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Abstract

Accelerate is a language for high-performance computing embedded in Haskell. Embed-
ding languages in other languages is a popular approach for language prototyping, as it
reduces the language front-end work from the language designer. To execute the pro-
grams written in these languages, the designers need to implement at least an interpreter
or a compiler. Tree-walking interpreters are known to be slow, and so different approaches
might be implemented if performance is important. This thesis implements a tree-walking
interpreter, a bytecode interpreter and a JI'T compiler using LLVM in Haskell for a stan-
dalone language and compares the performance of each to an optimized bytecode inter-
preter written in C. However, the results indicate that tree-walking interpreters are often
less than an order of magnitude slower and occasionally even faster than bytecode inter-
preters when both are written in Haskell.

Based on this result, it seemed unlikely that Accelerate’s performance issues, especially
in a multi-threaded environment, were caused by its tree-walking interpreter. In light of
this, I investigated this performance deterioration using a nanosecond-precision profiler
and varying heap sizes for the Haskell garbage collector. The results from this show that
garbage collection has a large impact on the behaviour of Accelerate programs, and that
the performance of these programs likely depends on overhead relating to this. However,
the amount of garbage collection occurences is identified to not be the direct cause of the
performance degradation. I suggest future work to see what can be done to investigate
this problem further and how to fix these performance issues.
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1 Introduction

Accelerate [] is a high-performance library for the Haskell programming language that
executes array computations. It defines an Embedded Domain-Specific Language [3], or
EDSL, with different functional-style combinators like map, fold, and stencil. Using these
combinators, Accelerate’s compiler tries to optimize the computations as much as possible
before running them in the runtime system. The library supports different architectures,
among which (multi-core) CPUs and GPUs.

In some cases, Accelerate’s performance is comparable to hand-optimized code, but at
other times it performs clearly less optimally. For instance, when running a dot product
between two vectors on the CPU, the library performs similarly to hand-optimized C
code on a low number of threads. Similarly, running a larger program with multiple itera-
tions, such as LULESH, is often faster than running hand-optimized C code.! Conversely,
running the highly parallizable dot product program on multiple threads is slower than
running it on a single thread.

Both maintainers and users benefit from Accelerate being an EDSL. Benefits include:
o The language can easily interface with other code written in Haskell.

o The language does not have to define its own type system, and can instead rely on
Haskell’s type system.

o Accelerate has the same syntax as Haskell, which makes it easy to learn for Haskell
programmers.

The Accelerate language is designed to compose together different functional-style combi-
nators, facilitating the efficient computation and easy design of data-parallel algorithms.
The library compiles the code by generating LLVM,? which can compile into native code;
this can be done both using regular compilation and Just-In-Time compilation [2], or JIT
compilation for short.

Running the Accelerate EDSL is managed by the runtime system. This system implements
certain behaviours that the compiler expects to exist when the program is run. It manages,
among other things, memory (de)allocation and variable declarations and references. The
runtime also manages threads for parallel execution of Accelerate programs. Through
these threads, it also takes care of running kernels, like the dot program illustrated in
Listing 1a.

The code in Listing 1b implements the same functionality as the code in Listing la, but
in the C programming language, rather than Accelerate. The C function takes two arrays
of floats and the amount of elements to process. C arrays do not keep track of their sizes,
so this parameter must be explicit in C, whereas it is implicit in the Accelerate version
which does keep track of this information. The for-loop in the C code implements both
the zipWith and the fold operations. The complete types of the array parameters are
somewhat esoteric, but the const keyword makes sure the compiler knows that the arrays’
values are constant, and the restrict keyword indicates that these arrays do not overlap.
The addition of these keywords allows the compiler to properly optimize and vectorize
the loop.

https://github.com/tmcdonell/lulesh-accelerate
’https://11lvm.org/
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float dot(const float* restrict lhs,
const float* restrict rhs,
size_t length) {
float result = 0.0F;
for (size_t x = 0; x < length; ++x) {
result += lhs([x] * rhs([x];

dot
:: Acc (Array (Z :. Int) Float)
-> Acc (Array (Z :. Int) Float) 3
-> Acc (Array Z Float)

dot xs ys = A.fold (+) O (A.zipWith (%) xs ys) return result:

(a) The dot product function written in Accel- Y
erate. (b) The dot product function written in C.

Listing 1: Functions that run a dot product between two equal-length vectors of arbitrary
size.

dotp / Hand-written / 1M fioat
dotp / Accelerate / 1-threads / 1M floal
dotp / Accelerate / 2-threads / 1M floal

4-threads / 1M floa

dotp / Accelerate

erate / 8-threads / 1M floa
16-threads / 1M fioa

FRE R R F
I

te / 32-threads / 1M fioat

0s 100 ps 200 ps 300 ps 400 ps 500 ps 600 ps 700 ps 200

Figure 1: Benchmark results for Listings 1b and 1la. Only the Accelerate listing has results
for multiple threads.

The Accelerate library generates native code for programs written in its EDSL, much like
C does. When compiling the dot functions shown here, the result is very similar native
code. As a result, one would expect that both the Accelerate and C programs run with the
same performance on a single thread. Additionally, since the function is very parallelizable
(as none of the loop iterations affect other iterations), one would expect that adding more
threads makes the function faster, with a speedup expected to be around linear in the
total amount of threads. Only the code in Listing la has results for the multithreaded
version; the Accelerate version can be run in parallel by the runtime without changing
the code, as the library has parallelized implementations for these combinators, whereas
the C-version needs to be changed. EDSLs have a great advantage in this regard over a
language like C, as embedded languages can more easily change how they execute their
programs without changing the user’s code.

Looking at the results of the benchmarks in Figure 1, two observations about the current
state of Accelerate stand out:

o While it is still slightly slower, the generated (single-threaded) code for the dot
product is very competetive with the hand-written C version, but the source code
is much shorter.

e The runtime system has some issues running the computation in parallel with more
than 2 threads.

The last observation is concerning, especially since the program is relatively simple. How-
ever, the simplicity of this program also means that certain latency and other overheads
cannot be amoritized. These problems might be less concerning on larger programs.

The problem with parallel computation does not just arise in simple programs like the
dot product function, but also appears in much larger programs such as LULESH. Figure
2 shows an excerpt from the output of a profiler on a run of LULESH. The image shows



Figure 2: An excerpt from the execution of LULESH in Accelerate. The colored blocks
indicate when the worker threads are performing kernel executions.

that there are large gaps in the work that the worker threads perform. At first glance,
it looks like the time spent working is somewhere between 1% and 10%, and the rest of
the time is unaccounted for. Even accounting for additional bookkeeping that Accelerate
does between kernel calls, it looks like a lot of this time is wasted doing unknown work.
If it is possible to eliminate the cost of these “gaps” in the work, Accelerate might see a
10-100x speedup!

It should be clear by now that the current implementation of Accelerate has some clear
issues with regards to its goal, which is to be a high-performance library. It seems like
single-threaded Accelerate will still see a clear speedup if the time between kernel calls is
improved; looking at the previous benchmark results in Figure 1, this might still account
for about 14% of the time spent. Multi-threaded Accelerate also has some clear issues
with performance. Why Accelerate slows down when adding more threads is currently
unknown, but parallelism seems to be a likely culprit. This thesis goes into detail on how
to investigate and solve these issues.

Moreover, EDSLs like Accelerate are often implemented in languages like Haskell, that
have support for higher-order functions and a rich type system [16]. These features reduce
the heavy lifting required by language designers to implement a language, allowing them
to make use of the host language’s type system, parser, and other compiler front-end.
However, Haskell is not known to be particularly efficient, especially concerning memory*.
The data in this reference suggests that equivalent programs written in C and Haskell
often see C being faster, and using less memory. We will investigate, among other aspects

3https://benchmarksgame-team.pages.debian.net/benchmarksgame/fastest/ghc-gcc.html
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of Accelerate, how this embedded, high-performance language’s performance is influenced
by its Haskell implementation.

This thesis’ findings indicate that interpretation and parallelism are likely not the main
culprits that reduce performance in Accelerate. The most likely cause of the performance
issues in Accelerate seems to be Haskell’s garbage collector, and as such, indicate that
interpretation is only a problem in the sense that it causes garbage collection in Haskell.
The garbage collector also causes interference with multithreading in a way that makes
running on more threads result in poorer performance. I propose future work on how to
fix these issues, both in ways within Haskell and using an external language.

This thesis investigates how to improve the performance of EDSLs written in Haskell, with
a focus on Accelerate as a case-study. More specifically, the following research questions
will be investigated:

1. How does performance differ between full compilation and interpretation in Accel-
erate’s runtime system?

2. How does Accelerate’s parallellism affect the runtime performance of the library as
a whole?

To this end, the rest of the thesis continues as follows. Section 2 gives more background
information on Accelerate and interpreters, as well as challenges involving changing Accel-
erate’s runtime system. Section 3 discusses the main aims of the research in more details.
Section 4 investigates the performance of interpreters and JIT compilers in Haskell. Sec-
tion 5 discusses the effect of Haskell’s garbage collector on the performance of Accelerate,
and the interplay between this and interpretation. Section 6 contains an outline of pos-
sible ways to improve the current situation. Finally, Section 7 gives some concluding
remarks.



