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Abstract

To respond to climate change and urbanization, water management systems will need to
adapt in the next decades all over the world, including the Netherlands. Hydrological modelling and
the simplification of real-world processes are vital for managing water resources and systems. In the
future decades, machine learning (ML), deep learning (DL), and neural networks (NN) are projected to
be critical in supporting humans in handling increasing volumes and diversity of data, extracting
relevant information for a specific variable, and offering viable answers to crucial issues. Numerous
articles have showed over the last decade that ML can help hydrologists to model transdisciplinary
and complex systems that are challenging to simulate using standard numerical modelling methods.
Machine learning and neural networks are becoming essential tools for hydrological analysis since
they allow us to handle large amounts of data and extract significant and hidden information, as well
as correlations between hydrological variables. The objective of this study is to enhance the
performance and prediction skill of an existing groundwater level model by evaluating the impact and
relevance of ML model selection and input datasets. For this purpose, a process-based ML approach
was implemented, using the National Hydrological Model for physical consistency along with different
types of input features including meteorological, hydrological, and environmental variables. The
findings reveal that both applied methods are capable of predicting groundwater levels and boosting
the numerical model's capabilities. To better represent and visualize these results a groundwater map
was created for average summer conditions in 250m resolution for the whole area of the Netherlands.
Furthermore, in order to facilitate future groundwater management and research, the feature
importance was evaluated in various situations to examine the overall picture of variable relevance.
The estimated feature importance values and the model’s error results were further examined to
determine whether there are any spatial pattern or trend in the outcomes. From this, it can be
concluded that the model is suitable for modelling typical groundwater levels, but it suffers from
significant error when predicting groundwater extremes, despite the fact that the errors and results
are still more closely related to actual groundwater levels than the numerical model's results. As a
result, the approach works poorerin the southern areas of the Netherlands, such as Limburg and
Maastricht. Additionally, a model was also conducted to explore if the difference between the
numerical model's outputs and real groundwater levels could be estimated. Different scenarios were
investigated, and a generic, simplified model was developed which can predict the errors between
simulation values and actual groundwater observations with an adequate accuracy. This simplified
model might help to model hydrological and environmental processes, since by using this model
groundwater level predictions can be generated without knowing any actual groundwater level values.
In summary, the work includes a detailed description of methodology, demonstrating the required
steps in creating a machine learning model that can predict hydrological processes. The findings can
be used in future study to improve groundwater level predictions and, as a result, water management
strategies in order to reduce the detrimental effects of future groundwater level extremes that could
result in severe droughts or floods.
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1. Introduction

Groundwater constitutes for approximately 30% of the world’s total freshwater (including ice
and snow as a freshwater source), thereby is one of the most important components of the
hydrological cycle with a wide range of socioeconomic and environmental implications, including
infrastructural security, food production and ecosystem sustainability (Gleeson et al.,, 2016).
Groundwater reserves are critical for more than 7 billion people who depend on them for drinking
water, agriculture, and industry (Wada et al., 2014). It is also a significant freshwater supply for
domestic and industrial water usage and accounting for over 38% of global irrigation demand (Siebert
et al.,, 2010). However, in recent decades, these essential water sources have been utilized
inappropriately in many regions around the world (FAO, 2021). As a result of poor water management
and increasing population (which implies an enhanced water demand) groundwater aquifers are being
exhausted. Unsustainable extraction rates are surpassing recharge rates, resulting in long-term
depletion of aquifers around the world (Bierkens et al., 2019). The depletion of aquifers has
several negative consequences, such as greater energy costs for pumping water from deeper wells,
land subsidence, lower river flow rates and deteriorated water quality (Alley et al.,, 1999).
Furthermore, future climate change could have a severe impact on groundwater recharge and storage,
exacerbating this unsustainable state. The influence of climate change on groundwater has just
recently attracted attention, although subsurface water is one of the most important freshwater
resources and critical for water and food security. In the future decades, the adaptation of water
management practices, particularly decisions concerning the groundwater system, will be a crucial
qguestion for humanity.

Groundwater quantity and quality in the Netherlands has become an increasing problem in
the last decades. The pressure on current groundwater resources is intensifying as a result of growing
demands and droughts. Socioeconomic changes, climate change impacts, drinking water extraction,
existing groundwater contamination, and increased usage of the subsoil, such as for aquifer thermal
energy storage (ATES), geothermal energy, or mining activities, are all contributing to this pressure
(Lijzen et al., 2014). Furthermore, future climate change consequences could exacerbate this stress.
Precipitation shifts from summer to winter are projected, along with increasing evaporation demands
in the summer due to warmer temperatures, which can possibly lead to longer and more intense dry
spells (Philip et al., 2020). As an example, many water managers saw the drought of 2018-2019 as a
wake-up call in a country that has typically focused on getting rid of water surpluses (Brakkee et al.,
2021). In addition to climate change, variations in land use have an impact on groundwater recharge
and levels. Since the sustainable management of these groundwater aquifers is critical to assure
freshwater supply for all sectors, it is important to assess the consequences of climate change and
land use change on groundwater aquifers (Brakkee et al., 2021). The mentioned threats (extreme
droughts caused by the changing climate patterns or the excessive groundwater pumping rates) are
placing pressure on national and regional water managers to develop suitable long-term plans for
investments and adaptive measures that will lead to long-term water management that is both
sustainable and robust (Verkaik et al., 2021). In order to solve societal concerns related to mitigation
and adaptation to climate change, as well as strengthening climate resilience in general, detailed
knowledge of the water table representing the groundwater system is necessary (Koch et al., 2021).
Accurate, realistic estimates of groundwater levels are required to assist environmental decision-
making that addresses current and future challenges. These estimates can help in the long-term
management of groundwater and the prevention of negative outcomes (e.g., consequences in the
agricultural sector due to severe low-flow periods, droughts, and floods).

Water management techniques will need to alter in the future decades across the world,
including in the Netherlands, to react to climate change and urbanization. In order to manage water
resources, hydrological modelling and the simplification of real-world processes are essential.



Historically, mainly process-based numerical, multi-physics simulation models such as MODFLOW
have been used to evaluate groundwater depths and other water budget elements (e.g., runoff or soil
moisture). The complexity of these hydrological processes and the associated computational demand
makes these process-based modelling method challenging for operational applications. As a result,
the spatial scales and accuracy that are required for adequate decision-making can typically not be
provided by numerical, physically based models alone (Koch et al., 2019). This constraint is mostly due
to the high computational demands of such models, which prevents detailed conduct calibration,
sensitivity, and uncertainty analysis at high resolution (Asher et al., 2015; Stisen et al., 2018). With the
advancement of sensors and satellites hydrologists now have access to far more data than in prior
years. Given the drawbacks of physics (or process)-based modelling, as well as the increased
availability and volume of environmental data, new opportunities in the modelling of various natural
processes are emerging. Nearing et al. (2020) proposed that large-scale hydrological data may include
substantially more information than hydrologists have been able to interpret into theory or process-
based models. With recent improvements in machine learning (ML) and artificial intelligence, the
performance of models based on a thorough understanding of physical processes can be enhanced.
ML is a collection of tools that enables us to create and train models to extract and recreate spatial
and temporal characteristics in datasets (Shen et al., 2021). The primary concept of ML and deep
learning is to minimize human interference in feature creation and to promote maximum information
extraction from data (Goodfellow et al., 2016). ML enables high-resolution modelling of water table
depths that exceeds the spatial resolution and overall accuracy of traditional numerical physically
based hydrological models (Koch et al., 2021). These algorithms identify patterns in datasets and use
these discoveries to forecast future events. The approximate behaviour of a complex system (in this
research focusing on processes linked to groundwater dynamics) may be represented using multiple
ML applications and big data, with the potential of providing accurate predictions at a reasonable cost.
Consequently, according to Sahoo (2017), data-driven and ML approaches based on nonlinear
interdependencies can estimate groundwater level change without a detailed understanding of the
underlying physical parameters. Although these ML applications are intriguing, they lack process
descriptions, which prevent trained models from making predictions outside the training dataset's
observed ranges (Koch et al., 2021). According to Reichstein et al. (2019), ML will become more
prevalent, by combining ML and numerical models, it can help advance present modelling systems.
This knowledge-guided ML (or hybrid modelling) technique aims to increase model performance and
robustness by incorporating physical consistency into ML algorithms (Koch et al., 2021). New and
large-scale interdependencies can be identified using a combination of ML learning and numerical
models, which might help us better comprehend complex natural processes.

It can be expected that, in the upcoming decades ML, deep learning (DL) and neural networks
will be essential in assisting us managing increasing volume and diversity of data, extracting
meaningful information for a particular variable, and presenting potential answers for complex
questions. In recent years, these modelling techniques have received a lot of attention from the water
science and hydrology communities. Recent developments have enabled completely data-driven
approaches to estimate groundwater levels with different ML techniques (Koch et al., 2021; Hauswirth
et al., 2021; Sahoo et al., 2017) and artificial neural networks (Banerjee et al., 2011). As an example,
in order to estimate the uppermost water table depth in average summer and winter circumstances
throughout the full region of Denmark, Koch et al. (2021) employed a knowledge-guided gradient
boosting decision tree model. The research revealed that by utilizing knowledge (physics) driven ML
techniques, it is possible to precisely estimate groundwater levels with exceptional spatial accuracy.
By analysing the sensitivity of the MLP (multi-layer perceptron) neural network, Sahu et al. (2020)
demonstrated the relevance of feature selection (for input variables such as groundwater levels,
precipitation, temperature, and river flow). They examined the sensitivity of different feature
selections in three distinct sites in California, USA and came up with training dataset suggestions to
get more accurate predictions. They showed that precipitation and river flow are relevant
characteristics in many, but not all locations, nonetheless, creating reliable forecasts using only



temperature and historical groundwater level data is insufficient. The findings proved that while
analysing the relevance of various input factors, it is necessary to account for location dependency.
Climate, groundwater extraction, and surface water flows all have complex relationships with
groundwater level in agricultural regions. Sahoo et al. (2017) developed a modelling framework based
on spectral analysis, ML, and uncertainty analysis to gain a better understanding of the respective
relevance of each factor and to estimate changes in groundwater levels. They proposed that this
modelling framework may be used to simulate groundwater level change and water availability as an
alternative to traditional methods, particularly in areas where subsurface parameters are unknown.
Kraft et al. (2020) developed a new hybrid modelling technique that learns and predicts global spatio-
temporal variations of observable and unknown hydrological variables. The results demonstrated that
the model accurately reproduces the observed water cycle variables (evapotranspiration, runoff,
snow water equivalent, and variations in terrestrial water storage). Furthermore, many ML techniques
were applied to investigate different hydrological processes, such as using long-short term memory
(LSTM) networks for discharge predictions in ungauged basins with rainfall-runoff data from
catchments in the United States (Kratzert et al., 2019), employing advanced ML approaches to address
difficulties in the mitigation of urban water hazards (Allen-Dumas et al., 2021), estimating
groundwater nitrate concentrations on a large-scale level using several ML techniques (e.g., multiple
linear regression, random forests and boosted regression trees) (Knoll et al., 2019), implementing an
LSTM neural network to construct an integrated framework in order to estimate the snow water
equivalent (SWE) based on daily snow observations (Meyal et al., 2020), proposing ML based
algorithms for global design flood predictions (Zhao et al., 2021) or introducing novel ML models in
order to map the susceptibility of the erosion of soil (Mosavi et al., 2020). Artificial intelligence
techniques to predict groundwater levels and to model different processes connected hydrological
sciences are becoming more popular and gaining the attention of many academics in the field. ML can
assist hydrologists in modelling transdisciplinary and complex systems that are difficult to simulate
using traditional numerical modelling approaches. ML and neural networks will be critical tools for
hydrological analysis in the upcoming years as they allow us to handle massive volumes of data and
extract meaningful and hidden information, as well as relationships between hydrological variables.

