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Abstract—

Introduction. Deep learning has seen many applications in on-
cology imaging, but these applications are mainly limited to the
adult population. They can not be blindly applied to children,
due to large differences in anatomy between children and adults.
In the last few years, more and more research has been done
into deep learning applications for pediatric oncology. This article
provides a review of deep learning applications in the pediatric
oncology radiology field. Results. 21 relevant papers were found.
Most of them (n = 10) describe classification models, with
other models perform segmentation (n = 5), image synthesis
(n = 4) and image quality improvement (n = 2) tasks. For most
papers, convolutional neural networks were used, except for five
papers on tumor classification. MRI images were the most used
input for the models. Conclusion & Discussion. Research on deep
learning applications in pediatric oncology radiology is following
the developments in deep learning for adult oncology, resulting in
a rapid increase of research into this topic. In the future, models
will most likely become more complex and deep, which can be
supported by larger available datasets.

I. INTRODUCTION

UTOMATED medical image analysis has been around
for several decades. Initially, this consisted of manually
created algorithms, which used humanly understandable image
features to do classification, segmentation, etc. Soon machine
learning methods emerged, which were able to find optimal
solutions based on training data [1]. An advanced machine
learning method is deep learning, which has seen rapid de-
velopments recently. Deep learning makes use of artificial
neural networks, which take images, image features, or other
information as input. This data is fed through multiple layers
of artificial neurons, towards an output layer. This output can
for example be the segmentation of certain organs or tumors,
the classification of tumor type or patient outcome, or even
complete synthetic images. An important advantage of using
deep learning over classical machine learning methods is that
a neural network can construct features itself. These features
can be very complicated, such that they cannot be manually
constructed by humans. A downside of this is that the network
behaves like a ‘black box’, it is very hard to determine how the
model reached its conclusion [2]. Another challenge of neural
networks is that they have a huge number of variables that
need to be trained, which makes them very prone to overfitting
to the training data [3]. However, several methods exist to
counter this, such as data augmentation, allowing the use of
deep learning with small datasets.
Deep learning has already seen many applications in on-
cology. However, deep learning has not been used as much

in pediatric oncology radiology, possibly because of the rarity
of large imaging datasets in pediatric oncology [4]. Methods
that are developed for adults cannot necessarily be applied
to children, because the anatomy of children is different
compared to adults. For example, development in the brain
differs between tissue types and is non-linear, resulting in a
different brain anatomy in children compared to adults [5].
This paper creates an overview of deep learning applications in
pediatric oncology radiology. Some review papers have made
an overview of machine learning in pediatric oncology imag-
ing, such as Daldrup-Link [3] and Ramesh et al. [6], as well as
Huang et al. [7] with a review focused specifically on machine
learning applications in pediatric brain tumor imaging. This
paper is different compared to the other papers because it
focuses on deep learning specifically. This allows for a more
in-depth look into the different deep learning techniques, such
as the used model architectures. Furthermore, research in this
field is increasing rapidly, resulting in 12 recently (>2020)
published relevant papers which are not yet discussed in the
previously mentioned review papers, compared to 9 papers that
are discussed there.

To find relevant papers, in June 2022, a SCOPUS search
based on the following query was performed: “(cancer OR
oncology) AND (children OR pediatric) AND (deep learning
OR neural network OR artificial intelligence)”. The ASReview
toolbox [8] was used to select relevant papers from the query
results. ASReview sorts the papers in order of relevance
based on user input, using active learning. In this stage,
only the title and abstract were used. Papers cited in the
relevant articles were also considered for inclusion. Papers
were included if their dataset included only pediatric or young
adult oncology patients. Papers before 2012 were not included,
due to the rapid development of deep learning technology.
Only papers discussing deep learning methods were included,
where deep learning is defined as being a method using a
neural network with at least two hidden layers. Only papers
discussing radiology are included, so papers on histology were
excluded.

