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Abstract

In this thesis, the morphodynamic equilibrium of the width and bed level profile of estuaries is studied. This is
done by using an one-dimensional hydrodynamic and morphodynamic model that includes variable channel widths.
The width is determined by a hydraulic geometry relation that relates the width to the peak in total discharge,
which is dependent on both the fluvial and tidal influence. A river discharge is forced on the upstream boundary
of the channel and a tide is forced upon the downstream boundary of the channel. The channel starts as a straight
channel and then evolves towards a steady state with respect to the channel width and bed level. The equilibrium
width and bed level profiles largely depend on the coefficients used in the hydraulic geometry relation. These
coefficients were underestimated, but the model produced a realistic cross-sectional area tidal prism relation that
did not depend on these coefficients. The results generally show that longer estuaries with a larger ratio between
the width at the mouth and the width upstream are developed when the tidal amplitude or initial channel depth
are larger, or when the river discharge, the initial slope or the drag coefficient are smaller. The width ratio can
actually be directly related to the tide dominance ratio, whereas the estuary length mainly depends on the channel
depth at the mouth, the estuary bed slope and the tidal amplitude. More convergent estuaries with a shorter
e-folding length scale are developed when the initial slope or drag coefficient are larger or the initial channel depth
is smaller. Interestingly, the results show that the convergence is greatly dependent on a balance between the
river discharge and tidal amplitude. Generally, the estuary is more convergent with larger tidal amplitudes and
smaller river discharges. However, if the river discharge is too low or the tidal amplitude too high, the estuary will
develop a concave instead of a convex width profile. The equilibrium bed levels were all concave down with an
increasing depth towards the mouth. Overall, the model shows great potential for predicting the equilibrium width
and bed level profile of estuaries to changing boundary conditions if the hydraulic geometry relation coefficients are
optimized.
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1 Introduction

Estuaries are environments with large significant societal and environmental importance. They provided essential
habitats for various flora and fauna with their sheltered brackish waters. Humans depend on estuaries for navigation
between the sea and rivers. Estuaries moreover provide very fertile soils that are good for agricultural land uses
(Bolla Pittaluga et al., 2015). Humans have a great impact on the estuaries as they try to control their behaviour, for
example by placing dikes and dredging. Moreover, most estuaries are subject to a human-induced decrease in sedi-
ment supply and a rapid sea-level rise, which are expected to only increase in the coming years (Nienhuis et al., 2020).
Estuaries adapt to these changes through their hydro- and morphodynamics. This raises questions about how these
estuaries will adapt and what the long term effect will be. Some studies showed that effects of decreasing sediment
supply would include erosion and reduction of wetlands and marshes (Syvitski, 2008), bank instability (Hackney et
al., 2020), tidal amplification (Eslami et al., 2019) and salinization (Zhang et al., 2013).

The hydrodynamics and morphodynamics of estuaries are complex due to the interaction of river flow and tidal
flow, making it hard to predict their behaviour exactly. Most estuaries have a convergent width profile with a larger
width at the mouth than upstream. However, still, no fully accepted theory exists that exactly explains why estuaries
develop such a convergent shape and what determines the magnitude of convergence (Davies & Woodroffe, 2010). This
convergent shape is an essential factor influencing the tidal hydrodynamics in estuaries, as it amplifies the tidal wave.
Friction opposes this amplification, so both the convergence and friction together determine the tidal hydrodynamics
(Friedrichs & Aubrey, 1994).

To better predict the influence of human interference, it is vital to study the morphodynamic response of the bed
level and the channel width of estuaries to changes in their hydrodynamics or morphodynamics. This is often done
by studying the morphodynamic equilibrium of estuaries, as estuaries adapt to changes in their hydrodynamics or
morphodynamics by evolving towards a new equilibrium (Zhou et al., 2017). There have been several numerical studies
that focus on the effect of channel properties and boundary conditions on the equilibrium bed level profile of estuaries
and tidal channels (Bolla Pittaluga et al., 2015; Canestrelli et al., 2014; Guo et al., 2015; Hibma et al., 2003; Lanzoni &
Seminara, 2002; Todeschini et al., 2008). These studies often prescribe a convergent width profile and assume that the
channel banks are stable, so the channel width will not change over time (Todeschini et al., 2005). This assumption of
fixed banks could be justified because in many estuaries humans have fixed the banks by embankments. Another used
justification is that the time scales on which channels adapt their width are longer than the time scales on which they
adapt their bed levels (Bolla Pittaluga et al., 2015; Miori et al., 2006). However, not all estuaries have fixed banks,
and it is essential to know how estuaries will evolve in the long term. For example, the Sittaung estuary (Myanmar)
(Ahmed et al., 2018) and the Mekong estuary (Vietnam) are experiencing bank erosion (Hackney et al., 2020), while
the Yangtze Estuary (China) (Zhao et al., 2018) has experienced an overall deposition trend. These changes in channel
width affect the hydrodynamics, which in turn change the bed level of the estuary. This is why it is relevant to study
equilibrium width profiles and incorporate adjusting widths to numerical models used in analyzing the equilibrium of
estuaries.

Some researchers did include a variable width in their model for estuaries or tidal channels (Lanzoni & D’Alpaos,
2015; Todeschini et al., 2005; Van der Wegen & Roelvink, 2008; Xu et al., 2019). However, most of these models
experienced the problem that the width profile did not stabilize but constantly increased, as only erosion processes
were considered. Modelling erosion and sedimentation processes is complex, even in rivers where those processes
are only influenced by fluvial flow and not by additional tidal flow (Kleinhans et al., 2011). There is moreover still
no theory that describes what determines channel width of rivers. However, there have been made significant steps
towards such a theory (Dunne & Jerolmack, 2020). There is a solid empirical basis that the channel width of rivers
scales with the discharge through a power-law relation (Gleason, 2015). This empirical relation and other empirical
relations that link the discharge to channel properties are called hydraulic geometry relations. Miori et al. (2006) and
Kleinhans et al. (2011) developed a hydrodynamic and morphodynamic model for rivers that included an adjustable
width by using a hydraulic geometry relation that related channel width to the discharge. In these models, the width
profile reached a steady state. Hydraulic geometry relations have been less studied in the context of tide influenced
estuaries. However, previous studies have shown that the channel width in estuaries and tidal channels scale with
the tidal prism (D’Alpaos et al., 2010). This tidal prism is in turn related to the tidal discharge (O’Brien, 1931), so
the channel width in estuaries can be related to the discharge (including fluvial and tidal influences) by a hydraulic
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geometry relation (O’Brien, 1931; Sassi et al., 2012). This hydraulic geometry relation can then be used to simulate
width adjustment in estuaries.

This thesis will study the morphodynamic equilibrium in channel width and bed level of an estuary in response
to adjustable channel widths. This is done by using a one-dimensional numerical hydrodynamic and morphodynamic
model, where the channel banks are not fixed, so the channel width can adjust to channel properties and boundary
conditions. An existing model (Iwantoro et al., 2021) will be adjusted to include width adjustment by using a hydraulic
geometry relation for estuaries. This method will be based on the models of Miori et al. (2006), and Kleinhans et
al. (2011) in rivers. We will study if the modelled estuaries reach an equilibrium in width and bed level and what
channel properties and boundary conditions this equilibrium depends on. Furthermore, will what variables determine
the convergence and length of an estuary, as well as the effect of tide dominance on the equilibrium be researched.
Lastly, the hydraulic geometry relations the model produces will be studied.

1.1 Structure of thesis

The structure of this thesis will be as follows. In section 2 (theoretical background), the characteristics of an estuary
are discussed as well as past research on the morphodynamic equilibrium of estuaries and hydraulic geometry relations.
Hereafter a detailed description of the research objective an research questions will be given in section 3 (research
objective). In section 4, first, the hydrodynamic and morphodynamic calculations in the numerical model and how
the width adjustment was included in the model will be explained. Second, an explanation of the model runs will be
given and the method of determining estuary characteristics from the model results. In section 5 (results), the results
will then be presented and briefly discussed. First, the results of the runs with an adjustable width but stable bed
will be presented, and second, the results of the runs with an adjustable width and bed will be explained. After that,
the results will be combined to study the effect of tide dominance on the estuary characteristics and the hydraulic
geometry relations the model produces. In section 6 (discussion) the results will be further discussed and compared
to past research. Furthermore, this section will contain some suggestions for future research. Last, in section 7
(conclusion), the overall conclusion of this thesis will be presented. The notations used in this thesis are described in
the appendices, and a list of the figures and the tables are given therein.
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2 Theoretical background

As in this thesis the equilibrium of an estuary is studied, it is helpful to define what an estuary is and explain what
characteristics an estuary has. In this section this will be discussed, as well as how studies to the morphodynamic equi-
librium of estuaries can give more insight into these characteristics. Furthermore, the previous research on equilibria
of estuaries and hydraulic geometry relations will be reviewed.

2.1 Characteristics of estuaries

There has been quite some debate about the correct definition of an estuary (Elliott & McLusky, 2002; Fischer, 1976;
Potter et al., 2010). Two widely-used definitions are the definitions of Pritchard (1967) and Dalrymple and Choi (2007):

“An estuary is a semi-enclosed coastal body of water which has a free connection with the open sea and within
which sea water is measurably diluted with fresh water derived from land drainage.” (Pritchard, 1967, p.3)

“An estuary is a transgressive coastal environment at the mouth of a river, that receives sediment from both flu-
vial and marine sources, and that contains facies influenced by tide, wave and fluvial processes. The estuary is
considered to extend from the landward limit of tidal facies at its head to the seaward limit of coastal facies at its
mouth” (Dalrymple & Choi, 2007, p.11)

The definition of Dalrymple only includes transgressive coastal environments, so prograding coastal environments
like delta bifurcations are not included. These are included in Pritchard’s definition. Another difference is that
Pritchard’s definition is based on salinity and Dalrymple’s definition is based on geology. A schematisation of the
difference between these two definitions is shown in figure 1. A slightly different definition will be used as this thesis
mainly focuses on the tidal and fluvial influence in transgressive and progressive environments. An estuary will be
defined as a coastal environment at the mouth of a river, influenced by tide and fluvial processes. The landward
boundary of the estuary is located at the limit of the tidal influence (indicated in figure 1). As will be explained in
section 4.2.3, this upstream boundary will be determined as the location where the tidal amplitude has decreased to
one-fifteenth of the tidal amplitude at the mouth. A likewise estuary definition was proposed by Fairbridge (1980),
who determined the landward boundary by the upper limit of the tidal rise.

Figure 1: Schematisation of estuary definition of Pritchard (1967) and Dalrymple et al.
(1992), including a schematisation of processes and the three estuary facies zones according
to Dalrymple et al. (1992) (edited from Dalrymple et al. (1992)).
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Estuaries can moreover be classified in different ways (Dalrymple et al., 1992; Dyer, 1973; Hume & Herdendorf, 1988;
Pritchard, 1967; Savenije, 2005; Townend, 2012). A classification based on hydrodynamics, where a distinction is
made between the relative influences of the tide, wave action and river discharge, is typical for estuaries and deltas
(Dalrymple et al., 1992; Galloway, 1975; Nienhuis et al., 2020). Townend (2012) suggested a classification combining
such a classification based on the hydrodynamics of Galloway (1975) with the classification of Hume and Herdendorf
(1988) based on the landscape setting and the classification of soil properties of Shepard (1954) (figure 2). In this way,
Townend (2012) wanted to emphasise that an estuary is a landscape form that adjusts to the influence of the river, tide
and waves and depends on the sedimentology. The landscape setting is important as it can limit the accommodation
space of an estuary.

Figure 2: Ternary diagrams of estuary classification from Townend (2012), where 1
illustrates the case of a tidally dominated alluvial river valley and 2 illustrates the
case of a sandy wave dominated embayment.

This thesis focuses on tidally dominated alluvial estuaries that are not limited in their length or width by the underlying
geology (indicated by the number 1 in figure 2). As Bolla Pittaluga et al. (2015) pointed out: ”A tidally dominated
estuary can be defined as an alluvial river in which the flow and the morphology are essentially controlled by the tidal
propagation which, in turn, is strongly affected both by the tidal range and the estuary geometry” (Bolla Pittaluga
et al., 2015, p.76). A more quantitative definition of tide dominance is given by Nienhuis et al. (2018), where, when
no wave action is present, tide dominance can be defined by the discharge ratio I = Qtide

Qriver
, where Qtide is the tidal

discharge amplitude (m3/s) and Qriver is the mean fluvial discharge (m3/s). When I > 1, the channel is tide-dominated
and when I < 1, the channel is river-dominated (Nienhuis et al., 2018). Some examples of tide-dominated estuaries
are the Charente (France), the Western Scheldt (The Netherlands) and the Hooghly estuary (India) (see figure 3).
Moreover, the channels of tide-dominated deltas (for example, the Mahakam delta (Indonesia), figure 3d) often show
the same characteristic converging width profiles (Gugliotta & Saito, 2019).
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(a) Charente estuary (France) (b) Western Scheldt estuary (The Netherlands)

(c) Hooghly estuary (India) (d) Mahakam delta (Indonesia)

Figure 3: Examples of tide-dominated estuaries and deltas from Dronkers (2021).

