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SUMMARY 

In the Mediterranean, heatwaves and drought intensity and occurrence are projected to increase. 

As some studies and theories suggest a cooling and wetting effect of vegetation activity, this study 

aimed to gain a better understanding of how vegetation relates to the local climate of the 

Mediterranean Basin. The research was conducted by means of a remote-sensing data analysis. The 

change from 1982-2020 of the NOAA ANVHRR NDVI was correlated with changes of hydro-

meteorological variables of the ERA5-Land dataset or the same period. Results shows positive 

relationships between both precipitation and temperature with vegetation activity, and hint at a 

potential mitigating effect of droughts by regreening. However, the complexity of the interplay 

between the variables impedes drawing hard conclusions, and further research is suggested. 
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1.  INTRODUCTION  

1.1. MEDITERRANEAN AREAS UNDER PRESSURE 

Global climate change is affecting areas all around the world and undeniably, the Mediterranean 

are no exception. In fact, global climate models indicate that the Mediterranean Basin is the most 

responsive region to climate change, a so-called ‘hot-spot’ (Giorgi, 2006). Additionally, temperature 

is projected to warm 20% more than the global average (Lionello & Scarascia, 2018). The effects 

of this are already visible, as there has been an increase in hot extremes and drought (IPCC, 2021). 

For example, from 1960-2006, the mean heat wave intensity, their length and their number have 

increased by a factor of 7.6 ± 1.3, 7.5 ± 1.3 and 6.2 ± 1.1, respectively (Kuglitsch et al., 2010). 

Furthermore, future projections to the end of the 21st century estimate that heat wave severity will 

strongly increase, with heat wave amplitudes increased by 6-10 °C and a combined total increase 

of tropical nights and hot days of 2-3 months (Zittis et al., 2015). The extreme events of European 

heat waves in 2003 and 2007 will be less and less exceptional ((Lionello & Scarascia, 2018). 

Additionally, globally the largest increases in the drought area and duration are projected to appear 

in the Mediterranean. Under a warming of 3°C, the longest duration of consecutive yearly returning 

droughts is expected to exceed 10 years, whilst the drought area could change from 28% to 49% 

(Samaniego el al., 2018). Likewise, researchers have found that drought severity has increased in 

the last five decades in Southern Europe (Vicente-Serrano et al., 2014).  

  Resulting from the abovementioned climatic changes in the Mediterranean, undesirable 

consequences have increased and will augment further. For example, past wildfires are found to be 

mainly driven by heatwaves and droughts, (San-Miguel-Avanz et al., 2013; Turco et al., 2019) and 

the burnt area is projected to increase for different scenarios by at least more than 100% around 

2075 (Sousa et al., 2015; Turco et al., 2018). Moreover, deaths have not only resulted from these 

wildfires (San-Miguel-Avanz et al., 2013), but equally from past heatwaves. However, the latter has 

been much more fatal, causing more than 35000 deaths in 2003 in Europe (Bhatachara, 2003). In 

the future, heatwave deaths are expected to rise 60-fold from the 1981-2010 reference period to 

2100 (Forzieri et al., 2017). Additionally, some diseases might become more prevalent with 

increasing temperatures, as has already been the case with West Nile fever (Tran et al., 2014). The 

virus is also projected to spread by 2025 and even further by 2050 (Semenza et al., 2016). 

Furthermore, ecosystem services such as regulating for erosion, drinking and freshwater provision, 

and hydropower production are expected to decrease (Bangash et al., 2013; Terrado et al., 2014; 

Tsanis et al., 2011). In addition, agriculture is threatened by the climatic changes, with yields of 

dominant crops already having been affected and projected to decrease even further (Moore et al., 

2015; Ray et al, 2019).  Thus, considering these issues induced by climate changes that potentially 
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transform Madrid’s and Marseille’s climate to be more like the current climate of respectively 

Marrakech and Algiers (Bastin et al., 2019), more insights into potential mitigation strategies for 

droughts and heatwaves are desirable. 

1.2. REGREENING AS A POTENTIAL ADAPTATION STRATEGY 

Such insights can be provided by studying the underlying feedbacks of climate change. One of such 

feedbacks involves the way in which vegetation and climate interact. Under the influence of climatic 

changes, such as glaciations and rapid cooling and warming effects, land vegetation cover has 

gradually changed in many areas. Even the current driest region of the world, the Sahara, was once 

largely covered with tropical vegetation, and had a tropical seasonal climate (Hély & Lézine, 2014; 

Larrasoaña et al., 2013). However, nowadays, climate change sometimes negatively feedbacks on 

vegetation. For example, in the Mediterranean a strong control of drought on for its typical 

vegetation was observed (Gouveia et al., 2017).  

  Reversely, vegetation changes can influence to the climate. For example, previous research 

suggests that the intensification of extreme droughts and heatwaves could be mitigated by land 

cover changes (e.g., Bonan, 2008; Miralles et al., 2019). However, a lot about such vegetation-

climate interactions remains unknown (Miralles et al, 2019; Seneviratne et al., 2010).  It has been 

suggested that droughts and heatwaves aggravate and propagate through land-atmosphere 

feedbacks (Miralles et al., 2019). The underlying feedback here is that land deterioration and 

vegetation cover decrease positively feedback with rainfall decrease and temperature rises by 

mechanisms like evapotranspiration limitation and runoff enhancement. For the already hot and 

dry Mediterranean, more insights into such mechanisms are necessary for finding adequate 

adaptation strategies, especially since here land use changes such as land abandonment and 

agricultural intensification have been observed (Serra et al., 2008). However, the effects on the 

hydrological cycle of land use change in temperate regions such as the Mediterranean are commonly 

underexamined (te Wierik et al., 2021). 

  Therefore, this study aimed to answer the following question: ‘How has vegetation activity 

interacted with the local climate within areas in the Mediterranean Basin?’. It was hypothesized that 

decreases in vegetation have led to a warmer and drier climate, whilst increases have led to the 

opposite. To understand which mechanisms underly these vegetation-climate interactions, the 

change of several hydro-meteorological variables in relation to vegetation acitivy alterations were 

investigated. The selection of the studied variables was based on the literature review provided in 

the theoretical framework section. For the data analysis, satellite remote-sensing data from the years 

1982-1985 and 2017-2020 was used, as described in the methods section. Next, the results are 
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presented, followed by an interpretation and research limitations and implications in the discussion. 

Finally, the conclusion states the main findings and answers the research question.  
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2.  THEORETHICAL FRAMEWORK 

This section provides a theoretical foundation of the research, eventually leading to the hypothesis 

formulation. First, the widely accepted land-atmospheric feedbacks are addressed. Next, the state-

of-the-art science on vegetation-climate interactions is reviewed. Additionally, the Normalized 

Vegetation Index (NDVI) as a vegetation indicator is discussed.  Lastly, the area investigated in 

this research, the Mediterranean Basin, is presented. First a brief elaboration on the vegetation and 

climate characteristics of the area is provided, followed by a conceptual model and hypothesis 

based on the literature. 

2.1. LAND-ATMOSPHERIC FEEDBACKS 

For the analysis of climate change feedbacks with vegetation, first it is important to understand the 

underlying mechanisms of droughts and heatwaves. Commonly, they are indicated by respectively 

precipitation shortages and extreme temperature rises. Thus, studying the hydrological and energy 

(heat) cycle should provide a better understanding of vegetation-climate interactions. Figure 1 

shows a simple overview of these. What follows is a discussion of each, and how they interact with 

each other.  

 

Figure 1. Schematic of the land water balance (left) and land energy balance (right) for a given surface soil layer 

(Source: Seneviratne et al., 2010). See the text below for explanation of the terms. 

 

For the land water balance, total precipitation P, evapotranspiration E, and runoff R are important 

(figure 1). Firstly, precipitation increases the soil moisture, surface water, snow, and/or ground 

water. Second, evapotranspiration can be further divided into evaporation and transpiration. The 

first ascribes mainly to the process of bare soil water evaporation into water vapor, but evaporated 

water can also stem from intercepted water by leaves. Transpiration consists of water stemming 

from plants, which evaporates through the stomata. Evapotranspiration in total returns about 60% 
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of the whole land precipitation back to the atmosphere (Oki & Kanae, 2006). It is not clear how 

much of evapotranspiration is accounted for by transpiration (Coenders-Gerrits et al, 2014) and 

how much by bare soil evaporation and canopy interception, mostly due to uncertainty of plant 

canopy interception (Wei et al., 2017). Often, the latter process of evaporation is underestimated 

in models, as well as interception due to wet surface evaporation (Savenije, 2004). Additionally, it 

is often assumed that transpiration accounts for the largest part of evapotranspiration (e.g. 

Lawrence et al., 2007; Wei et al., 2017). Furthermore, runoff can be divided further into surface 

runoff Rs and drainage Rg (figure 1). dS/dt (figure 1) stands for the change of water content within 

the soil, which includes soil moisture, surface water, snow, and ground water changes. It can be 

calculated by subtracting the total evaporation and runoff from the precipitation.  

  Next, for the land energy balance, the net shortwave radiation SWnet and net longwave 

radiation LWnet need to be considered (figure 1). The sun mainly emits shortwave radiation, of 

which a part is directly reflected by clouds or the soil surface. The ratio of reflection of the soil 

surface out of the total solar radiation, the albedo, can be decreased by an increase in soil moisture 

(Guan et al., 2009; Sugathan et al., 2014) and differs per land cover type (Rahman et al., 1993). For 

example, compared to bare soil or cropland, dark vegetation cover such as forests has a low albedo 

(Bonan, 2008). Absorption of shortwave radiation by the atmosphere or soil generates heat, which 

is emitted as longwave radiation. Part of this longwave radiation is reemitted back to the Earth’s 

surface and atmosphere by greenhouse gasses such as CO2 and H2O. Additionally, the heat that 

is released from the soil to the atmosphere can be described by the sensible heat flux SH and the 

latent heat flux λE (figure 1).  The first heat flux indicates the energy released from the soil that 

changes the temperature of the atmosphere, whilst the latter does not change the temperature. It 

indicates the energy released from the soil for the phase change of water, and thus indicates the 

energy used for evapotranspiration. This way, the land water balance and land energy balance are 

coupled. In total, more than half of the solar radiation absorbed by the Earth’s surface is used for 

evapotranspiration (Stephens et al., 2012; Trenberth et al., 2009), and the energy required for 

evaporating a certain water mass is more than 600 times higher than the energy necessary to 

increase its temperature by 1 degree Celsius, and even 2400 times higher for a corresponding air 

mass (Seneviratne et al., 2010). Thus, a change in evapotranspiration goes together with an altered 

land energy balance, which can potentially affect the sensible heat flux or the amount of heat stored 

in the soil, affecting the temperature. Furthermore, dH/dt (figure 1) stands for change of energy 

within the soil (including vegetation), which includes the water phase changes and temperature 

change for evaporation, runoff, and drainage. It can be calculated by subtracting the latent heat 

flux, sensible heat flux, and ground heat flux from the net radiation (shortwave and longwave). 
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  Another important variable to consider is soil moisture, as it plays a key role in both the 

energy and water land balances by its storage function, and by being a source for 

evapotranspiration. In dry regions, it is the main controlling factor for evapotranspiration, although 

variations are small due to limited water availability (Seneviratne et al., 2010). It is commonly 

defined as the water held in the unsaturated soil area (e.g. Hillel, 1998). The field capacity describes 

the maximum of water that can be held by the soil before gravitational drainage, and the wilting 

point describes the minimum of water that is held strongly by the soil matrix and therefore not 

accessible to plants. Thus, the water volume in the soil that is available to plants is the field capacity 

minus the wilting point. They differ for soil properties such as soil texture (Anders & Rockel, 2008) 

and for vegetation types, especially concerning their roots (Schenk & Jackson, 2002). In dry areas 

such as the Mediterranean, where soil moisture is limited, the water in the soil is less available to 

plants due to stronger soil suction, potentially reducing evapotranspiration (Seneviratne, 2010). 

Additionally, soil water limitations influence vegetation dynamics and patterns (e.g. Prentice et al., 

1992; Rietkerk et al., 2004). Furthermore, changes in soil moisture impact biochemical cycles such 

as the carbon and nitrogen cycle by influencing plant transpiration and photosynthesis. For 

example, when soil moisture is too low plant CO2 uptake can be decreased (Angert et al., 2005), 

potentially enhancing the greenhouse gas effect.  

