
Experiments with GloVe embeddings and Domain

Adversarial Neural Networks for the Dutch

Medical Domain

Master’s Thesis

Student: H.W. Lokhorst

Student number: 4236319

First examiner: T. Deoskar

Second examiner: M. Fowlie

Daily supervisor: W. B. Veldhuis

Artificial Intelligence

Utrecht University

Netherlands

November 5, 2021

Abstract

There is a lot of interest in developing automatic natural language processing tools in the Dutch

language medical domain. Such tools would have great impact on automating hospital documentation

procedures, as well as other benefits. However, most current NLP models and datasets exist only for

English, and more specifically only the general domain of English. Domain-specific models are hard to

come by even for English, let alone other languages which do not have the same amount of resources.

The focus in this thesis is on developing models and resources that will be useful for the Dutch

medical domain. This domain lacks annotated data and domain-specific models. In the fist part

of the thesis, GloVe embeddings (Pennington et al., 2014) are developed. However, evaluating the

quality of these embeddings is a challenge, given the lack of annotated resources for medical Dutch.

The second part of the thesis presents experiments using a novel domain adaptation method, Domain

Adversarial Neural Networks, which is getting attention for domain-adaptation problems in NLP. The

network is trained on a Named Entity Recognition task and a Part-of-Speech tagging task, with and

without (English) medical embeddings. Its performance and suitability for various domain-adaptation

scenarios is evaluated.

1

Contents

1 Introduction 4

1.1 Contributions of thesis . 5

1.2 Structure of thesis . 5

1.3 Restrictions during thesis . 5

2 Dutch medical NLP 7

2.1 General challenges for Dutch medical NLP . 7

2.1.1 Lack of annotated training data . 7

2.1.2 Lack of (domain-specific) language models in Dutch 7

2.1.3 Lack of ontologies . 8

2.1.4 Unstructured texts or reports . 8

2.2 Approaches . 9

2.2.1 Automatic structuring of unstructured reports 9

2.2.2 Translation of Dutch medical text into English 9

2.2.3 Using unsupervised models . 10

2.2.4 Domain Adaptation . 10

2.3 Motivation of taken approach . 10

3 Relevant datasets 12

3.1 Medical datasets . 12

3.2 Non-medical datasets . 13

3.3 Useful Datasets . 14

3.4 Preprocessing . 14

3.5 Overview of datasets used per experiment . 16

4 GloVe Embeddings 17

4.1 Word embeddings . 17

4.2 GloVe . 17

4.3 Word embedding evaluation methods . 18

4.4 GloVe experiments . 19

4.4.1 Training GloVe embeddings . 19

4.4.2 Performance of medical embeddings on general dataset 20

4.4.3 Comparison of mixed, medical and general embeddings 20

2

4.4.4 GloVe summary . 22

5 Domain Adversarial Neural Network (DANN) 23

5.1 DANN background . 23

5.1.1 Domain Separation Network . 24

5.1.2 Classification . 24

5.1.3 Sequence labelling . 25

5.2 DANN implementation . 25

5.2.1 BiLSTM-CRF . 27

5.2.2 Domain Classifier . 28

5.2.3 Embeddings as used in DANN . 28

5.3 DANN Experiments . 28

5.4 Preliminary BiLSTM-CRF experiment . 29

5.5 Experiment 1: NER on Twitter (English) . 29

5.5.1 Experiment 1a: DANN performance . 30

5.5.2 Experiment 1b: Using dropout layers . 31

5.5.3 Experiment 1c: Using word embeddings . 31

5.5.4 Experiment 1 overview . 32

5.6 Experiment 2: POS tagging on English medical domain 32

6 Discussion 34

6.1 Analysis . 34

6.1.1 GloVe embeddings . 34

6.1.2 DANN experiments evaluation . 35

6.2 Limitations and shortcomings . 36

6.2.1 Model implementation . 37

6.2.2 Hardware limitations . 37

6.2.3 Word embedding data selection . 37

6.2.4 Additional features (character embeddings) . 37

6.2.5 Mapping of (unknown) words . 38

6.3 Future work . 38

6.3.1 Developing Dutch medical embeddings . 38

6.3.2 Using the DANN on the medical domain . 38

6.3.3 Annotation standards . 39

6.4 Conclusion . 39

7 Appendix 45

7.1 Implementation Details . 45

7.1.1 GloVe implementation . 45

7.1.2 DANN implementation . 45

7.2 Useful resources (hyperlinks) . 46

7.3 Additional analyses . 46

3

Chapter 1

Introduction

Recent advances in natural language processing (NLP), for example via neural network models,

have lead to a lot of interest in using language processing models for automatic processing of medical

texts. Accurate and reliable language processing can have a great impact on many areas in the medical

domain. Not only can automatic processing of documents enable medical specialists to spend less time

on manual documentation for instance, it can also improve communication between divisions. This

benefits physicians, patients and ultimately society as a whole.

The broad focus in this thesis is the development of natural language models and tools for the

Dutch medical domain. This is done by investigating automated processing of radiology reports of

the University Medical Center (UMC) in Utrecht. Automated language processing has been identified

to have impact on various processes and workings in a medical institute, or radiology department.

Examples of the most common research topics are:

1. Diagnostic Surveillance: scanning reports when new information on an illness is inserted in the

system and extracting reports that might need to be reviewed based on this information.

2. Cohort Building: Patients are usually only scanned for a suspected problem. Reports and images

can contain a lot of extra information. Storing the patient information together with certain

observation could give insights for other studies. For example, one might get insights in ‘large

livers’ from patients that had a belly scan.

3. Query-based Case Retrieval: Retrieve cases with non-defined conditions or outcomes, but spec-

ified by concepts and keywords. This usually requires a lexicon or ontology.

4. Quality assessment of radiology practice: Some procedures might show less important clinical

findings; by comparing findings with subsequent action, procedures can be improved.

5. Clinical Support Services: aimed to improve the workflow of radiologists. For example a system

suggesting the appropriate antibiotics based on the report findings.

The starting point for the Dutch medical domain is chosen to be word embeddings. Word embed-

dings are vector representations of words. Pretrained embeddings have not only shown to increase

model performance, but can also significantly reduce training time for many NLP tasks. Another rea-

son to make a start on this domain with word embeddings, is the difficulties that the domain poses.

4

First of all, while the English medical domain has some well-developed tools and models, there are

no trained Dutch medical tools or models. Secondly, the medical data are noisy, as the reports are

not manually transcribed. And finally, the Dutch medical domain is understudied: there are little to

no NLP papers on the Dutch medical domain. The few papers that are available describe rule-based

or hybrid models, with one specific application. Creating word embeddings will shed more light on

those difficulties, what needs to be done to overcome them and it has value for future models.

1.1 Contributions of thesis

• Discuss main challenges in the field of Dutch medical NLP and the relevant approaches, mostly

dependent on available (annotated) resources.

• Develop English medical embeddings based on radiology data and compare their performance

with general embeddings on different datasets.

• Build a Domain Adversarial Neural Network (DANN) to be used as a downstream task archi-

tecture for word embeddings. The model can be deployed for any sequential task with existing

data.

• Evaluate the English medical embeddings within the DANN.

• Suggests requirements for Dutch embeddings to be developed.

• Add useful resources and data in Appendix and Data section, as no integrated hub exists as of

yet for medical NLP.

1.2 Structure of thesis

After this introduction, the next chapter describes the general challenges for Dutch medical NLP

and discusses the approaches that can be taken. Chapter 3 describes the various datasets that are

used in the thesis; both medical and non-medical. It also includes descriptions of relevant resources

and datasets that were explored, but not ultimately used in the thesis. I hope that this inventory

will serve as a useful resource for future work in this area. Finally, chapter 3 discusses preprocessing

steps. Chapter 4 discusses the development of word-embeddings (GloVe) for the medical domain,

and presents experiments to show the importance of different parameters and hardware requirements.

Chapter 5 presents experiments on domain-adaptation using a Domain Adversarial Neural Network

(DANN), after which the performance with and without word embeddings is discussed. The important

factor here is that little to no annotated medical training data are required to train the DANN. Finally,

Chapter 6 is the discussion, where results are interpreted, shortcomings are mentioned and suggestions

for future research are given.

1.3 Restrictions during thesis

The idea for this thesis and its experiments were subject to restrictions due to the Covid lockdown

and regulations. Due to the sensitive nature of medical data, the Dutch medical (UMC) data could

5

only be accessed from within the hospital. During the Covid period, access to the hospital was at

best uncertain and mostly discouraged. Therefore, some experiments were modified to tackle general

domain-adaptation problems, using online available English medical data, rather than Dutch data.

6

Chapter 2

Dutch medical NLP

2.1 General challenges for Dutch medical NLP

This section describes the general challenges for Dutch medical NLP. Tackling those challenges, in

descending order of importance, should give Dutch medical NLP a boost. Next to this, the third and

fourth problem only exist if one wants to train rule-based or hybrid models. Tackling the first two

problems could overcome the need for rule-based and hybrid models altogether.

2.1.1 Lack of annotated training data

Even though many models are available, most current models are exclusively trained on English

data. Where English data are widely available, domain-specific, non-English data are much scarcer.

The problem becomes clearer when models become more complex and require more data. One example

is GPT-3 (Brown et al., 2020), which used most ‘clean’ data that are available on the entire web (by

using a web crawler). 92% of this data is English, giving an impression of the imbalance of English vs.

non-English data. Apart from the data available to unsupervised models like GPT-3, English research

also has an advantage when it comes to supervised models. Since there are a lot of annotated data

available, training any kind of supervised NLP model is not as resource-consuming. When comparing

this to the Dutch domain, the available resources are a lot scarcer.

2.1.2 Lack of (domain-specific) language models in Dutch

The second problem is the lack of domain-specific models. For English, many models are available

in multiple different frameworks. The Huggingface Transformer framework (Wolf et al., 2019) offers

a multitude of English Transformer models and variations of Bidirectional Encoder Representations

from Transformer (BERT) (Devlin et al., 2018) models. The Flair framework (Akbik et al., 2019) has

recently also moved their models to the Huggingface model hub. Flair offers a multitude of datasets

with special biomedical support. In those frameworks, only one Dutch language model is present. This

is the Dutch BERT model, BERTje (de Vries et al., 2019). This model was only trained on general

Dutch data, resulting in a poor performance on biomedical data. In order to use a model like BERTje

on the medical domain, the model would have to be trained on medical Dutch data. This approach

7

has the downside that it is not scalable: the same training would need to be done for any other

language and for any other domain. Moreover, a language model only performs well when provided

with enough training data. This is a tough requirement for many languages and domains: it requires

resources. Even if such language model could be trained, the fine-tuning step would also require some

annotated domain-specific data. Compared to language models, task-specific models would require

less domain-specific, unannotated data, but more task-specific, annotated data. Annotated, English

data are widely available, but for Dutch only a few datasets are available, let alone for Dutch medical

data. It would require (a lot of) human effort to obtain the annotated data. This leads to the notion

of focusing research on models that do not require much language-specific data.

2.1.3 Lack of ontologies

The third problem is the lack of ontologies. Ontologies are mappings from words to concepts.

So, each medical term is mapped to one single concept. One example of such ontology is SNOMED-

CT. Several English papers use this ontology in their medical NLP pipeline. A similar medical NLP

pipeline for the Dutch medical domain has been theoretically proposed by (Cornet et al., 2012). The

pipeline is based on the storage of medical concepts in a terminology system with a certain level

of confidence. When Named Entities (NE) are recognized to a sufficient extent, the entities can be

mapped to a concept. This requires either a Dutch ontology, or a translation tool after which an

English ontology can be used. A thesis (Westerbeek, 2015) implemented the NER part to the extent

of 60-70% accuracy. However, a translation tool for Dutch medical data has yet to be created and a

Dutch ontology is also non-existent.

A more recent study (Nobel et al., 2020b) developed a rule-based algorithm to classify T-stage of

pulmonary oncology from Dutch, free-text, radiology reports. This paper also mentions the problem-

atic extraction score of Named Entities. To overcome this problem, they manually created synonym

sets (comparable to ontology) and created one regular expression per set. Furthermore, this paper

uses a structured report as input and recommends even tighter structuring of the report. For exam-

ple, discussing only one concept per sentence would significantly reduce misinterpretation by models.

Either way, an ontology or synonym set is used in multiple studies, but is not (freely) available for

the Dutch medical domain.

