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Abstract

Background The goal of question answering (QA) systems is to automatically provide
answers to given questions. Modern QA systems commonly extract the possible answer
intervals from documents that contain explicit answers. However, in the real-world case,
machines may only be able to answer questions using relevant background knowledge.
The background knowledge documents contain implicit answers to questions, thus it
requires the machine to understand latent semantic information and consider the ques-
tions simultaneously in order to answer questions. Moreover, as the conversation goes
more extensive for multi-turn QA tasks, it becomes more challenging to provide an-
swers by considering both the current question and historical contextual information.

Methods In this thesis, we propose a neural retrieval-reading system with customized
modules to investigate the possibility of using background knowledge to answer ques-
tions and explore a few directions to leverage historical contextual information in real-
world Conversational QA (ConvQA) scenarios. In order to be more relevant to the
industrial scenario, we conducted all experiments using a real-world multilingual cus-
tomer service dataset provided by a Dutch corporation. We first implemented the
sequence-to-sequence[] (seq2seq) model to generate answers by reading documents con-
taining potential background knowledge retrieved by a dense retriever. In addition, we
proposed and validated the use of a text summarizer to refine the content of histori-
cal context to improve the quality of machine retrieval and reading. Furthermore, we
explored whether it is possible for neural readers to improve reading quality by intro-
ducing an additional attention module to force the machine towards focusing more on
valuable historical information.

Results Overall, our system can efficiently use background knowledge and historical
contexts in real-world multilingual ConvQA scenarios. The experimental results show
that the machine can create significantly better answers when background knowledge is
taken into account. This implies that using a retrieval-reading model to efficiently ex-
ploit background knowledge significantly outperforms using only a generative reader or
a retriever without considering background knowledge. Specifically, the qualitative ex-
perimental results show significant improvements in both correctness and readability of
the generated answers when compared with the retriever; the quantitative experimental
results have the same conclusion, i.e., there is an improvement in f1 rouge score over
2%. Furthermore, text summarization improves performance by refining the history
context information for both the retrieval and reading tasks. It improves both retrieval
and reading performance by up to over and around 2% f1 rouge-1 score respectively.
However, our experiments demonstrate that adding an additional attention module to
the encoder of the seq2seq model for the historical context makes the model harder to
train and slower to converge.
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1 INTRODUCTION

1 Introduction

1.1 Background

Contextualized embedding-based models have recently shown powerful capabilities by improving
the state-of-the-art on various natural language processing (NLP) tasks, such as question answering
(QA), sentiment analysis, and text classification. As a result of the rise of Pre-trained Language
Models (PLMs) such as Bert[15] and RoBERTa[44] in NLP, more research in the field of QA has
started to focus on understanding the latent semantic information in documents. For example,
Machine Reading Comprehension (MRC) aims to answer questions by reading a given document,
and ad-hoc neural retrieval compares document similarities on the document level and then re-
trieves the most similar ones. These studies have explored and achieved near-human results in the
Open-domain QA and MRC field, i.e., SQuAD[57], QuAC[11], CoQA[58], and MS-MARCO[49].

Conversational AI products, such as Siri, Cortana, and IBM Watson, are increasingly used across
industries to assist humans with complex tasks such as customer service and recommendations[18,
61, 34, 78]. The question answering technology behind them is a research domain aiming to an-
swer questions in the natural language form automatically. Question answering research generally
includes studies in the open domain and closed domain. The former studies how to make machines
answer questions in various domains, such as “Who is the first human to go to space?”; “when the
first electronic computer was built?”. The closed domain QA tasks, on the other hand, investigate
QA in a relatively closed domain. For example, in the banking domain, machines are expected to
answer questions like “how to block a credit card?”. Generally, QA systems are usually designed to
answer factoid questions, such as questions starting with what, when, who, and where, especially
for open domain QA tasks. Non-factoid questions are more likely to ask about descriptions and
instructions, such as “why the earth is magnetic?”, “how do I withdraw a cross-border transfer I
made yesterday?”, etc.

1.2 Research approach

Modern QA systems often rely on information retrieval to retrieve documents containing explicit
answers and extract them. However, in real-world cases, the answer to a question may come from
multiple documents instead of one, or even does not explicitly exist in the retrieved documents. In
particular, for non-factoid questions, it is difficult or sometimes even unrealistic for the machine
to retrieve documents that clearly contain the complete actual answers from historical data, which
places a higher demand on the machine. Frequently asked questions (FAQ) or How-To documents
help users with simple guidance on the basics in real-world applications, however, when faced with
complex and very personal non-factoid questions especially in customer service tasks, there is no
guarantee that these documents will cover a wide range of issues.

In addition, previous research has pointed out that IR systems using millions of historical QA
pairs cover well open domain in which new users can ask questions[12]. However, in actual indus-
trial use, we cannot guarantee the effectiveness of these data in the practical application of QA
in certain specific areas. And because their sources may be uncertain, it is also difficult to access
whether these data have been identified by certain measurements, thus the blind use of these data
may lead to some unpredictable consequences, such as sexism and racial discrimination.

Therefore, due to the limitations of the data in practical applications, simply extracting answers
from a given golden passage may not be feasible. The first goal (RQ1) of this thesis is to explore
whether the machine is capable of answering questions using relevant background knowledge. To
investigate this, we first build a state-of-the-art system to retrieve potential background knowledge,
then we explore the possibility of using neural sequence-to-sequence generative models to leverage
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1.2 Research approach 1 INTRODUCTION

the potential knowledge and then generate answers.

Humans seek answers in many conversational QA (ConvQA) scenarios by asking several questions
for more comprehensive information. As the conversation goes more extensive, multiple rounds
of conversation yield more historical contexts. Specifically, this historical contextual information
refers to conversations that took place between the questioner and the respondent prior to the
current question, also known as historical QA pairs. For example, in the customer service QA
scenario, customers are more likely to ask follow-up questions about previous answers. Thus, this
history dependence issue requires the machine to consider and encode the historical information
additionally, which poses additional challenges for existing QA systems. In addition, QA data in
the real world often tends to be colloquial and informal, covering non-valuable semantic content,
such as greetings and personal information. When such irrelevant information appears in historical
contexts, it is difficult for the model to capture the focus of attention from the complex information.

Therefore, the other goal (RQ2) of this thesis is to investigate the impact of historical context
information on machine retrieval and reading quality. To avoid ambiguity, in contrast to the
reading task performed by humans, machine retrieval and reading refers to the task of retrieving
documents and exploiting the statistical distribution of words to predict the answer to a given
question. Generally, the composition category of historical contextual information determines its
content and thus influences what information the QA system encodes. We consider the composition
category of historical contexts as historical questions, historical answers, and both of them. Where
the former consists of all questions asked by the user prior to the current query, and the latter
is the system’s response to those historical questions. We first focus on what types of historical
contextual information can help machines answer questions better (RQ2.1); hence we conducted
machine retrieval experiments using three different historical information compositions. Second,
considering real-world conversations may contain irrelevant fragments in the conversation such as
greetings and confirmations, we propose a text summarizer to refine the historical information
content in both machine retrieval and reading task (RQ2.2).

Furthermore, not all historical contexts are helpful for understanding the current question, and
some may even confuse the machine to trivialize the current question, especially when historical
information occupies the majority of the input. Our final goal ((RQ2.3)) is to investigate whether
it is possible to improve machine reading performance by forcing machines to pay less attention to
low-value historical information. In order to do that, we propose an additional history reweighting
module that can be extended in the generative model. The main idea is to learn how vital different
historical contexts are, then reweight their embedding according to the importance weights we
learned.

In order to be more relevant to the industrial scenario, our research are conducted using a mul-
tilingual ConvQA dataset that based on real-world customer service conversations provided by a
Dutch banking corporation. Even customer utterances can be linguistically meaningful as answers
to previous questions, and staff responses can sometimes be seen as follow-up questions to previous
responses. To avoid ambiguity, we define customer utterances as questions and customer service
staff utterances as answers in this study. Our data consists of real conversations between the bank’s
customer service staff and customers, and it includes more than 131,000 conversations and over
339,000 questions and corresponding answers. In addition, our dataset is featured as multilingual;
it consists mainly of Dutch and English and a small number of other languages such as German.
Compared to other publicly available academic datasets in the field of ConvQA, such as QUAC[11]
and OR-QUAC[55], the vast majority of questions in our dataset are non-factoid questions, and
the questions and answers in our data are significantly longer than those in public datasets.

The research questions of this thesis are designed as follows:

RQ1: Is the machine capable of answering questions using candidate background knowledge?

5



1.3 Research aspects 1 INTRODUCTION

RQ2: How do machines leverage historical contextual information for real-world ConvQA tasks?

RQ2.1: How do different historical information compositions affect a machine’s retrieval
performance?

RQ2.2: For real-world ConvQA tasks, refining the historical contexts help the machine
perform retrieval and reading tasks?

RQ2.3: Is it possible to improve machine reading performance by forcing machines to pay
less attention to low-value historical information?

1.3 Research aspects

• Our hypotheses and models will be validated on real-world industrial data. This dataset is
multilingual and more challenging than other datasets, e.g., our data has longer questions
and responses, and the dataset contains multilingual data with a large amount of non-factoid
questions.

• We propose a neural retrieval-reading system with customized modules to investigate the
possibility of using potential background knowledge to answer questions in the real-world
ConvQA scenario.

• Inspired by previous approaches[11, 55, 53], we further explore a few directions to leverage
historical contextual information with our industrial ConvQA dataset.
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2 RELATED WORK

2 Related work

In this section, we first introduce the background of Question Answering and ConvQA in section.2.1
and section.2.2. After that, according to the two main research directions of textual QA, we then
focus on the current research progress of IR-based QA and MRC in section.2.3 and section.2.4,
respectively. In addition, some of the research directions in dialogue systems are very close to the
current research in QA; therefore, we will summarize the research progress and results of these
studies in Section.2.5.

2.1 Question Answering Overview

Question answering (QA) aims to answer questions concisely and automatically, and it generally
involves various NLP techniques such as natural language understanding, information retrieval,
machine learning, and knowledge graphs. Depending on the source of the answer, the whole QA
study can be divided into two main paradigms[32, 64, 84]: knowledge-based QA and textual QA.
Knowledge-based QA approaches provide answers by reforming questions into logical queries and
then searching the corresponding answers in the structured database. In contrast, textual QA ap-
proaches obtain answers from unstructured texts, such as a large number of documents, Wikipedia,
or web texts queried from search systems.

Textual QA systems are often considered more accessible to implement[84] because it does not
require structured information such as a database. There have been many studies at this stage
with outstanding results in the direction of textual QA. Some even approached human perfor-
mance, e.g., close to 30 models outperformed human performance on SQuAD[57]’s leaderboard. In
addition, in terms of constructing QA datasets, most of the datasets such as SQuAD[57], Narra-
tiveQA[35], TriviaQA[30] used in previous studies are based on information-verifying qualities, i.e.,
the questioner asks questions to the respondent based on knowing the answers to the questions,
and the respondent’s answers are used to assess their ability[14]. This is usually happened when
the questioner is given a document and then they are asked to ask a question about the document.
However, several textual QA studies such as QuAC[11], and MS Marco[49] have also introduced
the information-seeking feature, i.e., the questioners have no prior knowledge of the answers to the
questions they are asking[11, 14]. This means the questioners do not know the actual answers to the
questions they asked. This knowledge-intensive attribute makes QA research more oriented to real-
world scenarios, where answers and background knowledge are obtained by asking questions[21, 38].