2 Background

As shown in the introduction, Accelerate struggles with certain workloads and with run-
ning programs on multiple threads. The goal of this thesis is to mitigate this problem.
First, however, more background information will be given. Section 2.1 discusses what
exactly an EDSL is, and 2.2 goes into more detail about what the Accelerate EDSL is.
Then Section 2.3 discusses current issues with profiling Accelerate and how to improve this
situation, before Section 2.4 gives a short introduction to Garbage Collection. Section 2.5
gives an example of different kinds of interpreters and a compiler; this section illustrates
the differences between these approaches using a simple example EDSL. Finally, Sections
2.6 and 2.7 go into more detail of the benefits of a bytecode interpreter and a compiler
for the Accelerate runtime system specifically.

2.1 EDSL

An EDSL is an Embedded Domain-Specific Language. This definition consists of two
distinct parts: a domain-specific language and the fact that it is embedded. Each of these
pieces is explained in this section.

A DSL is a language that lives at a higher level of abstraction than most general-purpose
programming languages [8]. These languages allow users to express algorithms and/or
data in a more concise, yet more specific manner. However, these languages also cannot
express anything outside of the domain as easily. For instance, the dot function we saw
earlier is much easier to express in Accelerate than it is in C, as we have seen. However,
writing a parser in Accelerate would be much harder than it is in C, if it is even at all
possible. This shows how a DSL is designed for a specific goal, whereas general-purpose
languages can perform any task.

An embedded DSL is a language that is defined within another language. For example,
Accelerate is an embedded language, and the dot function in Listing 1a from the introduc-
tion is an expression in this language. These languages come in two flavours: a language is
either shallowly embedded, immediately constructing the result of the embedded expres-
sion, or it is deeply embedded, creating some form of an AST, or Abstract Syntax Tree [7],
using data types in the host language [10]. The result of the former would be a textual
value like the equivalent C code, whereas the latter would likely generate a tree such as
the one in Figure 3. A language with a shallow embedding is harder to optimize [10] or
transform in other ways before outputting the result. Using a deeply embedded language,
however, one has all the information on the language that is normally acquired during
language parsing. We explore ASTs in more detail in Section 2.5.

2.2 Accelerate

Accelerate is a library that allows users to express data-parallel programs in a DSL which
is deeply embedded in Haskell, designed for (multi-dimensional) arrays, and the library
takes care of compiling efficient code, with the possibility of doing this at run-time. The
user writes code in a high-level style in a language with a strong type system, the goal
of which is to allow them to quickly write code that is correct and maintainable, without
sacrificing performance. It can also handle programs that are partially written in standard
Haskell and partially in Accelerate, allowing a user to only write Accelerate code for the
parts of their code that require the added heavy lifting that the library offers. The main



aim of the library is to allow users to write code in a functional, high-level style without
having to worry about complex data-races or other low-level problems.

2.3 Profiling Accelerate

To be able to perform the experiment, Accelerate needs to have some way of profiling
the time it runs non-kernel code. For this project, the kernel code will remain (largely)
untouched. Instead, the goal is to improve the performance of executing the code between
kernel calls.

Accelerate currently does have performance profiling for kernel code. It uses Tracy*
for this. To profile the code and correctly find results, it is important to add profiling
information to other categories of code as well, most notably:

 Scheduling new (sub-)tasks into the concurrent queue, which also includes mar-
shalling arguments and allocating new buffers.

o Waiting on the lock of the concurrent queue.

e The work performed running code between taking a work-item off the queue and
running the kernel, as well as identifying what code is actually run in this time.

Without this, measuring what exactly limits the performance of the runtime will be all
the more difficult.

2.4 Garbage Collection

Writing a program in a language like C, where memory management must be done ex-
plicitly by the programmer, programmers need to implement algorithms such that this
happens correctly. If they do not do this, memory leaks [21, 20] may occur. Garbage
Collection, or GC, is a collection of techniques that relieve programmers of this burden,
instead using an automatic reclamation scheme [20]. Using GC does come at a perfor-
mance cost [4], which has been attributed in the past to be around 10% [20]. However,
it allows programmers to write their code more quickly, assisting them in focusing on
(other) performance constraints of programs [20]. Additionally, some garbage collectors
can even improve the performance of certain programs [20], by improving data locality

‘https://github.com/wolfpld/tracy

Figure 3: The AST for the dot product function from the introduction, Listing 1a.
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data ArrProg res where
Fold :: ArrProg (res -> a -> res) -> res
-> ArrProg [a] -> ArrProg res
ZipWith :: ArrProg (a -> b -> res) -> ArrProg [a]
-> ArrProg [b] -> ArrProg [res]

List it [res] -> ArrProg [res]
Add :: Num res => ArrProg (res -> res -> res)
Mul :: Num res => ArrProg (res -> res -> res)

dotp :: ArrProg Int
dotp = Fold Add 0
(zipWith Mul (List [1..10]) (List [2, 4..20]1))
Listing 2: A minimal array-program DSL called ArrProg. This DSL implements precisely
enough operations to compile the dot-product program of Listings 1a and 1b.

and cache efficiency [9]. However, as we will see later, GC techniques can be detrimen-
tal to high-performance computing, as is the case in Accelerate, because of the reduced
control a programmer has over the environment.

2.5 Interpreters and Full Compilation

Suppose we want to write a program that computes the dot product between two vec-
tors. Writing a program that does this is relatively simple, as stated in the introduction.
However, it is interesting to see how a language can be designed to implement this, and
how the language’s runtime can be designed to execute such a program, as well as the
trade-offs in these cases based on complexity and performance. As such, we will see the
design of a language that we will execute in different ways.

The code in Listing 2 defines a small DSL in Haskell that allows users to define a subset
of array programs, and an example of a program in this language. This language is used
to illustrate the differences between the different interpreters and compilers in the rest of
this section.

The main goal of this section is to show the main trade-offs between compilers and different
kinds of interpreters, and not to show how to properly implement these for a fully-fledged
programming language. As such, this section does not go into detail about how the lan-
guage should behave, and whether the implementation of the language is correct. Instead,
it focuses on the performance and code size of each approach.

The rest of this section introduces compilers and different kinds of interpreters. Two well-
known types of interpreters are tree-walking interpreters and bytecode interpreters [12].
This section explains different trade-offs between these programs, starting with the easiest
to implement and moving to the hardest one, mentioning other benefits and problems that
each approach has over the other ones.

2.5.1 Tree-Walking Interpreters

A tree-walking interpreter is a high-level program that traverses some tree-like represen-

tation of the source code of a program, often an AST [12, 7], to execute the code. Due to
the nature of these programs, they are often slow compared to the alternatives [2], whilst
relatively easy to implement [15]. This section dives deeper into why this is the case.

A tree-walking interpreter for the ArrProg language recursively iterates over the nodes

11



runArrProg :: ArrProg res -> res
runArrProg (List xs) = xs
runArrProg Add = (+)
runArrProg Mul = (*)
runArrProg (Fold f a t) =
foldl (runArrProg f) a (runArrProg t)
runArrProg (ZipWith f xs ys) =
zipWith (runArrProg f) (runArrProg xs) (runArrProg ys)

Listing 3: A tree-walking interpreter for the ArrProg language.

in an AST, and execute any subexpressions in this way, before bubbling up back to the
original expression [12]. Take the expression for dotp in Listing 2 for example: in order to
evaluate the Fold statement, the ZipWith statement needs to be evaluated, and in order
to do that, the List statements need to be evaluated. When the inner expressions are
evaluated, the recursive algorithm evaluates the outer expression next. The way in which
this program is evaluated is by using a postorder tree traversal [I] over the AST, which
is why this kind of interpreter is known as a tree-walking interpreter.

Listing 3 illustrates how to implement a tree-walking interpreter for the ArrProg language.
A downside of this approach is that each of these AST nodes stores each of its subtrees
as separate pointers in this implementation, which means that the interpreter needs to do
many scattered memory accesses to evaluate this program. As this scattered memory ac-
cess pattern causes cache misses, this algorithm is inherently slower than implementations
with more predictable access patterns [19].

2.5.2 Bytecode Interpreters

Bytecode interpreters are a middle ground in executing a language in many ways. They
are faster than tree-walking interpreters, but slower than fully compiled programs [2].
However, even though they are slower than than fully compiled programs, they have
some benefits over them. We discuss these benefits and the performance differences, as
well as an example implementation in Haskell, in this section.

Bytecode interpreters convert the user’s code into another format before executing it.
This format consists of a set of instructions, each of which often a byte in size, which
represent instructions for a virtual machine; hence the name bytecode. The benefit of
this translation is that the resulting code can be run more efficiently than using a tree-
walking interpreter [2]. One reason for this is that the access pattern during execution of
a bytecode interpreter is more predictable than with tree-walking interpreters, as the only
time that the code is not traversed linearly in a single direction is when a jump-instruction
is executed.

