type operator is the type level equivalent of the !! operator in plain
Haskell, that is, indexing in a list.

In order to implement this class generically, the functions on type lists and Finite’s have to
be lifted to the AST. For example, the combineSum and combineProduct function from the Finite
library have been reimplemented as a function on Exps. Because this implementation relies on
existing AST constructors, the backends do not need to understand Finite. Type functions like
Concat and Merge need to be lifted to tuple lists instead of type lists. The current version of the
implementation supports Bool, Either and Maybe, the latter being polymorphic types. This gives
confidence that a generic implementation is possible, although this is not yet finished due to time
constraints.

5.4 Changes to the AST
To make use of union types in the AST, both creating and destructing unions should be possible.
Next to those, coercions of these unions also have to be possible, as both pattern matching and
applying constructors change the possible types in a union. The following constructors have been
added to the AST: LiftUnion, Union and PrjUnion. LiftUnion lifts a scalar type to a singleton
union type. Union coerces between unions of different types. PrjUnion extracts a type from a
singleton union. All three of those operations change the type (interpretation) of some value, but
do not change the underlying value. This means that all of these operations can be implemented
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as casts in the backends. These casts should be type safe by construction of the AST.
The Match and Case expressions have been updated to match a range of tags instead of a single

tag. This is because a shallow pattern match can match multiple concrete tags. Take for example
the type Either (Maybe Int) Float. A shallow pattern match on Left should match on both
Left Nothing and Left (Just _). These have tags 0 and 1 respectively. This means we have to
match on a range of tags. The Match and Case expressions have been changed accordingly.

5.5 Limitations
Although the Recursive Tagged Union representation is memory efficient, there are reasons it
might not always be the right choice for product types. When pattern matching on a sum type,
rebuilding the tags is a fairly cheap operation, only consisting out of a comparison and the minus
operator (see listing 24). Rebuilding the tags in a product type however is an operation build
from the modulo and divisions operators (see listing 25), which are relatively expensive. Another
problem is that the amount of possible values in a tag of a product type with nested sum types
grows much faster than that of a sum with nested products. For example, a sum of four quadruples
needs a two-bit tag. A quadruple of 4-sums however needs an eight-bit tag instead. This makes
that tags wider than a byte might be needed for larger data types, especially those that contain
sums inside products.

There are two simple solutions to these problems. The first is to not represent pure product
types with a single tag, but with separate tags for each nested sum. This is not unlike the current
representation in Accelerate. If this approach is chosen, tuples should not derive POSable, but
instead a separate implementation should be provided.

The second problem can be simply solved by adding larger tag sizes to Accelerate. The amount
of choices in a type is stored in the Choices type of the POSable class. The size of the tag in bits
is the log2 of this value. This value can be statically known, and can be converted to the right tag
type, whether it is a byte, int16, int32 or int64. This however does not solve the first problem of
expensive pattern matches. More involved solutions to this problem are explained in section 6.2.
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6 Future work
In this section, we identify areas of improvement and future research. Most importantly, we
describe how the implementation in Accelerate can be finished and which possible optimizations
can be implemented in the compiler.

6.1 Implementation in Accelerate
The integration of the POSable library in Accelerate has not been finished due to time constraints.
The remaining work consists of two parts: finishing the pattern matching code and updating the
backends.

To finish the pattern matching code, the generic implementation of the Matchable class has
to be finished. Next to that, a bit of Template Haskell should be written to generically create the
pattern synonyms, the implementation of which can use the Matchable class.

Accelerate code can be executed on multiple different platforms. To make this possible, it
supports multiple backends, which compile the AST down to the target hardware instructions.
To accommodate the AST changes, these backends, including the interpreter, have to updated.
Implementation of the new LiftUnion, Union and PrjUnion constructors can be done in terms
of typecasts. To implement the updated, ranged, Case constructor the generated code needs to
perform two comparisons instead of a single equality check. Backends should preferably implement
a ranged pattern match containing just a single value as a simple equality check.