2.2. VEGETATION INFLUENCING DROUGHTS AND HEATWAVES 

Climate-vegetation interactions are very complex, and a lot of uncertainty still exists around them 

(Miralles et al, 2019; Seneviratne et al., 2010). However, for the magnitude of hydro-meteorological 

extremes like droughts and heatwaves, large-scale responses of ecosystems to the high atmospheric 

demand, (surface and atmospheric) water stress and heat are thought to be critical (Miralles et al., 

2018). There exists no ubiquitous definition of droughts or heatwaves, but they are commonly 

assigned to events that exceed a given threshold for respectively precipitation deficits or 

temperature extremes. For example, Stefanon et al., (2012) classified heatwaves according to their 

temporal and spatial extension of passing a certain temperature threshold in summer. They found 

that past heatwaves in the Mediterranean area had a duration about one week. On the other hand, 

droughts typically are assigned a duration of months to years (e.g. Miralles et al., 2018). However, 

both extremes often concur. For Mediterranean areas, there is a probability of 70% that periods of 

precipitation deficits are succeeded by an above average number of hot days (Mueller & 

Seneviratne, 2012). In figure 2, a simplification of the relevant feedbacks during such events is 

depicted, which are elaborated on in what follows. 
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Figure 2. Simplified diagram of land feedbacks as local intensifiers on droughts and heatwaves. A red colour indicates 

a positive relation, while a blue colour means a negative correlation. (Source: Miralles et al., 2018). 

 

As already mentioned in the previous section, low soil moisture conditions, or land desiccation, 

deteriorate the water availability for evapotranspiration. In turn, this can result in temperature rises 

due to the increase of the sensible heat flux resulting from the latent heat flux decrease. This has 

been confirmed for southeastern Europe, as land desiccation correlates there with summer hot 

extremes (Hirschi et al., 2010). However, this relationship does not have to be direct. Often, the 

soil acts as a water reservoir, storing water for not only days but also longer seasonal periods. This 

way, it acts as a kind of climate memory. For example, if Mediterranean winters are dry, European 

summers are hot, due to the lower soil water storage levels available for evapotranspiration 

(Quesada et al., 2012; Vautard et al., 2007). On the other hand, it has been observed that due to 

the initiation of convection and meso-scale circulation, rain falls preferentially over soils that are 

drier than the surrounding area (Taylor et al., 2012). However, over time rain occurs more often in 

wet soil conditions and it is not more likely that rain falls during droughts (Guillod et al., 2015).  

Furthermore, the effect of winter low soil moisture levels in the Mediterranean on temperature are 

large scale, as they extended to regions all over Europe (Zampieri et al., 2009). Moreover, land 

desiccation and temperature increase form a positive feedback loop, increasing the likeliness for 

heatwave occurrence. As evaporation declines, more solar radiation is employed for the sensible 

heat flux, which accumulates in the atmosphere and therefore may induce or intensify heatwaves 

(Miralles et al., 2014). 

  Next, figure 2 indicates that evaporation or evapotranspiration decreases can lead to 

precipitation increases. However, the relationship between precipitation and evapotranspiration is 
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the most subject to uncertainty and the most difficult to ascertain since there are many processes 

involved (Seneviratne, 2010). As evapotranspiration cannot be directly observed from satellite data 

but is often modelled by using data from related observable variables (Miralles et al., 2014), its 

observed interactions with other variables are dependent on the model assumptions. Within 

modelling studies, often a positive relationship between the two is established (Seneviratne, 2010). 

For example, evaporation has been found to affect precipitation more strongly when the moisture 

recycling is local compared to more remote regions (Wei & Dirmeyer, 2012). Specifically for areas 

around the Mediterranean Basin, the Mediterranean Sea is an important moisture source (Drumond 

et al., 2011). Additionally, reforestation has been suggested to increase local precipitation in Europe 

(Meier et al., 2021). 

 On the other hand, there is a better understanding on how evapotranspiration influences 

precipitation by studying its coupling to the intermediary feedback of vapor pressure deficit (VPD). 

This variable describes the difference between the amount of moisture in the air and the amount 

the air can hold when saturated. When the air is completely saturated, water condenses and clouds 

are formed. This way, the likelihood for precipitation is increased. When a decrease of 

evapotranspiration leads to lower atmospheric moisture, the VPD increases. Additionally, VPD is 

intensified by temperature rise, since warmer air can hold more water, postponing saturation. In 

turn, VPD enhances evaporation since more moisture is required to saturate the atmosphere 

(Anderson, 1936). However, the relation between VPD and evaporation can also be negative. 

Under conditions of water stress, stomatal conductance is lowered, which in turn decreases plant 

transpiration (e.g. Ad & Rambal, 1995). This causes a positive feedback loop, as lowered 

transpiration leads to less atmosphere humidity and thus a higher VPD, which further decreases 

precipitation and hereby a decrease in water availability to plants. Another important positive 

feedback loop in depicted in figure 2 is that precipitation decreases due to VPD increases further 

desiccate the soil, leading to a larger deficit in vapor pressure by enhancement of evaporation 

decrease.  

  Finally, the type of vegetation influences their effect on transpiration and on soil moisture 

by infiltration. Savenije (2004) makes a distinction between fast and delayed transpiration. The first 

is within a time scale of less than a month, from plants with shallow roots such as annual crops 

and grass. On the other hand, the latter is from plants with deep roots such as trees, shrubs, and 

perennial crops. Transpiration here has a time scale of more than a month. Additionally, in contrast 

to grasslands, European forests have been found to mitigate the impact of extreme or long-term 

heat events (Teuling et al., 2010). Although initially grasslands suppressed heating by increased 

evaporation as a response to temperature and solar radiation increases, eventually this accelerates 
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soil moisture depletion and heating. Forests, on the other hand, had a more conservative water use 

which initially contributed to increased temperatures, but on the long-term evaporation was 

preserved. Likewise, during the 2003 heatwave in France surface temperature anomalies were 

greater for crops and pastures than for forests (Zaitchik et al., 2006). Additionally, it was suggested 

that in the same heatwave event in Europe a decrease in leaf area index amplified the heatwave 

(Lorenz et al., 2013). Moreover, Mediterranean forests have a small buffering effect against 

precipitation variability within the area (O’Connor et al., 2021). 

2.3. NDVI AS A VEGETATION INDICATOR 

To measure the vegetation activity, the Normalized Difference Vegetation Index (NDVI) is often 

used, which can be measured with the use of instruments on board of satellites. It is a dimensionless 

index which describes the difference between visible (VIS) and near-infrared reflectance (NIR) of 

land cover (NDVI = (NIR — VIS)/(NIR + VIS)). As the NIR and VIS are themselves ratios of 

reflected over incoming radiation and take on values between 0.0 and 1.0, the NDVI values range 

between -1.0 and + 1.0. Typically, values below 0.1 correspond to bodies of water and bare ground, 

while higher values are indicators of high photosynthetic activity of different vegetation covers 

(Meneses-Tovar, 2011). Of these, the lowest NDVI values are found for deserts, followed by 

rangeland and scrub land (Meneses-Tovar, 2011). This is because the NDVI measures the 

chlorophyl abundance and energy absorption of plants (Myneni et al., 1995), which peaks around 

700 µm (Gitelson et al., 1996; Gitelson & Merzylak, 1998), making it useful to monitor the 

photosynthetically active biomass of plant canopies (Tucker, 1979). Therefore, it is widely used to 

study various vegetation properties such as the density of green leaves (Weier & Herring, 2000), 

chlorophyll concentration in leaves (e.g., Pastor-Guzman et al. 2015), biomass (e.g., Zhu & 

Liu 2015), tree growth (e.g., Vicente-Serrano et al. 2016), plant drought stress (e.g., Chavez et 

al. 2016), crop yield (e.g., Franch et al., 2017) and forest cover loss (e.g., Dutrieux et al. 2015).  

  As for hydro-meteorological factors, globally the NDVI has been reported to positively 

correlate with evapotranspiration and precipitation (Bounoua et al., 2000), and negatively with VPD 

(Yuan et al., 2019). Additionally, in the Weihe River Basin in China strong positive correlations 

were found between NDVI and precipitation, temperature, evaporation, and soil moisture (Zhang 

et al., 2018). Furthermore, in Europe NDVI correlated positively with temperature and 

precipitation, of which NDVI anomalies also positively correlated with North Atlantic Oscillation 

(NAO) and El Niño Southern Oscillation (ENSO) signals (Los et al., 2001). 
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2.4. THE CASE OF THE MEDITERRANEAN BASIN 

ECOSYSTEM CHARACTERISTICS 

The study area of this research, the Mediterranean 

Basin, is the largest out of the five Mediterranean 

regions in the world. Their ecosystems are commonly 

defined according to their climate. However, the 

definition of the area is not consistent amongst studies. 

Blumler (2005) distinguishes between roughly 3 types 

of classifications, namely either with a climate of areas 

around the Mediterranean Sea, or with a winter-wet and 

summer-dry climate, or with a climate that favours 

broad-leaved, evergreen, sclerophyllous shrubs and 

trees (e.g. see figure 3). Such vegetation is dominant and 

unique for the area (Esler et al., 2018), as their thick 

leathery leaves are well adapted to the dry summer 

periods. The temperate climate, with mild winters due 

to the moderating of high temperature fluctuations by 

the Mediterranean Sea, supports their growth (Dallman, 

1998). However, as dry periods are increasing in length and drought stress on these plants increases, 

it is likely that other, annual plants are taking over (Blumer, 2005).  

  Furthermore, in general Mediterranean landscapes often consist of eroded mountains, with 

heterogeneous low-nutrient soils, and pulse-driven river systems (Esler et al., 2018). In the 

Mediterranean Basin, land degradation due to soil erosion is common in the area (González-

Hidalgo et al., 2007). Additionally, wildfires occur frequently, and more increasingly due to global 

climate change (Turco et al., 2014). Moreover, being the highest outside of the tropics, the 

biodiversity is unusually high, particularly in vascular plant diversity, with high levels on endemism 

(Esler et al., 2018). However, the projected drought increases are threatening this biodiversity 

(Albano et al., 2021). Furthermore, is expected that droughts and heatwaves will affect terrestrial 

mammal’s species richness in the Mediterranean, severely threatening their survival, particularly of 

endemic species (Maiorano et al., 2011). 

 

  

Figure 3. Picture of Sclerophyllous 
vegetation (Vulcanello, Italy). Taken by B. 
Kosztra. 
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RESEARCH HYPOTHESIS 

Considering the abovementioned positive feedbacks of vegetation with hydro-meteorological 

variables, it is expected that regreened Mediterranean areas have lowered temperatures and 

increased precipitation, whilst for de-greened areas the opposite is expected. Figure 4 depicts the 

expected relationships of vegetation with these hydro-meteorological variables, and how they could 

relate to droughts and heatwaves. Vegetation most directly influences precipitation and 

temperature through two mechanisms, namely runoff due to the root capability of increasing 

infiltration, and transpiration due to photosynthetic activity. Next, a decrease in runoff leads to soil 

moisture increase, which in turn improves water availability for evapotranspiration. As 

evapotranspiration increases, VPD decreases, which both increase the chance of air saturation and 

thereby precipitation. Additionally, evapotranspiration increases go together with latent heat flux 

increases, which presumably decreases the sensible heat flux and hereby temperature.  

 

Figure 4. Conceptual model of the assumed pathway from vegetation to droughts and heatwaves. Positive and 
negative relationships are indicated respectively (+) and (-)-signs. 

 

To validate this conceptual model, the following sub-questions were formulated: 

1. How do changes in vegetation correlate with changes in hydro-meteorological variables in 

the Mediterranean Basin? 

2. How has the vegetation of strongly de-greened and regreened areas within the 

Mediterranean Basin interacted with hydro-meteorological variables in the Mediterranean 

Basin? 

Sensible heat flux
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Drought Heatwave
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Evapotranspiration / 
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3.  METHODS 

To investigate how vegetation relates the local climate within areas in the Mediterranean Basin, and 

heatwaves in the Mediterranean Basin, a remote sensing-based data analysis was performed in 

MATLAB (Version R2022a). To measure vegetation, NDVI was used as an indicator, and for the 

other variables the ERA5-Land monthly averaged dataset was used. To detect vegetation changes 

in the study area, the average values of the variables from 2017-2020 were compared to 1982-1985. 