Recently, several textual QA studies are focusing on two sub-directions: Information-Retrieval
based QA (IR-QA) and Machine Reading Comprehension (MRC). The former focuses on how to
use information retrieval to return documents that may contain answers and then extract possible
answers from the retrieved documents. MRC, on the other hand, only investigates how to perform
the machine reading task more efficiently, which can be seen as a subtask of the IR-QA direction.
This means that for the MRC system, the machine is provided with a golden document explicitly
containing the answer, and the machine only needs to answer the question based on the provided
document. As our research will cover both information retrieval and machine reading comprehen-
sion directions, we will summarize and present research findings of IR-QA and MRC in sections
2.3 and 2.4.

In addition, depending on the type, the questions to be answered by the QA system can be mainly
classified as factoid and non-factoid questions[64, 6, 32, 78, 84]. Factoid questions are questions
that can be simply represented in short text and usually have fewer answer forms. For example,
the following factoid questions have very few answer forms. Further, even though the answers to
factual questions may take different forms, they all contain the actual answers. For instance, for
question 2, although its answers have different expressions, all of them include the true answer,
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2.2 Conversational Question Answering 2 RELATED WORK

i.e., “ABNANL2A”. Therefore, for factoid questions, it is feasible and common to use extractive
QA approaches to extract answers or predict answer intervals from documents.

Factoid Question

1. “Who is the first human to go to space?”
Answer: “Yuri Gagarin”.

2. “What is the BIC code of the ABN AMRO Bank?”
Answer 1: “ABNANL2A.”
Answer 2: “It is ABNANL2A.”
Answer 3: “The BIC code of the ABN AMRO is ABNANL2A.”

In contrast, non-factual questions typically cover many questions about request instructions and
descriptions. The answers to non-factual questions can often be syntactically formulated in multi-
ple forms even though their sentence-level semantics are guaranteed to be similar. For the customer
service use case, non-factoid questions are more likely to ask the responder to provide a specific
detailed instruction. Admittedly, the answers to some non-factoid questions may be semanti-
cally different, depending on how the respondent wants to help the questioner. For example, the
following example shows that freezing the credit card can be handled by phone app or offline
appointments, and it depends on the policies of different banks. Furthermore, the answer to the
question can be a follow-up question to get more details, provide more accurate information, or
provide guidelines to the user. As a result, non-factoid QA tasks are more oriented to real-world
applications, especially in customer service applications. However, most QA studies at this stage
rarely focus on these tasks.

Non-Factoid Questions

1. “How can I freeze my ABN AMRO credit card?”
Answer1: “Would you like to handle it offline? In this case you can make an appointment in
your city, which city do you currently live in?”
Answer2: “Did you lose your card? In that case we recommend you to deactivate your card
first, then apply for a new card. You can login to our app and select ‘block the card’, then
request for a new card.”

2.1.1 Multilingual Question answering

At this stage, several studies have started to introduce multilingual and cross-lingual QA dataset
for research[4, 69, 72, 28, 45, 13], and most of them contribute to the better development of
multilingual QA systems by introducing parallel multilingual and cross-lingual QA data. Among
them, [4] proposed the XQuAD dataset by translating SQuAD data into ten languages, and they
measured the generalization ability of multilingual models by transferring multilingual models
trained on other languages to the English QA task. MKQA[45], on the other hand, proposed a
larger QA dataset containing more than 260k QA pairs on 26 languages pairs. One limitation of
these studies is that most of them cover only factoid questions, and these data are not conducted
in multiple rounds of conversation. In addition, only very few datasets have a large amount of
data[72, 45, 13]. Furthermore, most of these multilingual QA datasets contain less than 100k of
actual QA data when duplicates of QA data in other languages are removed[28, 4, 45, 13], which
means that these studies are not very relevant for practical applications in industry.

2.2 Conversational Question Answering

Based on the QA setting, conversational question answering (ConvQA) introduces contextual in-
formation by introducing dialogues, which can usually be considered QA questions with multiple
turns. On the other hand, like single-turn question answering tasks, the ConvQA task also requires
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the system to answer the user’s question in a simple natural language form. The introduction of the
multi-turn dialogues introduces context information to the system, which means that when under-
standing the current user question, systems have to consider previous questions and corresponding
answers as context information as well. Such historical context dependency imposes additional
difficulties on the QA system, requiring the system to rely on other historical QA information to
understand the current question.[84, 78, 20]

Historical context dependency example

1. Q1: “Hello, I lost my bank card. What should I do?”
A1: “Sorry to hear that. Do you have access to our app?”

2. Q2: “Yes.”
A2: “Then you can use the card overview menu in the app, to block your current damaged
card, and apply for a new one.”

3. Q3: “How long will this take?”
A3: “The new card should arrive withing 5 working days.”

To be more specific, the user’s current question sometimes can be the follow-up question to the
historical answer[78, 14, 84]; thus, answering them becomes problematic if historical contexts are
ignored. In the historical context dependency example, without considering the first QA pair(Q1,
A1), it is impossible to give a reliable answer only when looking at the second question Q2. The
same issue happened in Q3, where the machine needed to understand what ”this” meant in order
to truly understand how long it would take for the user to receive the new card. Thus, when the
current question involves information about history QA pairs, it is difficult to understand without
considering the history.[54, 84, 51]

In addition, the machine is forced to encode longer texts when the historical context is also taken
into account. Nevertheless, most of large pre-trained language models have the limitation of pro-
cessing only a restricted amount of tokens, e.g., 512 token lengths for Bert[15]. In the field of
conversational QA, this drawback becomes severe, as we need to consider the context, the current
question, and candidate documents together, which will likely cause the length of the text to be
processed to exceed the limitation[80]. Considering only a few neighboring historical contexts may
alleviate this problem[83, 51, 11, 54], since the questioner’s current question may involve only
proximate historical contexts. Previous studies[20, 78, 75] have introduced and discussed the dif-
ficulties of topic return and topic shift in ConvQA tasks. In a multi-round conversation, the user
may ask about a previously discussed topic, which will lead to a shift in the topic of conversation;
or the user may continue to seek answers from other previous rounds of conversation (topic re-
turn). Therefore, when facing problems such as topic return and topic shift, only encoding limited
preceding historical contexts still makes the machine remain in a dilemma: 1. the limitation of
long text due to considering all contexts[80]; 2. the problem of sacrificing some performance by
considering only the neighboring contexts[51].

Another issue that cannot be ignored is: in real-world ConvQA scenarios, conversations may con-
tain irrelevant fragments such as greetings and information irrelevant to understanding the current
question, or sentences with errors and misspellings[17]. Such issues are complex for the machine
to tackle because some irrelevant historical contexts are essential for some questions but also can
be redundant for others. Further, questioners sometimes describe their questions in too much
detail, leading to lengthy questions. Therefore, applying appropriate summarization to historical
contexts may be a potential direction to mitigate these issues. It reduces the length of the text to
some extent while preserving most of the necessary semantic information[2]. On the other hand,
summarization for historical context is capable to removes unnecessary information like greetings.

However, no existing research has attempted to use text summarization to alleviate the long text
limitation and refine the historical context in the ConvQA domain. Some studies[68, 3, 12] about
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2.3 Current research progress in IR-based QA 2 RELATED WORK

the question rewriting are similar to our idea to some extent. Generally, the question rewriting
in the field of ConvQA investigates how to rewrite the combination of historical contexts and the
current question into a form that machines can better understand. For example, when a demon-
strative pronoun is involved in the current question, machine rewriting approaches usually look
for the noun referred to by the referent from the historical context in order to rewrite the current
question into a more comprehensible version. However, these approaches[68, 3, 12] usually require
the rewritten questions as training data for supervised learning. Their implementation also re-
quires large-scale neural network training, which is hard to acquire in real-world applications.

2.3 Current research progress in IR-based QA

Most modern Information Retrieval based QA (IR-QA) approaches are based on the retrieval-
reading architecture. As shown in Figure 1, the retrieval-reading architecture can be divided into
two essential components, retriever and reader, according to their functions. The retriever is an
information retrieval module that retrieves and returns similar documents. At the same time, the
reader is a predictor that reads those returned documents and gives answers to questions using
specific methods. We will introduce the current research progress of retriever and reader in the
following paragraphs.

Figure 1: Retrieval-reading architecture

2.3.1 Sparse retriever

Sparse retriever refers to those retrieval models that use sparse representation, such as TF-IDF
and BM25. One of the earliest systems with modern architecture is DrQA[9], which was used for
the retrieval-reading task and proved to achieve state-of-the-art performance at that time. DrQA
proposes a retrieval module based on bigram hashing and TF-IDF to retrieve relevant documents
from five million Wikipedia documents, with a multilayer RNN[10] module to predict the answer
span. With the advent of contextualized embedding, researchers started to replace the reader
module with the more advantageous transformer encoder model. BERTserini[74] proposed an end-
to-end model based on BM25 and Bert using Wikipedia as their corpus. They also compared
the differences in retrieval at the various granularity of document length, i.e., comparing the
performance of prediction at the document level, paragraph level, and sentence level, which brings
more possibilities for researchers on information retrieval in the QA domain.
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2.3.2 Dense retriever

In addition to sparse retrievers like TD-IDF and BM25, another innovation in IR-based QA tasks
is the use of neural ad-hoc retrieval models, sometimes also called the dense retriever. An obvi-
ous advantage of a dense retriever is the use of dense embedding to represent the semantics of a
sentence or a document, allowing us to find content containing similar semantic information when
retrieving documents[84]. In addition, dense retriever can usually be trained as a module with
reader together, i.e., forming an end-to-end system, which will effectively help the whole system
be trained uniformly and thus improve the whole system’s performance. Besides, it is possible
to encode and save all the documents before the daily use of inference process so that the dense
retriever can perform fast offline inference similar to sparse retriever.

A typical dense retriever is the Dense passage retriever (DPR[33]). DPR is a dual-encoder frame-
work that encodes the question and the document independently. It retrieves similar documents
to a question through computing the inner product between the question and all documents. As a
result, it outperforms BM25 on several mainstream open-domain QA datasets, and shows superior
capabilities when comparing semantic relations and dealing with syntactic relations. Meanwhile,
several studies (RAG[38], ORConvQA[55], FID[27]) have adopted DPR’s retrieval module and
combined it with the faiss[29] system to return similar documents. Their results have shown the
effectiveness and efficiency of this combination.

2.3.3 Extractive reader

Another integral module of the retrieval-reading architecture is the reader, responsible for reading
the returned documents and giving answer predictions. At this stage, most reader modules are
based on extractive models[9, 74, 21, 55]; that is, they read the documents and then predict the
probability of each token to be the start and end of the answer span. Undeniably, the reading
module has almost the same task as MRC, allowing many IR-based QA models to explore models
that perform well in MRC. For instance, DrQA[9] and BiDAF[63] investigated RNN-based models
akin to the attentive reader[22] to predict answers, where DrQA predicts answers for each docu-
ment split into paragraphs and aggregates them. In contrast, ORConvQA[55] and BERTserini[74]
implemented Bert-based readers to encode both the question and the candidate document together
and then predict the start and end probability for each token in the document.

