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1. Abstract 

Background: Pesticides are widely used in the agricultural industry and can cause unintentional harm to 
non-target organisms, including humans. The public health effects of exposure to pesticides have been 
widely examined, however impacts on the human gut microbiome have been rarely investigated. Dysbiosis 
of the gut microbiota has been linked with many disease states and could have critical associations with the 
adverse health effects observed following pesticide exposure. Experimental animal studies have shown 
significant alterations of the microbial structure following both short-term and long-term exposure to 
pesticides but further studies are required to clarify the microbial effects in humans. 

Objectives: Our primary aim is to determine whether personal exposure measurements reflecting short- 
and medium-term pesticide exposure are linked with structural alterations of the human gut microbiome. 
Additionally, we aim to investigate the impacts of long-term pesticide exposure on microbial structure by 
comparing the gut microbiomes of organic and non-organic farmers. 

Methods: Short-term pesticide exposure will be defined and quantified using measured urine 
concentrations of five specific pesticide metabolites. Proxies of medium-term pesticide exposure include 
analysis of compounds adsorbed by silicone wristbands worn by participants and analysis of participant hair 
samples. Non-organic farmers will represent individuals with long-term pesticide exposure. To explore the 
impacts of short-, medium- and long-term pesticide exposures on the gut microbial structure, we will 
inspect different characteristics of the microbiome. Alpha and beta diversity will be explored in relation to 
pesticide exposures and we will also determine whether there are specific differentially abundant bacterial 
species in relation to pesticide exposure using differential abundance analysis. 

Expectations and applicability of results: As a result of pesticide exposure, we expect to find significant 
alterations in the gut microbial structure. By elucidating possible pesticide-induced gut microbial 
alterations, we hope to determine whether the gut microbiome should be a target of interest to investigate 
in future safety assessments of pesticides. By investigating the effects of different exposure durations, we 
will be able to identify individuals at greatest risk, which may drive the development of additional exposure 
prevention strategies.   

Keywords: Pesticides, gut microbiome, occupational exposure, organic farming. 

2. Lay summary 

Pesticides are substances that are designed to control undesired plants or animals, and are commonly used 
in agriculture to increase crop yields. There are several types of pesticides used on agricultural fields 
including herbicides (to control plants), insecticides (to control insects) and fungicides (to control fungi). In 
the Netherlands alone, five million kilograms of pesticides were used on crops in 2020 and of all grown 
crops, flower bulb cultivation constitutes the largest use in the country (Statistics Netherlands, 2022).  

There are a wide range of health effects that have been associated with pesticide exposure. These include 
both short-term effects such as rashes, blisters and nausea, but also chronic effects such as cancers, 
diabetes and endocrine disruption. Due to their designed purpose to kill, it is likely that these substances 
will disrupt the bacteria present within the human body. The human body is filled with bacteria, many of 
which are harmless and help to maintain good health. In fact, the human body contains more bacterial than 
human cells (Sender et al., 2016). Across the whole body, the gut contains the most bacteria and is highly 
diverse, with over 1,000 bacterial species present (Human Microbiome Project Consortium, 2014). The 
collection of bacteria within the gut is called the gut microbiota and the gut microbiome refers to the 
collection of genomes from all the microorganisms within the gut.  

Alterations in the structure of the gut microbiome have been associated with many disease states such as 
metabolic, autoimmune, cardiovascular and respiratory diseases (Vijay & Valdes, 2022). It is possible that 
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the adverse health effects observed as a result of pesticide exposure are modulated by changes in the gut 
microbiome. There have been multiple animal studies investigating whether the gut microbiome is altered 
in response to controlled exposures to pesticides and these studies have found significant alterations of gut 
microbial structure following pesticide exposure. In addition, the human gut microbiome has been 
artificially simulated using a multiple-chamber reactor (van de Wiele et al., n.d.), and used to investigate 
impacts of pesticide exposure. Significant changes in abundances of specific bacterial species residing in the 
gut simulator were observed following pesticide exposure (Joly et al., 2013; Reygner et al., 2016). Although 
animal studies and simulations provide useful estimates of the possible effects on the human gut 
microbiome, we cannot in certainty extrapolate these effects directly to the human gut microbiome. As yet, 
no studies have directly investigated the impacts of pesticide exposure on the microbial structure of the 
human gut. Therefore, we aim to explore this uncharted territory by designing a study to quantify changes 
in the human gut microbiome following occupational exposure to pesticide mixtures from agricultural use.  

The study involves flower bulb farmers in the Netherlands, including both organic (non-pesticide using) and 
non-organic (pesticide-using) farmers. We will also involve a group of non-farmers within the study so that 
results can be generalised to a larger population. We will take faecal samples from all participants and 
characterise the microbiome of these as this is a good representative of the gut microbiome (Tang et al., 
2020). To assess exposure to pesticides, concentrations of pesticides within urine samples, wristbands and 
hair from participants will be quantified.  

