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Abstract
Super resolution is a class of techniques that aims to increase the resolution of an
image. Commissioned by the company Stapes IT this thesis aims to create an effi-
cient and effective super resolution method for single images using deep learning.
To tackle this issue, a comparison between different deep learning super resolution
solutions had to be made to find the best framework to improve upon. It was found
Real-ESRGAN is the best starting framework for its fast inference and high quality
output. To improve this framework to the needs of Stapes IT the option of con-
tinuous floating point upscaling factors was added. This was done by cascading
the existing factor 4 and factor 2 models to a factor 8. To quantitatively measure
the quality of the models an image data set relevant to the company was created
and tested using the Peak Signal to Noise Ratio (PSNR) and Multi-Scale Structural
Similarity Index Measure (MS-SSIM) metrics. For both these metrics, a higher score
indicates a better result. Comparison to the existing SDMD model on the custom
data set shows our cascaded model performs well with PSNR and MS-SSIM scores
of 20.794 and 0.836 compared to 18.042 and 0.730 for SDMD. Using a combination of
Lanczos4 interpolation and linear image blending the model is able to upscale to any
floating point value between 1 and 8 from the existing 2 models. Tested on the same
custom data set the models show a slowly declining average MS-SSIM score linearly
correlated to the height of the upscaling factor starting with 0.984 for an upscaling
factor of 1.5 till 0.836 for factor 8. We conclude that our method proves that creating
super resolution images with continuous upscaling factors is practical, delivering
decent high resolution images and can be implemented in a digital environment for
commercial and practical use.
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Chapter 1

Introduction

Single image super resolution (SISR) is one of the many challenges in the world
of imagery today that deep learning hopes to tackle. SISR is a class of techniques
that is used to enhance the resolution of an image. The algorithm or model creates
new pixels for an image without any prior knowledge of that image. By enhancing
the resolution of an image (also called upscaling), you get the opportunity to either
enlarge the image while maintaining a certain quality, or zoom in on specific parts
of the image without these parts becoming too pixelated to see any details. Since
the knowledge about deep learning keeps growing, the impact on the field of super
resolution is also increasing as deep learning algorithms seem to be able to handle
this challenge well [30].

To achieve super resolution, two major deep learning techniques can be used. The
first technique is the use of convolutional neural networks (CNN’s). Since 2014 this
technique made its entrance in the world of SISR with the introduction of SRCNN
[4]. After this many variations on CNN’s have been constructed to solve the su-
per resolution challenge. Topics of research and improvement in this area could be
designing new architectures, building new loss functions or use different types of
learning strategies.

The second technique is a certain variation of a CNN: a generative adversarial net-
work (GAN). Since GAN’s are relatively new deep learning techniques being in-
troduced only in 2014 [5], a lot of research can still be done in this area. With the
introduction of the SRGAN in 2017 [12] it was shown that this specific deep learn-
ing technique could also provide solid solutions for the super resolution challenge.
GAN’s perform particularly well on images that have lots of texture, but also tend to
create more artifacts. The area’s of improvement for this technique are equal to those
in normal CNN’s: finding new architectures, loss functions or learning strategies.

1.1 Stapes IT & Tinify

The company Stapes IT1, who are the technical owners of the company Tinify2, also
have an interest in owning a good solution for the super resolution challenge. Tinify
is specialized in compressing images for large websites, independent hobbyists and
anything in between. Besides their compression tool Tinify also offers the possibility
to automatically resize images. Up until now this resizing tool only contains a way
to downsize images3. This is because enlarging images poses the problem which

1http://www.stapesit.com/
2https://www.tinypng.com/
3See https://tinypng.com/developers/reference/python, the ’Resizing Images’ section

http://www.stapesit.com/
https://www.tinypng.com/
https://tinypng.com/developers/reference/python
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super resolution tries to solve: the quality of an image will drastically decrease the
more you try to enlarge it. Since customers have the need to enlarge images while
also maintaining the image quality and to have a new image adjustment feature on
the website, Stapes IT decided to invest in a single image super resolution algorithm.

1.2 Research Question

In order to find this model for Stapes IT, the following research question has been
formulated:
"What is an efficient and effective deep learning approach for generating super resolution
images that can be deployed in a practical online solution for nonspecialist end users?"

1.3 Requirements

There are many different ways to tackle the SISR problem, for this thesis it has been
decided that only deep learning techniques will be taken into consideration. This
choice was made to make the research area more narrow and because the most pos-
sibilities to improve and investigate lie in this area. Besides the existence of many
different techniques to encounter super resolution, there are also many different so-
lutions for this problem which can all be sufficient based on the requirements. SISR-
algorithms made with deep learning techniques can for example be trained to per-
form well in a specific domain of images, or build to be extremely lightweight or fast.
As the customers of Tinify and the developers of Stapes IT have their own particular
needs and wishes, a list of functional and non-functional requirements will guide
us in finding the algorithm suitable for Tinify. Each requirement will get a certain
priority rating, based on how important it is for both Tinify and Stapes IT. Require-
ments can be labeled critical, meaning it’s of the highest importance this requirement
is met. If requirements aren’t critical but still much appreciated if achieved they’ll
be labeled important. Finally requirements will be labeled optional if they are nice to
have but no deal breaker if they are missing.

1.3.1 Functional Requirements

The functional requirements for this project are defined as the requirements which
the algorithm needs to fulfill to cater to the needs of the customers of Tinify. For each
of the following requirements the needs of the customer are considered, as well as
technical feasibility and feasibility in regard to time constraints.

Domain - Since the customers of Tinify are very diverse, not one domain can be
named that contains all possible images up for enlargement. As this is the case, the
algorithm should not be domain-specific and should be able to upscale any image
irregardless of the contents of that image. This requirement is critical, if the model
can’t upscale an image of any given domain it’s not valuable to Tinify.

Quality - This is an important requirement, meaning the aim is to get the best im-
age quality there is, but only if all critical requirements are met. Some specific areas
of image quality are more important than overall quality though, in particular: im-
ages should ideally not have any artifacts nor blurred or noisy regions on them. The
quality of super resolution algorithms is usually measured by PSNR and/or SSIM
metrics. These metrics are fast and easy but have the disadvantage that they can give
results which are not corresponding to human perception. For this project human
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perception is the only quality assessor that really matters but since this is a subjective
metric it’s hard to use it to compare different models. For this reason human per-
ception will be used to provide us with a first insight on quality only, but objective
metrics such as PSNR and SSIM will be used to determine which models perform
best. The exact values which determine whether a model is good enough will be
examined during the comparison of the models.

Upscaling factor - The upscaling factor determines how many pixels the algorithm
will add to the input image. One of the implicit constraints is that the input image is
between 25x25 and 1000x1000 pixels. With this in mind if the input image is 100x100
pixels and we have an upscaling factor of x3 the output image will be 300x300 pixels.
Since we want to be able to perform super resolution on any image, as opposed to
having one specific class of images, it will be harder to keep the quality of the output
images high for a large upscaling factor. On the other hand the upscaling factor also
should not be too low, since customers needs possibly will not be fulfilled then. To
find a good balance on this matter the model should be able to perform upscaling up
to a factor 8, but the main focus in terms of quality control will be on the smaller fac-
tors (up to factor 4). Customers should be able to choose their own upscaling factor
as a parameter, preferably a floating point value between 1 and 8 with up to 2 deci-
mals precision. This might pose problems however, which need to be investigated.
If upscaling with this much precision is not possible while using neural networks,
the upscaling factor can also be, though less preferred, an integer between 1 and 8.
These final obstacles restrict this requirement to the important category, since there
is no way of telling if floating point valued upscaling is a realistic target at this stage
of the research.

Speed - The upscaling process should be fast. Usually there are more operations
on an image which have to be executed synchronously and users want their files as
soon as possible. This does not mean the upscaling process should be real-time, but
it also should not take longer than a few seconds on the Google Cloud Platform for
an output image of roughly 2 megapixel. The matter of speed is only important to
the actual interference time of the algorithm, not to the learning part, this may take
as long as needed. To have a fast model is very nice, but it would not be a problem
if upscaling an image would take up to a minute, which is why this requirement is
optional.

Image extension handling - The compression and resizing algorithms of Tinify can
handle .jpeg, .png and .webp, which means the super resolution algorithm
should be able to handle those extensions too. Though this requirement is important
to Tinify, it’s also one that can be accomplished at all times by simply transcoding
the images. Because of this possibility this requirement doesn’t have much priority
and is deemed optional.

Proof of quality - The paper describing the model should provide enough proof of
the quality of the model. Proof can be provided as examples of output images, re-
sults from super resolution contests/challenges or results of quality metrics for cer-
tain image databases. Included in showing proof is also showing what goes wrong,
e.g. artifacts created by the model or specific textures the model can’t handle. Hav-
ing this proof matters very much, since it would be a waste of time if the chosen
model performs a lot worse than expected, therefore this is a critical requirement.
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1.3.2 Non-functional Requirements

The non-functional requirements are defined as those requirements that describe
how a system performs while doing the work described by the functional require-
ments. This mostly entails how the model will fit the needs of the developers and
how it will fit in the current digital infrastructure. All these requirements have been
carefully discussed with the CTO and company supervisor for this thesis: Remco
Koopmans.

Programming interface - One of the strengths of Tinify is that the company offers
relatively simple API’s. The preferable outcome of this project is that the user can
simply add the preferred upscaling factor in the API and receive an upscaled image.
As previously mentioned, this is already possible for downscaling images, but not
for upscaling images yet. This is a critical requirement as it’s the only way Tinify
offers these type of products to their clients.

Digital infrastructure - The model should be able to run on the Google Cloud Plat-
form. All of Tinify’s techniques are cloud-based, meaning this solution should be
able to run in the cloud too and satisfy the constraints given by this environment.
This is another critical requirement since the company won’t change their program-
ming environment for this model.

Cost of ownership - This is hard to measure concretely, but an important aspect to
Tinify. The model should be easy to maintain and be lightweight so it doesn’t cost
much to have it running non-stop. In practice this means that a trained instance of
the model is preferably not larger than 50MB and should fit in the Rust framework
Tinify uses. The developers at Stapes IT do have experience converting Python-
based trained neural networks to Rust so they fit in the framework, so this should not
be a problem. To make the model easy to maintain unit testing should be possible.
This can be done by having some standard images and their desired quality metrics
after upscaling, which we can have automatically tested whenever there’s a change
in the code. Since it’s so hard to measure, this is an optional requirement. The limit
of 50 MB is not set in stone and there should always be a possibility of converting
from any language to Rust.

Scalability - Tinify runs in a containerized elastic cloud environment. This means
the solution should be able to scale horizontally using the Tinify cloud orchestration.
To be able to scale horizontally the model should be stateless, which means we need
to be able to call a trained instance of the model at any given time. For models made
with popular packages like Tensorflow or PyTorch it’s always possible to save an
instance of the trained model, which means this requirement should not pose any
problems. That being said, this is a critical requirement. It would not be practical if
the model needs to be trained or initialized in another way any time it has to provide
new upscaled images.