2.3.4 Generative reader

On the other side, unlike extractive QA, some recent papers are also starting to experiment with
generative models as the reading module to explore IR-based QA problems. Especially when
extractive QA does not yield good results on non-factoid questions, i.e., we can hardly extract
complete answers from the retrieved documents. Generally, these models follow the sequence-
to-sequence[65] architecture, which means using an encoder to read the current question and the
candidate document, and then using a decoder to generate free-form answers. Specifically, RAG[38]
uses DPR as the retriever and BART[37] for answer generation at the sentence and token levels.
At the same time, FID[27] follows BM25 and DPR to return documents similar to the question,
then uses the encoder module of the T5[59] model to encode all the documents before integrating
them into the decoder to predict the answers. Although the use of generative models in IR-based
QA problems is still a relatively new research direction, these limited results have demonstrated
the benefits and feasibility of generative models, which are certainly worthy of further exploration.

In addition, for the multilingual QA task, MKQA[45] performed experiments with retrieval-extractive
QA and retrieval-generative QA models on their dataset for the open domain QA task. Specifi-
cally, they use a monolingual dense retriever to retrieve relevant documents in English, then use
a machine translation model to translate them into other languages, and finally use the extrac-
tive QA models to predict the answer spans. For the generative QA models, they only input the
retrieved English documents as external knowledge into the generative models. Therefore one of
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their research limitations is that they do not use the same translation procedure for the generative
models, even though the generative model is multilingual, yet it might be expected to perform
worse on cross-lingual tasks.

2.3.5 IR-based QA in the conversational setting

Until now, few studies[55] have focused only on combining information retrieval-based QA in the
conversational setting. Most studies either focus only on enhancing the IR-based QA architecture
in the single-turn QA scenario[38, 21, 33, 47, 27, 48, 9], or they are conducted only in the context of
conversational machine reading comprehension[51, 8, 58, 11, 76, 24, 54, 53, 80, 31, 83]. Addition-
ally, no existing study has attempted to investigate using generative models to provide answers in
the multilingual conversational IR-QA scenario at this stage. A similar study is QReCC[3], where
they use the generative model to rewrite sentences for the information retrieval, however they use
the extractive model to predict answer intervals.

ORConvQA[55] proposes an end-to-end system architecture to solve the conversational informa-
tion retrieval-based QA problem. Specifically, the model uses a dual-encoder-based retriever ar-
chitecture to retrieve k most relevant documents to the current user question and then uses the
re-ranking and reading modules to predict the answer span in each candidate document to answer
the question. The selection of the final question depends on three different scores: retrieval score,
re-ranking score, and reading score, and this design allows the end-to-end model to be trained
simultaneously. The retrieval score represents how confidently the retrieved document is relevant
to the current user question, while the re-ranking score indicates how likely a document’s ranking
needs to be changed, and finally, the reading score is the confidence level that the token in each
document is predicted to be the answer span.

Even though ORConvQA[55] tried to connect these two domains and achieved good results on
mainstream datasets, they do not consider some problems specific to conversational situations,
such as dynamic history embedding, to solve historical context dependency. Even though they
adopted the sliding window approach to divide long passages for reading, their research did not
indicate the advantages or disadvantages of this approach to the final performance.

2.4 Current research progress in Machine Reading Comprehension

With the rise of neural models, more and more studies focus only on the reading task in the QA
domain, which is the driving force behind the development of Machine Reading Comprehension
(MRC) research. MRC focuses on tasks given a document, a question, and the goal is to provide
answers by reading the input. In other words, MRC systems generally provide answers by pre-
dicting the answer span from a given passage; thus, a vital assumption of MRC is that the true
answer can be found in the given passage. Even though the MRC task, to some extent, simplifies
the QA task by providing a golden passage with answers, many competitions or datasets have
emerged in the NLP community in recent years to address the MRC problem, such as SQuAD[57],
TriviaQA[30], QuAC[11], NewsQA[67]. In contrast to IR-based QA tasks, these MRC tasks focus
only on how machines perform the reading task; thus, it does not perform the retrieval task.

Numerous studies started to address the MRC problem using neural approaches as the neural
network and attention mechanism[70] emerged. Some studies use traditional machine learning
algorithms to answer MRC questions by extracting named entities or hand-crafted features from
the context. An example is the logistic regression model proposed in SQuAD[57], which considers
nine features to predict answers, including dependency tree paths, and span POS tags. On the
other hand, more and more end-to-end deep learning models based on techniques such as CNN,
RNN, and transformer are used to provide more effective and robust systems. For example, the
Bi-Directional Attention Flow network (BiDAF[63]) utilizes multi-stage hierarchical architecture
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and CNN to represent context at the character and word level. It then uses an attention mech-
anism to generate query-aware context representation and finally predicts the answer span using
multilayer LSTM[23]. A new level of performance has been witnessed for transformer-based models
like Bert[15] and Albert[36] on the machine comprehension task, and approaches based on them
behaves close to the real human label in datasets such as SQuAD.

For multilingual MRC tasks, currently several studies generally exploit multilingual PLMs in their
research[28, 77]. For example, BiPaR[28] compares the performance of multilingual model and two
monolingual models on MRC tasks in their experiments, while [77] uses the construction of cross-
lingual data pairs through back-translation to enhance the performance of multilingual models.
Even though these studies have investigated the use of additional translation modules to enhance
their monolingual or multilingual systems, their methods are not efficient and easy to implement.

2.4.1 Conversational Machine Comprehension

Another innovative area that deserves attention is the inclusion of more contextual information
in the MRC setting. Conversational Machine Comprehension (CMC) aims to add context to the
MRC task by introducing multiple rounds of dialogues, thus making the MRC task more adaptable
to practical applications of Conversational AI. As evidence, CoQA[58] and QuAC[11] datasets in-
troduced multi-round QA, information-seeking feature, and unanswerable questions on top of the
MRC task to provide a more realistic task setting to the NLP community. Formally, the CMC task
can be defined as giving a current question qk, a passage P containing the answer, and all histori-
cal QA pairs Hk preceding the current question, and the system needs to give the corresponding
answer.

Previous work[20] summarizes the framework of current neural CMC systems, indicating that
it consists of four modules: 1. History selection module; 2. Encoder; 3. History modeling module;
4. Answer prediction module. Specifically, the history selection module will be responsible for
selecting the parts of all historical QA pairs that are useful for understanding the current question
in order to avoid the possible consequences of topic shift and topic return. After that, the encoder
will be responsible for encoding the current question, selected history and the document. The
history modeling module integrates embeddings of the passage, current query, and the history.
Finally, the prediction module will predict the answer span or generate free-form answers based
on the received embeddings.

We summarize and compare the methodologies of several papers in the field of CMC, and we
will focus on how they encode and use contextual information. First of all, most models are based
on the following two methods or models: 1. large-scale pre-trained language model, e.g., Bert[15],
Roberta[44]. 2. Attention-based sequence models such as BiDAF[63], DrQA[9]. We observed
that methods based on pre-trained LMs had achieved higher results than the others (according to
QuAC and CoQA leaderboards), representing the advantage of such large-scale pre-trained models
in the QA domain. Several approaches[11, 24, 25, 53] implemented self or cross attention layers for
the history modeling and context integration to integrate passage, question and history together.
We also observed that studies using transformer-based models typically generate the contextual-
ized embedding by encoding passages, questions, and histories simultaneously; thus, these models
barely make use of the additional contextual integration layer.

2.4.2 History selection and modeling in CMC

Compared to MRC, CMC needs to consider historical information while understanding the current
issue because of the history dependency, especially when the topic shift and topic return issues
appear in the conversation[53, 54]. Therefore, how the context is selected and encoded is critical
to the CMC task. At this stage, most approaches[31, 83, 58, 51, 11] simply prepend all historical
contexts to the current question, or prepend only k previous historical QA pairs due to the length
limitation. Their results have shown disadvantages because some historical QA pairs do not help
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the system to understand the current question, but bring more noise instead.

However, some approaches started to explore the possibility of dynamically selecting and encoding
histories. For example, previous work[54] uses History Attentive Embedding (HAE) to encode the
current question and passages while considering whether each token in them is also present in the
historical context; then, it adds this information to the encoding calculation of the Bert. While
History Attention Mechanism (HAM)[53] incorporates the location information of historical QA
pairs based on HAE, i.e., when the token in the passage appears in the i th historical QA pair
simultaneously, the historical information of i is also encoded into Bert. In addition, HAM also
computes the sequence-level embedding for each history pair, then computes the weights of each
history pair by a single-layer attention network, and finally uses those weights in the token-level
embedding. Finally, in HAM, the final prediction of the answer span is performed by aggregation
operation.

A significant limitation of HAM and HAE is that these history encoding strategies can only be
implemented on extractive QA models. Because they only reweight tokens in the candidate pas-
sages, thus only passage embeddings will be updated. However, for generative QA models, they
predict the answer by considering not only candidate passages but also query and history contexts.
Such limitation is reasonable for CMC tasks since the golden passage is provided to the model.
Therefore, exploring additional historical modeling strategies for IR-QA tasks and generative QA
tasks is a feasible research direction.

2.5 Dialogue system

Dialogue systems are systems designed to communicate and interact with human users. Accord-
ing to the function and intention of these systems, they are commonly divided into task-oriented
dialogue systems and open-domain dialogue systems (also called chatbots)[32]. Task-oriented dia-
logue systems are designed to fulfill specific user commands and requests, such as ordering food,
checking the weather, etc.; thus, they are often implemented in restricted domains. Chatbots, on
the other hand, are more focused on how to communicate with humans in a casual way. Gen-
erally, chatbots are not expected to answer users’ questions accurately but rather to chat with
users pleasantly or humorously. Consequently, many chatbots are often demanded to give a more
human-like response[1, 81, 82]. It is undeniable that conversations in dialogue systems, especially
for task-oriented systems, are more akin to question answering conversations. The reason behind
this is because those conversations are conducted in a question-and-answer format, and they end
with the user receiving a satisfactory answer. These properties of dialog systems have made their
task analogous to conversational question answering; therefore, in this subsection, we will outline
and review some of the research progress and findings for dialog systems.

Similar to the research in QA, several dialogue systems are developed using information retrieval
models or generative models to respond to users’ utterances. Information retrieval-based dialogue
systems[7, 66, 46, 26, 73] adopt retrieval models to provide responses by searching for the most
similar question in a corpus. We observed a similar conclusion as in the IR-QA studies, that is, the
dual-encoder-based retrievers can produce better results than the traditional word frequency-based
models (e.g.,: TF-IDF, BM25). On the other hand, there are some studies[81, 79, 1, 82] utilizing
generative models to answer users’ utterances in dialogue system studies. Specifically, given user
utterances, these studies use sequence-to-sequence models[60, 81, 1, 82] or decoder-only language
models[79] to predict the responses.