As a first attempt to write bytecode for this language in Haskell, one might come up with
code similar to that in Listing 4. This code defines the bytecode instructions as Haskell
datatypes, and generates a list of these instructions by iterating over the AST. However,
this is not actually beneficial to running the interpreter; each value of type ArrProgBCInsn
requires at least one pointer in its representation, and the list representation, used in the
return type of toBytecode, requires two pointers per list item: one for the head, and
another for the tail. This means that the main performance detriment described in the
section on tree-walking interpreters is not actually addressed with this implementation.
Writing idiomatic Haskell is not always the best way to solve a problem, especially when
it comes to data locality.

12



data ArrProgBCInsn a
= BCPushList [a]
| BCZipWith
| BCFold a
| BCAdd
| BCMul

toBytecode :: ArrProg a -> [ArrProgBCInsn a]
toBytecode (List xs) = [BCPushList xs]
toBytecode Add = [BCAdd]
toBytecode Mul = [BCMull
toBytecode (ZipWith £ xs ys) =
toBytecode xs ++ toBytecode ys

++ [BCZipWith] ++ toBytecode f
toBytecode (Fold fb xs) =

toBytecode xs ++ [BCFold b] ++ toBytecode f

Listing 4: A possible definition of a bytecode for the ArrProg language.

To fix these issues, one can use a contiguous array, like an I0Array in Haskell. Reading
and writing in these arrays is similar to reading and writing arrays in C, which fixes
the pointer chasing issues that the previous listing and the tree-walking interpreter have.
As such, the code in Listing 5 defines a bytecode-compiler that results in a much better
memory access pattern. Since the main idea of generating this bytecode relates to using
a contiguous array, an approach that automatically transforms Haskell’s algebraic data
types into a packed representation, such as the work by Vollmer et al. [19], can also be
used. So far, we have only looked at the code that generates the bytecode. The next
paragraph discusses the bytecode interpreter, which executes the code.

The bytecode interpreter is defined in Listing 6. In addition to improving the access
pattern, this code also defines its own explicit variable stack and program counter, rather
than purely relying on the host language’s. This interpreter also uses its own explicit
stack and program counter, rather than relying on the host language’s. If the user was
allowed to declare variables in this language, their values would also be pushed on the
stack. This method of variable lookup is also faster than the one described for tree-
walking interpreters, as this only pushes and pops from a contigious array, if implemented

properly.

As we have seen, bytecode interpreters are often faster than tree-walking interpreters.
The algorithm used is very different, as illustrated by the code in the listings. Note that,
although bytecode interpreters are supposed to be faster, the algorithm requires a lot more
code, and more complex code as well. In short, tree-walking interpreters are simpler, but
slower, than bytecode interpreters [2, 12].

2.5.3 Compilers

In general, compilers are programs that translate code from one language into another.
In this thesis, however, “compiler” will generally refer to programs that translate into
machine code, i.e. code that can run directly on hardware. When a compiler is done
processing the source program, the result is a program that runs without the need for an
interpreter or the original source code. We discuss compilers, and the differences between
them and interpreters, in this section.

One of the inherent differences between compilers and interpreters is portability [13]. As
mentioned, the result of a compiler is code that can run directly on the underlying hard-
ware, without the need for another program in between. This comes at a cost, however;

13



pushList, zipWith, fold, add, mul :: Word8
pushList = 0

zipWith = 1

fold = 2

add = 3

mul = 4

data Bytecode a = BC

{ insns :: (I0Array Word8 Word8, Word8)
, lists :: (I0Array Word8 [a], Word8)

, bases :: (I0Array Word8 a, Word8)

}

-- addBase and addList similar to addInsn
addInsn :: Word8 -> Bytecode a -> IO (Bytecode a)
addInsn i b = let (is, 1) = insns b in do
writeArray is 1 i
return (b { insns = (is, 1+1) })

toBytecode
: ArrProg a -> Bytecode a -> IO (Bytecode a)
toBytecode (List xs) b = let (_, 1) = lists b in do
bl <- addInsn pushList b
b2 <- addInsn 1 bl -- Bytecode argument
addList xs b2
toBytecode Add b = addInsn add b
toBytecode Mul b = addInsn mul b
toBytecode (ZipWith f xs ys) b =
bl <- toBytecode xs b
b2 <- toBytecode ys bl
b3 <- addInsn zipWith b2
toBytecode f
toBytecode (Fold £ b xs) bO = let (_, 1) = bases b in do
bl <- toBytecode xs b0
b2 <- addBase b b2
b3 <- addInsn fold bl
b4 <- addInsn 1 b3 -- Bytecode argument
toBytecode f b4

do

Listing 5: A possible definition of a bytecode for the ArrProg language. This is missing a
lot of safety, like checking array sizes before writing in the arrays, which have been omitted
for brevity.

the resulting binary can only run on the platform that it was designed to run on. On
the other hand, an interpreter can run the same code on any platform that it is designed
to run on; this makes the original source code more portable, if the interpreter exists for
many platforms.

However, programs run slower in an interpreter than when they are fully compiled [2].
The main reason that interpreters are slower than compiled programs, is that an inter-
preter is a program that runs another program; as such, it needs to keep track of two
program counters, two stacks, and two sets of code, one for each of the interpreter and the
interpreted program. This obviously requires more work than running a single program,
which requires only one of each, as keeping track of this information takes processing
power and memory.

Compilers are often hard to write and maintain, if not purely due to the size of the
involved code. As an illustration, Listing 7 shows how to compile ArrProg into C code,
which can then be compiled by a regular C compiler into machine code. Not all of the
code is shown due to its size; the case for Fold is very similar to the case for ZipWith,
except that the left-hand side of the assignment is a single element, rather than an array
of elements. This code is much larger than the previous interpreters, and it also requires
an external program, namely the C compiler, to complete the translation to runnable

14



runBytecode :: Num a => Bytecode a -> I0 [al
runBytecode b = go [1 0
where
(a, end) = insns b
op 4 = (+) -- 4 is bytecode for add
op 5 = (¥) —— 5 is bytecode for mul
—-— Parameters are stack, program counter

go s n =
let

m=n 1

l=m+1

in
if n >= end
then return (head s) -- No crash assuming valid program
else readArray a n >>= \i -> case (s, i) of
(_, 0) -> do -- pushList
1li <- readArray a m
xs <- readArray (fst (lists b)) 1i
go (xs : s) 1
(xs:ys:s', 1) -> do -- ziplWith
opC <- readArray a m
go (zipWith (op opC) ys xs : s') 1
(xs : s', 2) -> do -~ fold
bi <- readArray a m
opC <- readArray a 1
base <- readArray (fst (bases b)) bi
go ([foldl (op opC) base xs] : s') (1 + 1)
Listing 6: A bytecode interpreter for the ArrProg language. The stack that this program
uses is still a list representation, although an I0Array would be better suited for this in
general. In this specific case, the values of the language are also Haskell lists, so the value

representation is quite slow in general.

code. With this illustration, it should be clear that compilers are the most difficult to
write out of these three programs. A benchmark of different interpreters and compilers
follows later on in this thesis, to supplement the claims about the performance of each.

JIT compilers [2], also known as Just In Time compilers, are an important variation of
compiler. This type of compiler aims to achieve the best of both worlds of interpretation
and compilation by compiling a program at runtime. It allows a user to run their code
similarly to an interpreter, but the resulting code runs much faster. However, generating
machine code takes a relatively long time: see Section 4.1 for more details. As such, one
of the challenges of JIT compilers is balancing the time spent generating code to the time
spent running that code.

2.6 Bytecode Interpreter in Accelerate

In its current state, Accelerate uses a hybrid compilation scheme to execute programs:
the most performance-critical code, the kernel code, is compiled using LLVM, whilst the
rest of the language is executed using a tree-walking interpreter. However, as mentioned
before, the downside of such an interpreter is that it is slow [2]. Therefore, there is a
performance benefit to be gained in changing the execution scheme of these programs; we
will discuss this in the rest of this section.

Although a bytecode interpreter is often faster than a tree-walking interpreter, writing
an efficient bytecode interpreter is not a trivial task, and a lot of research has been done
on the topic. For instance, opcode dispatch, which is the process in which the interpreter
decides which code to execute based on the bytecode, can be done in different ways,
where each has a different benefit depending on the situation. Listing 8 gives an example
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compileArrProg :: Show res => ArrProg res -> String
compileArrProg p = (\ (_, _, x) -> x) (printCode p names)
where
names = fmap (("list_"++) . show) [0..]

printCode (List xs) (name:names) =
let
1 = length xs
newList = printf
"int* Y%s = (int*)malloc(sizeof(int) * %d);" name 1
listInitF (n, i) = printf "¥s[/i] = %s;" name i n
listInit = listInitF <$> zip xs [0..]
in (names, name, intercalate "\n" $ newList : listInit)
printCode (ZipWith f xs ys) names =
let
(nl:names2) = names
1 = progListLen xs
(names3, n2, xsLines) = printCode xs names2
(names4, n3, ysLines) = printCode ys names3
resList = printf
"int* %s = (int*)malloc(sizeof(int) * %d);" nl 1
zipProgram = intercalate "\n"
allLines =
[ xsLines
, ysLines
, resList
, printf "for (int i = 0; i < %d; ++i) {" 1
, printf "Ys[i] = %s[i] %s %s[i]l;" nl n2 (opFor f) n3
,
]

in (names2, nl, intercalate "\n" allLines)

Listing 7: A compiler that compiles a subset of ArrProg expressions into C code.

of a switch-based opcode dispatch, implemented in C. Some papers describing different
techniques for opcode dispatch include: [3, 13]

However, as [15] mentions, these methods are far less important now than they used to
be. This paper says that the main issue with the switch-based opcode dispatch lies in
branch misprediction, but also that the branch predictions of hardware have improved
over the last iterations of CPUs. Furthermore, their results indicate that the performance
cost of these mispredictions are lower with newer hardware. As such, for a first version, it
seems simplest to stick with a simple bytecode interpreter, and evaluate the performance
bottlenecks afterwards.