The planform shape and bathymetry of an estuary are depended on the tidal and fluvial influence. The geometry is
a result of the combination of erosion and deposition processes that are affected by these tidal and fluvial influences
(Bolla Pittaluga et al., 2015). If these forcing conditions are changed, the erosion and deposition processes will change,
and the estuary adapts its geometry Townend (2012). The geometry of tide-dominated alluvial estuaries generally
shows an increasing width and cross-sectional area towards the sea with a converging funnel shape (van Rijn, 2011)
(see figure 4 for the general morphology of a tide-dominated estuary). This convergent geometry of tide-dominated
estuaries can be described by the width of the channel B (m) following an exponential profile:

B(x) = Bmouth exp (−(Le − x)/Lb), (2.1)

or equivalently
B(x) = Briver exp (x/Lb), (2.2)

where Bmouth is the width at the mouth of the estuary (m), Briver is the width of the upstream river (m), Le is the
length of the estuary (m) and Lb is the e-folding length scale (m). x is the spatial axis, where x = 0 at the upstream
boundary of the estuary, where it connects to the river (Davies & Woodroffe, 2010). Typical e-folding length scales of
estuaries are of an order 10− 50 km (van Rijn, 2011). The width ratio between the width at the mouth and width of
the upstream river Bmouth/Briver can vary from 2 up to 95, with an average of 13 (Nienhuis et al., 2018). The river
itself has a straight channel (Davies & Woodroffe, 2010). Furthermore, various kind of bed profiles can be observed
in different estuaries; constant depth profiles and increasing depth profiles with or without a depth decrease at the
mouth are present in nature (Leuven et al., 2021; van Rijn, 2011). The estuaries are often flanked by intertidal mud
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flats and salt marshes, which are partly inundated at flood or spring tide (Lanzoni & Seminara, 2002). The typical
values of characteristics of estuaries that were mentioned and some others are shown in table 1.

Figure 4: Typical morphology of a tide-dominated estuary by Scanes et al. (2017)
who based it on Dalrymple et al. (1992).

Characteristic Typical range Average

Width ratio Bmouth/Briver
1 2 - 40 13

E-folding length scale Lb
2, 3 5 - 230 km 30 km

Estuary length Le
2, 4 2 - 330 km 70 km

Channel depth upstream river Hupstream
1, 4 3 - 23 m 7 m

Channel depth mouth Hmouth
4 1 - 45 m 11 m

Bed slope S1 1.5× 10−5 - 2× 10−4 5.7× 10−5

Tidal amplitude az
1 0.5 - 6 m 2.5 m

River discharge Qriver
1 25 - 2× 105 -

Table 1: Typical values of estuary characteristics from 1. Nienhuis et al. (2018),
2. Todeschini et al. (2008), 3. van Rijn (2011) 4. Leuven, De Haas, et al. (2018).

The convergent shape of the estuary and friction are two essential factors in the tidal hydrodynamics in estuaries
(Davies & Woodroffe, 2010; Friedrichs & Aubrey, 1994). The convergent shape amplifies the tidal wave, while friction
dampens the tidal wave, so these are two opposite processes that are competing (Davies & Woodroffe, 2010; Friedrichs
& Aubrey, 1994). When the tidal wave propagates into the estuary, asymmetries develop in the tidal currents, that
are dependent on the bottom friction, channel geometry and tidal amplitude. These asymmetries mainly control the
sediment dynamics in an estuary. (Friedrichs & Aubrey, 1988). Friction dominated estuaries have a flood-dominated
transport, with high flood velocities with a short duration and a long high-water slack period. This leads to net
upstream sediment transport. Estuaries with large extensive intertidal areas have an ebb-dominated transport, with
high ebb velocities with a short duration and a long low-water slack period. This leads to a net downstream sediment
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transport (Friedrichs & Aubrey, 1988; Lanzoni & Seminara, 2002). Upstream of the estuary, sediment dynamics are
controlled by the fluvial processes (Lanzoni & Seminara, 2002).

Why tide-dominated estuaries develop a convergent width profile can still not be entirely explained (Davies &
Woodroffe, 2010). It has been argued that the tidal velocities will increase in the downstream direction if the width
and depth are constant over the length of the estuary. This leads to erosion at the downstream end of the estuary and,
in turn, results in a convergent shape (Davies & Woodroffe, 2010; Savenije, 2005). The convergence could moreover
be explained by the upstream decreasing tidal prism (Dronkers, 2017). The tidal prism is the volume of water in an
estuary between low and high tide (Luketina, 1998). The tidal prism at the mouth typically has an order of magnitude
between the 106 and 1011 (Leuven, De Haas, et al., 2018; Nienhuis et al., 2018).

When hydrodynamic solutions for estuaries are derived, one often assumes that the estuary is ideal. An ideal es-
tuary is an estuary where the tidal water level amplitude and tidal velocity amplitude are constant throughout the
estuary due to the convergence of the channel and the friction precisely balancing each other (Davies & Woodroffe,
2010; Savenije & Veling, 2005). Savenije (2005) derived the e-folding length scale Lb (m), that describes the convergence
of such an ideal estuary:

Lb =
(√

g H
)
/

(
8Cd au
3πH

)
, (2.3)

where g is the gravitational acceleration (m/s2), H is the channel depth (m), Cd is the drag coefficient (-) and au is
the tidal velocity amplitude (m/s) (Davies & Woodroffe, 2010). (Chappell & Woodroffe, 1994) had another derivation
for the e-folding length scale Lb (m) in an ideal estuary:

Lb =
T HU

4 az
, (2.4)

where T is the tidal period (s), HU is the time-averaged product of the depth H (m) and the flow velocity U (m/s),
and az is the tidal water level amplitude (m). Both equations describe a decreasing e-folding length scale with an in-
creasing tidal amplitude and a decreasing channel depth (Davies & Woodroffe, 2010). In an ideal estuary, the depth is
constant throughout the estuary, so the depth actually scales with the upstream river discharge, so in both equations,
the e-folding length scale depends (indirectly) on the river discharge. This dependence of the e-folding length scale
on the tidal amplitude and river discharge was furthermore confirmed by Dronkers (2017). Interestingly, Leuven, van
Maanen, et al. (2018) found no clear dependence of the e-folding length scale on the tidal amplitude in his data of
68 estuaries. However, the data did show a relation between the e-folding length scale and upstream channel width.
As the upstream channel width often scales with the river discharge, did Leuven, van Maanen, et al. (2018) indirectly
confirm the dependence of the e-folding length scale on the river discharge.

The estuary length Le is next to the e-folding length scale a subject of research. Nienhuis et al. (2018) used a
simple estimation of the estuary length in a delta:

Le =
Hupstream

Sdelta
, (2.5)

where Hupstream is the depth upstream of the estuary (m) and Sdelta is the slope of the delta (-). van Rijn (2011) and
Prandle (2004) both analytically derived a relation for the estuary length that relates to the depth at the mouth Hmouth

and the tidal amplitude az, where the estuary length increases with an increasing depth or a decreasing tidal ampli-
tude. This means that the relative tidal amplitude az/H should be an important factor determining the estuary length.

The channel convergence can additionally be described by the estuary width ratio Bmouth/Briver. The estuary
width ratio and estuary length Le together determine the e-folding length scale Lb, as equation 2.2 says Bmouth =
Briver exp (Le/Lb). Nienhuis et al. (2018) derived an equation for this width ratio:

Bmouth
Briver

=
kt az
S

+ 1, (2.6)

where kt is a tidal efficiency coefficient (1/m), az is the tidal water level amplitude (m) and S is the slope (-). This

tidal efficiency coefficient can be determined by kt = ω
(√

θcrD50
g
Cd
Rπ
)−1

, where ω is the angular velocity of the
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tide (1/s), θcr is the critical Shields number (-), D50 is the sediment grain size (m), g is the gravitational acceleration
(m/s2), Cd is the drag coefficient (-), and R is the specific density of sediment (-).

2.2 Equilibrium of estuaries and tidal channels

As explained before, estuaries adapt to changes in the external forcing. To study how these estuaries precisely adapt,
often the morphodynamic equilibrium of estuaries is researched through computer models or experimental setups
(Zhou et al., 2017). An alluvial estuary or, more general, an alluvial river is said to be in morphodynamic equi-
librium when the flow field and bathymetry and planform shape are adjusted to each other in such a way that no
accretion or erosion takes place over time (Bolla Pittaluga et al., 2015; Jia et al., 2017). If the external forcing is
changed, the estuary will develop towards a new morphodynamic equilibrium. As a tide-dominated estuary does
experience fluctuations in discharge and sediment transport in one tidal cycle, a dynamic morphodynamic equilibrium
is often used, where there can be fluctuations in a tidal period, but not averaged over a tidal period (Seminara et
al., 2012). This dynamic morphodynamic equilibrium is actually a steady-state (Kleinhans et al., 2015). Studying
different morphodynamic equilibria can lead to understanding how estuaries develop and on what boundary condi-
tions and other characteristics the geometry of the estuary depend. However, it is essential to note the difference
between the “virtual world” and “real world” as Zhou et al. (2017) argues. In the “virtual world”, so for example, in
hydrodynamic and morphodynamic models, the processes in the “real world” are selected, simplified and completely
controlled. The existence of an equilibrium is an almost direct result of the system of equations used in the “virtual
world” to describe the “real world”. In the “real world”, a whole spectrum of processes are operating that all have
different time scales and interact differently, so an equilibrium might not even exist. However, it is still beneficial to
study these morphodynamic equilibria in the “virtual world”, as they provide fundamental steps in the understand-
ing of how natural systems develop under natural conditions (Zhou et al., 2017). The goal in modelling studies to
tide-dominated estuaries is that the estuary develops such a dynamic morphodynamic equilibrium that depends on
boundary conditions and other parameters, but not on the initial conditions of the bathymetry or planform shape, so
that conclusions can be drawn on the dependence of this equilibrium on the boundary conditions and other parameters.

Much research has focused on the equilibrium morphology of estuaries, tidal channels and tidal embayments, which
primarily studies the bed level and depth profiles. This research has been done in different ways, for example by
numerical modelling (Bolla Pittaluga et al., 2015; Canestrelli et al., 2014; Guo et al., 2015; Hibma et al., 2003; Lanzoni
& Seminara, 2002; Schuttelaars & De Swart, 2000; Todeschini et al., 2008) and experimental set-ups (Tambroni et al.,
2005). The effect of a converging width was often studied in these numerical modelling studies, but this width was
kept fixed in time. Bolla Pittaluga et al. (2015) is one of whom that investigated the equilibrium of tidally dominated
alluvial estuaries focussing on bed level profiles. They did this by seeking the equilibrium bed profile for a given
planform through a 1-dimensional numerical model. It was found that an equilibrium bed profile of estuaries exists
with a constant fluvial and tidal forcing. The bed profiles evolved towards a concave down profile. The model pro-
duced steeper slopes at the mouth for larger tidal amplitudes, smaller fluvial discharges, larger grain sizes and larger
fluvial sediment concentrations. These steeper slopes were combined with more bed degradation in the upstream
river-dominated part of the estuary. Lanzoni and Seminara (2002) also used a 1-dimensional model to investigate the
equilibrium of funnel-shaped estuaries. They mainly looked at ideal friction dominated estuaries with non-cohesive
sediments and no inter-tidal storage of water on tidal flats. The equilibrium bed profile of these estuaries showed
a concave up shape where the concavity increased with increasing estuary convergence. The depth profile showed
a shallower area upstream at the landward end of the estuary. These equilibrium bed profiles were reached on a
time scale of hundreds of years. Interestingly, the one-dimensional model of Leuven et al. (2021) developed depth
profiles with a scour, where the depth first increased towards the sea, but at the mouth, a sudden decrease in depth
was present. They found that this scour like bed profile developed when the tidal amplitude was large or the river
discharge was small, and the e-folding length scale of the estuary was short, so the estuary was very convergent. In
other cases, a bed profile developed with a constantly increasing depth, like in the study of Bolla Pittaluga et al.
(2015); Lanzoni and Seminara (2002). Overall, studies show that the bed profile depends on the relative strength
of the tide and the river discharge, and the convergence of the channel (Bolla Pittaluga et al., 2015; Canestrelli et
al., 2014; Guo et al., 2015; Lanzoni & Seminara, 2002; Leuven et al., 2021; Seminara et al., 2010; Todeschini et al., 2008).

Less research has been done on the equilibrium width profiles of estuaries. Existing numerical studies do often
not incorporate a variable width in their models, but have a fixed width in time, as the studies discussed above. This
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means that the channel banks can not erode or accrete. Since less research is done on the channel width of estuaries, the
research done to the channel width in rivers will be furthermore discussed. This can give a more general view on what
determines channel width. First, the bank erosion processes in rivers and estuaries will be briefly discussed. After that,
the research, that includes a variable channel width in their numerical model in rivers and estuaries, will be considered.

There is still no complete theory that explains what precisely determines river width (Dunne & Jerolmack, 2020).
Dunne and Jerolmack (2020) hypothesised that the river geometry will adjust to the threshold fluid entrainment stress
of the most resistant material lining the channel. They found that river width could be predicted by the bankfull
discharge, the slope of the channel, the friction factor and the entrainment stress of the most resistant material. Parker
et al. (2011) reviewed the existing literature and methods for modelling bank erosion processes in river meander bends.
Parker et al. (2011) developed a new model where the migration of the eroding bank and the depositing bank are
modelled separately. This can be used in cross-sectional models, but including bank erosion and accretion processes
in a model for a whole channel is complex, as pointed out by Kleinhans et al. (2011), due to the dependence on
many empirical parameters. Vegetation has a significant impact on the bank strength, but this influence is again
dependent on the type of vegetation (Kleinhans et al., 2011). In estuaries salt marshes often flank the channel. These
salt marshes lead to flow resistance and are essential for sedimentation in the estuary. Brückner et al. (2019) studied
the effect of these kinds of vegetation and found that they affect the large-scale pattern of channels and the overall
planform of the estuary. Furthermore, the type of sediment that the banks are made of is crucial (Kleinhans et al.,
2011). The bed generally consists of sand in estuaries, but the banks can be made of mud. Mud is more cohesive and
affects the estuary width. Braat et al. (2017) showed with a 2DH numerical model that estuaries with a larger mud
concentration developed smaller channel widths and can confine the estuary. Furthermore, a larger mud concentration
led to shorter estuaries and a stronger convergence when the mud was fluvial. When the estuary consisted of only sand
and no mud, the estuary continuously expanded. Braat et al. (2017) hypothesised that the tidal prism in an estuary
can continue to increase with increasing width and that this process is only limited by the cohesion of sediments, so
a specific concentration of mud or vegetation is needed to reach an equilibrium.