6.2 Optimizations
Pattern matching on unified tags comes with a drawback: the tags of embedded sum types have
to be rebuild after a pattern match. Although building tags and dissecting tags of sum types are
a fairly cheap operations (consisting of applications of +, − and ∗), dissecting tags of product
types involves the more expensive mod en div operations. Luckily, nested pattern matches can
often be optimized into a single pattern match, making rebuilding tags unnecessary. For example,
consider matching on the type Maybe (Float, Maybe Int). Matching on this type means doing
two, nested, pattern matches. The first pattern match, on the outer Maybe, can bring in scope a
Float, which does not have a tag that needs to be rebuild. It then also brings into scope a value
of type Maybe Int. Another pattern match is needed to bring the inner Int into scope. There are
three scenarios possible:

• The value of type Maybe Int is not used. This can be figured out by doing a variable usage
analysis. The tag does not need to be rebuild in this case.

• A pattern match is done on the inner Maybe. The pattern match is done irrespective of the
value of the Float. In this case, the pattern matches can be combined. Since the combined
pattern match does only reveal singleton types, no tags needs to be rebuild. This also means
that each pattern does not cover a range of tags, but instead the match can be performed
as simple equality checks.

• The pattern match is done conditionally, depending on the value of the Float. In this
uncommon case, the pattern matches cannot be combined, and rebuilding tags is necessary.

To support the first and second scenario, an extra optimization step has to be build in the
compiler. With this optimization applied, matching on a combined tag is faster than matching
on separate tags, because less memory accesses are needed. In the third, uncommon, case, the
performance hit is unavoidable when using a combined tag.

Another solution to this problem would be to not store the combined tag of a product as a
index in a cartesian product. Instead each of the nested tags of a product can be stored strictly
next to each other in the product tag. This means that the tag of the first nested sum is stored in
the first n bits, the tag of the second nested sum in the next m bits, et cetera. For this, the width
of the tag of each nested sum has to be rounded up to a whole number. Instead of mod and div,
cheap bitmasking operations can then be used to get the tags out. These operations can be build
from the binary and and binary shift operations.
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Which of the proposed solutions is preferable performance-wise is only knowable by running
a set of benchmarks on the different implementations. These benchmarks can also verify the
performance impact of using the Recursive Tagged Union representation.

6.3 Sorting types
In section 3, the Sorted fields approach, proposed by Troels Hendriksen, is briefly discussed. This
approach can be combined with the Recursive Tagged Union approach, to do an even better job
in terms of memory usage. This can be achieved by adding the size (in bytes) of a data type to
the GroundType class, and sorting on this, on the type level. Type-level sort is not an operation
that can be performed easily in current Haskell, which leaves this approach open for the future.

6.4 Fighting type erasure
To be able to construct a value of a type that depends on a type list or type natural number, it is
useful to know something about this type list or type natural number at runtime. Haskell however
erases types at runtime, which means this is not as simple as calling a typeof function. There are
two ways to bring type knowledge in scope statically. The first way is using type classes. Consider
a type class that has a separate implementation for the empty list type and the non-empty list
type. In functions of a type class, this knowledge about the type is in scope, and can thus be used.
The other possibility is to bring the type in scope by passing a helper value. Pattern matching on
this helper value then brings into scope the type associated to that constructor.

Both ways are used in the POSable library. For the type level naturals that represent Choices,
the KnownNat type class is used. By using the KnownNatSolver, this constraint is brought in scope
automatically for most simple use cases (see also section 2.5). For the type level lists however,
helper values are used. The type lists are represented by the ProductType and SumType types.
These helper values can be summoned by the emptyFields function.

Using constraints for the type lists would have been possible, but this would come with a huge
drawback. The type class would have to be a superclass of the POSable class. This makes deriving
a lot less ergonomic, as shown in listing 32.

deriving instance
( POSable l
, POSable r
, All SListI (Merge (Fields l ++ '[]) (Fields r ++ '[]))
) => POSable (Either l r)

Listing 32: Deriving an adapted version of the POSable class that has a dependency on the SListI
class, a type class used to ‘pattern match’ on type lists. The example shows that this
exposes the innards of the POSable class.

The POSable class however does have a dependency on the KnownNat class, without the same
drawback. This is due to the KnownNatSolver. A similar solver for type lists would make the
POSable library a lot more compact. This would be achieved by removing need for the Product
Type and SumType types, and all functions that handle these types.
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7 Conclusion
This thesis answers the research question:

How can we efficiently represent sum data types in memory, in the context of data-
parallel array applications?

In order to answer this question, we have compared approaches of sum type representations
in different languages. We have identified the strengths and weaknesses of each approach in
the context of a struct-of-arrays layout, the typical memory layout for a parallel array languages.
Based on these strengths and weaknesses, we have presented our own representation, the Recursive
Tagged Union representation. This layout uses a single tag to represent the choices in a data
type, and a product of unions to compactly represent its fields. By calculating the minimal
memory usage of a set of types, and comparing the different representations, we show that this
representation is efficient.