3. Background and relevance 

Pesticides are broad group of chemical substances that are used to control undesired insects, fungi and 

plants from agricultural crops and are widely used in modern agriculture as a highly effective means of 

increasing agricultural production. Approximately two million tonnes of pesticides are used annually 

worldwide (Sharma et al., 2019), and usage worldwide continues to rise. Despite their benefits, pesticides 

have far reaching impacts, with toxic effects on many non-target organisms. Their usage pollutes the soil, 

water and air in addition to having wider knock-on effects on human and ecosystem health. Global 

concerns surrounding the usage of pesticides have been rising, and in 2001, the Stockholm Convention on 

Persistent Organic Pollutants was signed with the aim to eliminate or restrict the production and use of 

these substances which include pesticides. 

Exposure to pesticides poses a large public health threat, with both acute and chronic health effects. Long-

term exposure to pesticides has been associated with a plethora of diseases including cancer (Van Maele-

Fabry et al., 2010), asthma (Rodrigues et al., 2022) and congenital abnormalities (Asghar et al., 2016). 

Although some disease-causing mechanisms of pesticides have been identified, the link between pesticide 

exposure and many of the adverse health effects observed have not been elucidated. It could be that 

dysbiosis of the gut microbiome plays a role in these causal pathways. The gut microbiome refers to the 

combined genetic material of the microorganisms found within the gut. It is known that the gut 

microbiome is one of the key contributors in the regulation of host health, and it has been shown that 

dysbiosis is associated with many diseases such as obesity (Fetissov, 2017), type 2 diabetes (Karlsson et al., 

2013; J. Wang et al., 2012) and colorectal cancer (Tilg et al., 2018). The gut has the highest microbial mass 

in the whole body and has been the most comprehensively studied of all microbiomes (Lloyd-Price et al., 

2017).  

In general, the gut microbiome is relatively stable but several factors are known to be associated with 

changes in the gut microbial structure including age, genetics, diet, pregnancy, socioeconomic status and 

environmental exposures (National Academies of Sciences Engineering and Medicine, 2018). Increasing 

attention is being paid to the environmental exposure effects on the microbiome and several exposures 

have been identified as determinants of the microbiome including antibiotic use (Ramirez et al., 2020), air 

pollution (Fouladi et al., 2020) and heavy metals (Lu et al., 2014). These results provide stimuli for further 
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studies to explore environmental exposure effects on the microbiome. There is an increasing awareness 

that chemicals such as pesticides may alter the microbial composition within the human body (National 

Academies of Sciences Engineering and Medicine, 2018). Studies have shown that exposing mice and 

zebrafish to chlorpyrifos, a ubiquitous pesticide, causes significant dysbiosis of the gut microbiome (X. 

Wang et al., 2019; Yan et al., 2020; Zhao et al., 2016). Simulation studies using the “Simulator of the Human 

Intestinal Microbial Ecosystem” (SHIME®) system have also shown significant dysbiosis of the microbial 

community following low-dose chlorpyrifos exposure (Joly et al., 2013). Stanaway et al. (2017) showed a 

significant association between the taxonomic composition of the human oral buccal microbiome with 

blood concentrations of the agricultural pesticide azinphos-methyl. However, as yet no studies have 

specifically investigated the association between the human gut microbiome and pesticide exposure. 

Human experimental studies of this topic are ethically dubious, and most pesticide exposure studies have 

focussed on overt health problems rather than exploring the nuanced gut microbial changes. However, as 

highlighted above, microbial changes are likely to have overarching health effects and should attract 

further attention. Although animal models are commonly applied to investigate the toxicity of pesticides on 

the gut microbiome, extrapolation of these findings to humans is questionable due to the lack of 

correlation often observed between the results of animal and human studies (Loan et al., 2015).  

The majority of human pesticide exposure occurs via contaminated food and water sources (Damalas & 

Eleftherohorinos, 2011), however quantification of exposure via these routes is a great challenge, and as a 

result, exposure assessments can be highly inaccurate (Arcella et al., 2021). We know that agricultural 

workers using pesticides are likely to have a greater exposure to pesticides than the general population due 

to their enhanced inhalation, ingestion and dermal absorption as a result of direct contact with the 

substances (Hoppin et al., 2006). Previous exposure studies have demonstrated higher pesticide levels in 

farmers compared to non-farmers (Gooijer et al., 2019). Another study similarly showed a peak in 

glyphosate concentrations in the urine of agricultural workers following a spray event on the farm 

(Mesnage et al., 2002), indicating that occupational exposure is a likely determinant of pesticide 

concentrations within the body. Due to this enhanced exposure, we will recruit occupationally exposed 

farmers and individuals who are not occupationally exposed in order to maximise the exposure contrast 

within our study. We will characterise pesticide exposure by quantifying concentrations in urine, 

wristbands and hair from our study participants. These three approaches have all been validated as proxies 

of short- and medium-term pesticide exposure.  

We have chosen to characterise the gut microbiome two days after acute exposure following a pesticide 

spray event. Although time series experiments have not been conducted in order to track the gut microbial 

changes in relation to pesticide exposure, data from previous studies have shown significant alterations in 

gut microbial species two days after antibiotic exposure in swine (K. Gao et al., 2018). In addition, a study of 

the human gut microbiome has shown that short-term dietary changes can trigger next-day shifts in gut 

microbial abundances (David et al., 2014). These results indicate that gut microbial alterations can occur 

rapidly after an acute exposure event and we aim to assess whether acute pesticide exposure has an 

impact on the gut microbial structure within two days. Our study is designed as a longitudinal cohort study 

of occupationally exposed and unexposed individuals with the primary aim to assess whether acute 

pesticide exposure has an impact on the structure of the human gut microbiome.  

