
UTRECHT UNIVERSITY

MASTER THESIS
MSC COMPUTING SCIENCE

Where Do They Go?
A Geometric Seed Dispersal Model

Author:
C.P. (Tamara) Florijn
Student number:
5856442

Supervisors:
Frank Staals

Sarita de Berg
Second corrector:

Marc van Kreveld

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Faculty of Science

July 1, 2022

i

Abstract

C.P. (Tamara) Florijn

Where Do They Go?
A Geometric Seed Dispersal Model

Climate change forces plant species to migrate to other areas via seed dispersal, the
process of seeds moving away from the parent plant. The objective of this study is to
find a good geometric model of representation that allows us to answer the question:
where do the seeds go?

The landscape is represented using a simple polygon with n vertices, and the ini-
tial source plants are modelled as a set of m sites. To model the influence of wind,
we use a convex distance function based on a polygon with r vertices.

To answer queries such as ‘What region is covered in plants at a given time?’,
we use a Voronoi diagram. We prove fundamental properties and design novel al-
gorithms to compute geodesic Voronoi diagrams under a convex distance function.
We prove a time complexity of O

(
((n+m) · r) log((n+m) · r) logn

)
. Our adaptation

called the “lazy approach” improves that bound to O
(
(n+m · r) log(n+m · r) logn

)
.

Keywords: Climate change, plant migration, seed dispersal, theoretical computer
science, geometric algorithms, geodesic Voronoi diagrams, convex distance function

ii

Contents

1 Introduction 1
1.1 Ecological relevance . 1
1.2 Research questions . 2

2 Ecological background 4
2.1 Overview . 4

2.1.1 Modelling spreading plants . 4
2.1.2 Habitat connectivity . 5
2.1.3 Other spreading models . 5

2.2 DIMO Model . 5

3 Geometric background 8
3.1 Distance measures . 8

3.1.1 Convex distance function . 9
3.2 Shortest paths . 9

3.2.1 Geodesic distance . 9
3.2.2 Continuous Dijkstra . 10

3.3 Voronoi diagram . 11
3.3.1 Voronoi diagram under a convex distance function 11
3.3.2 Abstract Voronoi diagram . 13

3.4 Geodesic Voronoi diagram . 13
3.4.1 Geodesic Voronoi diagram algorithm by Aronov 14
3.4.2 Geodesic Voronoi diagram algorithm by Papadopoulou 16
3.4.3 Optimal geodesic Voronoi diagram algorithm 17

3.5 Minkowski sum . 17

4 Formalisation 19
4.1 Basic problem based on DIMO . 19
4.2 Convex distance function . 21

5 Properties of geodesic cd-Voronoi diagrams 23
5.1 Preliminaries . 23
5.2 Star-shaped Voronoi cell . 24
5.3 Additively weighted bisector . 26
5.4 Output complexity geodesic cd-bisector 29
5.5 Geodesic cd-Voronoi diagram . 34

6 Algorithms 36
6.1 Augmented cd-Voronoi diagram . 36
6.2 Additively weighted cd-bisector . 37
6.3 Geodesic cd-Voronoi diagram . 39

6.3.1 Lazy approach cd-Voronoi diagram 44

iii

7 Queries 49
7.1 Distance to closest site . 49
7.2 All points at given distance . 49
7.3 All points at multiple distances . 53
7.4 Queries under Euclidean distance measure 54

8 Extensions 55
8.1 Germination delay . 55
8.2 Habitat suitability . 57
8.3 Obstacles . 58
8.4 Anisotropic regions . 58

9 Conclusion 60
9.1 Future work . 60

Bibliography 62

A Research orientation 66
A.1 Wieger Wamelink . 66
A.2 Laurens Sparrius . 67

1

Chapter 1

Introduction

Climate change forces plant species to migrate to other regions to survive, when
their tolerance for environmental conditions such as temperature rise, droughts, and
habitat fragmentation is exceeded. (Ozinga et al., 2009; Corlett, 2013). To shift their
range, plants do not walk around but need to spread their seeds. This process is
called seed dispersal. Seed dispersal is essential for all plant species to survive climate
change (Thuiller et al., 2008). We will discuss this further in Section 1.1.

The main objective of this thesis is to design an appropriate geometric model to
represent seed dispersal and to calculate where seeds disperse to in a given envi-
ronment over a period of time. This includes designing and analyzing algorithms to
solve geometric and ecological challenges. We will discuss our research questions in
detail in Section 1.2.

As an orientation in the ecological field, we spoke to ecologist Wiemer Wamelink
from Wageningen University & Research and ecologist Laurens Sparrius from the
Dutch research institute FLORON, see Appendix A. Wamelink and his colleagues
developed a seed dispersal model called DIMO (Wamelink et al., 2014). DIMO
formed the basis of our geometrical approach to seed dispersal.

1.1 Ecological relevance

Because of climate change, the region of the earth with suitable climatic variables for
a plant species shifts: Species either adapt, move or die. (Ozinga et al., 2009). To pro-
tect biodiversity, it is relevant to track and predict this process over time. Seed dis-
persal models provide deeper insight in plant spreading and range expansion. They
predict the chances to survive climate change. This allows us to mitigate the dam-
age done by climate change. The gained knowledge can be used to either i) prevent
plant migration or ii) stimulate plant migration.

Invasive species, such as the Japanese knotweed, can cause serious issues. Generic
models of seed dispersion can help focus the management and manipulation of these
invasive species (Gosper et al., 2005; Büyüktahtakın and Haight, 2018). For example,
well-placed barrier zones can stop the spreading (Gosper et al., 2005).

On the other hand, to maintain a diversity of plant species, stimulation of plant
growth is more relevant than ever because of climate change, deforestation and other
limitations of habitat. Plant species have limited migration speed that differs per
species. Modelling seed dispersal can give more insight in the status of endangered
species that cannot keep up with the pace: the tolerance for temperature changes is
limited. As an example, McGuire et al. (2016) evaluated the connectivity of the US

Chapter 1. Introduction 2

landscape and calculated the effect that corridors would have on the plant move-
ment capacity.

However, the application of dispersal models on ecologically relevant scales is cur-
rently problematic. As dispersal is a continuous process, it can be modelled contin-
uously, using for example a single-parameter Pareto-distribution fitted to dispersal
data (Treep et al., 2021) . However, current ecological models use grid-based land-
scape representations. This becomes computationally infeasible at the desired scale.

1.2 Research questions

As we mentioned before, we spoke to ecologist Wieger Wamelink from Wageningen
University & Research. Wamelink developed a seed dispersal model called DIMO,
short for DIspersal MOdel. DIMO simulates the dispersal of plants through a grid
map over a period of time. The user can model barriers such as roads to indicate
where seeds cannot disperse to. A more elaborate explanation on DIMO can be
found in Section 2.2.

In our conversation with Wamelink, he elaborated on some of the challenges they
faced with the construction and calculation of their ecological model DIMO. The
recurrent problem was the long computation time.

Inspired by this conversation and directed by our literature review, we formulate
our research questions. We focus on a geometrical representation instead of repre-
sentations such as a graph or a grid model, because the problem is continuous in its
essence. In this way, we can use the geometry and techniques from computational
geometry to solve the problem. Our tasks are to:

1. Design a suitable geometrical model for seed dispersal on the basis of the eco-
logical model DIMO.

2. Design algorithms to perform queries such as:

a) At what time is a certain point covered in plants?

b) What is the region that a plant occurs in after a given period of time?

3. What is the complexity of the output maps of the designed algorithms? And
what is the time complexity of the algorithms? The complexity will be ana-
lyzed in terms of the size of the input, such as the number of input plants, the
complexity of the vegetation maps and the requested number of time rounds.

We represent the environment as a simple polygon W with n vertices, and model the
initial plant sources as a set P of m sites. To model the influence of wind, we use a
convex distance function R based on a convex polygon with r vertices.

In Figure 1.1, we can see an example how plants spread in W under a convex distance
function from time steps t = 1 to t = 3. We observe that the plant region that spreads
from site p3 has no overlap with the plant regions from other sites. On the other
hand, we see points that are reached by both sites p1 and p2, at equal or different
time steps. In these and more situations, we can use the information of a Voronoi
diagram. A Voronoi diagram is a subdivision that denotes what region is closest to
what site. For example, if we know that a point is closest to site p3 and that p3 does
not reach the point, we know no other site will.

Chapter 1. Introduction 3

p1 p2

p3

t = 1

t = 2

t =
1

t =
2

t =
3

t = 1

t = 2

b(p2
, p3)

b(
p 1
, p

2
)

t = 3

W

FIGURE 1.1: In this figure, we show an example how plants spread in
polygon W under a convex distance function. Sites p1, p2 and p3 are
the initial source plants. The polygon with center p1 in the form of an
asymmetric house is the convex distance function. The boundaries of
the regions reached by some site are indicated for time steps t = 1, t =
2 and t = 3. The bold polygonal line segments are indications of the

bisectors b(p1, p2) and b(p2, p3).

Even though the time steps that divide the region are discrete, we will first solve the
problem as if it were continuous by using a Voronoi diagram. Because we calculate
the distances within a polygon, we use geodesic distances. We will use the term
geodesic cd-Voronoi diagram to denote a geodesic Voronoi diagram under a convex
distance function. After solving the problem using a continuous approach, we will
discretise it again when we answer the queries.

Our approach will provide the ecological research community with a different way
to model seed dispersal, allowing them to use geometrical techniques for a more ef-
ficient solution. The novel geometric methods contribute to the foundation of com-
putational geometry to solve problems that could not be solved before.

In Chapter 2, we will elaborate on a collection of ecological models, and give a de-
tailed description of the DIMO model. Chapter 3 provides an overview of the geo-
metrical problems and techniques researched before. In Chapter 4, we formalise the
ecological model into a geometrical model, and prove the output complexity. Since
we solve the problem continuously and use a Voronoi diagram, Chapter 5 and 6 pro-
vide the fundamental proofs, the output complexity and algorithms to compute the
geodesic cd-Voronoi diagram of a simple polygon. Chapter 7 describes the algorithm
to perform queries once the geodesic cd-Voronoi diagram is known. We discuss ob-
servations about extensions of the problem in Chapter 8. Chapter 9 will conclude
the study, where we discuss the implication of the results and future research.

4

Chapter 2

Ecological background

In this part, we will discuss a myriad of ecological models with different representa-
tions and goals. Then, we will give a detailed overview of the DIMO model.

2.1 Overview

Seeds can disperse via self-dispersal, such as the explosive mechanism of the plant
species Impatience capensis, better known as jewelweed, or via external factors such
as wind, water, animals and humans. Not all seeds travel the same distance; some
rare events make the seeds dispersal very far. The long distance dispersal indicates the
dispersal of 1% of the seeds that travelled the furthest. LDD is crucial for natural
populations and spreading (Nathan, 2006).

So even within species, there is a large variation in distances over which individuals
disperse. Ecologists express this variation in ‘dispersal kernels’, which represent the
probability that an individual disperses over a specific distance. These kernels also
quantify the potential of a species for LDD.

Ecologists have quantified dispersal kernels for plant seeds (Wamelink et al., 2014;
Nathan and Muller-Landau, 2000; E. K. Klein et al., 2003; Treep et al., 2021), insects
(Baguette, 2003), birds (Van Houtan et al., 2007) and mammals (Revilla and Wiegand,
2008). As dispersal is a continuous process, it can be modelled continuously, using
for example a single-parameter Pareto-distribution fitted to dispersal data (Treep et
al., 2021).

2.1.1 Modelling spreading plants

We will first shortly introduce the DIMO model that is developed by ecologist Wieger
Wamelink, whom we spoke to, and his colleagues (Wamelink et al., 2014). DIMO
simulates the dispersal and establishment of plants through a possibly fragmented
landscape – grid map – over a period of time in steps of one year. Each run concerns
one plant species with specific parameters. The model could be helpful in making
or evaluating policy. In Section 2.2 we will give a more elaborate overview of the
model.

Andújar et al. (2017) construct a geometrical model to predict the spreading of John-
songrass (Sorghum halepense), an aggressively spreading weed, in maize fields in
Central Spain. In contrast with the DIMO model, the authors use varying patch
sizes and varying patch densities.

Chapter 2. Ecological background 5

Just as the previous model, Somerville et al. (2020) investigate the prevention of
weed spreading. Their review describes both static and spatio-temporal models.
One of the problems they tackle is where to use spray to stop the spreading of weed.
The challenge is to use enough spray without waste.

A study by Treep and his colleagues (Treep et al., 2021) proposes that seed disper-
sal in plants is a search strategy to find suitable habitat. To investigate their claim,
they use a seed dispersal kernel, as we described in the previous section. The simu-
lated landscapes, represented by grids, differ in patch size and distance between the
patches. The researchers vary the parameters of a Pareto-distribution to model the
scale from dominantly short-distance dispersal to non-local distribution with a high
chance of LDD. Each time step, the number of seeds in each grid cell is updated us-
ing the rules given by the Pareto-distribution. As a result, they calculate for instance
the success rate of finding habitat i.e. the fraction of seeds that lands on suitable
habitat.

2.1.2 Habitat connectivity

Climate change could demand higher plant migration rates than possible, especially
in regions that are disconnected because of for example roads. Dullinger et al. (2015)
compare different levels of habitat fragmentation in their models to evaluate the mi-
gration rates of plants. They model a hypothetical landscape using a grid raster.
Their results suggest to focus on the movement of species throughout the whole
countryside instead of only protected areas, because of the importance of connectiv-
ity.

Albert et al. (2015) collect data to assess what plant traits affect seed dispersal. Their
predictive models can help decide how to restore habitat connectivity. As an exam-
ple, if mostly land animals instead of birds transport the seeds, then it is efficient to
restore corridors for animals; in the other case it might not be. Note, this is not a
geometric model, but a systematic literature review.

2.1.3 Other spreading models

Not only seed disperse, also other substances can spread over a region. Teggi et al.
(2018) create a dispersion model for pollutants. The sources are modelled as poly-
gons with corresponding emission rates. Whereas DIMO and other models use a
representation of presence (1) or absence (0) of plants, the output of this model con-
sists of a spatial map with the concentration of pollutants in the region.

2.2 DIMO Model

Wamelink and his colleagues (2014) developed a dispersal model called DIMO. With
support of the researchers, we reviewed and ran the program. DIMO simulates the
dispersal of plants on a 2D map over a period of time. Each run concerns one plant
species with specific parameters. The output map shows the age of the plant per
grid cell.

At the start of the model, the initial source locations of the plant are given in a 2D
landscape, see for example Figure 2.1a. The region is represented by a homogeneous
grid; each cell of 250m × 250m indicates the presence or absence of a species. A func-
tion defines the time of arrival of the dispersing seeds from the source locations. This

Chapter 2. Ecological background 6

function depends on the dispersal by wind and by animals, possibly with hindrance
of obstacles.

Figure 2.1b shows the plant age map after 10 years with a uniform wind, but the
user can also use another function for the wind. The dispersal by wind is defined by
meters per time unit per direction (given in degrees). The landscape can have dif-
ferent compartments for different wind functions. An example of the effect of wind
is shown in Figure 2.1c. The dispersal by animals is given by a radius d in meters
per time unit. Obstacles, either for animals or for the wind, limit the spreading. In
the current version of DIMO, the region is split into compartments such that seeds
cannot spread from one compartment to the other, see for example an output map
with the influence of barriers in Figure 2.1f.

Not all regions are suitable for the germination and growing of plants, which is
defined in the habitat suitability map, specific per plant species. This is different from a
barrier, since the germination is limited, not the dispersal. Plants can only germinate
in a suitable area.

If a seed arrives on a location, the plants do not start growing immediately. The
parameter germination delay denotes the time that a seed stays in the seed bank before
it germinates. If the plant germinates, the plant should be counted as present. The
parameter the age of the first flowering defines the time between germination and being
a reproductive source plant itself. However, this parameter is not included in the
current implementation version of DIMO. Figure 2.1d shows an example of a plant
age map with germination delay. Since seeds cannot survive forever in the seed
bank, the parameter seed longevity indicates the time a seed can survive dormant in
the seed bank.

In short, for each plant, the input for DIMO consists of:

• A map of the landscape.

• A set of points, the source locations of the plant, including the age of the plant
(Figure 2.1a).

• A set of points, the locations of the seeds of the plant, including the age of the
seed.

• A habitat suitability map.

• A set of barriers, both for animals and for the wind (Figure 2.1e).

• Distance functions ci for the wind speed and force for compartment i in the
landscape.

• Parameters for the wind dispersal distance, animal dispersal distance, the seed
bank longevity and the germination delay.

In DIMO, the output consists of:

• A plant age map that gives the number of years the plant is present as repro-
ductive plant (Figure 2.1b).

• Suitability map, only the suitable areas reached by the plant.

• Seed-bank-life map that denotes the number of years left that the seed can
survive in the seed bank.

• Seed-distribution map: the points the plant reached in the last round.

Chapter 2. Ecological background 7

(A) The plant input map.
(B) The output plant age map (uni-

form wind).

(C) The output plant age map (pluri-
form wind).

(D) The output map plant age (ger-
mination delay).