It is expected that climate change, urbanization and population growth will increase water
demand and consumption. Therefore, to preserve current agricultural practices and increase water
security, the development of more realistic and accurate hydrological models is particularly important.
The modelling of these complex hydrological processes is challenging. Process-based numerical
models are expensive, time-consuming, and most importantly cannot adequately represent
hydrological processes with the required spatial scale and accuracy. Thus, the development of
modelling tools and the implementation of innovative modelling frameworks are necessary. Due to
the absence of large amounts of data in recent decades, employing ML approaches to model the
groundwater domain has not been a frequent topic for hydrological research. However, recent
droughts and low-flow episodes have highlighted the importance of having effective groundwater
models and projections. National water authorities (for example Rijkswaterstaat in the Netherlands),
who are responsible for the sustainable and safe management of water, must update their water
management technologies in order to increase drought preparedness and accurately predict extreme
groundwater levels in the upcoming future. Accurate short- and long-term predictions of groundwater
levels would aid hydrologists in capturing high and low flow events, hence improving water
management planning and mitigation approaches, with huge agricultural implications and major
improvements in urban water management.

The main objective of this study is to show a potential of a groundwater ML model to estimate
the depth of groundwater for the entire area of the Netherlands (41800 km?). During the modelling
process ML and big data analysis have been utilized to improve current modelling approaches and
groundwater simulations. This was accomplished by creating two separate machine learning models
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(Random Forest and CatBoost). The selection of input features for these models (meteorological,
physical, and topographical) were based on their possible impact on groundwater levels. Additionally,
models were introduced to new training datasets (e.g., land-use type, vegetation-index, soil type) next
to the original training datasets. The purpose of introducing additional input data is to verify the
importance of different parameters and assess their impact on model performance and predictions
skills. A physically based numerical model's outputs were also used as an input variable. Potentially,
implementing this physically based ML approach, the performance of ML models will be improved by
coupling physical processes, allowing physical laws, such as mass balance or the Darcy’s law to connect
different model components in a more realistic way. This hybrid-modelling technique could better
explain and investigate complex natural systems than process-based or data-driven approaches alone,
allowing for a greater understanding of these processes. The research focuses on the possibility of
improving the existing numerical model to demonstrate the potential of machine learning for accurate
groundwater level modelling. In order to enhance the performance and prediction skill of
groundwater level models, the influence and relevance of ML model and input dataset selection are
examined. To show the potential for improvement, a thorough comparison of various ML model
selection and input variable selection was conducted. A groundwater map was created in addition to
the standard assessment metrics to illustrate the increased groundwater levels and the error between
the improved ML model and the existing numerical model. Comprehensive assessments of current
groundwater levels have been conducted in recent decades using observations and process-based
numerical models. However, no systematic study focusing on applying machine learning techniques
to estimate present (and likely future) groundwater levels over the whole Netherlands has yet been
published. Since the groundwater system plays a significant role in developing adaptation and
mitigation approaches, as increasing groundwater levels enhance flooding and decreasing
groundwater levels exacerbate droughts, such a model might support environmental decision-making.
Koch et al. (2021), Hauswirth et al. (2021) and Wang et al. (2018) demonstrated that utilizing decision
trees and random forest regression to reliably estimate groundwater levels is a potential approach.
Based on the findings of these research, the focus of this paper's modelling is on ML techniques and
methodologies that use decision trees and random forests. The projected result of this research will
identify the potential of ML models, with adequate setup and input variables, to forecast future
drought spells and assist water scientists in adapting current water management techniques. The
produced map can potentially be used as a starting point for more detailed groundwater models in
the future.

To summarize, the primary goal of this work is to investigate the influence and significance of
ML model selection and input datasets to improve the performance and prediction skill of
groundwater level models that can be used to identify possible future low-flow periods or droughts.
The findings can be applied for further research to enhance groundwater level predictions and, as a
result, water management approaches in order to minimize the negative effects of possible future
groundwater level extremes that could lead to severe droughts or floods. The study provides a
thorough description of methodology, demonstrating the procedures involved in developing a ML
model capable of predicting hydrological processes. The results are then discussed in depth, as well
as their potential applicability in real life.

2. Methods

In this section the study area and the datasets used for training are introduced. The
configuration of the ML model and variables are described, including the modelling framework,
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implemented ML algorithms, supplementary datasets, and the properties of the employed physically
based model. Furthermore, the different parameter tuning, assessment metrics, and sensitivity
analysis methodologies employed during model construction are discussed.

2.1 Study area

This research is carried out for the entire Netherlands, located in Western Europe, and
covering approximately 41,800 km?2. The Netherlands is mostly flat, with the highest point being 327
meters above sea level. Since about 26% of the country's land area is below sea level and more than
half of it is extremely prone to floods, a thorough assessment of the Dutch groundwater system is
critical. Additionally, according to Klein Tank et al. (2014), Brakkee et al. (2021) and Philip et al. (2020)
changing precipitation patterns and evaporation demand due to climate change might lead to longer
and more intense dry periods. The agricultural sector plays an important role in the countries’
economy (54% of total land surface being used as a farmland). As groundwater is essential
to meet crop water requirements, massive fluctuations without mitigation strategies can result in
significant losses. As a result, the Netherlands, like many other nations throughout the world, requires
precise, accurate, and realistic groundwater models to minimize and prevent the damaging effects of
future groundwater level extremes.

2.2 Input variables

2.2.1 Meteorological variables

Input variables were selected based on their physical importance to the target variable (i.e.:
groundwater levels). Various features were used during the development of the ML algorithm that are
likely to have a direct or indirect impact on groundwater levels. The two main meteorological feature
which plays an important role in the fluctuations of subsurface water levels are precipitation and
evapotranspiration. Meteorological data was gathered for the 13 major weather stations in the
Netherlands (Fig 1.) obtained from KNMI. The various data values for different regions represent
meteorological variability, which could have a significant impact on groundwater level dynamics. Daily
precipitation and evapotranspiration observations are included in these files, which were transformed
and summed to weekly data. The quality of these datasets was excellent, although missing values
were corrected on some occasions based on weather seasonality.

2.2.2 Hydrological parameters

Hydrological parameters were also included to the ML model to improve its prediction ability
using data from the Rijkswaterstaat. The primary water flows in the nation were represented by
discharge measurements from the country's principal rivers and inflow locations (Rhine river at Lobith
and Meuse river at Eijsden Gens) as well as seawater level observations (SWL) from Haringvliet (Fig
1.).

2.2.3 Environmental variables

Land use and soil data were also employed to improve model performance and gain insight
into whether these features have a significant impact on groundwater level prediction. Land use maps
represent the spatial distribution of different physical properties of land coverage. The LGN4
(Landelijke Grondgebruikskartering 4) model was used, developed by the Wageningen Environmental
Research in 2003. The LGN4 file is a 25-meter-resolution raster file that distinguishes 39 different
forms of land use. The file categorizes the most major agricultural crops, as well as a number of natural
and urban classifications. Satellite pictures from 1999 and 2000, as well as other related geographical
data were used to build the file. In order to synchronize different datasets, the resolution of the model
was changed to 250 meters. This equals the resolution of all the used data including the physically
based groundwater simulation model. The 39 different land use classes were reduced to 16 categories
to ensure that each land use is sufficiently represented in the training of the ML model (the original
and changed classes can be found in Appendix A.). This data was implemented as a categorical data



type. Appendix A includes Fig. A/1. and Tab. A/1. which shows the land use map of the Netherlands
and the distinct classes, respectively. Employed classes of land usage can be found in Tab. A/2.

-
Elevation (masi) , -

I-ﬁ.s: m

22767 m

Figure 1. Left: Digital Elevation Map of the Netherlands. Same data was used in the model as an input feature.
Right: Regions with different meteorological observations and the main hydrological measurement locations.
The numbers show the locations of meteorological observation stations. The rectangles show the sea-level
measurements at Haringsvliet (blue), the discharge observations of the Rhine at Lobith (red) and the discharge
observations of the Meuse at Eijsden Grens (green).

Category Soil type \

1 Peat
Sand
Swampy sand
Light loam
Heavy loam
Light clay
Heavy clay
Loam
Buildings
Water

O 0o NOULL b WN

[N
o

Table 1. Soil type categories in
the used dataset

Figure 2. Soil type map of the Netherlands

Additionally, the distance between each cell and the nearest water body (canals, ponds, rivers,
lakes, and the North Sea) was calculated and added as an extra input feature to check for a potential
link with groundwater levels. The same land use dataset and map were used in this computation, with
a resolution of 250 meters. The calculations were made in meters.
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Furthermore, a soil type map (Fig. 2.) was employed as an additional input feature by using
the soil type map (Grondsoortenkaart 2006) of Wageningen Environmental Research from 2006. The
soil type map shows the location of the peat soils and mineral soils in the Netherlands. The various
soil types have been encoded and 10 categorical variables were used in the model (Tab. 1.). Elevation
data was also used as an input feature to see whether there was a relationship between groundwater
level and topography. Data from AHN (Actueel Hoogtebestand Nederland) used with a resolution of
250 meters. Fig. 1. shows the visualization of the implemented dataset.

2.2.4 Groundwater simulations

Additionally, the modelling methodology was based on a hybrid approach, thereby the results
of a physically based groundwater simulation were employed as a supplementary dataset alongside
the groundwater level observations. With such a model and additional data, it is feasible to increase
the models' performance and robustness by incorporating physical consistency in the original, data-
based model. The National Hydrological Model was used, which is the integrated country-wide ground
and surface water model of the Netherlands, developed by Deltares and WENR. The groundwater
simulations were performed with a spatial resolution of 250 meters and over a time span of 1980 to
2019, which mostly corresponded to the time frame of the data utilized as an input variable. Firstly,
the simulation results were combined with the groundwater observation dataset. Groundwater level
values from the simulation results were selected for the related coordinate (with a total of 4002 well
locations) over the investigated period with weekly temporal resolution. The original input dataset
(which included meteorological and hydrological measurements and observations) was then merged
with the groundwater observation and simulation values on the appropriate date and coordinate
values by region. Tab. 2. includes the summary of all the utilized input features, including basic
information and the source it was obtained from.