The 2DH model of Braat et al. (2017) did include bank erosion by dry cell erosion. This means that erosion oc-
curs in a dry cell when an adjacent wet cell experiences erosion. So, implicitly sediment is transported from a dry
cell to a wet cell, so the bed level of the wet cell does not change. In the study of Braat et al. (2017) the estuaries
increased in size with increasing tidal amplitude. Furthermore, they found that smaller river discharges led to a more
convergent estuary. This model was moreover used by Van der Wegen and Roelvink (2008), who studied the long-
term evolution of estuary morphodynamics in which they made a particular emphasis on the pattern formation. In
their model, bank erosion was too included by applying dry cell erosion. They compared the obtained cross-sectional
areas and tidal prisms to the empirical relation of Jarrett (1976) (see section 2.3) and found that the basins evolved
towards a similar relation, but the model produced somewhat bigger cross-sectional areas. This was probably due to
the model developing deeper channels than expected. Furthermore, did the width not stabilise, as only erosion of the
banks was taken into account and no deposition processes. The bed level showed a concave up profile throughout the
estuary, where the depth decreases throughout the estuary. The width profile showed a convex funnel shape. They
also compared their results to a more simple 1-dimensional model and found that the results of both models compared
well in the case of bed level profiles.

Both Lanzoni and D’Alpaos (2015) and Xu et al. (2019) used a coupled numerical model to study tidal channels.
Two one-dimensional models were combined; one consisted of nodes in the longitudinal direction and the other of
nodes in the cross-sectional direction. Channel widening could be modelled by erosion of one of the nodes placed on
the bank or tidal flat. The model of Xu et al. (2019) additionally included sedimentary processes. Tidal channels
have a closed landward boundary, so no river discharge is forced upon the channel, only a tide. Xu et al. (2019) found
that short tidal channels eventually reached a dynamic equilibrium. The channel width in their model showed a good
relation to the channel depth and a friction coefficient, where the width was larger with larger channel depths and a
smaller friction coefficient. Lanzoni and D’Alpaos (2015) especially focused on the funnel shape of tidal channels, but
their results showed that a linear fit instead of an exponential fit of the width profile was good as well. Moreover,
their results showed a good relation between the cross-sectional area and the tidal prism. Furthermore, the channels
with a strong convergence showed concave up bed profiles, and channels with a lower convergence showed a more lin-
ear bed profile. The width of the channels increased with increasing tidal amplitude and decreasing critical shear stress.
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Besides two dimensional numerical models that include width adjustment, some one-dimensional numerical mod-
els that include width adjustment are developed. These 1D models take a lot less computation time. Todeschini et al.
(2005) developed such a 1D model for estuaries and used a physically-based erosion law. They used the assumption of
Darby and Thorne (1996), that channel widening occurs when the bed shear stress τb exceeds a threshold value τb,cr.
An equation for the width evolution was obtained:

∂B

∂t
= ke

(
τb
τb,cr

− 1

)
for τb > τb,cr, (2.7)

where B is the channel width (m), t is time (s), and ke is the lateral erosion rate (m/s). Their model used a τb,cr of
0.1 N/m2 and a ke of 10−10 m/s. This is an erosion law, meaning that when this kind of equation is used, the width of
the channel can only become larger (i.e. erode) and not become smaller (i.e. accrete). The results showed that indeed
no equilibrium could be reached as the width continued to widen while the bed became stable. The width profiles
developed into a concave shape when no river discharge was incorporated and the bed was movable. Moreover, the
bed profiles showed quite steep slopes in those cases. On the other hand, a convex funnel shape was developed with no
river discharge when the bed level was fixed. Interestingly, the width profiles also showed a more convex funnel shape
when a river discharge was forced on the channel, and the bed could adjust. Furthermore, smaller slopes developed
compared to the runs where no river discharge was forced. Overall the channels developed a larger width with higher
tidal amplitudes.

As explained, there are many uncertainties in modelling bank erosion and the models which do include bank erosion
do not include bank accretion. This is why Miori et al. (2006) and Kleinhans et al. (2011) based width adjustment in
their model for rivers on an equilibrium width. They assumed that the width evolves towards an equilibrium width,
based on an empirical hydraulic geometry relation:

∂B

∂t
=
Be −B
Tw

, (2.8)

where Be is an equilibrium width where the channel width evolves towards, and Tw is a timescale on which this width
evolution happens (i.e. time scale for width adjustment). Both studies used an empirical hydraulic geometry relation
between the equilibrium width and river discharge that holds for rivers (more on these empirical relations in section
2.3). Kleinhans et al. (2011) showed that the eventual reached modelled equilibrium morphology did not depend on
the time scale for width adjustment. Only how fast this equilibrium was reached did depended on the time scale.
In the study of Kleinhans et al. (2011) was the width change moreover included in the Exner equation for sediment
conservation.

Overall, several studies have included width adjustment in their numerical model for rivers and estuaries. Such a
model is needed to study the width profile of estuaries and to understand what boundary conditions and other chan-
nel characteristics this width profile depends on. The studies together showed that the channel width in estuaries is
larger when the tidal amplitude or the channel depth is larger, or when the friction or critical shear stress is smaller.
Furthermore, more convergent estuaries often developed when the tidal amplitude was larger or the river discharge was
smaller. This corresponds to the theory discussed in section 2.1.Nevertheless, most of the two-dimensional models ex-
perienced a continuous widening of the channel (except for the model of Xu et al. (2019)). Moreover, two-dimensional
models take much computational time (up to a month) (Braat et al., 2017). The one dimensional model of Todeschini
et al. (2005) for estuaries likewise showed no stabilisation of the width profile due to only using an erosion model. The
model of Miori et al. (2006) and Kleinhans et al. (2011) did reach a stable width profile but is developed for rivers
and not estuaries. However, it is possible to develop the same kind of model for estuaries; the question then remains
what empirical hydraulic geometry relations can be applied to estuaries.

2.3 Empirical hydraulic geometry relations

As no pure physical analytical relations between the width and the hydrodynamics have been developed in rivers and
estuaries, empirical relations play an essential role (Savenije, 2005). These empirical relations are a great predictive
tool for long-term morphology in tide influenced channels (D’Alpaos et al., 2010). They are applied in different ways,
from monitoring the discharge and investigating flow conditions in the past (Gleason, 2015) to predicting the geometry
of tidal channels for tidal wetland restoration projects (Williams et al., 2002).
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Leopold and Maddock (1953) developed hydraulic geometry relations for rivers. Hydraulic geometry relations de-
scribe the empirical relation between river discharge and the width B (m), depth H (m) and flow velocity U (m/s) in
a channel by:

B = aQb, (2.9)

H = cQf , (2.10)

U = kQm. (2.11)

As the discharge relates to the width, depth and flow velocity like

Q = BHU, (2.12)

the multiplication of the coefficients must be equal to 1:

ack = 1, (2.13)

and the sum of the exponents must also be equal to 1:

b+ f +m = 1. (2.14)

It was determined that the average river in the mid-western United States had values of b = 0.5, f = 0.4 and m = 0.1
(Leopold & Maddock, 1953).

The hydraulic geometry relations are still a topic of discussion. They have been applied to observations in differ-
ent studies to verify them. This resulted in different values for the exponents. Xu et al. (2021) combined the b-f-m
ternary diagrams of Park (1977), Rhodes (1977) and Rhodes (1987), who in turn combined data of various researches
(see figure 5). The figure makes a distinction between the at-a-station hydraulic geometry relationships (AHG) and
downstream hydraulic geometry relationships (DHG). This thesis is interested in the DHG, as the DHG focuses on
spatial variability and AHG on temporal variability. Note that there is no clear trend between the exponents. However,
most of the data is in the range 0.4-0.7 for b, 0.2-0.5 for f and 0-0.3 for m. The interest in the coefficients a, c and k
have been much less (Xu et al., 2021). Xu’s (Xu et al., 2021) collected hydraulic geometry relations show that a varies
between 2 and 21, c varies between 0.07 and 1.12 and k varies between 0.11 and 2. Gleason (2015) has also written
a review about the hydraulic geometry relations for rivers. Herein it is discussed that researchers have expanded the
hydraulic geometry relations by incorporating other variables, such as sediment properties or bank vegetation and
strength parameters, to explain these relations better.

Figure 5: b-f-m ternary diagram of at-a-station hydraulic geometry and down-
stream hydraulic geometry exponents (Xu et al., 2021).
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The research on hydraulic geometry especially focuses on the hydraulic geometry of upstream rivers and less on estu-
aries (Gisen & Savenije, 2015). For estuaries, if equation 2.9 is used with the discharge Q being the mean discharge,
the geometry relation will not explain the increasing downstream width since generally the mean discharge is the
same along the estuary, so another kind of discharge needs to be used that incorporates the tidal effect. Myrick and
Leopold (1963) and Langbein (1963) were the first to apply hydraulic geometry relations to tidal estuaries. Myrick
and Leopold (1963) theoretically arrived at the exponents b = 0.71, f = 0.24 and m = 0.05. While Langbein (1963)
derived almost the same exponent of b = 0.72, f = 0.23 and m = 0.05. This derivation is based on the assumption
that the morphology of estuaries develops such that there is equal energy dissipation and a minimum of total work.
The first one would imply that B ∝ Q1, whereas the second one implies that B ∝ Q0.45. Langbein (1963) took the
average of these two (Davies & Woodroffe, 2010). To note is that the discharge Q that was used to check this relation
was a discharge corresponding to the mean stage. This discharge increases downstream, so it can potentially explain
the downstream width increase, but did not explicitly include the tidal effect.

Next to these hydraulic geometry relations, another important empirical relation is used in tide-dominated estuaries
or tidal channels; the tidal prism cross-sectional area relation:

A = αAPP
βAP , (2.15)

where A is the cross-sectional area (m2), and P is the tidal prims (m3) (D’Alpaos et al., 2010). This relation has
been confirmed to hold for estuaries and tidal channels by different observations and numerical analyses (D’Alpaos
et al., 2010), so it has a strong empirical basis. O’Brien (1931) was one of the first who developed this relation,
where βAP was 0.85 and αAP was 9 × 10−4 in case of dual jetties and βAP was 1 and αAP was 6.6 × 10−5 in case
of unprotected or single jetty (van der Wegen et al., 2010). Jarrett (1976) later arrived at a general βAP of 0.95
and a αAP of 1.6 × 10−4. When the tidal prism cross-sectional area relation was first introduced, it related the
cross-sectional area of the mouth to the tidal prism at the mouth. Later it was shown that the relation holds along
the whole tidal channel and everywhere the local cross-sectional area could be related to the local tidal prism in the
same way (D’Alpaos et al., 2010). The tidal prism cross-sectional area relation was furthermore studied by D’Alpaos
et al. (2010). It was noted that βAP typically varies between a value of 0.85 and 1.1 between different systems
in the world. D’Alpaos et al. (2010) found that the theoretically derived value by Marchi (1990) of 6/7 ≈ 0.86 for
βAP and 1.2×10−3 for αAP could be best validated by results of several models, and observations in the Venice lagoon.

O’Brien (1931) showed that the tidal prism was in turn related to the peak in total discharge over one tidal cy-
cle Qpeak.

P ∝ Q0.85
peak, (2.16)

This total peak discharge consists of the river discharge Qriver (m3/s) and the peak in tidal discharge Qtide (m3/s)
(i.e. Qpeak = Qriver + Qtide). As the cross-sectional area is related to the tidal prism and the tidal prism is related
to the total peak discharge, the cross-sectional area is moreover related to the total peak discharge with a power-law
relation (Savenije, 2005).

Another hydraulic geometry relation was developed by Sassi et al. (2012). This relation included river and tidal
discharge:

A = αA(Qriver +Qt,max)βA , (2.17)

where A is the cross-sectional area (m2), Qr is the river discharge (m3/s) and Qt,max is the maximum tidal discharge
amplitude (m3/s). The discharge Q(t) can be composed at each section into a combination of the river discharge
Qriver(t) and the tidal discharge Qt(t).

Q(t) = Qriver(t) +Qt(t) (2.18)

The tidal discharge Qt(t) can, in turn, be composed of the contribution of the different tidal constituents Ql(t)

Qt(t) =
∑

l=1,2,4

Ql(t), (2.19)

Ql(t) = aQ,l(t) cos(i ωl t+ φl), l = 1, 2, 4, (2.20)
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where 1, 2 and 4 denote the different tidal constituents (with a diurnal, semi-diurnal and quarter-diurnal period), aQ
is the amplitude of the discharge (m3/s), ω is the angular velocity (1/s) and φ is the phase (-). The maximum tidal
discharge amplitude Qt,max is then defined as

Qt,max =
∑

l=1,2,4

aQ,l. (2.21)

The study of Sassi et al. (2012) focussed on the Mahakam Delta (Indonesia). For the Mahakam Delta αA is 2.32±0.43
and βA is 0.77± 0.06 were found to be a good fit against observations.