(E) The input map for barriers. (F) The output plant age (barriers)

FIGURE 2.1: Visualisation of the DIMO model. The numbers show
the age of the plant in the grid cell. (A) The plant input map shows
the set of grids that contain the source plants, represented by “1”.
(B) The output plant age map with uniform wind. (C) The output
plant age map with pluriform wind. The wind force is present in the
direction North, North-East and East. (D) The output map plant age
with a germination delay of 2. (E) The input map for barriers. Here,
the region is divided into two regions, 1 and 2. The seeds cannot
spread from region 1 to 2, and vice versa. (F) The output plant map
when the barriers given in Figure 2.1e are used. Here, one can see
that the seeds do not travel from compartment 1 to compartment 2.

8

Chapter 3

Geometric background

In the geometric background we will discuss geometrical problems that have been
(partly) solved before. We will review shortest paths algorithms, including using
other metrics than Euclidean distance. One of these metrics is the convex distance
function, which we will inspect in more detail. Continuing, we will review Voronoi
diagrams, Voronoi diagrams under a convex distance function and geodesic Voronoi
diagrams. Finally, we will elaborate on Minkowski sums, because this operation
corresponds closely with the way plant regions expand in one time step.

3.1 Distance measures

As we explained in Section 2.2, DIMO takes the force of the wind into account in
the dispersal of seeds. We will discuss several distance measures and evaluate the
suitability for our geometric seed dispersal model, specifically in the context of in-
cluding the effect of wind.

The Euclidean distance is a popular distance measure and usually fits well in settings
applied to the real world. Let i = (ix, iy) and j = (jx, jy) be two points in R2. Then the
Euclidean distance between i and j is defined as

d(i, j) =
√
(ix − jx)2 + (iy − jy)2.

Another popular distance measure is the Manhattan distance. The Manhattan dis-
tance is defined as

d(i, j) = |ix − jx|+ |iy − jy|.

The generalisation of the Euclidean and Manhattan distance is known as the Minkowski
distance, given by

dp(i, j) = p
√
|ix − jx|p + |iy − jy|p.

This measure is also called the Lp norm. The Manhattan distance measure corre-
sponds with L1 and the Euclidean distance measure corresponds with L2.

The discussed measures are symmetric, positive and adhere to the triangle inequal-
ity. The symmetric property indicates that the distance from i to j is equal to the
distance from j to i. The positive property means that the distance between two dis-
tinct points is positive, and the distance from any point to itself is 0. The triangle
inequality states that the distance from i to j via k is at least as long as the shortest
distance from i to j. The combination of these properties is known as a metric.

Chapter 3. Geometric background 9

3.1.1 Convex distance function

As we said before, we would like to model the influence of wind. Because wind
and headwind exist, we need to let go of the property of symmetry. Therefore we
will look into a notion called the convex distance function, which exactly characterises
distance functions satisfying the triangle inequality (Barequet et al., 2001).

In Figure 3.1, an example of a convex distance function based on a convex polygon
is shown. From now on, we will always assume that a convex distance function
is based on a polygon, unless stated otherwise. Let R be a convex polygon that
contains the center O in its interior. The boundary of R denotes all the points with
distance 1 from the center. To calculate the distance from a point p to a point a using
a convex distance function, we translate R by placing O on site p, and shoot a ray
from p through a. Let v be the intersection point between the ray and R. Then a
convex distance function dR is defined by

dR(p, a) :=
||a − p||
||v − p|| ,

where ||a− p|| is the Euclidean distance from a to p. dR(p, a) is the factor that R must
be contracted or stretched to touch a. (Ma, 2000).

O

R

a
v

p

FIGURE 3.1: A convex distance function. (Ma, 2000).

3.2 Shortest paths

In this section, we will discuss articles that examine shortest path algorithms. First,
we will discuss geodesic distances. Then we will elaborate on continuous Dijkstra,
a technique that can be used to handle shortest paths in case of obstacles.

3.2.1 Geodesic distance

Given are two points p and q, that both lie in a polygon W. The geodesic distance
between p and q is defined as the length of the shortest path from point p to q that is
completely contained in W.

Geodesic distances have been studied extensively in the past. Problems in the geodesic
setting that have been solved optimally regarding their time complexity include
computing the shortest path tree of a point in a simple polygon (Guibas et al., 1986)

Chapter 3. Geometric background 10

and an optimal algorithm for geodesic Voronoi diagrams in simple polygons (Oh,
2019). A more elaborate explanation on Voronoi diagrams can be found in Section
3.3.

Using the geodesic distance, Arge and Staals (2017) addressed a problem that has its
roots in ecology or, even more specific, in the spreading of plants. We are given a
threshold ϵ, two sets of m points in R2, a set of “red” points A, the plant locations,
and a set of “blue” points B, the possible destination locations, in a simple poly-
gon with n vertices. Each point p ∈ A ∪ B also has a real value pv, representing for
example temperature.

The question is to find, for every plant location (red point) a closest destination loca-
tion (blue point), provided that the ecological value of the blue point differs at most ϵ
from the ecological value of the red point. The algorithm they provide handles dele-
tions and insertions in O(

√
m log3 n) time and process geodesic nearest neighbour

queries in O(
√

m logm log2 n), with a space usage of O(m logn + n).

3.2.2 Continuous Dijkstra

We will continue this overview of literature in the direction of problems where
polygonal obstacles are present. Hershberger and Suri (1999) provide an optimal
algorithm called continuous Dijkstra, to compute a planar map that encodes all
shortest paths from a fixed source point to all other points in the plane. The map
can process queries in O(logn) time, with n the number of vertices in the polygonal
obstacles.

The algorithm uses an efficient wavefront propagation. It simulates a “bubble” ex-
panding from one source point. The wavefront at time t consist of all the points that
have shortest distance t to the source vertex v. The boundary of the wavefront is a
set of circular arcs, as can be seen in Figure 3.2. The arrows in this figure show that
the meeting point between these arcs is either a straight line or a hyperbola.

To simulate the wavefront, events are processed one by one. At these events, the
topology of the wavefront might change. These events are categorised as wavefront-
wavefront collisions or wavefront-obstacle collisions. Collisions between wavefronts can
happen between arcs that are neighbours or non-neighbours. Collisions between
non-neighbouring arcs are not easy to detect and process. Therefore, the authors in-
troduced the concept of an approximate wavefront. Only in the second phase of the al-
gorithm, the exact collision events are computed using Voronoi diagram techniques.
Using an efficient data structure called a quad-tree-style subdivision, the edges and
vertices of the obstacles can be saved and searched through efficiently.

The algorithms takes O(n logn) time and O(n logn) space. O(n logn) running time
is optimal. Wang (2021) settled the open problem for the optimal space requirement
by introducing an algorithm with O(n logn) time and O(n) space complexity.

Chapter 3. Geometric background 11

FIGURE 3.2: The wavefront of the algorithm continuous Dijkstra.
(Hershberger and Suri, 1999).

3.3 Voronoi diagram

In this section, we will introduce Voronoi diagrams, Voronoi diagrams under a con-
vex distance function, and shortly discuss abstract Voronoi diagrams. In the next
section, we will discuss different algorithms to calculate geodesic Voronoi diagrams.

A Voronoi diagram partitions the plane with a given set P of sites into regions. Each
p ∈ P has a corresponding cell in the Voronoi diagram that contains all the points in
the plane that are closer to p than any other site in P.

Fortune (1987) describes an optimal sweep line algorithm to compute the Voronoi
diagram for a set of m point sites in Euclidean plane, commonly known as Fortune’s
algorithm. Fortune’s algorithm takes O(m logm) time and O(m) space.

3.3.1 Voronoi diagram under a convex distance function

Since we are interested in using different distance measures, we researched how to
construct bisectors and Voronoi diagrams under a convex distance function.

a1 a2

R1 R2

h1
h2

h

g

g1 g2

FIGURE 3.3: Construction of bisector between a1 and a2. (Ma, 2000).

The complete construction of the bisector using a sweep line costs O(r) time if R is
a polygon with r vertices. Since the bisector can have r − 2 segments, this running
time is optimal (Ma, 2000). First, we will sketch how to construct one segment of the
bisector, see Figure 3.3. This process can be repeated to form the complete bisector.

Chapter 3. Geometric background 12

Given are two points a1 and a2 and assume w.l.o.g. that they are on a horizontal line.
We will construct the bisector of these two points, see also Figure 3.3. Let h1 be a
vertex of R1 and let h2 be the intersection point of the horizontal line through h1, and
R2. Find the intersection point h of the line through a1h1 and the line through a2h2.
Point h is then on the bisector. Choose vertex g2 of R2 in such a way that the area
between the horizontal line through h1 and the horizontal line through g2 does not
contain any vertices. Then, find the intersection between the horizontal line through
g2 and R1, g1. Then, find intersection point g for the line through a1g1 and a2g2. In
the case of Figure 3.3, point h1 is a vertex of R1 and g2 is a vertex of R2, but this is not
necessarily so. The line segment hg is part of the bisector between a1a2.

In the degenerate case that one of the edges of R is parallel to a1a2, the bisector is not
a line but a non-bounded region, see Figure 3.4. Therefore, we introduce the concept
of a chosen bisector, based on lexicographical rules, and pick one of the edges of the
non-bounded region as the bisector.

a1 a2

FIGURE 3.4: In the degenerate case, the bisector is not a line but a
non-bounded region.(Ma, 2000).

Now that we know we can construct a bisector when using convex distance func-
tions, the next question is how to efficiently compute the Voronoi diagram. Chew
and Dyrsdale (1985) provide a divide-and-conquer algorithm that can compute the
Voronoi diagram in Θ(m logm) time, with m the number of sites, given that the in-
tersection of two bisectors can be found in constant time. Dehne and R. Klein (1997)
provide a sweep line algorithm that can handle abstract Voronoi diagrams for an
arbitrary nice metric within (optimal) O(m logm), and includes symmetric convex
distance functions (R. Klein, 1988). This approach can be generalised to handle arbi-
trary convex distance functions (Ma, 2000).

Anisotropic regions

In the previous section, we assumed that the complete region was associated with
one convex distance function. In the anisotropic setting, different convex distance
functions might be used for different subregions. If more than one convex distance
function is allowed, the triangle inequality does not hold anymore, see also Section

Chapter 3. Geometric background 13

8.4. The seed dispersal problem in the anisotropic setting is more difficult, and is
usually approached by approximation instead of finding an exact solution. For ex-
ample, Cheng et al. (2008) present an algorithm to approximate shortest paths in
anisotropic regions.

3.3.2 Abstract Voronoi diagram

The abstract Voronoi diagram is a subdivision of the plane such that each cell defines
the region closest to the point enclosed in that cell, but the distance measure is not
necessarily Euclidean. There are requirements for the distance measure to make sure
the Voronoi regions are path-connected and as a union fill the whole plane.

Klein (1988) introduces the notion of abstract Voronoi diagrams and provide a divide-
and-conquer approach to compute abstract Voronoi diagrams. It was required that
two bisecting curves under the given distance measure intersect only finitely often,
to make sure the abstract Voronoi diagram is a finite graph. Among these distance
measures are symmetric distance functions.

Klein et al. (2009) revisit abstract Voronoi diagrams and gives a new axiom system
that works without the requirement that two bisecting curves may intersect only
finitely often. It turns out that the other two axioms, that the Voronoi regions are
path-connected and as a union fill the whole plane, are strong enough to design
proofs and design an algorithm to compute the abstract Voronoi diagram for a larger
class of concrete Voronoi diagrams. In particular, all convex distance functions are
included now. The abstract Voronoi diagram can be computed in O(m logm) time,
assuming that the computation of a bisector could be carried out in constant time.

3.4 Geodesic Voronoi diagram

Algorithms for abstract Voronoi diagrams can be used to compute Voronoi diagrams
in a polygon under a geodesic distance measure. In the time complexity analysis of
abstract Voronoi diagrams, we assumed the computation of a bisector takes con-
stant time. The computation time of geodesic bisector, however, is dependent on
n, the number of vertices. Therefore, the computation time of the abstract Voronoi
diagram algorithm can be very long if we want to compute geodesic Voronoi dia-
grams. Therefore, the algorithm would need structural adaptations to suit geodesic
distances.

In this section, we will elaborate on multiple algorithms specifically designed to
compute geodesic Voronoi diagrams. First, we will give some concepts as defined in
Aronov (1989) and elaborate on the output complexity.

Definitions

Given a simple polygon W with n vertices and set P of m sites in W. Let VorW(P)
denote the Voronoi diagram of the set of sites P. V(s,W) is the Voronoi cell of site s
in polygon W.

For any two points i and j, we define γ(i, j) as the geodesic shortest path from i to j.
Then we call the last vertex before j on γ(i, j) the anchor of j.

Chapter 3. Geometric background 14

Let e be an edge of the shortest path map of site s, and let v be the furthest endpoint
of e from s. Then, extend e in increasing distance from s. The part of the extension of
e that lies in the interior of W is called the extension segment of e, emanating from v.

The augmented geodesic Voronoi diagram, Vor∗W(P), is VorW(P) augmented with the
union of the extension segments from each site s ∈ P, but only within the Voronoi
cell of s. All points in a region of Vor∗W(P) have the same anchor with respect to the
site of the Voronoi cell they belong in.

A vertex in three or more Voronoi cells or on the boundary of W and in two Voronoi
cells is called a Voronoi vertex. A Voronoi edge has breakpoints exactly at the intersec-
tion with extension segments, called e-breakpoints.

Output complexity

Geodesic Voronoi diagrams have size complexity O(n + m), with n the number of
vertices in W and m the number of sites, which was proved by Aronov (1989).

The complexity can be explained as follows. If we only look at the Voronoi edges and
vertices, and ignore e-breakpoints, the Voronoi diagram is by construction a planar
graph with vertices of degree 3 and above. Euler’s formula shows the complexity of
the map is linear in the number of faces. Since each Voronoi cell is connected, there
are m faces for m sites, so there are O(m) Voronoi vertices and Voronoi edges.

W has n edges, so we add O(n) to the complexity of the output map. A Voronoi
edge has e-breakpoints exactly at the intersection with extension segments. These
extension segments correspond one-to-one with the vertices of W, so the number of
e-breakpoints is bounded by n.

Thus, the total output complexity of a geodesic Voronoi diagram is O(n + m).

3.4.1 Geodesic Voronoi diagram algorithm by Aronov

In this section, we will describe the divide-and-conquer algorithm to construct a
geodesic Voronoi diagram for a Euclidean distance metric, as given by Aronov (1989).

Overview algorithm

In the preprocessing phase we triangulate W and compute a balanced decomposi-
tion of the triangulation tree. With the triangulation tree, we can cut up the polygon
recursively in two parts in constant time per cut, such that each part has at least a
quarter of the vertices.

In the base case of the recursive divide-and-conquer algorithm, if P consists of only
one site s, then VorW(P) is a single cell V(s,W) = W. If W is a triangle, then the
Euclidean Voronoi diagram can be computed in O(m logm) time and truncated to W
in linear time.

In the recursive step, we divide W in two subpolygons WL and WR, and divide P in
PL and PR, such that PL ⊂ WL and PR ⊂ WR. We recursively compute Vor∗WL

(PL) and
Vor∗WR

(PR).

At last, we extend Vor∗WL
(PL) to Vor∗W(PL), and Vor∗WR

(PR) to Vor∗W(PR) in O((n +
m) log(n+m)) time. Then, we compute Vor∗W(P) by merging Vor∗W(PL) and Vor∗W(PR)
in O(n + m) time.

Chapter 3. Geometric background 15

Extension phase

In the extension phase, we cut the polygon W in two subpolygons W1 and W2, sep-
arated by a chord e of the triangulation, and we are given Vor∗W1

(PL). The output of
this subroutine is Vor∗W(PL).

We process all the triangles ∆ in W2, starting at the triangle adjacent to e. We perform
a sweep line that is parallel to edge f , through which we enter ∆, and end at the
edges of ∆, as is depicted in Figure 3.5. We add (potential) intersections between
neighbours, either bisector-bisector or bisector-extension segment, as events in the
event list. At each event, a region disappears and we add potential intersections
between the new neighbours to the event list of the appropriate triangle.

x

f
f ′

f ′′

v

sweepline

a

b

FIGURE 3.5: Triangle ∆, which we enter through edge f , whose re-
maining edges are f ′ and f ′′. The vertex shared by f ′ and f ′′ is v.
Point a denotes an intersection point between two bisector curves,
and point b denotes an intersection point between a bisector edge and

an extension segment.

Merge phase

In this phase of the algorithm, we are given two sets of sites PL and PR (with a
chord of the polygon separating them), and Vor∗W(PL) and Vor∗W(PR). To compute
the merge of Vor∗W(PL) and Vor∗W(PR), we need to compute the bisector between PL
and PR, b(PL, PR).

To find the points of b(PL, PR) on the boundary of W, we divide the boundary in
O(n + m) line segments, such that each segment lies in one region with one corre-
sponding site and anchor point of set PL and and one corresponding site and anchor
point of set PR. We can find in linear time what points on the bisector have the same
distance to the closest point in PL and the closest point in PR.

Given a point of b(PL, PR), we know the first two sites and anchor points that define
the bisector. The anchor points only change when the bisector intersects with an
extension segment. After that, we can trace the bisector with the new anchor points
further in the same way.

Chapter 3. Geometric background 16

Time complexity

Since the extension phase takes O((n + m) log(n + m)) time, and the merge phase
takes O(n + m) time, we can use recurrence inequality bounds to find a time com-
plexity of

O((n + m) log(n + m) logn).