KNMI (Koninklijk Nederlands
Meteorologisch Instituut)

Daily precipitation data for 13
separate regions nationwide,
summed into weekly data for
modelling

Daily precipitation data for 13
separate regions nationwide,
summed into weekly data for
modelling

Weekly discharge measurements
from Lobith

Weekly discharge measurements
from Eijsden Grens

Weekly seawater level
observations from Haringsvliet
Groundwater simulations for the NHM (National Hydrological
period 1980 to 2019 with a spatial = Model), (Deltares, WENR)
resolution of 250 meters

generated for the whole

Netherlands

Precipitation

KNMI (Koninklijk Nederlands
Meteorologisch Instituut)

Evapotranspiration
Discharge of Rhine Rijkswaterstaat Waterinfo
Discharge of Meuse Rijkswaterstaat Waterinfo
Sea-water level

Rijkswaterstaat Waterinfo

Groundwater simulations

Land use type

Land use map of the Netherlands
from satellite observations in
2003. The original resolution of 25
meters and classes of 39 were
changed to 250 meters and 16
classes, respectively
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LGN4 (Landelijke
Grondgebruikskartering 4),
(Wageningen Environmental
Research)



Soil type Soil type map from 2006 including = Grondsoortenkaart 2006

10 different categories (Wageningen Environmental
Research)
Elevation DEM (digital elevation map) of AHN (Actueel Hoogtebestand

the Netherlands. In order to keep Nederland)
the model consistent, the original
100-meter resolution was
changed to 250 meters
Water distance Water distance was calculated for = Calculated (base model was
every cell (pixel of 250-meter LGN4)
resolution) using the
aforementioned land use data

Table 2. Summary of the used input features

2.3 Target variable

Groundwater level data has been collected from 1980 to 2019 (39 years) for 4002 observation
wells all located within the border of the Netherlands. The data was obtained from DINOloket, which
hosts publicly available subsurface data from the Netherlands Geological Survey (TNO) and the BRO
(Basisregistratie Ondergrond). Although the utilized dataset is of high quality, the registered periods
are sometimes different and shorter than the original time frame. Since the groundwater level data is
deficient considering extreme values (very low or high groundwater levels) the 5% tails of the dataset
were eliminated, in order to increase the performance of the model.

2.4 Modelling framework

2.4.1 Data pre-processing

New potential in the modelling of many natural processes is arising as a result of the increased
availability and volume of environmental data. With sufficiently lengthy and detailed datasets, data-
driven modelling approaches (in this instance, machine learning) may be used to make accurate
hydrological forecasts. For several hydrological and meteorological variables, the Netherlands
possesses outstandingly long and high-quality observational records. In this study, various forms of
hydrological, physical, and meteorological observations, such as discharge measurements from major
rivers, soil type conditions, land use features, distance from water bodies, evaporation, and rainfall
data, were gathered over the period 1980 to 2019.

Even though data in the Netherlands is typically of good standard, real-world data contains
errors, noise, partial information, and missing values. The ML algorithm must be able to quickly
comprehend the data's attributes to be accurate and exact in predictions. Therefore, the datasets
quality has been increased by cleaning missing data, either by eliminating it or through imputation
(either with best guess or estimating it by considering seasonality). Outliers may have a negative
impact on the performance of our machine learning method; thus, these values have been identified
and removed. A general overview and visualization of the used datasets can be found in Appendix B.

2.4.2 Training and testing

The data was split into 50% training and 50% testing manually, in order to fully separate
distinct well locations. To provide an unbiased estimate of the test set error, random forests do not
require cross-validation or a separate test set. During the run, it is approximated internally. This
division allows the model to be validated for nearly 2000 distinct well locations, demonstrating the
generalization's effectiveness. To show the performance quality of the investigated ML algorithms the
results were compared with the evaluation metrics of the numerical results. The used parameter
settings (results of the hyperparameter tuning) can be found in section 2.4.5. The model is calibrated
for the 90% of the existing data, since in the tails of the dataset (5% smallest and 5% largest
groundwater values) does not contain sufficient amount of extremely high or low values, thereby it
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has a detrimental impact on the model's performance. Due to this constraint the model is not being
trained on extremely high (primarily occurring in the southern Netherlands, particularly Tilburg and
Maastricht) and extremely low groundwater level data (mostly typical in the northern regions). As a
result, the model's efficacy in predicting groundwater level extremes is restricted.

The research examines the effects of model selection, with one of the most anticipated
outcomes being the capturing of correlations between groundwater levels and other dependent
elements including meteorological and hydrological observations and a process-based national
groundwater model of the Netherlands. The two implemented machine learning methods were
compared to see how well they improved the numerical model outcomes. By using different
evaluation metrics and visualization practices the generalized groundwater model have been
validated, thus a nation-wide groundwater level map could be developed. Furthermore, a thorough
analysis of the spatial differences in model performance and regional variations in feature importance
was carried out using the spatial separation of the model's outputs. In addition, a separate machine
learning model (using the same ML methods) was applied to estimate the differences between the
physically based numerical model outputs and the actual groundwater level. As a result, next to the
country's groundwater level map, an error map was created, which may be utilized as a starting point
for future groundwater models and research in general. Fig. 3. visualizes the general overview of the
implemented modelling framework.
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Figure 3. Methodological framework of the implemented groundwater
model

2.4.3 Random Forests

Two distinct machine learning approaches were used in this study. Random Forests (RF) and
Gradient Boosted Regression Trees, as noted in Section 1., are widely employed in the hydrological
sector, owing to their relative ease of implementation and the excellent quality of outcomes. These
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methods have been tested and evaluated to see how well they function in terms of predicting
groundwater levels.

RF are an ensemble learning approach for classification, regression, and other problems. Given
its outstanding or great performance across a wide range of classification and regression predictive
modelling tasks, it is arguably the most common and widely used machine learning method. The
underlying idea of this approach is that many uncorrelated models are working together to make
decisions that will outperform any single model (i.e., Decision Trees alone). RF are consisting of several
Decision Trees, which are a sort of regression model that is built in a tree structure, with the data
being split into subsets many times until no more can be created (Fig. 4.). The predictions from the
trees are averaged over all Decision Trees in the model, yielding better results than any single tree.
The ensemble's models are then utilized to make a prediction for a new sample, and the forecasts are
averaged to provide the forest's prediction (Applied Predictive Modelling, 2013).

DECISION TREE-1 DECISION TREE-1 DECISION TREE-1

RESULT-1 REFWLT-2 REBULT-M

MAJORITY VOTING / AYERAGING | 4

-

FiMAL RESULT

Figure 4. Simplified framework of Random Forest models (source:
What is a Random Forest? | TIBCO Software)

2.4.4 CatBoost

In addition, a type of Gradient Boosting approach (i.e., CatBoost) was applied in this study to
determine if it could outperform the RF algorithm's predictions. Gradient boosting refers to the
process of enhancing a single weak model by merging it with several additional weak models to create
a collectively strong model. It can detect any nonlinear relationship between the target data and the
implemented features. CatBoost (CB) is an open-sourced machine learning algorithm developed by
Yandex. This method was developed to create more generic models for massive datasets at an
exceptional computation speed. The method was chosen over other Gradient Boosting Decision Tree
algorithms (such as XGBoost) because it can function without a lot of data preparation and has
significantly higher prediction skills.

2.4.5 Hyperparameter tuning
When it comes to model quality, obtaining more data and feature engineering usually pays off
the most, nevertheless, when there are no other possibilities to gather more data, the model
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performance can be further enhanced by hyperparameter tuning. The settings of an algorithm that
may be modified to improve performance are known as hyperparameters. Calculations were
performed for both developed ML algorithms utilizing different packages from the Scikit-learn library
that use cross validation approaches to see which parameter setting results in the best performance
and prediction skill. Using a K-fold cross validation approach, the Scikit Learn’s
RandomizedSearchCV was used with a wide variety of hyperparameter values to narrow down the
available options. This approach selects combinations randomly and attempts to identify the greatest
possible combination, making it computationally less expensive. The basic framework of such a cross
validation method is the following:

Splitting the data into groups

Taking one group as test dataset

Training the model with the remaining groups

Fitting model on the test dataset

Evaluating the score and comparing it with the performance of other groups with different
parameters

ik wN e

So, in conclusion, this method randomly divides the collection of observations into k groups, or
folds, of roughly similar size. The first fold is used as a validation set, and the model is fitted on the
remaining k - 1 folds (An Introduction to Statistical Learning, 2013). The results of the randomized
search of different hyperparameters including a short description can be found in Tab. 3. and Tab. 4.
for CB and RF, respectively.

Subsequently, given the previously filtered down results, Scikit Learn's built-in package
GridSearchCV was used to determine the optimal parameter sets for the CB algorithm. The
randomized search results were manually enlarged using the closest neighbouring values. Following
that, GridSearchCV analyses all possible parameter set combinations and determines which is the best
alternative. The final parameter set for the CB model can be found in Tab. 5. However, the RF model
was only tuned with randomized search due to the large computational demand. The results of several
runs were averaged and utilized in the final model.

subsample Random selection of training data range (0, 2, 0.2) 0.6
for defining splits

rsm Random selection of covariates range (0.3, 1.7, 0.2) 0.7
defining splits

min_data_in_leaf Minimum data in each leaf range (1, 25) 9

learning_rate Used for reducing gradients step range (0.025, 0.2, 0.025) 0.125

12_leaf_reg Coefficient at the L2 regularization range (0, 12) 0
term in the cost function

depth Depth of a tree range (2, 20, 2) 8

bagging_temperature Defines the settings of the range (0, 1.5, 0.5) 0.5

Bayesian bootstrap

Table 3. Hyperparameter description, tested values and results with RandomizedSearchCV for
the CatBoost model. For testing range different values were selected. The interpretation of the
notation is the following: range(start value, end value, step size).

n_estimators Number of decision trees in the forest range (100, 2000, 20) 200
max_depth Maximum depth of the individual trees range (1, 100, 5) 16
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max_features Number of maximum features provided to auto, sqrt sgrt

each tree
min_samples_split Minimum samples to split on an internal range (1,12) 7
node
min_samples_leaf Minimum samples of leaf nodes range (1,50) 21
bootstrap Sampling with or without replacement true, false true

Table 4. Hyperparameter description, tested values and results with RandomizedSearchCV for
the Random Forest model. For testing a range of different values were selected. The
interpretation of the notation is the following: range(start value, end value, step size).

subsample 0.4,0.6, 0.8 0.4
rsm 0.5,0.7, 0.9 0.5
min_data_in_leaf 59 13 5
learning_rate 0.1,0.125,0.15 0.1
12_leaf_reg 0,48 8 Table 5. Tested and optimized
depth 6, 8 10 6 hyperparameters with
bagging_temperature 0, 0.5, 1 0 GridSearchCV (CatBoost model)

2.4.6 Sensitivity analysis

In general, the various input variables have varying effects on the model's target variable and
prediction skill. A sensitivity analysis was performed to determine which features are the most
relevant and which ones have an insignificant effect on groundwater level prediction. This approach
is effective for working with big amounts of data since it explores the link between model performance
and datasets, allowing for data reduction without losing information. Feature importance was
estimated using a Scikit-Learn built-in tool. When producing a prediction, this approach provides
scores to input characteristics, representing the relative importance of each item. This approach and
built-in tool are efficient in minimizing model input data and better understanding data-prediction
linkages. Implementing a sensitivity analysis and investigating the feature relevance might provide
important information about the spatial patterns and trends of various input variables. This may result
in data reduction, as various locations with unique meteorological, hydrological, and environmental
features may have different weight factors for the input variables.