Furthermore, some previous studies[16, 62, 73, 60] have investigated the use of systems similar
to retrieval-reading architectures to enhance the system by introducing retrievers based on gener-
ative models to consider more external knowledge such as Wikipedia articles or knowledge bases.
For example, [16] proposes Generative Transformer Memory Network to retrieve knowledge can-
didates from Wikipedia and then incorporate those candidates with a sequence-to-sequence model
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to obtain an end-to-end system that can select beneficial knowledge candidates using the negative
log-likelihood loss function. In contrast, [60] proposes a retrieve-and-refine system that is very close
to the retrieval-reading architecture, where they use a poly-encoder retriever to retrieve possible
results from candidate responses or knowledge base, and then combine the encoder-decoder system
to generate the final response. However, their experimental results show that this retrieve-and-
refine system does not outperform the pure retrieval system on the dialogue system dataset.

Eventually, these research on dialogue systems is very similar to IR-QA and CMC approaches
with similar task goals: i.e., predicting responses in multi-round dialogue situations using user
queries and historical contexts, and sometimes using external knowledge. Nevertheless, although
these studies have explored the use of retrieval-reading architectures to enhance the performance
of dialogue tasks, few studies have focused on how to encode and select historical information more
efficiently.
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3 Data

In collaboration with a Dutch corporation, this research will use real industrial multilingual ques-
tion answering data to validate all hypotheses. The data comes from real conversations conducted
between bank customer service agents and customers via a mobile app and consists of Dutch and
English and a small amount of other languages such as German. However, we do not have language
labels for these data, hence we cannot provide accurate statistical information on what percentage
of the data is in Dutch and English. Table.1 shows some statistics of our dataset and compares
them with the QuAC[11] dataset. Overall, our dataset provides over 300k QA pairs containing over
100k complete dialogues. In addition to this, we observe that our dataset is more challenging than
other ConvQA datasets such as QuAC, and CoQA[58], because the vast majority of questions in
our dataset are non-factoid questions, and the questions and answers in our data are significantly
longer than those in public datasets. Moreover, although the average history rounds are similar to
the QuAC dataset, the maximum is much larger than the QuAC dataset, posing a more signifi-
cant challenge for our study because some conversations will have excessively long history context
lengths.

An English conversation example in our QA dataset

1. Q1: I download the bank app, and activated it, then the app showed me that I can’t use it
anymore because no permission to use Mobile Banking. My parents transferred me money
on Friday, and I still didn’t get it. What’s the problem?
A1: Were you able to use our app before or is this the first time you’ve installed the app?

2. Q2: I downloaded it for the first time, and it was ok at first. then I quit the app, and it was
written that I can’t use it anymore, because no allow to mobile banking.
A2: Okay, can you still log in with your card and e.dentifier on our website in Online Banking?

3. Q3: yes, I think so.
A3: Could you please try this?

4. Q4: Yes, I can log in online. I’m sorry for changing the subject, but this question is really
important. My parents transferred me money on Friday and I still didn’t get it. What is
the problem? It will be nearly a week tomorrow. The bank from where the money was
transferred told us that the bank got the money on Friday, but there is no money in my bank
account.
A4: From which country/ bank did your parents transfer the funds?

5. Q5: [country].
A5: Then you will receive it within 5 working days. The moment it is in our bank it is
directly on your account.

6. Q6: ok, thank you! and what about the mobile banking?
A6: You can call us on [phone-number] so we can check that!

7. Q7: What is the best time to call? Because I called a lot before and always couldn’t get the
answer.
A7: We are available from 08.00 in the morning.

8. Q8: Ok, thank you a lot.
A8: Good luck and have a nice day.

9. Q9: By the way, to check money on the bank account you use e.identifier?
A9: It is possible to check your account in Internet Banking or in the app. The first time to
log in on both you need an e.dentifier.
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Our dataset QuAC dataset

# Questions 339,478 90,922

# Dialogues 131,725 12,567

Below: Max, Mean, Min

# Tokens per question 233, 24.5, 1 23, 6.5, 1

# Tokens per Answer 645, 30.0, 3 30, 12.6, 1

# Questions per Dialogue 46, 2.6, 1 12, 7.2, 4

Table 1: Data statistics summarizing in our dataset and the QuAC dataset

Above shows a real English conversation example in our dataset, it contains 9 rounds conversa-
tions conducted between a customer and a human agent. Sensitive information such as name,
address, phone number is masked in this example, for example, the [phone-number] denotes the
phone number provided by the agent, and the [country] denotes the counrty name mentioned by
the customer. In real training and reasoning phases, we mask any sensitive information related to
user information such as name, bank card number, address, etc. However, we keep non-sensitive
information provided by the agent such as the bank-related phone number, website link that can
help to answer the question.

The reason why our dataset is challenging:

• Conversations contain more redundant information, e.g., confirmatory information, repetitive
conversations, irrelevant information to the question, questions and answers with errors and
misspelling, etc.

• It is challenging to understand conversational information, e.g., 1. According to our observa-
tions, our data contains a high percentage of non-factoid questions such as questions about
specific processes, inquires about the description of a product, and questions that rely on par-
ticular expertise. 2. In addition to the majority of our dataset being in English and Dutch,
we also have a small number of conversations that are predominantly in French, German,
etc.

• Our data contains a large number of phone numbers, website addresses, etc. Most of these
information are enriched with real answers, which makes our task even more challenging
because the majority of QA tasks exclude them.

Additionally, the reasons above indicate our QA data is noisier than other academic datasets. This
certainly brings more challenges to our research and brings us more thoughts about the reality of
the ConvQA problem. Furthermore, our QA dataset does not belong to the typical information
retrieval-based QA datasets such as MS-MARCO[49], TriviaQA[30], or conversational machine
comprehension datasets such as QuAC and CoQA. This is mainly because the former types of
datasets provide many articles such as Wikipedia corpus that may contain answers and knowledge,
while the CMC datasets provide the golden passage for each question that indeed contains answers.
In contrast, our dataset only provides QA pairs, where each question’s answer can be considered
as a golden passage for that question. We also extend our passage collection by adding the official
FAQ answers to augment the data.
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4 Method

In this chapter, we describe the methodologies involved in this study and how we connected each
component into a total system. We will first introduce the overview of the QA system in section.4.2,
and then introduce the retriever, reader and other extension modules separately from section.4.3
to section.4.7 respectively.

4.1 Task Definition

The Conversational information retrieval-based QA task can be defined as follows: Given a large
collection of passages D, a query Uk including the current question Qk and its previous historical
context Hk, where the Hk = {Qi,Ai}k−1

i=1 contains all QA pairs(questions and answers) before the
Qk in this conversation. The task goal is to provide an answer Ak for Uk using D. The answer Ak

can be generated using generative model or greedily selected using the top-1 retrieved answer from
the retriever. Furthermore, It is important to note that the complete Ak answer may come from
single or multiple documents, or may not even exist in all existing documents. In addition, since
our data is obtained from real-world customer service, we hardly have the Wikipedia-like articles
used in academic data as D. Instead, we use answers from QA data as our D to retrieve; hence,
in our case, a single element in D is a single answer in the dataset.

4.2 System Overview

Figure.2 shows our QA system. In general, we incorporate reranker, History summarization module
(HSM), and Dynamic History Re-weighting Module (DHRM) in the retrieval-reading architecture
to enhance the system. Furthermore, the retrieval-reading module consists of a neural bi-encoder
retriever and a neural sequence-to-sequence generative reader. In our subsequent experiments, we
will verify the utility of different modules for the overall retrieval and reading tasks.

Figure 2: Architecture of the QA system in this study
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4.3 Document Retriever

The retriever is an essential component of our QA system that will be fed the current question
and historical context to retrieve relevant documents. High-quality Retrieved documents can pro-
vide more relevant background knowledge for subsequent generative readers, and ideally even its
output can be used directly for our prediction of answers. To validate what model can yield
more satisfactory results with real-world data, we investigate both sparse and dense retrievers in
our retrieval task. Specifically, we implement the BM25 in the pyserini[41] and bi-encoder archi-
tecture in the DPR[33] as our document retrievers to trace the most top-N similar passages P in D.

BM25, as a type of sparse retriever, uses a sparse text representation by introducing the addi-
tional text length feature while considering term frequency (TF) and inverse document frequency
(IDF). The equation 1 shows how BM25 retrieves documents given a question. Given the current
question Qk and its history Hk, we first concatenate them as a query input Uk, where ui denotes
the i-th token in the Uk. Then, When calculating the retrieval score between Qk and a docu-
ment d in D, the BM25 considers IDF score IDF (ui), the TF score f(ui, d), and the averaged
document token length LD. Where LD represents the averaged document token length computed
using m documents in D. k1 and b are hyperparameters in the BM25. It is worth noting that this
sparse text representation vector does not take into account the order of occurrence of words in
the document, thus BM25 can also be considered a bag-of-words approach.

Retrieval Score(Uk, d) =

n∑
i=1

IDF (ui) ·
f(ui, d) · (k1 + 1))

f(ui, d) + k1 · (1− b+ b · |d|
LD

)
(1)

LD =
1

m

m∑
j=1

#tokens ∈ Dj (2)

In addition, as a neural approach, the bi-encoder model is based on the Bert encoder to compute the
embeddings of both questions and documents dynamically, then use the maximum inner product
(MIPS) to measure the relevance between them to provide the retrieval result. Formally, the bi-
encoder retrieval process in our study can be represented as the process illustrated in the equation
3 and 4. We feed the current query Uk and a candidate documents d to the bi-encoder, where the
question encoder encodes the query input and the document encoder encodes the document inputs
individually. After that, the dot product is used to compute the relevance score between the EUK

and Ed. During the retriever inference step, the bi-encoder retriever output N similar documents
P = {pi}Ni=1 for the input.

EUK
= Qencoder(UK), Ed = Dencoder(d) (3)

Retrieval Score(Uk, d) = E⊤
UK

Ed (4)

One merit of the bi-encoder architecture is that it allows us to pretrain all the documents and
questions first so that the overall concurrent training becomes more effective in the subsequent
co-training with the generative reader. In addition, document representations can be calculated
and cached before the inference step. Thus such offline encoding facilitates the inference process to
speed up significantly for daily use in industry. We will make use of the Faiss[29] system to speed up
this retrieval process. Furthermore, Since our experiments will be conducted on multilingual data,
we replaced Bert with multilingual-Bert in the dual encoder model for efficient multilingual model
training. We do not consider training at least two or more monolingual models to process data
in different languages, as this would greatly increase training time and consume computational
resources. Recent studies have demonstrated that multilingual LMs like multilingual-bert can
save considerable computational resources without sacrificing much performance. Moreover, the
multilingual environment does not have a significant impact on the sparse retriever, since most
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of the data are based on Dutch and English only, and the words in these two languages are not
particularly similar, therefore, we do not need to make any changes to BM25.

4.4 Generative Reader

On the basis of the retriever, We further explore the possibility of using the generative model to fill
in the blank in the ConvQA field. The architecture of the sequence-to-sequence generative reader
contains two sections: encoder and decoder. The encoder forms the contextualized representation
given the query input. In contrast, the decoder is a classic auto-regressive model that aims to
generate the answer. Equation 5 illustrates the formula for how the generative reader computes
the probability. once the retriever provides N similar documents P = {pi}Ni=1, the reader aims
to read the concatenation of the query input Uk and its corresponding retrieved documents Pk

to predict the answer autoregressively. This means it generates each token ai in the answer Ak

(total contains m tokens) by considering all background documents simultaneously. Moreover, We
implement both the mBART[43] and mT5[71] models as our readers to validate which model will
yield better results in our multilingual reading task.