Replicability - In order to replicate models and be able to adjust them, a few things
are needed. Preferably the source code is online available, but in some cases a de-
tailed description of the model could also suffice. Furthermore the image database(s)
for the training phase should also be publicly available to make sure the results are
equal. Lastly the exact training process should also be described, as this can signif-
icantly influence the performance of the model. Since it’s of critical importance the
model can be reproduced, this is a critical requirement.
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1.4 Structure of the Thesis

The rest of the thesis will be outlined as follows: In chapter 2 the related work will
be discussed by going over various deep learning super resolution models and see
if they satisfy our requirements. After that the model that satisfies most require-
ments or satisfies them in the best way will be chosen as model to improve upon.
Chapter 2 will conclude with the possible improvements that will make the chosen
Real-ESRGAN model suitable for Tinify. Chapter 3 then continues by explaining
how the improvements were made on the Real-ESRGAN model. This will include
a section about the original upscaling factors of Real-ESRGAN, the attempt to add
more upscaling factors, an explanation of how cascading the models works and an
explanation how continuous upscaling factors were achieved. Chapter 4 will handle
the results of the experiments that were introduced in chapter 3 to see if the proposed
improvements work and improve the model. This chapter will start by stating some
general information about the way inference is performed and on what images this
is done. Thereafter the results of experiments performed on the cascading model
will be shown and finally the results of the experiments performed testing the con-
tinuous upscaling factors will be shown. In chapter 5 the performance of the final
solution will be discussed using the original requirements as mentioned in section
1.3. Finally the research question will be answered and the possibilities for future
work will be discussed.
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Chapter 2

Related work

2.1 The models

Since there are already lots of super resolution models available created by other
researchers, the question arises why Tinify has the need for a new one. Most impor-
tantly, Tinify has a very specific set of requirements that are likely not yet met by the
models that are already out there. Each already existing model probably has its own
pro’s and con’s in regards to these requirements. For comparing these pro’s and
con’s some of the requirements mentioned in section 1.3 can be disregarded. The
image extension handling requirement and the scalability requirement can easily be
met for any model, which is why they won’t play a role in the comparison of models.
Furthermore it’s not likely any model already has the programming interface Tinify
uses, which is why this won’t be taken into account as well.

In the following sections a few models have been picked to compare. The models
will appear in chronological order and have been picked based on a few criteria:

• All models have to be deep learning models, as explained in section 1.3.

• The model is currently a state of the art model, or the model is a building block
for a current model.

• The model is present in recent benchmarks.

• At first impression, the model seems to fulfill at least some of the requirements
mentioned in section 1.3. E.g. a model that focuses solely on faces won’t be
picked since it doesn’t fit the domain constraint.

For each of the models there will be a brief introduction explaining how the model
works and what makes it special. After that the pro’s and con’s will be described
to be able to compare it with the other models and conclude which of the models is
most suitable for Tinify to adjust.

2.1.1 SRCNN

SRCNN was, as mentioned in chapter 1, the first deep learning approach to tackle
the SR challenge. To perform super resolution, Dong et al. [4] heavily based the
modeling of their CNN on traditional sparse-coding-based SR methods [32] that
were state of the art at that time. In figure 2.1 a comparison between SRCNN and
a sparse-coding-based method can be seen. Being based on sparse-coding-based
methods, the CNN was a rather simple model which performed three steps in order
to get from a low resolution to a high resolution image. Before any of these three
steps were taken the low resolution image was first upscaled by a bicubic algorithm.
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Since this is a preprocessing step it won’t change during the learning phase of the
CNN and thus is not included in the three steps. The first of the three steps is patch
extraction and representation. This is done by a convolutional layer which maps
patches of the image to a vector with the size of the feature maps. Secondly they
perform non-linear mapping, which uses a convolutional layer to map each of the
previously found feature map vectors to vectors which represent the high resolution
patches of the image. Finally they reconstruct the image by taking these high reso-
lution patches and averaging them, since the patches will overlap. For the learning
phase of the CNN the Mean Squared Error (MSE) was used as a loss function, which
means the model is optimized for PSNR scores.

FIGURE 2.1: A comparison of the SRCNN model[4] with a sparce-
coding-based method (SC) and the standard Bicubic algorithm

Domain - The paper states they used the same data sets for training and testing as
Timofte et al. [24]. This is however a bit unclear, as that paper mentions all images
are available on their project page1, though the images available there are only in
grayscale. Besides that Dong et al. mention they have a training set of 91 images
next to their test sets Set5 [2] and Set14 [33], but the only other set on the project
page of Timofte et al. is the B100-set which has 100 images. Nonetheless the images
in the test sets are very diverse, which supports the idea that this algorithm can
perform super resolution on images of different domains.

Quality - The paper only mentions PSNR as a quality measure, which doesn’t pro-
vide us with a lot of information in terms of quality since we are looking for good
human perception scores. SRCNN averaged the best PSNR scores at that time for
upscaling factors of 2, 3 and 4 on Set5 (36.34, 32.39 and 30.09 respectively) and an
upscaling factor of 3 on Set14 (29.00). However, judging from the images in the pa-
per, the resolution isn’t high enough to satisfy the needs of this project, which makes
sense since this is the first super resolution deep learning model.

Upscaling factor - In the paper it is mentioned that SRCNN can handle upscaling
factors of 2, 3 and 4. For each factor a separate network is trained with the same
architecture but different variables.

Speed - In the paper the inference time per image is mentioned in a large table. All
inference times are well below one second as measured on their machine (Intel CPU
3.10 GHz and 16 GB memory), which satisfies this requirement.

Cost of ownership - The implementation of SRCNN is available on their project
page2, which shows that the full Matlab code is a little over 7MB. Though this would

1https://people.ee.ethz.ch/~timofter/ACCV2014_ID820_SUPPLEMENTARY/index.html
2http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

https://people.ee.ethz.ch/~timofter/ACCV2014_ID820_SUPPLEMENTARY/index.html
http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
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need to be transcoded to Rust or Python, the network architecture is so small that it
would definitely fulfill this requirement.

Replicability - In terms of replicability there is only one thing missing: the original
training set of 91 images. However, later in the paper they test whether using a
larger data set3 improves the performance and this set is available upon registering.
Besides this the code is available as mentioned and could also be reconstructed from
the paper.

Proof of quality - In the paper sufficient examples are shown of the performance
of SRCNN, which show the model was performing well at that time, but is now no
longer relevant in terms of quality.

2.1.2 SRGAN

FIGURE 2.2: A comparison between an image
upscaled 4 times by SRGAN[12] and the orig-

inal image

Another breakthrough in the usage of
deep learning techniques for SISR was
the use of GAN’s. As mentioned in
chapter 1 the first appearance of GAN’s
in the world of super resolution was
SRGAN. A GAN typically consists of
two parts: a generator network and a
discriminator network. The discrimina-
tor tries to discriminate between super
resolution (generated) images and high
resolution (non-generated) images. The
goal of the generator is to generate im-
ages that fool the discriminator, making
it believe they are high resolution images. Being the first super resolution GAN,
Ledig et al. [12] created both architectures based on different GAN models from
other image-related domains. Most importantly, the generator network exists of a
number of residual blocks with a specific layout as proposed by Gross and Wilber
[6]. This creates a very deep network, capable of producing much detail. This shows
well in figure 2.2 where the texture of the baboon fur is replicated very well, the
difference with the original image is almost only visible when zooming in. The dis-
criminator network is a pretty straightforward feed-forward CNN model, with a
Sigmoid function as its final layer to output a value between 0 (SR-image) and 1
(HR-image). A big change Ledig et al. made by which they diverted from previous
work was no longer using MSE as a loss function, since it favours high PSNR scores
and not necessarily high perceptual scores. Trying to get higher perceptual scores,
they constructed a loss function which consists of two parts: content loss and adver-
sarial loss. The content loss, which they also call VGG-loss since it’s based on the
VGG network [22], is defined as the euclidean distance between the image feature
representations of the reconstructed image and the reference image. The adversarial
loss is created to favour images that are more natural looking, based on the proba-
bilities the discriminator returned during training.

Domain - For training the model, 350 thousand images were randomly picked from
the ImageNet dataset [19], which ensures the model will work for images from any

3ImageNet ILSVRC 2013: https://image-net.org/challenges/LSVRC/2013/ [19]

https://image-net.org/challenges/LSVRC/2013/
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domain. This is also confirmed by using the test-sets which were also used by SR-
CNN (Set5, Set14 and B100). These sets are all very diverse yet SRGAN performed
well on them.

Quality - As mentioned Ledig et al. didn’t want to focus on PSNR scores solely. This
is why they compared their model based on MOS: mean of opinion score. They let
26 people rate images from various models including their own on a scale from 1
(bad quality) to 5 (excellent quality). With MOS-scores of 3.58, 3.72 and 3.56 on Set5,
Set14 and B100 respectively the SRGAN model scored significantly higher than any
other model in the comparison. This while scoring only average or slightly below
average on PSNR (29.40, 26.02, 25.15) and SSIM (0.8472, 0.7397, 0.6688) metrics. This
shows that for the requirement of quality we shouldn’t focus too much on PSNR
and SSIM. It also shows the GAN-model is, in terms of quality, a suitable model for
Tinify.

Upscaling factor - SRGAN only works with an upscaling factor of x4. This means
some work would need to be done in order to make it suitable for Tinify.

Speed - Although nothing about inference time is mentioned, Ledig et al. do men-
tion in their ’Future work’ section that the model could perform at real-time if the
network architecture would be made a bit more shallow. This would however re-
duce the qualitative performance a little. This gives the impression that the inference
time of the model is within our set limits.

Cost of ownership - Though no official source code of SRGAN is published online,
there are some reconstructed models available online4,5 which stay well under the
50 MB limit.

Replicability - The previously mentioned reconstructed models show building the
actual model should not pose any problems. With all data sets publicly available
it should be possible to reproduce the images shown in the paper. The only small
remark is the exact training set can’t be used again, as it were 350 thousand images
randomly sampled from the ImageNet data set.

Proof of quality - Some examples are shown in the paper and in particular the MOS
results show the quality of the images is good. There is however mention of bad
quality when upscaling text in images or structured scenes. These images are not
shown, nor are other images on which possible artifacts are present.