2.4.7 Evaluation

The models are evaluated by comparing their results to those of prior models and
groundwater level observations, using different performance metrics. A sensitivity analysis was also
performed to examine the significance of various input features. In order to ensure that the model is
appropriately evaluated, training on full dataset must be avoided. The data was split into 50% training
and 50% testing for this purpose. The model will not see the testing data in this case, which is critical
to avoid overfitting to the training set. With this approach the model can be validated with
approximately 2000 well locations, thereby a nation-wide groundwater map can be developed.

2.4.8 Evaluation metrics

The mean squared error (MSE), root mean squared error (RMSE), R-squared, and Pearsons’s
correlation were used to summarize the model's performance. These metrics were chosen based on
past research on the use of machine learning algorithms for groundwater forecasts, as well as
on machine learning model pipelines in general.
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The degree of inaccuracy in statistical models is measured by the mean squared error (MSE).
The average squared difference between observed and predicted values is calculated. The MSE equals
zero when a model has no errors. The error is calculated by the following equation:

C— 5.2
MSE — Z(yln i) (1)

In the equation y; denotes the i" observation value, j; the corresponding prediction value and n the
number of observations.

Root Mean Square Error (RMSE) is the standard deviation of the prediction errors. It can be
calculated by taking the square root of the MSE, as it follows:

2 — 9>

n

RMSE =

In a regression model, R-Squared is a statistical measure of fit that shows how much variance
in a dependent variable is explained by the independent variables. A score of zero indicates that the
linear model is no better than the mean model, whereas a value of one indicates that the linear model
is perfectly fit. The following equation can be used to compute the value:

, RSS
RZ=1-—— (3)

The sum of squares of residuals (the amount of variance not explained by the regression model) is
represented by RSS, while the total sum of squares is denoted by TSS (how much variation is in the
dependent variable).

The test statistic Pearson's correlation coefficient assesses the statistical link, or association,
between two continuous variables. In this case the correlation is used to investigate how strong is the
relationship between observed and predicted groundwater levels. The formula can be written as
follows:

. nQyid) — EydE ) @)

JmEy? - Ey0linE 97 - €907

The value of r ranges from -1 to 1, with 0 indicating no link between the two variables and -1 and 1
indicating a significant negative and positive relationship, respectively.

3. Results

3.1 Potential of ML models in groundwater prediction

3.1.1 Importance of model selection: Random Forest or CatBoost?

A generalized groundwater model was created to evaluate the influence of ML model
selection. Such a model can be used to model groundwater level (and errors between the numerical
model and the observations) throughout the Netherlands. This model incorporates the groundwater
simulation results (section 2.2.4) as well as the input variables discussed in sections 2.1.1, 2.2.2 and
2.2.3. Sufficient groundwater level data for the total of 4002 observation wells were available. These
groundwater level time series were linked to the input variables, which included soil type, land use
type, elevation, distance from nearest water body, and the outputs of the existing numerical model,
by combining them based on their coordinates. Meteorological variables were not acquired for each

17



well location but pooled into 13 separate areas and thus connected to the training data. Additionally,
the same time series of hydrological observations (discharge of the Rhine and Meuse, seawater level
at Haringsvliet) were used for every well location.

The characteristics of the used numerical model are described in section 2.2.4. Fig. 5. shows
the visualization of observations and predictions for the implemented ML models and the numerical
model. The plot represents the errors between the numerical simulation results and the groundwater
level observations for every investigated location as well as the error of the implemented ML models,
while Tab. 6. lists the overall assessment criteria of the model. The model predicts the observations
perfectly if the values are placed on the blue line, whereas values above and below the line reflect
overpredictions and underpredictions, respectively.

Scatter plot of groundwater level observabons and RF model results Scalter plot of graundwater level sbservations and CB model results
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Figure 5. Scatter plot of modelling errors. Upper left: Scatter plot of RF model. Upper right: Scatter plot of CB
model. Down: Scatter plot of the used numerical model. The magnitude of errors are similar considering the two
imolemented ML algorithms. The numerical model has extreme outliers, which results in the magnitude difference
of the plots

The plot (Fig. 5.) indicates that both ML methods can enhance the numerical model's outputs,
particularly when error levels are quite high. The figure shows error values for the numerical model in
the range of 120 and 90, but these values were reduced by approximately 70% and 50%, respectively.
However, for very low error levels the performance of each model is relatively identical. The RF model
appears to be slightly better at correcting very extreme, higher values, and the models are mostly
identical at predicting low-error values. Further information can be obtained by investigating the
implemented evaluation metrics listed in section 2.4.8. These metrics were calculated for the test
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data, approximately 2000 wells, dispersed across the Netherlands. Tab. 6. supports that both ML
algorithms could enhance the model performance in general. The MSE increases as the difference
between predicted and expected values grows. The MSE value of the original numerical model
(MSEnumerical = 7.8182) was improved by roughly 55.9% using the RF model. Furthermore, the CB model
managed to improve the performance of the existing numerical model and the implemented RF
model, by 56.2% and 0.3% respectively. Calculating the root mean square error, which
calculates average difference between the predicted values and the actual values in the dataset, is
another technique to analyse how well a regression model fits. As Fig. 6. and Tab. 6. show, the RMSE
value is considerably improving compared to the original value of the numerical model (RMSEnumerical
=2.7961). The improvement is approximately 34% for both the RF and CB model, respectively.

8 W Numerical model

N Random Forest
7 . CatBoost

7.8182 3.445 3.4219
’ 2.7961 1.856 1.8498
g 0.9202 0.9587 0.9627
g 0.960 0.983 0.982
’ Table 6. Evaluation metrics of the used numerical mode
2 and the developed ML models (RF and CB)
! - - Figure 6. Barplot of the evaluation metrics for the used
0 numerical model and the developed ML models (RF
MSE RMSE R? Pearson R
Evaluation metrics and CB)

As a potential improvement an approach called ensemble averaging has been also utilized.
Ensemble averaging is the process of constructing numerous models and integrating them to get a
desired output rather than just one model in machine learning. Because the numerous errors of the
models "average out", an ensemble of models frequently outperforms a single model. As Fig. 7. and
Tab. 7. show that the method enhances the performance skill of both models. This is because each
model is limited to learning only a portion of the structure of the data and averaging them
partly compensates the errors of the others.

Scatter plot of groundwater level observations and the results of averaging

40

3.137
1.771
0.964
0.984

Table 7. Evaluation metrics
of the averaged model

Predictions

Figure 7. Scatter plot of model errors: averaged ML
model (including the results of RF and CB model)
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3.1.2 Investigating the feature importance of the general model

Another major objective of this research is to investigate how different input factors impact
the model's prediction abilities and how useful they are in predicting groundwater levels. For this
purpose, the feature importance of different scenarios was calculated with a built-in tool of Scikit-
Learn. The implemented tool gives input features a score depending on how important they are in
predicting the outcome. The higher the score, the more the specific variable is responsible for
predicting the output. Using this method and examining how different characteristics impact model
behaviour might assist reduce the amount of data needed for computing, thereby decreasing
computational time and demand. Feature importance was calculated for both implemented ML
algorithms (RF and CB). Firstly, the importance was calculated for the original setup. The calculations
were done including the groundwater simulation results as well as excluding them. This was essential
since the numerical model outputs already had considerable correlations with actual groundwater
levels, making this characteristic much more relevant in every case than the other input variables. By
removing groundwater simulations, other input variables, whose ratio is the most essential to explore,
may be shown more clearly. Additionally, the data was divided into two groups to investigate the
changes in feature relevance between the low and high lying parts of the Netherlands: well
observations and corresponding input features when the elevation is less than 7 meters and greater
than 7 meters.

RF GW simulations i s GW simulations
Elevation Elevation
WaterDistance WaterDistance
LandUseType LandUseType
§ SoilType § SoilType
2 2
§ Discharge of Meuse @ Discharge of Meuse
Evapotranspiration Evapotranspiration
Discharge of Rhine Seawater-level
Seawater-level Discharge of Rhine
Precipitation Precipitation
o 2 4 & 8 100 o 1 2 30 4 S & 0 &
Feature importance (%) Feature importance (%)
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WaterDistance WaterDistance
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2 Discharge of Meuse 2 Discharge of Meuse
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Figure 8. Feature importance of the implemented ML models. Upper left: RF including the groundwater simulations.
Upper right: CB including the groundwater simulations. Down left: RF excluding the groundwater simulations. Down
right: CB excluding the groundwater simulations.

The feature importance of the original model was calculated for both ML models. Figure 8.
depicts the computed significance by incorporating and eliminating groundwater simulations (so the
two cases are identical, the exclusion is only for visualization purposes). As the figure shows, the order
of the variables is almost the same for the RF and CB models. The only difference is that the RF model
considers the importance of the discharge of Rhine River slightly larger than the seawater-level, while
the CB model changes these two features. The results show that for both models the most important
features are the elevation and the water distance, followed by the land use type and soil type. Since
these features have been used as constraints (no temporal variation) the implemented algorithms
might have given them larger weight compared to the remaining variables which are changing with
time. These factors are primarily responsible for defining the potential magnitude of groundwater
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levels, whereas variables with temporal changes are responsible for determining smaller-scale
fluctuations. The exact values of feature importance can be found in Appendix C.

3.1.3 Feature importance of low and high lying areas of the Netherlands

In addition, for both ML models, the feature significance for low and high elevated areas of
the Netherlands was estimated. The chosen boundary between low and high lands was set at 7 meters
above sea level, which correctly represents the country's northern and southern parts. In this case,
Fig. 9. only shows the plots of the reduced feature importance (excluding groundwater levels) for
every case. The importance of the numerical model can be found in Appendix C. As the graph depicts,
here are no substantial changes between the two scenarios. The importance of different features is
similar for both the low and high lying areas of the country. On the contrary to previous cases the CB
model considers the importance of water distance slightly larger than elevation, however this might
be the effect of the reduced amount of data used in this scenario. To summarize, the results
demonstrate no significant changes between the two situations, indicating that the model does not
account for variations in low and high-lying areas. The exact values of feature importance can be found
in Appendix C.
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Figure 9. Feature importance of the implemented ML models, for low and high lying areas of the Netherlands. Upper
left: RF low lying area. Upper right: CB low lying area. Down left: RF high lying area. Down right: CB high lying area.

3.1.4 Averaged model to investigate the possible impact of timeseries

Furthermore, a simplified model was created to study the impacts of timeseries and to provide
a basic overview of the ML models' capability to estimate groundwater levels. The available input data
was averaged for each observation well site throughout the whole examined time period for this
model (in most of the cases approximately from 1980 to 2019, however at some locations data was
not available for the entire time frame). Similar to the general model presented in section 3.1.1 the
5% lowest and highest groundwater level measurements were eliminated to better represent the
majority of the data, resulting in 3620 wells and the corresponding averaged data being utilized for
this model. During the training process 70% of the data was used for training and 30% for testing.
Since the results were satisfactory without a specific hyperparameter tuning for this scenario, no
separate tuning was carried out.
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Tab. 8. and Fig. 11. shows the calculated evaluation metrics for this scenario. The results are
showing that both ML algorithms are capable of significantly improving the predictions of the
numerical model. As Fig. 10. shows that the utilized ML methods correct severe error values while
also preserving low error values near to the error margin of zero. Thereby, considering the evaluation
metrics and the error scatter plots, it can be safely concluded that both ML algorithms are doing great
in predicting averaged groundwater levels. Since these findings are based on averaging several
decades of observations into a single variable, this model provides a very broad picture of the
possibilities of ML approaches in such contexts. The results and this simplified model, on the other
hand, can be used as a starting point for groundwater level modelling in unknown locations and as a
base for future water management planning.