3.4.2 Geodesic Voronoi diagram algorithm by Papadopoulou

In this section, we will shortly discuss the geodesic Voronoi diagram algorithm by
Papadopoulou and Lee (1998). They construct a divide-and-conquer algorithm and
combine it with sweep techniques. This improves the time complexity to
O((n + m) log(n + m)). Similar to Aronov (1989), the described algorithm computes
the augmented geodesic Voronoi diagram.

First, we triangulate the polygon W. The dual graph of the triangulated polygon
is a tree, and we select one triangle of degree one as its root. The diagonal d of
each triangle ∆ partitions the polygon in two subpolygons, one “below” ∆ and one
“above” ∆.

We use the conventions as pictured in Figure 3.6. ∆(d) and ∆′(d) are the triangles
adjacent to diagonal d, such that ∆′(d) (“above” d) is on the path from the root to
∆(d) (“below” d).

∆(d)

v1

d1

d2

d ∆′(d)

d4

d3

v2v1,2

v3,4
root

FIGURE 3.6: Conventions as used in Papadopoulou and Lee (1998).

In the first phase, we sweep the polygon in postorder traversal of the tree. For
each triangle ∆(d) of the root diagonal of d, we compute the geodesic Voronoi dia-
gram of all sites “below” d. We store the information in a subdivision of complexity
O(n + m).

In the second phase, we sweep the polygon in preorder traversal of the tree. For each
triangle ∆(d) of the root diagonal of d, we compute the geodesic Voronoi diagram of
all sites “above” d, and again store the information in a subdivision of complexity
O(n + m).

In the final phase, we merge the two subdivisions inside each triangle to obtain the
geodesic Voronoi diagram. The Voronoi diagram of all sites “below” d, truncated to
∆(d), and the Voronoi diagram of all sites “above” d truncated tot ∆(d), is exactly
the Voronoi diagram of all sites in W, truncated to ∆(d).

Chapter 3. Geometric background 17

The merging phase takes O(n + m) time in total. The sweeping phases take O((n +
m) log(n + m)) time, since Ω(n + m) events can occur in the worst-case scenario.
Therefore, the total time complexity is O((n + m) log(n + m)).

3.4.3 Optimal geodesic Voronoi diagram algorithm

In recent years, a myriad of techniques were presented that improved the run time
of the algorithm.

Oh and Ahn (2020) present a sweep line algorithm with a time complexity of O(n +
m logm log2 n). They compute the adjacency information of the Voronoi cells, instead
of computing the whole Voronoi structure during the sweep line. This reduces the
number of events. Whereas the algorithm of Papadopoulou and Lee (1998) could
have Ω(n + m) events, only O(m) events occur in this algorithm.

Liu (2020) improves the running time even further to O(n + m(logm + log2 n)) time.
They sweep the polygon using the method introduced by Papadopoulou and Lee
(1998), and combine it with the technique of computing adjacency information as
Oh and Ahn (2020) presented.

At last, Oh (2019) proves that it was possible to compute the geodesic Voronoi dia-
gram optimally in O(n + m logm). They compute a balanced geodesic triangulation
of simple polygon W, and sweep the polygon twice, cell by cell. In each cell, they
compute the Voronoi diagram of all the sites that lie in the region swept so far in
O(n + m logm) time. The merge phase that is similar to Papadopoulou and Lee
(1998) takes O(n + m) time, which results in a total (optimal) time complexity of
O(n + m logm).

3.5 Minkowski sum

In the seed dispersal problem, seeds spread themselves in discrete time steps. Sup-
pose the shape of the wind force is given by a polygon R. That means that every
plant from round t will spread seeds around itself in the form of polygon R. We can
compute the region of plants in round t + 1, say Bt+1, by taking the Minkowski sum
of the region of plants in round t, say Bt, with polygon R.

We can visualise the Minkowski sum as sliding polygon R along the boundary of Bt.
An example can be seen in Figure 3.7. The formal definition of the Minkowski sum
of sets S1 ⊂R2 and S2 ⊂R2 as given in de Berg et al. (2008) is

S1 ⊕ S2 := {p + q : p ∈ S1,q ∈ S2.}

Since polygons are planar sets, the definition also applies to polygons. The Minkowski
sum of two convex polygons with n1 and n2 vertices is convex itself and can be com-
puted in O(n1 + n2) time. If one of the polygons is convex and the other one is
non-convex, then the time complexity is O(n1 · n2). If both are non-convex, then the
running time is O(n1

2n2
2). (de Berg et al., 2008).

Chapter 3. Geometric background 18

Bt

R

FIGURE 3.7: Visualisation of a Minkowski sum of a polygon Bt and
R.

19

Chapter 4

Formalisation

An important part of solving the problem is formalising the ecological model into
a geometrical model. In this chapter, we give the problem statement and output
complexity of the basic problem based on DIMO and its extension with a convex
distance function.

4.1 Basic problem based on DIMO

Given are a region W, which we will represent as a simple polygon with n vertices,
and a set P with m sites, initial source plants. At t = 0, the whole region W, except
for all sites p ∈ P, does not contain plants. Assume all sites p have age 1 at time
t = 0. Each time step t, each point in the region with plants at time t, we call it Bt,
disperse their seeds within a dispersal radius d. That is, the plant region Bt+1 is
the Minkowski sum of Bt and a disk with radius d. The region with seeds will be
reproductive plants and spread seeds themselves after one time step. We want to
answer the following question: at time 1 to t, what is the plant region Bt, and what
age do the plants have? The output map is a subdivision of W, where each region
has a corresponding age with value [0, t + 1]. Note, points that are unreachable will
have value 0.

Approach

The region with plants that originally came from plant pi can overlap with the region
of plant pj. But since all sites grow at equal speed with no obstacles, we can compute
the geodesic Voronoi diagram, and solve the problem as if it were continuous for
each region of the Voronoi diagram separately. The complete output map is the
union of all cells of the Voronoi diagram.

If we for now assume that each Voronoi cell is convex, the problem is the same as
growing a disk with radius d each step. The radius of the disk with plants is t · d at
time t starting with time t = 0. For example, this means that B1 is a disk with radius
d and age 1 with a center site p (p has age 2), given that the region with plants did
not yet intersect with the boundary of the Voronoi cell of p. The output consists of
concentric circles, with site p in the center, intersected with its Voronoi cell.

Instead, we know that Voronoi cells can be non-convex. Then, concentric circles of
different radii can appear. An example is presented in Figure 4.1. We will discuss
how to solve this problem in more detail in Chapter 7.

Chapter 4. Formalisation 20

p

W

t = 1 t = 2

FIGURE 4.1: If world W is not convex, then concentric circles of a
different radius than d can appear.

Complexity output map

The output map is a subdivision of W, where each region has a corresponding age
with value [0, t + 1]. In the output map, we will not make a distinction between
plants that originate from different origins.

As we mentioned before, we can solve this variation by computing the geodesic
Voronoi diagram of m source plants. A geodesic Voronoi diagram has complex-
ity O(n + m) (Aronov, 1989). Since the disks are convex, each disk can intersect a
Voronoi edge of a Voronoi cell at most twice. Each Voronoi cell edge can be inter-
sected at most four times, since it borders two Voronoi cells. Disks within a Voronoi
cell cannot intersect each other. Therefore, one time step has complexity O(n + m).
In total, the output complexity is O((n + m) · t).

In Figure 4.2, we show a construction that has complexity Ω(m · t) for any t and m,
since all m · t disks intersect with an edge of W, with just a constant number of edges.
Moreover, for any given t and n, we can construct a star-shaped polygon as in Figure
4.3 that has complexity Ω(n · t) with a constant number of sites. If we combine these
figures and change one of arms of Figure 4.3 into the construction of Figure 4.2,
we create a construction with output complexity Ω(m · t + n · t) = Ω((n + m) · t),
which is equal to the upper bound. Therefore, the worst-case output complexity is
Θ((n + m) · t).

W

p2 p3p1

FIGURE 4.2: In this figure, the disks grow from sites p1, p2 and p3.
Every time step, the disk intersects with the edges of W twice.

Chapter 4. Formalisation 21

p

W

FIGURE 4.3: In this figure, the disks grow from site p. Every time
step, the disk intersects with every edge of W twice.

4.2 Convex distance function

Given are a simple n-gon W, a set P of m sites, and convex distance function R based
on a convex polygon of r vertices. At t = 0, the whole region W, except for p ∈ P,
does not contain plants. Assume all sites p have age 1 at time t = 0.

Each time step t, all points in Bt disperse their seeds within a convex polygon R with
r vertices. That is, the plant region Bt+1 is the Minkowski sum of Bt and R. The
region with seeds will be reproductive plants and spread seeds themselves after one
time step. We want to answer the following question: at time 1 to t, what is the plant
region Bt, and what age do the plants have? The output map is a subdivision of W,
where each region has a corresponding age with value [0, t + 1].

Approach

The formal definition of the Minkowski sum of sets S1 ⊂R2 and S2 ⊂R2 as given in
de Berg et al. (2008) is

S1 ⊕ S2 := p + q : p ∈ S1,q ∈ S2.

If p = (px, py) and q = (qx,qy), then

p + q := (px + qx, py + qy)

Suppose, we only look at one site s. At time t = 1, B1 induced by s is R with center s.
Then, B2 is B1 + R = R + R. Therefore, in this case, S1 = S2 and p = q, so

p + q = 2p := (px + px, py + py) = (2px,2py)

In round t, if S2 denotes the region with plants and S1 denotes the convex distance
function R, then S2 = t · S1. Then q = t · p, so

p + q =
(

px + t · px, py + t · py
)
=

(
(t + 1) · px, (t + 1) · py

)
.

Chapter 4. Formalisation 22

We solve the specific discrete problem of computing B1,2,...,t by first solving the prob-
lem as if it were continuous. As long as we consider a simple polygon without
obstacles or inhabitable regions, Bt corresponds to all points at distance t to the clos-
est site in W. Therefore, we need to compute the geodesic Voronoi diagram under
R. To the best of our knowledge, there is no algorithm yet to compute the geodesic
Voronoi diagram under a convex distance function. We will provide fundamental
properties for the output complexity in Chapter 5, and give an algorithm to com-
pute the geodesic Voronoi diagram under a convex distance function in Chapter 6.
In Chapter 7, we discretize the problem again and answer the query as we formu-
lated here.

23

Chapter 5

Properties of geodesic
cd-Voronoi diagrams

In this section, we will provide the fundamental theorems that prove the output
complexity of the cd-Voronoi diagram. We first prove that the Voronoi cell in a cd-
Voronoi diagram is star-shaped. We will show that the output complexity of an
additively weighted cd-bisector is O(r). Then, we will prove the output complex-
ity of the geodesic cd-bisector, and end with a proof of the output complexity of a
geodesic cd-Voronoi diagram. We start with the preliminaries.

5.1 Preliminaries

Let P be a set of m sites in a simple polygon W with n vertices. We assume the
general position, that is no vertex of W is equidistant from two distinct sites of P
and no point of W is equidistant from four distinct sites of P. This was also assumed
in previous work on geodesic Voronoi diagrams (Aronov, 1989; Papadopoulou and
Lee, 1998; Oh, 2019).

Let R be a convex distance function defined by a convex r-gon. We will use cd-
polygon to refer to this r-gon. The boundary R denotes distance 1 to its center c. We
assume that the boundary of the cd-polygon does not intersect c. W.l.o.g., we define
distance 1 in such a way that when placing R at each site in P and vertex of W, then
these polygons do not overlap.

Note, even though we use the term ‘convex distance function’, we always mean that
the function is based on a convex polygon with r vertices.

A cd-edge is an edge in the cd-polygon, a cd-vertex is a vertex of the cd-polygon. If Θ1
is a cd-vertex, Θ1 denotes the cd-edge with one endpoint Θ1, and the other endpoint
in clockwise order w.r.t. Θ1. The anchor cd-edge of a piece of bisector e is the cd-edge
of site s or t that defines e.

d̂(x,y) is the shortest distance between x and y for a convex distance function R. The
cd-distance is the length of the path for a convex distance function R. If path γ(s, t) is
cd-shorter than γ′(s, t), it means that in the context of a convex distance function R,
γ(s, t) is shorter than γ′(s, t).

γ(x,y) is the shortest path from x to y in the Euclidean metric, which is also a shortest
path with the convex distance function. A shortest cd-path is a shortest path for a
convex distance function.

Chapter 5. Properties of geodesic cd-Voronoi diagrams 24

5.2 Star-shaped Voronoi cell

In this section, we will prove that Voronoi cells in geodesic Voronoi diagrams under
a convex distance function are star-shaped.

Lemma 5.2.1. Given R, the straight line segment between two points s and t is a shortest
path.

Proof. Convex distance functions adhere to the triangle inequality (Barequet et al.,
2001). Therefore, the straight line segment is a shortest path.

Lemma 5.2.2. For any points s and t, there exist a geodesic shortest cd-path that is polygo-
nal.

Proof. Convex distance functions adhere to triangle inequality, so any cd-shortest
path from s to t that is not a polygonal path, can be made into a polygonal path with
the same cd-distance.

Lemma 5.2.3. Suppose the shortest Euclidean geodesic path γ(s, t) from s to t has Euclidean
geodesic distance d(s, t). Then, the path γ(s, t) is also a shortest path under any convex
distance function, that is, no other path is cd-shorter.

Proof. Suppose there is a cd-shortest path η(s, t) that is different from and cd-shorter
than the Euclidean path γ(s, t). That means that there is a subpath on η(s, t) that is
different from γ(s, t). Because of Lemma 5.2.2, we can assume that η(s, t) is polyg-
onal. If there are multiple subpaths that are cd-shorter and different from γ(s, t),
w.l.o.g., we consider the subpath with the shortest Euclidean distance. Let y be the
first vertex on the subpath that is on η(s, t) but not in γ(s, t), let x be the last point in
η(s, t) before y that is also in γ(s, t), and let z be the first point in η(s, t) after y that is
also in γ(s, t). Let w be the next vertex after y in η(s, t), as shown in Figure 5.1.

Because the polygon W is simple, the region between γ(s, t) (black) and η(s, t) (red)
is empty. Still, it could be the case that the direct path from x to w intersects with
γ(s, t). Therefore, suppose there is a point x′ on the line segment xy with ϵ distance
from y, and a point w′ on the segment yw with ϵ distance from y. Since y is not on
γ(s, t), x′w′ will not intersect γ(s, t), nor will it intersect the polygon boundary.

Then, because of triangle inequality, we can shortcut vertex y and let the path go
from x′ to w′ directly, which is cd-shorter or just as short, and has a (strictly) shorter
Euclidean distance. This is in contradiction with our assumption that the path from
x to z via y and w and possibly other vertices was a shortest cd-path that had the
shortest Euclidean distance.

Therefore, there cannot be a cd-shortest path η(s, t) that is different from and cd-
shorter than the Euclidean path γ(s, t).

Chapter 5. Properties of geodesic cd-Voronoi diagrams 25

s
w

y

zx t

x′ w′

FIGURE 5.1: Here, the black path sxzt denotes the shortest Euclidean
path, and the red path sxywz denotes the shortest cd-path that is dif-

ferent from the Euclidean path.

Definition 5.2.1. As defined by Aronov (1989), the shortest path tree of W from site s
is the union of all the shortest paths from s to vertices of W.

Because of Lemma 5.2.3, we know that a shortest cd-path between two points is the
shortest Euclidean path. Therefore, we will define the shortest path tree under a
convex distance function as follows:

Definition 5.2.2. The shortest path tree in a simple polygon under a convex distance
function R is defined as the Euclidean shortest path tree.

Similar to Ma (2000), we will define a bisector and a Voronoi diagram for a convex
distance function R in such a way that many properties of the Euclidean bisector
and Voronoi persist.

As seen in Figure 3.4, the bisector may not be a polygonal line but may contain a
two-dimensional region. Therefore, we introduce the concept of a chosen bisector,
based on lexicographical rules, and pick one of the edges of the region as the bisector.

Definition 5.2.3. Let a ≺ b denote that point a precedes b in the lexicographical or-
dering, which is the case if ax < bx, or ax = bx and ay < by. Then, the region of a with
respect to b, D(a,b), is defined as the set {p ∈ P : d̂(a, p) ≤ d̂(b, p)}, and D(b, a) its
complement, within polygon W. The boundary between D(a,b) and D(b, a) is the
chosen bisector b(a,b).

Definition 5.2.4. Similar to Ma (2000), we define a star-shaped region A with center
site c for a convex distance function so that any cd-shortest path from c to any point
y in A is completely contained within A. Note, the center vertex is not necessarily
the Euclidean center.

Definition 5.2.5. In line with Ma (2000), let P = {a1, ..., an} be a set of sites. We call

V(ai, P) =
⋂
j ̸=i

In(D(ai, aj)),

the Voronoi region of ai. With slight abuse of notation, we will write Vai if the context
is clear. In denotes the interior of the set.

Theorem 5.2.4 (Star-shaped). Under any convex distance function, Voronoi cells in the
geodesic Voronoi diagram are star-shaped with respect to their center.

Proof. For a visual representation, see Figure 5.2. Suppose we have a site c and a site
d with corresponding Voronoi cells, respectively Vc and Vd. Let q be a point in Vc and

Chapter 5. Properties of geodesic cd-Voronoi diagrams 26

suppose a shortest cd-path γ(c,q) from c to q is not entirely contained in Vc. Let p be
a point in Vd that is on γ(c,q).