2.1.3 EDSR/MDSR

EDSR (Enhanced Deep Super Resolution Network) [13] is a prize-winning modi-
fication on SRResNet [12]. SRResNet is a deep residual network proposed in the
same article as SRGAN, heavily based on the deep residual network by He et al.
[7]. Since SRResNet didn’t modify the original residual network by He et al. much,
Lim et al. [13] decided to take a closer look at this network and make some changes
which make it more suitable for super resolution. By doing so the EDSR architecture
won 1st prize in the NTIRE 2017 super resolution challenge [25]. The most impor-
tant difference between EDSR and SRResNet is that Lim et al. removed the batch
normalization layers. This doesn’t only improve performance, but also saves ap-
proximately 40% of memory usage during training. With this change and by using
residual scaling [23] with factor 0.1, a deeper network could be created for EDSR

4https://github.com/eriklindernoren/Keras-GAN/tree/master/srgan
5https://github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/srgan

https://github.com/eriklindernoren/Keras-GAN/tree/master/srgan
https://github.com/eriklindernoren/PyTorch-GAN/tree/master/implementations/srgan
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FIGURE 2.3: A comparison between EDSR[13], MDSR and SRCNN
for x4 upscaling

which performs much better than SRResNet. Besides the EDSR model Lim et al.
also introduced MDSR (Multi-scale Deep Super Resolution Network) in the paper.
This is a single network which can upscale images for x2, x3 and x4 upscaling fac-
tors simultaneously. The EDSR network has 1.5 million parameters for each of these
upscaling factors, which counts up to 4.5 million in total, but the MDSR network
only has 3.2 million parameters making it a lot smaller than all EDSR networks com-
bined. MDSR is capable of performing almost equal to EDSR, scoring only a few
hundredths worse on both PSNR and SSIM metrics for the DIV2K validation set.
A comparison between EDSR, MDSR and SRCNN can be seen in figure 2.3, which
shows both models are a big improvement on SRCNN and are almost indistinguish-
able from each other.

Domain - For training the EDSR network, Lim et al. used the DIV2K data set [1].
This is a very diverse data set which ensures the model should be able to perform
super resolution on any given image. The provided images in the paper confirm
this.

Quality - Winning the NTIRE 2017 super resolution challenge, this model proved
to be of high quality. Compared to various other models, EDSR scored the highest
PSNR and SSIM scores for upscaling factors of x2, x3 and x4 on various test sets
(Set5, Set14, B100, Urban100 [8] and the validation set of DIV2K).

Upscaling factor - There are three different versions of the EDSR model, constructed
and trained for x2, x3 and x4 upscaling factors. More interesting is MDSR which can
perform these upscaling factors simultaneously, thus is the first one to somewhat
satisfy the multiple upscale factor requirement.

Speed - Though the training speed (8 and 4 days for EDSR and MDSR respectively)
is mentioned in the paper, nothing is said about the inference time.
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Cost of ownership - The code for EDSR and MDSR can be found on Github6 as men-
tioned in the paper. The code however is written in Lua, which would pose some
problems in terms of transcoding to Python or Rust. Upon further examination, the
authors of the paper also published their code in Python on Github7, which removes
that problem. That page also provides us with the full models, which shows the
MDSR model is 30MB, while all three EDSR models are around 160MB. This means
MDSR would fulfill the requirement, but interestingly enough even a single EDSR
model would not.

Replicability - Since the code is available on Github, the data sets are all publicly
available and the training process is well described in the paper, it should be no
problem to replicate the results of this paper.

Proof of quality - Winning the NTIRE 2017 super resolution challenge is a big proof
of quality, besides that also various examples are shown in the paper. Without specif-
ically mentioning them, some small errors are also shown in the example images
which show there’s room for improvement.

2.1.4 ESRGAN

ESRGAN [28] is the price winning improvement on the pioneer SRGAN model,
hence the name Enhanced-SRGAN. The enhancement is made by improving the SR-
GAN model on three different features, while focusing on human perception scores
rather than PSNR scores. These three features are the network architecture, the ad-
versarial loss and the perceptual loss. They improved upon the network architecture
by introducing the Residual-in-Residual Dense Block (RRDB) without batch nor-
malization as the basic network building unit. The RRDB is basically a multi-level
residual network using dense connections which makes the network deeper and
more complex, enabling the possibility of better performances. Besides the intro-
duction of the RRDB they also removed the Batch Normalization layers, which were
responsible for creating some artifacts. After these improvements on the network
architecture, they also improved the adversarial loss function. Instead of having the
discriminator determining whether an image is real or fake by outputting a score be-
tween 0 (fake) and 1 (real), the new relativistic discriminator outputs a score between
0 and 1 where 0 means the image is more fake than the real data and 1 means the
image is more real than the fake data. This minor change ensures more detailed tex-
tures and sharper edges in the generated images. Finally the use of perceptual loss
was changed by constraining on features before activation rather than after activa-
tion. By changing this the loss function can supervise more activated neurons which
leads to a better performance and on top of that this fixes some brightness issues. In
figure 2.4 a comparison between ESRGAN and the already discussed models can be
seen, which shows ESRGAN performs much better on the detailed textures.

Domain - For training the model, the creators of ESRGAN used three large high res-
olution data sets (DIV2K, Flickr2K8 and OutdoorSceneTraining [31]) which are all
openly available. The images in these data sets are very diverse, which leads to the
model being able to enhance very diverse images, thus fulfilling our first require-
ment.

6https://github.com/limbee/NTIRE2017
7https://github.com/sanghyun-son/EDSR-PyTorch
8https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar

https://github.com/limbee/NTIRE2017
https://github.com/sanghyun-son/EDSR-PyTorch
https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar
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FIGURE 2.4: A comparison between ESRGAN[28] and various other
models for x4 upscaling

Quality - This model won the PIRM-SR challenge [3] based on a perception index
metric (PI), which is a combination of Ma’s score [15] and NIQE [16]. All competing
models were grouped based on their RMSE score, which is practically the same as
the PSNR score. After grouping the models, the model with the lowest PI score on
the PIRM validation set9 would win the challenge. With a PI score of 2.040 for an
RMSE score of 15.15 they won the challenge.

Upscaling factor - All examples in the paper use an upscaling factor of 4, which
leaves us with some questions for other factors. In the paper there is no mention of
using different upscaling factors, so the model probably would need some work to
be able to handle different integer factors and even more for handling floating point
factors.

Speed - The speed of both the training of the model and the inference is not men-
tioned in the paper.

Cost of ownership - Upon examining the ESRGAN github page10, it was found that
the stripped down model is 33,4 MB. This is well within the limits of what Tinify
prefers, so it shouldn’t cause any problems.

Replicability - With both the code and all the data sets the model was trained on
available online, we should be able to reproduce the exact values ESRGAN gets in
the paper. The only thing missing is the validation set on which they won the PIRM
challenge, which means we can’t reproduce the scores they show for the challenge.

Proof of quality - There are some examples of images in the paper which show
the quality of the model. Besides that winning the PIRM challenge shows the qual-
ity they claim the model has is valid. Missing in the paper are examples of mis-
takes/artifacts the model creates and general points for improvement.

2.1.5 Impressionism

The developers of the Impressionism model [10] found that the creation of the low
resolution images using Bicubic kernels was not realistic and was responsible for
blur and noise in the constructed high resolution image. This is why Ji et al. [10]

9Should be available on https://pirm.github.io/, but unfortunately their link doesn’t work any-
more

10https://github.com/xinntao/ESRGAN

https://pirm.github.io/
https://github.com/xinntao/ESRGAN
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focused on developing a model which is better suited for constructing the low res-
olution images. Their Real-SR (Realistic Degradation for Super-Resolution) model
creates a low resolution image from a high resolution image in three steps. The first
step is to downsample the image using a bicubic kernel, which is where other mod-
els both begin and end their downsampling. In addition to that the Real-SR model
has a pool of degradation kernels from which they randomly take one and apply it
on the downsampled image. Finally they inject noise in the downsampled image,
because downsampling using the bicubic kernel removed all the high-frequency in-
formation. By collecting noise patches from the original high resolution image and
applying them to the downsampled image the noise is both realistic and diverse
enough for training purposes. In figure 2.5 it’s clearly visible this approach to noise
helps the model detect and remove noise when upscaling an image. Ji et al. used
the ESRGAN model for performing their actual super resolution and discovered that
the VGG-style discriminator didn’t work well with these new low resolution images.
They decided to use a patch-level-discriminator [36] in order to focus more on local
features instead of global ones. Using this new way of generating a training set and
a slightly altered ESRGAN model, Impressionism won the NTIRE 2020 challenge on
real world super resolution [14].

FIGURE 2.5: A comparison of x4 upscaling of the Impressionism
model[10] with other models which shows Impressionism is very ca-

pable in removing noise.

Domain - Like most models, Impressionism uses the DIV2K and Flikr2k data sets to
train. These data sets provide enough diversity to make sure the model can perform
super resolution in any given domain.

Quality - Impressionism was compared on some evaluation metrics for the NTIRE
challenge. In addition to standard PSNR and SSIM metrics, LPIPS [34] was also
used to compare the models. LPIPS compares image features between the generated
and the ground truth image, which seems to correlate more with human perception.
Though Impressionism wasn’t the best model based on the PSNR metric (24.67, 16th
place) or the SSIM metric (0.683, 13th place), they did score the best on the LPIPS
metric (0.232) and on human perception which was evaluated as a MOS score (2.195).
Note that the MOS scale here is inverted as opposed to in the SRGAN paper: the
lower the score, the better. These metrics and the visuals provided in the paper
show that Impressionism is a high quality model.

Upscaling factor - The upscaling factor is never mentioned in the paper, nor if the
model can handle more than 1 factor. The images in the paper seem to be upscaled
with a factor 4, and given that other models also mainly use this upscaling factor it’s
safe to assume that’s the only factor the model can handle.

Speed - The paper has no mention of inference speed nor training time.
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Cost of ownership - Even though some code for the model can be found on their
Github page11 there is no trained model available there. But since it’s a slight alter-
ation on the ESRGAN model there’s no reason to believe this model is too large to
handle.

Replicability - Considering all the code is available on the Github page and all
databases are available too, it should be possible to replicate this research by Ji et
al. Besides this they also included pseudo-code for the Real-SR algorithm in their
paper and have the code for that algorithm available online too12, which should
make it even easier.

Proof of quality - In addition to the training data sets Ji et al. also used the DPED [9]
data set which consists of images taken by an Iphone3 camera. Since these images
are are low quality and a real-world example, they are the perfect for comparisons
with other models. In these comparisons it can be seen that Impressionism deals
much better with real life images than other models. Besides these visuals, winning
the NTIRE challenge is of course valid proof of the model having great quality.

2.1.6 Real-ESRGAN

The creators of the ESRGAN recently created an improvement upon their own model,
called Real-ESRGAN [29]. The improvement focuses mainly on creating the low res-
olution image in a different way, similar to the developers of Impressionism. Using
these more advanced low resolution images, they also found out the discriminator
network is no longer suitable, as did Ji et al. Wang et al. [29] decided to change
the VGG-style discriminator not to a patch-level-discriminator but to a U-Net de-
sign [20]. This discriminator focuses more on detailed per-pixel feedback, instead
of patches of pixels, which it provides to the generator. These changes to the train-
ing images and the discriminator network increase the training instability, which is
why Wang et al. also implemented spectral normalization regularization [17] to sta-
bilize the training dynamics. In the paper, Wang et al. show some applications of
Real-ESRGAN on real life images, such as in figure 2.6 which show some promising
results and great handling of different textures.

Domain - As ESRGAN, this model is trained on the DIV2K, Flickr2K and Out-
doorSceneTraining data sets. Though these diverse data sets already make sure the
model is suitable for any image domain, the new way of fabricating the low resolu-
tion images should make the model even more suitable for real life low resolution
images.