4. Study aims  

The primary aims of the GuMPEx study are to determine whether short- and medium-term exposures to 

pesticides alter the structure of the human gut microbiome. This will be achieved by investigating the 

impacts of pesticide concentrations within urine, wristband and hair on the structure of the gut 

microbiome. In addition, we aim to determine whether long-term occupational exposure is associated with 
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alterations in the gut microbial structure by using the non-organic farmers as a proxy for long-term 

exposure. The main study aims and their analysis plans can be found in Figure 1.  

Additional study objectives include an exploration of possible predictors of pesticide exposure. 

Questionnaire responses will be examined as potential predictors of urine, wristband and hair pesticide 

concentrations. In addition, due to the repeated gut microbial characterisations, we will be able to examine 

whether there are seasonal fluctuations of the gut microbiome.  

 

5. Methods 

5.1 Study population 

The proposed recruitment procedure of this study focusses on flower bulb farmers in the Netherlands as 

flower bulb cultivation has the highest pesticide intensity use in the country (Statistics Netherlands, 2022) 

and therefore these workers are likely to have particularly elevated occupational exposures. We will select 

both non-organic and organic flower bulb farmers in order to maximise exposure contrast within our study 

population. We know that there are several lifestyle factors associated with the farming occupation that 

are likely drivers of the gut microbiome, therefore comparing between groups of farmers enables us to 

control for some of these inherent factors. However, in order to generalise our results to the non-farming 

population, we will also include a group of residents in the neighbouring areas. Non-organic flower bulb 

farmers will be identified and contacted from databases of grown crops and land ownership. Organic flower 

bulb farmers will be identified and approached via associations of organic farmers such as the ‘Natural 

Living and Growth’ (NLG) Holland association (https://nlgholland.com/).  

5.2 Exposure assessment 

Pesticide exposure assessment within this cohort will be performed using several validated approaches as 

proxies for short-, medium- and long-term exposures. Exposure assessments will be conducted at two time 

points throughout the study: December 2023 and July 2024. The pesticide spray season is from March to 

September, therefore assessing exposure in July will likely capture high pesticide exposure within the non-

Figure 1: Visual representation of the aims of the GuMPEx study and their associated analysis plans. 
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organic farmers. Assessing exposure at two time points will also enable us to determine whether seasonal 

fluctuations in exposure occur. A previous study demonstrated that pesticide spray events on non-organic 

farms are associated with increases in concentrations of measured pesticides within urine, wristbands and 

hair (Gooijer et al., 2019), therefore we expect to observe differences in the exposure estimates in 

December compared to July.  

5.2.1 Short-term pesticide exposure  

Concentrations of urine pesticide metabolites for five selected pesticides will be quantified using the five 

techniques as outlined in Gooijer et al. (2019) and used as a proxy for short-term exposure. Human 

experimental studies have shown that oral and dermal exposure to these five selected pesticides results in 

the excretion of five corresponding metabolites which will be selected for detection in urine samples 

(Gooijer et al., 2019). The five selected pesticides are: tebuconazole, chlorpropham, carbendazim, 

prochloraz and asulam and their associated metabolites are: tebuconazole-1-hydroxy (TEB-OH), 4-

hydroxychlorpropham-O-sulphonic acid (4-HSA), methyl 5-hydroxy-2-benzimidazole carbamate (5-HBC, 

hydroxy-carbendazim), 2,4,6-trichlorophenoxyacetic acid (2,4,6-TCP) and asulam. Selection of these five 

pesticides within the Onderzoek Bestrijdingsmiddelen en Omwonenden (OBO) study was driven by several 

factors including their widespread usage in the study region in addition to their differing physicochemical 

properties and lower likelihood of dietary exposure compared to other pesticides (reducing the potential 

for confounding by dietary intake). We have reason to believe that exposure to each of these five pesticides 

is likely to cause gut microbial alterations. In relation to tebuconazole exposure, studies have shown 

significant impacts on soil microbial activity (Kent & Triplett, 2002). Chlorpropham is a carbamate ester 

similar in structure to the carbamate insecticide aldicarb which was shown by Gao et al. (2019) to cause 

significant disruptions in the gut microbiome of exposed mice. Carbendazim and prochloraz exposures in 

mice have also both been shown to induce dysbiosis of the gut microbiota (Jin et al., 2018; Y. Wang et al., 

2021). Regarding asulam exposure, we know that its degradation product is sulfanilamide which is a 

sulphonamide class antibiotic (Kaufmann & Kaenzig, 2007), and is as such very likely to disrupt the gut 

microbial communities.  

Within the OBO study, it was found that biomarkers of two out of these five selected for analysis were 

detected in more than half of all participant urine samples. Participants in this study included neighbouring 

residents to farms, in addition to a control population who lived at least 500m from an agricultural field. 