First, we consider the situation that d ≺ c. d̂(c,q) = d̂(c, p) + d̂(p,q), and d̂(d,q) ≤
d̂(d, p) + d̂(p,q), since the shortest path from d to q does not necessarily contain p.
Since p is in Vd, d̂(d, p) ≤ d̂(c, p). Therefore, d̂(d,q) ≤ d̂(c,q), which contradicts with
the assumption that q is in Vc, since q is closer or just as close to point d, while points
in Vc only contain points strictly closer to c.

Second, we consider the situation that c ≺ d. d̂(c,q) = d̂(c, p) + d̂(p,q), and d̂(d,q) ≤
d̂(d, p) + d̂(p,q). Since p is in Vd, d̂(d, p) < d̂(c, p). Therefore, d̂(d,q) < d̂(c,q), which
also contradicts with the assumption that q is in Vc, since q is strictly closer to d,
while points in Vc only contain points closer to c or at the same distance from d.

Thus, under any convex distance function, Voronoi cells in the geodesic Voronoi
diagram are star-shaped with respect to their center site.

c

dp

q

Vc

Vd

FIGURE 5.2: Vc, the blue region, denotes the Voronoi cell of point c,
Vd is the Voronoi cell of point d. The path d to p is given in red.

5.3 Additively weighted bisector

To compute the geodesic cd-Voronoi diagram, we need to compute a geodesic cd-
bisector. First, we will discuss the differences between a cd-bisector and a geodesic
cd-bisector, and show that we need a construction for an additively weighted bi-
sector to compute the geodesic cd-bisector. Then, we will argue that the additively
weighted bisector consists of connected straight line segments. At last, we will prove
that the complexity of the bisector is O(r), as long as the anchor points do not change.

Difference cd-bisector and geodesic cd-bisector

In this section, we will discuss the differences between a cd-bisector and an geodesic
bisector, and why the construction for a cd-bisector fails in the case that one of the
two sites has an additive benefit.

Let s and t be two sites in W, and let v be a vertex of W. Suppose we know that
vertex v is the anchor point (from s) of a piece of the bisector between s and t. Then,
d̂(s, t) = d̂(s,v) + d̂(v, t).

Chapter 5. Properties of geodesic cd-Voronoi diagrams 27

In this case, the classic construction of a bisector does not work, see Figure 5.3 for
a visual representation. Suppose the bisector between s and t intersects the line
segment vt. Let Θ1 be a cd-vertex with respect to v, and let Θ2 be the intersection
with the horizontal line through Θ1 and the cd-polygon R with center t. Classically,
we would shoot a line through v and Θ1, and t and Θ2. The intersection point, u, of
the two lines is on the bisector.

The reason it works in the classic version, is the equality of the ratio’s

|vΘ1|
|vu| =

|tΘ2|
|tu|

.

If one of the two has an additive benefit, we cannot use the method that both poly-
gons should be enlarged with the same factor. Then, one of the two is assumed
to have a larger enlargement factor than it should have. Instead, we need to use a
construction for an additively weighted bisector, where v has an additive benefit (the
cd-distance from s to v) in comparison to t.

s

v t

u

Θ1 Θ2

FIGURE 5.3: u is not necessarily on the bisector between v and t.

Output complexity additively weighted bisector

Theorem 5.3.1 (Additively weighted bisector). The additively weighted bisector consists
of O(r) connected straight line segments.

Proof. To prove that the additively weighted bisector consists of straight line seg-
ments, we will construct an equation for each piece of the bisector, and show that
this equation is linear. In the following sections, we will assume we already know
the anchor cd-edge of the piece of bisector we construct. After that, we will elaborate
on finding the starting cd-edge.

Suppose we are given two sites s and t, and two cd-edges Θ1 and Θ2 for respectively
site s and point t, and we are given that Θ1 and Θ2 are anchor cd-edges.

We extend these cd-edges to lines and draw them in a coordinate system. W.l.o.g.
suppose that s is on the origin of the coordinate system, and t is on the x-axis, see
a visual representation in Figure 5.4. We will name the lines ℓs(f) and ℓt(f) for
respectively site s and t, for a given translation factor f . At time step 0, the line ℓs(0)
corresponds with the line through cd-edge Θ1. Then, we draw the next time step
ℓs(1).

Chapter 5. Properties of geodesic cd-Voronoi diagrams 28

s t

cs

gs

ls(f)

zs
slope: as

ls(0)
ls(1)

x

y

FIGURE 5.4: Visual representation of the lines through a cd-edge of s
in a non-vertical situation.

If we look at a later time step, the cd-polygon expands. So ls(f) and lt(f) translate up
or down as f varies – in other words, move further from s or t respectively. (x,y) lies
on the bisector if and only if (x,y) lies on ℓs(f) and ℓt(f) for the same enlargement
factor f . At that point, the distance to s and t is equal. If we look at an arbitrary
enlargement factor (so an arbitrary f), we can create a mathematical equation using
the variables f , x and y, and other variables we define here.

as =

{
1, if ℓs(f) is vertical
slope of ℓs(f), otherwise

bs =

{
0, if ℓs(f) is vertical
1, otherwise

cs =

{
x-intercept of ℓs(0) if ℓs(f) is vertical
y-intercept of ℓs(0), otherwise

gs =

{
x-intercept of ℓs(1)− cs if ℓs(f) is vertical
y-intercept of ℓs(1)− cs, otherwise

Note that gs has a positive value by definition.

To define f in the coordinate system, we need an extra variable zs.

zs =

{
x-intercept of ℓs(f)− cs if ℓs(f) is vertical
y-intercept of ℓs(f)− cs, otherwise

fs =
zs

gs

The equation for ls(f) is then given by

−as · x + bs · y − cs − f · gs = 0.

Chapter 5. Properties of geodesic cd-Voronoi diagrams 29

If we define the variables at, bt, ct and gt alike for lt(f) we obtain the following
formula

−at · x + bt · y − ct − f · gt = 0.

For the bisector, we are interested in the situation that both lines have the same factor
f , and the same x and y coordinate, which is a part of the bisector.

We rewrite the formula’s. If the anchor cd-edges are unchanged, the equation for the
bisector piece is

f =
−as · x + bs · y − cs

gs
=

−at · x + bt · y − ct

gt

⇒
1
gs
· (−as · x + bs · y − cs) =

1
gt
· (−at · x + bt · y − ct)

⇒
1
gs
· (−as · x + bs · y − cs) +

1
gt
· (at · x − bt · y + ct) = 0

=

(1
gt
· at − 1

gs
· as) · x + (1

gs
· bs − 1

gt
· bt) · y + 1

gt
· ct − 1

gs
· cs = 0

Since gs, gt, as, at,bs,bt, cs and ct are all constants, we know this equation is a straight
line. Therefore, the additively weighted bisector consists of connected straight line
segments.

Degenerate cases If gs or gt is 0, then the formula is not defined, but this does not occur
since gs and gt are positive.

The equation for the bisector changes exactly at an intersection with a line from the
center through a cd-vertex, and the equation is linear. Therefore, the complexity of
an additively weighted bisector is O(r).

5.4 Output complexity geodesic cd-bisector

In this section, we will prove that de output complexity of a geodesic cd-bisector is
O(n + r).

First, we will repeat a definition as defined by Aronov (1989). Let e be an edge of the
shortest path map with respect to s, and let v be the furthest endpoint of e from s.
Then, extend e in increasing distance from s. The part of the extension of e that lies
in the interior of W is called the extension segment of e, emanating from v.

Chapter 5. Properties of geodesic cd-Voronoi diagrams 30

v

p

w

t

s
Qt(v, p)

Qs(w, p)

FIGURE 5.5: Qt(v, p) (red), is the region between the extension seg-
ment emanating from v and the extension segment emanating from
p with respect to t. Qs(w, p) (blue), is the region between the exten-
sion segment emanating from w and the extension segment emanat-

ing from p with respect to s.

In Figure 5.5, we see a schematic representation. Let Qt(v, p) be the region between
the extension segment emanating from v and the extension segment from neighbor-
ing vertex p, such v is the anchor-point from all points in Qt(v, p). Let Qs(w, p) be
the region between the extension segment emanating from w, and the extension seg-
ment from neighboring vertex p, such all points in Qs(w, p) have anchor point w.
We will call these regions cones. Note, the cones associated with a specific source
point cover the entire polygon and have no overlap. So, in this case with two source
points s and t, each point in the polygon W is associated with two cones, one from s
and one from t.

As proven by Ma (2000), under any convex distance function, the bisector is a polyg-
onal path with complexity O(r).

Definition 5.4.1. Breakpoints induced by the vertices of the convex distance function
are called cd-breakpoints. Breakpoints induced by extension segments are called e-
breakpoints.

We first prove that the geodesic cd-bisector has complexity O(r · n), and then im-
prove this result to O(r + n).

Lemma 5.4.1. Given R, the geodesic bisector between two points s and t has complexity
O(r · n).

Proof. As proven by Aronov (1989), a geodesic Voronoi edge in the Euclidean metric
that is a part of the bisector between s and t has breakpoints at exactly the intersec-
tion points with extension segments. Within this region, no e-breakpoints can occur,
only cd-breakpoints.

Since the bisector is connected, the bisector intersects the boundary of polygon W
at two points. Between the intersection points with the boundary, the bisector inter-
sects at most n extension segments.

Chapter 5. Properties of geodesic cd-Voronoi diagrams 31

Lemma 5.4.2. The bisector can intersect each extension segment at most once, so it inter-
sects the boundary of each cone at most twice.

w

a

b

Qs(w, p)

FIGURE 5.6: The bisector intersects the boundary of Qs(w, p) more
than twice.

Proof. We consider cone Qs(w, p). Suppose the bisector intersects the boundary of
Qs(w, p) more than twice, so it intersects an extension segment at least twice. Both
variations (two intersections and more than two intersections) are drawn in Figure
5.6 in the context of Figure 5.5. Let a be a point on one of the extension segments
of Qs(w, p), such that the line segment from w to a intersects the bisector twice. By
definition of Qs(w, p), the shortest path from s to a passes through w. Since the
Euclidean path is a shortest cd-path, we will consider the shortest path to be the
straight line segment from w to a.

Vertex w is either in Vs or in Vt. First, suppose w and thus also a are in Vs. Then, the
shortest path from s to a is not entirely contained within Vs, which is in contradiction
with Theorem 5.2.4.

Second, suppose w and thus a are in Vt. Then, let b be a point on wa∩Vs. The shortest
path from s to b goes via w, by definition of Qs(w, p). Since w is not in Vs but in Vt, the
shortest path from s to b is not entirely contained in Vs, which is in contradiction with
Theorem 5.2.4. Therefore, it is not possible that the bisector intersects an extension
segment more than once, so it intersects the boundary of each cone at most twice.

As proven by Aronov (1989), there are O(n) extension segments, in total O(n) e-
breakpoints occur. So, we can split the bisector in O(n) pieces. Within this piece, all
breakpoints are cd-breakpoints. We will now consider a piece of the bisector within
two extension segments, as shown in Figure 5.5.

We see the situation between two extension segments is correspondent with an ad-
ditively weighted bisector (that is, either two extension segments from one cone, or
one extension segment from a cone from site s and one extension segment from a
cone from site t).

Because of Lemma 5.3.1, we know that the complexity of this piece of bisector is
O(r). Since the O(n) extension segments cut the bisector in n pieces, and each piece
has O(r) cd-breakpoints, the total complexity is O(r · n).

Chapter 5. Properties of geodesic cd-Voronoi diagrams 32

Theorem 5.4.3 (Geodesic bisector). Under any convex distance function, the geodesic
bisector between site a and b has complexity O(r + n).

Proof. Let Θ1...Θr be the vertices of convex distance function R, see Figure 5.7.

We will define Qs(w,Θi) as the line segment from w with angle θi within cone
Qs(w, p), with the first intersection with the boundary of W as endpoint. Because
of the definition of Qs(w, p), the shortest path from s to a point on Qs(w,Θi) passes
w last.

Θi

c θi

FIGURE 5.7: The convex distance function R, with vertex Θi at angle
θi with respect to the half line from c up.

Lemma 5.4.4. Θi can induce at most one cd-breakpoint with respect to s.

Proof. For this proof, we will discuss the two situations that the bisector might have
more than one cd-breakpoint induced by Θi. First, we will discuss that the bisector
cannot intersect Qs(w,Θi) more than once. Then, we will discuss that the bisector
cannot intersect both Qs(w,Θi) and Qs(v,Θi), with v another vertex of polygon W.

Lemma 5.4.5. The bisector intersects Qs(w,Θi) at most once.

Proof. For the sake of contradiction, assume the bisector intersects Qs(w,Θi) more
than once. For a visual representation, see Figure 5.8.

The proof is very similar to the proof of Lemma 5.4.2, so we will omit the details
here.

w

a

b

Qs(w, p)

Qs(w,Θi)

FIGURE 5.8: The bisector (red) intersects Qs(w,Θi) twice, which is not
possible.

Lemma 5.4.6. The bisector cannot intersect both Qs(w,Θi) and Qs(v,Θi), with v another
vertex of polygon W.

Proof. Assume that Qs(w,Θi) and Qs(v,Θi), are intersected by the bisector. Because
of Lemma 5.4.5, we know that the bisector cannot intersect the line segment twice.

Chapter 5. Properties of geodesic cd-Voronoi diagrams 33

First, we consider the situation that the Euclidean shortest path from s to w goes via
v. Figure 5.9 shows a visual representation. Let pv be the intersection of the bisector
with the line segment Qs(v,Θi). Let pw be the intersection of the bisector with the
line segment Qs(w,Θi). Since the bisector is connected, pv and pw are connected via
a path. Suppose w ∈ Vs, then v is not in Vs. That is in contradiction with Theorem
5.2.4, since the shortest path from s to w goes via v. Suppose v ∈ Vs. Since the bisector
intersects the boundary of cone Qs(v,Θi) and v is on the shortest path from s to w, w
is not in Vs. Let a be a point on Qs(w,Θi) such that the line segment wa intersects pw.
a in the same Voronoi region as v, so a ∈ Vs. But the shortest path from s to a goes via
w, and w ̸∈ Vs. That is in contradiction with Theorem 5.2.4. So, this situation leads
to a contradiction.

s

v

w
pv

pw

a

Qs(v,Θi)

Qs(w,Θi)

FIGURE 5.9: The bisector (red) intersects Qs(w,Θi) and Qs(v,Θi), if v
is on the subpath from w to v.

Second, we consider the other situation that the Euclidean shortest path from s to w
shares a subpath with the Euclidean shortest path from s to v, with u their last shared
vertex. Figure 5.10 shows a visual representation. Let pv be the intersection of the
bisector with Qs(v,Θi). Let pw be the intersection of the bisector with Qs(w,Θi).
Since the bisector is connected, pv and pw are connected via a path. vuw divides
the polygon into two subpolygons, one region containing pv, the other containing
pw. Therefore we know that the bisector intersects either uv or uw. W.l.o.g., assume
it intersects uv. Suppose v ∈ Vs. Since the bisector intersects uv, u ̸∈ Vs. This is in
contradiction with Theorem 5.2.4, since u is on the shortest path from s to v. Suppose
v ̸∈ Vs. Let a be a point on Qs, (v,Θi), such that va intersects pv. But the shortest path
from s to a goes via v, and v ̸∈ Vs. That is in contradiction with Theorem 5.2.4. So,
this situation also leads to a contradiction.

Chapter 5. Properties of geodesic cd-Voronoi diagrams 34

v

w

s

pv

pw

u
a

Qs(w,Θi)

Qs(v,Θi)

FIGURE 5.10: The bisector (red) intersects Qs(w,Θi) and Qs(v,Θi), if
the shortest path from s to v and s to w share a subpath.

Now we discussed all situations, and they all lead to a contradiction, we can con-
clude that Θi can induce no more than one cd-breakpoint with respect to s.

Since each vertex of the convex distance function can induce at most one cd-breakpoint
with respect to a fixed source site, in total there are O(r) cd-breakpoints. Because we
know the number of e-breakpoints is O(n), the total complexity is O(n + r).

5.5 Geodesic cd-Voronoi diagram

Lemma 5.5.1. A geodesic cd-Voronoi diagram for m sites consists of m Voronoi regions.

Proof. The Voronoi cells are star-shaped, as proven in Lemma 5.2.4. Therefore, the
Voronoi diagram consists of m Voronoi regions.

Lemma 5.5.2. The geodesic cd-Voronoi diagram has complexity O(m(r + n)).

Proof. Recall, a Voronoi vertex is a vertex in the diagram that is in three or more
Voronoi cells, or on the boundary of W and in two or more Voronoi cells. A Voronoi
edge is a union of line segments, and does not contain Voronoi vertices. Note that
cd-breakpoints and e-breakpoints have degree 2.

First we only look at the Voronoi vertices and edges. A Voronoi vertex has degree
≥ 3. Knowing that there are m Voronoi cells, with use of Euler’s formula, it follows
that O(m) Voronoi edges exist in the Voronoi diagram.

Each Voronoi edge is a part of the bisector between two Voronoi regions, and consists
of straight line segments, with a complexity of O(r + n) as proven in Theorem 5.4.3.
The complete Voronoi diagram of m sites then consists of O(m(r + n)) line segments
and vertices.

Chapter 5. Properties of geodesic cd-Voronoi diagrams 35

We can make the bound slightly tighter.

Theorem 5.5.3 (Geodesic cd-Voronoi diagram). The geodesic cd-Voronoi diagram has
complexity O(m · r + n).