Thus, the studied period of the vegetation changes and variables is 38 years, between 1982 and 

2020. Below is explained how the Mediterranean areas were selected from the data, followed by 

how for each grid cell the change in NDVI was calculated. Next, a (hydro-meteorological) variable 

analysis and correlation with NDVI changes is elaborated upon. Additionally, it is discussed how 

strongly regreened and de-greened areas were selected from the study area and further examined. 

Finally, an investigation of how global climate change might have affected the area is discussed. 

(See Appendix III for the code that was developed for the analysis).  

3.1. STUDY AREA  

First of all, for making sure only areas with a Mediterranean climate are selected, a mask was 

developed. The monthly ERA5-Land variables ‘total precipitation’ and ‘2m temperature’ were the 

used data sources (Muñoz Sabater, 2019) for this. The ERA5-Land dataset is a reanalysis product, 

meaning that model data is combined with observations from all over the world (including 

measurements of the FLUXNET project) into a globally complete and coherent dataset, applying 

the laws of physics. The variables are downloaded in netCDF files from the Climate Data Store 

(CDS) of the Copernicus Climate Change Service (C3S), operated by the ECMWF on behalf of the 

EU. The data has a resolution of resolution 0.1x0.1 degrees (native resolution is 9 km), and is 

projected on a regular longitude/latitude grid. 

  For this research, the Mediterranean Basin area is classified by its seasonal characteristics, 

selecting areas which consist of warm dry summers and cool, moist winters, with a pronounced 

summer dry period (Esler et al., 2018). This was done by taking the mean monthly values of 

precipitation and temperature for the years 1982-2020 and applying the Köppen-Geiger climate 

classification requirements for Csa and Csb regions, and excluding the other climatic regions (Peel 

et al., 2007). Next, as the focus is on areas in the Mediterranean Basin, and as the typical 

Mediterranean biome of evergreen shrub vegetation only extends slightly east of the Mediterranean 

Sea (Blumler, 2005), whilst the Mediterranean climate according to the used classification system 

extends much further east, a cutoff was made around this biome border (figure A, Appendix I). 

This way, the map also better matches with those of many other studies on the Mediterranean 

Basin, as in cartography often an approximate intersection of the Mediterranean climate and 
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vegetation is made (Blumer, 2012).  The computed mask is illustrated in figure 5.  

  

 

Figure 5. Purple regions indicate areas with a Mediterranean climate according to the Köppen-Geiger climate 

classification (N=14516). 

 
Furthermore, to overcome interferences of the results by agricultural practices, such as high 

fluctuations in vegetation cover and irrigation, regions where crops are grown were masked out. 

This was done by using the data of global land cover maps for the years 1982 and 2020. For 1982 

the Global Land Surface Satellite of Global Land Cover (GLASS-GLC) (Liu et al., 2020) map was 

selected as it was one of the few maps available for this year and it has a high overall accuracy of 

85%. The GeoTiff file for 1982, with a 5 km resolution and WGS 84 projection, was downloaded 

and a mask was computed of the ‘cropland’ classification For 2020 a Land cover classification map 

of the European Space Agency (ESA) Climate Change Initiative (CCI) Land Cover project 

(Lamarche et al., 2017) was selected. The netCDF file for the year 2020 was downloaded from the 

Copernicus Climate Data Store, which had a resolution of 300m. The classifications ‘cropland 

rainfed’, ‘cropland rainfed herbaceous cover’, ‘cropland rainfed tree or shrub cover’, ‘cropland 

irrigated’ and ‘mosaic cropland’ were used to compute a mask Furthermore, both the 1982 and 

2020 cropland masks were averaged to a 0.1 x 0.1 resolution, which led to each grid cell giving a 

percentage value of the amount of cropland in the cell (figure B, Appendix I). The masks were 

combined in a mask which deselected all cells that had a percentage of 15% or higher of cropland 

for one or both years. This percentage was chosen to be optimal upon a visual comparison of 

different cropland percentages (figure C, Appendix I). Figure 5 depicts the selected cropland mask. 
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Figure 6. Purple regions indicate the selected grid cells where cropland is below 15% (N= 32534). 

3.2. NDVI CHANGE 

 
Next, the NDVI differences between the end period 2017-2020 and start period 1982-1985 were 

calculated. As it is the only NDVI product which has been operating during the whole course of 

this period, the Advanced Very High-Resolution Radiometer (AVHRR) NDVI Version 5 dataset 

of the National Oceanic and Atmospheric Administration (NOAA) was selected for this (Franch 

et al., 2017; Vermote, 2019). It is one of the Land Surface products of NASA Goddard Space Flight 

Center and the University of Maryland and contains daily NDVI values on a global grid with a 

resolution of 0.05 x 0.05 degrees. The values are calculated with a visible light wavelength of 640 

µm and near-infrared wavelength of 830 µm (CDR Program, 2018). Although the AVHRR sensors 

might be less developed, it has a good quality compared to more modern sensors (Brown et al., 

2006). The data is corrected for important measurement problems such as Rayleigh scattering, 

geolocation accuracy, and aerosol, gaseous or water vapor interferences (CDR Program, 2018). 

NDVI values for vegetation typically range from 0.1 to 0.6 for this dataset (Tarpley, Schneider & 

Money, 1984). It is available at the Climate Data Record of the NOAA, where netCDF files of 

each day within the studied periods are downloaded (with a few days in total missing). 

  However, clouds and cloud shadow interferences are still present amongst the NDVI 

values, as well as pixels that were measured at nighttime (high solar zenith angle) or that were under 

the influence of sunglint. As these all reduce the obtained NDVI value, maximum-value 

compositing (MVC) is a good method to obtain more exact NDVI values (Holben, 1986). It selects 

the highest pixel value from multi-temporal data, which additionally makes sure that pixel values 

with the lowest aerosol concentration, lowest water vapor, nearest nadir viewing, and highest Sun 

illumination are selected (Holben, 1986). Since on a single day, about half of the Earth's surface is 

obscured by clouds, to get good pixel values a long temporal scale is desired. Therefore, for each 
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grid cell selected by the previously discussed masks, the mean of the five highest maximum values 

throughout each year was calculated (further explanation in Appendix II, figure D-F). This also 

increases the chances that the NDVI value in the peak of the season for each area is selected, 

thereby overcoming the chance that the growing season might be different for some areas in the 

Mediterranean Basin.  

  Next, to calculate the difference in NDVI over 1982-2020, a mean value was calculated for 

the years 1982-1985 and for 2017-2020 for each grid cell. The four years were averaged to 

overcome annual fluctuations and incorrect measurements due to interferences. Additionally, the 

whole grid was averaged from the initial 0.05° to a 0.1° scale, to match with the resolution of the 

ERA5-Land dataset. Finally, NDVI differences for each coordinate were calculated by subtracting 

the NDVI value of the start period 1982-1985 from the value of the end period 2017-2020.  

3.3. NDVI CORRELATION WITH HYDRO-METEOROLOGICAL 
VARIABLES 

The data for the hydro-meteorological variables came from the ERA5-Land dataset (Muñoz 

Sabater, 2019). Table X illustrates which variables were selected from the dataset to indicate the 

variables of the conceptual model in figure 4. Since for evapotranspiration 6 variables were 

available, all were included in the study, to gain as much insight as possible in how 

evapotranspiration interacts with vegetation. Additionally, for runoff three variables were available. 

‘Runoff’ represents the total runoff, which is further divided between subsurface and surface 

runoff. Soil moisture is indicated by 4 variables, each addressing the water present in different soil 

layers. Layer 1 is 0-7 cm, layer 2 is 7-28 cm, layer 3 is 28-100 cm and layer 4 is 100-289 cm. 

Furthermore, VPP was calculated as described by Allen et al. (1998), by using variables that indicate 

the air temperature and the temperature of the dewpoint. 

 

Research variable ERA-5 Land dataset variable 

Temperature 2m temperature 

Precipitation Total precipitation 

Sensible heat flux Surface sensible heat flux 

Latent heat flux Surface latent heat flux 

Vapor pressure deficit 2m temperature 
2m dewpoint temperature 

Evapotranspiration Total evaporation 
Evaporation from vegetation transpiration 
Evaporation from the top of the canopy 
Evaporation from bare soil 
Evaporation from open water surfaces excluding oceans 
Snow evaporation 
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Runoff Runoff 
Surface runoff 
Sub-surface runoff  

Soil moisture Volumetric soil water layer 1 
Volumetric soil water layer 2 
Volumetric soil water layer 3 
Volumetric soil water layer 4 

 Table 1. For each variable of the conceptual model the ERA5-Land dataset variables that were used to indicate 

these variables are presented. 

 
For each variable the monthly averages of the years 1982-1985 and 2017-2020 were calculated. 

Next, the difference between the values of the start period were subtracted from the values of the 

end period. The months were grouped according to the seasons, and mean variable difference 

values for each season were calculated. As droughts and heatwaves mainly occur in summer, it is 

relevant to see how variables are affected during this period by overall vegetation alterations. The 

seasons were spring (MAM), summer (JJA), fall (SON), and winter (DJF). Additionally, NDVI 

difference values were correlated with the mean variable difference values over the entire year. Due 

to the complexity of variable interactions, the relationship between the variables and NDVI was 

expected to be monotonous but not necessarily linear. Therefore, to calculate the correlation 

strength, rho values of the Spearman rank correlation were calculated, which are not so much 

influenced by outliers. For these correlations, NDVI was always the independent variable. 

3.4  REGREENING VERSUS DE-GREENING 

For more in depth understanding of vegetation-climate interactions, the effects of strong 

regreening or de-greening on the hydro-meteorological variables were investigated. For this, grid 

cells that had the highest 10% NDVI increase or decrease were selected, to indicate respectively 

regreened or de-greened areas. The percentage of 10% was chosen because lower percentages gave 

no significant correlations due to the low number of grid cells being selected. Correlations of these 

two groups with the mean hydro-meteorological variable differences over the entire year were 

analyzed with linear regressions, and the Pearson correlation coefficient was calculated. This 

method was selected instead of the Spearman rank correlation because it presents the relationship 

between the variables more directly. For all correlations NDVI was set as the independent variable. 

3.5 CLIMATE CHANGE INVESTIGATION 

Finally, a small analysis was performed which investigated how the climate has changed in the study 

area, and how the hydro-meteorological variables might have interplayed here. 10% of grid cells 

where the NDVI difference was lowest were selected from the study area. For these cells, the mean 

values of the begin and end period for each variable were calculated. A paired T-test between the 

two periods was performed to validate if these changes were significant.  
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4.  RESULTS 

4.1  STUDY AREA  

When both the Mediterranean climate and >15% cropland masks for the region were applied, 2091 

grid cells remained. Thus, a total area of 169.371 hectares was studied. As can be read from figure 

7, grid cells in the region of the Atlas Mountain range are dominant in the study area selection, with 

a little more than half of the grid cells located there.  

 
Figure 7. Purple regions indicate the selected grid cells with a Mediterranean climate and cropland below 15% 

(N= 2091, area of Atlas Mountain range N≈1219). 

 

Figure 8 depicts the distribution of the values of each variable in boxplots, and additionally provides 

mean values of all grid cells. Paired T-tests were performed to investigate if the difference in mean 

values between start and end period are significant. This was only true for temperature, bare soil 

evaporation and VPD (0.001<p<0.05), which all increased over time. For transpiration and all 

three runoff indicators, more than half of the values is near zero. Additionally, for many variables 

a lot of outliers are presented, indicating that values vary greatly between the study areas. 
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Sensible heat flux (daily mean) 

 
in Joule/m2 

Latent heat flux (daily mean) 

in Joule/m2 

Vapor pressure deficit (daily mean) 

 
in kPa 
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Total runoff 
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Soil surface runoff 
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Figure 8. Boxplots of the yearly mean values for the hydro-meteorological variables, obtained from the ERA5-

Land dataset. As indicated, for some variables the daily mean values are provided, whilst for the other variables 

values are accumulated to show a yearly mean value.   

 

Furthermore, figure 9 depicts when on average the study areas are driest and hottest. In line with 

drought and heatwave behavior, during summer months precipitation is lowest and temperature 

highest, peaking from June-August. (See Appendix II, figure D for seasonal variations of the other 

variables). 