We therefore have confidence that we will detect these pesticides within our study population as our 

population will be more highly exposed than those involved in the OBO study. In order to determine overall 

urine pesticide concentration for each participant we will take an average (mean) of the five pesticides and 

express this in ng per mL of urine.  

5.2.2 Medium-term pesticide exposure 

Although urine sampling is an effective, convenient and non-invasive method to assess personal exposure 

to pesticides, it can only provide information on short-term pesticide exposure, with a maximum of several 

days (Tsatsakis et al., 2010). Urine is therefore a suitable matrix to assess exposure following specific spray 

events. However, it is likely that non-organic farmers have a different exposure profile to organic farmers, 

and are likely to experience longer-term pesticide exposures which may not be detected through urine 

analysis.  

 

Although the highest likely exposures in an occupational setting are episodic following spray events, it is 

known that farmers are exposed to long-term, low-level exposures through other activities that may not be 

directly associated with the spray event. These exposures include contact with pesticide residues on the 
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crops and take-home exposures (Fenske et al., 2013), in addition to spray drift from neighbouring fields 

(Damalas & Koutroubas, 2016). These additional exposures highlight the fact that we should not solely rely 

on short-term estimates of pesticide exposure. Furthermore, there are limitations on the number and type 

of pesticides that we are able to analyse in the urine samples due to a lack of analytical standards for 

biomarkers of many of the pesticides used within this sector, hence limiting our urine biomarker analysis to 

only five pesticide biomarkers. Therefore, in addition to urine analysis we also plan to create an enhanced 

understanding of medium-term pesticide exposure to a wider selection of pesticides by analysis of silicone 

wristbands (worn by the farmers) and hair samples.  

 

All farmers will be asked to wear a silicone wristband continuously for 1 week both in the non-spraying and 

spraying seasons (December 2023 and July 2024 respectively). Wristbands are a practical method to assess 

medium-term exposure to pesticides as it is reasonable to implement and non-invasive for the participants 

involved (Gooijer et al., 2019). These wristbands adsorb chemicals such as pesticides in their matrix which 

can then be analysed. Wristbands will be analysed for 46 different targeted pesticides or their breakdown 

products. These 46 pesticides were previously selected as targets in the OBO study as they are known to be 

commonly used in flower bulb production (Gooijer et al., 2019). Pesticides will be measured using a multi-

residue method which will allow for all selected pesticides to be simultaneously quantified. This method 

will be based on liquid chromatography linked with mass spectrometry (LC-MS/MS) (see Gooijer et al. 

(2019) for further details). Pesticide concentrations in the wristbands will be expressed in ng per g of 

wristband. Hair samples will also be collected from all farmers (where possible) both in the spray and non-

spray seasons, following the protocol defined by Cooper et al. (2012). Hair has been found to be a suitable 

matrix for biomonitoring of human environmental exposure to pesticides (Appenzeller & Tsatsakis, 2012). 

Hair samples will be analysed using the LC-MS/MS-based method. However, due to the fact that hair is a 

complex matrix which can be highly variable, isotopically labelled internal standard analogues for the 

pesticides of interest will be required to reduce the analytical errors when determining pesticide quantities 

(Soulard et al., 2022; Tsuchiyama et al., 2017). As a result, we will not be able to target the same 46 

pesticides as those in the wristbands but instead we will target 25 specific pesticides. These 25 specific 

pesticides were selected firstly to match with the five pesticides targeted in the urine analyses and the 

remaining 20 pesticides were selected due to their high prevalence in the environmental samples collected 

as part of the OBO study which was conducted in a similar region to this proposed study (Gooijer et al., 

2019). For estimations of overall pesticide levels in each matrix, we will take the mean of the 

concentrations for each of the quantified pesticides and use these concentrations as continuous variables 

in our analyses.   

5.2.3 Long-term pesticide exposure  

Over their lifetimes, we know that farmers who use pesticides are exposed to much higher levels than the 

general public (Woodruff et al., 1994). Therefore we will broadly classify non-organic farmers as individuals 

experiencing long-term pesticide exposure. 

A summary of the short-, medium- and long-term pesticide exposure assessment methods that will be 

implemented can be found in Table 1. 
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5.2.4 Participant questionnaires 

In order to explore possible lifestyle-related determinants of the above measured pesticide concentrations, 
questionnaires will be conducted and will consist of a set of questions related to both direct and indirect 
pesticide exposures. Participants will complete questionnaires directly in the study database. Non-organic 
farmers will be asked questions regarding pesticide use on their fields, including information on the types 
of pesticides, spraying methods, quantities and times of spraying as well as information on personal 
protective equipment used. All participants will be asked about food consumption, personal use of 
pesticides at the home, lifestyle information and actions that may be involved with enhanced pesticide 
exposure. Questionnaires will be completed twice during the study to coincide with the exposure 
measurements and microbiome sampling.  