Proof. In total, O(m) Voronoi edges occur in the Voronoi diagram. Each Voronoi
edge has complexity O(r + n), and consists straight of line segments, with O(r) cd-
breakpoints and O(n) e-breakpoints (Theorem 5.4.3). As Aronov (1989) proved, the
total number of e-breakpoints in the Voronoi diagram is bounded above by the num-
ber of vertices of W, because the extension segments cannot intersect the boundary
of the Voronoi cell at more than one point, and each extension segment is in one-to-
one correspondence with the vertex it emanates from.

Thus, the complete Voronoi diagram of m sites consists of of O(m · r + n) line seg-
ments and vertices.

36

Chapter 6

Algorithms

In this chapter, we will discuss our designed algorithms to compute an augmented
cd-Voronoi diagram, an additively weighted cd-bisector, and a geodesic cd-Voronoi
diagram.

6.1 Augmented cd-Voronoi diagram

The augmented geodesic Voronoi diagram is the geodesic Voronoi diagram aug-
mented with the union of the extension segments from each site s ∈ P, but only
within the Voronoi cell of s.

In the context of convex distance functions, we add cd-extension segments to the aug-
mented Voronoi diagram. Cd-extension segments either emanate from sites or from
vertices of W, see Figure 6.1. Cd-extension segments that emanate from a site s
are defined by s as one endpoint, intersect a cd-vertex of R with center s, and are
contained in the interior of W, so the other endpoint lies on the boundary of W.
Cd-extension segments that emanate from a vertex v of W, are defined by v as one
endpoint, intersect a cd-vertex of R with center v, and are contained in the interior of
W. Next to that, a cd-extension segment that emanates from v should be in the inte-
rior of the region with anchor v, in other words, it is contained in the cone enclosed
by the extension segment that emanates from v and boundary of W. Note that cd-
extension segments do not intersect each other and do not intersect with extension
segments.

v

s

i

j

FIGURE 6.1: In this figure, red segments denote extension segments,
and blue segments denote cd-extension segments. The dotted blue
line segment is an invalid cd-extension segment, since it emanates
from a vertex v, but it does not have anchor v. Note, for brevity, only
those cd-extension segments are drawn that intersect the visible part

of the boundary of the polygon.

Chapter 6. Algorithms 37

The augmented cd-Voronoi diagram is the union of the cd-Voronoi diagram, exten-
sion segments from each site s ∈ P within the Voronoi cell of s, and cd-extension
segments that emanate from each site s and each vertex v of the boundary of W.
With a total of O(n) extension segments, O(m) cd-extensions for each extension seg-
ment and for each site, the total complexity of an augmented cd-Voronoi diagram is
O((m + n) · r). Note that this complexity is higher than the O(n + m · r) complexity
of the cd-Voronoi diagram.

Construction

In this section, we give the algorithm for an augmented cd-Voronoi diagram, in the
basic case that P consitsts of one site.

If P consists of only one site s, we can compute the extension segments in linear time
by using the shortest path map (Guibas et al., 1986), and store the anchor points of
each vertex, such that we can access the anchor point of a vertex in constant time. To
calculate the cd-extension segments, we will perform a rotational sweep in clockwise
order over the edges of W extended with the extension segments.

For each edge ij, with vertices i and j:

1. Retrieve the anchor point v of ij in constant time. Note, the interior of ij has
one anchor point, that can also be site s.

2. Let αi be the angle of vertex i relative to anchor point v, and let αj be the angle
of vertex j relative to anchor point v.

3. Add the cd-extension segments that emanate from v and have an angle in the
interval [αi,αj]. The other endpoint intersects with ij.

For each edge of W, we spend O(r) time, since the search for the first cd-extension
segment in step 3 takes O(logr) time, and O(r) cd-extension segments are added.
So, the construction of the augmented cd-Voronoi diagram takes O(n · r) time for
one site in W.

6.2 Additively weighted cd-bisector

As we investigated in Section 5.3, an additively weighted bisector consists of O(r)
cd-breakpoints. In this section, we will elaborate on the algorithm to compute the
bisector. Since we can construct the equation of the bisector in between two exten-
sion segments, we can trace it once we have a starting point. We assume the anchor
points do not change. The anchor cd-edges change exactly at the intersection with
cd-extension segments. Then, a new equation should be formed to calculate the next
bisector segment. In this way, we can trace the bisector. Therefore, we will provide
multiple methods to find the starting point here.

Find starting point

In the classic version, we know that the cd-vertex at the top induces a part of the
bisector, and we can draw the horizontal line to obtain the relevant cd-polygon point
from the other site. This is not the case for the additive variant.

We know that the geodesic bisector is connected, and that it divides the polygon into
two regions, with s and t included in their corresponding region. Therefore, we can

Chapter 6. Algorithms 38

find the intersection point between the bisector and the shortest path between the
two sites (which is a straight line segment). We need to look up the corresponding
cd-edges that define the bisector piece, and continue the bisector construction.

Time complexity

The output complexity of an additively weighted bisector is O(r) as proven in The-
orem 5.3.1.

The starting point can be found in O(logr) time, by first using binary search to find
the cd-edge of s that intersects st, and then using binary search to find the cd-edge of
t that intersects st. In constant time, we can construct the linear equations and find
the intersection point of the bisector with st.

We can find the next cd-breakpoint of the bisector in constant time. Since the bisector
has O(r) cd-breakpoints, the construction of the bisector takes O(r) time.

Bisector construction

In Section 5.3, we calculated the bisector using equations, but we can also geomet-
rically construct the bisector. We will write ℓXY to denote the line through point X
and Y.

Consider point s, with corresponding cd-edge Θ0 with cd-vertices Θ0 en Θ1, and
consider point t with corresponding cd-edge Θ2 with cd-vertices Θ2 en Θ3. See
Figure 6.2. Suppose we are given that the half-line from s through Θ1 intersects a
segment of the bisector that is induced by the cd-edges Θ0 and Θ2.

We draw the next step in time for both s and t, which is respectively Θ′
0 from Θ′

0 to
Θ′

1, and Θ′
2 from Θ′

2 to Θ′
3. Draw line ℓΘ0Θ1 and line ℓΘ2Θ3 , with intersection point p.

Draw line ℓΘ′
0Θ′

1
and line ℓΘ′

2Θ′
3
, with intersection point q. We draw a line b through

the intersection points p and q of these two lines. The intersection point between b
and ℓsΘ1 is on the bisector.

Degenerate case: If the cd-edges are parallel, there is no intersection point. In that
case, we can easily find the intersection point using the equations.

s t

Θ1

Θ′
1

b

u

Θ′
2 Θ2

Θ3

Θ′
3Θ0

Θ′
0

p

q

FIGURE 6.2: u is on the bisector.

Chapter 6. Algorithms 39

6.3 Geodesic cd-Voronoi diagram

If we want to use a convex distance function instead of the Euclidean distance mea-
sure, we need to alter the algorithm for a geodesic Voronoi diagram. In this sec-
tion, we will give the adapted version for a geodesic cd-Voronoi diagram by Aronov
(1989) as described in Section 3.4.1.

Overview algorithm

Let VorW(P) denote the geodesic cd-Voronoi diagram of the set of sites P, and let
Vor∗W(P) be VorW(P) augmented with the union of the extension segments from each
site s ∈ P, and cd-extension segments from each site s and each vertex v of the bound-
ary of W, but only within the Voronoi cell of s. V(s,W) is the Voronoi cell of site s in
polygon W.

Preprocessing

We triangulate W in O(n) time (Chazelle, 1991). We preprocess the triangulated
polygon for point location queries in O(n) time and for each site we query its corre-
sponding triangle, in O(logn) time per query (Edelsbrunner et al., 1986), with a total
of O(n + m logn) time. Then we compute a balanced decomposition of the triangu-
lation tree in O(n) time (Guibas et al., 1986), such that we can cut up the polygon
recursively in two parts in constant time per cut, where each part has at least a quar-
ter of the vertices.

Recursive algorithm

We are given a (sub)polygon W ′ with n′ ≤ n vertices with a set of sites P′ ⊆ P of size
m′ ≤ m.

i. In the base case of the recursive divide-and-conquer algorithm, if P′ consists
of only one site s, then VorW ′(P′) is a single cell V(s,W ′) = W ′. We can com-
pute the extension segments in Vor∗W ′(P′) in linear time by using the shortest
path map (Guibas et al., 1986), and we can add the cd-extension segments in
O(n′ · r) time with the construction algorithm as given in the previous section;
otherwise

ii. If W ′ is a triangle, then the cd-Voronoi diagram can be computed in O(rm′ logm′)
time (Ma, 2000) and truncated to W ′ in linear time. Add O(r) cd-extension
segments per site s, and truncate them to the corresponding Voronoi cell of s;
otherwise

iii. We divide W ′ in two subpolygons WL and WR, and divide P′ in PL and PR, such
that PL ⊂ WL and PR ⊂ WR, using the balanced decomposition as described
above. This can be done in constant time (Aronov, 1989). Then, we recursively
compute Vor∗WL

(PL) and Vor∗WR
(PR).

iv. Then, we extend Vor∗WL
(PL) to Vor∗W ′(PL), and Vor∗WR

(PR) to Vor∗W ′(PR) in
O
(
((n′ + m′) · r) log((n′ + m′) · r)

)
time.

v. At last, we compute Vor∗W ′(P′) by merging Vor∗W ′(PL) and Vor∗W ′(PR) in
O((n′ + m′) · r′) time.

Preprocessing takes O(n + m logn) time. The recursive part splits into two subprob-
lems of size (αn,m1) and ((1 − α)n,m2), with m1 + m2 = m, and α ∈ [1

4 , 3
4]. r is fixed

Chapter 6. Algorithms 40

throughout the algorithm. Note, step ii. occurs O(m) times, since P′ consists of at
least one site in that step.

Therefore, using recurrence inequality bounds, the time complexity of calculating
the cd-Voronoi diagram is

O
(
((n + m) · r) log((n + m) · r) logn

)
.

Extension phase

We cut the polygon W ′ in two subpolygons W1 and W2, separated by a chord e of the
triangulation, and we are given Vor∗W1

(P1). Let W1 ∪ W2 have n′ vertices, and P1 m′

sites. The output of this subroutine is Vor∗W(P1).

1. i. First, we extract the ordered list L of the regions in Vor∗W1
(P1) that are

adjacent to e, and convert this list to a search tree T.

e

FIGURE 6.3: In this figure, the green segments denote bisector edges,
red segments denote extension segments, and blue segments denote
cd-extension segments. The dotted blue cd-extension segments are
not included in Vor∗W1

(P), because they do not intersect the triangle
between two bisector edges. Their corresponding regions have dis-

appeared already.

ii. For each pair of adjacent edges in L, either two adjacent bisector edges,
a bisector edge and an extension segment or a bisector edge and a cd-
extension segment, we compute the intersection point, without checking
its feasibility. Note, neighbouring extension segments or cd-extension
segments cannot intersect. We perform a point location query to deter-
mine the triangle it lands in and add the intersection point to the bucket
of the corresponding triangle.

2. We process all the triangles in W2, starting at the triangle adjacent to e, fol-
lowed by its children, and so on. We enter triangle ∆ through edge f , whose
remaining edges are f ′ and f ′′. Let v be the vertex shared by f ′ and f ′′. For a
visual representation, see Figure 6.4.

Chapter 6. Algorithms 41

i. Let x be the common endpoint of f and f ′. Locate the anchor y of the
region that x belongs to. Consider the ray from x directed away from y.
If this ray intersects or overlaps with f , create a new region between the
new extension segment and f ′. Then, determine the cd-extension seg-
ments in the new region with anchor point x, and create new regions
sandwiched between the ray and the cd-extension segment, and between
the cd-extension segments. See a visual reference in Figure 6.4.

Do the same for the other endpoint of f .

x

f

f ′

f ′′

v

y

1
2

3

FIGURE 6.4: In this figure, the green segments denote bisector edges,
red segments denote extension segments, and blue segments denote
cd-extension segments. We add here the new regions 1, 2, and 3, sand-

wiched between the extension segment through y and x, and f ′.

ii. We construct a priority queue Q for triangle ∆ for all intersections in its
bucket. We perform a sweep line that is parallel with f and ends at the
edges of ∆, and handle the events in increasing distance from f .

x

f f ′

f ′′

v

sweepline

a

c

b

FIGURE 6.5: In this figure, the green segments denote bisector edges,
red segments denote extension segments, and blue segments denote
cd-extension segments. a is an intersection point between a bisector
edge and a cd-extension segment, b is an intersection point between
two bisector edges, and c is an intersection between a bisector edge

and an extension segment.

Chapter 6. Algorithms 42

iii. We can encounter three types of intersection points, see Figure 6.5.

1) Bisector-bisector intersections: If the intersection point p is valid, that
is an intersection of two edges that currently bound a region together
in T, a region in the Voronoi diagram disappears and a new edge
appears. This event corresponds with a Voronoi vertex. The new
edge has an updated anchor point and anchor cd-edge. We compute
two intersections with the new pairs of adjacent edges (that can be
bisector-bisector, bisector-extension segment or bisector-cd-extension
segment), and locate the corresponding triangle of the intersection
point. If they belong to the current ∆, they are added to Q, otherwise
they are added to the bucket of the corresponding triangle. If p is
non-valid, we ignore and delete it.

2) Bisector-extension segment intersections: If the intersection point p is
valid, a region in T disappears and a new edge appears. This event
corresponds with an e-breakpoint. The new edge has an updated an-
chor point. We compute two intersections with the new pairs of adja-
cent edges (that can be bisector-bisector, bisector-extension segment
or bisector-cd-extension segment), and locate the corresponding tri-
angle of the intersection point. If they belong to the current ∆, they
are added to Q, otherwise they are added to the bucket of the corre-
sponding triangle. If p is non-valid, we ignore and delete it.

3) Bisector-cd-extension segment intersections: If the intersection point
p is valid, a region in T disappears and a new edge appears. This
event corresponds with a cd-breakpoint. The new edge has an up-
dated anchor cd-edge. We compute two intersections with the new
pairs of adjacent edges (that can be bisector-bisector, bisector-extension
segment or bisector-cd-extension segment), and locate the correspond-
ing triangle of the intersection point. If they belong to the current ∆,
they are added to Q, otherwise they are added to the bucket of the
corresponding triangle. If p is non-valid, we ignore and delete it.

f
f ′

f ′′

v

b′a

b

FIGURE 6.6: In this figure, the green segments denote bisector edges
and red segment denotes an extension segment. a is an intersection
point between a bisector edge and an extension segment. This in-
tersection point caused the previously calculated intersection b to be

invalid. b′ is the new intersection point that is added to the queue.

Chapter 6. Algorithms 43

iv. If we finish triangle ∆, the trees for f ′ and f ′′ are produced by conceptu-
ally splitting the tree at v.

We leave out the details of degenerate cases here for brevity.

Time complexity extension phase

We will discuss the time complexity for the extension algorithm that computes the
augmented cd-Voronoi diagram. The output complexity is O((n′ + m′) · r).

• Step 1.i: We extract the list of the regions that are adjacent to the separating
chord e, which takes linear time.

• Step 1.ii: We perform point location queries that take O(logn′) per query.
Since we only add bisector-bisector, bisector-extension segment and bisector-
cd-extension segment intersection, we add O(m′) intersections.

For the substeps in step 2, we will bound the time per candidate intersection. First,
we will discuss the number of candidate intersections.

All O((n′+m′) · r) vertices that are included in the outputted augmented cd-Voronoi
diagram have been added as candidate intersection. We also add intersections that
later prove to be invalid. Each intersection (bisector-bisector, bisector-extension seg-
ment and bisector-cd-extension segment) will cause two candidates to become in-
valid, namely the candidate intersections with their neighbours. Therefore, the total
number of candidate intersections is O((n′ + m′) · r).

Since their are O((n′ + m′) · r) candidate intersections, the total size of all the queues
and trees is bounded by O((n′ + m′) · r).

• Step 2.i.: We spend O(log((n′ + m′) · r)) time per tree addition, since
O(|T|) =O((n′ +m′) · r). The total number of tree additions is bounded by the
number of added regions, which is O((n′ + m′) · r).

• Step 2.ii.: We construct a queue, and notice that further queue operations
take O(log((n′ + m′) · r)) time, since no intersection appears in more than one
queue.

• Step 2.iii.: tree deletion and tree addition takes O(log((n′ + m′) · r)) time per
candidate intersection. Point location queries take O(logn′) time per candidate
intersection.

• Step 2.iv: Splitting and producing the trees takes O(log((n′ + m′) · r)) time.

In total, since the total number of candidate intersections is O((n′ + m′) · r) and the
time spent per candidate intersection is O(log((n′ + m′) · r), the extension phase has
time complexity

O
(
((n′ + m′) · r) log((n′ + m′) · r)

)
.

Merge phase

In this phase of the algorithm, we are given two sets of sites PL and PR (with a chord
of the polygon separating them), and Vor∗W(PL) and Vor∗W(PR).