Scatter plot of groundwater observations and predictions - RF model Scatter plot of groundwater observations and predictions - CB model
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Figure 10. Scatter plot of modelling errors — simplified, averaged scenario. Upper left: Scatter plot of RF model. Upper
right: Scatter plot of CB model. Down: Scatter plot of the used numerical model.

Additionally, the feature importance has been calculated for both ML models. This was
essential in order to compare the simplified model's importance to that of the original, generalized
cases. Due to the absence of temporal characteristics in this model (timeseries were averaged), novel
combinations and relationships of feature importance might emerge. The reason for this is that there
are input variables that do not change over time, such as land use type, soil type, elevation, and
distance from the nearest water body. The algorithms learn that these variables are always the same
for a well location, thereby assigning them a higher importance than the actual value should be. This
limitation of the general model is further discussed in section 4.1 and 4.5. Groundwater level
simulations were also included as input data throughout the modelling process, yet due to their
apparent and considerable relevance and to better illustrate the ratio of other characteristics, they
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were removed from the plot (Fig. 12.). The importance of groundwater level simulations was 97.497%
and 72.656% for RF and CB models, respectively. As Fig. 12. shows the feature importance excluding
the timeseries are significantly different compared to the case discussed in section 3.1.2 and 3.1.3.
The general model did not consider the temporally changing variables that significant as the simplified
model. Precipitation (for both algorithms) became the most important variable followed by the
seawater-level and evapotranspiration. This shows a realistic picture of actual hydrological processes
since the precipitation is one of the most important influential factors of groundwater level dynamics.
The importance of soil type, land use type and elevation are considerably smaller compared to the
general model, although water distance is still one of the most important parameters. The importance
and relevance of water distance is obvious but incorporating it into such models is not straightforward.
Water distance as an input feature might be an effective way to improve model performance and
facilitate modelling in general in unknown places in future research

mm Numerical model RF CcB Numerical

. —-cee VE3M 5372 7.394  27.747
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Table 8. Evaluation metrics of the simplified
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Figure 12. Feature importance plot of the simplified ML models (left: RF, right: CB)

Furthermore, similarly to the generalized model the feature importance has been calculated
for low and high lying areas of the Netherlands as well. Fig. 13. shows the relevance values of these
calculations. For low lying areas the elevation, evapotranspiration, sea-level and precipitation are the
most significant features. In these areas the groundwater level values are mostly lower compared to
the high lying areas, thereby small elevation differences can cause bigger differences in groundwater
levels by magnitude. In addition, these areas are located in the northern part of the country, hence
the larger importance of the sea-level and lower importance of river discharges. Contrary, the
importance of sea-level in high-lying areas are significantly lower, while the importance of river
discharge (especially true for the Rhine) is larger. The recharge of groundwater is mostly dependent
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on precipitation in higher areas, which is in line with the realistic explanation and the expected
outcome of the model.
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Figure 13. Feature importance for the simplified ML models (left: RF model — low areas, right: RF model — high areas)

3.2 Spatial variability of prediction error

To be able to build a realistic generalized groundwater level model and to check the
limitations, a thorough spatial analysis is required. With such an analysis the spatial variability of the
error (in this case mainly the MSE) and other evaluation metrics can be assessed regionally. It is
necessary to determine whether the inaccuracies have a general spatial trend. By answering this
question different regions can be separated, and the performance capability of the model can be
determined for distinct geographical locations.

3.2.2 General trend in prediction error

For this reason, to better represent the results spatially, Fig. 14. shows the spatial density of
errors between ML models and real observation values. The colour ramp represents the number of
values in a pixel. Both plots appear to be very similar. The majority of the errors are clustered at the
zero margin, and there is no valuable information to be gained from the scattered outliers. Thereby,
a residual plot was created to provide a better understanding and to see if there were any common
patterns in the model errors. The CB model's errors were subtracted from the RF model's errors and
displayed against actual groundwater level measurements. This means that a negative number
indicates a bigger CB model error, whereas a positive value implies a larger RF model error. As Fig
15. shows, and a slope value of m = 0.43 indicates, generally the errors of the RF model are higher
compared to the CB model. However, both models have very similar errors when lower groundwater
values are considered.

To investigate the occurrence of a general trend in the performance of the model spatially,
the average MSE was calculated for every different well location (the total of 1837 wells). Calculating
the average was necessary because the representation of spatial and temporal variability together is
out of the scope of this research project. Fig. 16. shows the various MSE values for each well site, as
well as the related heatmap, to better demonstrate spatial variability. By investigating the figure, it's
noticeable that both models have a fairly comparable geographic distribution of error. However, the
heatmap shows that both models are working with very limited errors in the northern regions of the
country (i.e., lower groundwater levels), and generally larger error rates in the southern provinces
(i.e., larger groundwater levels on average). The findings show that the constructed model is good at
predicting groundwater levels for values that occur more frequently, but not so effective at modelling
more uncommon and extreme values.
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Figure 14. Density scatter plots of the groundwater observations and implemented ML algorithms (RF and CB, respectively)
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Figure 15. Plot of residuals for the errors between RF and CB models

Additionally, 8 distinct well locations (Fig. 17.) were selected randomly with the single
condition of being geographically separated to provide a thorough picture of different models' spatial
behaviour and to give a general overview about model performance at random locations. Fig. 18. and
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19. shows the time series of the 4 of these previously selected sites (the remaining can be found in
Appendix D.). The time series are including five separate variables, which are the following: actual
groundwater observations, simulation results of the numerical model, results of the RF model, results
of the CB model and the results of the averaged model obtained from RF and CB models. Considering
the time series, it can be ascertained, that all the ML models are more sensitive to weekly fluctuations
and thereby better represent the actual groundwater level dynamics. In most of the cases the results
are properly representing the temporal variability of groundwater levels, however, as a disadvantage
of the utilized ML models, the time series are shifted on some occasions. These characteristics can be
the effect of two distinct attributes: 1) The results of the numerical model are already shifted in some
degree due to modelling errors, and since this is the most important feature for both ML models the
results will be close to these values. 2) During the modelling several features were used which were
either categorical (i.e., soil type or land use type) or fixed values (i.e., elevation or distance from closest
water body). Since these variables are not changing with time the weight of these values is increased.

Figure 16. Upper left: Point map of wells representing different MSE values for RF model. Upper right:
Point map of wells representing different MSE values for CB model. Down left: Heatmap of RF model
MSE. Down right: Heatmap of CB model MSE.

As a result, if the model learns during the training process that one or more of the constrained
variables belong to a specific groundwater level value, predictions will be erroneous in cases where
the groundwater value is significantly different, but the categorical or fixed variables are similar to the
previous case. The established modelling resolution of 250 meters, which might be a reason for such
errors, could be one explanation for this inaccuracy Fig. 18. depicts an example for this phenomenon:
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the MSE of the existing numerical model is lower compared to all the ML models, however the
Peason’s correlation is significantly higher for the ML algorithms. Evaluation metrics, including the

mean squared error and Pearson’s correlation can be found in Appendix E. This limitation is further
discussed in section 4.5.
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Figure 18. Time series of 2 different well locations. Up: Maastricht region (well ID: B60A1746_1); Down: De Kooy
region (well ID: B19A0327 1).
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As seen in Fig. 18. and 19., both ML models can make highly accurate predictions, but they
can also be wrong by a significant margin. One possible reason for this is the build-up of these
algorithms: the fundamental distinction between random forests and CatBoost (an in gradient
boosting algorithms in general) is in the way decision trees are built and aggregated. CB models are
building decision trees additively, while an RF model combines decision trees together to give the
output. Based on the figures, it can be concluded that ML approaches are better at detecting small-
scale oscillations in groundwater levels compared to the numerical model, owing to the inclusion of
hydrological and meteorological factors. However, due to the large amount of data erroneous values
cannot be completely avoided. Significant errors in the groundwater simulation dataset, as well as
missing or false measurements from the target (groundwater level observations) and input
(meteorological and hydrological observations) data as well as the implemented resolution (250m),
can result in inaccurate predictions that are not directly dependent on location. Further data
correction and the use of a higher resolution might correct or at least mitigate these problems.
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Figure 19. Time series of 2 different well locations. Up: Eindhoven region (well ID: B51A0450_1); Down: De Bilt
region (well ID: B39E0133_1)

28



3.3 Error case

3.3.1 General model

In addition to the previous model, an error model was created to see if the available data and,
more generally, machine learning techniques could be used to estimate the error between the
numerical model and the groundwater observations. This approach can be valuable because, after the
model has been trained (essentially after calculating the errors), it can be used to predict errors and
hence determine groundwater levels without the need for actual measurements. For this purpose,
the error between the numerical model and the actual groundwater measurements has been

computed in the following way:

Errors = Groundwater simulation results — Groundwater observations

In the first scenario, this error was estimated for all the sites for which data was available. (i.e., all the
well locations, approximately 4000, for all the inspected time period). Similarly, to the previous model
the extreme groundwater level values (5% tails of the dataset) were removed to improve the model's
performance. The available data was split into 50% training and 50% testing. The used input variables
were the same as in the previous cases, thereby all the meteorological, hydrological, and
environmental variables were implemented as well as the numerical model’s results.
Hyperparameters have been tuned to get the best possible results, although only the randomized
search was implemented for both ML models.

7.625 8.122
2.761 2.845
-27.423 -10.451
0.158 0.087

Table 9. Evaluation metrics of the error model

Scatter plot of calculated and predicted errors - RF model Scatter plot of calculated and predicted errors - CB model
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Figure 20. Scatter plot of calculated and predicted errors for both utilized ML models (RF and CB)
As Tab. 9. and Fig. 20. represents, the performance of the model with the aforementioned
setting is insufficient. The model is not capable to learn relationships and connections in the data,

thereby the predictions are constantly close to zero. Since the majority of the calculated errors are
very close to zero, the model becomes imbalanced and not sensitive to larger, more extreme, and
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infrequent groundwater level values. In addition, considering the plots in Fig. 21. It can be observed
that the residuals (ratio between calculated and the difference between calculated and
predicted errors) are not randomly distributed around the zero line in both cases. This generic pattern
demonstrates that the model is unable to extract sufficient information from the implemented input
features, making it unsuitable for error modelling in the current configuration.
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Figure 21. Residual plots for the implemented ML methods

3.3.2 Simplified model

A simplified, averaged model was created similarly to the previous cases in order to overcome
this and produce a generalized ML model capable of estimating the errors between groundwater level
simulations and measurements. This model was averaged throughout the investigated time period to
provide a single set of general input feature values for each unique well site. This scenario also
included the deletion of the 5% tails of severe groundwater level measurement readings. In order to
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improve the performance, the data was randomly split into 70% training and 30% testing (in general
more training data improves the prediction skill of such models). The model performance is similar
compared to the previous scenario, where all available data and timeseries were included without
averaging, as shown in Tab. 10. and the scatter and residual plots in Appendix F. The MSE and RMSE
measures are worse, but the correlation has improved significantly, which might be due to the
severely reduced data. The performance of the RF model is considerably better compared to the CB
model, hence for the upcoming scenarios only the RF model’s results are presented.