Quality - Wang et al. claim there are no existing metrics that reflect actual human
perceptual preferences on this level of detail, which is why they don’t mention any
metrics at all. Instead of that they show various examples of the Real-ESRGAN out-
put and compare those to current state of the art models. Real-ESRGAN performs
really well in the removal of complicated artifacts present in the low resolution im-
ages, but unfortunately GAN training also introduces some new artifacts on a few
images. In addition to that the model may amplify complicated artifacts in the test
data that are not present in the generated low resolution training data.

Upscaling factor - In addition to the x4 upscaling that ESRGAN could perform,
Wang et al. also introduced x1 upscaling (sharpening an image) and x2 upscaling.

11https://github.com/jixiaozhong/RealSR
12https://github.com/Tencent/Real-SR

https://github.com/jixiaozhong/RealSR
https://github.com/Tencent/Real-SR
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FIGURE 2.6: A comparison of the Real-ESRGAN model[29] with
other models not mentioned in this paper which show its applica-
tion to both a cartoon and a real world image. Note that Real-SR is

not the same model as mentioned in section 2.1.5

There is however no mention of how this is done, whether they added different
models or the Real-ESRGAN model has some parameters that can be changed.

Speed - The paper has no mention of either inference speed or training duration.

Cost of ownership - As can be found on their Github page13, with 33,4 MB the Real-
ESRGAN stripped down model is exactly as big as the ESRGAN stripped down
model, which is within the limits set by Tinify.

Replicability - As mentioned the code is fully available on Github, the data sets are
available online as well. This way it should be completely possible to reproduce the
results of Wang et al.

Proof of quality - In contrast to the ESRGAN paper, not only images with good
results are shown, but also images in which the limitations of Real-ESRGAN are
shown. This provides a much better estimation of were the challenges of this model
lie and how well it will perform.

2.2 Choosing the model

The six previously discussed models all have its pro’s and con’s regarding the use
for Tinify. Having discussed the pro’s and con’s for each requirement mentioned
in section 1.3 per model, we can summarize them. This summary can be found in
table 2.1. Each column of this table will be briefly explained and discussed, followed
by a conclusion: the picking of the model to improve. Finally the possible future
improvements will be discussed.

2.2.1 Comparing the models

The domain column shows little variance for the different models. As mentioned at
the start of this chapter the models have been picked with the requirements in mind,
which means all models can handle multiple domains. The slight difference between

13https://github.com/xinntao/Real-ESRGAN

https://github.com/xinntao/Real-ESRGAN
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Domain Quality
Upscaling

Factor
Speed

Cost of
Ownership

Replicability
Proof of
Quality

SRCNN + -- - ++ ++ ++ +
SRGAN + +/- - + ++ ++ +
MDSR + +/- +/- ? ++ ++ +
ESRGAN + + - ? ++ ++ +
Impressionism ++ ++ - ? ++ ++ +
Real-ESRGAN ++ ++ - ? ++ ++ ++

TABLE 2.1: A comparison of all the models based on the require-
ments mentioned in section 1.3. All requirements are judged on a
scale which ranges from ’does not fulfill the requirement at all’ to
’perfectly fulfills the requirement’ (--, -, +/-, +, ++). All results are

based on the information mentioned earlier in this chapter.

the two models which scored maximum points, Impressionism and Real-ESRGAN,
and the rest of the models is that Impressionism and Real-ESRGAN can handle real
life images much better due to their innovative way of creating the low resolution
images in the training set.

For the quality column it’s clear to see that the quality of super resolution images
improved a lot over time. This seems to be the main goal of the super resolution
field: getting the best quality there is for upscaled images. With that goal in mind,
it is no surprise the two most recent models scored highest in this area. Important
note for this column is that the image quality was estimated by human perception
based on the images shown in the papers. This was done since quality metrics have
shown to sometimes disagree with evaluation based on human perception, while a
good score based on human perception is the main goal for this project as mentioned
in section 1.3.

The upscaling factor requirement seems to be the hardest requirement to fulfill.
None of the models come close to the original requirement, which was being able
to upscale an image for any given floating point value in the range of 1 to 8. Most
models can perform super resolution for only one upscaling factor and need a dif-
ferently trained model for another upscaling factor. The only exception to this is
MDSR, which is capable of upscaling an image using three different upscaling fac-
tors at the same time. This is a slight improvement over the other models, but still
doesn’t come close to our original requirement. Since non of the models can really
fulfill this requirement, the challenge of making upscaling possible for floating point
values will be one of the improvements that will be made upon the picked model,
as will be discussed in section 2.3.

The column for speed has a lot of question marks, as none of the more recent papers
mention inference time anywhere. This should not pose a problem though, as it’s
known from experience that inference time for CNN’s and GAN’s is usually within
a few seconds which fulfills the requirement mentioned in section 1.3.

The cost of ownership for all models seems to be equal, though this requirement is a
little hard to estimate. It is certain that all trained models stay within the 50MB size
requirement, but how easy or hard it is to maintain the models is not something that
can be estimated up front.

In terms of replicability all models score full marks. For each model the complete
code has is available online and descriptions of the training phase are available in
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the paper. Besides this all data sets used are available as well, which should make
replicating the models possible.

At last the proof of quality requirement. There is not much difference between the
models here. For each model at least some examples of output images were shown in
their paper. Most of the discussed models also participated in super resolution chal-
lenges, which perform more unbiased checks of quality. Finally there’s one model
that stands out in the proof of quality column: Real-ESRGAN. The reason this model
scores full marks is because the authors also extensively discuss the flaws of the
model. This can help in assessing the limits of what the model is capable of.

2.2.2 Conclusion

After this comparison it can be concluded that three models stand out in one way or
another and might be interesting for the purpose of this thesis.

The first model that stands out is the MDSR model. This model is the only model that
can handle multiple upscaling factors at once, albeit those factors are only integer
values. Since the quality of images of this model is significantly lower than the
quality of the newer models, this model is not a real contender however. The small
advantage this model has by being able to handle multiple upscaling factors is not
sufficient, especially since different solutions for the upscaling factor problem seem
to be needed anyway.

The other two models are the newest two: Impressionism and Real-ESRGAN. In
table 2.1 there is not much difference between the two, except for a slightly better
proof of quality for Real-ESRGAN. The point these models excel in is quality, and
in terms of quality it’s hard to estimate the difference between the two. This can
only be estimated by observation of the example images, since the Real-ESRGAN
model does not have any metrics mentioned in its paper. Upon observation of the
images it seems Real-ESRGAN might be able to handle different textures better, but
it’s hard to compare as both papers use different example images. Despite this dif-
ference being hard to assess, a choice has to be made. With the possible advantage
in terms of quality for Real-ESRGAN in mind and the fact that the authors more
extensively discussed the flaws of the model, Real-ESRGAN will be the model used
for improvement.

2.3 Possible improvements

Now that it is clear the Real-ESRGAN model will be the model to improve, the pos-
sible improvements can be discussed. Besides the already mentioned problem of the
upscaling factor, which will be discussed in the following subsection, there are some
other areas in which the model can improve. In the following sections these other
improvements are shortly discussed, where some of the improvements will be in the
scope of this thesis and some will be mentioned for possible future research.

2.3.1 Upscaling factor

The first and most obvious improvement that has to be implemented to make sure
the model fulfills the requirements mention in section 1.3 is the upscaling factor. To
fulfill the initial requirement, the model has to be able to upscale an image to any
floating point value between 1 and 8. This requirement can be achieved in various
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ways, where it’s important to keep in mind that the improvement doesn’t necessarily
have to be in the model itself. Since the goal of this thesis is to have the model work
in a way that is good for Tinify, some adjustments to the output image can also be
made outside of the model but before the image gets returned to the customer. A
way this can be realized is having multiple instances of the trained model online,
each for a different integer factor between 1 and 8. When the customer asks for
an upscaling factor of 2.7, the models with factor 2 and 3 output an image, and an
interpolation of some sort is made between these two images resulting in the image
with an upscaling factor of 2.7. Note that this can also be combined with an MDSR-
like solution. If a way is found to have the Real-ESRGAN model output multiple
images at once, each with a different upscaling factor, only one trained instance of
the model has to be kept online.

FIGURE 2.7: Examples of limitations of the Real-ESRGAN model[29].
1. Twisted lines 2. Artifacts caused by GAN training 3. Unknown

and out-of-distribution degradations

2.3.2 Quality and Domain

Another point that can be improved is the quality of the output images. As men-
tioned before, Real-ESRGAN still has some limitations. These limitations are fairly
specific and pose no big problem for the intended use of Tinify. Three different
examples of these limitations can be seen in figure 2.7. As improving upon these
limitations directly is a complicated task and seems to be no major improvement to
what Tinify wants to achieve, it’s deemed out of scope for this project.

An important question to ask here is: What is a major improvement in quality for
Tinify? The answer to that is unknown, since there is no monitoring of what types
of images users upload and only a vague idea of images that users want to upscale.
For improving the image quality it seems to be crucial to have better estimations of
the image domain.
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A possible solution could be user feedback training. This means that once the model
is online, the users could give feedback on their upscaled image. This can be done
by something simple as a Likert scale. With the received feedback it would be possi-
ble to get a better idea of the image domain that needs more training. The downside
to this is that Tinify wants to use the upscaling model in an API which means the
upscaling should be done automatically and possibly in batches. To let the user pro-
vide feedback for each individual image would require a whole new user interface
and possibly a lot of effort from the user, which is why this idea is undesirable for
Tinify.

An idea that is closely related to user feedback training is continuous training. This
could be done either supervised or unsupervised. In the supervised variant it would
also rely on users (or developers) giving feedback about output images, which was
already deemed undesirable. Unsupervised learning for super resolution would
mean that the model itself would estimate the quality of the output image. An option
could be to use the LPIPS metric which was used in the Impressionism paper, that
metric seemed to correlate more with human perception and thus is favourable for
the causes of Tinify. Unsupervised learning is a big challenge however and is a high
risk technique for a product that has to deliver good results to clients every day.
Therefore it is also deemed out of scope for this thesis.

The final idea for improving image quality is to estimate the quality per domain.
This would also involve using a quality metric such as LPIPS to estimate the quality
of the images. After estimating the quality the images would still need to be cat-
egorized to certain domains and as mentioned earlier it’s undesirable to have this
categorization be done by either the developers or the users. Categorizing images
to certain domains could also be done automatically, using multidimensional pro-
jection techniques such as LAMP [11]. An idea would be to have a technique such
as LAMP automatically categorize all the input images obtained from users and see
what domains are most frequently used. If one or two domains stand out we could
use the multidimensional projection technique on the training data set as well, find
the same domain of images in the training data, and perform training more focused
on that domain. This idea seems to be in scope of the thesis project and will be
further examined upon.
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Chapter 3

Improving Real-ESRGAN

In this chapter some of the possible improvements named in section 2.3 will be im-
plemented to the Real-ESRGAN model and discussed. All mentioned improvements
were implemented in a cloud-based test environment, using the Real-ESRGAN frame-
work as provided on Github1. Although multiple areas were discussed as possible
areas of improvement, this chapter will focus solely on the upscaling factor. This
decision was taken due to time constraints and difficulties with the provided frame-
work.