II. RESULTS

21 relevant papers were found, as is shown in Fig. 1.
Fig. 2 shows the distribution of the papers. They were about
tumors in the nervous system (n = 17), including brain
tumors (n = 12), about kidney tumors (n = 2), tumors in
the lymphatic system (n = 2), and tumors in soft tissue in
general (n = 1). The models had a classification (n = 10),



TABLE I: Overview of papers discussed in this review paper. Abbreviations: AUC = Area under ROC curve, BAR = Balanced
accuracy rate, CNN = Convolutional neural network with any other architecture than AlexNet, U-Net or ResNet, Dgir = Dose
difference, DiCon = diagnostic confidence, DSC = Dice score, FNN = Fully connected neural network, ICC = Intraclass
correlation coefficients between predicted and manual segmentations, loU = Intersection over union, LOOCV = Leave one out
cross validation, MAE = Mean average error, MIBG = metaiodobenzylguanidine, NS = Not specified, RPSP = relative proton

stopping power, Tyax/B = tumor maximum activity/background

(a) Overview of papers describing a classification model.

Author Tumor location Imaging Metric(s) | Metric Model type Cross-validation | # Patients | Patient age
modality performance
Orphanidou- | Brain MRI Accuracy | 0.933 FNN LOOCV 40 NS
Vlachou et
al.  (2013)
[9]
Zarinabad ef | Brain MRI BAR 0.82 & 0.92 FNN 10-fold CV 90 6.86 £ 4.22
al.  (2016)
[10]
Li et al | Brain MRI Accuracy | 0.8058 FNN Repeated hold- | 58 0-14
(2019) [11] out validation
(70-30)
Zhang et al. | Brain MRI F1 0.9189 FNN No 278 <19
(2021) [12]
Quon et al. | Brain MRI Accuracy | 0.92 ResNet No 617 0-34 (median
(2020) [13] 8)
Prince et al. Brain CT, MRI Accuracy | 0.878 ResNet 5-fold CV 86 NS
(2020) [14]
Ye et al | Brain MRI AUC 0.950 - 0.991 FNN No 9 7-18
(2021) [15]
Banerjee et | Soft tissue MRI Accuracy | 0.85 AlexNet LOOCV 21 1-20
al.  (2018)
[16]
Mayampurath | Nervous system MIBG AUC 0.63 CNN 4-fold CV 103 0-18
et al. (2021)
[17]
Liu et al Nervous system CT AUC 0.63 - 0.83 FNN & CNN 5-fold outer, 3- | 65 0-16
(2022) [18] fold internal CV
(b) Overview of papers describing a segmentation model.
Author Tumor location Imaging Metric(s) | Metric Model type Cross-validation # Patients | Patient age
modality performance
Peng et al. | Brain MRI ICC 0.912 & 0.960 U-Net No 916 <19
(2020) [5]
Artzi et al. | Nervous system MRI DSC 0.761 U-Net + ResNet | 5-fold CV 29 57+£54
(2020) [19]
Nalepa et al. | Nervous system MRI DSC 0.781 U-Net 4-fold CV 22 & 51 Mean: 7.5 & 9
(2022) [20]
Corbat et al. | Kidney CT DSC 0.8806 CNN OVZASSION 14 1-15
(2020) [21]
Yin et al. | Lymphatic system | CT DSC 0.9 CNN NS 30 0-9
(2021) [22]
(c) Overview of papers describing an image synthesis model.
Author Tumor location Imaging Metric(s) | Metric Model type Cross-validation | # Patients | Patient age
modality performance
Florkow et | Kidney/Nervous MRI MAE, 57 HU, <0.5% U-Net 3-fold CV 66 1-9
al.  (2020) | system Duifs
[23]
Maspero et | Brain MRI MAE, 61 HU, -0.1% | GAN No 60 10£5
al.  (2020) Daitt & 0.1%
[24]
Wang et al. | Brain MRI MAE 42 HU GAN No 195 1-20
(2022) [25]
Wang et al. | Lymphatic system | PET, DiCon 0.942 ResNet Loocv 23 3-30
(2021) [26] MRI
(d) Overview of papers describing models for image quality improvement.
Author Tumor location Imaging Metric(s) | Metric Model type Cross-validation | # Patients | Patient age
modality performance
Hales ef al. | Brain MRI SNR 62% CNN No 131 0-17
(2020) [27] gain
Ladefoged Brain PET, Tmax/B -0.1% U-Net 4-fold CV 79 0-14
et al. (2019) MRI
[28]
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Fig. 1: Flow diagram showing the exclusion process.