0 500 1000 1500

1982-1985

2017-2020
P
e
r
i
o
d

65.288

61.9357

M
e
a
n

0 100 200 300 400 500 600 700 800

1982-1985

2017-2020

P
e
r
i
o
d

19.5798

22.5192

M
e
a
n

0 200 400 600 800 1000 1200

1982-1985

2017-2020

P
e
r
i
o
d

45.7033

39.4105

M
e
a
n

50 100 150 200 250 300 350 400

1982-1985

2017-2020

P
e
r
i
o
d

126.4236

122.4205

M
e
a
n

100 150 200 250 300 350 400

1982-1985

2017-2020

P
e
r
i
o
d

184.9287

183.2386

M
e
a
n

50 100 150 200 250 300 350 400

1982-1985

2017-2020

P
e
r
i
o
d

192.5493

195.5716

M
e
a
n

50 100 150 200 250 300 350 400 450

1982-1985

2017-2020

P
e
r
i
o
d

183.6872

187.3497

M
e
a
n



 23 

 

 

Figure 9. Plots of accumulated precipitation and daily temperature behavior throughout the start and end period. 

The monthly averages were calculated by taking the mean of all grid cells for each month. 

4.2. NDVI CHANGE 

Figure 10 depicts the distribution of NDVI values for both periods. It is clear from this figure that 

for some grid cells NDVI has increased up to 0.8. On the other hand, for some grid cells NDVI 

has decreased to below 0.2. Most of the grid cells express values around 0.2, while the rest express 

values mostly between 0.3 and 0.7. Thus, as most values below 0.1 express bare soil, almost all grid 

cells had some vegetation. Additionally, some areas had quite dense vegetation since they expressed 

NDVI values of 0.6-0.8. 

 

 
Figure 10. Overlapping histograms of NDVI values of the study area, for the start and end period. 
 

For the entire area, the mean NDVI has increased on average from 0.2941 to 0.3089, which has 

been proven significant by means of a paired T-test (p<0.001). Figure 11 illustrates where in the 

study area which NDVI values were observed in the end period (for absolute NDVI values in the 

start period see Appendix II, figure H). Mostly in coastal areas in the northern part of the basin the 
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values are high, whilst most of the values near 0.2 can be observed in the region of the Atlas 

Mountains.  

Figure 11. Absolute mean NDVI values in 2017-2020 for the selected cells.  

 

Overall, for the selected areas NDVI changes between 1982-1985 and 2017-2020 differed, as 

depicted in figure 12.  Roughly speaking, in the southern western part of the Mediterranean Basin 

NDVI has decreased, whilst mostly in region above the Mediterranean Sea the NDVI has 

increased. Thus, it seems like areas where NDVI was already high, in the north, experienced 

regreening, whilst areas where NDVI was quite low, in the southwest, underwent de-greening. 

 

 
 
Figure 12. NDVI differences for the selected grid cells. 
 

Furthermore, figure 13 depicts the seasonal behaviour of NDVI throughout the year. It shows that 

within the region the growing season starts around February and ends around May. Highest 

vegetation activity is around May-June. Throughout the year on average the NDVI differs with a 

value of about 0.05. 
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Figure 13. The mean NDVI pattern expressed in the study area, as an average of 1982-1985 plus 2017-2018. 
Years 2019 and 2020 were excluded from the calculation of this figure, due to bad satellite measurements for 
October-December of these years (see Appendix I, figures D-F). 

4.3. NDVI CORRELATION WITH HYDRO-METEOROLOGICAL 
VARIABLES 

Table 2 shows the results of the Spearman correlation between the NDVI difference and the hydro-

meteorological variables (see Appendix II, figure I for visualization of the correlations). These 

results are further elaborated on in separate sections for the variables. 

 Spearman’s rho 

Variable Total Spring Summer Fall Winter 

Precipitation  0.4074* 0.018103 0.11235** 0.3648** 0.33972** 

Temperature  0.3145** -0.21553** 0.43678** 0.10628** 0.20172** 

Sensible heat flux  -0.0411 0.12246** 0.12332** -0.11434** -0.24202** 

Latent heat flux  0.4770** 0.36641** 0.17258** 0.34026** 0.47237** 

Vapor pressure deficit -0.2583 ** -0.49025** -0.01465 -0.19668** -0.53541** 

Evapotranspiration: 

       Total evaporation 0.4773** 0.36668** 0.17257** 0.34039** 0.47325** 

       Vegetation transpiration  0.4315* 0.45265** 0.36694** 0.43464** -0.084017** 

       Canopy evaporation 0.3030* 0.09827** 0.23462** 0.33754** 0.22573** 

       Bare soil evaporation 0.4473** 0.46011** 0.20511** 0.27681** 0.54455** 

       Open water evaporation 0.3092** 0.21874** 0.016068 0.030949 0.23439** 

       Snow evaporation -0.2825** -0.30314** 0.014226 0.11693** -0.20958** 

Runoff: 

       Total runoff -0.0425 -0.1121** -0.26344** 0.16767** 0.18887** 

       Soil surface runoff 0.3364** 0.036568 0.12877** 0.29606** 0.34191** 

       Sub-surface runoff -0.2162** -0.222** -0.39725** -0.052074* -0.026927 

Soil moisture: 

       Layer 1: 0-7 cm 0.1527** -0.30138** 0.041288 0.29531** 0.22942** 

       Layer 2: 7-28 cm  0.0.118 -0.32992** 0.073438** 0.24089** 0.11621** 

       Layer 3: 28-100 cm  -0.3301** -0.40314** -0.30591** -0.17441** -0.18171** 

       Layer 4: 100-289 cm  -0.4253** -0.40206** -0.43651** -0.424** -0.3843** 

Table 2. Summary of the Spearman rank correlations (*p<0.05, **p<0.001) of the variables with the NDVI 

differences. From dark to light green the highlighting indicates significant values that had a rounded of value of 

respectively 0.5, 0.4 and 0.3. 
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PRECIPITATION 

Table 2 shows that, like expected, NDVI correlates quite well with precipitation when using yearly 

mean precipitation values. Additionally, in fall and winter the correlation is quite strong. Figure 14 

illustrates that precipitation mostly increased in the northern part of the basin, where NDVI also 

mainly increased. On the other hand, for the Atlas Mountain region, where NDVI mainly decreased 

precipitation mostly stayed the same or even decreased. 

 

 
Figure 14. The difference in precipitation between the start and end period. The difference is calculated with 
values indicating a daily value, averaged over the entire period. 

TEMPERATURE 

As can be read from table 2, NDVI also correlates quite well with temperature. However, this 

correlation is not as expected in the conceptual model (figure 4) since it is positive. As discussed in 

the previous section, in general temperature changed significantly between the two periods, 

increasing on average with more than 1 degree (figure 8). However, the correlation with NDVI 

shows that this temperature rise was stronger for the more vegetated areas. This was especially true 

for summer temperatures, during the months when heatwaves and droughts most often occur. 

Figure 15 also shows that over the entire study area, the temperature has not decreased. 

 
Figure 15. The difference in temperature between the start and end period. The difference is calculated with 
values indicating a daily value, averaged over the entire period. 
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HEAT FLUXES 

The sensible heat flux showed quite low correlation values (see table 2), which is peculiar since 

temperature, a variable closely related, did show a significantly moderate correlation. Figure 16 also 

shows that the sensible heat flux change is varies quite a lot over the area, which can also be 

concluded from figure 8.  On the other hand, latent heat flux shows an overall strong positive 

correlation with NDVI, the highest amongst all variables. For the seasons, the highest correlation 

is found in winter, whilst other moderate correlations are found in spring and fall. Figure 16 clearly 

depicts that most of the regreened areas also underwent high latent heat flux changes, whilst the 

de-greened areas in the southwest overall have low changes. 

 

 

Figure 16. The difference of sensible heat flux (up) and latent heat flux (down) between the start and end period. 
The difference is calculated with values indicating a daily value, averaged over the entire period. 
 

VAPOR PRESSURE DEFICIT 

Overall, the VPD has a moderate negative correlation with NDVI, but especially for spring and 

winter negative correlations are high (table 2). Again, in the regreened areas this effect is most 

present (figure 17). Additionally, it is clear from figure 17 that for all grid cells VPD did not 

decrease. 
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Figure 17. The difference of vapor pressure deficit between the start and end period. The difference is calculated 
with values indicating a daily value, averaged over the entire period. 

 

EVAPOTRANSPIRATION 

Total evaporation has the highest correlation with NDVI of all variables. The relationship is 

positive, as conceptualized, and especially strong during spring and winter (table 2). Looking at 

which of the evapotranspiration variables contribute mostly to this, it seems like transpiration plays 

a large role, correlating strongly in spring, summer, and fall. However, bare soil evaporation 

correlates even stronger with NDVI. This can be due to increased soil moisture levels in response 

to infiltration increases. Furthermore, canopy evaporation has a small positive correlation with 

NDVI, which is consistent with the fact that a vegetation cover extension leads to an increased 

canopy. Additionally, the moderate correlations of open water and snow evaporation are likely 

related to the fact that NDVI correlates with temperature increases. This in turn decreases snow 

cover and increases evaporation from open water. Figure 18 shows that most evaporation increases 

were found in the regreened areas in the north. 
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Figure 18. The difference of the different evapotranspiration variables between the start and end period. The 
difference is calculated with values indicating a daily value, averaged over the entire period. 
 

RUNOFF 

For runoff, not many strong correlations were present (table 2). The strongest correlation is found 

in fall, where a negative correlation of NDVI with sub-surface runoff is present. On the other 

hand, on a yearly basis soil surface runoff positively correlates with NDVI, of which the effect is 

strongest in fall and winter. Figure 19 shows again the different changes that occurred in the 

northern coastal areas of the Mediterranean Basin compared to the southwestern area.  
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Figure 19. The difference of the different runoff variables between the start and end period. The difference is 
calculated with values indicating a daily value, averaged over the entire period. 
 

SOIL MOISTURE 

Finally, for soil moisture variables quite different correlations are found depending on the soil layer. 

The strongest correlation is found in the deepest layer, where for all seasons NDVI has a strong 

negative correlation. Additionally, a moderate overall negative correlation is found for layer 3, 

which is most strong in spring and summer. On the other hand, layer 1 show moderate positive 

correlations for fall and winter, but a moderate negative correlation in spring. Layer 2 only shows 

a substantially large correlation in spring. The area maps only clearly depict the often observed 

opposite changes for the northern and southwestern region for soil layer 4 (figure 20). For this 

layer, in the northern regreened areas soil moisture has mostly decreased, whilst around the Atlas 

Mountains soil moisture slightly increased. 
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Figure 20. The difference of the different soil moisture variables between the start and end period. The difference 
is calculated with values indicating a daily value, averaged over the entire period. 

4.4. REGREENING VERSUS DE-GREENING 

The observed differing regional variable change over the studied 38 years between mostly the north 

and southwest, makes the more in-depth study of regreened and de-greened areas especially 

relevant. The region around the Atlas Mountains seems to have the largest NDVI decrease, whilst 

the region around the northern coastline of the Mediterranean Sea seems to have the largest NDVI 

increase (figure 12). To validate these rough figure observations, a selection of the 10% most 

strongly de-greened and regreened areas is needed. Figure 21 shows the locations of these areas, 

which are consistent with the observations made from figure 12.  
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Figure 21. The selected top 10% NDVI difference areas. Green areas are the where the highest regreening 
took place, red the highest de-greening and blue the lowest difference (N/group= 209). 

 

For regreened areas the mean NDVI increase was 0.1234, while for the de-greened areas the mean 

NDVI difference was -0.0479. Both changes were found to be significant when conducting paired 

T-tests (p<0.001). The different groups were also validated to have a significant mean difference 

from each other by means of a two-sample T-test (p<0.001). This was also true for two-sample T-

tests between the de/regreened areas and the top 10% of areas where NDVI differences were 

found to be lowest (p<0.001). In table 3 the average differences of the variables are given for each 

group. All variables except total runoff have mean values that significantly differ for the two groups.  