Overall it is clear that in estuaries, the cross-sectional area is related to a total peak discharge Qpeak that con-
sists of the sum of the river discharge Qriver and a representative maximum tidal discharge Qtide or Qt,max. As the
cross-sectional area is a product of the channel depth and channel width, the channel width can be related to this
total peak discharge. If the channel depth is constant along the channel or the channel depth increases with increasing
total peak discharge, the channel width increases with increasing total peak discharge. This means that B ∼ Qβpeak.
This could explain the converging estuary shape, as the total peak discharge increases in an estuary from the land-
ward boundary to the mouth. Furthermore, this equation is comparable to equation 2.9 for rivers. Savenije (2005)
indeed argued that the similarity between the hydraulic geometry equations of rivers and estuaries suggests that the
morphology of these both do not differ considerably. The difference is that in estuaries, the peak tidal discharge needs
to be included next to the river discharge.
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3 Research objective

The discussed literature (section 2) indicates that there is no clear theory on why an estuary forms a convergent
channel shape and what determines the estuary length. The research on the morphodynamic equilibrium of estuaries
mainly studies the equilibrium bed level of an estuary with fixed channel banks with a fixed prescribed convergence
and estuary length. Research that does include adjustable channel banks often only includes erosion processes, and
the width profile does not stabilise. This thesis will study the convergent channel shape (width ratio and e-folding
length) and estuary length by using a one-dimensional hydrodynamic and morphodynamic model that includes an
adjustable channel width. A one-dimensional model is chosen as the computational time is much shorter than in
a two-dimensional model. In this one-dimensional model, the channel convergence and the estuary length will be
self-formed and will be an effect of the boundary conditions and channel characteristics. Furthermore, with this model
it can be studied how the bed level and channel width respond to each other if both are adjustable.

The one-dimensional model of Iwantoro et al. (2021) that can model channels in estuaries was extended to include a
time variable width. The width adjustment in the model is based on the variable width in the river model of Miori
et al. (2006) and Kleinhans et al. (2011), as this model reaches an equilibrium in bed level and width profile when
modelling rivers, so there is a greater chance that the model will reach an equilibrium when modelling an estuary than
a model that only includes an erosion law. For the empirical hydraulic geometry relation that the model uses, a rela-
tion that relates the channel width to the total discharge peak is chosen based on Sassi et al. (2012) and O’Brien (1931).

The main question that will be answered with the results of the model is:

What is the effect of a dynamic width on the morphodynamic equilibrium of estuaries?

As discussed, Braat et al. (2017) hypothesised that the tidal prism, which is related to the total peak discharge,
could continue to increase with increasing width, so it is not directly expected that the model will reach an equilib-
rium. Furthermore, the discussed studies (section 2.1 and 2.2) overall showed that the relative strength of the tidal
and fluvial influence would probably be essential factors determining channel convergence. The e-folding length scale
and width ratio are often dependent on the tidal amplitude and (indirectly) on the river discharge. The estuary
length could also depend on the tidal amplitude and indirectly on the river discharge through the depth upstream.
Moreover, the reviewed studies show that the relative strength of the tide versus the river is important for the bed
level profile. The model results of this study will confirm or contradict these hypotheses by showing if the modelled
estuary reaches an equilibrium in width profile and bed level profile and on to what extent this equilibrium is depended
on the boundary conditions (tidal amplitude, river discharge) and channel properties (bed slope, depth, friction). It is
moreover important that the effect of the used empirical hydraulic geometry relation, initial channel shape and other
chosen model parameters on the results will be studied. This all led to the following sub-questions:

� Does the width and bed level profile reach an equilibrium?

� In what way do the width profile (width ratio, e-folding length scale), the bed level profile (depth, slope) and
the estuary length depend on changes in boundary conditions, like tidal amplitude and river discharge?

� In what way are the width profile (width ratio, e-folding length scale), the bed level profile (depth, slope), and
estuary length dependent on changes in channel properties, like initial channel depth, initial bed slope and drag
coefficient?

� How do the width ratio, e-folding length scale, depth and estuary length depend on the tide dominance ratio?

� In what way do the width profile (width ratio, e-folding length scale), bed level profile (depth, slope) and estuary
length depend on the prescribed hydraulic geometry relation?

� What hydraulic geometry relations (next to the prescribed one) do the modelled estuaries follow?

� Is the equilibrium in width and bed level profile dependent on the initial channel shape, chosen time scale for
width adjustment or chosen Exner equation? If yes, to what extent?

To answer these questions, first, a set of model runs will be done where the width can adjust, but the bed level is
fixed, so the channel depth and slope can not adapt. This will be done to isolate the effect of the boundary conditions
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and channel properties on the estuary width profile. Second, a set of model runs will be performed where both the
width and bed level can adjust to the boundary conditions and channel properties. These runs will show the effect of
an adjustable width on the bed level. Furthermore, in comparing the two sets of runs, the effect of the combination
of an adjustable width and bed level on the width profile, the bed level profile and the estuary length will be made
clear. All results together will show if tide dominance is a controlling factor in determining the width ratio, estuary
length or e-folding length scale and what hydraulic geometry relations the model produces.
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4 Method

In this section the model of this study will be explained. The hydrodynamic calculations and morphodynamic calcula-
tions for the sediment transport and the bed level update will first be discussed. These are based on an existing model.
Thereafter the adjustment to the existing model to include channel width adjustment will be explained. Furthermore,
this section contains a description of all the model runs that were performed and a short explanation of the result
analysis.

4.1 Model

The model that is used in this thesis is based on the model from Iwantoro et al. (2021), a 1-dimensional numerical
model that simulates the hydro- and morphodynamics of a bifurcating channel in a delta. The focus in this thesis lies
on the effect of width adjustment to an estuary’s hydro- and morphodynamics, so a more simple model that simulates
one channel was derived from Iwantoro’s model. This model first calculates the hydrodynamics, then determines the
sediment transport and then updates the bed level accordingly. The channel width in this model can not adapt, so
the model was extended to accommodate an adjustable channel width. Some of the used notations are explained in
figure 6.

(a) Planform view (b) Side view

Figure 6: Sketch of used notations. Note that the sea level is taken as the reference level for the z-axis.

4.1.1 Hydrodynamics and morphodynamics

The hydrodynamics are computed by solving the Saint-Venant equations, that represent the mass and momentum
balance:

B
∂Z

∂t
+
∂Q

∂x
= 0 (4.1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ g A

∂Z

∂x
+ Cd

|Q|QWp

A2
= 0 (4.2)

where B is the channel width (m), Z is the water level (m), Q is the discharge (m2/s), A is the cross-sectional area
(m2), g is the gravitational acceleration (m/s2), Cd is the drag coefficient (-) and Wp is the wetted perimeter (m).
x and t are the spatial (m) and temporal (s) axes. The drag coefficient can be related to the Chézy coefficient C
(m1/2/s) by Cd = g/C2. The Saint-Venant equations are solved with an implicit Preissmann scheme. For more details
see Cunge (1980) and Iwantoro et al. (2021). It will be assumed that the channel width evolves on a long time scale
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and the width is therefore not changing within a tidal cycle.

An open boundary is present at the channel’s upstream and downstream ends. At the upstream boundary, a river
discharge Qriver can be imposed. The water level can be forced with a tide at the downstream boundary. This tide
can consist of different constituents with different periods T (s), tidal water level amplitudes az (m) and phases φ
(rad). When just one tidal constituent is used, the equation will look as follows:

Zmouth = az sin

(
2π

T
t− φ

)
, (4.3)

where ω = 2π/T is the angular velocity of the tide (1/s).

The sediment transport in the channels is computed by the method developed by Engelund and Hansen (1967)
or Van Rijn (1984) and Rijn (1984). The advantage of using the van Rijn method is that the bedload and suspended
load can be computed separately. However, the bed level showed more instabilities when using this method, so the
Engelund and Hansen method was eventually preferred and used. In the method of Engelund and Hansen (1967) the
total sediment transport Qs (m3/s) is calculated as

Qs = q?b

√
RgD3

50B (4.4)

with q?b the dimensionless total sediment load per unit width (-), D50 the median grain size (m), and R the specific
gravity of sediment (-). R = (ρs/ρ)− 1, with ρs the density of sediment (kg/m3) and ρ the density of water (kg/m3).
The total sediment load per unit width is determined by

q?b =
0.05 θ2.5

Cf
, (4.5)

with θ the Shields number (-) and Cf the friction coefficient (-). The Shields number is calculated with

θ =
τb

ρR gD50
, (4.6)

with the bed shear stress τb (N/m2):
τb = Cf ρU

2, (4.7)

where U is the flow velocity (m/s). The friction coefficient Cf is based on the White-Colebrook formulation (Kleinhans,
2005):

Cf =

(
5.75 log10

(
12.2H

ks

))−2

, (4.8)

with ks the roughness height (m) and H the depth (m). The value of 5.75 is related to the Von Karman constant vk
(= 0.4): 5.75 = 1

log10(e
1)vk

.

The bed level change is computed by solving the Exner equation for sediment conservation:

∂η

∂t
=

1

(1− ps)B
∂Qs
∂x

, (4.9)

where η is the bed level (m), ps is the bed sediment porosity (-), and Qs is the total sediment transport (m3/s). The
Exner equation is solved with a modified FTCS scheme (Forward in Time, Central in Space), for details see Iwantoro
et al. (2021). A morphological acceleration factor Morfac is used to accelerate the computational duration. This is
done by multiplying the total sediment transport Qs with this factor before computing the bed level change. However,
this acceleration factor affects the stability. Iwantoro et al. (2021) found that the condition for numerical stability is:

Morfac
Qs
A

∆t

∆x
≤ 1 (4.10)

The model has two different methods to calculate the morphodynamic change. The first method is as described



4 METHOD 18

above. The morphodynamic change is calculated every time step with the morphological acceleration factor, and the
bed is updated accordingly. This method will be called the standard morfac method. For the second method the
morphodynamic change is not calculated every time step but every tidal cycle. The total sediment transport is saved
every time step for one entire tidal cycle. The average total sediment transport over the tidal cycle is then calculated
at every spatial step. This average transport is then multiplied by the Morfac, and the morphodynamic change is
computed. (In this case, ∆t = T , instead of the chosen model time step.) This method will be called the tidally
averaged morfac method.

4.1.2 Width adjustment

To accommodate width adjustment in the model, Kleinhans et al. (2011) developed a method to include width evolu-
tion in a 1D river bifurcation model. This method was partly based on Miori et al. (2006), who developed a method
for width adjustment for a 1D model of bifurcations in a gravel-bed river. This method was chosen, as the model
of Kleinhans et al. (2011) evolved toward a stable width in rivers, so an equilibrium was reached. Other studies
(mentioned in section 2.2) showed a constant increase in width. This method of Kleinhans et al. (2011) has already
been briefly discussed in section 2.2.

A new equation for the width evolution over time is needed to include a variable width in the model. The as-
sumption is made that the width evolves towards an equilibrium width, so the actual width is a relaxation to this
equilibrium:

∂B

∂t
=
Be −B
Tw

, (4.11)

where Be is the equilibrium width (m) and Tw is a time scale for width adaptation (s). A relation needs to be applied
to calculate the equilibrium width. Kleinhans et al. (2011) used an empirical hydraulic geometry relation of the form

Be = aQbriver, (4.12)

where the width depends on the river discharge. As in this thesis, tidally influenced estuaries will be simulated, the
tidal influence must be incorporated. As explained in section 2.3, Sassi et al. (2012) developed a downstream hydraulic
geometry relation for a tidally influenced delta:

A = αA (Qriver +Qt,max)βA , (4.13)

with Qriver the river discharge and Qt,max the maximum discharge amplitude. As a relation for the width instead of
the cross-sectional area is needed, the assumption is made that the width also follows a like wise power-law relation:

Be = αt (Qriver +Qt,max)βt . (4.14)

If this relation is used for the width adjustment, the river discharge Qriver and the maximum tidal discharge amplitude
Qt,max needs to be computed. The river discharge Qriver is equal to the tidally averaged discharge Q and can be
calculated by taking the mean of the discharge of the previous tidal cycle. The maximum tidal discharge amplitude
Qt,max can be determined by performing a harmonic analysis on the discharge of at least the last tidal cycle. Per-
forming a harmonic analysis costs much computational time. As the choice for a 1-dimensional model is based on the
computational time, another power-law relation is eventually used. Instead of the maximum tidal discharge amplitude,
the tidal discharge peak Qtide was used. The tidal discharge peak Qtide can be determined as follows

Qtide = max( |Q(t)−Qriver| ). (4.15)

The eventual used equation for the equilibrium width than becomes

Be = α (Qriver +Qtide)
β . (4.16)

That O’Brien (1931) showed that the cross-sectional area also related to the peak discharge Qpeak = Qriver + Qtide,
as mentioned in section 2.3, further justified this choice.
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Furthermore, a choice for the time scale for width adjustment Tw needs to be made. Kleinhans et al. (2011) showed
that the equilibrium configuration of the river bifurcation did not depend on this time scale. Only the time it took
to reach this equilibrium depends on this time scale. Still, a derivation for the time scale was shown and led to the
equation:

Tw =
BH

γb qs
, (4.17)

where qs is the sediment transport rate per unit width (m2/s) (qs = Qs

B ). In the derivation for this time scale, it is
assumed that BH is the unit volume of sediment involved in changing the local cross-sectional area and qs,bank is the
local sediment transport rate causing the change. It is then furthermore assumed that the sediment transport rate
that contributes to erosion or accretion of the bank is a fraction γb of the total sediment transport rate per unit width
(qs,bank = γb qs). Kleinhans et al. (2011) chose a γb of H/B as a first approximation. This fraction will be no good
approximation in estuaries, as channel widths can increase much from the upstream boundary of the estuary to the
mouth, and H/B can have large variations along the estuary. As an example, if a γb equal to H/B would be used in
an estuary where the channel width increases with a factor 10 from upstream to the mouth and the depth is constant,
the time scale Tw will be 100 times larger at the mouth in comparison to the upstream boundary of the estuary. As
there is quite some uncertainty in determining a relation for the time scale of width adjustment, a constant fixed time
scale is chosen. A set of model runs will be done where this timescale is changed to check the effect of this timescale
on the results of the model (further explained in section 4.2.2).