Prob(Ak|Uk, Pk) =

m∏
i=1

prob(aki
|Uk, Pk, a1, ...ai−1) (5)

As Equation 6 shows, consequently, we integrate the retriever and reader components into a com-
plete system. Since Pk contains N candidate documents for Uk, we represent each candidate
document as Pk1

, Pk2
, ..., PkN

. Moreover, inspired by [33], we pretrain the retriever before the
concurrent training to save the training time and make the whole system converge faster.

Prob(Ak|Uk) = Prob(Pk|Uk)

m∏
i=1

prob(am|Uk, Pk, a1, ..., am−1)

= Prob(Pk1
, Pk2

, ..., PkN
)

m∏
i=1

prob(ai|Uk, Pk1
, ..., PkN

, a1, ..., am−1)

(6)

4.5 History Summarization Module

Realistic industrial QA datasets have more noise, as evidenced by the presence of more confirma-
tory information in the conversation, redundant information, and information that is not relevant
to understanding the current question. These noises can impair QA systems in retrieving relevant
documents to a certain extent, thus we propose a History Summarization Module(HSM) to refine
the historical context in an attempt to improve the both retrieval and reading performance. Our
HSM can be easily used as an extension module for any retriever and readers and since it can
only be implemented in an unsupervised way in our study, we implement TF-IDF based extractive
summarization method because it is commonly used as a strong baseline.

Figure 3: History Summarization Strategy

It is crucial to use the text summarizer in conversational QA tasks effectively. As shown in the
Figure.3, we choose to keep the head H1 and tail Hk−1 pairs of historical contexts, and only sum-
marize the content in the middle. This is because, intuitively, the head of a conversation normally
contains the user’s primary intent, while the tail is most likely to be relevant to the current question
since it is the most recent context. Specifically, we first transform all tokens in the documents D
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through stemming as our preprocessing step, which will bring better results for our summarization
task. Then we calculate the TF and IDF values for tokens in D to measure the TF-IDF score of
each sentence in the historical context that is to be refined, and finally remove the sentences below
the threshold to compose complete sentences.

4.6 Dynamic History Re-weighting Module

Another focus of our research is dynamically adjusting the importance weights for historical context
information to improve reading performance. More specifically, we hypothesize that some history
turns are redundant for the current question, while others can help us understand and answer the
current question. Thus, our intuition is that by dynamically assigning fewer weights to low-value
historical contexts in the reading process, the reader can be more capable of handling the Con-
vQA tasks. Figure.4 and algorithm.1 shows how Dynamic History Re-weighting Module (DHRM)
works with a generative reader. In general, DHRM learns the importance weight of historical QA
pairs, then re-weights those historical turns and tokens in the passages. Technically, DHRM can
be extended on any encoders of the generative reader.

We define the input Uk as the combination of current question Qk, all history context turns
Hk = {Qi,Ai}k−1

i=1 , and retrieved candidate passages Pk, where Hi denotes the i− th QA pairs in
the conversation. After passing the input Uk to the encoder, we receive the contextualized repre-
sentation; then, we implement mean pooling to compute the sequence level embedding for current
question QS and all historical context QA turns, e.g. HS1 denotes the sequence level embedding
for H1. The reason to acquire the sequence level embedding is that we will need to measure how im-
portant a historical context QA turn is, which will be processed by using the bahdanau attention[5].

Further we implement a bahdanau attention layer and a softmax layer to calculate the attention

weights
{
αi
}k−1

i=1
between the sequence level embedding of current question QS and the sequence

level embedding of all historical context QA turns
{
HSi

}k−1

i=1
. Hence, we hypothesize the attention

socres αi indicate how important to consider the historical context QA turn Hi to understand the
current question Qk. The next essential step is to utilize the attention weights. This process can
be divided into two parts, one is to utilize attention scores to reweight corresponding historical
context embedding. For example, DHRM utilizes α1 to reweight all tokens in the H1, and this
step can be found as the history reweighting layer in the figure.4. The other step is to reweight
the tokens in the candidate passages that also appeared in the specific historical context QA turn
Hi, we demonstrate this step as the passage reweighting layer in the figure.4.

For example, in the figure.4, PT1 denotes the first token in candidate passages Pk, and it also
occurs in the second history turn; thus we multiply w2 to the embedding of PT1. Overall, DHRM
first learns the importance scores of different historical contextual turns by introducing an addi-
tional attention mechanism to learn their relationship to the current question. Then, based on
those scores, DHRM re-weights the corresponding historical rounds and re-weights the tokens in
the candidate passages if they also appear in those historical rounds.
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Algorithm 1 Dynamic History Re-weighting Mechanism

1: Input Uk: it includes the current question Qk, historical contexts Hk = {Qi,Ai}k−1
i=1 , and

candidate passages Pk.
2: Feed Uk to the encoder to get the contextualized embedding.
3: Utilize mean pooling for the current question embedding and every historical contexts’ embed-

dings. This process outputs [QS,HS1, HS2, ...,HSk−1].
4: Implement the Bahdanau attention layer to calculate the attention score for each historical

context’s embedding. After that, pass the attention scores to a softmax layer to compute their
attention weights ([α1, α2, ..., αk−1], they are ranging from [0, 1]).

5: Reweighting tokens in the historical contexts by multiplying its corresponding attention
weights.

6: Reweighting tokens in the candidate passages. For example, if the token PT1 also appeared in
H2, then multiply α2 to the embedding of PT1.

Figure 4: Dynamic History Re-weighting Mechanism architecture. To show how DHRM works,
we visualize its architecture. In this graph, we denotes historical contexts Hk = {Qi,Ai}k−1

i=1 as
History 1 to k − 1.

4.7 Passage reranking Module

The retriever can retrieve the most relevant N candidate passages based on a given query input in
the inference phase, where these passages are ranked in order of likelihood. when the retriever per-
forms poorly, those retrieved passages can only contain real answers when N becomes significantly
large. Nevertheless, feeding a large number of candidate passages to the generative model increases
the computational resource consumption significantly and relies on a larger GPU memory. [55] has
shown that adding a neural network-based reranker can improve the ranking results of passages and
thus provide better background knowledge for subsequent reading tasks, even though the reranker
and the dense retriever are based on the same language model without sharing parameters. The
reranking strategy can be effective when we cannot obtain satisfactory retrieval results, especially
when we cannot take advantage of the large number of background documents being retrieved.
Therefore, we will also verify whether adding a passage reranker can improve the ranking of the
retrieved candidate passages when we cannot incorporate a large number of candidate passages in
the generative model.
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We adopted the neural reranker architecture from [50] and modified it to fit our multilingual
scenario by changing the bert to the multilingual-bert. In general, the intuition of reranker is sim-
ilar to the sequence classification task. To illustrate, the reranker predicts whether the candidate
passage contains the actual answer of a query. During the training phase of the reranker, the query
input and one of its retrieved candidate passage is fed to the m-bert encoder. After the final layer
from the encoder, a cross entropy layer is added to calculate the relevance score between the query
and the candidate passage. During the inference phase, the reranker is fed with the query input
and N candidate passages to calculate N relevance scores. Hence, we could use those relevance
scores to rerank retrieved passages to yield better ranking results.
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5 Experiments setup

This chapter provides experimental setup and technical details regarding our experiments and more
detailed evaluation descriptions. We separate all experiments into retrieval tasks in section.5.1
and retrieval-reading tasks in section.5.2. The former covers the entire document-based retrieval
experiments, and the latter carries out the reading experiments on top of the retrieval tasks.

5.1 Document retrieval task

5.1.1 Experiments of historical context composition

The document retrieval experiment is an essential part of this study. The composition category
of historical contextual information determines its content. It can mainly be composed of three
components, that is, historical questions, historical answers, and historical QA pairs. Therefore, we
first investigated the impact of three different historical context compositions on the quality of ma-
chine retrieval. We consider the bi-encoder retriever from the dense passage retriever (DPR) as our
potential base retriever. Furthermore, we implemented the Gradient-Cached DPR [19] (GC-DPR)
to overcome the GPU memory restrictions because of the limitation of computational resources.
GC-DPR is capable of saving at least half of the GPU memory without sacrificing the performance
of retrieval, which makes our experiments more efficient. Lastly, we replaced the bert-base-cased
model with the bert-base-multilingual-cased to suit our multilingual environment.

The following is a combination of three different historical contexts on the multilingual GC-DPR
model; for simplicity, we refer to their prefixes as Retriever. It is important to note that the multi-
lingual GC-DPR retriever has two different encoders, one of which encodes only query information
(historical information and current question), and the other encodes only document information.

Retriever w/QAs: The query input includes the current question and all historical QA pairs.

Retriever w/Qs: The query input is the current question and all historical questions.

Retriever w/As: The query input is the current question and all historical answers.

5.1.2 Experiments of the retrieval task

To further validate the dense retriever’s advantage, we also implement the sparse retriever (BM25)
for the retrieval task. In the comparison experiments, we evaluate both models’ retrieval accuracy
of top-200 retrieved documents. Moreover, since we observed that historical QA pairs gave the
best results in the initial retrieval experiments; thus, we apply historical QA pairs as the historical
context component for all models in all the following retrieval experiments.

BM25: To compare the performance between non-neural retrieval approaches and neural-based
retrievers, we implemented the bm25 algorithm adapted from pyserini[41] for our retrieval task.

Dense Retriever: We adapt the Retriever w/QAs in the previous subsection as our dense docu-
ment retriever.

Dense Retriever + summarization: For this setting, we extend the dense retriever with a
text summarizer to refine historical contexts. It is worth noticing that we do not perform refine-
ment on other components of inputs, i.e., the current question and documents.
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Dense Retriever + reranker: Inspired by [55], we extend the dense retriever with an extra
neural document reranker to get more satisfactory background documents as well as improve the
retrieval generalization ability.

5.2 Retrieval-Reading task

In the retrieval-reading task, we experimented with two different generative models, mT5 and
mBart, as our readers. We adopted the dense retriever model(in section.5.1.2) in this task. In
addition, to investigate whether our History Summarization Module (HSM) and Dynamic History
Reweighting Module (DHRM) will yeild better reading quality in the reading task, we added it to
the mT5 model.

Dense Retriever + mT5: We implement the mT5 model as our generative reader to encode the
retrieved documents and the query input.

Dense Retriever + mBart: In this setting, we implement the mBart model as our reader.

Dense Retriever + mT5 + Summarization: For this setting, we extend the mT5 reader
with a text summarizer to refine historical contexts. It is worth noticing that we do not perform
refinement on other components of inputs, i.e., the current question and documents.

Dense Retriever + mT5 + Summarization + DHRM: Similarly, we extend the Dense
Retriever with a text summarizer to refine historical contexts for this setting. Moreover, we incor-
porate the DHRM to our reader to validate whether it can yield better performance.

To further validate that background knowledge can help the machine generate more accurate
answer predictions, we will conduct two additional experiments for comparison. First, we aim to
investigate to what extent the output of information retrieval model can be compared with our
retrieval-reading system. Therefore, we chose to implement only the retriever to output top-1 an-
swers as the answer prediction. In addition, to verify that the combined retrieval-reading system
can predict answers better than a pure reader, we set up an additional experiment using only
query input as the generative reader input. In previous studies, using only generative readers like
GPT2 or encoder-decoder models for QA and dialog system tasks can also largely outperform using
only retrievers[79, 1, 59]. Therefore, our comparison experiments are intended to verify that using
background knowledge can help the retrieval-reading system to make better predictions than using
the generative reader alone.