We have implemented Recursive Tagged Union representation in the POSable library. This
library represents the layout in the POSable class. The default implementation of this class
generically transforms any non-recursive Haskell 98 data type to the representation. This makes
the class user-derivable, while the default can be overridden by the user. The library calculates
this layout at the type level, which means this information is available statically.

The usage of this library in a parallel array language has been demonstrated by a (partial)
integration in Accelerate, a parallel array language embedded in Haskell. The changes involve
adding unions as a type to the AST and the internal type hierarchy. Tags are also handled
differently, as some mathematical operators have to be applied to tags now. The implementation
shows that the Recursive Tagged Union approach is feasible to implement in a parallel array
language.

Altogether, these results answer our research question.
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A Calculations: memory usage of different representations
of sum types.

We have to make some assumptions to be able to compare different representations of sum types.
The first assumption is that tags are saved in a single byte. This is plenty of space to represent the
choices of the types analyzed here. Using more than a byte might be necessary for larger types.
Using less than a byte to represent a tag is not feasible, as indexing on most hardware is limited
to byte offsets. The second assumption is that pointers are 64bit wide, which is correct for most
contemporary hardware.

We use data types for which the width is clearly defined, like Float and Double [1]. We then
get the following calculations:

Tag and pointer

When this representation is used in a struct-of-arrays approach, arrays have to created of which
the length is only known at runtime. Instead of using a pointer, an index into this array could
be used, the width of which could depend on the array length. The array length is a variable we
don’t want to take into account here. We assume the pointer to be 64 bits wide, which is the
common pointer width on current hardware. Random access into an array is a rather expensive
operation on a GPU, making this representation suboptimal for other reasons than the memory
usage.

Float?: 8 bit tag + 64 bit pointer + optionally a 32 bit Float = 72 or 104 bits

Float + Float: 8 bit tag + 64 bit pointer + 32 bit Float = 104 bits

Float + Double: 8 bit tag + 64 bit pointer + either 64 bit Double or 32 bit Float = 104 or 136
bits

Float×Double + Double× Float: 8 bit tag + 64 bit pointer + 96 bit data (Double + Float) =
168 bits

Double? + Double?: 8 bit tag + 64 bit pointer for the Either + 8 bit tag + 64 bit pointer for the
Maybe + optionally 64 bit for the Double = 144 or 208 bits

Unboxed

Float?: 8 bit tag + 32 bit Float = 40 bit

Float + Float: 8 bit tag + 2 times 32 bit Float = 72 bit

Float + Double: 8 bit tag + 64 bit Double + 32 bit Float = 104 bit

Float×Double + Double× Float: 3 times 8 bit tag + 2 times 96 bit data (Float + Double) =
216 bit

Double? + Double?: 3 times 8 bit tag + 2 times 64 bit Double = 152 bit

Tagged Union

Float?: 8 bit tag + 32 bit Float = 40 bit

Float + Float: 8 bit tag + 32 bit union of Float and Float = 40 bit

Float + Double: 8 bit tag + 64 bit union of Double and Float = 72 bit

Float×Double + Double× Float: 8 bit tag + 2 times 64 bit union of Double and Float = 136
bit

Double? + Double?: 8 bit tag + 8 bit union of tags + 64 bit union of Doubles = 80 bit
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Sorted Fields

Float?: 8 bit tag + 32 bit Float = 40 bit

Float + Float: 8 bit tag + 32 bit Float = 40 bit

Float + Double: 8 bit tag + 32 bit Float + 64 bit Double = 104 bit

Float×Double + Double× Float: 8 bit tag + 64 bit Double + 32 bit Float = 104 bit

Double? + Double?: 2 times 8 bit tag + 64 bit Double = 80 bit

Recursive Tagged Union

Float?: 8 bit tag + 32 bit Float = 40 bit

Float + Float: 8 bit tag + 32 bit union of Float and Float = 40 bit

Float + Double: 8 bit tag + 64 bit union of Double and Float = 72 bit

Float×Double + Double× Float: 8 bit tag + 2 times 64 bit union of Double and Float = 136
bit

Double? + Double?: 8 bit tag + 64 bit union of Doubles = 72 bit
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