2.7 Full Compilation in Accelerate

As section 2.6 states, Accelerate currently uses a tree-walking interpreter to execute certain
elements of its programs. In that section, the proposed solution was to use a bytecode
interpreter to increase the performance. However, bytecode interpreters are slower than
native code [15]. There are multiple methods of fully compiling Accelerate programs into
native code. Firstly, Accelerate has its own attempt at this using Template Haskell [17]
through the runQ function. This function generates all the code that would normally be
generated at run-time, the goal of which is to allow GHC to more agressively inline code
and eliminate intermediary structures. This will not be discussed in more detail. Secondly,
two more advanced frameworks for full compilation that have been considered are MLIR
and LLVM. LLVM is currently already in use by Accelerate, but only for compiling kernel
code. Both frameworks will be discussed in greater detail in this section.
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uint8_t* insns = ...; // instructions
uint8_t* pc = insns;
bool running = true;
while (running) {
switch (¥pc++) {
case OPCODE_ADD:
// do

break;
case OPCODE_MUL:
// the thing
break;
/7
}
}
Listing 8: An example of switch-based opcode dispatch. This particular implementation
does minimal checking, especially on when to end the program and whether the end of the

instruction stream has been reached.

MLIR MLIR® is a framework for compiling code into some other form; the framework
itself is very general on what the resulting form should be. The resulting form is often
a different dialect of MLIR. Defining a compilation from a source language to some tar-
get usually involves making one or multiple dialects for the source language to compile
to, and some translation from this new dialect into an already-existing dialect that can
be translated into the target form, either directly or indirectly. An example of this is
RISE [11], which translates functional programs into an MLIR dialect, before using that
to translate into a dialect which can be translated into native code.

Because of the dialect-based nature of MLIR, many optimizations that are common in
compiler design can be reused. For instance, constant propagation is integrated in MLIR.
As such, using MLIR can reduce the maintanance strain on a compiler project like Accel-
erate.

Although the benefits of MLIR sound very promising, the framework is relatively new.
As a result, there are not many resources on how to use the framework, and the API is
still undergoing changes; this is especially true for the Haskell API, at the time of writing.
Accelerate is written in Haskell, and as such, it would be extremely time consuming to
create bindings to the framework, learn how the framework works, and integrate it into
Accelerate. It also does not have any benefit for this particular research project. As a
result, using MLIR is out of scope for this project, as the benefits do not outweigh the
costs at this time.

LLVM Accelerate already uses LLVM to compile kernel code, as mentioned previously.
Therefore, integrating LLVM into the project is relatively simple. However, writing a
full compiler from Accelerate to LLVM is still a more complicated task than writing a
bytecode interpreter [15]. Full compilation does bring performance benefits, as native
code is faster to execute than interpreting bytecode for the same program.

Back to full compilation in general, this is also interesing in Accelerate because it might
enable cross-kernel optimizations, which are currently impossible. Currently, there is no
way for the LLVM compiler to do any optimization between kernels, because the code
between the kernels is completely separate from the code in the kernels. However, when
using full compilation in the right way, all of the code that is executed between the kernels

Shttps://mlir.1lvm.org/
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is also compiled by the LLVM compiler. In this case, using Link-Time Optimization,® or
possibly even using the correct compiler optimizations, the compilation might result in
something that adds optimization across the boundaries of the kernels. As such, the
performance improvement might be bigger than only the difference of time spent in non-
kernel code.

Accelerate also executes many different calls to (kernel) code using the Haskell FFI. How-
ever, making calls using the FFI often results in data marshalling and other bookkeeping
being executed by the Haskell runtime, which costs time.” If a program contains many
small kernel invocations, this might have a noticable effect on performance. However,
when fully compiling an Accelerate program, the entire program will be executed in a sin-
gle FFI call. As such, this can result in an additional performance benefit for Accelerate
programs.

Furthermore, Accelerate contains a code caching mechanism for compiled code. If the
internal code does not change, Accelerate can re-use kernel code without recompiling it.
Whilst this does not improve the performance of a program itself, full compilation can
still benefit from this. Running a fully compiled program will require compiling it first,
which costs time. However, if this code is loaded from the cache, this does not have to
be recompiled. Therefore, performing full compilation might result in a reduction of the
kernel code that is run overall, over the full lifetime of the program execution.

However, as we will see, Accelerate does spend a lot of time between kernel calls, but
this is not caused by interpretation inherently. Although fully compiling Accelerate will,
of course, result in a direct performance boost, it is suspected that this difference is not
integral to Accelerate’s performance struggles. As mentioned in the introduction, single-
threaded Accelerate might see up to a 14% performance improvement on simple code,
but the more fundamental issue is that Accelerate slows down when running on multiple
threads. This issue is not caused by interpretation by itself, but we will discuss this in
further detail in the next sections.

Shttps://gcc.gnu.org/wiki/LinkTimeOptimization
"https://wiki.haskell.org/Performance/FFI
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3 Research Questions

The main goal of this research project is to improve the performance of DSLs embedded
in Haskell, with a focus on programs written in Accelerate. To reiterate, these are the
research questions that will be investigated:

1. How does performance differ between full compilation and interpretation in Accel-
erate’s runtime system?

2. How does Accelerate’s parallellism affect the runtime performance of the library as
a whole?

The first research question encompasses both tree-walking interpreters and bytecode in-
terpreters. As argued before, Accelerate’s current interpreter, a tree-walking interpreter,
is likely slower than an equivalent bytecode interpreter. Additionally, all interpreters are
likely to be slower than fully compiling an equivalent program. However, remember that
Accelerate’s runtime system includes full compilation for kernel functions already; only
the “glue” between the kernel calls contains interpretation. As such, it is currently un-
known how much of the “hidden work” that Accelerate performs is done in the interpreter,
and thus the possible performance gain of fully compiling Accelerate code is unknown as
well.

Writing automated benchmarks using different Accelerate programs is the easiest way
of measuring the difference in performance between the different methods of execution.
Hopefully, running these benchmarks on all versions of the execution will determine one
that is overall better than the others; the hypothesis is that the compiled versions will
be faster than the bytecode interpreter, and that the bytecode interpreter will be faster
than the tree-walking interpreter. However, the code generation itself will also take time;
if the code generation takes too long, it will diminish the benefits, or it might even reduce
the performance.

However, completely rewriting Accelerate is a large time investment. Additionally, as men-
tioned, it is unknown how much of a benefit implementing the interpreters and compilers
will give; as such, instead of directly implementing this into Accelerate, we will study a
prototype of different interpreters and compilers, and evaluate the current performance
of Accelerate to see what it truly spends its time on.
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4 Prototype

To determine the performance benefit that full compilation has over the different inter-
preters, and the difference between these interpreters, it is illustrative to have a prototype.
In order to provide a realistic benchmark on the efficiency of a bytecode interpreter, it
would be best to compare a prototype like this against a real language that uses a byte-
code interpreter. Popular languages that fall in this category are Python [11] and Lua [18].
However, these languages are relatively complex, as they are so general and popular. It is
more realistic to write a full tree-walking and bytecode interpreter in Haskell for a smaller
language, which is not as feature-rich. As such, the prototype will use a language that is
smaller, but also already has an efficient bytecode interpreter: Lox [12].

We will be comparing different execution implementations of this langauge against the
bytecode interpreter that Nystrom’s book implements in part 3, called cloz, which is
implemented in C. The implementations to compare against are:

o A tree-walking interpreter.

o Two bytecode interpreters, written in Haskell, that attempt to be as efficient as
possible; another person on the Accelerate team has provided one of these imple-
mentations. The interpreters were developed completely separately from each other.

e A JIT compiler that compiles the program based on bytecode equivalent to that
emitted by cloz, an approach similar to Java [0].

e A JIT compiler that compiles the program from the AST that the tree-walking
interpreter uses.

All interpreters, other than clox, are implemented in Haskell, and the JIT compilers use
LLVM as an intermediate language. The choice of these languages is no coincidence:
Accelerate is implemented in Haskell and it uses LLVM internally as well. Using the same
technology as Accelerate will make the results of this prototype as comparable as possible
to results of changing the Accelerate runtime system.

The Lox programs that have been measured are the ones in Listings 9a and 9b. One other
program has been tested as well: this program consists of a single multiplication operator
call (10 * 10;). The single multiplication is supposed to be a very small program, to
illustrate the costs of generating code vs. not doing so. Each of these code fragments does
not contain any variables in the global scope; instead, all variables have been pushed into
a local scope by enclosing them in braces. This removes the need for a by-name lookup
of variables, which Accelerate does not have. Therefore, this brings the benchmark closer
to what it would be for Accelerate.