 
 
Variable 

 
Regreened 

 
De-greened 

 
p 

Average annual precipitation (mm) 65.0516 -13.4710 ** 

Average annual daily temperature (°C) 1.2509 1.0425 ** 

Average daily sensible heat flux (Joule/m2) 0.0135 0.0547 ** 

Average daily latent heat flux (Joule/m2) 0.4036 0.0441 ** 

Average daily vapor pressure deficit (kPa) 0.0703 0.1193 ** 

Average annual evapotranspiration: 
       Total evaporation (mm) 58.9796 6.4370 ** 

       Vegetation transpiration (mm) 6.3537 3.1424 * 

       Canopy evaporation (mm) 5.7229 -0.6310 ** 

       Bare soil evaporation (mm) 32.1683 1.3814 ** 

       Snow evaporation (mm) -0.5260 -0.0243 ** 

       Open water evaporation (mm) 15.2607 2.5677 ** 

Average annual runoff: 
       Total runoff (mm) -6.9140 2.1324 - 

       Soil surface runoff (mm) 13.3027 -0.3240 ** 

       Subsurface runoff (mm) -20.2180 -1.8128 ** 

Average daily soil moisture: 
       Layer 1: 0-7 cm (mm3/m-3) -0.0873 -4.9836 ** 

       Layer 2: 7-28 cm (mm3/m-3) 0.8209 -2.2538 ** 

       Layer 3: 28-100 cm (mm3/m-3) -0.8574 2.4791 ** 

       Layer 4: 100-289 cm (mm3/m-3) -4.4798 5.1222 ** 

Table 3.  Mean differences between the start and end period for the regreened and de-greened areas. The third 
column gives the level of significance of the difference between the means of the two groups, which was 
calculated with a two-sample T-test (*p<0.05, **p<0.001). 
 

 highest increase 

 highest decrease 

 low difference 
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To investigate the relationship of NDVI to the observed variable differences in the two areas, for 

both groups NDVI regression analyses were conducted. The results of the Pearson regression 

coefficients are provided in table 4. Within the regreened group, the strongest correlation is found 

for VPD. Thus, the mean VPD increase of 0.0703 kPa for regreened areas is lower than the increase 

for the de-greened areas due to some inhibiting interaction with vegetation activity. Furthermore, 

precipitation, latent heat flux, surface runoff, and soil moisture in layers 1 and 2 gave significant 

moderate correlations in the regreened area. For the de-greened area, only canopy evaporation gave 

a significant correlation, which was negative. This is logical, as de-greening goes together with a 

canopy decrease. 

 
Variable Regreening De-greening 

Precipitation 0.2371** -0.0139 
Temperature -0.1113 -0.1172 
Sensible heat flux -0.0870 0.0067 

Latent heat flux 0.2033* -0.0034 
Vapor pressure deficit -0.2428** -0.1130 

Evapotranspiration:   

Total evaporation 0.2031* -0.0034 
Vegetation transpiration 0.1135 -0.0679 
Canopy evaporation 0.1074 -0.1487* 
Bare soil evaporation 0.0957 0.0844 
Snow evaporation 0.0528 -0.0634 

Runoff:   

Total runoff 0.1366* -0.1104 
Surface runoff 0.1711* -0.0098 
Subsurface runoff 0.0875 -0.1200 

Average annual soil moisture:   

Layer 1: 0-7 cm 0.1887* -0.1104 
Layer 2: 7-28 cm 0.1977* 0.0057 

Layer 3: 28-100 cm 0.0998 0.1001 
Layer 4: 100-289 cm 0.1054 0.0590 

Table 4. Summary of the Pearson correlations (*p<0.05, **p<0.001) of the variables with the NDVI differences 
of the regreened and de-greened groups. From dark to light green the highlighting indicates significant values 
that had a rounded of absolute value of respectively 0.2 and 0.1. 

4.5. CLIMATE CHANGE INVESTIGATION 

The results of the analysis of variable behavior in the areas were NDVI change was low, are 

provided in table 5. A paired t-test between the NDVI of the start and end period of the selected 

grid cells validated that the change was insignificant (p>0.5). For all variables except all runoff 

variables and canopy evaporation, the means of the two periods differ significantly. Within the 

area, on average precipitation has decreased by 7.9 mm, while temperature increased with 1 °C. 

 When interpreting the abovementioned results, the values in table 5 need to be kept in mind. 
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Variable 

 
1982-1985 

 
2017-2020 

 
Difference 

 
p 

Average annual precipitation (mm) 244.9840 237.1993 -7.7847 ** 

Average annual daily temperature (°C) 16.6003 17.6239 1.0236 ** 

Average daily sensible heat flux (Joule/m2) 3.6911 3.7226 0.0355 ** 

Average daily latent heat flux (Joule/m2) 1.6642 1.7252 0.061 ** 

Average daily vapor pressure deficit (kPa) 1.2063 1.3127 0.1064 ** 

 Average annual evapotranspiration: 

       Total evaporation (mm) 242.8335 251.7581 8.9246 ** 

       Vegetation transpiration (mm) 18.8472 20.4060 1.5588 * 

       Canopy evaporation (mm) 11.2898 11.2579 -0.0319 - 

       Bare soil evaporation (mm) 18.9705 20.3785 1.408 ** 

       Snow evaporation (mm) 0.4457 0.3414 -0.1043 ** 

       Open water evaporation (mm) 193.2846 199.3789 6.0943 ** 

 Average annual runoff: 

       Total runoff (mm) 12.8412 11.8321 -1.0091 - 

       Soil surface runoff (mm) 5.7694 6.1333 0.3639 - 

       Subsurface runoff (mm) 7.0674 5.6884 -1.379 - 

 Average daily soil moisture: 

       Layer 1: 0-7 cm (mm3/m-3) 74.0585 69.4050 -4.6535 ** 

       Layer 2: 7-28 cm (mm3/m-3) 147.0441 144.8720 -2.1721 ** 

       Layer 3: 28-100 cm (mm3/m-3) 155.3894 160.2927 4.9033 ** 

       Layer 4: 100-289 cm (mm3/m-3) 131.8611 140.3410 8.4799 ** 

Table 5. Mean values of the start and end period of the group where no significant vegetation change was 
observed. The third column gives the difference between the two, where start period values were substracted 
from values of the end period. The fourth column gives the level of significance of the difference between the 
means of the two groups, which was calculated with a pared T-test (*p<0.05, **p<0.001). 
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5.  DISCUSSION  

5.1. CLIMATE-VEGETATION INTERACTIONS IN THE MEDITERRANEAN 

Going from correlations to causal relationships can be challenging, especially when so many 

variables are interplay and when correlations are not extremely strong. However, there are some 

trends which can be observed within the observed study area. First of all, within the area the average 

temperature has significantly increased by 1 degree. It was hypothesized that a vegetation increase 

would induce temperature decrease by means of an increased latent heat flux. Surprisingly, in the 

study area this was not the case. Temperature significantly correlated in a positive relationship with 

NDVI, and in areas where regreening occurred the average increase was often larger than 1 degree. 

This finding cannot be explained by the energy balance between the sensible heat flux and latent, 

as for the first correlations were quite low, and for the latter a strong positive correlation with 

NDVI was found. Moreover, in summer the correlation of NDVI with temperature shows an even 

higher positive value. Thus, regreening within the Mediterranean does not seem adequate as a 

heatwave mitigation strategy when looking solely at its correlation with vegetation activity. An 

explanation for the observed correlation could be that dense vegetation has a lower albedo (Bonan, 

2008), increasing the total solar energy that is absorbed. However, it is possible that other factors 

of a significant influence here. For example, the regions that showed the strongest regreening were 

located nearer coastal areas, as opposed to the de-greened regions. Such areas are often under more 

influence of strong winds and water streams. When these have warm temperatures, they can heat 

up the nearby regions, which would explain the higher temperatures observed there. It could even 

be the other way around, that higher temperatures in the coastal areas induced vegetation 

transpiration due to increased VPD. This means that the photosynthetic activity of plants increased, 

giving higher NDVI values.  

  For precipitation, the causality of the found correlation can also be debated. Here, the 

observed correlation was as positive, as hypothesized. Especially during fall and winter, which are 

the periods when on average most rain falls (figure 9), precipitation mostly increased in areas where 

regreening was observed. Within the same seasons, bare soil evaporation, canopy evaporation, 

VPD, and soil surface runoff show strongest correlations with NDVI. This correlation can be 

explained by the precipitation increase during these seasons. For the question of drought mitigation 

by vegetation, it is more interesting to see how soil moisture is affected during periods of high 

precipitation. It was hypothesized that an increase in vegetation would increase infiltration due to 

the increase of root depth and spread. For the highest soil layer, this seems to be the case. This is 

indicated by the moderately strong and positive correlations with NDVI during fall and winter. 
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However, this effect does not last until spring, when moderate negative correlations are present, 

and can thus not contribute to summer drought mitigation.  

  Furthermore, in the more deeper soil layers correlations for all seasons are quite strong and 

negative. This could be partly explained by the fact that an enhancement of vegetation activity goes 

together with vegetation transpiration and that the water used for this comes is suctioned from the 

deeper layers. Additionally, for most soil layers the negative correlations are often strongest in the 

spring season. Likewise, this can be explained by the increase in vegetation transpiration during 

that period, as it is the growing season in the area (figure 13). That VPD correlates strongest with 

NDVI in this season also follows from the explanation of increased transpiration activity. 

However, when considering these interactions, it seems clear that the higher precipitation that is 

present in regreened areas does not cascade into higher soil moisture levels in summer and potential 

drought mitigation. On the other hand, this observation makes it more probable that the causal 

relationship is mostly in the direction of increased vegetation to increased precipitation. When 

more rain falls in winter, this does not seem to cause more moisture availability in growing seasons, 

and thus does not stimulate vegetation growth. However, when interpreting the differences 

between the correlations of vegetation with strongly de-greened and regreened areas, the potential 

of regreening for drought mitigation seems higher. This can be deduced from the fact that only in 

the regreened areas, there was a significant positive correlation of the moisture in the highest soil 

layers with NDVI. If this increase in soil moisture is present during summer periods, it increased 

water availability for evapotranspiration, leading to a cooling effect. 

5.2. RESEARCH LIMITATIONS 

The results obtained by this study of the Mediterranean area are the outcome of various choices. 

Therefore, below the most important choices that could have affected the results are reflected 

upon. Firstly, the temporal scale that was selected for this study was quite small for detecting 

climatic changes, as global climate change goes very gradually. However, if a longer time period 

was selected, NDVI data availability would have been less reliable as before 1982 there were not 

many good observations and often models that include years before 1982 use estimations. 

Furthermore, the fact that not NDVI observations of all years between 1982 and 2020 were used, 

makes it impossible to establish if the observed regreening and de-greening was gradual or abrupt. 

The lack of this decreases interpretation possibilities of the results. More abrupt changes in 

vegetation probably interact differently with hydrology and meteorology. Additionally, using 

averages of only 4 years for the start and end period does not completely overcome the influences 

of El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) cycles.  
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  Secondly, the study area that was selected had more than half of its grid cells within one 

connected region, around the Atlas Mountains. It was clear from the results that this region for 

many variables behaved differently than the areas located north of the Mediterranean Sea. 

Additionally, the areas in the north were often located near the coast, as opposed to the areas in 

the southwest. Therefore, the areas of the selected grid cells in the northern and southwestern 

regions could be under influence of different factors that interfere with the variables that were 

studied. This could have caused the insignificant correlations, and undermined visibility of 

relationships between the variables and NDVI.  

  Thirdly, the research does not give insights in how the variables interplay with each other. 

Correlations between the variables could provide a better understanding of their relationship to 

each other. Additionally factors of regions next to the study areas potentially interact with the local 

hydro-metrological variables of the selected grid cells. For example, understanding how 

evapotranspiration from nearby areas affected precipitation in the study areas can be of important 

value for a better understanding of vegetation-climate interactions within the area. Furthermore, 

for the regreened and de-greened groups, no analysis was performed of the seasonal behaviour of 

the variables. This makes the yearly correlations of NDVI with the variables difficult to interpret.  

  Moreover, using satellite-based datasets comes with some limitations. Methods used for 

processing the observations influences the eventual outcomes of these models. The choices made 

for calibration, the functions used for calculating not directly observable variables, the quality of 

measurements and instruments all influence the output data (Zeng et al., 2022). However, the 

ERA5-Land dataset is supposed to be conducted with the most up to date observations and state-

of-the-art scientific knowledge. Therefore, it is one of the most reliable datasets available. 