Suppose s ∈ PL. Let V(W, s) denote the Voronoi cell of s in VorW(PL) and V ′(W, s) the
Voronoi cell of s in VorW(PL ∪ PR). Let H(PL, PR) be the region in W with all points

Chapter 6. Algorithms 44

closer to a site in PL than a site in PR. Let b(PL, PR) be the bisector between PL and
PR. Then,

V ′(W, s) = V(W, s) ∩
(

H(PL, PR) ∪ b(PL, PR)
)

To find the points of intersection between b(PL, PR) and the boundary of W, we di-
vide the boundary in O((n + m) · r) segments, such that each segment has one cor-
responding site, anchor point and anchor cd-edge for both sets PL and PR. Then, we
can calculate the distance from the boundary segment to the closest site in PL and PR
easily. We can find in linear time what points on the bisector have the same distance
to the closest site in PL and the closest site in PR.

b(PL, PR) consists of pieces of bisector between two sites. Given a point of b(PL, PR),
we can trace the bisector of PL and PR, since we know the first two sites, anchor
points and anchor cd-edges that define the bisector. The anchor points only change
when the bisector intersects with an extension segment, and the anchor cd-edges
only change when encountering a cd-breakpoint. After such an event, we can trace
the bisector with the new anchor points or anchor cd-edges further in the same way,
where each step takes constant time.

In conclusion, the time complexity of the merge phase is

O((n′ + m′) · r′).

To summarize the whole section, the total time to compute the augmented cd-Voronoi
diagram is

O
(
((n + m) · r) log((n + m) · r) logn

)
.

6.3.1 Lazy approach cd-Voronoi diagram

As mentioned before, the complexity of the augmented cd-Voronoi diagram is higher
than the cd-Voronoi diagram without the cd-extension segments. We do not need
to construct all cd-extension segments to construct the Voronoi diagram. In this sec-
tion, we will discuss a “lazy approach” to calculate the geodesic cd-Voronoi diagram,
based on the adapted version of Aronov’s algorithm given in the previous section.

If we look again at Figure 6.4, we see that we add three new regions induced by cd-
extension segments. We observe that the green bisector segment can never intersect
blue cd-extension segment 1 before intersecting the red extension segment. And
again, the bisector segment can only intersect the second cd-extension segment once
it intersected the first cd-extension segment.

Chapter 6. Algorithms 45

f ′

f ′′

v

FIGURE 6.7: In this figure, the green segments denote bisector edges
and blue segments denote cd-extension segments. The dotted cd-
extension segments cannot intersect the bisector edge before the

neighbouring cd-extension segment intersect the bisector edge.

The general observation is that bisector edges can only intersect cd-extension seg-
ments that are neighbours. If we look at Figure 6.7, we see two green bisector edges,
and blue cd-extension segments. Only the cd-extension segments that are direct
neighbours of a bisector edge need to be computed. The other (dotted) cd-extension
segments that are enclosed by other cd-extension segments can never intersect with
a bisector segment before the neighbouring cd-extension segments intersect the bi-
sector segment. Therefore, we only need to calculate two cd-extension segments per
bisector edge.

We will assume we can obtain the neighbours of a cd-edge in constant time, so given
an angle αi, we can obtain angle αi−1 and αi+1 in constant time, for example using a
linked list (Sundell and Tsigas, 2008). Also, we will assume that we store the anchor
cd-edge of a bisector edge during the algorithm. Combining both, we can obtain the
neighbouring cd-extension segments of a bisector edge in constant time.

Overview

The lazy approach requires some adjustments to the algorithm. In the recursive
algorithm, we do not have to add cd-extension segments in step i, so it takes linear
time in the number of regions, which is O(n′ + m′r). In step ii., we only add two
neighbouring cd-extensions per bisector edge that intersects the boundary of the
triangle, such that no cd-extension segment intersects the boundary closer to the
bisector edge, see Figure 6.8. In combination with the computation of the cd-Voronoi
diagram, this takes O(rm′ logm′) time.

Chapter 6. Algorithms 46

P ′

FIGURE 6.8: In this figure, the green segments denote bisector edges
and blue segments denote cd-extension segments. Per bisector edge,
we add only two cd-extension segments, and calculate the intersec-

tions with the triangle P′ (black circles).

As we will discuss in detail further, the extension phase will take
O((n′+m′ · r) log(n′+m′ · r)) time, and the merge phase takes O(n′ logr+m′ log2 r).
time. The preprocessing phase still takes O(n + m logn) time.

Therefore, using recurrence inequality bounds, the time complexity of calculating
the cd-Voronoi diagram using the lazy approach is

O
(
(n + m · r) log(n + m · r) logn

)
.

Note that the original running time was O
(
(n · r + m · r) log(n · r + m · r) logn

)
.

Extension phase

In the extension phase, we can leave step 1 unchanged. In step 2.i., we only add a
new region induced by the extension segment, and do not add new regions induced
by cd-extension segments. Step 2.ii. does not need to be changed.

The greatest changes will take place in step 2.iii, where we handle the three types of
intersection points. We only write down the differences between the original version
and the lazy approach.

1) Bisector-bisector intersections: No adaptation required.

2) Bisector-extension segment intersections: This event corresponds with an e-
breakpoint. The new edge has an updated anchor point. We will add the
next neighbouring cd-extension segment that is closest to the extension seg-
ment and emanates from the new anchor point. We create a new region sand-
wiched between the extension segment and the cd-extension segment. Next,
we will compute two intersections for both the new bisector edge and its neigh-
bours (that can be bisector-bisector, bisector-extension segment or bisector-cd-
extension segment), and the cd-extension segment and its neighbours (only
bisector-cd-extension segment). Just like the original version, we do the ap-
propriate point location queries.

3) Bisector-cd-extension segment intersections: This event corresponds with a
cd-breakpoint. The new edge has an updated anchor cd-edge. We will add
the next neighbouring cd-extension segment that is closest to the cd-extension
segment and emanates from the current anchor point. We create a new re-
gion sandwiched between the two cd-extension segments. Next, we will com-
pute two intersections for both the new bisector edge and its neighbours (that

Chapter 6. Algorithms 47

can be bisector-bisector, bisector-extension segment or bisector-cd-extension
segment), and the cd-extension segment and its neighbours (only bisector-cd-
extension segment). Just like the original version, we perform the appropriate
point location queries.

Step 2.iv. is unchanged.

Complexity extension phase lazy approach

We will discuss the time complexity for the extension algorithm that computes the
cd-Voronoi diagram, using the lazy approach. Note, the output complexity is
O(n′ + m′ · r) instead of the output complexity of O((n′ + m′) · r) in the original
version.

We will discuss the number of candidate intersections. All O(n′+m′ · r) vertices that
are included in the outputted cd-Voronoi diagram have been added as candidate
intersection point. Each intersection (bisector-bisector, bisector-extension segment
and bisector-cd-extension segment) still causes two candidates to become invalid,
namely the candidate intersections with their neighbours. Therefore, the total num-
ber of candidate intersections is O(n′+m′ · r). This is an improvement in comparison
to the O((n′ + m′) · r) candidate intersections in the original version.

Since their are O(n′ + m′ · r) candidate intersections, the total size of all the queues
and tree is bounded by O(n′ + m′ · r). Therefore, all queue maintenance operations
and tree additions and deletions have a bound of O(log(n′ + m′ · r)) time.

The rest of the analysis of the complexity is similar to the previous algorithm. We can
conclude, in total, since the total number of candidate intersections is O(n′ + m′ · r)
and the time spent per candidate intersection is O(log(n′ + m′ · r)), the extension
phase takes

O
(
(n′ + m′ · r) log(n′ + m′ · r)

)
time.

Merge phase

We are given two sets of sites PL and PR, and Vor∗W(PL) and Vor∗W(PR), note only with
extension segments.

1. To find the points of intersection of b(PL, PR) and the boundary of W, we di-
vide the boundary in O(n+m) pieces, such that each piece is associated with a
unique closest site from PL and corresponding anchor point and a unique clos-
est site from PR and corresponding anchor point. A piece can have multiple
anchor cd-edges.

Chapter 6. Algorithms 48

2. For the O(n + m) endpoints of the pieces, we calculate the distance to the clos-
est site s and t in respectively PL and PR. The anchor point for the closest site
is known. We only need to find the corresponding anchor cd-edge in O(logr)
time for both sites s and t. Then we can access the distance to the closest site s
and t in constant time.

3. We trace the boundary of W. For each piece, with endpoints i and j:

(a) If i and j are both closer to s or t, then the bisector does not intersect ij,
because the bisector intersects ij at most once.

(b) If s is closer to i and t is closer to j, or the other way around, then we know
that the bisector intersects ij.

4. In case 3(b), we need to compute the intersection point between the bisector of
s and t and ij. Let as and at be the anchor points of respectively s and t, which
is fixed for all points on ij. We perform a binary search on the cd-extension
segments that emanate from as and intersect ij. For each cd-extension segment,
we want to find the corresponding cd-edge from at that induce a piece of the
bisector. We perform a binary search on the cd-edges from t, and compute
the equations as constructed in Section 6.2 in constant time. If we found the
appropriate pair of cd-edges in O(logr) time, we test if the piece of bisector
intersects with ij. It takes O(logr) tests to find the intersection. The double
binary search therefore takes O(log2 r) time.

Step 1 takes O(n′ + m′) time. Step 2 takes O(logr) time and occurs O(n′ + m′) times,
so takes a total of O((n′ + m′) logr) time. In step 3, we can trace the boundary of the
polygon in O(n′ + m′) time. How often do we need to perform the double binary
search in step 4? The number of intersections of b(PL, PR) with the boundary, is
bounded by the degree 1 vertices in the Voronoi diagram. In other words, we need
to know how many intersections occur between Voronoi edges and the boundary
of the polygon. Recall that a Voronoi edge is a part of the bisector between two
Voronoi regions that consists of straight line segments, joined by cd-breakpoints and
e-breakpoints. As proven in Lemma 5.5.3, a geodesic cd-Voronoi diagram has in total
O(m) Voronoi edges. Therefore, we perform the double binary search O(m′) times.
The double binary search takes O(log2 r) time, so step 4 takes a total of O(m′ log2 r)
time.

So, the time complexity of the merge phase in the lazy approach is O(n′ logr +
m′ log2 r).

In summary, the total time complexity of calculating the cd-Voronoi diagram using
the lazy approach is

O
(
(n + m · r) log(n + m · r) logn

)
.

49

Chapter 7

Queries

In the previous chapter, we discussed how to construct a geodesic Voronoi diagram
under a convex distance function based on an r-gon. In this chapter, we will discuss
some queries we can perform, given that we calculated the cd-Voronoi diagram of a
set of sites P in polygon W.

7.1 Distance to closest site

Suppose, we are given the cd-Voronoi diagram of P in W. The first query we discuss
is, given a point p in W, what is the time that p is covered? This question is equiva-
lent to the distance to p from site s that is closest to p. To find the closest site s, we
need to build a data structure that supports point location queries. With O(mr + n)
edges in the cd-Voronoi diagram, it would take O((mr + n) log(mr + n)) time to
build such a data structure (Mulmuley, 1990). A query takes O(log(mr + n)) time.
Once the closest site is found, we can retrieve the anchor point a of p in constant
time. It takes O(logr) time to look up the corresponding anchor cd-edge. Then, we
can calculate the convex distance d̂(s, p) = d̂(s, a) + d̂(a, p) in constant time.

Thus, the time complexity of preprocessing is O((mr + n) log(mr + n)), and the time
complexity of a query is O(log(mr + n)).

The time complexity does not improve if we assume the augmented cd-Voronoi di-
agram is given as input. We do not have to spend O(logr) to look up the corre-
sponding anchor cd-edge. Unfortunately, since the complexity of an augmented cd-
Voronoi diagram is O((n + m) · r), preprocessing takes longer, and the total query
time is O(log((n + m) · r)).

7.2 All points at given distance

The second query we discuss is, given a time t > 0, what region Bt is covered by
plants? Bt corresponds with all points in W that have distance at most t to some
site in P. We first prove the output complexity, and then provide an algorithm to
compute the query under a convex distance function. In the next section, we will
mention the required adjustments to perform the query under a Euclidean distance
measure.

Output map complexity

In this section, we will give the output complexity of Bt. We first prove the lower
bound and then the upper bound of Bt for some t.

Chapter 7. Queries 50

All m sites can induce a region of Ω(r) complexity, as is clear in the case that Bt
consists of m disconnected regions. Furthermore, all n vertices can induce Ω(r) cd-
breakpoints, as can be seen in Figure 7.1.

Therefore, the worst-case complexity is Ω((n + m) · r).

Bt

i1

i2

i3

FIGURE 7.1: The blue segments denote cd-extension segments. i1, i2
and i3 are anchor points. In this construction, it can be seen that Bt

can have O(r) cd-breakpoints per anchor point.

We will prove that the number of intersections between regions induced by different
sites is bounded by the number of edges in the augmented cd-Voronoi diagram.
These intersections occur at the boundary of the Voronoi cell, since the boundary
of a Voronoi cell consists of all the points that are equally distant to the sites of the
corresponding Voronoi cells.

Lemma 7.2.1. Let i and j be two neighbouring vertices of the Voronoi cell of site s. Then the
boundary of Bt intersects ij at most once.

Proof. Let ∆ be the triangle enclosed by vertices i, j, the anchor point ai of i and the
anchor point aj of j. The vertices of ∆ are i, j, and either ai or aj. All points within this
triangle have the same anchor point and the anchor cd-edge, since they only change
at the intersection with extension segments and cd-extension segments. Therefore,
the equation of the distance from s to a point p is the same for all p ∈ ∆. The equation
of Bt is all points p such that d̂(s, p) = t, which is a linear equation. Therefore, the
piece of Bt within ∆ is a straight line segment, and intersects ij at most once.

Because of Lemma 7.2.1, Bt has O((n + m) · r) intersections with the edges of the
Voronoi cells. Bt has breakpoints exactly at the intersection with cd-extension seg-
ments and extension segments. Therefore, the upper bound of the complexity of Bt
is O((n + m) · r). Therefore, the complexity of Bt is

Θ((n + m) · r).

Overview algorithm

We are given the augmented cd-Voronoi diagram of sites P in W. Note that this
includes both extension segments and cd-extension segments.

For each site s in P, we perform a rotational sweep on the vertices of its Voronoi cell,
V(s), to test whether the vertex should be included in Bt or not. Let i and j be two

Chapter 7. Queries 51

neighbouring vertices of V(s), and let γ(s, i) be the shortest path from s to i. We first
explain how to find a starting point.

Find starting point

Case i: We encounter a vertex i with d̂(s, i) ≤ t and a vertex j with d̂(s, j) > t. Then
the boundary of Bt intersects ij exactly once, see Lemma 7.2.1. Since all points
on the edge ij have the same anchor point and the anchor cd-edge, we can
create the equation of the line segment of Bt within that cone in constant time,
such that for all points p on the line, d̂(s, p) = t. Then, we can calculate the
intersection with ij in constant time. Note: If we first encounter a vertex i
with d̂(s, i) > t, followed by a vertex j with d̂(s, j) ≤ t, the procedure is similar;
otherwise

Case ii: The first two vertices we encounter are neighbouring vertices i and j of V(s)
with d̂(s, i) ≤ t and d̂(s, j) ≤ t. Then Bt does not intersect ij, thus ij is fully con-
tained in Bt, see Lemma 7.2.1, and see Figure 7.2. We continue the rotational
sweep until we find a situation as described in case i. If there is no such situa-
tion, V(s) is entirely contained in Bt, as can be seen in Figure 7.3. None of the
edges of V(s) will appear in the output; otherwise

Case iii: We find two vertices i and j with d̂(s, i) > t and d̂(s, j) > t. To find a starting
point, we will trace the shortest path from s to i, γ(s, i), to find the intersection
between Bt and γ(s, i). γ(s, i) intersects the boundary of Bt at most once, see
Lemma 7.2.2. It is possible that Bt does not intersect the boundary of V(s), see
Figure 7.4. We trace back the vertices on γ(s, i), until we find a vertex k with
d̂(s,k) ≤ t. Let k be the anchor of vertex m that is also on γ(s, i). k is included
in Bt, but m is not. Then we find the intersection between km and Bt, which is
the point at distance t from s, in constant time.

Rotational sweep

1. Once a starting point is known, we can trace the boundary of Bt. The boundary
of Bt consists all points p such that d̂(s, p) = t. As long as the anchor point and
anchor cd-edge stay the same, the piece of the Bt is a straight line segment, that
changes exactly at the intersection with extension segments and cd-extension
segments.

2. If Bt intersects the boundary of W again, we continue the rotational sweep line,
looking for the next starting point.

3. If we finish the rotational sweep of V(s), by either finishing all vertices of V(s)
or closing the region of Bt around s, we know there is no other disconnected
region of Bt within V(s) because of Theorem 7.2.2. Therefore, we can continue
to the Voronoi cell of the next site.

.

i j

s

Bt

FIGURE 7.2: Bt intersects ij at most once. If vertex i and j are con-
tained in Bt, then the complete edge ij is contained in Bt.

Chapter 7. Queries 52

s

Bt

W

V (s)

FIGURE 7.3: In this situation, all vertices of V(s) are contained in Bt.
None of the edges of V(s) will appear in the output, since it is in the

middle of Bt.

s

Bt

W

V (s)

FIGURE 7.4: In this situation, none of the vertices of V(s) are con-
tained in Bt.

Lemma 7.2.2. Let i be a vertex of the Voronoi cell of s. The boundary of Bt intersects the
shortest path from s to i at most once.

Proof. Following the shortest path to i away from s, the distance is a monotone in-
creasing function. Therefore, there is at most one point p on the path from s to i such
that d̂(s, p) = t and that p lies on the boundary of Bt.