segmentation (n = 5), synthetic image generation (n = 4) or
image improvement (n = 2) task. The mostly used modality
was magnetic resonance imaging (MRI) (n = 17), followed
with computed tomography (CT) (n = 4), positron emission
tomography (PET) (n = 2), and metaiodobenzylguanidine
imaging (MIBG) (n = 1). More information on the papers
can be found in Table I.

A. Classification

Classification is the task that currently has the most appli-
cations in deep learning for pediatric oncology (n = 10). This
can involve classification into different tumor (sub)types, but
also patient outcome prediction, both of which are discussed
below.

1) Tumor classification: Seven out of eight papers on tumor
classification deal with brain tumors, while the last paper
describes a model classifying rhabdomyosarcoma tumors. All
papers but one use solely MRI, because MRI is considered the
standard technique for brain imaging due to its high soft-tissue
contrast [29]. In one paper, CT images are also used in the
model.

About 50-55% of the brain tumors in children are located
in the posterior fossa (PF) [30]. Classification of these tu-
mors is discussed in five papers. Four of them used features
extracted from MR images as an input for the deep learning
models, while one used the full input image in a convolutional
neural network (CNN). An important advantage of using
image features as input over simply using the images is
that this makes the model less of a black box: the relevant
features can be understood intuitively. All papers compare
different machine learning methods. In 2013, Orphanidou-
Vlachou et al. [9] applied a texture analysis algorithm to
T1 weighted (T1w) and T2 weighted (T2w) MRI to extract
279 features. Principal component analysis yielded principal
components which were processed using linear discriminant

analysis (LDA) and a probabilistic neural network (PNN). A
probabilistic neural network is a specific type of feedforward
neural network. This implementation consisted of two hidden
layers, three summation layers, and one output layer. The
PNN outperformed the LDA. This was the first indication
that using neural networks might be beneficial in pediatric
brain tumor classification. A challenge with the classification
of PF tumors is the different incidences of the different
tumor types. Zarinabad ef al. [10] describe a dataset where
only 11% of the patients had ependymomas, with 89% of
the cases having one of two other PF tumor types. This
imbalanced dataset can result in low test accuracies for the
classification of less frequent tumors. Zarinabad et al. tried to
tackle this problem by overpopulating the minority class using
the bSMOTE algorithm, which is an algorithm that creates
artificial data. Different classification methods were tested,
including a neural network with 3 hidden layers. The input
for this model included features from magnetic resonance
spectroscopy (MRS) data. The models that were trained using
the expanded dataset performed better than the models using
only the original dataset. Li et al. [11] was less successful in
using deep learning for PF tumor classification. They used 10
different methods to extract features from MRI images, after
which they used 11 different machine learning methods for
classification, including a neural network. They assessed the
accuracy, as well as the stability of the different classifiers.
The neural network had an accuracy of 80.58%, while the
best performing method (a support vector machine) had an
accuracy of 85.38%. The neural network had the lowest
stability of all methods. However, Zhang et al. [12] reached
better results, by using 6 machine learning methods, including
a neural network. First, a classifier was used to identify the
appearance of pilocytic astrocytoma, and if this was a negative,
a second classifier distinguished between ependymoma and
medulloblastoma. As input for these classifiers, features from
T2w- and contrast-enhanced T1w images were used. In the
first step, the best performing classifier was a logistic regres-
sion, while the neural net performed the best in the second
step. A paper by Quon et al. [13] was the only paper that
used entire MRI images as input for their model, a ResNeXt
convolutional neural network. A ResNeXt model is based on
the ResNet architecture, but introduces a new model dimension
apart from width and depth, called cardinality (C). For each
ResNet block, the ResNeXt model has C' parallel blocks, such
that there are C' paths from the start to the end of the block.
They used a 2D-based model, because of a wide variety of
slice thicknesses in the dataset. The model was pre-trained
on the ImageNet dataset. It classified each slice as having a
tumor or not a tumor, and further classified the slices with a
tumor into 4 different tumor types. They used a confidence-
weighted vote of models with 5 hyperparameter combinations
to do final predictions. They compared using T2w, contrast-
enhanced T1w, and ADC MRI as an input to using T2 only.
Using T2w only performed better, probably because there was
overfitting when using all images as input. The dataset used in
this paper includes patient ages up to 34, but it is still included
in this review because the mean age of the patients was 8. all
scans were made in a pediatric hospital, suggesting that the
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Fig. 2: Breakdown of the papers included in this review.