In section 3.1 the process of creating the original upscaling factors as mentioned in
the Real-ESRGAN paper will be discussed. Following that in section 3.2 a failed
attempt at adding more integer upscaling factors will be analyzed. In section 3.3
a solution to this failed attempt will be suggested with the proposal of cascading
models. Finally in section 3.4 the solution for a continuous upscaling factor will be
explained.

3.1 Real-ESRGAN original upscaling factors

FIGURE 3.1: The first layer of the
Real-ESRGAN model, showing a vi-
sualisation of the Pixel Unshuffle op-

eration

In section 2.1.6 it was mentioned that there was
no information on how Wang et al. [29] achieved
the multiple upscaling factors. Upon closer in-
vestigation this has to be redacted. The pa-
per mentions very briefly they inverted the pix-
elShuffle operation as proposed by Shi et al [21].
The original pixelShuffle operation is able to
create a high resolution image out of a multi-
layered image by shuffling pixels from those
multiple layers into one image. Wang et al. de-
cided to use the inverted version of this oper-
ation, pixel-unshuffle, on input images that are
going to be upscaled with a x1 or x2 factor. This
way they shrink the image to half (for factor 2)
or a quarter (for factor 1) of the input size, so the
x4 model will upscale it to the desired scale. This operation is pictured in figure 3.1.
This basically means the x2 and x1 model architecture only differ very slightly from
the x4 model architecture, just in the first layers. Of course there will also be differ-
ences in the weights of the models, but it’s interesting to know the basic architecture
is similar for all three.

1https://github.com/xinntao/Real-ESRGAN

https://github.com/xinntao/Real-ESRGAN
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3.2 Adding more integer upscaling factors

One of the requirements mentioned in section 1.3 was to have upscaling factors
available for each floating point value between 1 and 8. A logical first step is to
add all integer points between 1 and 8. Once we have that we can either choose tho
create more models depending on how well it went, or find some other smart way
to be able to upscale for any given floating point number between 1 and 8.

A slight head start was given to us by Wang et al., as they made the x2 and x4
model and their corresponding Discriminator models available in the ’Model Zoo’2.
Training and fine-tuning those models can be done easily using the framework they
provided us with. In the detailed YAML configuration files which can be found in
the project, there are several options to alter training in any way we would like. The
elaborate way this project is set up is both a blessing and a curse for our own project.
The Real-ESRGAN repository also makes a lot of use of the BasicSR [27] repository
which was also mainly constructed by Xintao Wang. Due to the strict framework
and the complicatedness of the BasicSR repository it was deemed too difficult to
add more upscaling factors using the framework Wang et al. provided us with. On
the other hand creating a new instance of Real-ESRGAN from scratch would be out
of scope for this project due to the limited amount of time, which made it necessary
to think about other options and possibilities.

3.3 Cascading models

One solution to create a model with another factor was to take the two models that
were already given to us (factor x2 and factor x4) and use them in a cascading way to
create a x8 model. What that means is an input image is taken, upscaled by a certain
amount and subsequently the output image is upscaled again (and possibly again)
to reach a factor 8 output image. There are three ways to do this:

• Use the x2 model three times in a row

• Use the x2 model first and then the x4 model

• Use the x4 model first and then the x2 model

These three takes at a cascading model were thoroughly investigated to find the best
performing one, detailed results for those experiments can be found in section 4.2.
Finally it was found the cascading model that used the x4 model first and the x2
model second yielded the best results.

3.4 Towards continuous upscaling factors

One of the most important requirements mentioned in section 1.3 was to have a
continuous upscaling factor. This means the client should be able to upscale an
image for any floating point factor between 1 and 8. Since we have three working
models (x2, x4, x8) the image interpolation idea mentioned in section 2.3.1 can be
implemented.

How this will work is that two images Is and Il get generated from the original
input image, where Is is the smaller image and Il the bigger one. Since we have

2https://github.com/xinntao/Real-ESRGAN/blob/master/docs/model_zoo.md

https://github.com/xinntao/Real-ESRGAN/blob/master/docs/model_zoo.md
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three working deep learning models, different models will be used depending on
the upscaling factor. Evidently for the exact factors of 2, 4 and 8, the corresponding
models will directly be used without any interpolation. Factors within the interval
[1, 2] are an exception that will be discussed later in this subsection. For factors in
the interval [2, 4], Is will be the original image upscaled using the x2 deep learning
model and Il will be the original image upscaled using the x4 deep learning model.
Similarly for factors in the interval [4, 8], Is is the image upscaled by a factor 4 and Il
is the image upscaled by a factor 8. Then these two images get either up- or down-
scaled to the desired dimensions. This can be done by the following formula:

fn = fo/ fu

Where fn is the new upscaling factor which is used to scale to the correct output,
fo is the original upscaling factor as requested by the client and fu is the upscaling
factor already used (2, 4 or 8). fn is calculated for both Is and Il individually, since
fu will be different for both images. The up- or down-scaling is done using Lanc-
zos4 interpolation, which provides some of the best image quality for a simple filter
based interpolation technique [18]. Now we have found two images Is′ and Il′ which
respectively are the up- and down-scaled versions of Is and Il using their uniquely
calculated factor fn. What is left is blending those two images. The blending of the
images gets done in a linear way, meaning the following formula is used for blend-
ing.

I′ = α ∗ Is′ + β ∗ Il′

Where I′ is the output image, Is′ is the image generated by the smaller model and
upscaled to factor fo, and Il′ is the image generated by the larger model and down-
scaled to factor fo. α and β can be defined as follows:

α = 1 − ( fo − fus)/( ful − fus)

β = 1 − α

Where fo still is the original upscaling factor, fus the upscaling factor of the small
deep learning model and ful the upscaling factor of the large deep learning model.
This way the closer a model is to the actual requested upscaling factor, the more
influence it will have on the image.

With these formulas in mind there is one small problem that needs some extra atten-
tion: what happens with upscaling factors in the interval [1, 2]? As we don’t have the
original x1 model that is mention in the Real-ESRGAN paper, there are two options:

• Use the original input image as factor x1 and use Lanczos4 interpolation to
upscale it to the desired factor to get Is′ . Thereafter use the Real-ESRGAN
model to upscale the input image to a factor 2 and use Lanczos4 to downscale it
to the desired factor in order to get Il′ . Subsequently blend these two images to
get I′. In this case we would use all formulas as mentioned before but replace Is
with the input image instead of an image generated by a deep learning model
and fus would simply be 1.

• Only use the x2 image and use Lanczos4 interpolation as output. This would
mean we only get an Il which would be the input image upscaled by a factor
2 by the deep learning model. This image would then get downscaled using
Lanczos4 interpolation and the calculated factor fn to Il′ and that would be the
output image.
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Both options will briefly be tested and reviewed in section 4.3.
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Chapter 4

Results

In this chapter the results of the experiments as mentioned in 3 will be shown and
explained. The overview will start off with section 4.1 which states some general
information on the way inference takes place and what kind of image data set was
used for testing. Following that, the results of the experiments on cascading models
will be shown in section 4.2. This includes the choosing of the best way to cascade
the models by testing the different variations on football logo’s first and on the Tinify
data set later. Thereafter the results of comparing the best found cascading model
with the SDMD model are also shown. In section 4.3 the results for the experiments
concerning the continuous upscaling factor are shown. This includes the small ex-
periment for upscaling factors between 1 and 2 and the results of a larger scaled
experiment concerning the full range of upscaling factors 1 to 8.

4.1 General inference information

For all experiments performed a Google Cloud Virtual Machine with 1 NVIDIA
Tesla A100 GPU was used. Most experiments were done using the custom made
Tinify data set, which will be further clarified in section 4.1.1. Whenever images
needed resizing (for all testing purposes), the Tinify API was used to downscale the
images. Since the Tinify API not only resizes images but compresses them simulta-
neously with their own compression technique, the details on this operation cannot
be shared. However, since the same downscaling procedure has been used for all
images, it can safely be said that this has no influence on the outcome of the experi-
ments. The only influence this might have is when we would compare the MS-SSIM
or PSNR scores with the scores of other models, but since a unique data set is used
such a comparison would be illogical regardless.

4.1.1 The Tinify data set

The Tinify data set is a small image data set with 100 images that were handpicked
from the websites of Tinify’s biggest clients. The data set was created to accurately
represent the clients of Tinify, since we want to upscale the images in the best way
possible for those clients. The images can be divided into 8 categories, where each
category represents one client. Due to privacy rules the data set cannot be made
publicly available. To still give some insights on the data, table 4.1 will show some
specifics per category. For each category the number of images of that category is
shown, adding up to 100 total images. Then some general information about the
contents of the images is shared. Lastly the size of the smallest and biggest image in
the category is displayed, which can give an insight in the distribution in terms of
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size within that category. Important to keep in mind is that these sizes are the sizes
of the ground truth images, during testing they evidently get downscaled first. In
figure 4.1 an example of all image categories is shown.

Category name # of imgs General information Min. size Max. size

Stickers 15 Multi-colored computer
generated illustrations 600 x 336 600 x 600

Clothing 15 Photographs of folded clothing
with bland backgrounds 1496 x 1496 1760 x 2640

Car parts 15 Detailed photographs of specific car
parts with white backgrounds 400 x 400 6160 x 5008

Tennis 10 Photographs of various tennis
equipment with white backgrounds 800 x 800 800 x 800

Interior 15 Various detailed
embroidery designs 800 x 800 800 x 800

Football cards 5 Playing cards with images
of famous football players 360 x 548 360 x 548

Random objects 15 From toy cars to chainsaws,
some with detailed backgrounds 712 x 712 712 x 712

Beers 10 Various images of beer kegs
or bottles with transparent background 696 x 696 696 x 696

TABLE 4.1: An overview of the Tinify data set

4.2 Cascading models

As explained in section 3.3 the first step to create more upscaling factors was to use
a model multiple times or to use multiple models. To make a cascading model that
can upscale with a factor 8 there were three options.

• Use the x2 model three times

• Use the x2 model first and then the x4 model

• Use the x4 model first and then the x2 model

All these models were created in the most sober way possible, meaning no image
modifications between passing the image from one model to the next. First the mod-
els were judged based purely on perception. Results and specifics on this can be read
in section 4.2.1. Though there seemed to be a clear winner, extra and more mathe-
matical proof was required for absolute certainty, which lead to two more compar-
isons of the cascading models. The specifics and results of these comparisons can be
read in section 4.2.2.
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FIGURE 4.1: An example image of each category. From left to right
and top to bottom: Car parts, Random objects, Stickers, Football

cards, Clothing, Tennis, Beers, Interior.

4.2.1 Comparing on football logo’s

To find the best of the three options mentioned, the models were first tested on some
random images, including football logo’s, to see if based on just perception a supe-
rior model could be picked. In figure 4.2 a comparison between the three cascading
models is shown by upscaling the logo of Belgian football club Anderlecht. What
can be seen from both zoomed in examples is that the x4x2 model shows most de-
tail. In the top image you can see the crown upscaled by the x4x2 model has more
(but not all) gems than the other two models. Besides that the pattern on the bottom
of the crown looks much more like the pattern in the original picture. Furthermore
it’s noteworthy that the x2x2x2 and the x2x4 model show minimal differences be-
tween each other. In the bottom image it can be seen that the lines are much cleaner
in the x4x2 model. The face is less messy and the logo/image on the chest is much
more distinct.