4.1 Prototype Results

The results of this experiment were slightly unexpected; see Figure 4. When looking at
the chart, we can define two clear different groups when looking at the performance of
these programs: the Haskell interpreters and the JI'T compilers. When running the longer
programs, the Haskell interpreters are clearly much slower than the JITs. On the short
multiplication program, on the other hand, the roles are reversed: the interpreters are
much faster than the JIT compilers. Clox is somewhere in between these two groups;
it is clearly faster than all the Haskell interpreters on all programs, but slower than the
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{

var x = 0;

var y = 0;

while (x < 1000000) {
x =x + 1;

y=x+y;
}
print y;
}

(a) The while-long benchmark. It is com-
prised of a single while loop. The total
amount of iterations is equal to that of the
while-nested benchmark.

{
var x
var z 0;
var y = 0;
while (x < 1000) {
x =x + 1;
y=0;
while (y < 1000) {
y=y+1
z =2 +y+ X
}
}

0;

print z;

}

(b) The while-nested benchmark. It is com-
prised of a while loop nested in another while
loop.

Listing 9: Two of the three benchmark programs used in the prototype analysis.

JITs on the larger programs. The execution of the JIT code is shown separately, as an
illustration for how fast a fully-compiled program would be.

The bytecode interpreters perform worse than the tree-walking interpreter on the while-long
benchmark, but they are faster on the while-nested benchmark. The bytecode-2 inter-
preter is always more efficient than the other bytecode interpreter, but more testing is
required to see how it compares to the tree-walking interpreter overall.

The JIT execution is equally fast for both JIT engines; the code they generate is very
similar, after LLVM’s optimizations. The code generation speed of each is different, which
is the only difference in their performance. The AST-JIT only generates an AST and from
that generates the LLVM-code. On the other hand, the bytecode-JIT generates the AST,
then the bytecode, and finally the LLVM-code. Generating the bytecode is probably the
main reason the bytecode-JIT is slower. The smallest difference between the AST-JIT
and cloz is about 40x.

4.2 Prototype Discussion

These results are, of course, not completely generalizable to Accelerate. However, it can
still be an indicator of how useful different methods are, and it shows some interesting
results for the different interpreters. Earlier in the thesis, bytecode interpreters were said
to be much more efficient than tree-walking interpreters. However, this is clearly not true
for all implementations and for all executed programs.

Based on these results, it looks like it is very difficult to write a bytecode interpreter in
Haskell that is more efficient than an equivalent tree-walking interpreter. Not much care
was taken to make the tree-walking interpreter efficient, but it is still faster on a subset
of programs than bytecode interpreters that were written with efficiency in mind. This
might be due to GHC being better at optimizing code that is more idiomatically Haskell,
like the tree-walking interpreter, than it is at optimizing 10-heavy code (using IOArrays
and IORefs). Moreover, even on the tested programs for which the Haskell bytecode
interpreters were faster, they were clearly slower than clox, the reference implementation
for a bytecode interpreter written in C. Based on these results, it looks like writing a
bytecode interpreter for Accelerate in Haskell would bring hardly any benefit overall.
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Prototype Results
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(a) A graph containing the relative runtimes of
all benchmarks, and on all types of execution,
illustrating the relation between all of these. A
bar of height 1.0 means that it takes just as
long as the tree-walking interpreter. A height
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Figure 4: Times it takes the different Lox implementations to run each benchmark program.
The Bytecode interpreter types include genetation of bytecode, and the JIT implementation
times include geneneration of machine code. None of the times include reading the source

code or parsing the AST.
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The simplicity of the example programs does complicate this matter somewhat, however.
Looking at the difference in performance for both the while-long and while-nested,
there is an argument to be made that keeping track of information in more complicated
programs is harder for the tree-walking interpreter than it is for the faster bytecode
interpreters. The code with the nested loop runs relatively faster using the bytecode
interpreters compared to the tree-walking interpreter than the code that uses a single
longer loop. The way the tree-walking interpreter handles scoping and variable lookups
is a likely explanation for this; having more blocks with deeper code would likely result
in less efficient code for the tree-walking interpreter, whilst this would not affect the byte-
code interpreters as much as they keep track of this information in less computationally
intensive ways. However, the Accelerate language’s variable lookup already uses De Bruijn
indices, which is a relatively efficient environment lookup compared to this tree-walking
interpreter’s scope-based lookup based on variable names. The lookup is implemented
with a linked list, rather than a directly indexable data structure; it is currently unknown
how much better the performance could be with a better data structure, but it would drop
certain type-safety guarantees, which is why the Accelerate team currently opts against
using one. The most important difference between these, however, is that Accelerate uses
an O(n) data structure, but a bytecode interpreter would use an O(1) data structure after
a program transformation; this transformation would still require using the current Ac-
celerate datastructure. However, this program transformation does not require the usage
of a bytecode interpreter, and this could also be done using full compilation or a slightly
different tree-walking interpreter implementation.

The remaining options are a JI'T compiler and a C-based bytecode interpreter. Earlier on
in this thesis, a clear case was made that developing a bytecode interpreter is much simpler
than writing a (JIT-)compiler. However, the use-case for Accelerate also complicates this
matter. Accelerate already compiles kernel code, and it has to keep track of these functions
so it can call them from within the user programs. Writing a bytecode interpreter in C
and using the Foreign Function Interface, or FFI, would complicate calling these functions.
These functions would have to be passed to C through the FFI, which would require
adding naming conventions etc. as well, and passing these around as parameters. It
would, however, remove the need to move back and forth between “native” code and
“Haskell” code; a single call across the FFT is sufficient. Even so, having the code be split
into multiple languages adds a maintenance burden to the code, as it requires maintainers
to understand two different languages well enough to be able to write efficient code in
them.

As such, a JIT compiler seems like the simplest option to improve the runtime performance
of Accelerate. Accelerate already uses 11vm-hs to JIT-compile kernel code, and it even
has a caching mechanism in place so kernel code does not have to be compiled unless
it changed. Changing the current tree-walking interpreter would then allow the JIT-
compiler to make use of the same technology, which would mean that an unchanged
program run on a different input would run without having to recompile anything, and it
would run with higher performance, reducing the time between kernel calls. Additionally,
this would reduce the complexity that the FFI currently adds in the same way that a
C-based bytecode interpreter would, whilst maintaining a bytecode interpreter written
in C would likely add more complexity than increasing the amount of code in the JIT
compiler.
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4.3 Prototype Conclusions

This prototype has given a clear indication to what the answer to one of the research
questions would likely be. Although the answer is partial, it can advise on which imple-
mentation would be most useful. This partial answer is discussed in this section.

Using a different execution method will change the impact of the problem that Accelerate’s
runtime system struggles with; however, using a bytecode interpreter written in Haskell
will likely not improve the time between kernel calls. The performance difference for full
compilation and bytecode interpretation is hard to generalize out of these results, but it
is safe to say that a bytecode interpreter would have to be written in another language
to have a clear impact on the overall runtime of an Accelerate program. Writing a (JIT-
Jcompiler is likely better keeping in mind the previous comments on predicted complexity;
the JI'T compiler would use technology already existing in the project, whereas writing
a bytecode interpreter in a different language will add code complexity in the form of
a different language, and an interface between these languages. The C-based bytecode
interpreter would still have the benefit of only requiring a single call across the FFI
boundary; however, the JIT compiler has the exact same benefit. These would both
reduce some of the complexity that the current code has in the same way.

Based on this, the most promising option looks to be a JIT compiler. The compiler
would have the best performance, it would eliminate a specific source of complexity by
condensing all FFI calls into a single one, and it would not introduce new complexity by
adding a new language to the project.

Referring back to the research questions in the last section (Section 3), there is now a
partial answer to one of these questions. The runtime performance between full compi-
lation and interpretation in Haskell is striking; interpretation is, as expected, very slow
compared to compilation. However, even in light of this evidence suggesting that fully
compiling the program will reduce time between kernel calls (and thus improve overall
performance), the actual impact is unknown as of yet; although it is clear that Accelerate’s
runtime system does more work than strictly required between kernel calls, it is unknown
what this work is. As such, the next section discusses what Accelerate is currently doing,
and this will help in finding out what the possible benefit of fully compiling Accelerate
would be.
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5 Evaluation of Current Accelerate

This section goes into a detailed evaluation of Accelerate as it is right now. First, the
usefulness of changing the execution of Accelerate from a tree-walking interpreter to a JIT
compiler is evaluated. After this, the problems that multi-threaded Accelerate struggles
with are evaluated.

5.1 Profiling Accelerate

In order to know what exactly happens during a program execution, Accelerate programs
send data to a Tracy server. For more information on what the output of this program
looks like, refer to Figure 5. This server shows different statistics based on the program.
Currently, the application tells Tracy when it is running a kernel, when it is running any
(other) task or waiting for a task to be queued. When a thread is waiting for a task to be
queued, or for the queue to be available for this thread, the output in Tracy gives a red
bar.