dataset consisted of mostly children. Furthermore, the paper
has a large focus on pediatric patients.

Contrary to what Quon et al. found, models investigated
by Prince et al. [14] showed improved performance when
including different imaging types, in this case CT and Tlw
MRI. They used many different pre-trained (ImageNet) deep
learning models for the classification task. Network archi-
tectures included Inception models, ResNet models, and two
models found using a (progressive) neural architecture search
((P)NAS). NAS, and PNAS, its successor, are recurrent neural
networks (RNNs) that can be used to design a new CNN from
scratch. Combinations of network architectures and hyperpa-
rameters were tried to find the best-performing model. They
also applied different data augmentation methods, using either
a stochastic method or transformation adversarial networks for
data augmentation (TANDA), which is a method that uses
Generative Adversarial Networks (GANs) and RNNs to do
data augmentation. Independent of the input format (CT, MRI,
or both), the best-performing models were ResNet models
and had results comparable to clinical experts. The stochastic
augmentation outperformed the TANDA method, but they
mention that they did not optimize their TANDA method. The
work is an initial exploration of the methodologies, but they

suggest several improvements for further research. Another
paper showing a proof of concept was by Ye et al. [15], who
made diffusion-weighted MRI (DWI) scans of postmortem
brain specimens of 9 children. A neural network was used
to classify histopathological features, based on 10 diffusion
metrics, provided by analysis of the DWI scans. The network
consisted of 10 fully connected hidden layers. The results
indicate that deep learning in combination with DWI could be
used to classify histology, but in vivo testing of this method
is still required.

Banerjee er al. [16] created a semi-automatic model to
differentiate between the embryonal and alveolar subtypes of
rhabdomyosarcoma (RMS), a soft tissue cancer, by using only
T1w-MRI and DWI images [16]. They used transfer learning
to train their CNN (AlexNet), which was pre-trained on images
from ImageNet. They reached an 85% accuracy using this
method. To use this model, a manual delineation of the tumor
in a single slice is needed on both modalities, which decreases
the level of automation.

2) Outcome prediction: In two papers, several machine
learning methods were compared in predicting patient outcome
in patients with neuroblastoma. Mayampurath et al. [17]
used multiple machine learning models to predict response



to chemotherapy in these patients. Their neural network was a
2-layer CNN, which classified based on 2D metaiodobenzyl-
guanidine (MIBG) scans. In an MIBG scan, a small amount
of radioactive MIBG is administered, after which a gamma
camera is used to determine the distribution of MIBG in the
body. They also used a logistic regression model based on
clinical parameters, and a Naive Bayes classifier (NB) that
used the outcomes of both methods to do a final predic-
tion, as well as a geometric mean of both methods. Their
results indicated that the CNN performed worse than the
logistic regression model, although not significantly. The NB
model performed similarly, but the geometric mean method
performed better, with an AUC of 0.73. Liu et al. [18] also
used several machine learning methods. This included a 3-
layer fully-connected neural network (FNN) and a 2D CNN.
Patient outcome was predicted in six categories. The machine
learning methods and the FNN used 105 radiomics features
extracted from 3D CT images, while the CNN used 2D slices
of these images. The convolutional neural network, which was
pre-trained on the ImageNet dataset, performed poorer than
the best performing other models. The FNN performed best
in five out of six classification categories. Both works can
be seen as a proof of concept for combining radiomics with
machine learning to predict patient outcome, rather than only
using a CNN.