8.111 14.202
2.848 3.769
-2.441 -13.342
0.857 0.398

Table 10. Evaluation metrics of the simplified
and averaged error model

3.3.3 Simplified and reduced model

According to the prior findings, a general trend in the predicted error between groundwater
level calculations and measurements was detected. For a sufficiently working model this pattern has
to be eliminated or at least lowered. Potentially, one of the reasons what could cause this trend is that
the groundwater level data is still deficient for more extreme values. As a result, following the already
implemented approach 15% of the tails (so in total 30% of the data) was eliminated. The train-test
data ratio, as well as the parameters and input variables, remained unchanged. Tab. 11. and Fig. 22.
shows the evaluation metrics and hence the model in general is improved by approximately 50%
considering the MSE value. The outcome of this scenario demonstrates that it may be feasible to
predict the errors between simulation and actual data, but only under particular conditions. The
model is unbalanced due to a lack of data for high groundwater level values and removing these might
enhance prediction skills. However, the residual plots for this case in Appendix F. proves, that there’s
still a pattern existing, thus the model prediction errors are still not completely random.

Scatter plot of calculated and predicted error - simplified and reduced RF model

4.006
2.001
0.611
0.883

Table 11. Evaluation metrics of the simplified,
averaged, and corrected error model
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Figure 22. Scatter plot of calculated and
predicted errors — simplified and reduced RF
model
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3.3.4 Simplified, reduced model with the implementation of SMOGN approach
Furthermore, in order to improve the model and eliminate or lower the discovered trend in
prediction error values, a technique called SMOGN was used. Skewed distributions with a long tail are
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common in real-world datasets. This approach is useful for prediction problems when regression is
applicable, but the values to be predicted are infrequent or unusual. This can also be a good
alternative to log converting a skewed response variable, which in this case due to the occurrence of
negative values is not possible (Branco et al., 2017). As a result, the data values that occurred in the
minority (i.e., large error values related to deep groundwater levels) are oversampled in order to
better represent a normal distribution. Fig. 23. shows the original and the modified density
distribution of the implemented variables. Tab. 12. and Fig. 24 depicts the evaluation metrics and the
error scatter plot of this approach, respectively. The results of the evaluation metrics are considerably
worse compared to the previous, reduced scenario. The approach might be helpful correcting some
errors in the minority class, but on the other hand in worsens the prediction skill in the majority class,
thus the skills of the developed model in general.

Density histogram of errors

Original
4001 Modified 11.612
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g 200 - ‘ Table 12. Evaluation metrics of the simplified,
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Figure 24. Scatter plot of calculated and
predicted errors — SMOGN

3.3.5 Feature importance of the error model

Similarly, to the previous cases the feature importance was also calculated, to examine which
input variables might have the most crucial impact on the outcomes and the modelling performance
in general. To properly demonstrate these values, the best performing model have been chosen.
Groundwater level simulations were removed in order to better illustrate the findings, as they had a
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substantially greater feature relevance value than the remaining input variables (i.e., 89.47%). The
distribution of the remaining, approximately 10.53% of the feature importance can be found in Fig.
25. In lights of this figure, it can be concluded that the feature importance distribution is similar
considering the previous cases for groundwater level predictions. In general, meteorological factors
and physical features are playing a more important role in such models.
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WaterDistance
Elevation
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Features

Discharge of Rhine Figure 25. Feature

importance values of
error model (for the
case discussed in section
SoilType j 3.3.3)
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3.4 Groundwater map of the Netherlands

A groundwater map was also constructed to provide a better visual depiction of the research's
primary results. Two maps were created with a 250m resolution using the outputs of both ML
algorithms. The primary model's results, discussed in section 3.1, were employed. For the time period
under consideration, the values were averaged. Then, for each individual site, the data from the
summer months (June, July, and August) were selected and averaged. As a result, the map depicts
groundwater levels in the Netherlands overall during normal summer circumstances. Typical summer
conditions were chosen based on the importance of groundwater depth throughout the year. During
the summer, the nation may experience periods of insufficient rainfall, resulting in severe droughts.
This might cause major issues with irrigation and agricultural productivity in general, therefore
knowing the typical groundwater levels in such settings could be useful as a starting point for future
modelling and mitigation purposes. As Fig. 26. and Fig. 27. shows, that if the groundwater levels are
visualized in a continuous scale there are no significant differences between the two utilized ML
models. The figures accurately depict the anticipated outcomes: shallow groundwater levels in the
north-western and northern parts of the country, and deeper levels in the south and east. The results
also representing the locations of main river bodies (i.e., Rhine and Meuse Rivers) and the deeper
levels around the Hoge Veluwe National Park in Gelderland in the middle of the country. The CB model
is more sensitive to groundwater extremes, since the predictions are scattered on a larger scale
compared to the RF model. To better represent the differences between the two implemented models
the groundwater levels has been divided by quantiles as well. Groundwater levels were also split by
quantiles to better show the differences between the two deployed models. This method helps in the
better visualization of lower groundwater levels in the country's northern regions, allowing to explore
smaller scale variations between groundwater levels and the two models. Fig. 28. and Fig. 29. depicts
the groundwater maps, scaled by quantiles for RF and CB model, respectively. For the deeper
groundwater levels in the southern part, both models provide quite comparable estimates, therefore
there is no noticeable difference in their performance. From Fig. 28. it can be concluded that the RF
model is not completely accurate in some parts in the northern regions and overpredicting the
anticipated groundwater levels. This is mostly true for the region close to the city of Almere and the
area between Amsterdam and Rotterdam. The majority of these areas are lower than the actual sea
level, however the model predicts higher levels for some parts. On the other hand, the CB model has
a significantly better performance regarding these areas.
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Figure 26. Groundwater
levels predicted by RF
model for the whole area of
the Netherlands. This
continous map represents
the main characteristics of
grounwater level depth in
the country

Figure 27. Groundwater
levels predicted by CB
model for the whole area of
the Netherlands. This
continous map represents
the main characteristics of
grounwater level depth in
the country



Figure 28. Groundwater levels predicted by RF model for the whole area of the Netherlands. This quantile map
represents the smaller scale variations of grounwater level depth in the country, especially in the northern parts with
less deep groundwater levels

Another advantage of the CB model is that it's more sensitive to represent the actual (deeper)
groundwater levels around the dunes close to the North Sea as well as to the higher groundwater
levels for some parts of the Frisian islands. In summary, the maps are a good representation of the
general conditions of groundwater level distribution of the Netherlands. The implemented ML
algorithms are sensitive to regional differences, as well as more local, smaller scale variances. The
implemented methods and results are giving a fairly accurate representation of the actual
groundwater level conditions across the whole area of the Netherlands.
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Figure 29. Groundwater levels predicted by CB model for the whole area of the Netherlands. This quantile map
represents the smaller scale variations of grounwater level depth in the country, especially in the northern parts with
less deep groundwater levels

4. Discussion

In this study the influence and significance of ML model selection and input datasets have
been investigated to improve the performance and prediction skill of already existing groundwater
level models. For this purpose, two different ML algorithms have been utilized with a considerable
amount of input variables. The model incorporated the results of a nationwide numerical model. The
input variables were chosen based on their potential relationship with groundwater level dynamics.
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The selected variables reflect various meteorological, hydrological, and environmental processes, as
well as general physical conditions. Prediction skills were assessed and compared by using different
evaluation metrics and the importance of distinct features were calculated in different scenarios to
investigate the possibilities of spatial dependency. Additionally, a groundwater level map was created
for the whole Netherlands to represent the enhancement of groundwater level prediction quality.
Finally, an additional model was developed to check whether there is a possibility to predict the error
between groundwater level simulation results and actual groundwater level observations. Developing
such models and understanding the potential relationship between variables could be an aid for future
groundwater management and can be applied for further research to enhance groundwater level
predictions in order to minimize the negative effects of possible future groundwater level extremes.

4.1 Potential of ML models for groundwater level predictions

One of the main objectives of this research was to show the potential of ML methods in
predicting groundwater levels. A generalized model was constructed, tested, and validated for this
purpose, to estimate groundwater levels not only at well sites where the groundwater level is known,
but also at unknown locations. Two distinct ML algorithms were used during the whole modelling
process. The results of a previously developed numerical groundwater level model were also
employed to ensure physical consistency and improve model performance. In order to show the
potential of different ML algorithms the results of the process-based generalized ML model and the
original numerical model were compared. The largest and smallest 5% of groundwater observations
were deleted to better represent typical groundwater level conditions and to minimize erroneous and
incorrect data rows. The results show that both methods (RF and CB) are capable of predicting
groundwater level dynamics. The algorithms were able to increase the numerical model's
performance and correct large errors. The performance of the CB model is somewhat better than that
of the RF model, however the CB model's computing time is significantly longer. Hyperparameter
tuning was carried out for both methods, yet a complete grid search was only utilized for the CB model
because of computational issues. In most circumstances, a complete grid search produces better
results and model performance than a randomized search, hence it can be the main reason for the
underperformance of the RF model. Given this information, it is reasonable to conclude that both
implemented ML algorithms are adequate for such modelling applications.

The drawbacks of a generalized (groundwater level) model, as well as ML models in general,
cannot be ignored. Although all ML models are dependent on large amounts of data, they are unable
to detect physically incorrect data combinations, making data quality crucial for such algorithms. In
addition, ML models may develop misleading associations during training if the input variables are
invalid at some points or the numerical model results have a high inaccuracy at certain locations. In
this case, these characteristics can be explained by the effect of two distinct attributes: 1) The results
of the numerical model are already shifted in some degree due to modelling errors, and since this is
the most important feature for both ML models the results will be close to these values. 2) During the
modelling several features were used which were either categorical (i.e., soil type or land use type) or
fixed values (i.e., elevation or distance from closest water body). Since these variables are not
changing with time the weight of these values is increased. As a result, if the model learns during the
training process that one or more of the constrained variables belong to a specific groundwater level
value, predictions will be erroneous in cases where the groundwater value is significantly different,
but the categorical or fixed variables are similar to the previous case. Data availability and quality are
outstanding in the Netherlands however the aforementioned drawbacks can not be completely
avoided, especially when employing the results of an existing model. Implementing the elimination of
the highest and lowest 5% of the used groundwater level observation dataset significantly helped to
attenuate these inaccuracies. As an example, section 3.2.2 discussed that the majority of the large
errors in the developed ML models (as well as in the employed numerical model) are spatially
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dependent, and mostly occur in the southern regions of the country, where the groundwater levels
are generally deeper. This spatial trend and dependency of error is further discussed in section 4.3.