Next to adding the equation for width evolution to the model, Kleinhans et al. (2011) included the width change
in the Exner equation, so the sediment is conserved. If the width increases, sediment is eroded from the banks and is
deposited on the bed. If the width decreases, sedimentation occurs on the banks and this is sediment is taken from
the bed. The Exner equation will then become:

∂η

∂t
=

1

(1− ps)B
∂Qs
∂x

+ γ
∂B

∂t

H

B
= 0, (4.18)

where η is the bed level (m), ps is the sediment porosity (m), B is the channel width (m), Qs is the total sediment
transport (m3/s), and H is the channel depth (m). γ = 1 if the width adjustment is incorporated in the sediment
balance and γ = 0 if the width adjustment is not incorporated in the sediment balance. If γ = 0 the equation reduces
to equation 4.9.

4.2 Model runs

Runs were first performed that included an adjustable width but did not include morphodynamic changes to the bed,
so the bed was stable in time. This was done to single out the influence of the channel properties and boundary
conditions on the width profile. This is precisely opposite to modelling research, where the bed level is variable, but
the channel width is fixed, to study the bed level. As these first runs do not include a changing bed, the sediment
transport is not calculated. The model only calculates the hydrodynamics, then calculates the width change after
every tidal cycle and updates the width (see figure 7a). Second, a set of runs was done, including an adjustable bed
and width. For these runs, it was first chosen not to incorporate the width change in the Exner equation, so equation
4.18 with a γ of 0 was used (see figure 7b). A few runs were done that did use this new Exner equation (equation
4.18 to check the effect of including the width change in the sediment balance, see figure 7c). As mentioned in section
4.1.2, determining an equation for the time scale is complex. Furthermore, Kleinhans et al. (2011) showed that the
eventual equilibrium of rivers did not even depend on the time scale for width change. This is why a short constant
time scale for width change Tw was chosen at first in both the set of runs with and without an adjustable bed, so the
computation time can be as short as possible. A few runs with an adjustable bed were later done where this time
scale was changed to check the effect of the time scale for width change.
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(a) For runs with a stable bed (b) For runs with an adjustable bed and γ = 0

(c) For runs with an adjustable bed and γ = 1

Figure 7: Schematisation of the modelling processes each tidal cycle in a) runs with a stable bed, b) runs
with an adjustable bed, where γ = 0, so the width adjustment is not included in the Exner equation and
c) runs with an adjustable bed, where γ = 1, so the width adjustment is included in the Exner equation.

The detailed settings of all runs done will be explained further on, but first, the default settings of all the runs will be
presented. All channels start as a straight channel with a long length L = 400 km, as the tide needs to be died out
at the upstream boundary. The spatial step ∆x for the numerical scheme is chosen as 500 m, so the channel consists
of 801 nodes. The water level at the downstream boundary was forced with a semidiurnal tide with a period of 12
hours and a default tidal amplitude az,0 of 1.5 m. For the default settings of the model parameters α and β, a first
estimate was made based on the hydraulic geometry of rivers. A β of 0.5 was chosen as most rivers correspond to
this β (see 2.3). The data of Xu et al. (2021) shows that quite some hydraulic geometry relations have an α around
4. Furthermore, Leuven, Verhoeve, et al. (2018) who made an empirical assessment tool for bathymetry, flow velocity
and salinity in estuaries used for the hydraulic geometry relation of the upstream river the relation developed by Hey
and Thorne (1986), where B = 3.67Q0.45. This led us to eventually choose an α of 4 as a first approximation. In table
2, the values of the other parameters and boundary conditions are shown for the default settings. A small default bed
slope S0 of 3× 10−5 and default drag coefficient Cd,0 of 2.725× 10−3 were prescribed. As upstream the width needs
to be constant over time, the river discharge needs to follow the used empirical hydraulic geometry relation:

Qriver =

(
B

α

)1/β

. (4.19)

this leads to a default river discharge Qriver,0 of 306.25 m3/s with the chosen default initial width B0 of 70 m. If the
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Chézy equation:

U =

√
g S H

Cd
, (4.20)

is combined with the fact that:
Q = U BH, (4.21)

it follows that the default depth H0 needs to be around 6 m.

Parameter Value

Spatial step ∆x 500 m

Time step ∆t 300 s

Channel length L 400 km

Initial channel width B0 70 m

Bed slope S0 3e−5

Drag coefficient Cd,0 2.725× 10−3

River discharge Qriver,0 306.25 m3/s

Depth H0 6 m

Tidal amplitude az,0 1.5 m

Period of tide T 12 h

Model parameter α0 4

Model parameter β0 0.5

Median grain size D50 0.25× 10−3 m

Roughness height ks 0.035 m

Sediment porosity p 0.35

Gravitational acceleration g 9.81 m/s2

Sediment density ρs 2650 kg/m3

Water density ρ 1000 kg/m3

Table 2: Values of the default settings.

4.2.1 Runs with only width update and a stable bed

All runs with an adjustable width but stable bed were run for 5 years with a time step ∆t of 300 seconds. The
timescale for width change Tw was set to ten tidal cycles, so 5 days. In figure 7a a schematisation is given for the
runs with a stable bed. In the first set of runs, the upstream boundary only needs to follow the empirical hydraulic
geometry relation (equation 4.19), so the system did not always have an equilibrium depth. The set of runs that was
done (for which the parameter value ranges can be found in table 3) is:

1. Name: Tidal amplitude: The tidal amplitude is changed relative to the default settings, and everything else is
kept the same.

2. Name: Discharge+B: The upstream river discharge is changed relative to the default settings. As the upstream
boundary needs to meet the empirical relation between discharge and width, the initial width of the channel is
changed accordingly. Everything else is kept the same.

3. Name: Slope: The slope of the channel is changed relative to the default settings, and everything else is kept
the same.

4. Name: Depth: The depth of the channel is changed relative to the default settings, and everything else is kept
the same.
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5. Name: Drag coefficient: The drag coefficient is changed relative to the default settings, and everything else is
kept the same.

6. Name: Alpha+Q: The model parameter α is changed relative to the default settings. As the upstream boundary
needs to meet the empirical relation between discharge and width and the width is kept the same, the river
discharge is changed accordingly. Everything else is kept the same.

7. Name: Beta+alpha: The model parameter β is changed relative to the default settings. As the upstream
boundary needs to meet the empirical relation between discharge and width and the discharge and width are
kept the same, the coefficient α is also changed accordingly.

Changing parameter Values

Tidal amplitude a 0.25 m, 0.5 m, 0.75 m, 1 m, 1.5 m, 2 m, 2.5 m, 3m

River discharge Qr 50 m3/s, 100 m3/s, 150 m3/s, 200 m3/s, 250 m3/s, 300 m3/s, 350 m3/s

Slope S 1e-5 2.5e-5, 5e-5, 7.5e-5, 1e-4, 2.5e-4

Depth H 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 9 m, 10 m, 11 m, 12 m

Drag coefficient Cd 2e-3, 2.25e-3, 2.5e-3, 2.75e-3, 3e-3, 3.25e-3, 3.5e-3, 3.75e-3, 4e-3

α 2, 4, 6, 8, 10

β 0.25, 0.5, 0.65, 0.75, 0.85, 0.95

Table 3: Values of the changing parameters with only width update, no bed update and where the
upstream boundary only follows the empirical hydraulic geometry relation.

A second set of runs was done where it was additionally assumed that the upstream river followed the Chézy equation
(equation 4.20), so the system has an equilibrium depth. The prescribed channel depth is then determined according
to

H =

√
Q2 Cd
g S B

. (4.22)

A larger channel depth is prescribed if the river discharge or drag coefficient increases or the slope decreases. When
the model parameter α is increased, the prescribed river discharge is additionally decreased, so the hydraulic geometry
relation is met (equation 4.19), so the prescribed channel depth is also decreased. When the model parameter β is
increased, this time the prescribed river discharge is also additionally decreased, so the hydraulic geometry relation
is met, so the prescribed channel depth also decreases. The second different set of runs that was done (for which the
parameter value ranges can be found in table 4) is:

1. Name: Discharge+B+H: The upstream river discharge is changed relative to the default settings. As the
upstream boundary needs to meet the empirical relation between discharge and width, the initial width of the
channel is changed accordingly. As the upstream boundary moreover needs to meet the Chézy equation, the
channel depth is changed accordingly. Everything else is kept the same.

2. Name: Slope+H: The bed slope is changed relative to the default settings. As the upstream boundary moreover
needs to meet the Chézy equation, the channel depth is changed accordingly. Everything else is kept the same.

3. Name: Drag coefficient+H: The drag coefficient is changed relative to the default settings. As the upstream
boundary moreover needs to meet the Chézy equation, the channel depth is changed accordingly. Everything
else is kept the same.

4. Name: Alpha+Q+H: The model parameter α is changed relative to the default settings. As the upstream
boundary needs to meet the empirical relation between discharge and width, the river discharge is changed
accordingly. As the upstream boundary moreover needs to meet the Chézy equation, the channel depth is
changed accordingly. Everything else is kept the same.
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5. Name: Beta+Q+H: The model parameter β is changed relative to the default settings. As the upstream boundary
needs to meet the empirical relation between discharge and width, the river discharge is changed accordingly. As
the upstream boundary moreover needs to meet the Chézy equation, the channel depth is changed accordingly.
Everything else is kept the same.

Changing parameter Values

River discharge Qr 50 m3/s, 100 m3/s, 200 m3/s, 400 m3/s, 600 m3/s, 800 m3/s, 1000 m3/s

Slope S 1e-5 2.5e-5, 5e-5, 7.5e-5, 1e-4, 2.5e-4

Drag coefficient Cd 2e-3, 2.5e-3, 3e-3, 3.5e-3, 4e-3, 5e-3, 6e-3

α 2, 4, 6, 8, 10

β 0.25, 0.5, 0.65, 0.75

Table 4: Values of the changing parameters with only width update, no bed update and where the
upstream boundary follows the empirical hydraulic geometry relation and the Chézy equation.

4.2.2 Runs with width and bed update

Runs were performed that included and adjusting bed level next to an adjusting channel width to study how the bed
responses to the width adjustment. Using the tidally averaged morfac method for the bed update would be logical
as the width changes every tidal cycle. However, instabilities quickly occurred in the bed level when this method
was used. These instabilities were an effect of the sediment transport being tidally averaged and the time step of
morphodynamic change being equal to a tidal period, which is quite large relative to the model time step of 300
seconds. This led to non-continuous sediment transport. This is why the standard morfac method was used for the
bed update. The width update was then also done using this standard morfac method. This meant that every time
step, the mean discharge Q0 and the tidal discharge peak Qtide of the last 12 hours was computed and used for the
width update of that time step.

The runs with width and bed change all consisted of three sequential runs, where the output of the previous run
was used as input for the next run. These three sequential runs have different morphological factors and are run for
different run times. Where the morphological factor is increased with respect to previous run. This was done because
the morphological change is at first quite extensive, and no large Morfac factor can be used, as equation 4.10 will not
be met. When the morphological change is more minor, a larger Morfac can be used to speed up the computation.
The first sequential run had a Morfac of 30 and a run time of 10 years, so 300 morphological years were simulated.
The second sequential run had a Morfac of 300 and a run time of 7 years, so 2100 morphological years were simulated.
The third and last sequential run had a Morfac of 4000 and a run time of 12 years, so 48000 morphological years were
simulated. In total, the three runs together simulate 50400 morphological years. The time scale of width change Tw was
still set to 10 run time tidal cycles in the first two runs of 10 years with a Morfac of 30 and of 7 years with a Morfac
of 300. In the last runs of 12 years with a Morfac of 4000, the time scale of width change was set to a value of 50 mor-
phological years. For all these runs with width and bed change, the width change was not incorporated into the Exner
equation, so equation 4.18 with a γ of 0 was used. In figure 7b a schematisation of the processes in these runs is shown.

The first set of runs with width and bed change were equivalent to the first set of runs with width but without
bed change, only with a smaller parameter value range (see table 5), so the upstream river only needed to follow the
empirical hydraulic geometry relation 4.19. These runs will be called: “Tidal amplitude+bed”, “Discharge+B+bed”,
“Slope+bed”, “Depth+bed”, “Drag coefficient+bed”, “Alpha+Q+bed”, “Beta+alpha+bed”. The second set of runs
where the upstream river also needed to follow the Chézy equation (equation 4.20) was not done as the depth upstream
can adapt to the hydrodynamics in the runs with width and bed change.
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Changing parameter Values

Tidal amplitude a 0.5 m, 1 m, 1.5 m, 2 m, 3m

River discharge Qr 50 m3/s ,150 m3/s, 250 m3/s, 350 m3/s, 450 m3/s

Slope S 1e-5, 7.5e-5, 1e-4

Depth H 4 m, 8 m, 10 m, 12 m

Drag coefficient Cd 2.25e-3, 3.5e-3, 4e-3

α 2, 4, 6, 8, 10

β 0.25, 0.5, 0.65, 0.75, 0.85

Table 5: Values of the changing parameters with width and bed update.