“Running a task” is intentionally vague in this context. It refers to processing any task
in the concurrent queue that Accelerate uses to schedule its jobs. These tasks can either
be (re-)scheduling tasks that are queued by splitting them up into smaller chunks so that
they can be executed in parallel, or running actual kernels. (Re-)scheduling a task also
involves marshalling the arguments for the kernel calls, as well as allocating the target
buffers. Running a kernel then exclusively consists of running the foreign kernel function
through the FFT; the time between starting the FFI call and the start of the kernel function
is also measured, to determine how long calling a foreign function takes.

Running Accelerate programs is less efficient than slightly more optimized approaches.
Two ways in which the performance can likely be improved are, as mentioned before,
fully compiling the program and improving how Accelerate utilizes the threads. This is
explored in more detail in the following sections.

All of the following experiments have been performed on an Intel Core i5-9300H CPU.
The experiments do not include the time spent by Accelerate in compiling the program
(or loading from cache), and for neither sets of programs does it include the allocation
or initialization of the initial data buffers. Instead, the time taken is measured from the
moment the program schedules its first job into its job queue.

‘RiIBur RmRunFRu RurRun FRul RurRun FRu Running tRun FR.u| Running task Rur FRu
cecall calleallkccall callcallkccal callcallkccall ! callEEl callkceal callFFl call ocal
fifold mmap ffolc mmagffolc mmag fifolc mimay; fifolc mmayj fifoll

RivwalRiivwailiwal BiwaiBwaRinwaiiwa BlvwailBwe Waiting thread RhwaBw:
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Figure 5: An example of what profiling output in Tracy looks like.
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dotp

arrInc :: Acc (Array DIM1 Float)
:: Acc (Array DIM1 Float) -> Acc (Array DIM1 Float)
-> Acc (Array DIM1 Float) -> Acc (Scalar Float)
arrInc = awhile (any (<5)) (map (+1)) dotp xs ys = fold (+) O (zipWith (%) xs ys)
(a) A function using an awhile loop in Ac- (b) A function computing the dot product of two
celerate. vectors in Accelerate.

Listing 10: Two functions defined in Accelerate to illustrate the performance that Accelerate
can still gain.

arrlnc dotp
Threads Acc C Speedup Acc C Speedup
1 8.1ms | 7.69ms 5.1% 0.199ms | 0.122ms | 38.69%
7 27.96ms | 3.41ms | 87.8% | 0.263ms | 0.111ms | 57.79%

Table 1: The results of running the benchmark programs, as well as their C-equivalents. The
speedup is the amount of time saved by running the C-version compared to the Accelerate
version. All programs are run on buffers of half a million 32-bit floating point numbers.

5.2 JIT Compilation

Accelerate currently does more work than strictly necessary when evaluating a program.
To prove this, one can run a program through Accelerate while profiling this execution.
This execution writes the object code for the kernels to disk for caching purposes; this
makes it possible to link to the generated kernel code from a different program. Writing
the same program in C, linking to the kernel code, should yield a similar result to using a
JIT compiler for all of Accelerate’s execution. Profiling this new program and comparing
this to the Accelerate profile should show what the possible performance improvement is.

The Accelerate code in Listing 10 has been tested in exactly this way. The C programs run
the work on worker threads, much like Accelerate does. For this evaluation, the programs
have been compiled using similar approaches to the equivalent Accelerate programs; for
instance, each iteration of the awhile loop allocates a new buffer and frees the old one.
Note that there is no garbage collection in the C versions. Instead, all allocated memory
is carefully freed when no longer needed.

Looking at the results for single-threaded performance in Table 1, it is clear that Accelerate
still has some performance wins to make. Accelerate takes around 5-39% longer to run
programs than a compiled C-program. This can have two causes: either Accelerate is
slower because the code it runs is JIT-compiled code, or because of the interpreter code
that runs between kernel code. JIT-compiled code can be slower than regularly compiled
code, because optimizing code takes time, and a JIT compiler has to balance compilation
time with performance [2]. However, as the kernel code used by the C-program is the same
code that Accelerate uses, it is clear that this code should run with the same performance.
As such, the interpreter code is likely the cause of the missing performance, and fixing
this is as “simple” as making a fully compiled program.

Clearly, Accelerate still has some performance to win, even on a single-threaded program.
However, the biggest issue Accelerate has does not lie in single-threaded code, but specif-
ically in multi-threaded performance. Therefore, we will investigate the performance on
multiple threads next.
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5.3 Multithreading

Accelerate can also evaluate programs in a multi-threaded fashion; as a matter of fact,
this is the default option. However, running the program using multiple threads can be
very slow, especially as the amount of threads increases. We investigate this in the rest
of this section.

The following experiments have been conducted using the same settings for each program
as described in the previous section, apart from the amount of threads. On default set-
tings, Accelerate uses 8 threads on the CPU on which these programs have been tested;
Accelerate automatically generates one worker thread for each thread supported in hard-
ware. However, the compiled C-versions of the benchmarks have some issues running on
8 threads; this probably happens because the main thread and 8 worker threads together
are not supported in hardware, which causes the threads to deschedule more often. Run-
ning on 7 threads, on the other hand, works very well. As such, all of these benchmarks
compare running on 7 threads instead.

Looking at the results in Table 1 again, we can conclude a few things.

o Accelerate’s multithreading is slower than running a C program with the same type
of queue.

o Accelerate’s performance diminishes when running on multiple threads.

For instance, the arrInc Accelerate program runs about 3.5x slower on 7 threads than
on 1, while the C version speeds up, being slightly more than 2x faster. This makes it
clear that the way Accelerate works when running a program on multiple threads is less
than optimal, and also that the type of queue itself is not the issue, since the C version
uses the same type of queue.

5.4 Possible Causes

Given the information in the previous sections, it should be clear that running a program
through Accelerate introduces some overhead, even on a single thread. However, it is
unclear what causes this overhead exactly; the result for running the arrInc program in
a single-threaded environment seems to show that the tree-walking interpreter does not
add much overhead, at a mere 5.1% of overall runtime. For the dotp program, the runtime
difference seems much larger, but most of this time is also not spent in the tree-walking
interpreter. Therefore, the difference between the current tree-walking interpreter and
compilation hybrid cannot be improved upon too much by applying full compilation.

The problem with the multithreading is more problematic. These results seem to indicate
that there is an issue with the multithreading. However, looking at the results in Tracy,
this does not look like the only problem. Looking at Figure 6a, it seems extremely
unlikely that a call to callFFI occasionally takes about 10ms to reach the foreign code,
whereas it often takes less than 10us. This suggests that there is something else going on
that degrades the performance, as the time this takes should not be quite this variable.
Additionally, the threads wait longer than in the C version; this suggests that there is
something else impacting performance than the concurrent queue.

The culprit appears to be the Garbage Collector, or GC. This can be seen by using the
ghc-gc-hook package and running the dotp code without any command-line arguments
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(b) Run with overrided heap-size settings to suppress the garbage collector. The changed setting is +RTS
-A8192M.

Figure 6: Two different runs of the Accelerate version of the dotp program in Listing 10b.
The code is the exact same, but different command-line arguments have been passed to the
Haskell runtime system. Note the difference in the timescale in both images.
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and running with +RTS -A8192M; the former’s Tracy log is shown in Figure 6a, and the
latter’s is shown in Figure 6b. The output of the GC hook is empty when passing the
RTS flags; this shows that the garbage collector did not interfere with the program’s run.
On the other hand, without these flags, the GC hook reports that the garbage collector
did run.

The difference in these program runtimes is striking. The runtime without garbage collec-
tion interference is about 2.9ms, whereas with the garbage collector this runtime grows
to almost 13ms, using the timing described earlier in this section. The impact on the
runtime of the complete program is relatively less pronounced, but still obvious, an al-
most 7x difference (70ms versus 487ms). The aforementioned problem with the callFFI
performance is also reduced significantly; the longest-taking ones are around 8ms with the
GC interference, but less than 900us when the GC is never interfering. There is still some
clear variance in the time one of these calls takes; this is likely due to thread scheduling.
This shows that one of the causes of Accelerate’s performance struggles is Haskell’s GC.

Measuring the real impact on program performance from GC is a known hard problem [1].
Many assumptions in GC optimization have led to misguided approaches. Actually mea-
suring how long the GC takes on a program compared to manual memory management is
difficult, but it is safe to assume that this takes between 6% and 92% more CPU cycles [1].
However, how much time exactly this costs on Accelerate programs is unknown.

It is also unknown why this disproportionally affects multi-threaded execution of Accel-
erate programs. It is possible that the GC synchronization is the root cause of this. The
GC cannot run while threads are using their data, and therefore it needs to cause all
threads to wait [9]. When there is only one (worker) thread, the instant the thread starts
waiting, the GC can run. However, when there are multiple worker threads, most of them
have to wait longer than this, as they all have to wait until the last one is waiting as well.
This increases the overall waiting time done for each thread, which increases the waiting
time for the overall program in (n) in the amount of threads, whereas the performance
gain of adding more threads is O(n), meaning that the performance of using more threads
could deteriorate performance.