B. Segmentation

Segmentation is the second most appearing use case for
deep learning in pediatric oncology radiology. Manual tumor
segmentation is a very time-consuming and difficult task,
so using deep learning to speed up this process can save
valuable time [29]. Five papers describe deep learning models
used for segmentation. All of the papers use convolutional
neural networks for this purpose. A widely used architecture
for medical image segmentation is the U-Net [31], which is
reflected in the fact that three out of the five papers have a
U-Net-like architecture.

Peng et al. [5] used a 3D U-Net to segment brain tumors
(high-grade gliomas, medulloblastomas, and leptomeningeal
seeding tumors) in preoperative and postoperative children.
The U-Net consisted of 5 levels. They furthermore created
an automatic method to estimate the tumor volume and the
RAPNO score, which is used to determine treatment response.
This is the first fully automated method for segmentation
and volume estimation of pediatric brain tumors using deep
learning. The performance of the methods was similar to
human experts.

Two papers used a U-Net-like architecture to segment optic
pathway gliomas (OPG) on MRI images. OPG accounts for
about 3-5% of the pediatric central nervous system tumors
[19]. Because of this, only small pediatric OPG datasets
are available. Both papers tackle this problem using transfer
learning. The model of Artzi er al. [19] was initiated using
the weights of a model trained on the ImageNet database.
The convolution layers in the U-Net were replaced by residual
blocks from the ResNet architecture. After segmentation, the
tumors were classified using fuzzy c-means clustering. Their

research showed promising results, despite their small and
heterogeneous dataset. Nalepa et al. [20] used a nnU-Net
(no new U-Net), a U-Net which configures itself, making it
applicable to many different segmentation tasks. They pre-
trained their model on segmentation of glioblastoma (GBM),
for which a large dataset was available. Afterward, they fine-
tuned their model to apply to OPG, by either updating all
weights or only updating the weights of the final layer. They
made their network architecture open source, allowing other
research groups to use it.

Two other papers describe segmentation in patients with
tumors in the kidney and the lymphatic system respectively,
based on CT images. Corbat et al. [21] created a semi-
automated method to segment the kidney and tumor in children
with nephroblastoma based on CT images. A fully convolu-
tional network (FCS-8s) was used to create a segmentation
of the kidney and of the tumor separately. For this method
to work, the segmentation of about 20% of the kidney and
tumor must be known, on which the model trains, to be
able to segment the other parts of the kidney and tumor
automatically. They call this the OVZASSION method. The
segmentations of the kidney and the tumor are combined using
a deep learning network with seven convolutional layers and
two pooling layers. The total time of the segmentation process
is eight hours. Even though this is a long time, and partial
segmentations are needed as input, it could be seen as an
improvement compared to other networks (who needed more
training data than 20%) or a completely manual method. Yin
et al. [22] created a 3-layer CNN to segment lymphangioma
lesions in CT images before and after interventional therapy.
The model consisted of three convolutional layers, two pooling
layers, and one fully connected layer. The model is said to
outperform the Canny segmentation algorithm based on the
dice score, but the cost function and the validation and test
set size were not specified in the paper.

C. Image synthesis

Some imaging modalities, like PET and CT, use electromag-
netic radiation that can be harmful at high doses. Therefore
it can be beneficial to only acquire MRI scans, and use those
as a basis to create synthetic CT images [24]. Furthermore,
this removes the need for inter-modality image registration,
resulting in fewer uncertainties [23, 24]. Four papers discuss
models to generate synthetic images. Florkow et al. [23]
adapted a U-Net to create synthetic CT images of children
with Wilm’s tumor or neuroblastoma, based on Tlw and
T2w MRI images. They used this to do dose calculations
for radiotherapy, which they compared to dose calculations
on a real CT scan. The MRI images first went through two
convolution layers, before being concatenated to enter the U-
Net structure. Most dosimetric differences were within clini-
cally acceptable limits, showing that an MR-only radiotherapy
workflow can be feasible using deep learning. Maspero et al.
[24] also created synthetic CT images based on MRI images,
but these were brain images. To do this, they used a conditional
generative adversarial network (cGAN). The used dataset was
very heterogeneous, both in patient size, shape, and age,