Four other different sets of runs were done to check the effect of the time scale of width adjustment, the initial channel
shape and the different Exner equation on the equilibrium. In all these sets of runs the time scale of width adjustment
was changed relative to the other runs with an adjustable bed. The time scales were chosen such that they would
be close to the time scale for bed change or even bigger. This meant that first a run needed to be done where only
the bed level could change and the channel width was fixed to determine the time scale for bed change (run called:
“Only bed+default”). It was chosen to do this run with the default settings. This runs showed that the time scale
for bed change lies around 20000 morphological years in this case. It is expected that using a time scale for width
adjustment around 20000 morphological years will lead to the runs not reaching an equilibrium in the 48000 mor-
phological years all other runs with a movable bed are simulated. That is why every run in these four different sets
of runs where the time scale for width change is large, will consist of four sequential runs instead of three. A fourth
run will be added with a Morfac of 4000 that will be run for 12 years, so the total run time of all four sequential
runs combined is 98400 morphological years. In all four sequential runs the time scale for width change will be the same.

In the set of runs called “Tw+bed”, only the time scale of width adjustment was changed relative to the default
settings. The chosen time scales are: 2500, 10000, 20000 and 35000 morphological years. In the set of runs called
“Tw+exner+bed”, all runs use the new Exner equation (equation 4.18 with γ = 1), where the width change is incor-
porated in the sediment balance. Furthermore, is the time scale for width adjustment changed, where the chosen time
scales are: 5000, 10000, 20000 and 35000 morphological years. As in these runs the width update is taken into account
in the Exner equation, these runs follow the process cycle as schematised by figure 7c. Lastly, two different sets of runs
were done where the initial channel was not straight, but converging, with an e-folding length scale of 30 km for the
last 100 km of the channel. The first 300 km of the channel is straight. In the set of runs called “Tw+Lb+bed”, in all
runs the initial shape of the channel is convergent and the time scale for width adjustment was furthermore changed
in every run. In the set of runs called ”Tw+Lb+Exner+bed”, in all runs the initial shape of the channel is convergent
and the new Exner equation (equation 4.18 with γ = 1) is used, and the time scale for width adjustment is changed
every run. In both these set of runs the chosen time scales are: 5000, 10000, 20000 and 35000 morphological years.

4.2.3 Characteristics derived from the model output

Various characteristics were derived from the model output. The width ratio Bmouth

Briver
, the e-folding length scale Lb

and the estuary length Le are determined. The width ratio is the ratio between the width at the mouth and the
width upstream and represents the spatial change in width. The e-folding length scale is determined by fitting an
exponential function to the width profile. This fit is done from the location where the width has increased by more
than 1 m with respect to the upstream boundary to the mouth. In figure 8 the fit to the width profile of the runs
called “Tidal amplitude”, where the bed was fixed, and the tidal amplitude was changed, is shown. For the estuary
length, it is assumed that the estuary ends where the tidal water level amplitude az becomes less than one-fifteenth
of the tidal amplitude at the mouth. This means that the estuary length is not directly dependent on the width or
bed level profile, but on the water level profile (figure 12 in section 5.1 shows the upstream end of the estuary of the
default run with a stable bed).

To analyse the bed profile for the runs where the bed could adjust next to the channel width, the depth at the
mouth, the depth upstream, the slope of the estuary and the slope of the upstream river are determined. The slopes
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are derived by a linear fit of the bed level. For the estuary slope, the bed level of the last two-thirds of the estuary
is fitted, and for the upstream slope, the bed level from the upstream channel boundary to the upstream estuary
boundary is fitted.

Figure 8: An example of how the e-folding length is fitted from the width profile for the runs called: Tidal amplitude
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5 Results

The results of all the model runs that were performed (see section 4.2 for details) will be discussed in this section. First,
the width profiles and estuary characteristics of the runs with an adjustable width but stable bed level will be analysed,
and second, the width profiles, bed level profiles and estuary characteristics of the runs with an adjustable width and
bed are discussed. After that the results of the runs with a different time scale for width adjustment, different initial
channel shape and different Exner equation will be considered. Lastly, the results of these runs together are used to
determine if estuary characteristics can be linked to tide dominance and to study the hydraulic geometry relations the
model produces.

5.1 Results of runs with adjustable width and stable bed level

5.1.1 Is an equilibrium reached?

In the default run with an adjustable width but a stable bed level, the width profile first evolves fast and then stabilises,
as shown in figure 9. This behaviour can besides be observed in the absolute rate of change of the width dB/dt at the
mouth (see figure 10), which is 6.94 m/day at the beginning of the run and then rapidly decreases towards a value of
5.54× 10−12 after 222 days. Hereafter, dB/dt fluctuates around 5.35× 10−12 till the end of the run. Furthermore, it
can be determined that the width at the mouth stabilises in 100 days for all the runs called “Tidal amplitude” (see
figure 11). This all together shows that the width profile approaches a steady state. The same behaviour is observed
for all other runs with an adjustable width but stable bed, so all these runs reach an equilibrium in their width profile.

Figure 9: The evolution of the width profile for the default run with a stable bed for the first 30 days
and the width profile at the end of the run.
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Figure 10: The absolute rate of change of the width dB/dt at the mouth over time for the default run
with a stable bed.

Figure 11: The width evolution at the mouth over time for the runs: Tidal amplitude.

It is clear that the width profile evolves towards an equilibrium, but does the model produce an ideal estuary in terms
of amplitude (see section 2.1 for definition)? The water level amplitude az of the last tidal cycle of the default run
decreases throughout the estuary, as well as the flow velocity amplitude (see figure 12). This means that no ideal
estuary has developed. In the other runs with an adjustable width but stable bed, no ideal estuary is developed as well.
The width profile needs to be more convergent to develop an ideal estuary, as the bed is stable in these runs. However,
apparently, this convergence is limited in the model, probably due to the empirical hydraulic geometry relation used.

The water level amplitude az furthermore determines where the upstream boundary of the estuary is located. In
section 4.2.3 it was explained that the upstream boundary of the estuary is located where the tidal amplitude is only
one-fifteenth of the tidal amplitude at the mouth. In the case of the default run, the upstream boundary of the estuary
is located at 295.5 km, so the estuary has a length of 104.5 km (see figure 12). Moreover, the mean flow velocity U0

is shown in figure 12 and is not spatially constant, the fluctuations are due to the residual currents, an effect of the
tidal asymmetry
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Figure 12: The water level amplitude az, flow velocity amplitude au and mean flow velocity U0 of the
last tidal cycle throughout the channel of the default run with a stable bed. The determined upstream
boundary of the estuary is indicated.

5.1.2 Effect of changing channel properties or boundary conditions

The different runs with an adjustable bed but stable bed resulted in different equilibrium width profiles (see figure 13).
From these profiles the width ratio Bmouth/Briver, length of the estuary Le and e-folding length scale of the estuary
Lb were determined, as explained in section 4.2.3 (see figure 14, 15 and 16). What stands out is that the model does
not produce very large width ratios when the model parameters β and α are unchanged and equal to their default
setting (β = 0.5, α = 4). The width ratio in those cases varies between 1 and 3.8. When the parameter α is increased
the width ratio rises up to 9.2 when α = 10. Even bigger width ratios are produced when the parameter β is increased.
Moreover, the lengths of the estuaries are quite long, especially when the depth of the channel is increased. The model
produces lengths from 32 km to almost 360 km. Furthermore, the model results show relatively large e-folding lengths,
when again the model parameters β and α are unchanged. These vary between 90 km and 725 km in those cases.

The trends in the width ratio and length of the estuary are reasonably as expected (see figure 13, 14, 15). The
model develops longer estuaries with larger width ratios when the tidal amplitude, the channel depth, or the model
parameters α or β are increased. Increasing the tidal amplitude leads to a larger tidal discharge peak throughout
the estuary, so the channel width increases. As the upstream discharge is prescribed the same, the upstream width
does not change. This results in larger width ratios. The width ratio increases almost linearly with increasing tidal
amplitude. As the amplitude is larger, the tidal wave can propagate further up the channel until it dies out due to
friction, resulting in a longer estuary. When the channel depth is increased less bed friction dampens the tidal wave,
so a longer estuary can develop. This relation between the depth and estuary length is linear. Moreover, increasing
the depth leads to a larger tidal discharge peak, so the width increases more. Again the relation between the width
ratio and depth is almost linear. If the model parameter α is changed, the model uses a different coefficient in the
empirical relation to calculate the channel width (see equation 4.16). If α is increased, the determined channel width
is larger for the same discharge. In the runs “Alpha+Q”, the upstream width is kept the same, so if α increases, the
river discharge also decreases. This results in the tidal wave propagating further up the channel since the wave is
damped less by the river discharge, so a longer estuary develops. Furthermore, the downstream width increases more,
since less discharge is needed to develop the same channel width. This results in larger width ratios. The relation
between the width ratio and the model parameter α is approximately exponential. Likewise, if the model parameter
β is changed, the exponent of the empirical hydraulic geometry relation changes (see equation 4.16). Again a larger β
leads to larger channel widths with the same discharge. As explained in section 4.2, in the runs “Beta+alpha”, when
β is increased, α is decreased, so the same river discharge results in the same width upstream. However, downstream
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where also the tidal discharge comes into play, the width becomes larger with the same total peak discharge. This
leads to a larger width ratio and a somewhat longer estuary.

Shorter estuaries with lower width ratios develop when the river discharge, the slope, or the drag coefficient is in-
creased (see figures 13, 14 and 15). Increasing the river discharge, the slope, or the drag coefficient leads to the
tidal wave propagating less far into the channel. In case of an increased river discharge or drag coefficient, the tidal
wave is damped more by this larger discharge or larger friction, so shorter estuaries develop. When the slope of the
channel is increased, the tidal wave has to propagate onto a steeper slope, so the wave dies out further downstream
as well. Furthermore, increasing the river discharge leads to a larger total discharge downstream (Qriver + Qtide)
and upstream (Qriver), but the ratio between the total discharge peak downstream and upstream becomes smaller
((Qriver + Qtide)/Qriver). This results in a smaller width ratio. When the slope or the drag coefficient is larger, the
total upstream discharge is prescribed the same, but the total downstream discharge decreases, leading to smaller
width ratios as well.

Figure 14 shows that changing the model parameter α or β has the most effect on the width ratio. The tidal
amplitude and the channel depth also have quite some influence. The influence of these two is almost the same. On
the other hand, the bed slope has the least effect on the width ratio. The influence of the bed slope on the length of
the estuary is of greater importance. However, the drag coefficient has even a bit more effect on the estuary length.
The most important parameter influencing the length of the estuary is the channel depth. Interestingly, the model
parameter β and α have minimal effect on the estuary length.

In addition to the width ratio and estuary length, the e-folding length scale was studied (see figure 16). Shorter
e-folding length scales, so more convergent estuaries develop when the tidal amplitude, slope, drag coefficient, α or
β increases or the river discharge decreases. The relation between the e-folding length scale and the depth of the
channel is a little less straightforward. If the channel depth increases but is relatively small (< 5 m), the e-folding
length scale decreases. However, when the channel depth is increased even more (> 5 m), the e-folding length scale
increases again. Again the model parameter α and β have the most influence on the e-folding length scale. The tidal
amplitude is moreover important for the e-folding length scale.

The e-folding length scale is determined from the estuary length and the estuary width ratio. If an estuary is more con-
vergent, this can be due to a larger width ratio with the same estuary length or a shorter estuary length with the same
width ratio. Of course, a change in width ratio and estuary length is possible as well, and the trend with the steepest
slope then determines what the trend in the e-folding length scale will be like. The estuary length is determined by
how far the tidal wave can propagate into the channel, whereas the total discharge peak determines the width ratio.
When the tidal amplitude or depth increases, the width ratio and the length of the estuary both increase. In the case
of the tidal amplitude, the width ratio increases relatively more, so the e-folding length scale decreases. In the case
of the depth, the width ratio first increases relatively more, so the e-folding length scale first decreases. However, the
width ratio increases relatively less when the depth increases even more (> 5 m), so the e-folding length scale increases.

Increasing the bed slope, the drag coefficient or the river discharge leads to a decreasing width ratio and estuary
length. The estuary length decreases relatively more than the width ratio for both the bed slope and drag coefficient.
The bed slope has even almost no effect on the width ratio (see figure 14a). The e-folding length scale is related to both
the slope and drag coefficient by a power law. When the river discharge and accompanying upstream channel width
increases, the width ratio decreases relatively more than the estuary length, resulting in less convergent estuaries. This
means that the river discharge and accompanying upstream channel width has more influence on the total discharge
peak than on how far the tidal wave can propagate into the estuary.