2.1.4 Unstructured texts or reports

The final challenge is related to preprocessing. To understand the problem, an important concept

in medical NLP should be discussed: structured reports. Structured reports are required – or at the

least very useful – for most automated clinical decision support systems (Cornet et al., 2012), (Pons

et al., 2016), (Nobel et al., 2020b)). To disambiguate standardized reports from structured reports,

I would like to refer to Nobel, Kok, & Robben (Nobel et al., 2020a), who describe standardized

reports as “aimed at improving the accuracy of the medical content of a radiological report”, whereas

a structured report is “aimed at reducing variability and enhancing the clinical utility of formal

radiological interpretations”. Based on those aims, they define structured reporting as “the use of an

IT-based means of importing and arranging medical content in the radiological report”. So, in other

words, standardized reporting is about content, whereas structured reporting only modifies report

structure. This modification of structure facilitates easier extraction of (named) entities, for both

8

rule-based and machine learning applications. Pons et al. (Pons et al., 2016) discuss in their review

of NLP in (English) radiology, that almost all systems identify report sections and use segmentation

steps; apart from also doing basic preprocessing and creating a domain-specific lexicon. The UMC

reports are not structured and only partly standardized.

2.2 Approaches

Most problems described in the previous section can be solved by either (quality) data or good

models. However, given the challenges, starting on this domain by developing a model does not seem

reasonable. Approaches that boost future research on the Dutch medical domain and contribute to a

better understanding of the domain seem most feasible. I start by describing the least feasible option,

working towards the more interesting approaches. This chapter will end with a motivation for the

chosen approach.

2.2.1 Automatic structuring of unstructured reports

Multiple options are available to create structured reports, also for non-English languages ((Pathak

et al., 2019), (Nobel et al., 2020b)). By far the largest part of them are rule-based or supervised

machine learning methods. Since this once again poses the problem of annotated data or creating

a very task-specific architecture, an unsupervised structuring model would be preferred. Without

domain-specific annotated datasets – which is the case for most non-English languages – one either

has to annotate data oneself or train an unsupervised model.

Another point, closely related to structuring reports, is standardization of the data; see also 2.1.4.

Standardization would provide a standard between hospitals, allowing for using resources together

to create State-of-the-Art (SotA) medical models. Finally, standardization could improve model

performance and would also make translation approaches more viable.

2.2.2 Translation of Dutch medical text into English

The second approach would be to translate named entities into English; which would allow the

subsequent use of English models and tools, like ontologies. Previous research already tried doing this

back in 2015 (Westerbeek, 2015). As described in section 2.1.3, this approach does not seem feasible:

apart from the task loss, the translation loss also becomes an issue. Another reason not to use this

approach, is that it does not encourage research to be independent of English. Research independent

from the English domain could give more insights in different or universal language patterns and

models. Furthermore, one could question to what extent English research makes use of existing tools

because they exist, rather than actually needing those tools. In other words: is the availability of

resources in English slowing down the advancement of NLP models? Focusing research on models

that require less data could ultimately lead to more efficient models. Those models could initially be

developed with English data, since the resource are in the end mostly available in English. However,

by showing a decreased need for annotated data or model training requirements, the models become

more appealing for AI world-wide. This research direction could therefore be a starting point for

non-English domain-specific studies, even though it starts by utilizing English data.

9

2.2.3 Using unsupervised models

The third option is the implementation of an unsupervised model. This avoids the issue of re-

quiring annotated data and would not only advance Dutch AI research, but could also help other

languages in discovering new approaches. The progress of unsupervised models has taken a flight on

English domains, with models like BERT and GPT-3. However, most NLP research on the medical

domain uses language models combined with an ontology to map each named entity to a concept. As

explained in the previous section, ontologies pose problems for non-English domains. Apart from the

ontology that would have to be used, training a language model is resource-consuming. Therefore,

this approach is not feasible for this thesis, even though it would be a State-of-the-Art approach. One

other unsupervised model class is consists of models that are used to develop word embeddings. As

this approach only uses free text data as input, to develop a useful tool, it will be taken in this thesis.

However, as will be described in the next chapter, evaluation is not straightforward for such methods.

Therefore, another model is required to evaluate the developed word embeddings.

2.2.4 Domain Adaptation

The final option, which is also taken in this thesis, is domain adaptation (DA). A default as-

sumption in many machine learning algorithms is that the training and test data follow the same

underlying distribution. If those do not match, one could speak of a domain shift. Due to this shift,

the performance on the test set drops, confirming that a model is less able to generalize in case of a

domain shift. Thus, domain shifts are related to a big issue in machine learning: generalization beyond

the training distribution. Ideally, models would be robust to unknown domains. Most DA models

have access to a small amount of target domain data. In this case, a supervised method can be used.

One such supervised method is cross-domain adaptation. In this method, a domain-specific language

model is trained, which is then fine-tuned with annotated data on a task-specific dataset (in a different

domain). If applied to this thesis: training a Dutch medical language model and fine-tuning it on the

Dutch CoNNL-2002 general dataset for Part-of-Speech (POS) tagging. This overcomes the problem of

annotated data for a specific application, but still requires a domain-specific language model (Rietzler

et al., 2019). Even though supervised models have a high performance, they are, as mentioned previ-

ously, too resource-heavy. So, this approach cannot be used in this thesis either. The final option is a

combination between unsupervised models and domain adaptation: unsupervised DA (UDA) models.

UDA models resemble the real-world better, as usually labeled data are absent, whereas unlabeled

data are abundant (Ramponi and Plank, 2020). One such UDA model is the Domain Adversarial

Neural Network (DANN), which will be used in this thesis.

2.3 Motivation of taken approach

I finally chose one unsupervised approach that can contribute a lot to many future medical NLP

applications: word embeddings. Each NLP model makes use of word embeddings and good word

embeddings usually lead to significant model improvements. The model I will use to develop the word

embeddings is the GloVe model; this will be further explained in Chapter 4. Next to developing those

embeddings, or at least investigating its possibilities, I will replicate a domain adaptation model: a

DANN. This can be used as downstream task to evaluate the performance of the word embeddings.

10

I deem this approach the most feasible from the aforementioned four options. Those options can be

divided into two categories. The first category includes annotating data oneself or having annotated

data available. Subsequently, either a language model can be used, or a task-specific architecture

can be developed. This first approach is therefore quite resource-heavy and tends to contribute less

to the advance of AI in general. One of the least resource-consuming methods in this category is

transfer learning. In transfer learning, an existing model is fine-tuned on new data. BERT models are

considered one of the best when it comes to transfer learning. However, a BERT model does require

a certain amount of annotated data to be fine-tuned on a task. Furthermore, if too many tokens in

the data are out-of-vocabulary the BERT performance suffers.

The second category of approaches focuses on finding or developing a model that requires little to

none annotated domain-specific data. This leads to the use of unsupervised models; or, in combination

with domain adaptation, to unsupervised domain adaptation. Since the available Dutch (medical)

annotated data are limited, the second category of approaches seems most feasible. Therefore, the

approach of developing word embeddings as a starting point for the Dutch medical domain is chosen.

By using a Domain Adversarial Neural Network as evaluation method, the path of domain adaptation

is also explored. The DANN does not require any annotated medical data to train on. It only requires

annotated test data: to evaluate the performance. As this can be a limited amount of data, this

approach is one of the least resource-heavy approaches.

11

Chapter 3

Relevant datasets

This chapter describes the various English and Dutch datasets, both for the medical and non-

medical domains, that were used for the domain-adaptation experiments. Additionally, some other

relevant datasets that were explored in the initial phase of the thesis - but were not ultimately used -

are also discussed here. This might be useful for future studies in this area. The second part of this

chapter describes the preprocessing steps that were taken, before the data was used. This section also

describes which dataset was used in which specific experiment.

3.1 Medical datasets

• GENIA (Kim et al., 2003) (Tsuruoka et al., 2005) (English): The GENIA corpus was developed

in 2003. The corpus contains 1,999 Medline abstracts, selected using a PubMed query for the

three MeSH terms ”human”, ”blood cells”, and ”transcription factors”. The abstracts contain

436,000 words of which about 96,000 are annotated for biological terms. The annotation has

been done by two domain experts. The used ontology to annotate the abstracts is extensive.

The top-level classifies into ‘substance’, ‘source’ and ‘other’. Substance and source are both split

into two underlying categories, and those kinds of splits finally result into 47 specific categories.

Subsequently, in 2005, Tsuruoka annotated a part of the GENIA corpus for POS tag, while

developing his biomedical POS tagger.

• MIMIC-CXR (Johnson et al., 2019): The MIMIC-CXR database is a large, publicly available,

English dataset of chest radiographs. The data is stored in DICOM format, accompanied with

their corresponding radiology reports. The dataset contains about 375, 000 images corresponding

to 227, 000 radiographic studies. The studied are all performed at the Beth Israel Deaconess

Medical Center in Boston, Massachussetts. Finally, all data is de-identified to satisfy the HIPAA

Safe Harbor requirements and Protected Health Information (PHI) has been removed. Wherever

PHI was removed, three underscores were inserted. The data in this database is not annotated

for a task. Only the radiology reports were used for this thesis. It is useful to note that, despite

the fact that the reports are structured, the data is still messy. This is because this data is

publicly available and sensitive data is omitted, occasionally resulting in weird sentences.

12

• UMC data (Dutch): For this thesis, I got access to about 10, 000 Dutch radiology reports from

the University Medical Centre Utrecht. In consultation it was decided to restrict the reports

to the topic of pulmonary embolisms. More data is available, but due to the data being highly

confidential, the access is (initially) limited. The data is not annotated for a task.

3.2 Non-medical datasets

• CoNNL-2002 (Tjong Kim Sang, 2002): A Dutch dataset, annotated for four types of Named

Entities: persons, locations, organizations and names of miscellaneous entities. The Dutch data

consists of four editions of a Belgian newspaper of the year 2000. Annotation was done by the

university of Antwerp, where annotators followed the MITRE and SAIC guidelines for NER

(developed by Chinchor, 1999).

• CoNNL-2003 (Tjong Kim Sang and De Meulder, 2003): An English, publicly available dataset,

developed for Named Entity Recognition. Specifically to recognize persons, locations, organi-

zations and names of miscellaneous entities in free text. Apart from the NER labels, the data

is also labelled with POS-tags and syntactic chunk tags. The data is a collection of newspaper

articles from the Reuters corpus. It has been annotated by researchers from the university of

Antwerp.

• MIT Movie: this corpus is a semantically tagged training and test corpus in BIO format.

The corpus contains a part of simple queries and a part of more complex queries. From:

https://groups.csail.mit.edu/sls/downloads/ .

• Twitter (Derczynski et al., 2016): An English Twitter dataset. It is annotated for NER.

• Westbury Lab Corpus (Shaoul, 2010): A corpus created from a snapshot of English wikipedia

pages in 2010. It was downloaded using Wikipedia Dump and subsequently cleaned with the

WikiExtractor tool. Finally, articles longer than 2000 words were omitted. The corpus contains

about 1B words in approximately 2M documents.

• WNUT 2020 (Kulkarni et al., 2018) (Tabassum et al., 2020): ”WNUT 2020 shared task is

designed on the wet lab protocol data. Wet Lab protocols are basically a collection of steps

from different lab procedures. They are noisy, dense, and domain-specific.” The corpus consists

of approximately 14, 000 sentences and is annotated for the main classes Entities, Events and

Relations. The total of the subclasses adds up to 76 classes, including an <UNK> token. Since

this dataset is important for the GloVe embeddings, some examples will be included here:

– “How to Make a 0.5M TCEP Stock Solution”

– “Weigh 5.73 g of TCEP.”

– “Add 35 ml of cold molecular biology grade water to the vial, and dissolve the TCEP.”

– “This resulting solution is very acidic, with an approximate pH of 2.5.”

13

3.3 Useful Datasets

• EMC Dutch Corpus (Afzal et al., 2014): a Dutch medical corpus consisting of different types of

anonymized clinical documents. It contains entries from general practitioners (2000), specialist

letters (2000), radiology reports (1500) and discharge letters (2000). The corpus is annotated for

negation, temporality and experiencer properties. As the numbers between brackets indicate,

this corpus consists of a total of 7500 documents. The data is not freely available: the Erasmus

Medical Centre has to be contacted for access to the data.

• Mantra-GSC (Kors et al., 2015): this corpus was developed to create a multilingual gold-standard

corpus for biomedical concept recognition. Different corpora were used to select English, French,

German, Spanish and Dutch text units. The Dutch part consists of 100 MEDLINE abstracts,

with a total of 922 words and 100 drug labels with a total of 2055 words. The text is annotated

following a subset of the UMLS: MeSH, SNOMED-CT and MedDRA. This results in a total of

591,000 concepts, for 3,2M terms (over all five languages. The annotators were presented with

automatically generated annotations. Usually about 2-3 relevant tags were presented, where the

annotators had to disambiguate. In case disambiguation could not be resolved, both tags were

kept.