Retrieved top-1 document as the final answer: For this setting, we implement the Dense
Retriever + summarization from the section.5.1.2 to output the most possible answer.

mT5 without background knowledge: For this setting, we implement the mT5 model us-
ing only the query input which includes the current question and its historical contexts.

5.3 Distributed training

In this study, we utilize distributed computing to accelerate the entire training and inference pro-
cess. Specifically, we combine distributed data parallelism and model parallelism to implement
uniform distributed training through the Zero Redundancy Optimizer[56] (ZeRO) strategy and
Pytorch platform[52]. In addition, We also introduce gradient accumulation[39], learning rate
warm-up[42] techniques to make the model converge better.
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Distributed data parallelism (DDP) first divides the overall data into multiple chunks based on
the number of GPUs, then allows different data chunks to be deployed on different GPUs, and
finally enables the gradients to be shared across multiple GPUs before the optimization step, thus
ensuring that the model on all GPUs can have the same parameters[39]. This strategy accelerates
the training and inference process at a rate that approximates the number of gpu’s, which saves
the computational resources. On the other hand, model parallelism (MP) divides a model into
multiple parts and deploys them on different GPUs, but it does not change the original data input.
Dividing a heavy model into multiple parts can make the whole training process more efficient,
hence model parallelism is especially useful when the model is too large.

Nonetheless, using distributed data parallelism or model parallelism alone still faces limitations
when the model takes up considerable memory and a batch of data takes up a large amount of
memory simultaneously. ZeRO proposes an approach that combines both DDP and MP to save
GPU memory at a lower GPU communication cost. Therefore, we applied ZeRO strategy in our
experiments, which saved us significant computational power.

5.4 Evaluation metrics

For the evaluation metrics, we measure the average document rank for experiment 5.1.1. The aver-
age document ranking indicates the average ranking of the true answer to a question among a given
large number of documents when the retriever is searching for the answer to that question. For
experiment 5.1.2, we utilize top-n retrieval accuracy and rouge-1, rouge-2, and rouge-L scores[40] as
our evaluation metrics. The former measures whether the true answer to the question is contained
in the top-n document given by the retriever, while the latter is done by comparing the similarity
between the true answer and the retrieved top-1 answer on the unigram, bigram and the Longest
Common Subsequence criteria. In addition, we do not use metrics such as retrieval accuracy in
experiment 5.1.1 because the retrieval performance needs to be verified by first encoding the entire
documents in the dataset offline, which consumes significant computational resources and requires
considerable time.

For the evaluation of the retrieval-reading experiment(5.2), similar to the previous experiment,
we perform evaluation by using the quantitative criteria (rouge scores). Finally, to better verify
whether a retrieval-reading model that considers background knowledge can generate better re-
sponses than a retriever, we invited internal experts from the company to conduct a questionnaire-
based double-blinded experiment (examples in section.9). Specifically, given a question and its
historical contexts , they are required to rate three different candidate answers ( 1.ground-truth
answers; 2.top-1 answers returned by the retriever; 3.answers predicted by the retrieval-reading
model) on the scale of relevance, correctness, and readability. The meaning of relevance, correct-
ness, and readability in our questionnaire was explained in the preamble based on the language
that the subjects had mastered. Moreover, to ensure the fairness of the experiment, we did not
label the sources of these responses, and we randomized the order in which the answers from dif-
ferent sources appeared in the questionnaire.

We invited a total of eight subjects to participate in this questionnaire, four Dutch-speaking
and four English-speaking, and each of them was given a different question for the assessment.
Additionally, in order to reduce the questionnaire evaluation time, the subjects started with the
real questions, which means that we did not give them practice or demonstration questions, but
each subject can go back to the previous questions to change their rating. We invited a total of
eight subjects to participate in this questionnaire, four speaking Dutch and four speaking English,
and each of them was given different questions for the assessment. Each participant was given
a maximum of 30 minutes to complete the assessment with three different responses to the eight
questions, with an average completion time of 12 minutes and 84 seconds per participant. Finally,
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we conducted a within-group Student’s t-test to verify whether the three candidate answers were
significantly different in terms of criteria.
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6 Results

This chapter presents the result of our experiments. We will first demonstrate the result of our
retrieval task in section.6.1 and section.6.2, and then we will illustrate the finding of retrieval-
reading experiments in section.6.3.

6.1 Results of historical context composition

Our experiments show that considering both historical QA pairs as historical contextual composi-
tions yields better results than using them alone. Specifically, we randomly selected 4000 questions
in the validation set and then used trained models to predict the ranking of their actual documents
among 32,000 documents. Table.2 presents the model with QA pairs as historical contexts ranked
approximately 14 and 1.4 lower than the model with Questions and Answers as contexts, respec-
tively, in the average rank. This indicates that historical questions and answers are crucial for the
machine to understand the current question and answer it.

Avg. rank

Retriever w/Qs 170.55

Retriever w/As 158.09

Retriever w/QAs 156.69

Table 2: The average rank of the actual documents in 32k documents for 4000 questions. (Lower
is better)

6.2 Results of document retrieval task

Table.3 shows the results of all our experiments on the machine retrieval task. Overall, the dense
retriever produces much better results than the sparse retriever, and the addition of the text
summarizer yields the best results, while the introduction of the reranker does not improve the
system. Among them, the dense retriever achieves more than 4 times the retrieval accuracy on the
test set than BM25, which is only 6%. In addition, the additional text summarizer improves the
dense retriever in almost all metrics, except for rouge-1 recall (negligible decrease 0.27%). For the
retrieval accuracy top200 and top500 metrics, its implementation improves the dense retriever’s
performance by 1.68% and 2.24%, respectively. For rouge scores, the introduction of the text sum-
marizer improves mainly the precision and f1 score metrics by roughly 5% and 3%, correspondingly.

However, experiments show that extending the reranker for the bi-encoder retrieval system does
not help it to obtain a better ranking of retrieved text. Note that reranker does not change the
retrieval accuracy because it only reorders the retrieved top-n documents. Thus we use reranker to
sort the top 500 documents, and then measure the average rouge scores of the top 200 documents
that are sorted. The results show that adding reranker to the system reduces all rouge scores (up
to 0.68%) compared to the model without it.
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Models
Retrieval Accuracy

(Top 500)

Retrieval Accuracy

(Top 200)

Avg. Rouge-1 score

(Top 200)

Avg. Rouge-L score

(Top 200)

BM25 - 6.00 - -

Dense Retriever 34.34 24.75 17.96, 26.74, 18.35 13.67, 20.80, 14.04

Dense Retriever

+ summarization
36.58 26.43 23.16, 26.47, 21.63 18.76, 21.63, 17.62

Dense Retriever

+ summarization

+ reranker

36.58 26.12 23.02, 25.79, 21.22 18.74, 21.06, 17.32

Table 3: Evaluation of Retrieval Task on test set. Values in the bold font denotes they are the
highest compared to values of other models. For rouge scores, the order of demonstration is
Precision, Recall, F1 score. For both retrieval accuracy and rouge scores, higher means better.
− means there is no need to continue to complete the corresponding experiment, this is mainly
to save expensive computing resources. For example, we only validated the BM25 with top-200
retrieval accuracy because it performs much worse than Dense Retriever.

6.3 Results of Retrieval-Reading task

For the retrieval-reading task, we conduct both qualitative and quantitative evaluations to measure
the result. Because the performance of retrieval task affect the reading task quality, thus we adopt
the best retriever (Dense Retriever+summarization) in the retrieval task in all retrieval-reading
experiments. We will present the quantitative and qualitative evaluation result respectively in this
section.

6.3.1 Quantitative evaluation result

Table.4 and table.5 illustrates the complete quantitative evaluation result of the retrieval-reading
task using three different rouge scores. Table.4 compares the performance of different generative
models and presents whether incorporating more retrieved background documents can improve
the final reading quality. In contrast, table.5 compares whether our additional custom modules
improves the quality of the reader’s output.

First of all, table.5 shows that When we employ only the generative reader without background
knowledge, the results can slightly outperform the retriever-only model on all f1 rouge scores. This
means that solely using the encoder-decoder model alone can serve as a strong baseline for our
task. In addition, table.4 presents that when the number of background knowledge documents
increases, the overall quality of the answers generated by the reader also improves. Specifically,
when the mt5 reader considers 5 more retrieved documents, its results achieve more than 1.5 im-
provement on all rouge f1 scores. This result is consistent with our finding in the retrieval task
that more retrieved documents indicate these documents are more likely to contain true implicit
knowledge. In addition, results show that the mT5 model shows an advantage over the mBart
model, especially the improvement of 1.94%, 1.15%, and 0.92% in the precision, recall, and f1
scores of rouge-2, respectively.

Furthermore, the text summarizer for historical contexts significantly improves the prediction
quality of the reader for almost all rouge scores except rouge-2 recall. In particular, for all rouge
scores in terms of f1 score, which are 0.63%, 0.56%, and 0.56%, respectively. However, the addition
of DHRM does not result in better performance of the generative reader, i.e., a slight decrease in
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all metrics. This finding indicates our hypothesis of dynamically adjusting the weights of different
historical contexts cannot yield improvement on retrieval-reading task. Finally, we evaluated using
only the top-1 document of the retriever as our answer to the metrics. The results show that our
best model outperforms it in almost all metrics, except for the recall scores of rouge-1 and rouge-L.
Such improvement is especially apparent for all rouge scores in terms of precision, which are 6.65%,
3.95%, and 6.68% respectively.

Models Rouge-1 score Rouge-2 score Rouge-L score

Dense retriever

+ mT5 w/5 passages
27.87, 23.71, 22.78 8.84, 7.70, 7.50 23.49, 20.28, 19.34

Dense retriever

+ mT5 w/10 passages
29.56, 25.24, 24.39 10.69, 10.05, 9.01 25.17, 21.69, 20.88

Dense retriever

+ mBart w/10 passages
25.00, 26.97, 23.14 8.75, 8.9, 8.09 20.9, 22.83, 19.48

Table 4: Model comparison result of Retrieval-Reading Task on test set. This table compares the
performance of the mT5 and mBart models, and compares whether incorporating more background
documents helps. Values in the bold font denotes they are the highest compared to values of other
models. For rouge scores, the order of demonstration is Precision, Recall, F1 score.

Models Rouge-1 score Rouge-2 score Rouge-L score

Retrieved Top-1 document as final answer 23.43, 27.59, 22.09 7.28, 8.84, 7.21 18.93, 22.66, 18.01

mT5 without background knowledge 25.99, 23.58, 22.28 8.44, 8.15, 7.55 22.1, 20.55, 19.19

Dense retriever + mT5 w/10 passages 29.56, 25.24, 24.39 10.69, 10.05, 9.01 25.17, 21.69, 20.88

Dense retriever + mT5 w/10 passages

+ Summarization
30.08, 25.98, 25.02 11.23, 9.65, 9.57 25.61, 22.35, 21.44

Dense retriever + mT5 w/10 passages

+ Summarization

+ DHRM

29.30, 25.83, 24.68 10.46, 9.08, 8.94 24.79, 22.11, 21.01

Table 5: Quantitative Evaluation result of Retrieval-Reading Task on test set. Values in the bold
font denotes they are the highest compared to values of other models. For rouge scores, the order
of demonstration is Precision, Recall, F1 score. We implemented the best retrieval model for the
Retrieved Top-1 model.