The results for this Anderlecht logo were similar to results found in other images.
The differences between the x2x2x2 model and the x2x4 model seem to be minor,
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and the level of detail seems the best in the x4x2 model. However, to be absolutely
certain and have more concrete evidence pointing to one model, it was decided to
do some more tests and compare the results using similarity metrics.

FIGURE 4.2: A comparison of the Anderlecht football club logo on
the different cascading models. The x4x2 model is showing the much
more detail and strong lines compared to the other two. Zoom in for

better view.

4.2.2 Comparing on the Tinify data set

To find more mathematically valid results, it was decided to compare the three cas-
cading models on the Tinify data set. To be able to compare the output images with
the ground truth, the first step was to downscale the ground truth images with a
factor eight. However, because some of the images had dimensions which were not
divisible by eight, some preprocessing had to be done. 39 out of the 100 images were
found to have undesired dimensions, and needed preprocessing.

First it was decided to add a bar of black pixels to the images, which would make the
dimensions suitable for x8 downscaling and upscaling again. After the experiment
was finished the thought came up that a bar of black pixels might interfere with the
quality of the images. Therefore the experiment was repeated with the same data
set, but now with the 39 images cropped to a desirable amount of pixels instead of
extended.

The complete results for both experiments can be found in appendix A, as a reference
the resulting graph for the x4x2 model with cropped images is shown in figure 4.3.
For all images in the Tinify data set the MS-SSIM score and the PSNR score where
calculated and then plotted in the graph. Then the average per image category was
calculated and plotted with a slightly bigger dot. By doing this and then drawing
lines from the individual images to the category average, it can be easily seen how
much variation there is within a certain category. From the graphs a few interesting
conclusions can be drawn.
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FIGURE 4.3: PSNR and MS-SSIM results on the Tinify data set for the
x4x2 cascading model with cropping

The first thing that is interesting is that the general distribution of the image classes
stays very similar for all cascading models. This means one model is not specifically
better for a certain class of images. This makes sense since all cascading models are
trained on the same data sets, meaning it would be curious if one of the cascading
models suddenly became more proficient in upscaling a certain image category.
Secondly the differences in scores between the results with cropping and the results
with adding the black pixel bar are almost indistinguishable from each other. This
confirms that adding a solid bar of pixels to an image does not interfere with the
general quality of the upscaled image, which is a plus for the models in general.
Thirdly and most importantly it’s still visible that the x4x2 model scores better than
the x2x2x2 model and the x2x4 model. On a quick glance there might not seem to
be big differences between all the graphs, but when we take a closer look it can be
seen that the scales on the axes are slightly shifted, especially for the x4x2 models.
This makes the graphs look more similar even though the x4x2 models are scoring
significantly higher both on PSNR and on MS-SSIM metrics. These results are a nice
confirmation of what was already perceptually established: the x4x2 model yields
the best results.
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FIGURE 4.4: A visual representation of the 5 SDMD steps

4.2.3 Comparing with SDMD

To make sure the new cascading model can compete with already existing models,
we wanted to compare the SSIM and PSNR scores with those of an already existing
model. The problem is that none of the models mentioned in chapter 2 can upscale to
a factor 8. In search of a model that could handle upscaling factors this big the Spline-
Based Dense Medial Descriptor (SDMD) [26] was found. This is a model mainly built
for performing image compression, but also able to upscale or downscale images.
SDMD can be explained by clarifying the 5 steps that are performed in the process.
These 5 steps are visually represented in figure 4.4. The first step is thresholding.
In this step the input image is processed to various binary layers by performing
thresholding on it with different threshold values. Thereafter a number T of these
layers gets selected and skeletonized. What this means is that for these layers the
objects in the image get a vector representation of the skeleton of that object. A
skeleton of T is also called medial axis of T, or MAT. Then each of the branches in
the MAT’s get represented as B-splines to give us Spline MAT’s. These B-splines
can be rasterized to provide us with a pixel representation of the MAT. When this
rasterization happens the size of the final image can be determined, which means the
upscaling of the image can be done here. Using a disc-union method, a layer T̃ can
be reconstructed from this pixel representation. Finally an image can be constructed
by combining all these constructed layers T̃. The SDMD paper can provide more
detailed information on each of these steps.

FIGURE 4.5: A comparison on an image of the Tennis category. From
left to right: The ground truth, x8 upscaling by SDMD (MS-SSIM
0.683, PSNR 17.809) and the x4x2 upscaled image (0.762, 21.261). As
can be seen by both perception and the metric scores, though both
images aren’t good representations of the ground truth (especially
visible when zooming in), the x4x2 solution comes a lot closer than

SDMD.
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The SDMD model was tested on the cropped downscaled Tinify data set. For testing
super resolution, all parameters were set in such a way to get the highest image
quality. This means for example that parameter T was set to the maximum amount
in order to use all the obtained layers after thresholding. This was done to use as
much information possible, to get the highest quality of super resolution. Similar
measures were taken for other parameters. The resulting graph can be found in
figure 4.6 or in appendix A accompanied by the earlier mentioned results.

FIGURE 4.6: PSNR and MS-SSIM results on the Tinify data set for the
x8 SDMD model with cropping

As expected, since the SDMD model was not created with specifically super resolu-
tion in mind, it did not get results as good as the x4x2 cascading model. An example
is shown in figure 4.5. What can be seen here is that the SDMD model yields very
blurry results, compared to a more clear image constructed by the x4x2 model. When
zooming in the loss of texture is also very clear in the image constructed by the x4x2
model and the creation of artifacts on the right heel. Lastly the SDMD model also
had some issues with the edges of the images, which can also be seen in the example
image. This will most certainly also affect the PSNR and MS-SSIM scores.

On average the SDMD model scores an MS-SSIM score of 0.730 and a PSNR score
of 18.042 where the cascading model scores an MS-SSIM score of 0.836 and a PSNR
score of 20.794. Interestingly enough the distribution of the image classes for the
cascading model is similar to the one for the SDMD model, which means both mod-
els perform better on some specific classes and worse on some others. Why both
models struggle with the same categories can be explained in a few possible ways.

• The number of details in that image category is much higher than in others.
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• The images in that category are smaller in size, which is why the models have
less to work with when they are upscaling

• The image category has images of certain objects that are just hard to upscale

The categories with the worst scores are Stickers and Interior. In table 4.1 it can
be seen that the Stickers category is indeed one of the categories with the smallest
images, which could correspond to it having bad results. However, the Interior
category has images of exactly the same size as the Tennis category but the MS-
SSIM scores differ a lot. This shows that image size is not the only factor influencing
super resolution quality. The Interior images have much more detail, which partially
already gets lost during downscaling, explaining the lower scores. An example of an
image from the Interior category upscaled by the SDMD model and the x4x2 model
can be seen in figure 4.7. Here it can clearly be seen a lot of the detail from the left
pillow gets lost, especially in the image created by SDMD which just gets very blurry.
Also again the issue with the image edges is visible. With both the number of details
and the size of the images having such an obvious impact on the output image detail,
it’s hard to determine if the third factor, certain objects being hard to upscale, is also
a determining factor. However the big variation within image categories gives an
indication that this probably isn’t a factor.

FIGURE 4.7: A comparison on an image of the Interior category. From
left to right: The ground truth, x8 upscaling by SDMD (MS-SSIM
0.794, PSNR 17.372) and the x4x2 upscaled image (0.882, 20.828).
When zooming in it can be seen both models struggle with the
amount of detail in the ground truth image, most probably due to

the small size the ground truth image has when downscaled.

4.3 Continuous upscaling factors

In this section the results of the experiments on the continuous upscaling factor as
explained in section 3.4 will be shown. As mentioned before, these experiments were
conducted using the Tinify data set. All images in the data set were first cropped in
such a way that both the height and the width of the image would be divisible by
the upscaling factor that was tested. This way it was made sure no rounding errors
would make it impossible to check the PSNR and MS-SSIM metrics, as these metrics
need the images to be exactly the same size. After cropping the images they were
downscaled using the desired factor with the Tinify API, after which the images
were upscaled using the models and interpolation techniques as explained in section
3.4.
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4.3.1 Upscaling factors between 1 and 2

As mentioned in section 3.4 the first small choice that had to be made was what
would be done with upscaling factors in the interval [1, 2]. The two choices are:

• Use the original image and the x2 upscaled image and blend the two after
using Lanczos4 interpolation. Recall as mentioned in section 3.4 Lanczos4 in-
terpolation is done with a unique factor fn for both of the images which can be
calculated as follows:

fn = fo/ fu

Where in this case fo would be the original upscaling factor within the interval
[1, 2] and fu would be 1 for Is and 2 for Il . The blending of the images Is and Il
would be done using:

I′ = α ∗ Is + β ∗ Il

Where α and β remain as mentioned in section 3.4:

α = 1 − ( fo − fus)/( ful − fus)

β = 1 − α

• Only use the x2 upscaled image and use Lanczos4 interpolation to downscale
to the preferred size. Recall from section 3.4 this solely entails generating an
image Il from the x2 deep learning model, calculating a factor fn for the x2
model and using Lanczos4 interpolation with that factor fn to find the output
image.

To test both these methods they were performed on the Tinify data set with an up-
scaling factor of 1.5. Results of these tests can be found in figure 4.8 and figure 4.9.
Significant differences can be spotted in these figures and these differences become
even more clear in the average scores. The method with interpolation scores an aver-
age MS-SSIM score of 0.984 and a PSNR score of 31.102 compared to 0.975 and 28.573
for the method without interpolation. With these scores and the graphs in mind it
seems clear that interpolating with the original image is the way to go. However,
to actually see what the difference between the images is like, the image with the
highest variance in metric scores between the two methods is shown in figure 4.10.
When you zoom in on these images the difference in texture is clear to see. In the
ground truth image the texture of the fabric is clearly visible. On the upscaled im-
age that’s interpolated with the ground truth image, it can be seen that some of the
texture turned more smooth, which is why it doesn’t score perfectly on the metrics.
On the other hand the text is still looking sharp, as well as other little details. On
the rightmost image, without interpolation, it can be seen that large parts of the shirt
lost their texture and became completely smooth. Still the details like the text and
the buttons look good, but the fabric lost most of its texture. This is well represented
in the MS-SSIM and PSNR scores and confirms that interpolation with the ground
truth image is the correct choice.
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FIGURE 4.8: PSNR and MS-SSIM results on the Tinify data set for an
upscaling factor of x1.5 without interpolating with the original image

FIGURE 4.9: PSNR and MS-SSIM results on the Tinify data set for an
upscaling factor of x1.5 interpolated with the original image
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FIGURE 4.10: A comparison between (from left to right) the ground
truth, x1.5 upscaling with interpolation (MS-SSIM 0.944, PSNR
29.650), x1.5 upscaling without interpolation (0.890, 26.240). The in-
terpolated (middle) images shows a lot more texture than the the im-

age without interpolation (right). Zoom in for better view.