• MedInfo-2013 (Chapman et al., 2013): multilingual lexicon, containing English, French, German

and Swedish clinical free text. The lexicon is annotated for negation, whether a condition is

historical, experienced by a family member and whether a concept is mentioned in a general,

conditional or indicative context. Those annotations are done by extensions of NegEx in the

ConText algorithm.

• NCBI (Doğan et al., 2014): the NCBI corpus is English, fully annotated at the mention and

concept level to serve as a research resource for biomedical NLP. It consists of 793 PubMed

abstracts, about 7,000 disease mentions, 790 unique disease concepts. Furthermore, the corpus

is already divided into a training, validation and test set. Fourteen annotators worked on the

creation of this corpus, with two annotators per article.

3.4 Preprocessing

General preprocessing

Preprocessing is required to improve the learning of machine learning models. Where humans

understand that certain ambiguous character combinations, for example ‘.hello’, ‘Hello’, ‘HEllO’,

and ‘h.el.lo’, have the same meaning, artificial intelligent models do not understand this (without

training). Therefore, all the data are transformed to avoid such ambiguities as much as possible.

Resolving such ambiguities usually reduces the training time and improves model performance. The

preprocessing steps mostly depend on the noisy datasets, as those contain most confusing symbols

and words. The cleaner datasets will have to undergo the same preprocessing steps, to make sure all

data are treated the same way. As mentioned in Chapter 3, the Dutch medical data are noisy. The

data consist of sentences with random punctuation, and random capital letters. The punctuation was

changed by making sure that each dot was followed by a space. After splitting sentences this way,

14

the punctuation, except for comma’s, was entirely removed. Next to this, all words were lower-cased.

The other used noisy dataset was the Twitter dataset. This data contains hyperlinks, symbols and

non-Latin characters. In some cases those features could provide additional information, but since this

is not the case in this thesis, I chose to remove those features. To summarize, all words were lower-

cased, all punctuation except for comma’s was removed and all symbols and non-Latin characters

were omitted.

Mistakes

Some of the used datasets contain mistakes. Only mistakes resulting in file inconsistencies, which

hamper the reading of the data file, were fixed. For example, newlines or spaces missing, or a missing

letter of a tag. There have been no changes to the content of any of the datasets: if a tag seemed

grammatically incorrect, this was not changed.

Tag sets

In the domain adaptation model, usually two different datasets are used. After all, one wants to

adapt from one domain to the other. This does usually mean that the tag sets are not equal. In each

case, I mapped the tags to the set of tags; i.e. tags that were present in both datasets. In some cases,

I even removed a word-tag combination. This is when the word-tag type did not seem relevant for

the task. Anything not mentioned in this section was kept as in the original dataset.

The CoNNL-2003 and Twitter tag sets were slightly changed. The CoNNL data are annotated

with the inside-outside-beginning (IOB) tag set (Ramshaw and Marcus, 1999), whereas the Twitter

data are annotated using the BIOES tag set. The BIOES tags have the ‘End’ and ‘Single’ annotation

included, respectively marking ends of entities and one-word entities. Therefore, the Twitter data

were adjusted by converting S-tags to B-tags and E-tags to I-tags.

The Part-of-Speech (POS) tags of the CoNNL-2003 dataset and the GENIA dataset were also

slightly modified to make sure both datasets are annotated for exactly the same tags. The GENIA

data lack the [$, NNPS and UH] tags. Therefore, the ‘UH’ tagged words were removed and the other

tags were respectively remapped to ‘SYM’ and ‘NNP’.

15

3.5 Overview of datasets used per experiment

Table 3.1 shows the datasets that were used in GloVe experiments; which are described in the next

chapter. The data used for each domain adaptation experiment can be seen in table 3.2

Exp. 1 Exp. 2 Exp. 3

Embedding dataset MIMIC-CXR
MIMIC CXR

Stanford GloVe

MIMIC-CXR

Stanford GloVe

Westbury

Training dataset WNUT-2020 MIT Movie
MIT Movie

WNUT-2020

Test dataset WNUT-2020 MIT Movie
MIT Movie

WNUT-2020

Table 3.1: Datasets used per GloVe (part 1) experiment

Exp. 0 Exp. 1 Exp. 2 Exp. 3*

Embedding dataset - Stanford GloVe

MIMIC-CXR

Stanford GloVe

Westbury

UMC

Dutch Fasttext

Dutch Wikipedia

Training dataset CoNNL-2003 CoNNL-2003 CoNNL-2003 CoNNL-2002

Test dataset CoNNL-2003 Broad Twitter Corpus GENIA UMC

Table 3.2: Datasets used per DANN (part 2) experiment. *See section 6.1.2.

16

Chapter 4

GloVe Embeddings

This chapter first explains the theory and model that are used to train word embeddings. Then the

embeddings, created for the English medical domain, are described in detail. No Dutch embeddings are

developed in this chapter, as there is no way of validating those (yet). One other point of clarification

is that when I talk about ‘word embeddings’, I mean ‘pretrained word embeddings’. Those are word

embeddings learned in task A, to be used in task B. The other option, training the word embeddings

during task B in an embedding layer, will be discussed in the next chapter.

4.1 Word embeddings

In order for machine learning models to ‘read’ natural language, the text is broken down into chunks

or tokens. Those tokens subsequently need to be converted into (numerical) representations. One

such representation is word embeddings: distributed vector representations of text. Word embeddings

provide multiple benefits and advantages for NLP models. Word embeddings are used in many NLP

tasks, improving the State-of-the-Art models’ results (Wang et al., 2019). The two main reasons to

use word embeddings are sparsity of training data and a large number of trainable parameters. Most

datasets contain a huge number (> 70%) of ‘rare’ words; as described by Zipf’s Law. This means

that estimating the vectors of those words during a task is quite hard, if not impossible. On top of

that, learning the embeddings in the embedding layer makes for more trainable parameters. More

trainable parameters results in a longer training duration. In summary, using word embeddings results

in better model performance and faster model training. Multiple models have been developed over

time to assign words to (vector) representations. In this thesis, I arbitrarily chose to use the GloVe

model (Pennington et al., 2014).

4.2 GloVe

The main classes of methods that GloVe (Pennington et al., 2014) builds on, are local window-based

methods (Mikolov et al., 2013) and global matrix factorization methods (Deerwester et al., 1990). Both

individual methods were subject to some disadvantages. The main disadvantage of the local window-

based methods is that they do not directly operate on the co-occurrence statistics of the corpus. This

17

prevents the models from taking advantage of repetitions and long-range dependencies in the data.

Next to this, the disadvantage of the global matrix factorization methods, is that they does not do

well on preserving linear regularities among words. GloVe combines both methods in a new theoretical

framework. The authors start by analyzing the model properties, required for learning vector space

representations, that capture fine-grained semantic and syntactic regularities. The authors argue that

global log-bilinear regression models can overcome the aforementioned problems and produce linear

directions of meaning among words. Global log-bilinear models use a weighted least squares model

that trains on global word-word co-occurrences and therefore makes use of global statistics. They show

that this is possible by proposing GloVe, a new weighted least squares regression model. In Glove, a

word-word co-occurrence matrix is established. From this matrix, the probability can be derived, with

which a word occurs in the context of another word. Those probabilities are subsequently used in a

newly introduced weighted least squares regression model. This model calculates the similarity of two

chosen words, when compared with a random third word. For example, if ‘boy’ and ‘girl’ are compared

to ‘car’, ‘boy’ will probably co-occur more frequently with ‘car’. So, its co-occurrence probability will

be higher than that of ‘girl’ with ‘car’. The model will therefore attempt to align the vector space in

such a way - by updating the vector weights - that ‘boy’ is closer to ‘car’, than ‘girl’ is to ‘car’. This is

done for all words in the vocabulary. So, based on the relative co-occurrence probability of two words,

compared to a random word, the vector space is estimated. In an ideal setting, the result of this fit is

0: the vector alignment corresponds perfectly to the (relative) co-occurrences in the data. This can

be utilized by a cost function as objective, to estimate the optimal word vector space. So, based on

a co-occurrence matrix, the GloVe model probes word vectors with respect to one another, to derive

the optimal word vector space. The model is explained in more detail and with more examples in the

original paper (Pennington et al., 2014).

The computational complexity in this (GloVe) model depends on the number of nonzero elements

in the probability matrix. However, in this thesis I add a small constant to all matrix entries to avoid

nonzero elements. This is because multiplication is used to derive the probability and one nonzero

element in the co-occurrence matrix would result in a product (= probability) of zero. The original

paper discards the non-zero entries for this same reason. This is not always useful, since the discarded

co-occurrence might still occur in future data. This is especially the case in the small datasets that

I will be using. Therefore, in my GloVe model, the size of the vocabulary (thus probability matrix)

determines the computational complexity.

4.3 Word embedding evaluation methods

To evaluate the word embeddings, two main classes of evaluation methods exist: intrinsic and

extrinsic methods. Intrinsic methods assess the (linear) relationships between words. Examples are

the word analogy task, for example the Google dataset (Mikolov et al., 2013), and the word similarity

task, for example SimVerb-3500 (Gerz et al., 2016). Apart from those well-known tasks, there is also

concept categorization, outlier detection and the QVEC toolkit (Wang et al., 2019). Even though the

general domain has quite a lot of such relationships, the question is whether this also holds for the

medical domain. The similarity between ‘Paris’ and ‘Berlin’ is obvious; is the similarity between two

diseases as obvious? What similarities does one expect models to capture in medical data? Apart from

this question, no medical datasets exist to measure those similarities; especially when it comes to the

18

Dutch domain. Therefore, the second method, extrinsic evaluation, seems the more obvious approach.

Extrinsic evaluation is done by using the pretrained word embeddings in a downstream task. Examples

are Named Entity Recognition, Part-of-Speech tagging, negation detection and trigger event detection.

This means that data are required, which in turn has to suffice several requirements. First of all, to

ensure that one captures medical information in the word embeddings, the required data should also

be medical data. Furthermore, in the future the task has to be performed in other languages, like the

Dutch language. This means that a downstream task is required, for which annotated data on the

English and Dutch medical domain is available. At the time of writing, no Dutch annotated medical

dataset is available, which means the embeddings cannot be evaluated on a simple downstream task.

To summarize, we are looking for a model that uses or could use word embeddings, while not requiring

(much) annotated medical data. The solution for this lies in domain adaptation; as mentioned before,

the approach in this thesis. The idea is to train a model on a domain where labels are available, and

subsequently test the model on as little annotated English and Dutch medical data as possible. The

next chapter (5) will describe the downstream task idea in detail.

4.4 GloVe experiments

Before the experiments, the types of embeddings that are experimented with, are defined as follows:

medical and general embeddings result from training the GloVe model exclusively on a dataset from

the respective domain. Mixed embeddings are the result of training the GloVe model on a dataset

comprised of both medical and general data. The details of the embedding types are discussed later

in this chapter. The following questions will be answered in the respective three experiments:

1. How do medical embeddings perform on a biomedical dataset?

2. How do medical embeddings generalise to general English? What is the effect of word embedding

dimension?

3. Do mixed embeddings have an advantage compared to the medical embeddings?

4.4.1 Training GloVe embeddings

First, the GloVe model is trained on 15M tokens of English radiology data; the MIMIC-CXR

data. After training the embeddings, the embeddings are evaluated in a downstream task in the Flair

framework, using an LSTM-CRF. To get an impression of the performance of medical embeddings

on biomedical data, the WNUT-2020 dataset is chosen. This is an English biomedical Named Entity

dataset with lab protocols. The parameters of the LSTM-CRF are fixed: 256 hidden nodes, a batch

size of 32, learning rate of 0.1 and a patience of 0.3. Next to that, for computation efficiency, the

vocabulary size was set to 5000. The F1 scores on this dataset, as reported in the original WNUT

paper (Tabassum et al., 2020), varied from 0.52 to 0.78. The results for this first experiment are shown

in table 4.1. The results are slightly better than the worst results initially reported on the (WNUT)

task; 0.55 vs. 0.52 respectively.

As performance clearly suffers when words with a count of 100.000+ are excluded, in following

experiments a maximum word count of 1.000.000 is used. The same reasoning is used to select a

window size of 10 and a minimum count of 5.

19

Training F1 Test F1 Min. count Max. count Window size Training time

1 0.61 0.54 5 1M 10 31:04

2 0.61 0.55 5 1M 5 33:23

3 0.60 0.54 10 1M 10 33:12

4 0.61 0.53 10 1M 5 29:36

5 0.52 0.46 5 100k 10 32:16

6 0.52 0.45 5 100k 5 31:06

7 0.52 0.46 10 100k 10 33:08

8 0.52 0.45 10 100k 5 33:16

Table 4.1: Tuning of hyperparameters on complex Named Entity dataset WNUT-2020.