4.2 Importance of input feature selection

The research also investigated the feature importance and relevance of the implemented
input features to provide a broader picture of the modelling processes and present the relationships
and possible connections between hydrological, meteorological, environmental variables and
groundwater level fluctuations. Using this approach and examining how different variables influence
model behaviour might help minimize the quantity of data required for calculation, reducing
computational time and demand. The importance of various features was studied in different settings.
First, the outputs of the two implemented ML models were compared to see whether there were any
significant differences. Since the correlation between the used numerical model and actual
groundwater level observations is significant, the importance of the model's results as features was
substantially higher in every case, so it was removed from the comparison to better represent the
importance of the remaining variables. According to the results there were no significant differences
between the importance of the two ML models. In light of the findings, the categorical (land use type
and soil type) and fixed (water distance and elevation) features are the most relevant. However,
because these factors do not change over time, their weight in the comparison might be much larger
than in reality. This is because a weekly time series of groundwater level observations (as well as
meteorological and hydrological input data) were used with constant values, causing the algorithm to
link these constraints to specific groundwater levels, lowering the valid feature importance of the
implemented variables. To overcome this, a simpler model was created that does not account for
temporal variability and thus only operates with constant values, therefore removing this difference.
For the studied well locations, all of the data was averaged over the inspected time period to provide
a single overall value for each input and target variable. The result of this simplified model shows that
the most important variables are precipitation and evapotranspiration, next to the sea-level and water
distance. This order is more in line with the anticipated outcomes of the importance calculations. Most
groundwater level models (including numerical and ML methods as well) account for precipitation,
evapotranspiration, discharge measurements of major river bodies and sea-level observations to
represent tidal fluctuations. However, the majority of these models ignore the distance from the
nearest water body (typically canals, rivers, and smaller lakes in the Netherlands), despite the fact that
the findings of this model demonstrate that including it might improve prediction abilities and model
performance in general.

Additionally, the dataset was separated into low and high lying areas considering the
elevation. With this approach it might be possible to examine the distribution of feature relevance at
different elevations. Firstly, the original model has been evaluated to see how the importance differs
compared to the general model including all the data. Secondly, similarly to the previous approach,
the feature importance was also calculated with the simplified model, to see how they behave when
the temporal variability is excluded. According to the calculations, the importance of the generalized
model has not been significantly changed. As it was discussed previously, this might be the result of
the existence and overcalculated importance of the categorical and fixed variables. The simplified
model might give a better and more realistic representation of the true feature importance across the
country, including the low and high lying areas as well. For the simplified model’s feature importance
only the results of the RF model are presented in the paper, since the results of the CB model are
considerably worse (for this scenario), thereby potentially not representing realistic values. These
results are showing, that for low lying areas the four most important feature is elevation,
evapotranspiration, sea-level and precipitation. Evapotranspiration and precipitation can be
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considered as critical features, as their changes have a significant impact on groundwater recharge
and hence groundwater dynamics in general. The tidal fluctuations can have a considerable impact on
the northern water bodies (and groundwater) of the Netherlands, hence mostly important for the low-
lying areas. These variations (especially during times of dry periods and droughts) have to be included
in such models, since many of the northern regions water bodies are playing crucial roles in shipping,
transit, and agricultural purposes as well. According to the results of the simplified model the most
important feature is elevation. Clearly, modelling on a larger scale requires considering altitude
differences. Since the groundwater level readings in these locations are often lower than in high-lying
places, modest elevation variances can lead to significant differences in groundwater levels. For the
southern part of the country, consisting of mainly high lying areas the most important features are
precipitation, distance from the closest water body, the discharge of the Rhine River and
evapotranspiration, respectively. In general, high parts are mostly dependent on precipitation
regarding the groundwater recharge and less on recharge from rivers. However, since these areas are
mainly located in the southern and eastern parts of the country the discharge of the Rhine River could
also have significant effects on groundwater level fluctuations. In this example, and in the previously
described scenarios of feature significance estimates in general, determining the distance from the
nearest water body might be a critical component in estimating groundwater levels. These values were
estimated with a 250m resolution in this model and had a considerable influence on groundwater
levels in the majority of situations. Improving the precision of such models, and hence the accurate
position of such water bodies, might make this feature even more valuable.

4.3 Investigating the location dependency of prediction errors

A comprehensive spatial analysis is necessary to create a realistic generalized groundwater
level model and assess potential limits. The spatial variability of the error (in this example, the MSE
values were used) and other assessment metrics may be analysed regionally using such an approach,
hence different areas may be distinguished and the model's performance capabilities for distinct
geographical locations can be assessed.

In order to adequately represent the spatial variability and potential trend in prediction error,
the calculated MSE values for all the investigated well locations were visualized. The created point and
heatmap showed that the average error in the model is significantly higher in the southern regions of
the country, where the groundwater levels are potentially larger. The reduced amount of data for
larger groundwater levels might be one of the reasons for this regional tendency. Because the majority
of well observations are near to the median groundwater level, which in the Netherlands is often low,
the (extremely) high water levels are not well represented, implying a higher risk of modelling error.
Additionally, the 5% of these extremely high values were eliminated to improve the model
performance, which can also be a potential cause of higher error values. Furthermore, the inaccuracies
between the developed numerical model and real groundwater level measurements were generally
higher for bigger groundwater levels on several instances. Both ML models were capable of lowering
these errors, but they were unable to entirely eliminate them, hence, the inaccuracies of the
utilized numerical model could be another major reason for the larger errors in southern locations
with deeper groundwater levels. For large groundwater levels, the produced timeseries support the
ML models' error-reducing characteristic. The ML models are more sensitive to weekly, smaller-scale
fluctuations and the utilized variables are capable of reducing the magnitude of error in several cases
(i.e.: Eindhoven or Maastricht case visualized in Fig. 19.).

Considering the given results, it can be concluded that the developed ML models are capable
of lowering the errors of the numerical model, however still producing significant errors when the
used groundwater level simulations values are highly inaccurate. This is mostly typical in the southern
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and eastern parts of the Netherlands, where the groundwater levels are deeper, thereby the
possibility for more significant errors is greater. The imbalance in the dataset is a potential problem
and explanation for the substantial inaccuracies for deep groundwater levels. This indicates that the
majority of the data belongs to one class (lower groundwater levels), while the minority of the data
belongs to another (higher groundwater levels), resulting in a data distribution imbalance. When
working with unbalanced datasets, the difficulty is that most machine learning approaches will
overlook the minority class, resulting in poor performance. A possible way for future improvement is
to oversample the minority class. This technique is not adding any new information; however, it might
enhance the performance and predictive skills of the model.

4.4 Potential of ML models in developing error predictions

In addition to the initial model (and the many scenarios) outlined in section 4.1, an error model
was created. The primary purpose of this case was to develop a model that could estimate differences
(errors) between the existing groundwater level simulation model and actual groundwater level data.
After a successful validation, such a model may be used to predict errors and, as a result, compute
real groundwater levels without the need for any observations. However, the findings reveal that
given the existing data and parameters, such a model is unable to find any connections between the
input features and the target variable (i.e.: error). The model usually predicts a value around zero,
which is mainly correct (as the bulk of actual error values are close to zero), but it also predicts a small
error when the error value is significant in reality. Possible reasons for this can be that the model may
be unable to pick up any relevant information and relationships, so providing no value and creating
no differences in the outcomes, or that the majority of the errors are tightly distributed near zero,
preventing the model from obtaining any helpful information for the minority class (i.e.: large errors
corresponding to deeper groundwater levels). Two different techniques were used to overcome this
problem. In both situations, the simplified, averaged model was applied, in which all the data was
averaged into a single variable over the whole investigated time period, primarily to minimize
computing time and demand. Firstly, the extreme data was removed: before training the model, 15%
of the extremely low and high groundwater level observations, as well as the relevant input variables,
were excluded. With this approach the results showed a significant improvement. Secondly, the
greater error values were oversampled using a package called SMOGN to boost the model's prediction
skills even further. This method allows the creation of a dataset that is closer to the normal
distribution, making it easier to generate accurate predictions for the minority class as well. However,
as compared to the prior method, this method produced higher evaluation errors. For larger errors
and groundwater levels, it was able to provide more accurate estimations, yet the prediction skill
decreased for values near zero.

In summary, it can be concluded that picking up correlations and connections between
variables for error prediction is more difficult for such ML techniques than it is for groundwater level
prediction. The significant correlation of the simulations with the groundwater measurements is not
necessarily relevant for the errors, because the error computation requires subtracting the simulated
and real groundwater levels. However, with different simplifications and additional techniques it is
possible to develop a model which can be used as a starting point for the development of a similar
model which might be validated for the initial model including the timeseries. Such a validated model
would be a possible way to overcome the problems of unavailable and erroneous observational data
and therefore simplifies the estimation of groundwater levels.

4.5 Limitations and possibility for further improvement

Aside from the uncertainties discussed and mentioned throughout the paper, there are
numerous other uncertainties and limitations in this model. Two different ML approaches were
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implemented and proved to be able of enhancing the quality of an existing numerical model, and
therefore improve groundwater level estimations in general. All the calculations were carried out in a
250m resolution, which is too coarse for the accurate modelling of such hydrological processes. This
resolution may be accurate for hydrological and meteorological measurements, although for the rest
of the data (soil type, land use type, elevation, and distance from the closest water body), higher
resolution would be required to provide more exact estimates (for example Koch et al., 2021).
Additionally, it has been assumed that the discharge of the two rivers (Rhine and Meuse), as well as
the sea-level measurements (Haringsvliet) have the same values for every location across the
Netherlands. The model was capable to calculate the feature importance of these input variables and
thereby give weight to their relevance, although the implementation of regional observations from
different measurement points at more, spatially scattered locations or additional water bodies (e.g.:
lJssel or De Lek rivers) could enhance the performance of the model and could give more accurate
results for the actual feature importance as well. Furthermore, based on the availability and quality of
observations, 13 separate meteorological regions were established. However, because of the irregular
weather patterns in the Netherlands, additional meteorological sites, and therefore more unique
meteorological regions might be employed, potentially improving the model's capabilities.

Furthermore, the utilization of timeseries and constant values together can create misleading,
shifted results and errors in the feature importance and relevance of the input variables. Some data
pairings may be contradictory because the utilized data may be incorrect in certain cases or because
the applied resolution is too coarse. As an example, the distance from the closest water body was
calculated for every pixel. For the whole timeseries, these computations were used for every cell with
the same value. On some occasions it might happen that for very similar distances completely different
groundwater level measurements are associated (e.g.: same distance from water body in the southern
and northern parts of the Netherlands does not necessarily mean similar water levels, mainly because
of differences in the elevation). Thereby, the model might learn misleading relationships during
training and could make the model shifted (Fig. D/1.).