as well as imaging protocols. Despite this heterogeneous
dataset, the model still performed well in creating synthetic
CT images. The created images could be successfully used
to do dose calculations for radiotherapy. Wang et al. [25]
created synthetic CT-derived relative proton stopping power
(RPSP) images using a consistent cycle generative adversarial
network (ccGAN) with MRI images as input. They created
RPSP images instead of CT images because dose calculations
can be directly done on RPSP images. ccGAN is an adaptation
of the cGAN, by adding a consistent loss, which compares
the output image with the RPSP corresponding to the input
MRI. cGAN would not have used this RPSP image, resulting
in unsupervised learning. They found that using T1w or T2w
MRI images yielded the best results, while FLAIR MRI, or
combinations of these inputs had less good results.

Wang et al. [26] developed a CNN to generate diagnostic
whole-body '®F-FDG PET images for lymphoma patients
from ultra-low-dose '®F-FDG PET and T1w-MRI input. They
used an enhanced deep super-resolution network (EDSR),
which is a residual neural network (ResNet). They adapted
this EDSR by including the T1w-MRI input using middle
fusion, adding a skip connection from the PET input to
the final prediction layer, and using a slice-wise method.
Lymph nodes are better delineated on the Al-augmented scan
compared to the low-dose scan, but the augmented scan does
not discriminate each lesion as well as in the full-dose scan.
This paper includes patients aged up to 30 years old, but the
focus of this paper is on children and young adults, so it is
left in for this review.

D. Image quality improvement

Two papers discuss deep learning methods to increase image
quality. MRI images created using arterial spin labeling (ASL)
are known to have a low signal-to-noise ratio (SNR). Hales
et al. [27] used a convolutional neural network to denoise
ASL images. Their network used an encoding component
with convolutional and max pool layers, and a decoding
component with convolutional an up sampling layers. Two skip
connections were applied between the encoding and decoding
components. Model training was done using 131 pediatric
neuro-oncology patients, but evaluation was performed using
11 healthy adult volunteers. They found a significant increase
in SNR when applying the CNN to the MRI data. Using
denoising methods like this can save scan time in ASL
acquisitions.

Ladefoged er al. [28] made a deep learning method to do
PET attenuation correction for simultaneous PET/MRI acqui-
sitions. They compared this with the MR-derived RESOLUTE
method. The network was a modified version of a U-Net,
with convolutions (stride 2) instead of max pool operations,
and batch normalisation, a ReLU activation function and
a dropout layer after each convolution. The deep learning
method performed similarly to the RESOLUTE method, but
the images corrected using the deep learning method were
more similar to the ground truth according to both visual
inspection and quantitative metrics.

III. DISCUSSION
A. Overview

21 papers on deep learning applications in pediatric on-
cology radiology were discussed. Research into this topic
is increasing rapidly, which is visualized in Fig. 2(a). The
papers were categorized based on model task. Most models
were classification models (n = 10). Five of these papers
did not involve convolutional neural networks, while all of
the other papers did. As expected, the models using large
datasets did not use cross-validation or hold-out validation,
while most models using smaller datasets did. Several papers
applied widely used methods for specific tasks, such as U-Nets
for segmentation and GANs for image synthesis, but other
papers had different approaches, such as manually constructed
CNNs for segmentation and a U-Net or a ResNet for image
synthesis. In several papers, the use of multiple types of input
images was compared to the use of only a single type. In
some cases, using multiple input images was beneficial due
to more available information for the model, while in other
cases, using a single input image was preferable. This suggest
that the number and type of input images should always be
reconsidered when applying a method in a new situation.
Papers focusing on a single model or a small number of models
usually reached higher performance than papers comparing
many different models, because the multiple models were
often out-of-the-box solutions, and not optimized for the task.
With deep learning, well-thought-out network architectures
and hyperparameter choices are essential for reaching high
performances [32].