4.4.2 Performance of medical embeddings on general dataset

The next question is to what extent the (same) medical embeddings capture general English

language. This is tested on a dataset that tests both simple and complex general domain Named Entity

Recognition (NER): the MIT Movie dataset. Next to testing the medical embeddings, the State-of-

the-Art (SotA) general embeddings (Stanford GloVe) were tested. Since those are 300-dimensional,

the medical embeddings were retrained for equal embedding size and tested once again. The results

are shown respectively in table 4.2 and 4.3.

MIT movie Embedding Type Precision Recall F1

Simple Medical 0.71 0.67 0.69

Complex Medical 0.54 0.48 0.51

Table 4.2: Results on MIT movie dataset with medical, 100-dimensional embeddings.

MIT movie Embedding Type Precision Recall F1

Simple General 0.87 0.86 0.86

Complex General 0.72 0.71 0.72

Simple Medical 0.72 0.67 0.70

Complex Medical 0.54 0.42 0.52

Table 4.3: Results on MIT movie dataset with 300-dimensional embeddings. The general embeddings

are the Stanford GloVe embeddings, whereas the medical embeddings are the ones trained on MIMIC-

CXR.

As can be seen from the comparisons on the MIT Movie dataset, the embedding size has little

to no influence on the performance. As expected, the SotA embeddings perform a lot better on this

dataset, as MIT Movie is a general English dataset.

4.4.3 Comparison of mixed, medical and general embeddings

So far, the implementation and embeddings seem to work as expected. Medical data are domain-

specific, but do use (parts of) the general language and its rules. Therefore, enriching the medical

data with (some) general data might improve performance and likely improves the robustness of

20

the embeddings. The next experiment tests this hypothesis. As mentioned before, the medical GloVe

embeddings are trained on 15.6M PhysioNet tokens. The mixed GloVe adds 17M tokens (32.5M total)

from the Westbury corpus. The embedding size in this experiment is 100, as previous experiments

have not shown a benefit of larger embedding size. The results of the mixed embeddings on the

different datasets are shown in table 4.4. Those are also the embeddings that will be used in the

Domain Adversarial Neural Network experiments, later on.

Precision Recall Mixed F1

Simple Movie 0.79 0.79 0.79

Complex Movie 0.65 0.63 0.64

WNUT 0.59 0.49 0.54

Table 4.4: Results of 100-dimensional mixed embeddings on the different datasets: biomedical, simple

general and complex general data.

As expected, mixed embeddings prove a lot more robust on general datasets. Both on the simple

and complex MIT Movie dataset, the LSTM-CRF with mixed embeddings performs a lot better.

However, on the specific WNUT dataset, the performance remained the same. To get a better overview

of the combined results, the F1 score per dataset per embedding type is shown in table 4.5. This table

does not show new results, but merely summarizes the previously recorded results. That is also the

reason there is no value for general F1 on the WNUT (lab procedures) dataset.

Medical F1 Mixed F1 General F1 (SotA)

Simple Movie 0.69 0.79 0.86

Complex Movie 0.51 0.64 0.72

WNUT 0.54 0.54

Table 4.5: Comparison of 100-dimensional medical embeddings, 100-dimensional mixed embeddings

and 300-dimensional State-of-the-Art embeddings on the different datasets.

The comparison shows that on the MIT Movie dataset, the performance of the mixed embeddings

approaches that of the GloVe embeddings. This is interesting, because the SotA GloVe embeddings

are 300-dimensional, compared to 100-dimension for the mixed embeddings. Furthermore, the SotA

embeddings have a vocabulary of 400, 000 words and are trained on 6B (!) tokens. This shows that

adding general data to the medical data, allows the word embeddings to capture more language-

specific features. At the same time it indicates that word embeddings can perform well without a

huge vocabulary and billions of training tokens. Finally, adding general data to embeddings does

not automatically lead to better capturing of the specific domains, as indicated by the WNUT F1

scores. This can be explained two ways: the first option is that both datasets, used to create mixed

embeddings, are too similar. E.g. both the ‘medical’ and ‘general’ embeddings differ in the same

way from the ‘lab protocol’ (WNUT) data. Adding general data to the medical data would then not

add new information. The second option is that adding general data is simply not beneficial. Either

the general language rules can be learned from the domain-specific (medical) text, or the general

language rules do not contribute to domain-specific task (WNUT) performance. Once there is a

working embedding evaluation method and promising embeddings have been developed, this should

21

be reinvestigated.

4.4.4 GloVe summary

The GloVe experimenting shows that medical embeddings capture a good amount of general En-

glish. Furthermore, the SotA general embeddings have been trained on 6B tokens, compared to the

15M tokens that were used to train the medical embeddings. In the subsection, the performance

of mixed, medical and GloVe embeddings is compared on all three datasets. In this experiment I

confirm once again that the embeddings align with expectation: the mixed embedding performance

lies between the medical and GloVe embeddings. The performance on a general task increases, when

medical embeddings are enriched with general data. However, enriching medical embeddings with

general data has not proven to improve the performance on a medical task. The performance on a

domain-specific task does not increase with general language data added to the embeddings. The

reason for this remains open: it could be due to the enrichment having no effect, but also due the

fact that the ‘medical’ data differs in the same way from ‘biomedical’ data as ‘general’ data does. For

example, the same words being out-of-vocabulary.

In any case, to assess the embedding quality, a way of evaluation is required. The experiments in

this chapter merely give an idea of the embedding performance, but the available datasets in this Flair

framework do not resemble medical data. Therefore, the next step is creating an evaluation method

myself. One that does not require much annotated data.

22

Chapter 5

Domain Adversarial Neural

Network (DANN)

The Domain Adversarial Neural Network was originally developed for image classification. How-

ever, not long after its first release, multiple papers also show its use in NLP. This chapter will first

discuss the theoretical overview of the DANN, subsequently its use in different NLP tasks, my own

implementation of the DANN and finally the DANN experiments. Also, when talking about ‘the

DANN’ in this chapter, it means the concept of a Domain Adversarial Neural Network. The specific

implementation differs per paper.

5.1 DANN background

The DANN is not the first model that is used for domain adaptation in NLP. The distinct approach

that the DANN takes, is that the task classification and the domain adaptation happens in the same,

single, neural architecture. The approach is motivated by a theory of Ben-David et al. (Ben-David

et al., 2007). This theory shows that, to find a model with a small error on the target domain,

the learning algorithm should minimize a trade-off between the source domain error and the H-

divergence. The H-divergence quantifies the capacity of hypothesis class H to distinguish between

samples generated by the source domain and the target domain (Ganin et al., 2016). So, to control

the H-divergence, one has to find a representation of the samples where both the source and target

domain are as indistinguishable as possible. Under such representation, a hypothesis with a low source

domain error should perform well on the target domain. In more practical words: the DANN focuses

on learning features that combine discrimination and domain-invariance. This is done by optimizing

both the underlying features and two discriminative classifiers operating on those features, at the same

time. Those discriminative classifiers are a task classifier and a label predictor. The label predictor

predicts the domain of each sentence in a batch during training. The task classifier predicts the class

labels and is used during training and testing. The objective for the classifiers is to minimize error on

the training set. However, the underlying feature mapping is optimized to minimize the loss of the

label classifier and at the same time maximize the loss of the domain classifier. This maximization of

loss works adversarially with respect to the domain classifier: the better the domain classifier predicts

23

the domain, the more domain-invariant the features should become. This process is achieved by using

a so-called Gradient Reversal Layer (GRL): a layer that acts as the identity during forward pass, but

during backward pass it scales the gradients by −λ (Ganin et al., 2016).

Several papers made use of such version of a DANN and most of them extended upon it (Fu et al.,

2017; Naik and Rosé, 2020; Peng et al., 2021). The key takeaway from these papers is that a DANN

consists of a feature extractor, domain classifier, label decoder and GRL. The default component

for the classifiers is usually an Multi-Layer Perceptron (MLP), which will also be the case in the

described studies, unless otherwise specified. The specific feature extractor is usually chosen based

on the task at hand. In this thesis, the DANN will be used for sequence classification. Therefore, the

next subsections will describe classification and sequence labelling in greater detail. Apart from this,

the DANN has also been used for dependency parsing (Sato et al., 2017) and relation extraction (Fu

et al., 2017).

5.1.1 Domain Separation Network

One of the earliest and most important improvements on the DANN, was the Domain Separation

Network (DSN) (Bousmalis et al., 2016). In short, Bousmalis et al. conclude that the DANN only

makes use of the shared features of both domains. This is not optimal, since both domains will also

have domain-specific features. Therefore, Bousmalis et al. attempt to create two different feature

spaces for both the source and target domain. Their model, the DSN, uses three feature extractors:

two private encoders for each domain and one shared encoder. Instead of focusing on shared features,

the DSN attempts to learn domain-specific features for both domains. The shared encoder makes use of

the adversarial loss function, whereas the private encoders are treated normally. During classification,

based on the predicted domain, one of the private encoders is used, in combination with the shared

encoder. The DSN performs slightly better (1-3 points F1-score) on most tasks. However, since the

DSN is more complicated to implement and the DANN fulfills its job as a downstream task, I stick

with the DANN for this thesis.

5.1.2 Classification

Two studies (Alam et al., 2018) (Naik and Rosé, 2020) used the DANN for trigger event classi-

fication. The second one (Naik and Rosé, 2020) is the most relevant for this thesis. In this study,

trigger identification is regarded as a token-level classification task: for each token, it is predicted

whether it is an event trigger. They experiment with several representation learners. They compare

an LSTM, BiLSTM and BERT model with and without adversarial learning. Next to experimenting

with the representation learners, they use an event classifier, being a single-layer MLP and a domain

predictor, being a three-layer MLP. Unlike Ganin et al., they first train their domain predictor and

subsequently they train the representation learner and event classifier. From the six resulting models,

the adversarial BERT model appeared to perform best. The adversarial models had an average F1

score improvement of 3.9 to each of the models. Finally, they note an improvement from 51.5 to 67.2

in F1 score when training with 1% labeled target domain data, compared to using no labelled target

domain data at all. This shows that the adversarial approach has value on low-resource domains and

even more once some labeled data become available.

Another paper that used the DANN (principle), used it for multi-class text classification (Ding

24

et al., 2019). The DANN they used, had a Convolutional Neural Network (CNN) as feature extrac-

tor. Their model (called MDAnet) and the DANN were both tested, amongst other models, on the

Consumption Intention Identification (CII) task (Ding et al., 2018) and a sentiment analysis task

(Blitzer et al., 2007). MDAnet improved upon the DANN by a large margin on the CII task (30% -

40%) showing that there is a lot of room for improvement for the DANN. On the sentiment analysis

task, the difference was about 10% in accuracy scores. At the same time, the DANN does perform

comparable or better than multiple other models, showing its use as a baseline.

5.1.3 Sequence labelling

The DANN has also been used in Sentiment Analysis (SA) (Kim et al., 2017), by means of the

DSN variant. Kim et al. (2017) investigate the use of the DSN in spoken language understanding

(e.g. on Microsoft Cortana’s input). More specifically, they use the DSN to adapt from Engineered

domains (artificial data) to Live domains (user data). They use a BiLSTM with character embeddings

and pretrained word embeddings as feature extractor. They report a significant increase in F1-score

for adapting Engineered to Live data. Two interesting metrics they use to validate their performance

and compare it with the DANN, include proxy A-distance and the Jaccard coefficient of the different

vocabularies. The two metrics respectively show the generalisation error in discriminating between

the source and target dataset and the distance between both domains’ vocabulary.

One recent paper builds upon the concept of the DANN, for the task of NER (Peng et al., 2021).

They extend the DANN architecture by adding an entity-aware component, but they keep the DANN-

specific part of the GRL below the discriminator. They use a BiLSTM as feature extractor, a Con-

ditional Random Field (CRF) as label decoder and a sigmoid function as domain discriminator.

Additionally, as extra input to their model, they add character embeddings to each word embedding.

Finally, they regard BiLSTM-CRF as a widely-used standard, thus baseline model, for Named Entity

Recognition. They also use DANN itself as a model to compare theirs to.

5.2 DANN implementation

The pseudocode for the original DANN architecture is given in figure 5.1 and the overview of the

model architecture can be seen in figure 5.2. The BiLSTM-CRF architecture (Huang et al., 2015)

is used as a baseline (and in the DANN itself) in multiple papers, including the only paper using

DANN for NER. Therefore, the implementation in this study will also use the BiLSTM as feature

extractor and the CRF as label decoder. Multiple papers use a Multi-Layer Perceptron (MLP), one of

the simplest classifiers, as domain classifier. This is therefore also the choice for my implementation.