 

5.3 Microbiome (outcome) processing  

Faecal samples will be collected by the participants in December 2023 and July 2024. Participants will be 

asked to store samples in the fridge until collection by the coordinating team the following day. On return 

to the lab, samples will be stored in the -80°C freezer prior to sequencing. We will perform 16S rRNA gene 

amplicon sequencing of faecal samples from all participants. DNA will firstly be extracted from faecal 

samples and then amplified using specific primers targeting the V3 and V4 regions of the bacterial 16S rRNA 

gene. Subsequently, sequencing will be conducted using the Illumina MiSeq platform. Amplicon data 

analysis will be performed using the QIIME pipeline (Bolyen et al., 2019). This involves filtering out artifacts 

such as primers and barcodes as well as low-quality reads, and subsequently determining the counts of 

non-redundant sequences (Qian et al., 2020). Output sequences will be processed in R and the sequences 

will be grouped into amplicon sequence variants (ASVs) (Callahan et al., 2016). For taxonomic classification, 

sequences will be mapped to the SILVA database which is a comprehensive dataset containing aligned rRNA 

gene sequences (Quast et al., 2013). Additional filtering and quality checks of the microbial dataset will be 

performed. Firstly contaminant DNA will be identified using the decontam package in R and sequences 

deemed to be contaminants with the ‘combined’ method will be removed. In addition, bacterial taxa with 

an abundance of <0.1% in <1% of all samples will be removed.  

5.4 Statistical analyses 

5.4.1 Exposure characterisation 

Descriptive statistics of the pesticides detected in urine, wristbands and hair will be reported. Tables will 

show a summary of the findings including the minimum, median, mean, and maximum values for each of 

the pesticide targets across all samples from the same matrix. We will also determine the percentage of 

samples from each matrix with values greater than the limit of detection (i.e. the lowest pesticide 

concentration that can be detected in a sample) for each pesticide.  

Sample/data type  Collection time (length)  Analysis method 

 
Urine  

December 2023 (1 morning sample) 
July 2024 (1 morning sample) 

5 different detection methods for the 5 
pesticide targets (see Gooijer et al. (2019)) 

 
Wristband 

December 2023 (7 days)  
July 2024 (7 days)  

LC-MS/MS (46 pesticide targets) 

 
 

Hair 
December 2023 (1 sample) 
July 2024 (1 sample) 

LC-MS/MS (25 pesticide targets)  

Table 1: Methods used to determine short- and long-term pesticide exposure  
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5.4.1.1 Determinants of pesticide exposure  

We will conduct regression analysis to investigate whether variations in urine, wristband and hair pesticide 

concentrations can be explained by predictors obtained from questionnaire results. This will enable us to 

determine possible lifestyle-related predictors of human pesticide exposure. 

5.4.2 Microbiome characterisation 

Several characteristics of the faecal microbiome will be explored within this study. All analyses will be 
performed in R. A more detailed statistical analysis plan (SAP) will be developed and published prior to 
initiation of the proposed study in order to protect from p hacking from post-hoc selection of diversity 
indices. A brief description of the analysis methods to be used is provided here.  

5.4.2.1 Alpha diversity 

We will explore within-sample diversity (alpha diversity) of each microbiome sample. We will use the R 

package microbiome to calculate three different alpha diversity indices (Chao1, Shannon and Simpson) for 

each sample, as these are commonly used in conjunction within human microbiome analyses. Each of these 

indices quantifies alpha diversity with a slightly different emphasis (Chen & Chen, 2018). Alpha diversity can 

be classified according to richness (the number of different taxa) or evenness (the distribution of taxa 

abundances). Chao1 quantifies diversity based only on richness, Shannon and Simpson indices both 

combine richness and evenness but Shannon gives more weight to rare species whereas Simpson gives 

more weight to common species (Qian et al., 2020).  

Chao1, Shannon and Simpson alpha diversity indices will be our outcome variables. Primary explanatory 

variables of interest will be pesticide exposure concentrations from urine, wristbands and hair samples. In 

addition, other participant characteristic variables such as age, sex, season (December vs. July), diet (low, 

medium and high likelihoods of pesticide consumption), personal use of pesticides (yes vs. no) will be 

explored as possible determinants of the microbiome. Statistical differences in alpha diversity will be 

assessed using multivariable linear models for the continuous concentration exposure variables. For 

categorical participant characteristic variables, we will initially explore these factors univariably (using t 

tests, Wilcoxon rank sum tests and ANOVA). Following this, predictors yielding p values <0.2 will be entered 

into the multivariable linear models with the pesticide exposure concentrations to allow for adjustment for 

these known confounders. 

5.4.2.2 Beta diversity 

Beta diversity quantifies compositional differences between samples and allows us to determine and 
visualise whether or not microbiome compositions vary between and within individuals that are grouped 
according to a variable of interest. Bray-Curtis (BC) dissimilarity will be calculated between all microbiome 
samples using the vegan R package (Oksanen et al., 2007). Principal Coordinates Analysis (PCoA) will 
subsequently be used to visualise these dissimilarities in a two-dimensional plot. We are primarily 
interested to see whether urine pesticide concentrations are associated with compositional changes in the 
gut microbiome, we firstly categorise all participants into quartiles of exposure based on total urine 
pesticide concentrations. In addition, we again categorise participants into quartiles for the medium-term 
pesticide exposures (wristband and hair concentrations). In order to statistically test whether there are 
overall differences between microbial compositions of participants in different quartiles of pesticide 
exposure (in urine, wristbands and hair), we will use a multivariable permutational multivariate analysis of 
variance (PERMANOVA) (adonis2 function), along with a check for homogeneity of variance between the 
quartiles (betadisper function).  
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5.4.2.3 Differential abundance analysis  