5.3. RESEARCH IMPLICATIONS AND RECOMMENDATIONS 

From the results of this study, it is not possible to give policy recommendations on land-use which 

could help mitigate heatwaves and droughts. However, the results of the correlations in the strongly 

regreened area do hint at a mitigating effect of regreening on droughts. To gain a better 

understanding of how vegetation activity interacts with the local climate in the Mediterranean 

Basin, future research should address the limitations of this research. For example, it would be 

valuable to study the interplay of the different variables with each other. Additionally, as increased 

vegetation activity correlated with higher temperatures, research on the interplay of albedo here is 

necessary. Furthermore, excluding the Atlas Mountain range from the study area could lead to a 

better understanding of the effects of regreening on the local climate. 
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6.  CONCLUSION 

The Mediterranean are threatened by an increase in drought and heatwave intensity and duration. 

Since scientific literature suggests a cooling and wetting effect of vegetation, this study aimed to 

answer the question on how vegetation activity has interacted with the local climate within areas in 

the Mediterranean Basin. The satellite-based data analysis of NDVI and hydro-meteorological 

correlations show that within the Mediterranean basin, vegetation activity has a positive 

relationship with both temperature and precipitation. It is most likely that increased vegetation 

activity causes an increase in precipitation. This can be explained by the fact that the former goes 

hand in hand with transpiration increases, which decrease the VPD. As a result, cloud formation 

is enhanced, and precipitation likelihood increases. This mechanism is most dominantly present 

during fall and winter. However, overall, the precipitation increase does not lead to more soil 

moisture during summer months. On the other hand, for strongly regreened areas there seems to 

be a positive relationship between soil moisture and vegetation activity. Thus, the potential of 

regreening for drought mitigation is not clear and needs to be further investigated. Furthermore, 

the stronger temperature increase observed for regreened areas can most likely be explained by 

albedo decreases. Likewise, to validate this assumption, future research is necessary. 
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APPENDIX I: VALIDATION OF METHODS 

 
 

COMPUTATION OF MEDITERANEAN CLIMATE MASK 

For the computation of the mask that indicated areas with a Mediterranean climate, the Köppen-

Geiger climate classifications Csa and Csb were used. However, as depicted in figure A, a large area 

east of the Mediterranean Basin also fell within this classification. This part was cut off from the 

mask that was used in this study. Literature suggested that this eastern area has another biome, and 

often within literature this area is not considered to fall within the Mediterranean Basin. 

 

 
Figure A. Purple regions indicate the selected grid cells where a Mediteranean climate is present according to 

Köppen-Geiger climate classification.  

 

 

COMPUTATION OF CROPLAND MASK 

Figure B depicts the two cropland maps that were conducted from large resolution land cover 

maps. Upon rescaling to 0.1, the logical values of the grid cells were averaged, creating percentages 

of the amount of cropland in each grid cell. It is clear from the figure that the map of 1982 had a 

lower resolution, leading to less variation in percentages upon rescaling. In the map of 2020 often 

near white grid cells are present, because rescaling caused a percentage above 0 even if only 1/36 

of the original cells had agriculture. 
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Figure B. Computed maps indicating cropland percentages per grid cell for 2020 and 1982. 

 
 

CROPLAND PERCENTAGE SELECTION 

Within the selected areas with a Mediterranean climate, a dominating region with selected grid cells 

for 0% agriculture is located around the Atlas Mountains. To overcome that only this region is 

used for this study, the cropland percentage was increased from 0%. The trade-off is that when the 

percentage is too high, the study area will be under higher influence of agricultural irrigation, whilst 

when it is too low the Atlas Mountains region is dominant. Therefore, by observing the maps and 

making rough calculations of the selected cells in the Atlas Mountain region, the mask with 

cropland below 15% was selected. Here, the Atlas Mountain region still covers a bit over half of 

the grid cell. However, increasing the percentage did not make this ratio much smaller, whilst 20% 

of cropland within a grid cell might substantially influence the hydro-meteorological variables that 

were studied. Figure C shows the areas selected for the different cropland percentages. 
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N= 349, area of Atlas Mountains N ≈ 302 

N= 1250, area of Atlas Mountains N ≈ 902 

N= 1681, area of Atlas Mountains N ≈ 1099 
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N= 2091, area of Atlas Mountains N ≈ 1219 

 

N= 2552, area of Atlas Mountains N ≈ 1329 

Figure C. Purple regions indicate the selected grid cells where the percentage of cropland is below a certain 
threshold (from up to down: 0, 5, 10, 15, 20, 25). Additionally, below each map the total amount of selected grid 
cells is given, and a rough calculation of the cells that are located in the Atlas Mountain region. 

 

 

PATTERN OF AVERAGE NDVI PER MONTH 

Figure D shows images that were made when upon initial exploration of the NDVI data. It was 

observed that for the years 2019 and 2020, for most parts of the winter days (October-January) the 

satellite observations were of very poor quality. Often more than half of the grid cells had NaN 

values, or otherwise very low values. Probably many observations were performed during times of 

the day with a large solar zenith angle or had a lot of cloud cover. Additionally, it seemed like 

something was flying in front of the satellite radiometer. However, as during summer months 

observations were normal, the MVC method that was used in this study still led to obtaining the 

accurate maximum NDVI values throughout the year for each grid cell. 
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Figure D. Images conducted with the daily satellite NDVI observations for some days in 2019 and 2020 to 
illustrate the poor quality of the measurements during the winter period of these years. Blue pixels were shown 
when grid cells had a NaN value. 
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Additionally, due to this bad quality for some periods, it was not possible to calculate reliable 

seasonal NDVI values per grid cell. However, to still gain some insight into NDVI behavior 

throughout the year in the Mediterranean area, figure E was created. It shows the mean NDVI 

values of all grid cells per month, with each grid cell expressing the mean of its 5 maximum values. 

It is also clear from this figure how in 2019 and 2020 the pattern greatly deviates from the other 

years in the winter period. 

 

 

 
Figure E. The NDVI values were calculated by taking the mean value of all grid cells of the selected areas. For 
each grid cell the maximum 5 NDVI values measured over the whole month were taken. For the years 2019 
and 2020 in some winter months the data quality was very low, with very low overall measurements, leading to 
the low NDVI measured in these months. 
 
As the years 2019 and 2020 did not show a reliable NDVI pattern, these years were not included 

for the creation of the mean NDVI pattern depicted in figure 13. Figure F depicts how the mean 

NDVI pattern for the end period when 2019 and 2020 are not included. 

 
 

  
Figure F. Mean of maximum NDVI values of each grid cell for the start and end period. In the left figure, the 
years 2019 and 2020 are not included in the calculation of the end period. Purple bars indicate the start period, 
green bars the end period. 
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APPENDIX II: ADDITIONAL RESULTS 

 
MEAN MONTHLY VARIATION OF VARIABLES 

Figure G depicts the seasonal pattern of all variables, except precipitation and temperature since 

these were already provided within the results section.  
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Figure G.  The monthly mean values per time period. As is specified within their title, some figures show monthly 

accumulated values (‘total’) whilst the other show daily mean values. 
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ABSOLUTE NDVI VALUES IN 1982-1985 

 

 
Figure H. Absolute mean NDVI values in 1982-1985 for the selected cells. 
 
 

 

CORRELATION PLOTS INCLUDING ALL GRID CELLS  

 

   

  

  

R2 =0.115** 

R2 =3.022-05 
R2 =0.311** 

R2 =0.076** R2 =0.311** 

R2 =0.233** 
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Figure I. Scatter plots depicting the correlations of NDVI difference with variable difference. All variable 

differences were calculated with daily values, and not with values that accumulated the entire year. For each plot 

corresponding the R-squared value is provided (p<0.05, **p<0.001). 

R2 =0.0228** R2 =0.133** 

R2 =0.367** R2 =0.0757** 
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APPENDIX III: MATLAB CODE 
%% NDVI highest value selection per year 
% parameters: 
year = 2020 % must be done for years 1982-1984 and 2017-2020 
startnamefiles = 'AVHRR-Land_v005-preliminary_AVH13C1_NOAA-19_' %name of files that is same for all of the year, must be copied 
manually from filename 
 
% path selection: 
folder = ['/Users/eva/Documents/Studie/Sustainable Development MS/Thesis/Matlab/NDVI/'+string(year)]; 
cd(folder) 
 
% 1. NDVI data download 
    %impossible to do completely by code 
    %but file names can be copied from website to Ecxel 
    %then import Excel file as cell array  
    %name of this array is here Map1 
 
parfor a = 1:length(Map1) 
    file = Map1(a);  
    URL = ['https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-index/access/'+string(year)+'/'+file]; 
websave(file, URL); 
end 
 
% 2. NDVI layered matrix development 
files= dir("*.nc"); 
filenames = string(vertcat(files.name)); 
 
NDVIlayered = zeros(1502,901,1);  
for k = 1:length(filenames) 
    NDVI = ncread(filenames(k), 'NDVI');  
    NDVImed = NDVI(3300:4801, 600:1500); % rough  Mediterranean area selection 
   NDVIlayered = cat(3,NDVlayered,[NDVImed]); 
end 
NDVIlayered(:,:,1) = []; %remove zeros matrix from layers 
 
clearvars -except NDVIlayered 
evalc(['NDVIlayered'+string(year)+' = '+NDVIlayered]) 
save(['NDVIlayered'+string(year)], ['NDVIlayered'+string(year)], '-v7.3');  
 
% 3. NDVI mean of 5 maximum values per year, per cell 
meanmaxall=mean(maxk(NDVIlayered, 5, 3),3); 
save(['meanmaxall'+string(year)],['meanmaxall'+string(year)]); 
 
%% Constuction of map with NDVI differences between start and end period  
% 1. Loading all  matrices of max NDVI per year, and saving in same folder: 
years = [1982; 1983; 1984; 1985; 2017; 2018; 2019; 2020]; 
newfolder = ['/Users/eva/Documents/Studie/Sustainable Development MS/Thesis/Matlab/NDVI/Total of NDVI MED and LC'] 
for y = 1:8 
    folder = ['/Users/eva/Documents/Studie/Sustainable Development MS/Thesis/Matlab/NDVI/'+string(years(y))]; 
    cd(folder); 
    load(['meanmaxall'+string(years(y))]); 
    cd(newfolder) 
    save(['meanmaxall'+string(years(y))],['meanmaxall'+string(years(y))]); 
end 
 
% 2. Taking the mean of startperiod and end period 
%start: 
layered= cat(3, meanmaxall1982, meanmaxall1983, meanmaxall1984, meanmaxall1985); 
meanmaximastart = mean(layered, 3, 'omitnan'); 
%end: 
layered= cat(3, meanmaxall2017, meanmaxall2018, meanmaxall2019, meanmaxall2020); 
meanmaximaend = mean(layered, 3, 'omitnan'); 
% calculating differences: 
difference = meanmaximaend- meanmaximastart; 
save('difference', 'difference') 
 
% 2. Scaling difference map to ERA5 resolution 
for i = 1:751; 
for j = 1:450; 
    map = difference;  
deze_data = map(2*(i-1)+1:2*i,2*(j-1)+1:2*j); 
deze_data = deze_data(:); 
differencescaled(i,j) = mean(deze_data, 'omitnan'); 
end 
end 
save('differencescaled','differencescaled') 
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%% Mask for cropland filter 
% 1. For 1982: 
cd '/Users/eva/Documents/Studie/Sustainable Development MS/Thesis/Matlab/Landcover map/GLASS-GLC' 
lc1982 = imread('GLASS-GLC_7classes_1982.tif'); 
crops1982 = (lc1982==10); %10 is agriculture flag (readme file states this) 
% for coordinates: 
I = geotiffinfo('GLASS-GLC_7classes_1982.tif');  
[x,y]=pixcenters(I); 
lats_dataset = (reshape(repelem(y, 8016), 8016,[])');  
lons_dataset = reshape(repelem(x, 3229), 3229, []);  
% mediteranean preselected area was lat = 15-60 & long = -15-60, so I tried 
% to scale to these coordinates: 
lats_dataset1 = lats_dataset(557:1559, 3674:5345); % coordinates here are 14.9794 - 60.0299 
lons_dataset1 = lons_dataset(557:1559,3674:5345); % coordinates here are -15.0243 - 60.0299 
% --> so coordinates have a very small difference, lie a very small bit 
% outside the boudaries 
 
dataset = crops1982(557:1559,3674:5345); 
lats =  15.00:0.1:60.00; 
lons = -15.00:0.1:60.00; 
for i = 1:451 
for j = 1:751 
idx = lats_dataset1 >= lats(i)-0.1 & lats_dataset1 < lats(i)+0.1 & lons_dataset1 >= lons(j)-0.1 & lons_dataset1 < lons(j)+0.1; 
data_current_grid = dataset(idx); 
crops1982_scaled(j,i) = mean(data_current_grid); 
end 
end 
crops_1982scaled = flipud(crops1982_scaled); 
save('crops_1982scaled', 'crops_1982scaled') 
 