Since the GloVe embeddings can (initially) be developed in a simple DANN architecture, I don’t

use additional options. For example, some papers also use character embeddings in addition to

the extracted features. Next to this, manual feature selection would be possible. Those features

would normally be added between the feature extractor and the classifiers. To summarize: as feature

extractor a one-layer BiLSTM is used, as label decoder a CRF is used and as (domain) classifier a

MLP was chosen.

25

Figure 5.1: Pseudocode for stochastic training update of the DANN. From (Ganin et al., 2016).

26

Figure 5.2: DANN Architecture. Half of the batch is source domain data annotated for a task, the

other half is unannotated target domain data. The whole batch has domain annotations. The batch

goes through the feature extractor, after which the features are sent to the task classifier and domain

classifier. The unique aspect of this architecture is the inverse backpropagation from the domain

classifier to the feature extractor.

5.2.1 BiLSTM-CRF

The BiLSTM-CRF was originally developed by Huang et al. (Huang et al., 2015). The idea behind

it is to utilize input features in multiple ways. First, the BiLSTM captures past and future input

features in both directions. This is done by having two LSTM layers, where one starts reading the

sentence at the beginning and the other layer starts at the end. The two layers are then concatenated

for the feature output. On top of that the CRF layer can exploit sentence-level tag information.

The CRF operates on the probability that a word has a certain tag and the probability of a certain

tag, given the previous tag. Based on those probabilities, it computes the most likely tag sequence.

Huang et al. (2015) show that the BiLSTM-CRF is both more robust and less dependent on word

embeddings than previous models. Even though the model has been around for some time, its results

still prove to be a reliable baseline for many current studies. Huang et al. report an F1-score of 84.26

on the CoNLL-2003 dataset, with randomly initialised word embeddings and additional spelling and

context features. Without the additional features, but with word embeddings, performance reaches

up to 84.74. They further note that the CRF models’ performance significantly decreases without

the spelling and context features. A year after the original paper, Lample et al. (Lample et al.,

2016) improved on the BiLSTM-CRF, since it uses so many hand-engineered features. They add a

character-level component to the architecture, which removes the need of hand-crafted features. They

use a hidden layer size of 25 (in both the forward and backward layer) and concatenate those as input

to the CRF. They also use a dropout of 0.5 in the BiLSTM. To train the model, learning rate is set

to 0.01, gradient clipping to 5.0, They report an F1 score of 90.20 for their model without character

embeddings (but with pretrained word embeddings).

27

5.2.2 Domain Classifier

I use a two-layer MLP with one dropout layer in between the two fully-connected layers. The

logsoftmax activation function is used, together with the negative log-likelihood loss function.

5.2.3 Embeddings as used in DANN

The embeddings that are used in the DANN, are the 100-dimensional embeddings described in

4.4.3. The only difference is that the medical embeddings were retrained for a vocabulary size of

10, 000. There are less medical data available, so the larger vocabulary size does not lead to mem-

ory issues. This means that the medical embeddings have a larger vocabulary, whereas the mixed

embeddings are trained on double the number of tokens. They are both compared to SotA general

embeddings: Stanford GloVe.

5.3 DANN Experiments

Initially, four DANN experiments were planned: one preliminary experiment and three DANN

experiments. However, the last experiment became infeasible, which leaves us with the preliminary

experiment and two DANN experiments. This will be further discussed in section 6.1.2. The prelimi-

nary experiment evaluates the BiLSTM-CRF performance on the CoNNL-2003 dataset (general data

Named Entity Recognition). This experiment confirms the performance of the BiLSTM-CRF outside

the DANN architecture and can function as a baseline to compare the DANN results to. The first

DANN experiment will then perform adaptation from the general English domain (CoNNL-2003) to

the Broad Twitter Corpus. This experiment resembles one experiment in (Peng et al., 2021), as they

do the same for a different Twitter dataset. In this first DANN experiment, I also evaluate the effect

of word embeddings and dropout in the DANN. The second DANN experiment will then compare

different types of word embeddings when used in the DANN. This is where the embeddings that I

trained myself in section 4.4.3 come in. The source domain in this experiment is CoNNL-2003 and

the target domain is GENIA (biomedical, human blood cells). GENIA would be closest to an English

annotated medical dataset. So, this second experiment measures the performance of mixed, medi-

cal and general embeddings when adapting from the general English to the medical English domain.

Throughout the experiments, it is important to know that only the training set was used to create

vocabularies. All ‘new’ words in the validation and test set were mapped to an <UNK> token. (So,

the larger the domain discrepancy, the more words are mapped to the UNK token.) To summarize,

the DANN experiments will answer the following questions:

• To what extent does hyperparameter selection affect the DANN performance? What is the effect

of dropout in the DANN? And what is the effect of word embeddings in the DANN?

• To what extent is the DANN suited for sequence labelling tasks?

• How does the DANN perform when adapting from the general domain to Twitter data? And

from the general to the biomedical domain?

28

5.4 Preliminary BiLSTM-CRF experiment

As mentioned this initial experiment aims to find optimal parameters for the BiLSTM-CRF (as

used in the DANN), on the CoNNL-2003 dataset, to create a baseline. To find the (approximate)

optimal value for the hidden nodes for the hidden layers, I experimented with [16, 32, 64] hidden nodes

in combination with a batch size of [16 and 32]. 64 hidden nodes gives the best results, regardless of

batch size. This is not surprising, as more nodes allows for more memory of the network. However,

since I used early stopping based on a holdout validation set, this increase in memory should not

have lead to overfitting. The other conclusion is that a batch size of 16 outperforms a batch size of

32 for an equal number of hidden nodes. To see whether even more hidden nodes allow for a better

performance, I experimented with 96 and 128 hidden nodes. I compared this on the batch size of 32,

as the training time with this batch size is lower. The effect of adding hidden nodes seems to fall off,

when reaching 128 hidden nodes. Finally, I consider a batch size of 64 and 256 (close to 300) hidden

nodes, as this was the reported number of hidden nodes in the original study of the BiLSTM (Huang

et al., 2015). This does not yield better results. The results of this preliminarly experiment are shown

in table 5.1.

Batch Hidden Epochs* Train F1 Test F1

1 16 16 33 0.61 0.52

2 16 32 21 0.73 0.57

3 16 64 26 0.80 0.59

4 32 16 38 0.54 0.43

5 32 32 45 0.67 0.56

6 32 64 30 0.75 0.58

7 32 96 26 0.78 0.61

8 32 128 23 0.80 0.61

9 64 256 45 0.74 0.58

Table 5.1: Performance for the BiLSTM-CRF (same as used in DANN), for different batch sizes and

hidden nodes per hidden layer. *The number of epochs is not directly related to training duration, as

one epoch takes longer for smaller batch sizes.

5.5 Experiment 1: NER on Twitter (English)

In this experiment I aim to reproduce results reported in a study by Peng et al. (Peng et al.,

2021). This study compares its own model with other models, of which one is the DANN. The

reported result for the DANN is among the few that are done with sequential DA models. Peng et al.

use CoNNL-2003 (Named Entity) as source domain and a Twitter dataset (Lu et al., 2018) as target

domain. However, there will be a few things different in this reproduction experiment. First of all,

the used Twitter dataset cannot be accessed online. So, I choose to use the Broad Twitter Corpus

(Derczynski et al., 2016) for the experiment. Next to that, they use pretrained word embeddings in

the feature extractor of all models that are compared. The feature extractor they use in (most of)

their comparison models is also a BiLSTM. I will initially use randomly initialised word embeddings

29

to test the DANN’s performance. Finally, the data modifications can be found in section 3.4. Peng

et al. do not mention any modifications in their study.

5.5.1 Experiment 1a: DANN performance

I start by experimenting with the DANN, without any additional features, except for two dropout

layers. The same parameters are used, as in the preliminary experiment, to also be able to compare

the DANN results to the baseline. The source domain data are CoNNL-2003 and the target domain

data are the Broad Twitter Corpus. The results are shown in table 5.2. The source domain F1 score is

based on the validation set, whereas the target F1 score is based on the same target data used to train

the model. As a reminder: this target data are only used to train the domain classifier, not the task

classifier. Additionally, I show that the DANN works as expected, by showing the domain accuracy

over different epochs in the figure below. This stable line around 0.5 is the same for each training

session. It shows that the domain classifier is confused and not able to distinguish the domains.

Batch Hidden Source Val. F1 Target F1 Domain Acc

1 16 16 0.58 0.31 0.52

2 16 32 0.57 0.33 0.50

3 16 64 0.60 0.32 0.52

4 16 96 0.66 0.32 0.48

5 32 16 0.50 0.28 0.45

6 32 32 0.46 0.27 0.51

7 32 64 0.63 0.29 0.47

8 32 96 0.69 0.30 0.53

Table 5.2: Performance for the DANN for different combinations of batch size and hidden nodes. The

F1 score is reported for the source and target domain used during training. During training, only the

source domain task labels were used. The domain accuracy during training is shown.

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Epochs

A
cc

u
ra

cy

Domain accuracy over time on target domain predictions

30

5.5.2 Experiment 1b: Using dropout layers

As other studies used (multiple) dropout layers, I experimented with three dropout layers, either

deactivated or active with 0.5 dropout. Even though Lample et al. (2016) Lample et al. (2016)

mention that word embeddings tend to have a bigger impact on BiLSTM-CRF performance, I first

test the effect of dropout. This allows for checking the effect of dropout in the embedding layer,

as the embedding layer is frozen when pretrained embeddings are used. Based on (target domain)

performance in the last experiment, a batch size of 16 and a hidden layer size of 64 is used for this

experiment. Since an effect of dropout was already assumed, two dropout layers were used with a

dropout of 0.5 in experiment 1a. The dropout was applied after the feature extractor (BiLSTM) and

between the MLP layers of the domain classifier. The performance with different dropout layers is

reported in table 5.3.

Embeddings LSTM Classifier Source Val. F1 Target F1

1 0 0 0 0.61 0.32

2 0 0 0.5 0.60 0.33

3 0 0.5 0 0.57 0.32

4* 0 0.5 0.5 0.60 0.32

5 0.5 0 0 0.61 0.33

6 0.5 0 0.5 0.60 0.33

7 0.5 0.5 0 0.59 0.31

8 0.5 0.5 0.5 0.61 0.33

Table 5.3: Performance of the DANN using different values of dropout in different parts of the model.

* This setting was used in the first experiment.

5.5.3 Experiment 1c: Using word embeddings

In this third sub-experiment I investigated the effect of word embeddings in the DANN. As the

main goal of the first experiment is aimed at replicating the result of Peng et al., I will use State-of-

the-Art 100-dimensional GloVe embeddings. To make this final DANN sub-experiment as complete

as possible, I experiment the batch sizes 8, 16 and 32 in combination with different numbers of hidden

nodes: 32, 64 and 96. Those combinations seemed most promising, based on the experiments so far.

Finally, I test once with a large number of hidden nodes, again because Peng et al. reported the best

performance with 300 hidden nodes. Dropout setting 4 is used from the previous sub-experiment:

no dropout on the word embeddings and one dropout layer after both the BiLSTM output and the

first fully-connected layer in the domain classifier. Finally, another F1 score is added, according

to the CoNNL-2000 evaluation script. This sentence F1 score over multiple tags, is the percentage

of sentences that are completely correct. Since this F1 score was added in the final stages of the

thesis, it is only included here; in the most complete DANN table. An overview of the results of this

sub-experiment is shown in table 5.4.

31

Batch Hidden Source Val. F1 Target F1 Sent. F1

1 8 32 0.70 0.42 0.44

2 8 64 0.71 0.44 0.44

3 8 96 0.71 0.44 0.44

4 16 32 0.70 0.43 0.42

5 16 64 0.73 0.43 0.43

6 16 96 0.71 0.45 0.43

7 32 32 0.72 0.41 0.35

8 32 64 0.71 0.42 0.36

9 32 96 0.72 0.42 0.39

10 32 256 0.73 0.43 0.38

Table 5.4: Performance of the DANN with different combinations of batch size and number of nodes

in the hidden layer, while using word embeddings.

5.5.4 Experiment 1 overview

In this comparison the most-frequent-tag baseline is added, following Jurafsky et al. (Jurafsky,

2000). This baseline simply allocates the tag that most frequently appears for a given word, to that

word. The baseline performance, the reported score of Peng et al. and the best DANN performance

are shown in table 5.5. The DANN score that is reported here, corresponds to entry 6 of table 5.4,

which was achieved using 100-dimensional Stanford GloVe embeddings. Both Peng et al. and our

DANN perform significantly better than the most-frequent-tag baseline.