Differential abundance (DA) methods are able to detect associations between bacterial abundances and 
participant groupings (Hawinkel et al., 2019). Within this study, we will use this analysis to determine 
whether there are specific bacterial taxa that are driving potential compositional differences between 
individuals exposed to different levels of pesticides, hence determining whether there are specific bacterial 
taxa that have significantly higher or lower abundances with increases in pesticide exposure. We will 
implement two different DA analysis algorithms in order to validate our results as different methods have 
been shown to produce inconsistent results (Nearing et al., 2022). We will implement the DESeq and 
ALDEx2 algorithms as previous studies have recommended that they are used in conjunction for DA 
analysis of microbial communities (Nearing et al., 2022).  

5.4.2.4 Procrustes analysis 

In order to investigate whether the gut microbiome is stable over time within one individual we will use 
Procrustes analysis. This allows us to compare the correlations between the PCoA ordinations of the gut 
microbiome samples from December 2023 to those from July 2024 within the same individual. In order to 
determine whether or not potentially observed correlations between paired samples are true correlations 
and not due to chance, we will also randomise the December 2023 samples and compare these to their 
unrelated July 2024 samples. This will enable us to determine the within and between-person microbial 
dissimilarities over time, hence enabling us to decipher the stability of the gut microbiome over time. 
Procrustes analysis will be implemented using the R vegan package. Firstly, PCoA ordinations of all gut 
microbiome samples will be computed using the BC dissimilarity matrix. Subsequently, PCoA ordinations of 
the paired and unpaired microbiomes will be superimposed in a symmetric Procrustes plot. The protest 
function from vegan will be used to statistically test the significance of the Procrustes correlation between 
ordinations and a p value of <0.05 will be considered statistically significant.   

5.5 Study timelines 

The GuMPEx study will be conducted between August 2022 and March 2025 in multiple stages. The 

activities and schedule status of the GuMPEx study is illustrated in a Gantt chart in Figure 2, and a detailed 

overview of the planned study activities within these 32 months can be seen in Figure 3.  

Figure 2: Gantt chart to illustrate the GuMPEx study schedule.  
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Figure 3: Overview of the study tasks and timelines.   
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5.6 Power calculation  

There are some power calculation tools which are specific to microbiome analyses, however regular sample 
size procedures are also applicable for microbiome data. The G*Power software (version 3.1.9.7) will be 
used to determine the appropriate sample size required to meet our study aims (Faul et al., 2007), which is 
known to be the most complete software for power analysis. The microbiome is a complex structure and 
two main aspects of it can be compared between individuals: alpha and beta diversity (the within and 
between-sample diversity respectively). Kers & Saccenti (2022) have shown that beta diversity metrics were 
more sensitive to detection of differences in comparison to alpha diversity metrics. In addition, they 
observed that the different types of alpha and beta diversity metric also have an impact on the sample size 
required to detect differences. In terms of beta diversity metrics, they showed that the BC index is the most 
sensitive. They found that the microbiome structure had an influence on the sensitivity of the different 
alpha diversity indices, and that with human microbiome data the Shannon and Simpson alpha diversity 
indices were more sensitive than Observed, Chao1 and Phylogenetic Diversity indices (Kers & Saccenti, 
2022). As we plan to characterise alpha diversity using Chao1, Shannon and Simpson indices, we will 
conduct our power calculation using Chao1 as our outcome measure, as this is the least sensitive of the 
analyses we will perform on our microbiome data. We will be determining whether there is a linear 
relationship between pesticide exposure concentrations and the Chao1 alpha diversity index, therefore our 
sample size calculation will be based on a t test to assess the linearity of the relationship between Chao1 
diversity and urine pesticide concentrations by assessing slope size. In order to compute the required 
sample size, the following parameters must be specified in the G*Power software: α (type I error rate), 
power (1 – β (type II error rate)), population standard deviation and effect size.  

Within the G*Power algorithm, we will specify α = 0.05 and power = 0.8. However the difficulty lies in 
determining the hypothesised effect size of pesticide exposure on Chao1, in addition to the challenge of 
estimating the variability of Chao1 scores within our study population. We expect that Chao1 diversity will 
decrease linearly with increases in pesticide concentration. However, due to the varying intensity of effects 
observed as a result of different environmental exposures on microbial diversity (Alderete et al., 2018; Lei 
et al., 2019), estimating effect size would be mere speculation and could drastically influence the outcome 
of our power analysis. Therefore, simply estimating effect size and variability could lead to a gross 
overestimation or underestimation of the required sample size for this study. As a result, we will conduct a 
small pilot microbiome analysis to help us to determine reasonable estimations of these figures. We will 
approach a selection of previous participants from the OBO study (Gooijer et al., 2019) for faecal samples. 
Pesticide exposures for these participants were previously determined, therefore we will not only be able 
to make informed estimations of Chao1 variability within the population, but also informed estimations of 
the effect size in relation to pesticide exposure.  

As we will conduct linear regression to determine whether there is a significant linear relationship present 
here, therefore we express this relationship with Equation 1. As follows, our null hypothesis (H0) and (two-
sided) alternative (H1) hypothesis are presented in Equation 2 (Seltman, 2018).  