For the model parameters α and β, the model develops a more convergent estuary if one of these is increased.
This is because in both cases, the width ratio increases faster than the estuary length. Especially when the parameter
β is increased, as this parameter has almost no effect on the length of the estuary. When α is very small (α = 2), the
e-folding length scale is suddenly quite large. Such a small value for α leads to the width increasing very little with
an increasing total discharge peak, so the channel is almost straight and has a large e-folding length scale.
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(a) Run: Tidal amplitude (b) Run: Discharge+B

(c) Run: Slope (d) Run: Depth

(e) Run: Drag coefficient (f) Run: Alpha+Q

(g) Run: Beta+alpha (h) Zoomed in figure of run: Beta+alpha

Figure 13: Equilibrium width profiles of the runs with an adjustable width and a stable bed.
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(a) (b)

(c)

Figure 14: The width ratio Bmouth/Briver as a function of the ratio of the changing parameter p against the
value of the parameter is the default run p0. For run Tidal amplitude: p/p0 = az/az,0, for run Discharge+B:
p/p0 = Qr/Qr,0, for run Slope: p/p0 = S/S0, for run Depth: p/p0 = H/H0, for run Drag coefficient: p/p0 =
Cd/Cd,0, for run Alpha+Q: p/p0 = α/α0 and for run Beta+alpha:p/p0 = β/β0, where the value of the default
parameters are given in table 2. Note: sub-figures have different axis scales.

(a) (b)

Figure 15: The estuary length Le as a function of the ratio of the changing parameter p against the value of
the parameter is the default run p0. For run Tidal amplitude: p/p0 = az/az,0, for run Discharge+B: p/p0 =
Qr/Qr,0, for run Slope: p/p0 = S/S0, for run Depth: p/p0 = H/H0, for run Drag coefficient: p/p0 = Cd/Cd,0,
for run Alpha+Q: p/p0 = α/α0 and for run Beta+alpha:p/p0 = β/β0, where the value of the default parameters
are given in table 2. Note: sub-figures have different axis scales.
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(a) (b)

(c)

Figure 16: The e-folding length scale Lb as a function of the ratio of the changing parameter p against the
value of the parameter is the default run p0. For run Tidal amplitude: p/p0 = az/az,0, for run Discharge+B:
p/p0 = Qr/Qr,0, for run Slope: p/p0 = S/S0, for run Depth: p/p0 = H/H0, for run Drag coefficient: p/p0 =
Cd/Cd,0, for run Alpha+Q: p/p0 = α/α0 and for run Beta+alpha:p/p0 = β/β0, where the value of the default
parameters are given in table 2. Note: sub-figures have different axis scales.

A second set of runs with an adjusting width but stable bed was done, where the boundary and initial conditions
needed to meet the Chézy equation (eq 4.20) next to the empirical hydraulic geometry relation (eq 4.19). This was
done by additionally changing the depth of the channel, as explained in section 4.2.1. These are the runs called:
Discharge+B+H, Slope+H, Drag coefficient+H, Alpha+Q+H, Beta+Q+H. From the developed equilibrium width
profiles of these runs (see figure 17) again the width ratio Bmouth/Briver, estuary length Le and e-folding length scale
Lb were determined (see figure 18). The trends in the width ratio when changing the river discharge, slope, drag
coefficient or model parameter α, and additionally the channel depth, is quite the same as the trends when one of
these parameters is changed, but the channel depth stays the same (compare figure 18a and figure 14). The slopes of
the trends are somewhat smaller.

In these runs, where additionally the channel depth is changed, the channel depth increases with increasing river
discharge, slope or drag coefficient and decreases with increasing α. This leads to competing trends. As was clear
from the previous runs, when only the channel depth is increased, this leads to larger width ratios (see figure 14a).
When only the river discharge, slope or drag coefficient is increased, this leads to smaller width ratios and increasing
only the model parameter α leads to larger width ratios. These competing trends lead to the smaller slopes in the
eventual trends of the runs where the river discharge, slope, drag coefficient or the model parameter α and addition-
ally the channel depth is changed. Moreover, the estuary length shows the result of the competing effects of changing
the channel depth versus the river discharge, slope, drag coefficient or α. This again leads to smaller slopes in the
estuary length trends of the runs “Slope+H” and “Drag coefficient+H” in comparison to the runs “Slope” and “Drag
coefficient” (compare figure 18b and 15). Interestingly, the estuary length trends of the runs “Discharge+B+H” and
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“Alpha+Q+H” show an opposite trend than the runs “Discharge+B” and “Alpha+Q” (compare figure 18b and 15).
The effect of changing the channel depth is that these runs overpower the effect of changing the river discharge or
model parameter α, so the trend is changed. In the results of the e-folding length scale, the competing effects are
apparent in the run “Slope+H”, when the slope and channel depth are small and are increased, it leads to smaller
e-folding length scales, but if the slope and channel depth are increased even more the e-folding length scale again
increases, as it does in the runs where only the channel depth is increased (see figure 16a).

The run “Beta+Q+H” can not be directly compared to the run “Beta+alpha”, since the model parameter α is
set to de default setting and kept the same in the run “Beta+Q+H”. The run“Beta+Q+H” can show the effect of
changing the model parameter β independently from changing the the model parameter α. Interestingly, the runs
“Alpha+Q+H” and “Beta+Q+H” follow the same trend in e-folding length scale if the model parameter β varies
between 0.25 and 0.5 and the model parameter α between 2 and 4 (see figure 18c, where the blue line is not entirely
visible as it is covered by the purple line.). Furthermore, it is clear that increasing β has a large effect on the width
ratio and e-folding length scale where the width ratio increases and the e-folding length scale decreases with increasing
β. The effect on the estuary length is smaller, but still quite large.
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(a) Run: Discharge+B+H (b) Run: Slope+H

(c) Run: Drag coefficient+H (d) Run: Alpha+Q+H

(e) Run: Beta+Q+H (f) Zoomed in figure of run: Beta+Q+H

Figure 17: Equilibrium width profiles of the runs with an adjustable width and a stable bed, where the depth
is additionally changed and follows the Chézy equation (equation 4.20).
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(a) (b)

(c)

Figure 18: The width ratio Bmouth/Briver, estuary length Le and e-folding length scale Lb as a function
of the ratio of the changing parameter p against the value of the parameter is the default run p0. For run
Discharge+B+H: p/p0 = Qr/Qr,0, for run Slope+H: p/p0 = S/S0, for run Drag coefficient+H: p/p0 = Cd/Cd,0,
for run Alpha+Q+H: p/p0 = α/α0 and for run Beta+Q+H:p/p0 = β/β0, where the value of the default
parameters are given in table 2.

5.2 Results of runs with adjustable width and adjustable bed

5.2.1 Is an equilibrium reached?

In figure 19 the evolution of the width and bed level at the mouth is shown over time for the runs where the tidal
amplitude is changed (run: “Tidal amplitude+bed”). It can be seen that the width and bed level have stabilised
in 50000 morphological years and that a larger tidal amplitude leads to a longer time to reach this equilibrium.
Furthermore, the width stabilises faster than the bed level. When looking at this width and bed level evolution for
the other runs, it was clear that not all runs have reached an equilibrium in the run time. The runs that have not yet
reached an equilibrium were the runs of “Alpha+Q+bed”, where α = 8 and 10. The results of these runs will not be
included or discussed. All the other runs reached equilibrium in the width and bed level profile.
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(a) (b)

Figure 19: Width B and bed level η evolution at the mouth for the run: Tidal amplitude+bed.

In figure 20 the water level amplitudes and flow velocity amplitudes of the last tidal cycle of the run are shown for the
runs with different tidal amplitudes (run: “Tidal amplitude+bed”). When the tidal amplitude increases from 0.5 m to
1 m, a change in the trend in the water level and flow velocity amplitude can be seen. With a tidal amplitude of 0.5 m,
the water level and flow velocity amplitude rapidly decrease throughout the estuary. However, with a tidal amplitude
of 1 m, the water level and flow velocity amplitude decrease more slowly. When the tidal amplitude becomes 2 m,
even an increase in amplitudes upstream from the mouth can be observed. The amplitudes show that no ideal estuary
is developed in one of these runs. The other runs with a movable bed did also not develop an ideal estuary.

(a) (b)

Figure 20: Water level amplitude az and flow velocity amplitude au for the last tidal cycle of the runs called
Tidal amplitude+bed.

5.2.2 Effect of changing channel properties or boundary conditions

For the runs with a movable bed alongside an adjustable width, the width ratio Bmouth/Briver (see figure 22), the
length of the estuary Le (see figure 23), the e-folding length scale of the estuary Lb (see figure 24), the depth at the
mouth Hmouth (see figure 26), the slope of the estuary Se (see figure 27), the depth of the river upstream Hriver (see
figure 28) and the slope of the river upstream Sr (see figure 29) were determined from the equilibrium width profiles
(see figure 21) and bed level profiles (see figure 25), as explained in section 4.2.3.

The model produces larger width ratios and longer estuary lengths in the runs where the bed can adjust in com-
parison to the runs with a stable bed with the same parameter settings and boundary conditions (see results in section
5.1 and this section). In the runs with an adjustable bed where the model parameters α and β are unchanged, the
width ratio ranges from approximately 1 to 14. When α or β are increased, even larger width ratios are developed.
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In all the runs with a movable bed together, the estuary length varies between approximately 50 km to 350 km. The
e-folding length scale ranges from 600 km to 100 km, in the runs where β stays the same. If β is increased, the
e-folding length scale is shorter, up to around 45 km. The e-folding length scales of the runs with an adjustable width
but stable bed lie in the same range, keeping in mind that the parameter ranges in these runs were larger.

The data of the runs with an adjustable width and bed do mainly show the same kind of trends between the width
ratio, the estuary length and the e-folding length scale and the parameters and boundary conditions as the runs with
an adjustable width but stable bed (compare figures 14-16 to figures 22-24). Larger width ratios and longer estuaries
are developed when the tidal amplitude, the channel depth, or the model parameter α are increased or the river
discharge, the drag coefficient, or the bed slope are decreased. Moreover, shorter e-folding length scales are developed
when the bed slope, the drag coefficient, or the model parameter β increases or the channel depth decreases. Again
the model parameters β and α have the most effect on the width ratio and the e-folding length scale. However, the
effect of the tidal amplitude and the discharge on the width ratio is too quite significant. Furthermore, the initial
depth and initial slope are still important for the length of the estuary, but the tidal amplitude has increased its effect.

The trends do have different slopes than the trends in the runs with a stable bed. Generally, the slopes of the
trends of the width ratio and estuary length are steeper in the runs with a movable bed. This is probably due to the
effects being amplified by the adjustable bed level. A different relation in the runs with an adjustable bed than in
the runs with a stable bed can be seen between the e-folding length scale and the tidal amplitude, the river discharge,
and the model parameter α. These relations show first a decrease in the e-folding length scale with the increasing
parameter and then an increasing e-folding length scale when the parameter is increased even more.

Noteworthy is the behaviour of the runs with a different river discharge and accompanying upstream channel width
(see figure 21b, called “Discharge+B+bed”) in comparison to this set of runs without bed change (see figure 13b, called
“Discharge+B”). The runs with a smaller river discharge and upstream channel width develop larger channel widths
at the mouth than runs with larger river discharges and upstream channel widths. This is a different behaviour than
the equivalent runs (called “Discharge+B”) show. This difference in behaviour is a result of the bed level adapting,
and the channel depth increasing when the river discharge is decreased, in the runs with a movable bed (see figure
25b). This results in larger channel widths at the mouth. When the river discharge is larger than 150 m3/s and is
increased, the e-folding length scale increases, leading to a less convergent estuary. This means that the width ratio
decreases faster than the length of the estuary with increasing river discharge. The opposite trend can be observed
when the river discharge is between the 50 and 150 m3/s . Increasing the river discharge leads to a shorter e-folding
length scale, so a more convergent estuary. In this case, the length of the estuary decreases faster than the width ratio
with increasing river discharge. The e-folding length scale will be further discussed in section 6.2.
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(a) Run: Tidal amplitude+bed (b) Run: Discharge+B+bed

(c) Run: Slope+bed (d) Run: Depth+bed

(e) Run: Drag coefficient+bed (f) Run: Alpha+Q+bed

(g) Run: Beta+alpha+bed

Figure 21: Equilibrium width profiles of the runs with an adjustable width and bed.
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(a) (b)

(c)

Figure 22: The width ratio Bmouth/Briver as a function of the ratio of the changing parameter p against
the value of the parameter is the default run p0. For run Tidal amplitude+bed: p/p0 = az/az,0, for
run Discharge+B+bed: p/p0 = Qr/Qr,0, for run Slope+bed: p/p0 = S/S0, for run Depth+bed: p/p0 =
H/H0, for run Drag coefficient+bed: p/p0 = Cd/Cd,0, for run Alpha+Q+bed: p/p0 = α/α0 and for run
Beta+alpha+bed:p/p0 = β/β0, where the value of the default parameters are given in table 2. Note: sub-
figures have different axis scales.
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(a) (b)

(c)

Figure 23: The estuary length Le as a function of the ratio of the changing parameter p against the value of
the parameter is the default run p0. For run Tidal amplitude+bed: p/p0 = az/az,0, for run Discharge+B+bed:
p/p0 = Qr/Qr,0, for run Slope+bed: p/p0 = S/S0, for run Depth+bed: p/p0 = H/H0, for run Drag coeffi-
cient+bed: p/p0 = Cd/Cd,0, for run Alpha+Q+bed: p/p0 = α/α0 and for run Beta+alpha+bed:p/p0 = β/β0,
where the value of the default parameters are given in table 2. Note: sub-figures have different axis scales.
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(a) (b)

(c)

Figure 24: The e-folding length scale Le as a function of the ratio of the changing parameter p against the value of
the parameter is the default run p0. For run Tidal amplitude+bed: p/p0 = az/az,0, for run Discharge+B+bed:
p/p0 = Qr/Qr,0, for run Slope+bed: p/p0 = S/S0, for run Depth+bed: p/p0 = H/H0, for run Drag coeffi-
cient+bed: p/p0 = Cd/Cd,0, for run Alpha+Q+bed: p/p0 = α/α0 and for run Beta+alpha+bed:p/p0 = β/β0,
where the value of the default parameters are given in table 2. Note: sub-figures have different axis scales.