It is currently unknown whether this affects all Haskell programs or whether the specific
use-case of Accelerate is a worst-case for this behavior to occur. What is known, however,
is that there is still a performance improvement to be gained even if the GC does not
interfere with the program’s runtime: the compiled C-version of the dotp code runs about
10x faster than the Accelerate version. However, it is important to note that Accelerate
has more constant overhead than the compiled C-version does; see Figure 7.

However, there is also evidence that increasing the amount of calls to the GC does not
have a strong impact on the performance of certain Accelerate programs, even though
those programs do have seemingly similar problems. For instance, Accelerate’s LULESH
implementation seems to have performance drops when the garbage collector runs as
well, but changing the heap size in the same way does not change this situation. The
images in Figure 8 show results from multiple executions of this program. It is clear that
increasing the heap size reduces the amount of times the garbage collector runs. However,
decreasing the amount of GC calls does not improve the overall performance. Clearly,
something other than the sheer amount of GC calls is causing performance issues.

The garbage collector causes some interesting behaviours in the context of an Accelerate
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Figure 7: Running the Accelerate version of dotp compared to running the C version. The
C version is slightly faster overall, but both run in O(n) of the size of the buffer.

program, which also affect its performance. This paragraph discusses two recurring exam-
ples that stand out, but there are possibly other patterns that have yet to be found. The
first example is shown in Figures 9a and 9b. What these images show is what happens
before a garbage collection. The worker threads get paused when the garbage is being col-
lected. However, the images show two very different cases: one shows a case in which the
GC causes a relatively long stagnation, and the other a very minimal one. It is unknown
what causes these differences in stagnation time. The other pattern is shown in Figure 9c.
This image shows what happens after a GC: all but one of the worker threads resumes
working. The last thread seems to be actually performing all the “memory freeing”, as
can be seen with the yellow line at the bottom, which shows the graph for memory usage;
it is clear that a lot of data is freed during this time. This behaviour causes issues with
how Accelerate handles parallelization of work. When one kernel depends on the result of
another kernel, Accelerate queues the dependency first, which needs to be fully executed
before the dependent kernel can run. Of course, this is the order in which this work must
happen. However, the thread that performs the freeing often does this after taking a work
item out of the queue. If the freeing takes a long time, this causes the other threads to
wait for this work to be done as well; thankfully, freeing this memory is often very fast,
but with large heap sizes, this can take a long time. This (partially) explains why the
program takes longer to run once the heap size becomes too large.

This section has shown that there is both evidence supporting that multiple GC calls
increases the run time of an Accelerate program, but also that the amount of GC calls
is not a sole indicator of how long such a program takes. Therefore, more research is
needed to find out how much of an influence the GC has on the performance of Accelerate
programs. It is clear that something in the Haskell runtime system interferes with running
Accelerate programs, and that at least part of these issues are caused by the garbage
collector, but with the current data it is hard to say how much of the performance drop
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Figure 8: Different runs of LULESH, at 10 iterations, with the total time taken on the left
y-axis and the amount of times the Haskell garbage collector was called on the right side.
The amount of memory that needs to be allocated before a GC happens is shown on the
X-axis.

is truly caused by it. The next section goes into future work that can show that this is
the problem, as well as possible ways to fix this.
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(a) A GC call that caused an extreme 37ms stagnation of the worker ~ (b) A GC call that caused

threads. This entire iteration took 44.7ms. For reference, most it- almost no stagnation of the
erations take around 7-13ms, and the GC in the image to the right worker threads; the waiting
takes around 1/200th of the time. time is around 200us.

[

(c) The “freeing behaviour” of the Haskell GC. This is an extreme example that happens with
very large heap sizes; this particular case happened with +RTS -A4096M. The freeing time is
around 1.4ms.

Figure 9: Different interesting “places of interest” in an execution of LULESH through
Accelerate. All executions use +RTS -A16M unless otherwise specified.
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6 Future Work

The previous two sections have investigated what causes Accelerate to be slower than hand-
compiled code in certain cases. We have seen that fully compiling Accelerate programs can
result in a speedup, but that this might not eliminate the main issues with performance
entirely. Although it is obvious that there are still improvements to be made, it is unclear
what the best course of action is. This section gives an in-depth analysis of different
possible ways to continue the investigation, or possible ways to reduce the problems
Accelerate has.

The first option involves simply gathering more data on the problem and performing a
more rigorous analysis on this data; Section 6.1 discusses exactly what this entails. Section
6.2 discusses a way of reducing the overhead the Haskell GC brings, by putting certain data
into compact regions. Although compact regions might reduce the overall overhead that
the GC brings, it might be more beneficial to eliminate the problem in its entirety; Section
6.3 lists some possibilities of entirely bypassing Haskell’s GC, which should increase the
performance with even more certainty. Finally, Section 6.4 discusses ways of finding
out whether Accelerate’s multithreading issues affect more Haskell programs than only
Accelerate programs.

6.1 More In-Depth Investigation

Accelerate clearly has an issue with running programs in parallel on multiple threads.
Additionally, it seems that Haskell’s Garbage Collector does affect the performance of
Accelerate programs. However, it is unclear to what degree this degrades the performance
of Accelerate programs. This section describes further experiments that can determine
the degree to which the GC interferes with performance more unambiguously.

One experiment involves correlating kernel executions that take relatively long with GC
calls that happen during them. Using Tracy, it is possible to save an execution trace of
an Accelerate program. The saved file can also be exported to a CSV file; one option
for this type of file is to give the start of each occurrence of each trace, and the length
of execution. If all “longer” executions of kernels fall during GC calls, that is definitive
proof that the GC interferes with the kernel execution.

However, there are some intricacies to keep in mind. For instance, the definition of when
a kernel takes “longer than normal”, as well as how much of this time is actually caused
by the GC. The details of this experiment are better left for the person performing this
to decide.

Other experiments might want to include more information, such as different Accelerate
programs. These experiments might also want to identify other possible interference, such
as including context switch information, or other Haskell runtime information. This will
show more clearly how much of the interference is caused by the GC, and how much it
affects different programs, rather than only that the GC affects these programs.

6.2 Compact Regions

Haskell’s GC clearly interferes with the execution of Accelerate programs. The effect
of this can likely be reduced by reducing the time spent in each GC call. One way to
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reduce the amount of garbage that the collector needs to sift through is by using compact
regions.® We discuss what these do and how this can be useful in the rest of this section.

When performing a GC, the Haskell runtime system copies all data that can be referenced
over from one data buffer to another. The details of how this work are not important,
and can be found in [9], but the main idea is that all data that cannot be referenced is
not copied to the new buffer, and as such, can be deleted when the collection is complete.
There is also a mark-and-sweep alternative, which does not move the data; the details
for this implementation can also be found in [9]. However, going through all data and
references can take a long time if there are many of these references. Additionally, this
work needs to be done multiple times for data that exists during all of the program’s
execution. If most of the data exists for all of the program’s execution, the GC takes
O(n?) time for longer program executions; linear in the amount of data in scope,” and
linear in the amount of GC calls.

For Accelerate, some things need to stay in scope continuously, which can explain this
problem. For instance, the AST of the program that is being run needs to remain in scope,
as it is used in interpretation. This would be a good candidate for something to place
inside a compact region, as it contains multiple references, and it also exists for most of
the program’s runtime. It is unknown how much this would help with the performance of
Accelerate, or EDSLs in general for that matter, however. It would make for an interesting
experiment to do this in Accelerate and/or other EDSLs to see how much this improves
performance, or if it is even detrimental.

6.3 Compiled Runtime System

As mentioned in the last section, Haskell’s GC interferes with Accelerate programs. Whereas
the previous section suggested ways of fixing this by reducing the work the GC performs,
this section explores ways of completely bypassing the GC, as well as ways of completely
bypassing the Haskell runtime system.

One way to bypass the Haskell GC is by using manual memory management from within
Haskell. Accelerate currently allocates managed memory through the Haskell runtime,
which means that it will automatically free the buffers when they are no longer in use.
However, the cost of this is that the GC will have more work to do in the collection
and freeing phases. To mitigate this, large buffers can be allocated using mallocBytes.'
These buffers also need to be freed manually, which is the downside of not having garbage
collection. This will reduce the strain on the GC by reducing the amount of bytes allocated
in it. However, when running most code in Haskell, thunks are also allocated for many
statements; to mitigate this, it is not sufficient to allocate the buffers in this manner.

Fully bypassing the GC would involve replacing the current runtime written in Haskell
with one written in another language. However, as the GC seems to be causing distur-
bances in the performance, the new language needs to not have a garbage collector either.
Two good candidates in this case are C and LLVM. C can interface with Haskell through
Haskell’s Foreign Function Interface. LLVM is already generated for kernel code; rewrit-

8https://hackage.haskell.org/package/compact-0.2.0.0/docs/Data-Compact.html

9Even one of the main authors of the GHC runtime system, Simon Marlow, has mentioned this:
https://stackoverflow.com/a/36779227

Onttps://hackage.haskell.org/package/base-4.16.1.0/docs/Foreign-Marshal-Alloc.html
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ing more code in LLVM might be possible as well using the JIT compiler. However, it is
likely easiest to replace single functions or modules at a time using C, with the FFI as
mentioned. Being able to modularly rewrite the library is beneficial, because this means
that only the largest cost centers can be rewritten and the rest of the code can stay in
place, preventing the need for a complete rewrite.