For financial and staff budgeting purposes, we assume a total cohort of 60 within this study which will 
include non-organic and organic farmers as well as a group of non-farming individuals. This corresponds 
with sample sizes of similar studies previously conducted, such as that of Yang et al. (2019) who revealed 
significant alterations in gut microbial diversity following phthalate exposure with a cohort of 75. 

Equation 1:  E(Y|x) = β0 + β1x 

Equation 2: H0: β1 = 0, H1: β1 ≠ 0 

Where Y is the alpha diversity index (e.g. Chao1), x is the (continuous) pesticide concentration, E(Y|x) is 
the expected value of the diversity index given the pesticide concentration. β0 and β1 are the intercept 
and slope of the regression line, respectively.  
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6. Expected results and societal implications  

Despite the growing body of evidence showing that gut microbial alterations are associated with many 
disease states, moving from correlation to causation is a challenge within microbiome research (Shreiner et 
al., 2015). Interindividual variability of the gut microbial communities additionally convolutes the picture 
and adds a further challenge in the determination of the microbial drivers of health and disease. However, 
we have considerable evidence now to show that reduced gut microbial diversity is linked with several 
chronic health conditions. Therefore, by revealing the impacts of pesticide exposure on microbial diversity, 
we can speculate whether or not pesticides may be modulating health status. Currently, in terms of policies 
regarding pesticide approval, review processes do not investigate alterations in the gut microbiome but 
instead focus on overt health conditions. Despite the fact that gut microbial alterations cannot be explicitly 
linked with health conditions, we believe that it should be considered within the review process as they can 
provide early warning signs for progression of several chronic diseases. We hope to reveal initial evidence 
to show that gut microbial changes are associated with pesticide exposures, which we hope will provide 
stimulus for further investigations within this field. In terms of policy making, we hope that our study will 
provide a stimulus to consider this as an outcome of interest in relation to risk assessment of these 
substances.  

7. Risk assessment and ethical considerations  

Due to the observational nature of this study, we do not anticipate significant hazards that could be of 
harm to our study participants. There are however several potential risks, biases and ethical considerations 
that must be taken into account through the design and conduct of this study. Ethical approval for the 
study will be sought from the medisch ethische toetsingscommissie (METC) of the Utrecht Medical Centre 
at Utrecht University.  

7.1 Risk of low participation rates 

Despite the minimal physical risks to participants, our study is demanding of time and energy from those 
involved. All participants will be required to complete questionnaires, wear wristbands and provide urine, 
faecal and hair samples for the study analysis. For many approached farmers, this may appear excessively 
demanding, and as a result we foresee risks of low participation and adherence rates. To attempt to 
overcome this, we will provide financial incentives for participation in the study in addition to regular 
communication with participants and provision of study giveaways. We trust that incentivisation to partake 
in our study will not introduce ethical concerns related to coercion and exploitation of vulnerable groups 
due to the lack of physical hazards from our study.  

7.2 Risk of selection and confounding bias 

There is a possibility of the introduction of selection bias within our study via self-selection into the study. It 
could be that the non-organic farmers who agree to participate in the study have prior concerns regarding 
their health and the health effects of pesticide use on the farm. They therefore may be more likely to have 
worse health status which could possibly be linked to alterations in the gut microbiome, which may or may 
not be linked to pesticide exposure. Although little can be done to prevent selection bias from initially 
occurring, we will minimise the impacts of this possible bias by the use of extensive questionnaires which 
will investigate many lifestyle and health factors. We will correct for characteristics such as age, sex and 
health status which are all known to be key drivers of gut microbial structure.  

7.3 Risk of information bias 

Systematic errors in measurements of the outcome (gut microbiome) are not expected within our study. 
These will be mitigated by pseudonymising participants which will ensure that lab analyses are conducted 
blind to the exposure status of the farmer under investigation. All gut microbiome analyses will be 
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conducted using standardised 16S rRNA sequencing protocols and all analyses will be performed in the 
same laboratory for consistency. In addition, all samples will be 16S rRNA sequenced within the same 
sequencing run in order to reduce batch effects which often occur as a result of conducting independent 
sequencing runs due to possible variations in hardware, reagents, or personnel (Schloss et al., 2011). We do 
not foresee any introduction of bias regarding exposure assessment in our study. All samples from farmers 
will be collected following standardised data collection protocols, and participants will be asked to fill out 
questionnaires as truthfully as possible and reminded that their responses will be pseudonymised. 

7.4 Informed consent process  

All study participants will be approached for fully informed consent in August 2023. Participants will be 
provided with personal access to the study database from which they will read the information sheet and 
consent form as developed for the study and approved by the METC. Before accessing the consent form, 
participants will be required to read the information sheet (see Appendix 10.1). This will contain 
information such as details of the study, risks and benefits of participation, details about withdrawal from 
the study and information regarding the future use and storage of the study data. Consent forms will 
consist of checkboxes enabling the participant to indicate agreement to the conditions of the study (see 
Appendix 10.2). The consent form will include a statement asking whether the participant agrees in the 
notification of their general practitioner and the Gemeentelijke Gezondheidsdienst (GGD) in the case that 
their pesticide exposure exceeds the acceptable daily intake. A copy of the information leaflet and 
completed consent form will be provided to the consenting participant for their records and the original 
copy will be stored electronically in the study database. No copies of the consent form will be stored 
elsewhere in order to protect participants’ identities.  