Precision Recall F1

Baseline 0.17 0.10 0.13

Peng* 0.46 0.59 0.51

DANN 0.58 0.37 0.45

Table 5.5: Comparison of baseline (most frequent tag), Peng’s reported DANN result, and our DANN

result on the Twitter NER task.

*As mentioned, Peng used a different Twitter dataset.

5.6 Experiment 2: POS tagging on English medical domain

This second experiment will discuss the use of the different embedding types, that I trained in

Chapter 4, in the DANN in detail. The embedding specifications for the English embeddings can

be found in 4.4.3. I will compare the performance of mixed, medical and SotA general embeddings

while adapting from a general to a medical dataset. An important change relative to the previous

experiment, is that I now switch to Part-of-Speech tagging. This is the only option, as currently

no general and medical dataset, using the same Named Entity tag set, exist. As mentioned in the

preprocessing section (3.4), the POS dataset was adjusted for this task.

32

The DANN is used with a batch size of 16 and hidden layer size of 96. Recall, precision and

F1-score are reported, next to the retrieval rate, in table 5.6. The retrieval rate shows how many

words from the source domain vocabulary are found in the word embedding vocabulary. Words that

are not found in the embedding file are mapped to the <UNK> token. When pretrained embeddings

are used, the embedding layer is frozen; i.e. the weights are not updated during training. Since all

non-retrieved words are mapped to the <UNK> token, and the embedding layer is frozen when using

word embeddings, the performance is expected to drop with a lower retrieval rate. In this case, the

retrieval is calculated on the source domain: the CoNNL-2003 data. The GENIA retrieval is reported

to get more insight in the word embeddings, but this was not used in any way.

CoNNL retrieval GENIA retrieval Precision Recall F1 Source F1

Baseline - - 0.02 0.03 0.02 -

No embeddings - - 0.77 0.67 0.72 0.77

Gen. embeddings 87.64% 51.98% 0.82 0.67 0.74 0.80

Med. embeddings 14.04% 18.11% 0.74 0.65 0.70 0.77

Mix. embeddings 30.17% 19.45% 0.77 0.65 0.70 0.78

Table 5.6: The baseline corresponds to the most-frequent-tag (for a given word). Precision, recall and

F1 scores are reported for target domain. Additionally, source domain F1 score corresponds to the

holdout validation set performance. Scores are reported for different English pretrained embeddings

used in the DANN. Information on the embeddings can be found in section 4.4.3.

33

Chapter 6

Discussion

The main aim of this thesis was to create word embeddings for the Dutch medical domain. Ad-

ditionally, the DANN was developed as a means of evaluation for the word embeddings. During the

experiments, it became clear that training Dutch medical embeddings was not feasible during this

thesis. The next subsections will discuss the results, the implications and shortcomings of this thesis

and recommendations for future work.

6.1 Analysis

6.1.1 GloVe embeddings

I started the GloVe experiments with three questions: how do medical embeddings perform on a

biomedical dataset? How do medical embeddings generalise to general English and do mixed embed-

dings have an advantage over medical embeddings? The main takeaway from the GloVe experiments,

is that the hardware should allow for a larger vocabulary size. The vocabulary size in this thesis was

a limiting factor. Therefore, the the effect of vocabulary size remains unclear. One thing is certain:

a vocabulary size of 5000 leads to poor results. Apart from this, there are certain observations from

the different embedding types; the general, medical and mixed embeddings. The medical embeddings

seem to capture a decent amount of the general language, as the embeddings perform reasonably well,

compared to the Stanford GloVe embeddings, on a general task. Finally, the comparison of mixed

and medical embeddings does not prove that enriching the medical embeddings with general textual

data improves the performance on a medical task. As expected, the mixed embeddings perform better

than medical embeddings on a general task. However, the performance on the biomedical domain,

WNUT-2020, did not increase with mixed embeddings. The reason for this remains open: it could be

due to the chosen general data not being enriching, but also due to the dataset (WNUT-2020) not

resembling medical data. If the first reason is the case, adding different or more general data could

give an improvement. If the second reason is the case, the medical and general data leverage the

same features for the WNUT task: both domains differ too much from the specific WNUT biomedical

domain. Once SotA medical embeddings - or at least evaluated medical embeddings - have been

developed, this should be investigated further.

34

6.1.2 DANN experiments evaluation

BiLSTM-CRF performance (Preliminary Experiment)

The preliminary experiment, with the BiLSTM-CRF, shed some light on the effect of the different

hyperparameters. First of all, the F1 score on the CoNNL-2003 dataset seemed to be better for

lower batch sizes, given an equal number of hidden nodes. Next to this, overfitting (on the source

domain) did not occur, since the source domain performance did not decrease, until the test domain

performance did. This is most likely due to the early stopping criterion. Underfitting due to too few

hidden nodes did not seem to occur either, as I ran the model with a large number of (extra) hidden

nodes and performance decreased. Finally, the reported performance for the BiLSTM-CRF is not

even close to State-of-the-Art results. There are multiple reasons for this. The first reason is that the

early stopping in combination with the learning rate could have been too strict. I did not experiment

with the learning rate, apart from using a scheduler based on a patience of 5. Using different values for

both patience factors (early stopping and scheduler), could improve the results. The second reason is

that most - if not all - state-of-the-art results were achieved by extensive preprocessing. Finally, most

BiLSTM-CRF’s achieving good results used character embeddings, additional hand-crafted features

(up to 20) (Huang et al., 2015) and (different) word embeddings.

DANN performance on NER task (Experiment 1)

DANN experiment 1a investigated the effects of hyperparameter selection, dropout and word

embeddings for the DANN’s performance. the domain classifier is confused by tracking the domain

classifier performance over a full model run. The domain classifier consistently ends up around 50%

accuracy, indicating successful confusion. Finally, when comparing the DANN performance on 32

batch size and 96 hidden nodes with the BiLSTM-CRF performance for the same batch size and

hidden nodes, it shows that the DANN slightly improves on the source validation data (0.61 vs 0.69),

which are the data that are used in both models. This indicates that the DANN learns additional

information from using the domain classifier.

Experiment 1b was conducted with the best model from experiment 1a: a batch size of 16 and

64 hidden nodes. This model was used to compare the effect of dropout on. The observation in this

experiment is that dropout does not seem to have an effect on the model performance. This could be

due to early stopping already preventing the model from overfitting. It could also be due to the model

reaching its maximum adaptation potential with the current features. In that case, the features or

data need to be improved, before the model is able to learn more about the target domain.

The final experiment, 1c, tests the effect of word embeddings in the DANN. The first observation

is that using word embeddings increase performance on the target domain a lot. In this section, an

additional F1 score was added: the sentence accuracy F1 score. It is worthwhile to note that this

sentence F1 is higher for a smaller batch size and seems to increase with more hidden nodes. This

could indicate that a larger batch size favours classes that are more present in the data, resulting in

more individual labels correctly classified, but less sentences completely correct.

The DANN experiment concludes with a comparison of the best obtained model to the most-

frequent-tag baseline and the reported DANN score of Peng et al. (2021). The central question

here is to what extent the DANN is suitable for sequence classification. The most frequent tag

baseline performs reasonable, but a lot worse than both models. It shows that the DANN is able to

35

capture patterns in the text that predict whether a word is a Named Entity, even for text from a

different domain. So, the DANN is suitable for sequence classification, especially given the room for

improvement. It is likely that the DANN is still underfitting due to a lack of features. Suggestions to

improve this are given later in this chapter.

Performance of medical embeddings in the DANN (Experiment 2)

The second DANN experiment investigated the performance of the medical embeddings that I

trained in chapter 4. Next to this, it investigates to what extent the DANN is able to adapt from a

general domain to a medical domain. The most-frequent-tag baseline achieved very poor results in

this experiment. This is most likely due to the much higher number of tags. In experiment 1 8 NER

tags were used, relative to 41 POS tags in experiment 2. The next point of interest is the retrieval

rate. In the current implementation, only the source domain vocabulary was used to initialise the

embeddings. The medical advantage of the embeddings is therefore minimal. This issue is discussed

further in section 6.2.1. Next to this, the importance of a large vocabulary is once again shown by

the Stanford GloVe embeddings. The vocabulary size of 400, 000 gives a retrieval rate of 52% on the

biomedical GENIA dataset.

Apart from the general observations, I also put detailed overviews of the performance per tag

in the Appendix (see 7.3). The most relevant are the Common Noun (NN), Proper Noun (NNP)

and Common Noun Plural (NNS). For more Part-of-Speech tag explanations, I would like to refer

to the Brown Corpus manual (Francis and Kucera, 1979). The detailed tag analysis shows that the

DANN assigns NNP a lot more, when less word embeddings are randomly initialized. When the

Stanford GloVe embeddings are used, 85573 NNP’s are assigned, compared to 17184 times when

not using pretrained embeddings. The opposite effect can be observed for NN’s. This is especially

interesting because the training data only have 361 true NNP’s versus 107445 NN’s. The model

without pretrained embeddings also assigns NN and NNP to true NNS’s. It is unclear why this effect

appears. Recognizing plurals should be easier for the model when using additional features, like word

endings, or by using character embeddings in the model. With the model settings as is, learning the

embeddings during training seems to give the best results.

Experiment 3 (infeasible)

The plan originally included a third experiment, however this experiment was infeasible. The idea

of the experiment was to evaluate Dutch GloVe embeddings the same way as the English embeddings

in DANN experiment 2. However, as the randomly initialized embeddings performed better than

the embeddings I trained, this third experiment was not reasonable anymore. Instead, the English

embeddings should first be evaluated and improved. This was already discussed in section 6.1.1.

6.2 Limitations and shortcomings

The first two limitations and shortcomings described here, explain two factors that should influence

the interpretation of the results in this thesis. The other limitations and shortcomings mostly explain

why the results in this thesis did not get close to SotA model results.

36

6.2.1 Model implementation

One limitation is an implementation choice which, I realized later, limited the model severely.

As I mentioned throughout the thesis, I loaded the word embeddings based on the source domain.

I regarded the target domain as the test domain, which is incorrect. The target domain is also

used during training and should therefore also be used to load embeddings. Both the source domain

training data and the target domain training data should be used to retrieve word embeddings from

an embedding file. This should (greatly) reduce the number of words that are not recognized during

the validation and testing phase.

6.2.2 Hardware limitations

The other limitation is the hardware that was used. Due to memory limits I was restricted to a

vocabulary of 10, 000 words for the medical embeddings. Stanford GloVe has 400, 000 embeddings in

their standard file. This allows for a very high retrieval rate. Since it is common practice to freeze

the embedding layer when using pretrained word embeddings, a high retrieval rate directly results

in better model performance. Words in the training vocabulary, that are not in the pretrained word

embeddings, are randomly initialized and remain so. So, the less words that are recognized from

the training vocabulary, the more randomly initialized frozen embeddings are used. Those frozen

embeddings are not informative for the model: in this case, randomly initialised embeddings that are

updated (learned) during training, perform better. This was the case in my second DANN experiment.

6.2.3 Word embedding data selection

Apart from task-specific annotated data, the general unannotated data used to train GloVe on

can also be improved. One way to do this, is by more careful selection of input data. For English,

this data curation can be done through PubMed. For Dutch, such biomedical data are not as easily

available, but one could think of using Wikipedia pages on a large number of medical terms. In the

future this could be done within hospitals itself, when the reports are structured. Quality reports

would allow for relatively easy sentence segmentation, making much more data available for models

like GloVe. Things that should be kept in mind here are the minimum count of words, the vocabulary

of the data (i.e. the range of words), the writing style; does it reflect the domain?

6.2.4 Additional features (character embeddings)

Additional features could be used, like capital letters, the number of numbers in a word, the

length of a word, etc. Another type of additional feature is the use of character embeddings. Many

state-of-the-art models use character embeddings next to word embeddings in NLP models. Those

additional features are usually represented in manually given numbers and concatenated with the

feature extractor output. Especially for out-of-vocabulary words, this could add a lot of value. For

example, in the biomedical domain, it is not uncommon for special characters to be in words. CD29,

p95vav, aml1 and many more such tokens exist in the GENIA (biomedical) dataset. The combination

of characters could be quite indicative for the POS type here, even if words are out-of-vocabulary.

37

6.2.5 Mapping of (unknown) words

The last point of discussion is the mapping of unknown tokens. In language models and task-

specific architectures it is normal to map unknown tokens from the target domain to an ‘unknown’

token with its own embedding. Each unknown token in the test data is mapped to the same vector

representing the <UNK> token. Reducing the number of unknown tokens, by careful preprocessing

or by creating general classes of words, could improve model performance. For example, considering I

used Twitter data, it would have been interesting to compare performance when converting internet

links to an <URL> token and @-mentions to a <Mention> token.