% 2. For 2020:  
cd '/Users/eva/Documents/Studie/Sustainable Development MS/Thesis/Matlab/Landcover map/Copernicus2016-2020' 
status2020= ncread('C3S-LC-L4-LCCS-Map-300m-P1Y-2020-v2.1.1.nc', 'lccs_class');  
crops2020mask = (status2020==10|status2020==11|status2020==12|status2020==20|status2020==30); % these flags stand for all the flags 
with a type of cropland 
% first scaling to 0.05 resolution 
for i = 1:7200 
for j = 1:3600 
deze_data = crops2020mask(18*(i-1)+1:18*i,18*(j-1)+1:18*j); 
deze_data = deze_data(:); 
crops2020scaled005(i,j) = mean(deze_data, 'omitnan'); 
end 
end 
% then select the right area:  
cropsscaled2020med = crops2020scaled005(3300:4801, 600:1500); 
% further scaling to 0.1 resolution 
for i = 1:751; 
for j = 1:450; 
    map = cropsscaled2020med;  
deze_data = map(2*(i-1)+1:2*i,2*(j-1)+1:2*j); 
deze_data = deze_data(:); 
crops2020scaled01(i,j) = mean(deze_data, 'omitnan'); 
end 
end 
save('crops2020scaled01','crops2020scaled01') 
 
% 3. Combining both masks, choosing different cropland percentages: 
cropsmask0 = (crops2020scaled01==0)' .* (crops_1982scaled(1:450, :)==0); 
cropsmask5 = (crops2020scaled01<=0.05)' .* (crops_1982scaled(1:450, :)<=0.05); 
cropsmask10 = (crops2020scaled01<=0.1)' .* (crops_1982scaled(1:450, :)<=0.1); 
cropsmask15 = (crops2020scaled01<=0.15)' .* (crops_1982scaled(1:450, :)<=0.15); 
cropsmask20 = (crops2020scaled01<=0.2)' .* (crops_1982scaled(1:450, :)<=0.2); 
 
%% Mask for Meditterranean climate 
% 1. Own calculation: 
% requirements Csa/b classification (units in Celsius and mm!) :  
% 1. (Thot>10+ & 0<Tcold<18) 
% 2. (Psdry < 40 & Psdry< Pwwet/3) 
% 3. (Thot≥22 OR Tmon10≥4) 
cd '/Users/eva/Documents/Studie/Sustainable Development MS/Thesis/Matlab/ERA5' 
totalprec = ncread('Era52.nc', 'tp'); 
temp= ncread('Era52.nc','t2m'); 
% calculate mean values per month in 39 year period (1982-2020) 
z= [1:12:468]; 
jan_prec=mean(totalprec(:,:,z), [3], 'omitnan'); 
feb_prec=mean(totalprec(:,:,z+1), [3], 'omitnan'); 
mar_prec=mean(totalprec(:,:,z+2), [3], 'omitnan'); 
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apr_prec=mean(totalprec(:,:,z+3), [3], 'omitnan'); 
may_prec=mean(totalprec(:,:,z+4), [3], 'omitnan'); 
jun_prec=mean(totalprec(:,:,z+5), [3], 'omitnan'); 
jul_prec=mean(totalprec(:,:,z+6), [3], 'omitnan'); 
aug_prec=mean(totalprec(:,:,z+7), [3], 'omitnan'); 
sep_prec=mean(totalprec(:,:,z+8), [3], 'omitnan'); 
oct_prec=mean(totalprec(:,:,z+9), [3], 'omitnan'); 
nov_prec=mean(totalprec(:,:,z+10), [3], 'omitnan'); 
dec_prec=mean(totalprec(:,:,z+11), [3], 'omitnan'); 
vector_meanprec = cat(3, jan_prec, feb_prec, mar_prec, apr_prec, may_prec, jun_prec, jul_prec, aug_prec, sep_prec, oct_prec, nov_prec, 
dec_prec); 
 
jan_temp=mean(temp(:,:,z), [3], 'omitnan'); 
feb_temp=mean(temp(:,:,z+1), [3], 'omitnan'); 
mar_temp=mean(temp(:,:,z+2), [3], 'omitnan'); 
apr_temp=mean(temp(:,:,z+3), [3], 'omitnan'); 
may_temp=mean(temp(:,:,z+4), [3], 'omitnan'); 
jun_temp=mean(temp(:,:,z+5), [3], 'omitnan'); 
jul_temp=mean(temp(:,:,z+6), [3], 'omitnan'); 
aug_temp=mean(temp(:,:,z+7), [3], 'omitnan'); 
sep_temp=mean(temp(:,:,z+8), [3], 'omitnan'); 
oct_temp=mean(temp(:,:,z+9), [3], 'omitnan'); 
nov_temp=mean(temp(:,:,z+10), [3], 'omitnan'); 
dec_temp=mean(temp(:,:,z+11), [3], 'omitnan'); 
vector_meantemp = cat(3, jan_temp, feb_temp, mar_temp, apr_temp, 
may_temp,jun_temp,jul_temp,aug_temp,sep_temp,oct_temp,nov_temp,dec_temp); 
 
% calculate Thot for each coordinate: 
Thot = max(vector_meantemp, [], 3, 'omitnan'); 
% calculate where the this value is above 10 deg. Celsius: 
temp1 = Thot>(10+273.15); 
%caldulate Tcold for each coordinate: 
Tcold = min(vector_meantemp, [], 3, 'omitnan'); 
% calutlate 0<Tcold<18 
temp2 = 273.15<Tcold<(18+273.15); 
% total calculation: 
mask1 = Thot>10+273.15 & 273.15<Tcold<(18+273.15); 
 
% calculate Psdry summer: 
Psdry = min(vector_meanprec(:,:,4:9), [], 3, 'omitnan'); 
% calculate Pwwet winter: 
winter = [1:3,10:12]; 
Pwwet = max(vector_meanprec(:,:,(winter)), [], 3, 'omitnan'); 
% calculate total mask 2 
mask2 = (Psdry < 0.04) & (Psdry< (Pwwet/3)); 
 
% calculate Tmon (amount of months were temp is above 10) 
Tmon10 = vector_meantemp>(10+273.15);  
% total mask 3 
mask3 = (Thot>=(22+273.15)) | ((sum(Tmon10,3, 'omitnan'))>=4); 
 
% exculde arid regions (B classifiation) 
MAP = mean(vector_meanprec(:,:,:), 3, 'omitnan'); 
MAPwinter = sum(vector_meanprec(:,:,(winter)), 3, 'omitnan'); 
MAPsummer = sum(vector_meanprec(:,:,4:9), 3, 'omitnan'); 
MAPtotal = sum(vector_meanprec, 3, 'omitnan'); 
MAT = mean(vector_meantemp(:,:,:), 3, 'omitnan'); 
if (MAPwinter ./ MAPtotal)>=0.7 
    Pthreshold = 2 .*(MAT - 273.15) 
elseif (MAPsummer ./ MAPtotal)>=0.7 
   Pthreshold = 2 .*(MAT- 273.15) + 28  
else Pthreshold = 2 .*(MAT- 273.15) + 14  
end 
exclusionB = (MAP * 1000000)<(10 .* Pthreshold); 
 
%exclude Cw regions: 
Pwdry = min(vector_meanprec(:,:,(winter)), [], 3, 'omitnan'); 
Pswet = max(vector_meanprec(:,:,4:9), [], 3, 'omitnan'); 
exclusionCw = Pwdry <Pswet/10; 
%exclude D (Thot>10 & Tcold≤0) 
excludeD = (Thot>10) & (Tcold<=0); %gives zero values, as expected 
%exclude E (Thot <10) 
excludeE = Thot <10; %gives zero values, as expected 
% total mask: 
maskmedclimate = mask1 .* mask2 .* mask3 .* (exclusionB==0).* (exclusionCw==0); 
 
% 2. Other map: Adjustment of premade Mediterranean mask: 
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medit = shaperead('Mediterranean_basin.shp'); 
X1 = medit(1).X; 
Y1 = medit(1).Y; 
dataLen1 = length(X1); 
 
X2 = medit(2).X; 
Y2 = medit(2).Y; 
dataLen2 = length(X2); 
 
gridlons_01deg = -179.90:0.1:179.90; 
gridlats_01deg = 89.90:-0.1:-89.90; 
 
medit_mask01 = inpolygon(repmat(gridlons_01deg,length(gridlats_01deg),1),repmat(gridlats_01deg,1,length(gridlons_01deg)),X1(:),Y1(:)) + ... 
    inpolygon(repmat(gridlons_01deg,length(gridlats_01deg),1),repmat(gridlats_01deg,1,length(gridlons_01deg)),X2(:),Y2(:)); 
 
medit_mask01zoomed = medit_mask01(300:750, 1650:2400) % same grid cells as ERA5 dataset 
 
save('medit_mask01zoomed.mat', 'medit_mask01zoomed') 
 
% 3. Cutting of east boudary of own mask with pre-made mask: 
newmaskmed = maskmedclimate'; 
for y = 1:451 
    allx = medit_mask01zoomed(y,:); 
[I,J] = find(allx==1); 
   x = max(J); 
    newmaskmed(y,(x+1):751) = 0; 
end  
save('newmaskmed', 'newmaskmed') 
 
% calculate the areas that fall within Mediterranean climate and have the chosen crops percentage: 
evalc(['cropsmask = cropsmask'+string(crop_per)]); 
usefulareas = cropsmask15 .* meditclimatemask(1:450,:); 
 
% calculate NDVI differences for the selected areas: 
NDVIdiff_usefulareas = usefulareas .* differencescaled'; 
 
%% Load ERA5 variables 
cd '/Users/eva/Documents/Studie/Sustainable Development MS/Thesis/Matlab/ERA5' 
twomdewtemp = ncread('Era5indicators.nc', 'd2m'); %in Kelvin 
twomtemp = ncread('Era5indicators.nc', 't2m'); % in Kelvin 
evatopcanopy = ncread('Era5indicators.nc', 'evatc'); % in m of water equivalent 
evavegtransp = ncread('Era5indicators.nc', 'evavt');% in m of water equivalent 
potevap = ncread('Era5indicators.nc', 'pev'); % in m. 
run_off = ncread('Era5indicators.nc', 'ro'); % in m. 
surfacelatheatflux= ncread('Era5indicators.nc', 'slhf'); % in Joule per m*-2 but make it negative as it is reversed! 
surfnetsolarrad = ncread('Era5indicators.nc', 'ssr'); % in Joule per m*-2 
surfnetthermalrad = ncread('Era5indicators.nc', 'str');  % in Joule per m*-2 
surfsensheatflux = ncread('Era5indicators.nc', 'sshf');% in Joule per m*-2 but make it negative as it is reversed! 
evaporation = ncread('Era5indicators.nc', 'e'); % in m of water equivalent, but is negative so must be reversed! 
totalprec = ncread('Era5indicators.nc', 'tp'); % in m. 
volsoilwater1 = ncread('Era5indicators.nc', 'swvl1'); % in m3 per m-3 
volsoilwater2 = ncread('Era5indicators.nc', 'swvl2'); % in m3 per m-3 
volsoilwater3 = ncread('Era5indicators.nc', 'swvl3'); % in m3 per m-3 
volsoilwater4 = ncread('Era5indicators.nc', 'swvl4'); % in m3 per m-3 
baresoileva = ncread('Era5indicators.nc', 'evabs'); % in m of water equivalent 
evaopenwater = ncread('Era5indicators.nc', 'evaow'); % in m of water equivalent 
snoweva = ncread('Era5indicators.nc', 'es'); % i m of water equivalent 
subsurfacerunoff = ncread('Era5indicators.nc', 'ssro'); % in m 
surfacerunoff = ncread('Era5indicators.nc', 'sro'); % in m 
cd '/Users/eva/Documents/Studie/Sustainable Development MS/Thesis/Matlab/NDVI/Total of NDVI MED and LC' 
 