If d̂(s, i)≤ t, then, i is part of Bt, so the boundary of Bt does not intersect the shortest
path from s to i. If d̂(s, i) > t, s is contained in Bt since t > 0, so the boundary of Bt
intersects the shortest path from s to i exactly once.

Chapter 7. Queries 53

Time complexity

Theorem 7.2.3. Given the augmented cd-Voronoi diagram, the optimal time complexity to
compute Bt is O((n + m) · r).

Proof. In the algorithm to find the starting point, case i. occurs O((n + m) · r) times,
and takes constant time per step. Also case ii. occurs O((n + m) · r) times, the num-
ber of edges in the augmented Voronoi diagram. Case ii. itself takes constant time.

Case iii, tracing the shortest path, could take O((n + m) · r) time, since that many
vertices exist in the augmented Voronoi diagram. A vertex is shared by at most
three Voronoi cells, which means a vertex can occur at most three times in a trace.
Therefore, all traces together take O((n + m) · r) time.

Now we will discuss the time complexity of the rotational sweep. In step 1., as long
as the anchor point and anchor cd-edge stay the same, constructing a piece takes
constant time. These change exactly at the intersection with extension segments and
cd-extension segments, that occurs in total O((n + m) · r) times. Therefore, step 1
stakes O((n + m) · r) time. Step 2 takes constant time, and occurs O((n + m) · r)
times.

Therefore, the time complexity of the algorithm is O((n + m) · r). Since the worst-
case output complexity is Ω((n + m) · r), we can conclude the time complexity is
optimal.

Different input

If the input consists of the cd-Voronoi diagram without extension segments and cd-
extension segments, we can easily augment the cd-Voronoi diagram using the algo-
rithm as given in Section 6.1. Since that would take O((n + m) · r) time, the time
complexity of the query algorithm would not change, and is thus still optimal.

7.3 All points at multiple distances

In this section, we will return to the problem as formulated in Section 4.2. We assume
that we are given the augmented cd-Voronoi diagram as input.

Given a time t, what is plant region B1,2,...,t, and what age do the plants have? As-
sume all sites p have age 1 at time 0. The output map is a subdivision SDt of W,
where each region has a corresponding age with value [0, t + 1].

Bi corresponds with the points at distance i − 1 < x ≤ i from some site in W. In the
output subdivision, plant p has age t + 1, and the points in Bt \ Bt−1 have age 1.

Let Bi have age value t+ 1− i. W has default value 0. We will define B0 as the empty
set. Then,

SDt = (W \ Bt) ∪
(t⋃

i=0

Bi \ Bi−1
)
.

Note that the boundaries do not intersect. Therefore, the optimal time complexity to
compute SDt is

O(t · ((n + m) · r)).

Chapter 7. Queries 54

7.4 Queries under Euclidean distance measure

We can adjust the algorithm for the query to compute all points at one or multiple
distances to suit a Euclidean distance measure. We assume we are given the aug-
mented geodesic Voronoi diagram of P in W.

In the augmented geodesic Voronoi diagram under a Euclidean distance measure,
each region has it own unique closest site and anchor point. In contrast with a
convex distance function, pieces of Bt within a region of the augmented geodesic
Voronoi diagram do not have to be straight line segments, but can also consists of
arcs.

Even so, we can easily trace the boundary of Bt for all points p from some site s
at Euclidean distance d(s, p) = t, and compute the distance in constant time. The
closest site and anchor point, and thus the analytic expression, change at exactly the
intersection with extension segments. The formula to compute SDt does not have
to change.

55

Chapter 8

Extensions

In this chapter, we will share observations on several extensions of the basic prob-
lem based on DIMO, namely germination delay, habitat suitability, obstacles and
anisotropic regions.

8.1 Germination delay

In the DIMO model, plants first spread their seeds. After a certain time g, the germi-
nation delay, seeds have to grown plants and can start spreading seeds themselves.
All points at a distance t from plants in the previous round will be covered in seeds.

The wave propagation on the other hand, only spreads from the initial source point.
The first time step, all points at distance d are covered in seeds. After g time steps,
the seeds have grown to plants. In the next time steps, the points at distance t · r
from the source plant will be covered in seeds.

As one can see in Figure 8.1, the model of DIMO is not the same as a wave propaga-
tion if the germination delay is non-zero.

t = 0 t = 1 t = 2 t = 3 t = 4

A

B

FIGURE 8.1: The plants from point A expand according to the model of DIMO, and
the plants from point B expand as a wave propagation. In this figure, the dotted
line represents the border of a region with seeds. A continuous line represents a

region where plants are present. The germination delay is 1.

We will provide equations to clarify the difference between a plant that spreads as a
wave, and a plant that spreads according to the model of DIMO.

Chapter 8. Extensions 56

Let d be the radius of the circle that a plant can spread each time step. Let Ap(t) the
radius of the circle that plants cover in time step t, and let As be the radius of the
circle that seeds cover in time step t.

Wave propagation

Suppose the plants spread as a wave, and the germination delay is 0, that means that
region of seeds is equal to the region of plants.

Ap(t) = d · t,

As(t) = d · t.

Suppose the germination delay is 1, as is also the case in Figure 8.1. Then,

Ap(t) = d · (t − 1) = dt − r,

As(t) = d · t.

Suppose the germination delay is denoted by g. Then,

Ap(t) = max(d · (t − g),0) = max(dt − dg,0),

As(t) = d · t.

DIMO model

Suppose the plants spread according to the DIMO model, and the germination delay
is 0, so that region of seeds is equal to the region of plants.

Ap(t) = d · t,

As(t) = d · t.

These formula’s are the same as in the situation with the wave propagation. This
changes if we suppose the germination delay is 1, as is also the case in Figure 8.1.
Then,

Ap(t) = d ·
⌊

t
2

⌋
As(t) = d ·

⌈
t
2

⌉
.

Suppose the germination delay is denoted by g. Then,

Ap(t) = d ·
⌊

t
g + 1

⌋
As(t) = d ·

⌈
t

g + 1

⌉

Chapter 8. Extensions 57

So, if we add germination delay to the model, the wave propagation and the DIMO
model are not the same anymore. Still, we can use the formula to calculate the region
reached according to the DIMO model.

8.2 Habitat suitability

In DIMO, the user can add a habitat suitability map as an input to the model and
appoint regions that are not suitable for plants to grow. In some cases, seeds can
“fly” over the inhabitable region in one step, as shown in Figure 8.2 (left), while in
other cases Bt intersects the inhabitable region, as shown in Figure 8.2 (right).

p p

B1

B2

B3 B3

B2

B1

FIGURE 8.2: Here, the filled, blue region is not suitable for plant
growth.

Moreover, in the case of inhabitable regions, the boundary of Bt does not necessar-
ily have to be at distance t from the closest site, nor does it have to be at geodesic
distance t from the closest site.

p

q1

q2

i1

i2

i3

FIGURE 8.3: Here, the filled, blue region is not suitable for plant
growth. The red polygon with center p in the form of a half house is
the cd-polygon. i1 is the highest point at the geodesic distance 2 from
p. i2 is the highest point at distance 2 from p, as the DIMO model
would treat inhabitable regions. i3 is the highest point at distance 2

from p if we would ignore the inhabitable region.

In Figure 8.3, we see a clear situation that Bt is not at distance t, ignoring inhabitable
regions, and not at geodesic distance t. Suppose we want to calculate the region
at distance 2 from a site p. Suppose we only look at the point at distance 2 that is
highest above p. First, we draw R with center p. In the model of DIMO, seeds can
“fly” over inhabitable regions. So, we draw R with center q1. Point i2 is then the
highest point at distance 2 from p.

Chapter 8. Extensions 58

Classic distance on the contrary, would place R with center q2 for the second time
step. The top vertex then would be i3. Geodesic distance treats obstacles as non-
passable. Using R with center q1, point i2 would not be at distance 1. The highest
point from point p at geodesic distance 2 would be i1.

Thus, to deal with inhabitable regions, we cannot ignore the regions, and we cannot
use geodesic distance.

8.3 Obstacles

Suppose, the region we consider is not a simple polygon, but contains obstacles. In
that case, a shortest path in the Euclidean metric may not be a shortest path under a
convex distance function based on a polygon, as can be seen in Figure 8.4. Though
pq via s is shorter in the Euclidean metric, with a specific convex distance function
(on the right) pq is shorter via r.

Convex distance function

p

q

r

s

FIGURE 8.4: Shortest paths under a convex distance function may be
different from the shortest path under a Euclidean metric.

8.4 Anisotropic regions

Triangle inequality does not hold in an anisotropic region, where each region has a
different convex distance function. In Figure 8.5, the shortest distance from p to r in
Euclidean metric is a straight line segment. Under the convex distance function the
path from p to r via q is shorter than the direct path..

Distance function for triangle A

Distance function for triangle B

A

B

p

q

r

FIGURE 8.5: Triangle inequality does not hold in anisotropic regions.

Chapter 8. Extensions 59

We will close this chapter with some general observations. If W contains inhabit-
able regions, we cannot solve the problem using geodesic distance techniques. If W
contains obstacles or consists of anisotropic regions, we lose fundamental proper-
ties such as triangle inequality. Therefore, we cannot use the designed algorithms in
these contexts. Germination delay on the other hand, is similar to the basic problem.
The designed algorithm and queries can be adapted to suit a problem that involves
germination delay.

60

Chapter 9

Conclusion

In September 2021, we had a conversation with ecologist Wieger Wamelink. He
spoke about the computational challenges that arose when using seed dispersal
model DIMO. Inspired to approach the ecological models differently, we used the
geometry and techniques from computational geometry to solve the problem. In
this last section, we will discuss our theoretical results, discuss their implications
and limitations, and explore suggestions for future work.

In this study, we formalize the ecological problem in a geometric setting. We repre-
sent a landscape with a simple n-gon W and model the initial source plants as a set
P of m sites. We use a convex distance function based on a convex polygon with r
vertices to model the influence of wind.

To answer queries such as ‘At what time is a given point covered in plants?’ we
use a Voronoi diagram. Using a convex distance function based on a convex r-gon,
we prove the fundamental properties of a geodesic cd-Voronoi diagram. Because a
Voronoi cell is star-shaped, we adapt techniques originally designed for geodesic
Voronoi diagrams to suit contexts under a convex distance function. We design
novel algorithms based on the algorithm by Aronov (1989), and prove a time com-
plexity of O

(
((n + m) · r) log((n + m) · r) logn

)
. Our adaptation called the “lazy

approach” improves that bound to O
(
(n + m · r) log(n + m · r) logn

)
.

To the best of our knowledge, the algorithm presented here is the first algorithm to
compute a geodesic Voronoi diagram under a convex distance function. The novel
geometric techniques for convex distance functions contribute to the fundamental
research in computational geometry. They can serve as inspiration and foundation
for further research.

9.1 Future work

We can still make significant progress in time complexity. For example, in this thesis
we create an algorithm based on Aronov’s algorithm (1989). We expect to be able to
apply many of the proved properties of cd-Voronoi diagrams to Papadopoulou’s al-
gorithm (1998) as well. For example, we can reuse the proof for star-shaped Voronoi
cells, since this algorithm also uses the star-shaped property. Moreover, the exten-
sion phase that is part of Aronov’s algorithm, is also part of Papadopoulou’s algo-
rithm, so our adaptation for a convex distance function can be reused.

We expect the challenge for an adaptation of Papadapoulou’s algorithm again lies in
the difference between the complexity of a cd-Voronoi diagram and an augmented
cd-Voronoi diagram. If we divide the polygon in regions such that each region

Chapter 9. Conclusion 61

has its own anchor point and anchor cd-edge, the complexity of the subdivision
would gain a factor O(nr + mr), while the geodesic cd-Voronoi diagram without cd-
extension segments has output complexity O(n + mr). But if we do not use the cd-
extension segments to divide the polygon, we cannot use the knowledge that each
region has its own distinct associated closest site, anchor point, and anchor cd-edge.
This problem needs to be solved to in order to achieve a factor O(n + mr) instead of
O(nr + mr) in the time complexity bound.

Further geometric challenges lie ahead to better approximate and encompass the
ecological model. The landscape is more accurately represented if we could model
obstacles as polygonal holes. In addition, we could add inhabitable regions where
plants cannot grow but seeds can fly over. The current algorithms require structural
changes to deal with polygonal holes. In accordance with the wishes of ecological
scientists as touched upon by Wieger Wamelink in Appendix A, we could extend
our research to design algorithms that can handle a dynamic obstacle map and a dy-
namic habitat suitability map. Note, the knowledge that landscapes change slowly
could direct the research, for example asking whether we can efficiently modify ob-
stacles if only a constant number of vertices moves in each time step.

We just mentioned how further computational geometry research could to help solv-
ing the limited representation of the landscape. If we look at the applicability for the
ecological research community, there is still a gap to fulfill her needs and wishes.
We should invest time and effort to implement the algorithms and make them eas-
ily accessible in accordance with Open Science (Vicente-Saez and Martinez-Fuentes,
2018).

Our research results and potential extensions allow the ecological research commu-
nity to approach the seed dispersal problem differently, and use geometrical tech-
niques to simulate plant dispersal more efficiently. The development of efficient dis-
persal models using a realistic representation of the landscape is important to track
the effect of climate change on plant survival. Extending the collaboration between
the scientific fields of ecology and computational geometry can create and apply
novel fundamental methods to solve societal issues caused by climate change.

62

Bibliography

Albert, A., A. Mårell, M. Picard, and C. Baltzinger (2015). “Using basic plant traits
to predict ungulate seed dispersal potential”. In: Ecography 38, pp. 440–449. DOI:
10.1111/ecog.00709.

Andújar, D., X. Rodriguez, V. Rueda-Ayala, C. San Martín, A. Ribeiro, C. Fernández-
Quintanilla, and J. Dorado (2017). “A Geometrical Model to Predict the Spatial Ex-
pansion of Sorghum Halepense in Maize Fields”. In: Gesunde Pflanzen 69.2, pp. 73–
81. DOI: 10.1007/s10343-017-0388-6.

Arge, L. and F. Staals (2017). Dynamic Geodesic Nearest Neighbor Searching in a Simple
Polygon. http://arxiv.org/abs/1707.02961.

Aronov, B. (1989). “On the geodesic voronoi diagram of point sites in a simple poly-
gon”. In: Algorithmica 4, pp. 109–140. DOI: 10.1007/bf01553882.

Baguette, M. (2003). “Long distance dispersal and landscape occupancy in a metapop-
ulation of the cranberry fritillary butterfly”. In: Ecography 26.2. Publisher: Wiley
Online Library, pp. 153–160. DOI: 10.1034/j.1600-0587.2003.03364.x.

Barequet, G., M. T. Dickerson, and M. T. Goodrich (2001). “Voronoi diagrams for
convex polygon-offset distance functions”. In: Discrete & Computational Geometry
25.2, pp. 271–291. DOI: 10.1007/s004540010081.

Büyüktahtakın, İ. E. and R. G. Haight (2018). “A review of operations research mod-
els in invasive species management: state of the art, challenges, and future direc-
tions”. In: Annals of Operations Research 271.2, pp. 357–403. DOI: https://doi.org/
10.1007/s10479-017-2670-5.

Chazelle, B. (1991). “Triangulating a simple polygon in linear time”. In: Discrete &
Computational Geometry 6.3. Publisher: Springer, pp. 485–524. DOI: https://doi.
org/10.1007/bf02574703.

Cheng, S., H. Na, A. Vigneron, and Y. Wang (2008). “Approximate Shortest Paths
in Anisotropic Regions”. In: SIAM Journal on Computing 38.3, pp. 802–824. DOI:
10.1137/06067777X.

Chew, L. P. and R. L. S. Dyrsdale (1985). “Voronoi diagrams based on convex distance
functions”. In: Proceedings of the first annual symposium on Computational geometry.
Association for Computing Machinery, pp. 235–244. DOI: https://doi.org/10.
1145/323233.323264.

https://doi.org/10.1111/ecog.00709
https://doi.org/10.1007/s10343-017-0388-6
https://doi.org/10.1007/bf01553882
https://doi.org/10.1034/j.1600-0587.2003.03364.x
https://doi.org/10.1007/s004540010081
https://doi.org/https://doi.org/10.1007/s10479-017-2670-5
https://doi.org/https://doi.org/10.1007/s10479-017-2670-5
https://doi.org/https://doi.org/10.1007/bf02574703
https://doi.org/https://doi.org/10.1007/bf02574703
https://doi.org/10.1137/06067777X
https://doi.org/https://doi.org/10.1145/323233.323264
https://doi.org/https://doi.org/10.1145/323233.323264

Bibliography 63

Corlett, R. T. (2013). “Will plant movements keep up with climate change?” In: Trends
in ecology and evolution 28.8, p. 7. DOI: https://doi.org/10.1016/j.tree.2013.
04.003.

“Computational Geometry” (2008). In: Computational Geometry: Algorithms and Ap-
plications. Ed. by M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars.
Springer, p. 297. DOI: 10.1007/978-3-540-77974-2_1.

Dehne, F. and R. Klein (1997). “"The Big Sweep": On the Power of the Wavefront
Approach to Voronoi Diagrams”. In: Algorithmica 17.1, pp. 19–32. DOI: https://
doi.org/10.1007/bf02523236.