Furthermore, it appeared that 3% of the vocabulary consisted of numbers; one could investigate the

effect of mapping all numbers to a single number in the vocabulary. Or the effect of simply removing

all numbers. Both measures would result in an increase of the retrieval rate (since the vocabulary

becomes smaller).

6.3 Future work

Future work should narrow the scope of research. Developing word embeddings and an evaluation

method in one research or thesis is too broad of a scope. Since there was not much work in this domain

before this thesis, it was the only option. I suggest specific options for both the word embedding and

domain adaptation paths. I also give a recommendation for physicians.

6.3.1 Developing Dutch medical embeddings

In the later stages of my thesis I learned about a Dutch medical dataset: the Erasmus Medical

Centre (EMC) corpus. With this Dutch medical dataset available, it is possible to develop word

embeddings on a much simpler downstream task. An existing classification or tagging model can

be used, in combination with word embeddings, to obtain scores on this EMC dataset. If I would

have known about this dataset earlier and had access to it, using the DANN as evaluation method

would not have been necessary. A future project that aims to develop word embeddings for the Dutch

medical (radiology) domain, could use this dataset.

While developing Dutch word embeddings, one should look into ways of cleaning large bulks of

medical reports. Once there is a way to clean them, and obtain clean Dutch medical sentences, the

importance of data input size to the word embedding algorithm can be made clearer. It would answer

the question: do medical embeddings, with a higher retrieval rate than general SotA word embeddings,

outperform the Stanford GloVe embeddings on the medical domain?

6.3.2 Using the DANN on the medical domain

Future research could also further investigate the DANN. It is important to mention the EMC

dataset again here: instead of adapting from the general to the medical domain, one could adapt from

the EMC data to the UMC data. Usually the language domain differs to such extent between hospitals,

that language models are not interoperable between hospitals. Therefore, domain adaptation between

hospitals would also be useful. The EMC data is annotated for negation, amongst others, which makes

it even more relevant: negation labels would be very useful to obtain, according to UMC physicians.

38

The concept of the DANN has already been improved on multiple times. The current SotA in the

field of adversarial domain adaptation is promising. One example of a first addition could be the use

of marginalized stacked denoising autoencoders (mSDA) (Chen et al., 2012), or one of its more recent

improvements. This feature learns a new feature representation of the samples. It assumes noisy data

entries and tries to reconstruct the denoised data entry. So, where the DANN attempts to find the

underlying domain representation of two domains from noisy samples, this mSDA attempts to remove

the noise from samples from both domains. Of course, many other (small) variations of the DANN

could be looked into. In this category, of looking into the domain adversarial techniques itself, one

could also experiment with the (negative) multiplication factor in the Gradient Reversal Layer.

Another path that could be looked into, is the use of additional features and a DANN with character

encodings. Most SotA models use the latter: character encodings. This path is more data-focused

and would include looking into preprocessing and data selection as well.

6.3.3 Annotation standards

The main recommendation for physicians, is to develop one or a few annotation standards. What

does the medical world expect from Natural Language Processing? When selecting datasets for this

thesis, it became clear how many different annotation styles there are and how little agreement there

is between studies. A dataset annotated for negation can not be used to develop a model that should

extract disease names and vice versa. Not only would standards make it easier to develop task-

specific models, it would also make it easier to fine-tune existing language models in frameworks like

Huggingface Transformers, SpaCy and Flair. Currently, those frameworks need to develop a new piece

of code for every different tag set and file format. With datasets that are more alike, datasets can

be combined, modified and used more easily. Even if the resources would be available now, there is

no agreement amongst hospitals, let alone physicians on what annotations and file format should be

used.

I will not go into detail on structured reports, as this is something the UMC is already working

on. Next to this, once (better) data (sets) are available, the need for structured reports becomes less

important.

6.4 Conclusion

This thesis made one of the first attempts to obtain useful information from noisy Dutch med-

ical (domain-specific) reports. The thesis also discusses multiple challenges and approaches. Two

challenges form a paradigm problem in Dutch medical NLP. To obtain or extract useful data from

medical reports, either a solid annotated dataset for the specific task is required, or an advanced

(language model) on the domain is required. Without one of them, it is hard to create the other,

and neither was available for this thesis. Therefore, as a first step, GloVe embeddings are developed

for the English medical domain. The second step is to show its performance when adapting from the

general to the medical domain, by using a DANN. For this reason, a DANN for sequence labelling was

developed. Once this working is confirmed, the same approach could be used for the Dutch medical

domain. The DANN performance was best when using State-of-the-Art embeddings. This is most

likely due to the low retrieval rate of the medical embeddings. The general English embeddings have a

39

vocabulary of 400.000 embeddings, whereas the mixed and medical embeddings only contained 5.000

to 10.000 embeddings. The DANN even performed better learning the embeddings during training,

than when using the pretrained medical and mixed embeddings. However, given the large discrepancy

in retrieval rate, the mixed and medical embeddings could still prove useful with a larger vocabulary

size. Furthermore, with comparable performance, pretrained embeddings are still useful due to a lower

training time. Future development of word embeddings should make use of better hardware. Finally,

this development could make use of a simpler model than the DANN, by making use of the EMC

dataset annotated for negation.

In summary, this thesis shows the current state of the Dutch medical NLP and gives a clear outline

of the remaining challenges. Based on the acquired information in this thesis, two main research paths

open up. The first being the development of Dutch GloVe embeddings, which should take into account

the considerations of this thesis. The second research path could look into domain adaptation (using

the DANN), between different medical domains.

40

Bibliography

Z. Afzal, E. Pons, N. Kang, M. C. Sturkenboom, M. J. Schuemie, and J. A. Kors. Contextd: an

algorithm to identify contextual properties of medical terms in a dutch clinical corpus. BMC

bioinformatics, 15(1):1–12, 2014.

A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf. Flair: An easy-to-use

framework for state-of-the-art nlp. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics (Demonstrations), pages 54–59, 2019.

F. Alam, S. Joty, and M. Imran. Domain adaptation with adversarial training and graph embeddings.

arXiv preprint arXiv:1805.05151, 2018.

S. Ben-David, J. Blitzer, K. Crammer, F. Pereira, et al. Analysis of representations for domain

adaptation. Advances in neural information processing systems, 19:137, 2007.

J. Blitzer, M. Dredze, and F. Pereira. Biographies, bollywood, boom-boxes and blenders: Domain

adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the association

of computational linguistics, pages 440–447, 2007.

K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. Domain separation networks.

Advances in neural information processing systems, 29:343–351, 2016.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165,

2020.

W. W. Chapman, D. Hilert, S. Velupillai, M. Kvist, M. Skeppstedt, B. E. Chapman, M. Conway,

M. Tharp, D. L. Mowery, and L. Deleger. Extending the negex lexicon for multiple languages.

Studies in health technology and informatics, 192:677, 2013.

M. Chen, Z. Xu, K. Weinberger, and F. Sha. Marginalized denoising autoencoders for domain adap-

tation. arXiv preprint arXiv:1206.4683, 2012.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A matlab-like environment for machine

learning. In BigLearn, NIPS Workshop, 2011.

R. Cornet, A. Van Eldik, and N. De Keizer. Inventory of tools for dutch clinical language processing.

In MIE, pages 245–249, 2012.

41

W. de Vries, A. van Cranenburgh, A. Bisazza, T. Caselli, G. van Noord, and M. Nissim. Bertje: A

dutch bert model. arXiv preprint arXiv:1912.09582, 2019.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. Indexing by latent

semantic analysis. Journal of the American society for information science, 41(6):391–407, 1990.

L. Derczynski, K. Bontcheva, and I. Roberts. Broad twitter corpus: A diverse named entity recognition

resource. In Proceedings of COLING 2016, the 26th International Conference on Computational

Linguistics: Technical Papers, pages 1169–1179, 2016.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

X. Ding, B. Cai, T. Liu, and Q. Shi. Domain adaptation via tree kernel based maximum mean

discrepancy for user consumption intention identification. In IJCAI, pages 4026–4032, 2018.

X. Ding, Q. Shi, B. Cai, T. Liu, Y. Zhao, and Q. Ye. Learning multi-domain adversarial neural

networks for text classification. IEEE Access, 7:40323–40332, 2019.

R. I. Doğan, R. Leaman, and Z. Lu. Ncbi disease corpus: a resource for disease name recognition and

concept normalization. Journal of biomedical informatics, 47:1–10, 2014.

W. N. Francis and H. Kucera. Brown corpus manual. Letters to the Editor, 5(2):7, 1979.

L. Fu, T. H. Nguyen, B. Min, and R. Grishman. Domain adaptation for relation extraction with

domain adversarial neural network. In Proceedings of the Eighth International Joint Conference on

Natural Language Processing (Volume 2: Short Papers), pages 425–429, 2017.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and

V. Lempitsky. Domain-adversarial training of neural networks. The journal of machine learning

research, 17(1):2096–2030, 2016.

M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu, M. Peters, M. Schmitz, and L. S.

Zettlemoyer. Allennlp: A deep semantic natural language processing platform. 2017.

D. Gerz, I. Vulić, F. Hill, R. Reichart, and A. Korhonen. Simverb-3500: A large-scale evaluation set

of verb similarity. arXiv preprint arXiv:1608.00869, 2016.

Z. Huang, W. Xu, and K. Yu. Bidirectional lstm-crf models for sequence tagging. arXiv preprint

arXiv:1508.01991, 2015.

A. E. Johnson, T. J. Pollard, S. J. Berkowitz, N. R. Greenbaum, M. P. Lungren, C.-y. Deng, R. G.

Mark, and S. Horng. Mimic-cxr, a de-identified publicly available database of chest radiographs

with free-text reports. Scientific data, 6(1):1–8, 2019.

D. Jurafsky. Speech & language processing. Pearson Education India, 2000.

J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. Genia corpus—a semantically annotated corpus for

bio-textmining. Bioinformatics, 19(suppl 1):i180–i182, 2003.

42

Y.-B. Kim, K. Stratos, and D. Kim. Adversarial adaptation of synthetic or stale data. In Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1297–1307, 2017.

J. A. Kors, S. Clematide, S. A. Akhondi, E. M. Van Mulligen, and D. Rebholz-Schuhmann. A

multilingual gold-standard corpus for biomedical concept recognition: the mantra gsc. Journal of

the American Medical Informatics Association, 22(5):948–956, 2015.

C. Kulkarni, W. Xu, A. Ritter, and R. Machiraju. An annotated corpus for machine reading of instruc-

tions in wet lab protocols. In Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies (NAACL), 2018.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural architectures for

named entity recognition. arXiv preprint arXiv:1603.01360, 2016.

D. Lu, L. Neves, V. Carvalho, N. Zhang, and H. Ji. Visual attention model for name tagging in multi-

modal social media. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1990–1999, 2018.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector

space. arXiv preprint arXiv:1301.3781, 2013.

A. Naik and C. Rosé. Towards open domain event trigger identification using adversarial domain

adaptation. arXiv preprint arXiv:2005.11355, 2020.

J. M. Nobel, E. M. Kok, and S. G. Robben. Redefining the structure of structured reporting in

radiology. Insights into imaging, 11(1):10, 2020a.

J. M. Nobel, S. Puts, F. C. Bakers, S. G. Robben, and A. L. Dekker. Natural language processing in

dutch free text radiology reports: Challenges in a small language area staging pulmonary oncology.

Journal of digital imaging, pages 1–7, 2020b.

S. Pathak, J. van Rossen, O. Vijlbrief, J. Geerdink, C. Seifert, and M. van Keulen. Post-structuring

radiology reports of breast cancer patients for clinical quality assurance. IEEE/ACM transactions

on computational biology and bioinformatics, 17(6):1883–1894, 2019.

Q. Peng, C. Zheng, Y. Cai, T. Wang, H. Xie, and Q. Li. Unsupervised cross-domain named entity

recognition using entity-aware adversarial training. Neural Networks, 138:68–77, 2021.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In

Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),

pages 1532–1543, 2014.

E. Pons, L. M. Braun, M. M. Hunink, and J. A. Kors. Natural language processing in radiology: a

systematic review. Radiology, 279(2):329–343, 2016.

A. Ramponi and B. Plank. Neural unsupervised domain adaptation in nlp—a survey. arXiv preprint

arXiv:2006.00632, 2020.

43

L. A. Ramshaw and M. P. Marcus. Text chunking using transformation-based learning. In Natural

language processing using very large corpora, pages 157–176. Springer, 1999.