4.3.2 Upscaling factors between 2 and 8

Even though the interpolation technique has been proven to be the best for the im-
age quality for upscaling factors between 1 and 2, one might argue this is slightly
biased since it uses the ground truth image. To test if the interpolation technique
also works for upscaling factors where we don’t interpolate with the ground truth
image, a small experiment was conducted for images with an upscaling factor of
3. This upscaling factor was chosen for two reasons. Firstly this factor is exactly
between 2 and 4, which means it uses exactly 50% of both deep learning models,
so it tests the most pure form of image blending. Secondly in section 1.3.1 it was
mentioned the quality for images with an upscaling factor up to 4 is more important
than images with a higher upscaling factor. With this in mind it seemed logical to
perform an extra experiment on images with an upscaling factor lower than 4, to
perform an extra quality check on these images.

The experiment was conducted as follows: all 100 images of the Tinify data set were
cropped if needed and downscaled with a factor 3. These downscaled images were
then upscaled in three different ways:

• The x4 deep learning model was used to upscale the images with a factor 4.
Then the images got downscaled to get to factor 3 by using Lanczos4 interpo-
lation.

• The x2 deep learning model was used to upscale the images with a factor 2.
Then the images got upscaled further to get to factor 3 by using Lanczos4 in-
terpolation.

• The interpolation technique as explained in section 3.4: both deep learning
models get used, the images get up or downscaled to factor 3 using Lanczos4
interpolation and the two resulting images get blended linearly (so using both
images 50%) to get the output image.
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Model used Only x4 Only x2 Both x4 & x2
PSNR 25.699 25.932 26.569
MS-SSIM 0.948 0.944 0.953

TABLE 4.2: PSNR and MS-SSIM results on the Tinify data set for up-
scaling with factor 3 using only the x4 model, only the x2 model or
both models. It can be concluded that using both models is slightly

better, but not with a significant difference.

In figure 4.11 an example comparison image can be seen. When comparing the dif-
ferent approaches to factor 3 upscaling in this image it’s not easy to spot the differ-
ences. However, when zooming in especially the contrast between the image that
only used the x2 model and the others is significant. This image (the third from the
left) shows the least detail in the text, where differences are easiest to be spotted.
This can be explained by the fact that the x2 model wasn’t made with a dedicated ar-
chitecture, but is just the architecture of the x4 model with a pixel-unshuffle layer at
the start as explained in section 3.1 and visualised in figure 3.1. There are some dif-
ferences that can be spotted between the image that only used the x4 model (second
image from the left) and the interpolated image (fourth image from the left). One
is that the text, especially the ’R’ from Ford, looks a little better in the image that
only used the x4 model compared to the interpolated image. On the other hand the
tail of the horse has a slightly stronger outline in the interpolated image compared
to the image that only used the x4 model. However, the differences between these
two images are minor, which is also reflected in the small differences between the
PSNR and MS-SSIM scores for both images. In table 4.2 the average metric scores
for the full Tinify data set are shown. It can be seen that using the image blending
technique for an upscaling factor 3 yields slightly better results than using either the
x4 or x2 deep learning model individually. Even though the differences between the
PSNR and the MS-SSIM scores for the different methods are not very big, from this
experiment it can be concluded that using the blending technique yields either equal
or better results than using just one model.

Now that a choice is made for the use of image blending not only for upscaling
factors between 1 and 2, but for the whole range of upscaling factors, the whole

FIGURE 4.11: An example of a comparison between (from left to
right) the ground truth, x3 upscaling using only the x4 model (MS-
SSIM 0.970, PSNR 26.479), x3 upscaling using only the x2 model
(0.959, 25.449), x3 upscaling blending both models (0.971, 26.886). The
solution only using the x2 model (third image from the left) shows
the least amount of detail, especially visible in the ’Ford’ text. The
other two options do look different from each other, but arguably look

equally close to the ground truth image. Zoom in for better view.
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Factor x1.5 x2 x2.5 x3 x3.5 x4 x4.5
PSNR 31.102 27.748 27.179 26.569 25.391 24.385 23.799
MS-SSIM 0.984 0.967 0.960 0.953 0.940 0.925 0.912

Factor x5 x5.5 x6 x6.5 x7 x7.5 x8
PSNR 23.322 22.729 22.365 21.952 21.492 21.218 20.794
MS-SSIM 0.901 0.887 0.877 0.864 0.854 0.842 0.836

TABLE 4.3: An overview of the PSNR and MS-SSIM scores on the
Tinify data set with continuous upscaling factors

range can be tested. Important to notice is that upscaling can be done like explained
in section 3.4 for any floating point value. Some examples of an image upscaled with
random factors can be seen in figure 4.12. For testing however, it was decided to use
each upscaling factor between 1 and 8 with steps of 0.5. This decision was made
for two reasons. First of all to keep the downscaling and cropping of the ground
truth images relatively easy, as for testing you need to be able to downscale and
then upscale again without getting rounding errors. For this reason, as explained
before, the images need to be cropped first to have both dimensions divisible by the
desired factor. Cropping to a number divisible by 0.5 is much easier than cropping to
a number divisible by a random floating point value. Secondly to keep the amount
of upscaling that needed to be done to a reasonable amount. The average PSNR and
MS-SSIM scores can be found in table 4.3. In figure 4.13 a boxplot is displayed for
each of these upscaling factors showing the corresponding MS-SSIM score. In figure
4.14 a similar figure is displayed showing the PSNR scores. What can be seen from
these plots is that the image quality gradually declines as the upscaling factor grows
bigger, as we would expect. This decline can be explained in two ways:

• The higher the upscaling factor is, the more pixels have to be generated. The
more pixels that have to be generated, the more chance that the upscaled image
diverts from the ground truth.

• For testing we have to downscale the images first. The smaller an image is, the
less detail it has. So if we have to downscale with a factor 8 there’s a lot less
detail that the model can use to recover the original image.

FIGURE 4.12: An example of various floating point upscaling factors.
From left to right: the ground truth, a x2.374 upscaled patch, a x5.196
patch. Image taken from the OutdoorSceneTraining data test set [31]

.
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This second statement can be checked for our data set, since we have images with
varying sizes. If the decline for a large image is less steep than the decline for a small
image, it can be concluded that the second statement has at least some validity. That
would mean the model performs worse for images that are too small, which is the
case for a part of the test set, and will probably perform better when it’s in produc-
tion when the images provided should be large enough. To check this statement a
red and a blue line were added to the plots, where the red line represents the largest
image in the data set and the blue line the smallest. Coincidentally both images were
from the Car Parts category. For the MS-SSIM score, the blue line shows a steeper
decline than the red line, which was expected and confirms the second statement.
For the PSNR score the angle of the lines is more similar, which could either mean
that the second statement is not valid, or that PSNR is a less reliable metric when it
comes to checking this.

Even though the decline in image quality was expected as the upscaling factor in-
creased, the almost linear decline is noteworthy. It was expected that the quality of
the output images would be significantly better for the ones that didn’t need inter-
polation, so for upscaling factors of 2 and 4. However, in the results in table 4.3 and
figures 4.13 and 4.14 no such significant spike in quality is visible.

FIGURE 4.13: MS-SSIM results on the Tinify data set for upscaling
factors 1.5 till 8.0. The images with the largest and smallest amount

of pixels are represented with the red and blue lines.
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FIGURE 4.14: PSNR results on the Tinify data set for upscaling factors
1.5 till 8.0. The images with the largest and smallest amount of pixels

are represented with the red and blue lines.
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Chapter 5

Discussion and Conclusion

In the previous chapter the results were shown and explained. In this chapter these
results will be discussed in section 5.1 according to the original requirements as de-
fined in section 1.3. After this discussion a conclusion can be drawn regarding the
final super resolution model. Finally the possible improvements and future research
opportunities for this model will be discussed in section 5.2.

5.1 Performance Analysis

In this section the performance of the final model will be analyzed according to the
functional and non-functional requirements as defined in section 1.3. After analyz-
ing and discussing these requirements, the research question as defined in section
1.2 can be answered and conclusions can be drawn.

5.1.1 Functional Requirements

Here the functional requirements as defined in section 1.3.1 will one by one be revis-
ited and discussed considering the final model. The functional requirements were
defined as requirements which the algorithm needs to fulfill to cater to the needs of
the customers of Tinify.

Domain - As already mentioned in section 2.1.6, the Real-ESRGAN model was trained
on various data sets which should make the model versatile enough to cater to the
needs of the clients of Tinify. When we look at figure 4.3 it can be seen that not all
domains score equally but as explained in section 4.2.3 it is more likely that these
differences can be explained by the size of the images and the amount of detail in
the images. With these explanations in mind we can assume that it’s almost certain
the model is good enough for the different domains of images that Tinify clients use.

Quality - The next functional requirement as defined in section 1.3.1 was quality. As
mentioned there is a lot of variation in terms of quality metric scores when we look
at the Tinify data set. This can mostly be attributed to the size of the images and
the amount of detail in the images. The average PSNR and MS-SSIM scores can’t be
compared to other super resolution models since they were not tested on the same
data sets. However it can be stated that for a random group of images (the Tinify
data set) the quality metrics certainly look as good or even better than we would
expect, when we compare them to average scores of other models on other data sets.
The only valid comparison was between the cascaded model and the SDMD model,
where as expected the cascaded model scored better. From the images in figure 4.12
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it can be seen that upscaling, even for larger factors works really well on real life
images and even creates textured details such as hair and eyes almost perfectly.

Upscaling factor - In section 1.3.1 the ideal solution for the upscaling factor was
mentioned as having a floating point value between 1 and 8 with up to 2 decimals
precision. The current solution offers even more decimals precision as it can upscale
for any floating point value between 1 and 8. In the functional requirements it was
also mentioned the main focus in terms of quality control would be up to factor 4.
After constructing the x8 cascading model it was expected that the quality would
decline faster for upscaling factors higher than 4, as the cascading model shouldn’t
perform as well as a dedicated model trained for a certain upscaling factor. How-
ever, when looking at figure 4.13 and figure 4.14 the decline in quality looks rather
linear, there is no bigger drop in quality for upscaling factors higher than 4 which is
a very positive result. When looking at figure 4.13 there is an increase in variance
for upscaling factors higher than 4, which also might have to do with the difference
of image sizes as mentioned in section 4.3.2.

Speed - In section 1.3.1 it is mentioned the upscaling process should be fast, prefer-
ably no longer than a few seconds for an output image of roughly 2 megapixel. As
this was an optional requirement no time has been spent on making the algorithm
fast. There also is a lot of difference in speed depending on whether interpolation is
being used or not. As mentioned in section 4.1 a Google Cloud Virtual Machine with
1 NVIDIA Tesla A100 GPU was used. Upscaling to an image of roughly 2 megapixel
takes around 12 seconds for a factor 2 or 4, but if we want an upscaling factor other
than 2 or 4 it will take more than twice of that number: around 30 seconds. This is
due to the fact of Lanczos4 interpolation being a quite slow method and for inter-
polation it has to be used twice. Keep in mind that for an output picture of roughly
2 megapixel and an upscaling factor just over 4, the image also gets upscaled with
factor 8 meaning an image of roughly 4 megapixel is also being generated which
makes the whole process a lot slower. Since the focus for this thesis was more on
quality than speed, choices have been made to do it this way. However it’s needless
to say different interpolation methods besides Lanczos4 could be used in practice to
possibly speed up the process.