Rewriting (part of) Accelerate in C additionally means that not only the GC, but also
the rest of the Haskell runtime cannot interfere with its execution. C does not have a
fancy runtime system that performs background bookkeeping and hidden computations,
unlike Haskell. This makes the language more suited for a high-performance computing
runtime compared to Haskell.

Although it is unknown how much faster such a (full) rewrite of the Accelerate runtime
system will be, an upper bound has been found in Section 5. Having such an upper bound
on the possible performance that can be gained is useful when deciding whether it is worth
rewriting the library. It is also possible that such a new runtime system is slower. This
can indicate two things: either the new runtime is relatively bad, or the Haskell runtime
was not the issue. It is always important in high-performance computing like this to keep
profiling to see where the issues lie.

Hopefully, bypassing the Haskell runtime system completely will accelerate Accelerate.
As mentioned, however, it is interesting to know if Accelerate hits a bad case for the
Haskell runtime, or if it is possible to recreate this behaviour with more standard Haskell
programs. As such, the next section discusses a possible experiment to determine this.

6.4 Multithreading Slowdown

Accelerate programs slow down when run on multiple threads. Haskell’s runtime system
seems to be the problem, and not the embedded Accelerate language. However, it is
unknown what causes Accelerate programs to interfere with the Haskell runtime, and
it is therefore unknown whether this only affects Accelerate or a larger class of Haskell
programs. This section lists certain constructs that Accelerate’s internals use that can
be investigated to see whether Haskell’s runtime loses performance when using them in
a multi-threaded environment in isolation, or if there is a certain interplay that causes
these issues.

Accelerate uses, among other things, pinned memory allocations (using newPinnedByteArray#).
This is one of the few things that would logically influence the garbage collector; allocat-

ing memory like this tells the GC that it is not allowed to move the value around. Of
course, it does not seem like this should affect the GC very much at face value; however,

it is interesting to see if this is what causes the issue.

Additionally, Accelerate uses foreign function calls to dynamically linked functions that
are compiled at runtime. It uses LLVM to compile the functions at runtime, and it uses the
libffi Haskell library to call them. Since the runtime interference often happens between
calling callFFI from this library and actually calling the native compiled function, this
is another point of interest.

One such experiment to see whether these constructs cause the runtime to reduce perfor-
mance can consist of writing a parallelizable algorithm, such as a map over an array, or
mergesort /quicksort of an array, and running this on multiple threads, similarly to how
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Accelerate does this, with a concurrent task queue. If the program slows down, but it is
not spending a lot of time waiting for the queue, as appears to be the case for Accelerate,
this means that something else is interfering with the runtime system; if this is not the
case, change the program so that it uses any of these constructs, and retry, and see if one
of these constructs in isolation or a mix of these causes some issues.
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7 Conclusion

As shown in this thesis, Accelerate suffers from performance issues. However, these issues
likely lie in the Haskell runtime system. It is hard to say what exactly causes this, but
the garbage collector likely causes at least some of the performance concerns, especially
in a multi-threaded environment. It is important to keep in mind that Accelerate is not
a standalone language, but that it is embedded in Haskell; as such, its performance is
dependent not just on its own runtime system, but also on the runtime system of its host
language. Other EDSLs are likely to suffer from this too; however, it is not important for
all languages to be as fast as possible, so other languages might not have to consider the
performance of the host language as strongly. While prototyping a language in Haskell is
fast, and it is relatively simple to get a working version of the language, it is important
to remember that interpreters written in Haskell are hard to make fast. To make sure
that the language has good performance, it is better to perform a full compilation of the
program, or at least the most performance sensitive parts. Examples of languages that
do this at runtime already exist, such as Java [0].

Accelerate would see at least a marginal speed increase if the programs were fully compiled
before execution, as is expected; this does not include the time spent compiling. However,
the data found in this thesis suggests that the multi-threaded runtime would benefit more
than a single-threaded execution, if Accelerate implements a complete runtime system,
rather than relying on its host langugage’s. Getting the most performance possible out of
a program often requires a high amount of control, and writing a fully embedded language,
both in source and in execution, simply is not cut out for this, as developers have to rely
on the host language’s runtime system to be perfectly suited to their needs.

37



References

1]

Niloofar Aghaieabiane, Henk Koppelaar, and Peyman Nasehpour. “An improved
algorithm to reconstruct a binary tree from its inorder and postorder traversals”.
In: Journal of Algorithms and Computation 49.1 (2017), pp. 93—113.

John Aycock. “A brief history of just-in-time”. In: ACM Computing Surveys 35
(2003), pp. 97-113.

Marc Berndl et al. “Context threading: A flexible and efficient dispatch technique
for virtual machine interpreters”. In: International Symposium on Code Generation
and Optimization. IEEE. 2005, pp. 15-26.

Zixian Cai et al. “Distilling the Real Cost of Production Garbage Collectors”. In:
CoRR (2021).

Manuel MT Chakravarty et al. “Accelerating Haskell array codes with multicore
GPUSs”. In: Proceedings of the sizth workshop on Declarative aspects of multicore
programming. 2011, pp. 3-14.

IBM Corporation. The JIT compiler - IBM Documentation. 2005-2022. URL: https:
//www . ibm . com/docs/en/sdk- java-technology/87topic=reference-jit-
compiler.

Jean-Rémy Falleri et al. “Fine-grained and accurate source code differencing”. In:
Proceedings of the 29th ACM/IEEFE international conference on Automated software
engineering. 2014, pp. 313-324.

Steve Freeman and Nat Pryce. “Evolving an embedded domain-specific language in
Java”. In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications. 2006, pp. 855-865.

Ben Gamari. “A Concurrent Garbage Collector for the Glasgow Haskell Compiler”.

In: ().

HaskellWiki. Embedded domain specific language — HaskellWiki, [Online; accessed
29-June-2022]. 2021. URL: %5Curl?,7Bhttps://wiki .haskell.org/index.php?
title=Embedded_domain_specific_language&oldid=64429%7D.

Martin Liicke, Michel Steuwer, and Aaron Smith. “Integrating a functional pattern-
based IR into MLIR”. In: Proceedings of the 30th ACM SIGPLAN International
Conference on Compiler Construction. 2021, pp. 12-22.

Robert Nystrom. Crafting Interpreters. Genever Benning, 2021.

[an Piumarta and Fabio Riccardi. “Optimizing direct threaded code by selective
inlining”. In: Proceedings of the ACM SIGPLAN 1998 conference on Programming
language design and implementation. 1998, pp. 291-300.

Python Software Foundation. Welcome to python.org. 2022. URL: https://www .
python.org/.

Erven Rohou, Bharath Narasimha Swamy, and André Seznec. “Branch prediction
and the performance of interpretersDon’t trust folklore”. In: 2015 IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO). IEEE. 2015,
pp. 103-114.

38


https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
%5Curl%7Bhttps://wiki.haskell.org/index.php?title=Embedded_domain_specific_language&oldid=64429%7D
%5Curl%7Bhttps://wiki.haskell.org/index.php?title=Embedded_domain_specific_language&oldid=64429%7D
https://www.python.org/
https://www.python.org/

Sean Seefried, Manuel Chakravarty, and Gabriele Keller. “Optimising embedded dsls
using template haskell”. In: International Conference on Generative Programming
and Component Engineering. Springer. 2004, pp. 186-205.

Tim Sheard and Simon Peyton Jones. “Template meta-programming for Haskell”.
In: Proceedings of the 2002 Haskell Workshop, Pittsburgh. Oct. 2002, pp. 1-16. URL:
https://www.microsoft.com/en-us/research/publication/template-meta-
programming-for-haskell/.

The Lua Team. Lua: about. 2022. URL: https://www.lua.org/about.html.

Michael Vollmer et al. “Compiling Tree Transforms to Operate on Packed Represen-
tations”. In: 81st Furopean Conference on Object-Oriented Programming (ECOOP
2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2017.

Paul R Wilson. “Uniprocessor garbage collection techniques”. In: International
Workshop on Memory Management. Springer. 1992, pp. 1-42.

Yichen Xie and Alex Aiken. “Context-and path-sensitive memory leak detection”.
In: Proceedings of the 10th Furopean software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foundations of software en-
gineering. 2005, pp. 115-125.

39


https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://www.lua.org/about.html

	Introduction
	Background
	EDSL
	Accelerate
	Profiling Accelerate
	Garbage Collection
	Interpreters and Full Compilation
	Tree-Walking Interpreters
	Bytecode Interpreters
	Compilers

	Bytecode Interpreter in Accelerate
	Full Compilation in Accelerate

	Research Questions
	Prototype
	Prototype Results
	Prototype Discussion
	Prototype Conclusions

	Evaluation of Current Accelerate
	Profiling Accelerate
	JIT Compilation
	Multithreading
	Possible Causes

	Future Work
	More In-Depth Investigation
	Compact Regions
	Compiled Runtime System
	Multithreading Slowdown

	Conclusion