Dullinger, S., N. Dendoncker, A. Gattringer, M. Leitner, T. Mang, D. Moser, C. A.
Mücher, C. Plutzar, M. Rounsevell, W. Willner, N. E. Zimmermann, and K. Hülber
(2015). “Modelling the effect of habitat fragmentation on climate-driven migra-
tion of European forest understorey plants”. In: Diversity and Distributions 21.12,
pp. 1375–1387. DOI: 10.1111/ddi.12370.

Edelsbrunner, H., L. J. Guibas, and J. Stolfi (1986). “Optimal point location in a mono-
tone subdivision”. In: SIAM Journal on Computing 15.2, pp. 317–340. DOI: https:
//doi.org/10.1137/0215023.

Fortune, S. (1987). “A sweepline algorithm for Voronoi diagrams”. In: Algorithmica
2.1, p. 153. DOI: https://doi.org/10.1007/bf01840357.

Gosper, C. R., C. D. Stansbury, and G. Vivian-Smith (2005). “Seed dispersal of fleshy-
fruited invasive plants by birds: contributing factors and management options”.
In: Diversity and Distributions 11.6, pp. 549–558. DOI: https://doi.org/10.1111/
j.1366-9516.2005.00195.x.

Guibas, L., J. Hershberger, D. Leven, M. Sharir, and R. Tarjan (1986). “Linear time
algorithms for visibility and shortest path problems inside simple polygons”. In:
Proceedings of the second annual symposium on Computational geometry - SCG ’86. the
second annual symposium. ACM Press, pp. 1–13. DOI: 10.1145/10515.10516.

Hershberger, J. and S. Suri (1999). “An Optimal Algorithm for Euclidean Shortest
Paths in the Plane”. In: SIAM Journal on Computing 28.6, pp. 2215–2256. DOI: 10.
1137/S0097539795289604.

Klein, E. K., C. Lavigne, X. Foueillassar, P.-H. Gouyon, and C. Larédo (2003). “Corn
pollen dispersal: Quasi-mechanistic models and field experiments”. In: Ecological
Monographs 73.1, pp. 131–150. DOI: 10.1890/0012-9615(2003)073[0131:CPDQMM]
2.0.CO;2.

Klein, R. (1988). “Abstract voronoi diagrams and their applications”. In: Computa-
tional Geometry and its Applications. Ed. by H. Noltemeier. Springer, pp. 148–157.
DOI: 10.1007/3-540-50335-8_31.

Klein, R., E. Langetepe, and Z. Nilforoushan (2009). “Abstract Voronoi diagrams re-
visited”. In: Computational Geometry 42.9, pp. 885–902. DOI: 10.1016/j.comgeo.
2009.03.002.

https://doi.org/https://doi.org/10.1016/j.tree.2013.04.003
https://doi.org/https://doi.org/10.1016/j.tree.2013.04.003
https://doi.org/10.1007/978-3-540-77974-2_1
https://doi.org/https://doi.org/10.1007/bf02523236
https://doi.org/https://doi.org/10.1007/bf02523236
https://doi.org/10.1111/ddi.12370
https://doi.org/https://doi.org/10.1137/0215023
https://doi.org/https://doi.org/10.1137/0215023
https://doi.org/https://doi.org/10.1007/bf01840357
https://doi.org/https://doi.org/10.1111/j.1366-9516.2005.00195.x
https://doi.org/https://doi.org/10.1111/j.1366-9516.2005.00195.x
https://doi.org/10.1145/10515.10516
https://doi.org/10.1137/S0097539795289604
https://doi.org/10.1137/S0097539795289604
https://doi.org/10.1890/0012-9615(2003)073[0131:CPDQMM]2.0.CO;2
https://doi.org/10.1890/0012-9615(2003)073[0131:CPDQMM]2.0.CO;2
https://doi.org/10.1007/3-540-50335-8_31
https://doi.org/10.1016/j.comgeo.2009.03.002
https://doi.org/10.1016/j.comgeo.2009.03.002

Bibliography 64

Liu, C.-H. (2020). “A Nearly Optimal Algorithm for the Geodesic Voronoi Diagram
of Points in a Simple Polygon”. In: Algorithmica 82.4, pp. 915–937. DOI: 10.1007/
s00453-019-00624-2.

Ma, L. (2000). “Bisectors and Voronoi Diagrams for Convex Distance Functions”.
PhD thesis. University of Hagen.

McGuire, J. L., J. J. Lawler, B. H. McRae, T. A. Nuñez, and D. M. Theobald (2016).
“Achieving climate connectivity in a fragmented landscape”. In: Proceedings of the
National Academy of Sciences 113.26, pp. 7195–7200. DOI: 10.1073/pnas.1602817113.

Mulmuley, K. (1990). “A fast planar partition algorithm, I”. In: Journal of Symbolic
Computation 10.3, pp. 253–280. DOI: https://doi.org/10.1016/s0747-7171(08)
80064-8.

Nathan, R. (2006). “Long-Distance Dispersal of Plants”. In: Science 313.5788, pp. 786–
788. DOI: 10.1126/science.1124975.

Nathan, R. and H. C. Muller-Landau (2000). “Spatial patterns of seed dispersal, their
determinants and consequences for recruitment”. In: Trends in ecology & evolution
15.7. Publisher: Elsevier, pp. 278–285. DOI: https://doi.org/10.1016/s0169-
5347(00)01874-7.

Oh, E. (2019). “Optimal Algorithm for Geodesic Nearest-point Voronoi Diagrams in
Simple Polygons”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms. Ed. by T. M. Chan. Society for Industrial and Applied Mathe-
matics, pp. 391–409. DOI: https://doi.org/10.1137/1.9781611975482.25.

Oh, E. and H.-K. Ahn (2020). “Voronoi Diagrams for a Moderate-Sized Point-Set in
a Simple Polygon”. In: Discrete & Computational Geometry 63.2, pp. 418–454. DOI:
10.1007/s00454-019-00063-4.

Ozinga, W. A., C. Römermann, R. M. Bekker, A. Prinzing, W. L. M. Tamis, J. H. J.
Schaminée, S. M. Hennekens, K. Thompson, P. Poschlod, M. Kleyer, J. P. Bakker,
and J. M. van Groenendael (2009). “Dispersal failure contributes to plant losses in
NW Europe”. In: Ecology Letters 12.1, pp. 66–74. DOI: 10.1111/j.1461-0248.2008.
01261.x.

Papadopoulou, E. and D. T. Lee (1998). “A New Approach for the Geodesic Voronoi
Diagram of Points in a Simple Polygon and Other Restricted Polygonal Domains”.
In: Algorithmica 20.4, pp. 319–352. DOI: 10.1007/PL00009199.

Revilla, E. and T. Wiegand (2008). “Individual movement behavior, matrix hetero-
geneity, and the dynamics of spatially structured populations”. In: Proceedings
of the National Academy of Sciences 105.49, pp. 19120–19125. DOI: 10.1073/pnas.
0801725105.

Somerville, G. J., M. Sønderskov, S. K. Mathiassen, and H. Metcalfe (2020). “Spa-
tial Modelling of Within-Field Weed Populations; a Review”. In: Agronomy 10.7.
Number: 7 Publisher: Multidisciplinary Digital Publishing Institute, p. 1044. DOI:
10.3390/agronomy10071044.

https://doi.org/10.1007/s00453-019-00624-2
https://doi.org/10.1007/s00453-019-00624-2
https://doi.org/10.1073/pnas.1602817113
https://doi.org/https://doi.org/10.1016/s0747-7171(08)80064-8
https://doi.org/https://doi.org/10.1016/s0747-7171(08)80064-8
https://doi.org/10.1126/science.1124975
https://doi.org/https://doi.org/10.1016/s0169-5347(00)01874-7
https://doi.org/https://doi.org/10.1016/s0169-5347(00)01874-7
https://doi.org/https://doi.org/10.1137/1.9781611975482.25
https://doi.org/10.1007/s00454-019-00063-4
https://doi.org/10.1111/j.1461-0248.2008.01261.x
https://doi.org/10.1111/j.1461-0248.2008.01261.x
https://doi.org/10.1007/PL00009199
https://doi.org/10.1073/pnas.0801725105
https://doi.org/10.1073/pnas.0801725105
https://doi.org/10.3390/agronomy10071044

Bibliography 65

Sundell, H. and P. Tsigas (2008). “Lock-free deques and doubly linked lists”. In: Jour-
nal of Parallel and Distributed Computing 68.7, pp. 1008–1020. DOI: 10.1016/j.jpdc.
2008.03.001.

Teggi, S., S. Costanzini, G. Ghermandi, C. Malagoli, and M. Vinceti (2018). “A GIS-
based atmospheric dispersion model for pollutants emitted by complex source
areas”. In: Science of The Total Environment 610-611, pp. 175–190. DOI: 10.1016/j.
scitotenv.2017.07.196.

Thuiller, W., C. Albert, M. B. Araújo, P. M. Berry, M. Cabeza, A. Guisan, T. Hick-
ler, G. F. Midgley, J. Paterson, F. M. Schurr, M. T. Sykes, and N. E. Zimmermann
(2008). “Predicting global change impacts on plant species’ distributions: Future
challenges”. In: Perspectives in Plant Ecology, Evolution and Systematics 9.3, pp. 137–
152. DOI: 10.1016/j.ppees.2007.09.004.

Treep, J., M. de Jager, F. Bartumeus, and M. B. Soons (2021). “Seed dispersal as a
search strategy: dynamic and fragmented landscapes select for multi-scale move-
ment strategies in plants”. In: Movement Ecology 9.1, p. 4. DOI: 10.1186/s40462-
020-00239-1.

Van Houtan, K. S., S. L. Pimm, J. M. Halley, R. O. Bierregaard, and T. E. Lovejoy
(2007). “Dispersal of Amazonian birds in continuous and fragmented forest”. In:
Ecology Letters 10.3, pp. 219–229. DOI: 10.1111/j.1461-0248.2007.01004.x.

Vicente-Saez, R. and C. Martinez-Fuentes (2018). “Open Science now: A systematic
literature review for an integrated definition”. In: Journal of Business Research 88,
pp. 428–436. DOI: 10.1016/j.jbusres.2017.12.043.

Wamelink, G. W. W., R. Jochem, W. Geertsema, A. H. Prins, W. A. Ozinga, J. van der
Greft-van Rossum, J. Franke, A. H. Malinowska, A. H. Prins, D. C. J. van der Hoek,
and C. J. Grashof-Bokdam (2014). “DIMO, a plant dispersal model”. In: Statutory
Research Tasks Unit for Nature & the Environment (WOT Natuur & Milieu).

Wang, H. (2021). “Shortest Paths Among Obstacles in the Plane Revisited”. In: Pro-
ceedings of ACM-SIAM Symposium on Discrete Algorithms. Ed. by D. Marx, pp. 810–
821. DOI: https://doi.org/10.1137/1.9781611976465.51.

Figures
All figures are self-made, except:

Figure 3.1: "A convex distance function". Adapted from Figure 1.1.1 in Ma, 2000.

Figure 3.2: "The wavefront of the algorithm continuous Dijkstra". Original source:
Figure 7 in Hershberger and Suri, 1999.

Figure 3.3 "Construction of bisector". Adapted from Figure 2.2.1.1 in Ma, 2000.

Figure 3.4: "The degenerate case". Adapted from Figure 2.1.3.1 in Ma, 2000.

Figure 3.6: "Conventions". Adapted from Figure 3 in Papadopoulou and Lee, 1998.

https://doi.org/10.1016/j.jpdc.2008.03.001
https://doi.org/10.1016/j.jpdc.2008.03.001
https://doi.org/10.1016/j.scitotenv.2017.07.196
https://doi.org/10.1016/j.scitotenv.2017.07.196
https://doi.org/10.1016/j.ppees.2007.09.004
https://doi.org/10.1186/s40462-020-00239-1
https://doi.org/10.1186/s40462-020-00239-1
https://doi.org/10.1111/j.1461-0248.2007.01004.x
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/https://doi.org/10.1137/1.9781611976465.51

66

Appendix A

Research orientation

To orient on the ecological subject of seed dispersion, we contacted the ecologists
Wieger Wamelink and Laurens Sparrius. Both took the time to explain in detail how
their field is structured, how the seed dispersal models contribute to science, and
what challenges lie ahead. In this chapter, we give the summaries of the conversa-
tions.

A.1 Wieger Wamelink

On September 14, 2021, we spoke to Wieger Wamelink, ecologist at Wageningen
University & Research. Together with his colleagues, he designed a model for plant
dispersion, called DIMO. We will discuss the three main themes of the conversation:
the benefits, the technical challenges and the limitations of the seed dispersal model.

What is the benefit of knowing or predicting seed dispersion?

‘In the past, the benefit came down to scientific interest to explain why plant species
occur at certain places. Now, we have a new incentive, namely climate change. Each
plant species has an optimum in environmental temperature. If the temperature
rises two degrees Celcius, we will lose over two hundred species in the Nether-
lands. Species either adapt, they migrate or they go extinct. As an example, in the
Netherlands the tree species Birch loses its leaves already in summer recent years,
which we predicted with our model.’

‘Sometimes barriers prevent the spreading of seeds. These barriers could be natural,
such as rivers, or human-made, such as roads. To restore the flow of seeds, we
search for ways to reconnect the nature reserves or forests. In Germany, we now
have a project in a very fragmented area, in which we try to find the best ways to
reconnect the area again.’

‘We usually do not focus on trying to prevent invasive species from spreading. Usu-
ally humans are a large factor, which makes prevention difficult. It is outside the
scope of our research.’

What are technical or geometric challenges you faced in building the model?

‘We chose a grid model as a basis, mostly because we are used to it. Also, many
input maps have a grid representation. Water maps, on the contrary, use a polygon
representation. Converting the polygons to grid representation takes a lot of time.’

‘Some plants can travel very far, such as an orchid. All the grid cells need to be
calculated one by one which takes a lot of time. And time is the bottleneck, not
space.’

Appendix A. Research orientation 67

‘When we model barriers, we use line segments in the grid model. Sometimes the
barriers do not connect well over the different grids, resulting in unwanted gaps that
produce errors. This takes a lot of time to fix.’

‘Using a 3D terrain would take too much time. Whether a barrier is high or low does
matter, but we model that using a degree of permeability for barriers.’

Limitations: what would you hope for in a plant dispersion model?

‘It would help us a lot if we could switch easily between the representation of poly-
gons and grids. For example, if we could use the polygon representation to solve a
sub-problem with the water card, then switch back efficiently to a grid model when
we present it to outsiders.

‘At this moment, we use the current vegetation map for both the past and the future.
Updates occur frequently, such as a parameter update or an input map change. It
would be handy if the model could do these updates dynamically. Note: the hun-
dred maps are not random, there is a line of logical update in it.’

‘It has always been a goal for me to compute the model from the Penultimate Glacial
Period (the glacial age that occurred before the Last Glacial Period), but for now that
takes too much time.’

A.2 Laurens Sparrius

On September 21, 2021, we spoke to ecologist Laurens Sparrius, acquainted with
the Dutch research institute FLORON. FLORON maps the distribution of common
plants in the Netherlands. The data is collected by hundreds of people, mostly vol-
unteers.

In our conversation, Sparrius elaborated on the structure and the purpose of the
organisation. The data in the databases of Floron describe plant observations. These
consist of the name of the plant, a time stamp and a location.

The Floron Verspreidingsatlas Vaatplanten1 presents this data in a visually attractive
way to support easy use. A user can make a variety of requests, such as asking the
system to provide a map for one specific plant over a longer period of time, or limit
the region to see an overview of plants that grow there.

When we asked for geometric or technical challenges, Sparrius mentioned the chal-
lenge of showing the data clearly and efficiently. As an example, the location of the
observations all have an inaccuracy. Some observations are accurate up to a few me-
ters, while other have an uncertainty radius of a few hundred meters. This is shown
as an octagon, but is stored as a centre point and a radius. Since these challenges lie
in the context of data visualisation, we will not focus our research on this direction.

1https://www.verspreidingsatlas.nl/1398

https://www.verspreidingsatlas.nl/1398

tekst

	Introduction
	Ecological relevance
	Research questions

	Ecological background
	Overview
	Modelling spreading plants
	Habitat connectivity
	Other spreading models

	DIMO Model

	Geometric background
	Distance measures
	Convex distance function

	Shortest paths
	Geodesic distance
	Continuous Dijkstra

	Voronoi diagram
	Voronoi diagram under a convex distance function
	Abstract Voronoi diagram

	Geodesic Voronoi diagram
	Geodesic Voronoi diagram algorithm by Aronov
	Geodesic Voronoi diagram algorithm by Papadopoulou
	Optimal geodesic Voronoi diagram algorithm

	Minkowski sum

	Formalisation
	Basic problem based on DIMO
	Convex distance function

	Properties of geodesic cd-Voronoi diagrams
	Preliminaries
	Star-shaped Voronoi cell
	Additively weighted bisector
	Output complexity geodesic cd-bisector
	Geodesic cd-Voronoi diagram

	Algorithms
	Augmented cd-Voronoi diagram
	Additively weighted cd-bisector
	Geodesic cd-Voronoi diagram
	Lazy approach cd-Voronoi diagram

	Queries
	Distance to closest site
	All points at given distance
	All points at multiple distances
	Queries under Euclidean distance measure

	Extensions
	Germination delay
	Habitat suitability
	Obstacles
	Anisotropic regions

	Conclusion
	Future work

	Bibliography
	Research orientation
	Wieger Wamelink
	Laurens Sparrius