6.3.2 Qualitative evaluation result

Figure.5 and table.6 demonstrate the qualitative evaluation result of the retrieval-reading task on
the basis of a double-blinded human experiment. In the experiment, a total of 64 questions (32 in
English and 32 in Dutch) and their corresponding historical contexts were randomly selected from
the test set as examples for the questionnaire. We then provided participants with those examples
and asked them to rate(from 0 to 10) the three candidate answers for each question on the scale of
relevance, correctness, and readability. The three types of candidate answers are: 1.ground-truth
answers; 2.top-1 answers returned by the retriever; 3.answers predicted by the generative reader(we
use the best retrieval-reading model in this experiment ). Since the experiment was double-blinded,
thus we did not tell the participants the source of these answers.

The results in figure.5 show the answer scores of retriever, generative reader, and human in a
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stepwise manner for the three criteria. In addition, we also performed a within-subjects pairwise
student’s t-test on the results, and more details can be observed in table.6. Among them, we can
observe that for correctness and readability, the predictions of the generative reader are statistically
significantly better than those of the retriever. Lastly, human answers significantly outperform an-
swers of both models in all metrics.

Finally, we randomly sampled a few examples from the test set and analyzed the three candi-
date answers by eyeballing. One major observation is the answers provided by the generative
reader rely heavily on the background documents provided by the retriever. Thus, it is difficult for
the generative reader to provide significantly better predictions when the documents provided by
the retriever are not relevant to the input question. The same finding can be observed from our
qualitative evaluation results, i.e., there is no statistically significant improvement in the scores of
the generative model on the relevance metric. Moreover, when both models are unable to under-
stand the input question, they sometimes tend to provide answer predictions in different languages.
For example, when the current question is in Dutch, their predictions are probably in English, and
these predictions are not relevant to the question. Therefore, in our experiments, the generative
model outperforms the answers provided by using retriever directly in both qualitative and quan-
titative analysis, yet the predictions are much worse than the real human answers.

Figure 5: Qualitative Evaluation result of Retrieval-Reading Task on test set. The figure shows
the results of experts’ ratings on relevance, correctness and readability for three candidate answers.
Where these scores are in the range of [0, 10], higher means better. It also illustrates the pairwise
t test result where punadj represents p-value without adjustment.

Relevance p-value Correctness p-value Readability p-value

Retriever - Generative reader 1.60e-1 1.00e-2 ∗ 9.72e-3 ∗∗

Retriever - Human 4.26e-11 ∗∗ 7.18e-12 ∗∗ 1.04e-06 ∗∗

Generative reader - Human 3.78e-07 ∗∗ 8.33e-07 ∗∗ 2.21e-03 ∗∗

Table 6: Statistical significance test for qualitative evaluation of Retrieval-Reading task on test set.
Table shows for A-B, whether B yields statistically significant improvement than A over Relevance,
Correctness, and Readability score. where ∗∗ means p < 0.05, ∗ means p < 0.01.
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7 Discussion

In this section, we discuss observations in the results chapter (chapter.6). For consistency, we will
continue to follow the order of each section of the results chapter, and we will discuss possible
future work at the end in the section.7.4.

7.1 Historical context composition

The results of experiment 6.1 show that both historical questions and historical answers are im-
portant, where the latter is more significant than the former, which is reflected in the validation
results shown in table.2. Therefore, considering historical QA pairs on our data helps to better
perform the retrieval task. This is consistent with the intuition that the current question in a
conversation is likely to be an additional follow-up question to the historical answer, or possibly
a supplementary and extended question to the historical question. In addition, our findings are
similar to some studies conducted on public academic datasets, such as [58, 83].

Furthermore, our experiments show that Retriever w/QAs has an average ranking of 156.69 in
the validation. Even though this result achieves the best score compared to other settings, there
still are many irrelevant documents that have a high ranking. This issue will affect the performance
of the retrieval-reading task experiments because it is not practical for the generative reader to
input more than 50 retrieved background documents. It would greatly increase the computational
resource usage, and we cannot guarantee that the generative reader can actually use such a large
number of documents to answer the questions. Therefore, we introduced a reranker in the sec-
tion.5.1.2 attempting to improve the ranking order of retrieved documents in order to better help
the retrieval-reading task.

7.2 Document retrieval task

On the task of document retrieval (experiment 6.2), first of all, it is clear from our results that
dense retriever shows a strong superiority over sparse retriever, which means that the neural-based
retriever can serve as a strong baseline on real data in industry. This is consistent with findings
of some previous studies[33, 38]. Moreover, when the QA dataset is strongly verbalized and infor-
malized, the introduction of a textual summarizer to refine the historical context can effectively
improve the performance of the retriever and thus offers a good value in real-life applications.
Specifically, our approach can improve the F1 score by up to 3.58% on the retrieval task using TF-
IDF; hence, in contrast to previous studies on question rewriting[68, 3, 12], our approach is very
easy to implement in the real world application and it does not require the large computational
resources that neural models require.

Finally, we verified that the introduction of reranker does not achieve better document ranking for
retrievers that use neural model-based retrievers. The evidence derives from the fact that there is
a small decrease (less than 0.5%) in all rouge metrics after adding the reranker. This may be due
to the fact that both reranker and retriever are based on the same neural model, i.e., multilingual
bert, and they both update encoder parameters by similar learning tasks in principle, so the intro-
duction of reranker does not bring more advantages. Thus, Our findings are not consistent with
the conclusions in [55].
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7.3 Retrieval-Reading task

In the retrieval-reading task, our results of experiment 6.3 show that the seq2seq-based genera-
tive model can take advantage of the latent background knowledge to make better predictions.
Even though the generative reader without introducing background documents has shown com-
parability in the results, the system with the addition of background knowledge and additional
summarization can have a large improvement in all rouge scores, especially in the precision (up
to 4.09% for rouge-1). Our findings are consistent with those of some previous systems[21, 38,
27, 16], yet also contradict those of others[45, 60]. The qualitative experiment result indicate the
retrieval-reading model yields statistically significantly improvement than using only the retriever
in terms of correctness and readability criteria. Moreover, when the generative model takes more
background documents into account, its predictions are more similar to the actual answers. This
finding is consistent with our intuition because more background knowledge is more likely to con-
tain implicit information about the answer to the question, and generative models have the ability
to exploit this implicit information.

In addition, when the textual summarizer is introduced to refine the historical context, the genera-
tive model can also produce predictions that are closer to the actual answer. This is likely because
the refined context brings less noisy information to the reader, thus allowing the reader to learn
more concise and organized historical information. Therefore, the text summarizer can improve
the performance of the machine on both retrieval and reading tasks in a very efficient way. It can
be easily deployed on almost any QA system that has a retriever or a reader, and is potentially
adaptable to most multilingual environments.

Finally, we observed that adding additional attention mechanisms (DHRM) to the generative
model to force it to pay less attention to historical information did not meet our expectations.
This may be due to the fact that our data has fewer historical context rounds in general and
thus does not have enough data to learn and update parameters for additional attention networks.
In addition, this additional attention module may force the generative model to ignore historical
information deliberately. Historical information that is useful for understanding the current ques-
tion is also disregarded. Therefore, a possible future direction for our study is to observe what
questions are more likely to be influenced by DHRM through attention visualization. In addition,
performing error case analysis on DHRM and other models in ablation analysis might also give
us more evidence. Although no existing studies have applied similar mechanism to the generative
reader as we have done in the ConvQA domain, only HAM[53] and HAE[54] have applied similar
strategies to the extractive reader and achieved good improvements. Our findings are contrary to
them, suggesting that for generative models we have to consider other more efficient approaches
in the future work.

7.4 Furture work

For future work, the text summarization module is still a direction worthy of attention. Specifi-
cally, this study only focused on using extractive summarizer to refine the historical information,
however, for subsequent work, using a mature unsupervised abstractive summarizer may be a per-
spective to improve this work. Additionally, it might be worthwhile to explore other extractive
summarization methods in the ConvQA task, such as methods based on clustering, TextRank.
Moreover, it might be an interesting direction to compare or mix the summarization and question
rewriting in the experiment. For instance, instead of just streamlining the historical information,
another attempt could be to rewrite the refined historical information and the current question into
a condensed query, but for realistic data, we may only focus on unsupervised rewriting methods.

We also observed that some of the retrieved or generated answers were reasonable but were for-
mulated differently from the actual answers, while others were predicted incorrectly. Therefore, in
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this case, the rouge metrics may not be able to distinguish reliably and accurately between these
two cases. Moreover, rouge metrics also cannot measure instances of cross-lingual answers, i.e.,
answers may be described in another language even though they are semantically close to the ac-
tual answer. Therefore, we will consider improving the use of more semantic metrics in the future
work. An alternative possible future perspective is to enhance the data by using the method of
machine translation. For example, monolingual data can be extended with another monolingual
data by using back-translation, and it can also be used to generate cross-lingual data to enhance
the generalization ability of the model.

Eventually, the continuous improvement of the information retrieval module may be a perspec-
tive worthy of attention, as its results greatly influence the quality of subsequent generative reader
predictions. In real-world applications, the quality of the data will greatly affect the results pro-
duced by the retriever, and adding user intent recognition to the data may be one of the future
directions to improve the overall system.
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8 Conclusion

In this thesis, we propose a neural retrieval-reading system with customized modules to investi-
gate the possibility of using potential background knowledge to answer questions and explore a
few directions to leverage historical contextual information in real-world ConvQA scenarios. We
conduct several experiments using our system on multilingual conversational question answering
tasks with an industrial customer service dataset. Overall, The experimental results show that
in comparison to using only the retriever, our model yields up to 3.43% improvement in f1 and
6.7% improvement in precision, and also significant improvement in correctness and readability.
In addition, our model makes efficient use of candidate knowledge and historical contexts, which
is demonstrated by up to 4.01%, 2.48%, and 2.74% improvement in the precision, recall, and f1
metrics.

RQ1: Is the machine capable of using candidate background knowledge to answer questions?

To answer the first research question, we proposed and implemented a neural dense retriever to
retrieve relevant background documents and then feed those documents to a sequence-to-sequence
generative reader to predict the answer. Our quantitative experiment results indicate that such
retrieval-reading architecture model can make better predictions compared to the top-1 output us-
ing only the retriever. In addition, the qualitative experiment result has shown that the retrieval-
reading model provided statistically significantly better predictions than the retriever’s outputs
in terms of correctness and readability criteria. However, the performance of our model is still
significantly lower than the level of actual human responses. Therefore these findings show that
machines can utilize potential background documents to perform ConvQA tasks better, yet they
cannot reach the human benchmark.

RQ2: How do machines leverage historical contextual information for real-world ConvQA tasks?

We explore its possibility from three different directions for the second research question. Our
first direction perspective (RQ2.1) is to investigate what historical contextual information helps
the machine to yield better retrieval performance. In addition, we hypothesize that refining the
historical context can improve both retrieval and reading quality (RQ2.2). Furthermore, we pro-
pose an additional attention module to dynamically adjust the importance weights of different
historical contexts in an attempt to improve the machine reading performance (RQ2.3).