7.5 Participant confidentiality 

In order to protect the privacy of our study participants and minimise the risk of data breaches, all 
information and sample analyses from participants will be stored securely in an encrypted study database. 
Questionnaire responses will be directly entered onto the study database by the participants themselves. 
Pseudonymisation of personal data will be carried out in order to protect the privacy of participants, but to 
enable withdrawal of participant data if necessary.  

7.6 Results dissemination  

We aim to publish the results arising from the GuMPEx study in a well-established, peer-reviewed journal. 
In addition to publication, study results will be provided to participants and other stakeholders involved via 
dissemination packs which will include several materials including participant leaflets, a copy of the 
publication, and their personal exposure measurements when requested. We will approach various media 
outlets such as the bulb growers’ magazines ‘Greenity’, and other national farming-related journals. We will 
arrange a participant and stakeholder meeting in March 2025 where the results of the study and their 
implications will be discussed in further detail.  

8. Project budgeting 

We plan to initiate this study in August 2022 and we expect to complete and disseminate the results by 
March 2025. We will employ several staff members with varying roles in the study. The principal 
investigator will be responsible for overall management of the study and staff, and will be involved in the 
design, conduct and reporting of the study results as well as being a point of contact for collaborative 
partnerships with stakeholders within the project. The research associate will be responsible for the 
coordination of the team, have overall responsibility for the project timelines and will be in charge of 
monitoring of the data collection process. In addition, the research associate will design the statistical 
analysis plan, conduct statistical analyses and will have overall responsibility for the writing of the 
publication. The data manager will develop the study database and will have overall responsibility of it, 
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ensuring accuracy and legitimacy of the data as well as ensuring that all practices are compliant with the 
European Union’s General Data Protection Regulation (EU GDPR). Fieldworkers will be responsible for all 
communication with the study participants, for mailing study materials to, and collecting samples from the 
study participants. Lab technicians will be recruited to conduct the analyses of all samples collected. Four 
different labs will be involved in the study due to the different methods and materials required in order to 
process the different types of samples from participants. The communications officer will be employed 
from the university as an independent figure to advise and implement various communication strategies.  
The financial budget plan of the study is outlined in Table 2.  
 
 

Job title NFU/VSNU 
member 

Salary Scale* Months Gross 
salary  

% 
FTE± 

Salary costs 
 

Principal investigator VSNU Senior Scientific Employee 32 €221,262 20%  €44,252.40  
 

Research associate VSNU Senior Scientific Employee 32 €221,262 100% €221,262.00  
 

Data manager  VSNU NSE‖ - Academic 32 €236,985 60% €142,191.00  
 

Fieldworker VSNU NSE - MBO¥ 3 €13,976 100%  €13,976.00  
 

Fieldworker VSNU NSE - MBO 3 €13,976 100%  €13,976.00  
 

Lab Technician VSNU NSE - MBO 5 €23,293 80%  €18,634.40  
 

Lab Technician VSNU NSE - MBO 5 €23,293 80%  €18,634.40  
 

Lab Technician VSNU NSE - MBO 5 €23,293 80%  €18,634.40  
 

Lab Technician VSNU NSE - MBO 5 €23,293 80%  €18,634.40  
 

Communications officer VSNU NSE - MBO 2 €9,317 50%  €4,658.50  
 

TOTAL STAFF COSTS €514,853.50  

Item Category Item  Cost per item Number Total  

Sample analyses Faecal 16S rRNA sequencing €65 120 €7,800 

Urine pesticide analysis  €150 120 €18,000 

Wristband analysis €250 120 €30,000 

Hair sample analysis €250 120 €30,000 

Materials  Materials for urine, faecal and 
hair sampling 

€10 120 €1,200 

 Wristbands €10 120 €1,200 

 Fieldworker travel costs   €500 

 Printing of study materials  €600 

Participants Phone bills  €250 

 Financial incentives €200 60 €12,000 

Other 
 

Database development  €6,000 

Secure sample storage   €1,000 

TOTAL OTHER STUDY COSTS €108,550 

GRAND TOTAL  €623,403.50 

* Salaries have been determined based on the salary tables agreed upon by the collective labour agreement 
of the Dutch universities (Universities of the Netherlands, 2022). The salary budgeting table has been 
adapted from The Netherlands Organisation for Health Research and Development (ZonMw) template 
(https://www.zonmw.nl/nl/subsidies/voorwaarden-en-financien/).  
± % FTE is the % of full-time equivalent work (defined as 38 hours per week) that an employee will work on 
the project.  
‖ NSE is the acronym for Non Scientifical Employee.  
¥ MBO is the Dutch acronym for senior secondary vocational education.  

Table 2: Financial plan of the GuMPEx study.  

https://www.zonmw.nl/nl/subsidies/voorwaarden-en-financien/
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10. Appendices  
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10.2 Participant consent form 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