% adjust the variable units and calculate VPD 
temp_dewpoint = twomdewtemp-272.15; % conversion to Celsius 
temperature = twomtemp-272.15; % conversion to Celsius 
transpiration = evavegtransp * -1000; % conversion to mm of water equivalent 
runoff = run_off * 1000; % conversion to mm 
latentheat = surfacelatheatflux/-1000000; % conversion to Joule per mm2, and make flux positive 
sensibleheat = surfsensheatflux/-1000000; % conversion to Joule per mm2, and make flux positive 
totalevaporation = evaporation * -1000; % conversion to mm of water equivalent, and make flux positive 
precipitation = totalprec * 1000; % conversion to mm 
waterlayer1 = volsoilwater1 * 1000; % conversion to mm3 per m3 
waterlayer2 = volsoilwater2 * 1000; % conversion to mm3 per m3 
waterlayer3 = volsoilwater3 * 1000; % conversion to mm3 per m3 
waterlayer4 = volsoilwater4 * 1000; % conversion to mm3 per m3 
VPD = ((0.6108*(2.7183.^((17.27*temperature)./(temperature+237.3)))) - (0.6108*(2.7183.^((17.27*temp_dewpoint)./(temp_dewpoint+237.3))))) 
;  % in kPa 
canopyevaporation = evatopcanopy * -1000; % conversion to mm of water equivalent 
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baresoileva = baresoileva *-1000; % conversion flux and to mm of water equivalent 
evaopenwater = evaopenwater *-1000; % conversion flux and to mm of water equivalent 
snoweva = snoweva *-1000; % conversion flux and to mm of water equivalent 
subsurfacerunoff = subsurfacerunoff * 1000; % in mm 
surfacerunoff = surfacerunoff * 1000; % in mm 
 
%% ERA5 variable into layered matrices with monthly means of start and end period 
% parameters: 
variable = [insert variable];   
name = '[insert name variable]’; 
unit = '[insert unit of variable]'; 
 
% build layered matrices with monthly averages 
% - start period: 
z= [1:12:48]; 
start_jan=mean(variable(:,:,z), [3], 'omitnan'); 
start_feb=mean(variable(:,:,z+1), [3], 'omitnan'); 
start_mar=mean(variable(:,:,z+2), [3], 'omitnan'); 
start_apr=mean(variable(:,:,z+3), [3], 'omitnan'); 
start_may=mean(variable(:,:,z+4), [3], 'omitnan'); 
start_jun=mean(variable(:,:,z+5), [3], 'omitnan'); 
start_jul=mean(variable(:,:,z+6), [3], 'omitnan'); 
start_aug=mean(variable(:,:,z+7), [3], 'omitnan'); 
start_sep=mean(variable(:,:,z+8), [3], 'omitnan'); 
start_oct=mean(variable(:,:,z+9), [3], 'omitnan'); 
start_nov=mean(variable(:,:,z+10), [3], 'omitnan'); 
start_dec=mean(variable(:,:,z+11), [3], 'omitnan'); 
vector_start = cat(3, start_jan, start_feb, start_mar, start_apr, start_may, start_jun, start_jul, start_aug, start_sep, start_oct, start_nov, start_dec); 
 
% - end period: 
f = [49:12:96]; 
end_jan=mean(variable(:,:,f), [3], 'omitnan'); 
end_feb=mean(variable(:,:,f+1), [3], 'omitnan'); 
end_mar=mean(variable(:,:,f+2), [3], 'omitnan'); 
end_apr=mean(variable(:,:,f+3), [3], 'omitnan'); 
end_may=mean(variable(:,:,f+4), [3], 'omitnan'); 
end_jun=mean(variable(:,:,f+5), [3], 'omitnan'); 
end_jul=mean(variable(:,:,f+6), [3], 'omitnan'); 
end_aug=mean(variable(:,:,f+7), [3], 'omitnan'); 
end_sep=mean(variable(:,:,f+8), [3], 'omitnan'); 
end_oct=mean(variable(:,:,f+9), [3], 'omitnan'); 
end_nov=mean(variable(:,:,f+10), [3], 'omitnan'); 
end_dec=mean(variable(:,:,f+11), [3], 'omitnan'); 
vector_end= cat(3, end_jan, end_feb, end_mar, end_apr, end_may, end_jun, end_jul, end_aug, end_sep, end_oct, end_nov, end_dec); 
 
% Indicator matrix only for selected areas: 
useful_vector_start =usefulareas' .* vector_start(:, 1:450,:); 
useful_vector_end = usefulareas' .* vector_end(:, 1:450,:); 
 
% Initial investigation of variable: 
% 1. Matrices with yearly means, for both periods:  
mean_start = mean(useful_vector_start, [3], 'omitnan') ; 
mean_end = mean(useful_vector_end, [3], 'omitnan') ; 
 
% - Mean, max and, min of whole area, for both periods: 
formean_useful_start = mean_start'; 
formean_useful_start(usefulareas==0) =[]; 
formean_useful_end = mean_end'; 
formean_useful_end(usefulareas==0) =[]; 
 
% - Mean of whole area per month, for both periods: 
mean_months_start = mean(mean(useful_vector_start, 'omitnan'), 'omitnan');  
mean_months_start(:,1)=[] 
mean_months_end = mean(mean(useful_vector_end, 'omitnan'), 'omitnan'); 
mean_months_end(:,1)=[] 
 
for n = 1:12 
   month_start = useful_vector_start(:,:,n)'; 
   month_start(usefulareas==0) = []; 
   mean_month_start = mean(month_start, 'omitnan'); 
   month_end = useful_vector_end(:,:,n)'; 
   month_end(usefulareas==0) = []; 
   mean_month_end = mean(month_end, 'omitnan');  
   mean_months_start(n) = mean_month_start; 
   mean_months_end(n) = mean_month_end; 
end  
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% Difference between the two periods: 
% 1. per month:  
diff_mean_month = useful_vector_end - useful_vector_start; % layered matrix with differences for all 12 months 
mean_diff_mean_month= mean(mean(diff_mean_month, 'omitnan'), 'omitnan'); mean_diff_mean_month(:,1)=[];  
plot(mean_diff_mean_month)  
 
% 2. over whole year: 
diff_mean_year = mean_end - mean_start; % one map of difference between periods 
 
% 3. Correlation variable with NDVI  
%--for the whole year: 
%- remove unselected grid values, make vectors: 
vector_NDVIdiff_usefulareas = NDVIdiff_usefulareas; 
vector_NDVIdiff_usefulareas(usefulareas==0) = []; 
vector_useful_diff = diff_mean_year'; 
vector_useful_diff(usefulareas==0) = []; 
 
[RHO,PVAL] = corr(vector_NDVIdiff_usefulareas', (vector_useful_diff'), 'Type', 'Spearman', 'rows', 'complete') 
 
%--per season  
season1 = [3:5]; % spring 
season2 = [6:8]; % summer 
season3 = [9:12]; % fall 
season4 = [1:2,12]; % winter 
diff_season1 = mean(diff_mean_month(:,:,season1), 3, 'omitnan')'; 
diff_season2 = mean(diff_mean_month(:,:,season2), 3, 'omitnan')'; 
diff_season3 = mean(diff_mean_month(:,:,season3), 3, 'omitnan')'; 
diff_season4 = mean(diff_mean_month(:,:,season4), 3, 'omitnan')'; 
diff_season1(usefulareas==0) = []; 
diff_season2(usefulareas==0) = []; 
diff_season3(usefulareas==0) = []; 
diff_season4(usefulareas==0) = []; 
[rho_season1,PVALs1] = corr(vector_NDVIdiff_usefulareas', diff_season1', 'Type', 'Spearman', 'rows', 'complete'); 
[rho_season2,PVALs2] = corr(vector_NDVIdiff_usefulareas', (diff_season2'), 'Type', 'Spearman', 'rows', 'complete'); 
[rho_season3,PVALs3] = corr(vector_NDVIdiff_usefulareas', (diff_season3'), 'Type', 'Spearman', 'rows', 'complete'); 
[rho_season4,PVALs4] = corr(vector_NDVIdiff_usefulareas', (diff_season4'), 'Type', 'Spearman', 'rows', 'complete'); 
% results in table 
table = ["season1", "season2", "season3", "season4"; rho_season1, rho_season2, rho_season3, rho_season4; PVALs1, PVALs2, PVALs3, 
PVALs4] 
 
%% Further variable investigation: comparison different NDVI groups 
%calculate higest 10 percent of NDVI differences (regreening/degreening) 
max10percincrease = (NDVIdiff_usefulareas>=prctile(vector_NDVIdiff_usefulareas(:),90)); 
max10percdecrease = (NDVIdiff_usefulareas<=prctile(vector_NDVIdiff_usefulareas(:),10)); 
amount_group = sum(sum(max10percincrease)); 
%amount of values for the 2 NDVI differences is 209 (10% of usefulareas) 
 
% NDVI difference of areas: 
NDVI_10perincr = max10percincrease .* differencescaled';  
NDVI_10perdecr = max10percdecrease .* differencescaled'; 
% Variable of areas: 
variable_10percincr = max10percincrease .* mean_year(:, 1:450)'; 
variable_10percdecr =max10percdecrease.* mean_year(:, 1:450)'; 
%vector of matrices: 
NDVI_10perincr_vector = NDVI_10perincr; 
NDVI_10perincr_vector(max10percincrease==0)=[]; 
NDVI_10perdecr_vector = NDVI_10perdecr; 
NDVI_10perdecr_vector(max10percdecrease==0)=[]; 
indicator_5percincr_vector = indicator_10percincr; 
indicator_5percincr_vector(max10percincrease==0)=[]; 
regression analysis: 
regression_increase = fitlm(NDVI_10perincr_vector, indicator_10percincr_vector) 
regression_decrease = fitlm(NDVI_10perincr_vector, indicator_10percdecr_vector) 
[r,PVAL] = corr(NDVI_10perincr_vector(:), indicator_10percincr_vector(:), 'Type', 'Pearson', 'rows', 'complete') 
[r,PVAL] = corr(NDVI_10perincr_vector(:), indicator_10percdecr_vector(:), 'Type', 'Pearson', 'rows', 'complete') 
% T-test: 
[H,P]= ttest2(NDVI_10perincr_vector, NDVI_10perdecrvector) 
 
%% Climate change analysis: 
lowNDVIdiff = (differencescaled<0.00623 & differencescaled> -0.00623); % also gives 209 grid cells 
lowNDVIdiff_usefulareas = lowNDVIdiff' .* usefulareas; 
NDVI_lowdiff = lowNDVIdiff_usefulareas .* differencescaled'; 
 
variable_lowdiffstart = lowNDVIdiff_usefulareas.* mean_start(:, 1:450)'; 
variable_lowdiffend = lowNDVIdiff_usefulareas.* mean_end(:, 1:450)'; 
variable_lowdiffstart(lowNDVIdiff_usefulareas==0)=[]; 
variable_lowdiffend(lowNDVIdiff_usefulareas==0)=[]; 
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meanlowstart = mean(indicator_lowdiffstart) 
meanlowend = mean(indicator_lowdiffend) 
% T-test: 
[Hlow,P]= ttest(indicator_lowdiffstart,indicator_lowdiffend) 
 
%% Additional: background map used for visualization figures 
% Source: Natural Earth (Open Source): https://www.naturalearthdata.com/downloads/10m-natural-earth-1/10m-natural-earth-1-with-shaded-
relief-water-and-drainages/ 
elevation = imread('NE1_LR_LC_SR_W_DR.tif'); 
[A,R,cmap] = readgeoraster('NE1_LR_LC_SR_W_DR.tif'); 
C = imresize(A, 0.25); % zelfde maat als ERA5, maar nu nog juiste coordinaten.. 
% for coordinates: 
I = geotiffinfo('NE1_LR_LC_SR_W_DR.tif'); [x,y]=pixcenters(I); 
 
lats =  -89.9:0.0888:89.9; 
for i = 1:2025 
fornewy = (y >= lats(i)-0.1 & y < lats(i)+0.1); 
    data_current_grid = y(fornewy); 
    newy(i) = mean(data_current_grid); 
end  
newyflip = flip(newy); 
 
lons = -179.8: 0.0888 :179.8; 
for j = 1:4050 
    fornewx = x >= lons(j)-0.1 & x < lons(j)+0.1; 
    data_current_gridx = x(fornewx); 
    newx(j) = mean(data_current_gridx); 
end 
%for frame  
rightarea = C(350:843, 1857:2702, :); elevationmap = imresize(rightarea,[450 751]);  
save('elevationmap', 'elevationmap') 
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