B. Outlook

Only two papers published in 2020 or later do not involve
convolutional neural networks. This suggests that network
architectures are getting more complex over time. This trend
is likely to be continued in the future, resulting in models that
are even deeper than currently used models.

There are many more adults than children with cancer, re-
sulting in more research and available data for adult oncology
compared to pediatric oncology [4]. New methods are usually
tested using data from the adult population. However, when
these methods are successful, they can be adapted to apply to
children as well. This could result in many new techniques in
the pediatric field in the near future. Furthermore, data shar-
ing initiatives, such as the Childhood Cancer Data Initiative
(CCDI) can help with gathering larger datasets, which can
make the use of deep learning easier.

C. Limitations

It is possible that not all relevant papers were discussed
here. Not all abstracts of the found articles were read, since
ASReview sorted the papers based on relevance. After ASRe-
view suggested over 80 irrelevant papers, only the titles of the
remaining papers were read. Furthermore, some papers might
have not appeared when using the query, if relevant search
terms were missing in the title, abstract, or keywords. We have
tried to be as transparent as possible by explaining the search
strategy.



IV. CONCLUSION

In this paper, 21 papers on deep learning applications in
pediatric oncology radiation were reviewed, and categorized
according to model task.
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APPENDIX A
(DUTCH) PLAIN LANGUAGE SUMMARY

Kunstmatige intelligentie wordt steeds meer gebruikt bij medische beeldvorming. Een geavanceerde
methode die recentelijk veel ontwikkelingen heeft doorgemaakt is het kunstmatige neurale netwerk. In
een kunstmatig neuraal netwerk wordt de structuur van hersenen gesimuleerd in zijn eenvoudigste vorm, het
bestaat uit kunstmatige neuronen die met elkaar in verbinding staan. Er kan informatie (zoals een medische
afbeelding) worden ingevoerd in het netwerk, waarna het model een voorspelling doet. Deze vorm van
kunstmatige intelligentie wordt ook wel deep learning genoemd. Voor dit artikel heb ik onderzocht wat
voor toepassingen van deep learning er zijn voor medische beeldvorming van kinderen met kanker. Ik heb
21 relevante artikelen gevonden.

De meest voorkomende vorm (tien keer) van deep learning was classificatie. Bij een classificatie is
de voorspelling van het netwerk een categorie waar de patiént of tumor bij hoort. Het kan bijvoorbeeld
zijn dat het type tumor wordt gedetecteerd door het netwerk, of dat er een voorspelling wordt gedaan
over of de patiént te genezen is. Na classificatie kwam segmentatie het meeste voor (vijf keer). Bij
segmentatie wordt bepaald welke onderdelen van de medische afbeelding een tumor of orgaan bevat, en
welk onderdelen niet. Dit kan bijvoorbeeld gebruikt worden om het volume van een tumor te bepalen.
Vier artikelen beschreven methodes om nieuwe beelden te creéren. Vaak zijn er bijvoorbeeld zowel CT als
MRI beelden nodig. Om te voorkomen dat er verschillende soorten scans moeten worden gemaakt, kan
een neuraal netwerk gebruikt worden om een kunstmatige CT scan te creéren op basis van een MRI scan.
In de laatste twee artikelen werden neurale netwerken gebruikt om de kwaliteit van medische beelden te
vergroten, bijvoorbeeld door ruis te verwijderen.

Er zijn verschillende soorten neurale netwerken, die ieder gespecialiseerd zijn in andere taken.
Voorbeelden zijn het U-Net, dat ontwikkeld is voor segmentaties, en de GAN, die gebruikt wordt voor
het cre€ren van kunstmatige scans. Echter, sommige artikelen gebruikten ook minder gangbare methodes.

Zo was er zelfs een paper die een U-Net gebruikte om een kunstmatige scan te creéren.

De verwachting voor de toekomst is dat de modellen steeds complexer zullen worden. Verder zijn er
verschillende initiatieven die erop gericht zijn om meer data beschikbaar te maken voor onderzoek, wat
ervoor kan zorgen dat er meer mogelijk wordt met neurale netwerken op het vlak van kinderkanker.