A. Rietzler, S. Stabinger, P. Opitz, and S. Engl. Adapt or get left behind: Domain adaptation

through bert language model finetuning for aspect-target sentiment classification. arXiv preprint

arXiv:1908.11860, 2019.

M. Sato, H. Manabe, H. Noji, and Y. Matsumoto. Adversarial training for cross-domain universal

dependency parsing. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from

Raw Text to Universal Dependencies, pages 71–79, 2017.

C. Shaoul. The westbury lab wikipedia corpus. Edmonton, AB: University of Alberta, 131, 2010.

J. Tabassum, S. Lee, W. Xu, and A. Ritter. WNUT-2020 Task 1 Overview: Extracting Entities

and Relations from Wet Lab Protocols. In Proceedings of EMNLP 2020 Workshop on Noisy User-

generated Text (WNUT), 2020.

E. F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: Language-independent named

entity recognition. In COLING-02: The 6th Conference on Natural Language Learning 2002

(CoNLL-2002), 2002. URL https://www.aclweb.org/anthology/W02-2024.

E. F. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003 shared task: Language-

independent named entity recognition. In Proceedings of the Seventh Conference on Natural Lan-

guage Learning at HLT-NAACL 2003, pages 142–147, 2003. URL https://www.aclweb.org/

anthology/W03-0419.

Y. Tsuruoka, Y. Tateishi, J.-D. Kim, T. Ohta, J. McNaught, S. Ananiadou, and J. Tsujii. Developing

a robust part-of-speech tagger for biomedical text. In Panhellenic conference on informatics, pages

382–392. Springer, 2005.

B. Wang, A. Wang, F. Chen, Y. Wang, and C.-C. J. Kuo. Evaluating word embedding models:

Methods and experimental results. APSIPA transactions on signal and information processing, 8,

2019.

Westerbeek. Natural language processing for dutch medical language. 2015.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.

arXiv preprint arXiv:1910.03771, 2019.

44

https://www.aclweb.org/anthology/W02-2024
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419

Chapter 7

Appendix

7.1 Implementation Details

7.1.1 GloVe implementation

The implementation of GloVe used for those experiments can be found on GitHub (reference to be

added). Part of the code was written by teachers of the Utrecht University as assignment for the course

Natural Language Processing. I completed the assignment and elaborated on it. The implementation

is written in Python, using the Pytorch library. Since the medical domain would benefit a great deal

from NLP tools that can extract Named Entities (diseases, body parts, etc.), the experiments are done

on the Named Entity task. This task is done using a BiLSTM-CRF in the Flair framework. Some

parameters were found to have no influence on the results and were therefore fixed during (most of)

the experiments. The fixed parameters are the following: constant C (avoid sparsity): 0.001, x max:

100 and α: 0.75; following the original paper, epochs: 25; for the sake of training time, embedding

dimension: 100 and learning rate: 0.05.

One important shortcoming of the implementation is that it is not adjusted to accept batch size

input. When building a larger GloVe vocabulary, (> 10.000), this is practically mandatory.

7.1.2 DANN implementation

For the implementation itself, several pieces of code were copied or used as building block. Initially

the advanced Pytorch BiLSTM-CRF guide helped a lot with the basics. However, this code is written

for single instance input. Especially the CRF part becomes a lot more complicated for batch input.

Therefore I ended up using ‘pytorch-crf’, which is largely borrowed from the CRF module from

AllenNLP (Gardner et al., 2017). The BiLSTM code is relatively standard PyTorch code, from the

torch library (Collobert et al., 2011). The training for each experiment was done with some specific

parameters. First of all, early stopping was used with a patience of 10, unless otherwise specified.

This means that the validation loss was allowed to worsen for 10 epochs, after which the training

was stopped. Each time the model obtained a better validation score, the model was saved. This

optimal model is used for testing and obtaining the inference scores. An SGD optimizer was used

with a learning rate scheduler. The scheduler had a patience of 5 and used validation loss in its step

45

function. Next to this, the value of the Gradient Reversal Layer was fixed on −1. Furthermore, the

loss function for both the task and domain classification was negative log likelihood. During training,

a confusion matrix is constructed, giving access to metrics like recall, precision and F1-score. The

reported recall, precision and F1-score are macro-averages, since there exists a class imbalance in all

datasets. The ‘benefit’ of this approach is that all classes contribute equally to the reported scores.

However, it also means that some classes can have very poor performances despite the relatively high

macro score.

7.2 Useful resources (hyperlinks)

1. Flair framework: contains models and datasets

2. Huggingface Transformers: model hub, containing hundreds of models. Huggingface.co

3. GENIA POS: Github GENIA link.

4. PubMed: allows for downloaded up to 10, 000 abstracts at once. This is very useful for training

word embeddings on (English) medical data. It is even possible to select based on keywords.

With minimal preprocessing it is possible to obtain the plain text files: first split the data based

on newlines, then filter the entries with over 100 words. Finally, remove the entries starting with

‘Author’, since some of those are also above 100 words.

5. Niderhoff: Github link.

6. WikiExtractor: PyPI link

7. Word senses & dictionaries: as of December 2020, this website provides word senses and dic-

tionaries for many languages. My search for NLP tools for this thesis ended around December

2020, which is why I have not used or mentioned this. If this contains medical terms as well, it

could prove very useful. Kaikki.org.

8. AI FAQ: in case you forgot anything on related to machine learning: faqs.org

9. Microsoft Research Open Data: msropendata.com

7.3 Additional analyses

(See next pages)

46

POS-tag Precision Recall Number of labels Times assigned

NNP 0.01 0.44 361 17184

VBZ 0.89 0.63 6647 4700

JJ 0.66 0.35 36266 19333

NN 0.65 0.86 107445 142658

TO 1.00 0.96 6382 6112

VB 0.60 0.84 4711 6572

. 1.00 1.00 14058 14050

CD 0.77 0.63 6062 4921

DT 0.93 0.88 29904 28428

VBD 0.82 0.75 9475 8579

IN 0.97 0.94 49448 47786

PRP 0.96 0.59 2863 1746

NNS 0.84 0.35 25818 10845

VBP 0.93 0.49 5571 2952

MD 0.97 0.94 1708 1662

VBN 0.79 0.57 11806 8552

POS 0.78 1.00 121 155

JJR 0.72 0.52 630 459

” 0.96 1.00 106 110

RB 0.94 0.54 10684 6173

, 1.00 1.00 14802 14803

FW 0.38 0.00 1509 8

CC 1.00 0.91 13861 12667

WDT 0.95 0.77 2083 1684

(1.00 0.99 4123 4071

) 1.00 0.99 4140 4091

: 0.99 0.99 352 352

PRP$ 0.97 0.81 1181 977

RBR 0.88 0.27 243 74

VBG 0.44 0.49 4072 4565

EX 0.99 0.70 141 99

WP 0.98 0.93 42 40

WRB 1.00 0.71 427 306

SYM 0.01 1.00 1 117

RP 0.52 0.64 39 48

RBS 0.95 0.46 82 40

PDT 1.00 0.58 36 21

” 1.00 0.05 38 2

LS - 0.00 70 0

JJS 0.31 0.84 218 591

WP$ 1.00 0.89 56 50

Table 7.1: Precision and recall scores on the target set (GENIA POS) experiment 2 with randomly

initialized word embeddings.

47

POS-tag Precision Recall True Labels Assigned

NNP 0.01 0.52 361 30983

VBZ 0.91 0.61 6647 4463

JJ 0.60 0.34 36266 20325

NN 0.65 0.79 107445 131279

TO 1.00 0.96 6382 6106

VB 0.63 0.81 4711 6097

. 1.00 1.00 14058 14050

CD 0.79 0.60 6062 4610

DT 0.91 0.88 29904 28934

VBD 0.77 0.75 9475 9263

IN 0.95 0.93 49448 48090

PRP 0.96 0.59 2863 1743

NNS 0.81 0.27 25818 8649

VBP 0.96 0.44 5571 2590

MD 0.96 0.90 1708 1599

VBN 0.73 0.58 11806 9348

POS 0.80 1.00 121 151

JJR 0.66 0.41 630 390

” 0.98 1.00 106 108

RB 0.93 0.52 10684 5989

, 1.00 1.00 14802 14803

FW 0.00 0.00 1509 1

CC 1.00 0.90 13861 12545

WDT 0.96 0.78 2083 1703

(1.00 0.99 4124 4069

) 1.00 0.99 4140 4084

: 0.99 0.99 352 351

PRP$ 0.99 0.80 1181 957

RBR 0.83 0.20 243 58

VBG 0.52 0.42 4072 3343

EX 0.99 0.70 141 99

WP 1.00 0.93 42 39

WRB 1.00 0.70 427 300

SYM 0.01 1.00 1 71

RP 0.53 0.59 39 43

RBS 0.88 0.51 82 48

PDT 0.96 0.64 36 24

” - 0.00 38 0

LS - 0.00 70 0

JJS 0.59 0.67 218 247

WP$ 1.00 0.55 56 31

Table 7.2: Precision and recall scores on the target set (GENIA POS) experiment 2 with medical

word embeddings.

48

POS-tag Precision Recall True Assigned

NNP 0.00 0.97 361 85573

VBZ 0.91 0.71 6647 5158

JJ 0.58 0.56 36266 35199

NN 0.81 0.42 107445 56249

TO 1.00 0.96 6382 6110

VB 0.80 0.79 4711 4665

. 1.00 1.00 14058 14045

CD 0.57 0.72 6062 7590

DT 0.96 0.87 29904 27332

VBD 0.77 0.83 9475 10181

IN 0.97 0.94 49448 48083

PRP 1.00 0.59 2863 1688

NNS 0.95 0.48 25818 13024

VBP 0.95 0.63 5571 3689

MD 0.99 0.94 1708 1611

VBN 0.81 0.63 11806 9143

POS 0.78 1.00 121 156

JJR 0.93 0.28 630 188

” 1.00 1.00 106 106

RB 0.96 0.57 10684 6372

, 1.00 1.00 14802 14803

FW 1.00 0.00 1509 1

CC 1.00 0.90 13861 12553

WDT 0.98 0.83 2083 1762

(1.00 1.00 4124 4116

) 1.00 0.99 4140 4083

: 0.99 0.99 352 353

PRP$ 0.99 0.81 1181 967

RBR 0.69 0.54 243 189

VBG 0.93 0.40 4072 1728

EX 0.99 0.70 141 99

WP 0.97 0.88 42 38

WRB 1.00 0.68 427 292

SYM 0.01 1.00 1 134

RP 0.69 0.62 39 35

RBS 0.91 0.49 82 44

PDT 1.00 0.31 36 11

” 1.00 0.03 38 1

LS - 0.00 70 0

JJS 0.85 0.71 218 183

WP$ 1.00 0.52 56 29

Table 7.3: Precision and recall scores on the target set (GENIA POS) experiment 2 with SotA GloVe

word embeddings.

49

	Introduction
	Contributions of thesis
	Structure of thesis
	Restrictions during thesis

	Dutch medical NLP
	General challenges for Dutch medical NLP
	Lack of annotated training data
	Lack of (domain-specific) language models in Dutch
	Lack of ontologies
	Unstructured texts or reports

	Approaches
	Automatic structuring of unstructured reports
	Translation of Dutch medical text into English
	Using unsupervised models
	Domain Adaptation

	Motivation of taken approach

	Relevant datasets
	Medical datasets
	Non-medical datasets
	Useful Datasets
	Preprocessing
	Overview of datasets used per experiment

	GloVe Embeddings
	Word embeddings
	GloVe
	Word embedding evaluation methods
	GloVe experiments
	Training GloVe embeddings
	Performance of medical embeddings on general dataset
	Comparison of mixed, medical and general embeddings
	GloVe summary

	Domain Adversarial Neural Network (DANN)
	DANN background
	Domain Separation Network
	Classification
	Sequence labelling

	DANN implementation
	BiLSTM-CRF
	Domain Classifier
	Embeddings as used in DANN

	DANN Experiments
	Preliminary BiLSTM-CRF experiment
	Experiment 1: NER on Twitter (English)
	Experiment 1a: DANN performance
	Experiment 1b: Using dropout layers
	Experiment 1c: Using word embeddings
	Experiment 1 overview

	Experiment 2: POS tagging on English medical domain

	Discussion
	Analysis
	GloVe embeddings
	DANN experiments evaluation

	Limitations and shortcomings
	Model implementation
	Hardware limitations
	Word embedding data selection
	Additional features (character embeddings)
	Mapping of (unknown) words

	Future work
	Developing Dutch medical embeddings
	Using the DANN on the medical domain
	Annotation standards

	Conclusion

	Appendix
	Implementation Details
	GloVe implementation
	DANN implementation

	Useful resources (hyperlinks)
	Additional analyses