RQ2.1: How do different historical information compositions affect a machine’s retrieval per-
formance?

In our experiments, we divided the historical information compositions to three different settings
according to their properties, namely 1. previous questions; 2. previous answers; 3. previous QA
pairs. The results indicate that considering all historical QA pairs (both previous questions and
answers) for the retriever yields the best performance, yet the retriever produces the worst result
when only historical questions are considered. This suggests all historical contexts (previous QA
pairs) contain essential information to help machines understand and answer questions. There is
a significant decrease in the quality of retrieval when ignoring any of the historical questions and
answers.

RQ2.2: For real-world ConvQA tasks, refining the historical contexts help the machine perform
retrieval and reading tasks?

To answer this research question, we proposed a summarizer based on TD-IDF that refines the
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intermediate historical contexts while preserving the head and tail historical contexts. We im-
plemented the summarizer in both the retrieval and generation tasks. Our results verified that
introducing a textual summarizer to refine the historical context can effectively improve the per-
formance of both the retriever and reader. This additional summarization module offers a good
value in real-life ConvQA applications.

RQ2.3: Is it possible to improve machine reading performance by forcing machines to pay less
attention to low-value historical information?

For this research question, we introduced an additional attention module for the generative reader
in order to force the machine dynamically adjusts the weights of different historical contexts. Our
intuition is the machine reading performance can be improved by paying less attention to low-value
historical information. However, our experiment result shows it is hard for machines to learn how
to pay less attention to non-valuable contexts dynamically. This is evidenced by the fact that the
machine becomes slower to converge during training, and the final results also show that adding
this module produces worse quantitative evaluation result.

As for future applications, our system will be used in real-world applications to assist customer
service agents in the banking industry. Our system can reason fast and provide its predicted results
as a template option to internal staff to assist their work and improve their efficiency in providing
responses. Therefore, we employ our system in actual daily use to generate answers that can be
accessed as a convenient template to speed up the response process rather than as an automated
response bot.
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[35] Tomáš Kočiskỳ et al. “The narrativeqa reading comprehension challenge”. In: Transactions
of the Association for Computational Linguistics 6 (2018), pp. 317–328.

[36] Zhenzhong Lan et al. “Albert: A lite bert for self-supervised learning of language represen-
tations”. In: arXiv preprint arXiv:1909.11942 (2019).

[37] Mike Lewis et al. “Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension”. In: arXiv preprint arXiv:1910.13461 (2019).

[38] Patrick Lewis et al. “Retrieval-augmented generation for knowledge-intensive nlp tasks”. In:
arXiv preprint arXiv:2005.11401 (2020).

[39] Shen Li et al. “Pytorch distributed: Experiences on accelerating data parallel training”. In:
arXiv preprint arXiv:2006.15704 (2020).

[40] Chin-Yew Lin. “Rouge: A package for automatic evaluation of summaries”. In: Text summa-
rization branches out. 2004, pp. 74–81.

[41] Jimmy Lin et al. “Pyserini: A Python toolkit for reproducible information retrieval research
with sparse and dense representations”. In: Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 2021, pp. 2356–2362.

[42] Liyuan Liu et al. “On the variance of the adaptive learning rate and beyond”. In: arXiv
preprint arXiv:1908.03265 (2019).

[43] Yinhan Liu et al. “Multilingual denoising pre-training for neural machine translation”. In:
Transactions of the Association for Computational Linguistics 8 (2020), pp. 726–742.

[44] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining approach”. In: arXiv
preprint arXiv:1907.11692 (2019).

38



9 REFERENCES

[45] Shayne Longpre, Yi Lu, and Joachim Daiber. “MKQA: A linguistically diverse benchmark
for multilingual open domain question answering”. In: Transactions of the Association for
Computational Linguistics 9 (2021), pp. 1389–1406.

[46] Ryan Lowe et al. “The ubuntu dialogue corpus: A large dataset for research in unstructured
multi-turn dialogue systems”. In: arXiv preprint arXiv:1506.08909 (2015).

[47] Yuning Mao et al. “Generation-augmented retrieval for open-domain question answering”.
In: arXiv preprint arXiv:2009.08553 (2020).

[48] Sewon Min et al. “AmbigQA: Answering ambiguous open-domain questions”. In: arXiv
preprint arXiv:2004.10645 (2020).

[49] Tri Nguyen et al. “MSMARCO: A human generated machine reading comprehension dataset”.
In: CoCo@ NIPS. 2016.

[50] Rodrigo Nogueira and Kyunghyun Cho. “Passage Re-ranking with BERT”. In: arXiv preprint
arXiv:1901.04085 (2019).

[51] Yasuhito Ohsugi et al. “A simple but effective method to incorporate multi-turn context
with BERT for conversational machine comprehension”. In: arXiv preprint arXiv:1905.12848
(2019).

[52] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”.
In: Advances in neural information processing systems 32 (2019).

[53] Chen Qu et al. “Attentive history selection for conversational question answering”. In: Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge Manage-
ment. 2019, pp. 1391–1400.

[54] Chen Qu et al. “BERT with history answer embedding for conversational question answer-
ing”. In: Proceedings of the 42nd international ACM SIGIR conference on research and de-
velopment in information retrieval. 2019, pp. 1133–1136.

[55] Chen Qu et al. “Open-retrieval conversational question answering”. In: Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Re-
trieval. 2020, pp. 539–548.

[56] Samyam Rajbhandari et al. “Zero: Memory optimizations toward training trillion parameter
models”. In: SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE. 2020, pp. 1–16.

[57] Pranav Rajpurkar et al. “Squad: 100,000+ questions for machine comprehension of text”.
In: arXiv preprint arXiv:1606.05250 (2016).

[58] Siva Reddy, Danqi Chen, and Christopher D Manning. “Coqa: A conversational question
answering challenge”. In: Transactions of the Association for Computational Linguistics 7
(2019), pp. 249–266.

[59] Adam Roberts, Colin Raffel, and Noam Shazeer. “How Much Knowledge Can You Pack Into
the Parameters of a Language Model?” In: arXiv preprint arXiv:2002.08910 (2020).

[60] Stephen Roller et al. “Recipes for building an open-domain chatbot”. In: arXiv preprint
arXiv:2004.13637 (2020).

[61] Elayne Ruane, Abeba Birhane, and Anthony Ventresque. “Conversational AI: Social and
Ethical Considerations.” In: AICS. 2019, pp. 104–115.

[62] Sashank Santhanam et al. “Local knowledge powered conversational agents”. In: arXiv
preprint arXiv:2010.10150 (2020).

[63] Minjoon Seo et al. “Bidirectional attention flow for machine comprehension”. In: arXiv
preprint arXiv:1611.01603 (2016).

[64] Marco Antonio Calijorne Soares and Fernando Silva Parreiras. “A literature review on ques-
tion answering techniques, paradigms and systems”. In: Journal of King Saud University-
Computer and Information Sciences 32.6 (2020), pp. 635–646.

39



9 REFERENCES

[65] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems. 2014, pp. 3104–3112.

[66] Chongyang Tao et al. “Building an Efficient and Effective Retrieval-based Dialogue System
via Mutual Learning”. In: arXiv preprint arXiv:2110.00159 (2021).

[67] Adam Trischler et al. “Newsqa: A machine comprehension dataset”. In: arXiv preprint
arXiv:1611.09830 (2016).

[68] Svitlana Vakulenko et al. “Question rewriting for conversational question answering”. In:
Proceedings of the 14th ACM International Conference on Web Search and Data Mining.
2021, pp. 355–363.

[69] Alessandro Vallin et al. “Overview of the CLEF 2005 multilingual question answering track”.
In: Workshop of the Cross-Language Evaluation Forum for European Languages. Springer.
2005, pp. 307–331.

[70] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information pro-
cessing systems. 2017, pp. 5998–6008.

[71] Linting Xue et al. “mT5: A massively multilingual pre-trained text-to-text transformer”. In:
arXiv preprint arXiv:2010.11934 (2020).

[72] Rui Yan et al. “Multilingual COVID-QA: Learning towards global information sharing via
web question answering in multiple languages”. In: Proceedings of the Web Conference 2021.
2021, pp. 2590–2600.

[73] Zhao Yan et al. “Docchat: An information retrieval approach for chatbot engines using un-
structured documents”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2016, pp. 516–525.

[74] Wei Yang et al. “End-to-end open-domain question answering with bertserini”. In: arXiv
preprint arXiv:1902.01718 (2019).

[75] Mark Yatskar. “A qualitative comparison of CoQA, SQuAD 2.0 and QuAC”. In: arXiv
preprint arXiv:1809.10735 (2018).

[76] Yi-Ting Yeh and Yun-Nung Chen. “FlowDelta: modeling flow information gain in reasoning
for conversational machine comprehension”. In: arXiv preprint arXiv:1908.05117 (2019).

[77] Fei Yuan et al. “Enhancing answer boundary detection for multilingual machine reading
comprehension”. In: arXiv preprint arXiv:2004.14069 (2020).

[78] Munazza Zaib et al. “Conversational Question Answering: A Survey”. In: arXiv preprint
arXiv:2106.00874 (2021).

[79] Yizhe Zhang et al. “Dialogpt: Large-scale generative pre-training for conversational response
generation”. In: arXiv preprint arXiv:1911.00536 (2019).

[80] Jing Zhao et al. “RoR: Read-over-Read for Long Document Machine Reading Comprehen-
sion”. In: arXiv preprint arXiv:2109.04780 (2021).

[81] Hao Zhou et al. “Eva: An open-domain chinese dialogue system with large-scale generative
pre-training”. In: arXiv preprint arXiv:2108.01547 (2021).

[82] Li Zhou et al. “The design and implementation of xiaoice, an empathetic social chatbot”. In:
Computational Linguistics 46.1 (2020), pp. 53–93.

[83] Chenguang Zhu, Michael Zeng, and Xuedong Huang. “Sdnet: Contextualized attention-based
deep network for conversational question answering”. In: arXiv preprint arXiv:1812.03593
(2018).

[84] Fengbin Zhu et al. “Retrieving and reading: A comprehensive survey on open-domain question
answering”. In: arXiv preprint arXiv:2101.00774 (2021).

40



A QUESTIONNAIRE EXAMPLES OF RETRIEVAL-READING EXPERIMENT

Appendices

A Questionnaire examples of retrieval-reading experiment

To further validate whether a retrieval-reading model that considers background knowledge can
generate better responses than a retriever, we invited internal experts from the company to conduct
a questionnaire-based double-blinded experiment. In the experiment, a total of 64 questions (32 in
English and 32 in Dutch) and their corresponding historical contexts were randomly selected from
the test set as examples for the questionnaire. The experiment result can be found in section 6.3,
and below are some of the examples in the questionnaire. For faster viewing, we have bolded the
core parts of questions and the reasonable answer fragments. Note that we have not bolded any
fragments in the real questionnaire.

A.0.1 English Examples

Figure 6: English example 1

Figure 7: English example 2
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A.0.2 Dutch Examples

Figure 8: Dutch example 1

Figure 9: Dutch example 2
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Figure 10: Dutch example 3
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