4.6 General summary and relation to current research

In general, the constructed model(s) may provide accurate and reliable predictions. They
showed that the implemented ML algorithms (RF and CB) are capable of predicting groundwater levels
as it was demonstrated by Koch et al. (2021), Hauswirth et al. (2021) and Wang et al. (2018). A
potential improvement might be the utilization of other ML methods or the usage of neural networks
for groundwater level modelling or prediction, such as LSTM’s (Wunsch et al., 2021) or NARX’s (Di
Nunno et al., 2020). The research also supports the findings of Koch et al. (2021) where the authors
revealed that by utilizing knowledge (physics) driven ML techniques, it is possible to precisely estimate
groundwater levels with exceptional spatial accuracy. The findings of this study are in line with the
Sahu et al. (2020), who showed that precipitation and river flow are relevant characteristics in many,
but not all locations, nonetheless, creating reliable forecasts using only temperature and historical
groundwater level data is insufficient. Meteorological features are critical to properly model
groundwater level dynamics, although additional datasets (i.e., distance from the closest water body)
could improve the predictions skills and quality of such models. In the following years further research
is required to enhance the performance of such models. However, there are numerous ways to further
increase prediction skill and overall performance. This improvement could be the implementation of
and testing of different ML and neural network algorithms, introducing new, previously unused
datasets as input variables or enhancing the resolution as much as the computational power makes it
possible. In summary, the developed generic model may be used as a foundation for more refined and
coarse groundwater level simulations, and hence could be a useful tool for future models.
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5. Conclusion

In this research the potential of ML model and input feature selection was explored in order
to develop an ML model what also incorporates physical consistency, and capable of improving
already existing groundwater level simulations and helps to better understand relationships and
connections between hydrological, meteorological, and environmental variables. Two distinct ML
methodologies were used (namely RF and CB) to build, validate and test a generalized model what can
reliably create groundwater level estimates. To evaluate the performance of the model, different
metrics were used such as the MSE and RMSE values as well as the Pearson’s correlation. In addition,
the feature importance was computed for many cases to see how significant the implemented input
variables are for groundwater level prediction and to see if there is any probable geographical pattern.
Furthermore, an ML model was constructed to investigate if the difference between groundwater
level simulations (results of the numerical model) and actual groundwater level measurements could
be estimated. To better explain and visualize the findings a nationwide groundwater level map was
created to show the average groundwater level conditions in the Netherlands.

Based on the findings, it can be determined that the developed ML algorithms are capable of
improving the outcomes of the existing numerical model, and thus for groundwater level prediction
in general. Both approaches performed similarly, although RF models are suggested for this purpose
due to the necessary computing time. The generated model operates with much bigger errors for
these locations as well, owing to the numerical model's larger inaccuracies for places with deeper
groundwater levels (primarily the southern part of the Netherlands), although the model still improves
the performance of the implemented numerical model. To further understand how feature relevance
works in general, several scenarios were examined. It can be safely concluded that, despite some of
the drawbacks, the incorporation of meteorological variables (precipitation and evapotranspiration)
and physical variables (distance from the closest water body and elevation) are crucial for modelling
such hydrological processes. The importance of hydrological factors must also be acknowledged;
however, because these numbers were averaged over the whole country, their accuracy cannot be
guaranteed. Finally, the error modelling findings reveal that estimating such differences where there
is no actual association between the input and target variables is difficult. Due to simplification,
averaging and reducing the dataset to exclude groundwater level extremes an error model was
developed with promising results. With additional refinement, such as the addition of new variables,
correction of data sample disparities, or transformation of some variables, this model might be a
useful starting point for future study.

In conclusion, such ML algorithms may be employed not only for simulating current or
historical observations, but also for forecasting. Despite the shortcomings and limitations of the
created models, these approaches have a lot of potential, but also a lot of room for improvement in
terms of forecasting groundwater levels and other hydrological processes in general. The findings can
be used as a base and starting point in future research to improve groundwater level predictions and,
as a result, water management strategies in order to reduce the damaging effects of future
groundwater level extremes that could result in severe droughts or floods.
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Appendix A.

Land use map and classes of the Netherlands

The employed land use dataset contains 39 instinct classes (Tab. A/1). Fig. A/1. shows the
distinct classes which represents the different land usage categories all across the Netherlands.

OENOUTRWN-

Figure A/1. Land use map and classes of the Netherlands (LGN4 model). The explanation of the classes
can be found in Table A/1.

To keep the model simple and robust, the different land use categories were converted into

16 different categories by considering the type of land usage (in many cases similar classes were

separated) and their frequency. Tab. A/2. Includes the narrowed categorical classes of land use type.

Class Land use
1 Grassland
2 Corn
3 Potato
4 Beets
5 Cereal

Class Land use Class
11 Coniferous 21
forest
12 Saltwater 22
13 Freshwater 23

14 Urban built-up 24
area
15 Buildings in 25
rural areas
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Land use
Main roads and
rail
Buildings in
agricultural areas
Salt marshes

Open sand in
coastal area
Open dune
vegetation

Class
31

32

33

34

35

Land use
Heavily grassed
heather
Raised bogs

Forest in
moorlands
Other swamp
vegetation
Reed vegetation



10

Class

Other 16
agricultural
crops
Greenhouse 17
horticulture
Orchard 18
Flower fields 19
Deciduous 20
forest
Land use
Grassland
Agricultural
crops
Flower fields
Deciduous
forest
Coniferous
forest
Water
Buildings and
roads

Bare ground

Deciduous
forest in built-
up areas
Coniferous
forest in built-
up areas
Densely built-
up forest
Grass in built-
up areas
Bare ground in
built-up areas

Gathered
classes
1,19

26

27

28

29

30

9

2,3,4,56,7,8 10

9

10, 16, 33, 36

11,17

12,13

14, 15, 21, 22

20, 39

11

12

13

16

Class

Table A/1. Original land use classes of LGN4

Closed dune 36
vegetation
Dune 37
Open drifting 38
sand
Heather 39
Moderately
grassed heather
Land use

Salt marshes

Sand

Dune

vegetation

Heather

Raised bogs
and swamp
vegetation

Reed

Peat

Other

Table A/2. Compressed land use classes. These categorical

variables were used during modelling
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Forest in swamp
vegetation

Peat meadow
area

Other

Kale ground

Gathered
classes

23

24,28

25, 26, 27
29, 30, 31
32,34

35

37
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Appendix B.

General overview and visualization of the used datasets - Distribution of wells in different
meteorological regions and some of the employed data (precipitation, evapotranspiration,
sea-level, discharge of Rhine and Meuse, soil type, land use type and water distance). The
goal of this appendix is to provide insight and thereby a better understanding of the used
data.

Fig. B/1. shows the distribution of wells in different investigated meteorological regions. The
regions were chosen based on data availability (in the investigated time period between 1980 and
2019) and dispersity to cover different areas. However, as seen in Fig. B/1., wells are not evenly
distributed among the various areas. This is due to the different areas of the regions, as well as the
spread of wells (the well density close to the coast and in the northern areas is considerably lower
compared to the middle and southern parts of the country).

Number of well observations in regions with different meteorological data
Deelen
Wolkel
Eindhowen
Twenthe

Maastricht 4
GilzeRijen
Rotterdam
DeBilt

Eelde 4.
Schipol
Vissingen
Leeuwarden
Dekooy

EI lC:O 260 360 ﬂét} 5(50 660 ?60 Bdﬂ

Figure B/1. Locations of the investigated well and their frequency by regions
with different meteorological data
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Figure B/2. Frequency of different land use and soil types across the country and
at the investigated well locations

45



1) Density plot of weekly precipitation 2) Density plot of weekly potential evapotranspiration
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5) Density plot of weekly average seawater level 6) Density plot of the distance from well to water bodies
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Figure B/3. Density plots of different input variables. 1) Precipitation, 2) Potential evapotranspiration, 3) Discharge of
the river Meuse, 4) Discharge of the river Rhine, 5) Seawater level fluctuations due to tidal effects at Haringsvliet, 6)
Closest distance to any type of waterbody in a 250-meter resolution

Fig. B/2 and B/3. depicts a general overview of the implemented input variables. Fig. B/2.
gives a visualization about the used soil and land use type data and the frequency of different values
contained in these datasets. Fig. B/3. shows the distribution of hydrological and meteorological
observations.
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Appendix C.

Exact feature importance values for both RF and CB models (including the original case,
considering groundwater simulations as well and the reduced case, excluding the
simulations).

Features Original RF (%) Original CB (%) Reduced RF (%) Reduced CB (%)
ELVERES 97.542874 76.500491 - -
S 1.082923 9.289539 44072728 39.530779
0.944868 7.624736 38.454204 32.446365
0.156971 3.265740 6.388402 13.897058
0.126983 2.110490 5.167940 8.980997
0.044027 0.313500 1.791803 1.334069
0.034790 0.263714 1.415902 1.122211
0.025750 0.240123 1.047992 1.021821
0.022933 0.241163 0.933328 1.026246
0.017881 0.150503 0.727701 0.640453

Figure C/1. Feature importance of both RF and CB models, including and excluding the groundwater level simulations
(original case).
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Case

88.137

Low CB 91.044 Figure C/2. Feature importance of groundwater level
92.178 simulations both RF and CB models, for low and high lying

Ll | 85.882 areas

Features RF caselow CBcaselow RF case high CB case high
Precipitation 0.126 0.069 0.268 0.118
Evapotranspiration 0.184 0.259 0.457 0.272
Seawater-level 0.164 0.156 0.402 0.198
Discharge of Meuse 0.283 0.459 0.511 0.417
Discarge of Rhine 0.191 0.199 0.312 0.316

Land use type 12.572 12.059 14.057 10.986
40.643 33.218 37.475 37.121
Water distance 34.323 40.988 36.601 40.658

Soil type 11.515 12.592 9.916 9.912

Figure C/3. Feature importance of both RF and CB models, for low and high lying areas, excluding the groundwater
level simulations (original case).
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Appendix D.

Timeseries of the remaining randomly selected well locations

Time series of groundwater level observations and model results - B28B0057_1 (Twente)
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Figure D/1. Time series of 2 different well locations. Up: Twente region (well ID: B28B0057_1); Down: Rotterdam
region (well ID: B43A0053_1).
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Time series of groundwater level observations and model results - B16D0075_1 (Leeuwarden)
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Figure 18. Time series of 4 different well locations. Up: Leeuwarden region (well ID: B16D0075_1); Down: Volkel
region (well ID: B58E0071_1)
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Appendix E.

Evaluation metrics of the investigated wells.

Well MSE Pearsons MSE Pearsons MSE Pearsons MSE Pearsons
Sim Sim RF RF CB CB AV -\

IR 5129 0922 0.234  0.584 2281 0.81 0.814  0.827
CEL 0172 0.668 0.068  0.658 0.722 0.701 0.178  0.727
0.0753 0.745 0.203 0.678 0.285  0.732 0.031 0.725
0.101  0.789 0.032  0.558 0.272  0.665 0.109 0.676
0.061  0.763 0.405  0.742 0342 0.733 0.009 0.784
0.0293  0.547 0.842  0.737 1.607 0.778 1.191  0.797
0.231 0436 0.349  0.175 0.003  0.259 0.089  0.242
1.298  0.799 1.917 0.736 0.335  0.702 0.469  0.743

Figure D/1. Evaluation metrics for the randomly selected well locations
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Appendix F.

Scatter and residual plots of different scenarios of the error model

Scatter plot of calculated and predicted error - simplified RF model

Scatter plot of calculated and predicted error - simplified CB model
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Figure F/1. Scatter plot of the simplified error model in Section 3.3.2
Residual plot - Random Farest simplified and reduced model
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Figure F/2. Residual plot of the simplified error model in Section 3.3.2
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