Image extension handling - The model works for all image extensions mentioned
in section 1.3.1, which are .jpeg, .png and .webp.

Proof of quality - As already mentioned in section 2.1.6 the Real-ESRGAN paper
showed both positive and negative proof of quality of the model. In the end this
was deemed enough to be picked as preferred framework for this project. Although
no official experiments have been performed to see if the quality shown in the paper
is equal to the quality we see ourselves in the model from Github, the visuals show
enough evidence that this is the case. As for this paper, the proof of quality was
shown both by publishing quality metrics and by showing example output images.

5.1.2 Non-functional Requirements

In this section the non-functional requirements will be discussed in a similar way
as the previous section did for the functional requirements. The non-functional re-
quirements were defined in section 1.3.2 as those requirements that describe how a
system performs while doing the work described by the functional requirements.
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Programming interface - In section 1.3.2 it was mentioned that the preferable out-
come of this project would be that the user can simply add the preferred upscaling
factor as a parameter in the Tinify API and receive the upscaled image. Due to time
constraints the final model hasn’t been implemented in the Tinify API yet. However,
the current Python API of the existing model already works in a way that is similar
to the simple way the Tinify API works. To upscale an image all that has to be done
is run the the program from the command line, with parameters for the input im-
age, upscaling factor and the desired destination of the output image. The Python
program will then perform all necessary steps automatically and output the image
in the desired destination.

Digital infrastructure - The requirement for digital infrastructure was defined as
follows: The model should be able to run on the Google Cloud Platform. As the cur-
rent model is running in the Google Cloud Platform already without any problems,
this will likely not cause any problems in the future as well.

Cost of ownership - In the non functional requirements in chapter 1 it was men-
tioned that the model should be easy to maintain and be lightweight, so it doesn’t
cost much to have it running non-stop. For the current solution we need to have
two trained models in the cloud environment: the x2 and x4 model as obtained from
the Real-ESRGAN Github page. As mentioned in section 2.1.6 these models are 33,4
MB apiece, meaning they slightly go above the limit of 50 MB set in section 1.3.2.
However, as mentioned in that section, this limit was not set in stone and shouldn’t
pose any problems. Other than that the cost of ownership is hard to measure since
the solution isn’t live in the Tinify API yet.

Scalability - The scalability requirement was described as having a model that is
stateless, which would make horizontal scaling possible. As the model is written in
Pytorch it’s possible to obtain trained instances of the x2 and x4 model, which means
the scalability requirement is fulfilled.

Replicability - The replicability requirement was mainly set for the model we were
going to use as framework. As described in section 2.1.6 and throughout the rest of
the thesis, the chosen Real-ESRGAN model was easy to replicate, mainly due to the
availability of the full code repository on Github. As for our own solution, due to the
commercial nature of the end product the exact code repository and image test set
are not meant to be publicly available. However, with the detailed descriptions in
this thesis the experiments could be repeated by other employees of Stapes IT who
do have access to the code and the image database.

5.1.3 Conclusion

Now that all results have been shown and discussed, the research question can be
answered. The research question was defined in section 1.2 as follows:

"What is an efficient and effective deep learning approach for generating super resolution
images that can be deployed in a practical online solution for nonspecialist end users?"

In section 2.1 different deep learning models were compared in terms of efficiency
and effectiveness for the prospected end users of Tinify and Real-ESRGAN was
found to perform best. By adding the x8 upscaling factor and finding a way to
be able to upscale for any floating point value between 1 and 8 the effectiveness
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of the model was then highly improved. However, this improvement came at the
cost of efficiency, as the model also turned significantly slower after improvement.
Nonetheless the speed was deemed fast enough for the end users. The comparison
with the SDMD model in section 4.2.3 also showed the model is more than compet-
itive in terms of quality for the high upscaling factor of 8. From these findings we
can conclude this model is both efficient and effective enough for the end users of
Tinify and although it’s out of scope for this thesis, from the prototype it is clear that
the solution can be implemented in a practical way for nonspecialist end users.

5.2 Future Work

Even though the found solution is deemed sufficient for the end users of Tinify, there
is still a lot of improvement possible which will be discussed next.

5.2.1 Improving on Deep Learning

One of the questions that still stands after this thesis is whether adding more dedi-
cated deep learning models to the solution would improve the quality of the output
images. At the start of this project it was planned to either have a trained model
capable of handling all upscaling factors or to have a model for all integer values be-
tween 1 and 8 and interpolate between those. In the end due to time constraints and
the complexity of the framework it was decided to only use a x2 and a x4 model (and
a combination of those) and interpolate between them. The interesting conclusion
was that the output image quality decreased rather linearly as the upscaling fac-
tor increased, even though we would’ve expected the quality to be much lower for
the interpolated images. It would be interesting to see if adding more deep learn-
ing models dedicated to other upscaling factors would improve the quality of the
images, or if they would actually be superfluous.

In addition to this it would also be interesting to see if a dedicated architecture for
the x2 model would improve that model much. As explained in section 3.1 and vi-
sualised in figure 3.1 the architecture for the x2 model is the exact same architecture
as the x4 model, with a pixel-unshuffle layer at the start to get to the right dimen-
sions. In figure 4.13 it can’t really be seen that the x2 model performs worse than
what should be expected, however in figure 4.14 there is a big drop between the x1.5
and x2.0 model. This raises the question if a more dedicated architecture for the x2
model would improve the quality of that model.

5.2.2 Interpolation Techniques

For this thesis it was chosen to use Lanczos4 interpolation as image interpolation
technique to get two images to the same size to be able to blend them. This technique
was chosen as it was proven as one of the better image interpolation techniques and
as it was easy to implement. There are newer and arguably better interpolation
techniques however, such as AKNR [35], which might perform better.

Besides the fact that other interpolation techniques could be used, the current proce-
dure of interpolating between two images isn’t proven to be the most optimal one.
By first interpolating the images to the correct size and then blending them, a lot of
new information in the smaller image has to be created and a lot of information of
the larger image gets thrown away. It might be better to find a way to use the infor-
mation from the larger image to create the extra information in the smaller image, or
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find a way to blend a larger and a smaller image without interpolating them to the
desired size first.

5.2.3 Continuous training

Finally there’s the improvements on both the quality and the image domains as men-
tioned in section 2.3.2. These improvements are specifically important for the needs
of Tinify and its clients, not necessarily for improving the solution for general use.
One of the proposed improvements is unsupervised continuous training. As already
mentioned this is technique is probably too risky and experimental for implement-
ing it in a live product.

The other option closely related to this that also was mentioned in section 2.3.2 was
estimating the quality per domain offline. This could be done by using a technique
such as LAMP [11] to automatically categorize the images and then use either a
quality metric or human perception to see which category could be improved. Then
the original deep learning models could be trained more using images from this
category to get better results.
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Appendix A

Cascading model comparisons

A.1 Results with black pixel bar

FIGURE A.1: PSNR and MS-SSIM results on the Tinify data set for the
x2x2x2 cascading model with black pixels added



48 Appendix A. Cascading model comparisons

FIGURE A.2: PSNR and MS-SSIM results on the Tinify data set for the
x2x4 cascading model with black pixels added

FIGURE A.3: PSNR and MS-SSIM results on the Tinify data set for the
x4x2 cascading model with black pixels added
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A.2 Results with cropping

FIGURE A.4: PSNR and MS-SSIM results on the Tinify data set for the
x2x2x2 cascading model with cropping

FIGURE A.5: PSNR and MS-SSIM results on the Tinify data set for the
x2x4 cascading model with cropping
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FIGURE A.6: PSNR and MS-SSIM results on the Tinify data set for the
x4x2 cascading model with cropping

FIGURE A.7: PSNR and MS-SSIM results on the Tinify data set for the
x8 SDMD model with cropping
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Appendix B

Planning

Phase two of this thesis project has 23 weeks left, starting from the 13th of December
till the 22nd of May. A schematic overview of the planning for these weeks can be
found in figure B.1. A more detailed explanation of the tasks will follow.

Phase 2 planning

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Christmas Holiday

SetupSetup

Multiple models

Interpolation inv.

Interpolation imp.

Working prototype

Prototype ref. & eval.

MP inv.

MP imp.

Writing MethodologyWriting Methodology

Writing Results

Finish writing

FIGURE B.1: A Gantt-chart overview of the planning for phase 2.
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1. Setup (1, 4-5): The project is fully setup once the following is done: Real-
ESRGAN is implemented in a separate cloud environment (not in the Tinify
production environment). We are able to upscale an image with a factor of 4
(the standard for Real-ESRGAN) using this model from the cloud from either
an API (preferred) or a user interface of some sort. Note that this task overlaps
with the Christmas holidays, which is why it will take 5 weeks instead of 3.

2. Multiple models (6-8): Train and test all the models we want to have running
in the final product (upscaling factor 1 till 8). This task is done once we have
the multiple models running in the cloud environment and are able to choose
which one to use from the API or GUI which was constructed in the setup
phase.

3. Interpolation investigation (6-9): The first part of the interpolation task. This
task is done once enough investigation has been done on how to interpolate
between two super resolution images. This investigation can be done by find-
ing several interpolation techniques and testing them on the models.

4. Interpolation implementation (10-12): The implementation of the chosen in-
terpolation algorithm. This task is done when the interpolation algorithm
is successfully implemented in the environment created in the setup. Users
should now be able to upscale their image to any desired floating point value
between 1 and 8, thus we have a working prototype.

5. Prototype refinement & evaluation (13-18): This mainly entails refining the
prototype and evaluating if the results are as good as promised. Besides that
implementing the prototype in the Tinify environment will also be part of this.
This might not directly be in the large image manipulation API1, since this is a
very complicated environment and we are unable to estimate whether it’s pos-
sible to implement this within the time frame of the thesis. If it’s not possible
to implement the model in the API, the model will be available for users on a
separate location.

6. MP investigation (16): Investigating the multidimensional projection tech-
nique. This task is done once a fitting technique is found to project the images
on a 2D plane in which various image domains are represented. Besides this it
also has to be investigated whether LPIPS performs as well as needed or other
metrics have to be used.

7. MP implementation (17-19): Implementing the multidimensional projection
technique. This task is done once a program is written that can automatically
place images on the 2D plane mentioned in MP inv. Furthermore these images
also need to be automatically rated based on LPIPS or another metric that has
been chosen.

8. Writing Methodology (9-12), (15-17): This task is divided in two parts. In the
first part the basic structure of the methodology chapter should be created and
the sections about image interpolation should be written. In the second part
the sections about the multidimensional projection techniques will be written.

9. Writing Results (19-20): Writing the results chapter.

10. Finish writing (20-23): Writing all remaining chapters: Discussion & Conclu-
sion, Future work and finishing any unfinished chapters.

1https://tinypng.com/developers/reference

https://tinypng.com/developers/reference
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