In addition to the influence of parameters on the width profile, the influence of parameters and boundary conditions
on the bed level profile can be studied for the runs with a movable bed (see figure 25 and figures 26-29). The model
develops channel depths between 5 m and 46 m at the mouth and depths between 2 m and 14 m upstream. The
majority of these runs develop a channel depth upstream that is smaller than the initial depth of 6 m. Especially
the tidal amplitude and the initial bed slope have a considerable influence on the depth at the mouth, whereas the
model parameter α has the most significant effect on the depth upstream. Interestingly, the model parameter β has
almost no effect on the upstream channel depth. Furthermore, the estuary slopes range from 3× 10−5 and 16× 10−5,
where the tidal amplitude has the most considerable influence together with the model parameters α and β. Again,
the upstream river’s slope is mainly dependent on the initial bed slope and tidal amplitude. The river develops slopes
between the 2.5× 10−5 and 11× 10−5 of which the majority is above the value of the initial bed slope.

Larger channel depths at the mouth are developed when the tidal amplitude, the initial depth, the drag coeffi-
cient, or the model parameter α is increased or when the river discharge, the initial bed slope or model parameter
β is decreased (see figure 26). Interestingly, the trends in the channel depth upstream are different (see 28). Larger
channel depths upstream are produced if the river discharge, the initial depth, or the drag coefficient is increased
or if the tidal amplitude, the initial slope or the model parameter α is decreased. While, decreasing the river dis-
charge or the initial channel depth, or increasing the tidal amplitude or the drag coefficient, results in a steeper
estuary and upstream river slope. The initial slope of the channel has a different effect on the estuary slope, where
the estuary slope first increases with increasing initial slope and than slowly decreases again when the initial slope
is further increased. While, the slope upstream shows an almost linear relation with initial slope, where a steeper
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initial slope leads to a steeper slope upstream. Furthermore, to note is that steeper estuary slopes are developed when
the parameter β is decreased or the parameter α is increased. The upstream slope generally increases with increasing β.

Important to note, starting with another channel depth results in just a slight difference in the channel depth up-
stream, but a large difference in the channel depth in the estuary (see figures 25d, 26a, 28a). In addition to different
bed slopes upstream and in the estuary (see figures 27a, 29a). This means that the initial condition of the channel
bed level, has an influence on the eventually reached equilibrium. This was not expected since the initial conditions
should not matter, and the equilibrium should only depend on model parameters and boundary conditions.

When the model parameter β of the empirical hydraulic geometry relation is increased (runs called: “Beta+alpha+bed”),
a different kind of bed level is developed by the model (see figure 25g). In most of the other runs, the depth only
increases throughout the channel, but the data of the runs with a different β show a depth profile where the depth
first decreases at the beginning of the estuary upstream, if β > 0.5. The depth and bed slope upstream do barely
differ when β is changed, while the estuary’s depth and slope decrease with increasing β.
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(a) Run: Tidal amplitude+bed (b) Run: Discharge+B+bed

(c) Run: Slope+bed (d) Run: Depth+bed

(e) Run: Drag coefficient+bed (f) Run: Alpha+Q+bed

(g) Run: Beta+alpha+bed

Figure 25: Equilibrium bed level profiles of the runs with an adjustable width and bed.
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(a) (b)

(c)

Figure 26: The depth at the mouth Hmouth as a function of the ratio of the changing parameter p against the value
of the parameter is the default run p0. For run Tidal amplitude+bed: p/p0 = az/az,0, for run Discharge+B+bed:
p/p0 = Qr/Qr,0, for run Slope+bed: p/p0 = S/S0, for run Depth+bed: p/p0 = H/H0, for run Drag coefficient+bed:
p/p0 = Cd/Cd,0, for run Alpha+Q+bed: p/p0 = α/α0 and for run Beta+alpha+bed:p/p0 = β/β0, where the value
of the default parameters are given in table 2. Note: sub-figures have different axis scales.

(a) (b)

Figure 27: The slope of the estuary Sestuary as a function of the ratio of the changing parameter p against the value
of the parameter is the default run p0. For run Tidal amplitude+bed: p/p0 = az/az,0, for run Discharge+B+bed:
p/p0 = Qr/Qr,0, for run Slope+bed: p/p0 = S/S0, for run Depth+bed: p/p0 = H/H0, for run Drag coefficient+bed:
p/p0 = Cd/Cd,0, for run Alpha+Q+bed: p/p0 = α/α0 and for run Beta+alpha+bed:p/p0 = β/β0, where the value
of the default parameters are given in table 2. Note: sub-figures have different axis scales.
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(a) (b)

(c)

Figure 28: The depth upstream Hriver as a function of the ratio of the changing parameter p against the value of
the parameter is the default run p0. For run Tidal amplitude+bed: p/p0 = az/az,0, for run Discharge+B+bed:
p/p0 = Qr/Qr,0, for run Slope+bed: p/p0 = S/S0, for run Depth+bed: p/p0 = H/H0, for run Drag coeffi-
cient+bed: p/p0 = Cd/Cd,0, for run Alpha+Q+bed: p/p0 = α/α0 and for run Beta+alpha+bed:p/p0 = β/β0,
where the value of the default parameters are given in table 2. Note: sub-figures have different axis scales.

(a) (b)

Figure 29: The slope upstream Sriver as a function of the ratio of the changing parameter p against the value of
the parameter is the default run p0. For run Tidal amplitude+bed: p/p0 = az/az,0, for run Discharge+B+bed:
p/p0 = Qr/Qr,0, for run Slope+bed: p/p0 = S/S0, for run Depth+bed: p/p0 = H/H0, for run Drag coeffi-
cient+bed: p/p0 = Cd/Cd,0, for run Alpha+Q+bed: p/p0 = α/α0 and for run Beta+alpha+bed:p/p0 = β/β0,
where the value of the default parameters are given in table 2. Note: sub-figures have different axis scales.
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5.2.3 Effect of the time scale of width adjustment, the initial channel shape and the choice for the
Exner equation

The effect of the width adjustment’s time scale, the initial channel shape, and the different Exner equations were
studied. For this, four separate set of runs were carried out as explained in section 4.2.2.

In all the model runs with a movable bed for which the results were discussed in the previous sections, the time
scale for the width adjustment used in equation 4.11 was taken as 50 morphological years. This means that the
width adapts way faster to the hydrodynamics than the bed level does. In the run ““Only bed+default”, where
only the bed level can adapt, the bed level adjust within 20000 morphological years. It could be expected that if
the time scale for width adjustment in the model is around the same order of magnitude as the time scale for bed
level adjustment, the model develops a different bed level and width profile. However, this is not the case. The bed
level profiles at the end of the runs with a longer time scale for width adjustment are, in fact, almost the same (see
figure 30b, runs called: “Tw+bed”). The width profiles are not exactly the same (see figure 30a). The reason for
this is that not all the runs are in equilibrium. From figure 30a it is presumed that if the model had run longer,
the eventual equilibrium width profiles and bed level profiles would be the same in all the runs. This means that
the chosen timescale for width adjustment does not affect the eventual equilibrium reached in the model. Notwith-
standing, the timescale for width adjustment influences how fast this equilibrium is reached in the model. The effect
of the timescale is greater on the time it takes to reach an equilibrium for the width profile than for the bed level profile.

As explained in section 4.2.2, the choice was made to first use the Exner equation 4.18 with a γ of 0 (called old
Exner equation in this section). In this old Exner equation the width change is not included in the sediment balance.
Using instead equation 4.18 with a γ of 1 (called new Exner equation in this section), where the width change is
included in the sediment balance, could lead to a different equilibrium. In this new Exner equation, the sediment
eroded from the channel banks is deposited on the bed if the width increases and the sediment deposited on the
channel banks are eroded from the bed if the width decreases. The results of the runs “Tw+Exner+bed”, show that
the the eventually reached equilibrium will be the same in the runs where the new Exner equation is used as the runs
where the old Exner equation is used (see figure 30c and 30d). However, it will take longer to reach this equilibrium.

The time scale for width adjustment and the type of Exner equation does not affect the eventually reached equi-
librium. However, the initial channel of these runs and the other previous runs was straight. The effect of this
initial condition needs to be tested. Starting with a convergent instead of a straight channel means that the initial
hydrodynamics are different, but the boundary conditions and other parameters are not. If the time scales for width
and bed level adjustment are around the same order of magnitude, it could be expected that the eventually reached
equilibrium is different. Figures 30e-30h show that the eventually reached equilibrium will not depend on the initial
channel shape. All the runs in both the set of runs called “Tw+Lb+bed” and “Tw+Lb+Exner+bed” will eventually
reach the same equilibrium and this equilibrium will be the same as when the channel starts as a straight channel and
the same boundary conditions and other parameters are used. Not all these runs have already reached this equilibrium,
but still this conclusion can be made. This means that the initial shape of the channel does not affect the eventual
reached equilibrium width profile and bed level profile.
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(a) Run called: “Tw+bed” (b) Run called: “Tw+bed”

(c) Run called: “Tw+Exner+bed” (d) Run called: “Tw+Exner+bed”

(e) Run called: “Tw+Lb+bed” (f) Run called: “Tw+Lb+bed”

(g) Run called: “Tw+Lb+Exner+bed” (h) Run called: “Tw+Lb+Exner+bed”

Figure 30: Width B and bed level η evolution at the mouth for runs where the time scale for width adjustment
is changed or/and the Exner equation or/and the initial shape. The blue line indicates the width and bed level
evolution for the run where the default settings are used and the channel starts as a straigth channel and the
bed can change.
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5.3 Relation to tide dominance

The previous section studied the effect of changing the model parameters and the boundary conditions on the estuary
characteristics. These parameters and boundary conditions determine the tide dominance of the estuary. Changing
parameters or boundary conditions can lead to a larger or smaller discharge ratio between the discharge due to the tide
and the mean river discharge Qtide/Qriver. This, in turn, determines if the estuary is tide-dominated. As explained
in section 2.1, if Qtide/Qriver is larger the estuary is more tide-dominated. In figure 32a it is clear that changing
parameters or boundary conditions that lead to a more tide-dominated estuary, lead to an estuary with a larger width
ratio Bmouth/Briver. Actually, a power-law trend Bmouth/Briver = 1.18(Qtide/Qriver)

0.47 can be observed in all the
runs (without or with an adjustable bed) where the model parameter β is unchanged (β = 0.5). This could, of course,
be expected as the empirical hydraulic geometry relation used to determine the width is a power-law relation with the
peak discharge Qtide + Qriver. When the discharge ratio Qtide/Qriver becomes smaller or even less than 1 (so if the
estuary is river-dominated instead of tide-dominated), the data deviates from this power-law relation, as Bmouth/Briver
does not become smaller than 1. This is because the discharge can not become less than the river discharge upstream
in the model, so the width can not become smaller than the width upstream. The trend between the width ratio and
the discharge ratio changes if the model parameter β is adjusted (see figure 32b). How the power-law relation exactly
adjusts, differs in the runs with a stable bed and a movable bed. In the runs with a movable bed, increasing β leads
to even larger width ratios and discharge ratios than in the runs with a stable bed.

Figure 31: The complete legend for figures 32a, 35a, 35b and 36a.
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(a) (b)

Figure 32: Width ratio Bmouth/Briver plotted against the discharge ratio Qtide/Qriver at the mouth. a) shows
the relation in all runs with the same model parameter β and b) shows how this relation is altered in the runs
where β is changed. The closed circles indicate the runs with an adjustable width and stable bed, as indicated
in the legend. The open circles indicate the runs with an adjustable width and stable bed, where additionally
the channel depth is changed. The triangles indicate the equivalent runs, but with an adjustable width and an
adjustable bed. For the complete legend see figure 31.

The depth ratio Hmouth/Hriver does too follow a distinct trend with the tide dominance Qtide/Qriver (see figure
33a). This relation is only studied in the runs where the bed level could additionally adjust next to the channel
width (Runs: “Name of changing parameter(s)”+bed), as in these runs, the depth of the channel was not prescribed
and could adjust to the parameters and boundary conditions. The trend is a power-law relation: Hmouth/Hriver =
0.96(Qtide/Qriver)

0.46. This is not a relation that is expected straight away since observations of estuaries in nature
show a variety of depth profiles, where besides profiles where the depth increases towards the mouth, also profiles,
where the depth stays almost constant throughout the estuary or even decreases towards the mouth, are observed, as
explained in section 2. The model does not develop these kinds of profiles. Again changing the model parameter β
leads to a different relation between the depth ratio and discharge ratio, where smaller depth ratios occur with larger
discharge ratios (see figure 33b). As both the width ratio Bmouth/Briver and the depth ratio Hmouth/Hriver can be
related to the discharge ratio Qtide/Qriver, these two ratios can moreover be related to each other by a linear relation
(see figure 34a). Interestingly, the aspect ratio B/H does not show a clear relation with the tide dominance, while
the width ratio and depth ratio do (see figure 34b).

(a) (b)

Figure 33: Depth ratio Hmouth/Hriver against the discharge ratio Qtide/Qriver at the mouth for the runs with
a movable bed. a) shows the relation in all movable bed runs where the model parameter β is unchanged and
b) shows how changing the model parameter β changes this relation.
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(a) (b)

Figure 34: Depth ratio Hmouth/Hriver against the width ratio Bmouth/Briver at the mouth (a) and the aspect
ratio B/H against the discharge ratio Qtide/Qriver at the mouth (b) for the runs with a movable bed.

No clear relation could be found between the tide dominance and the estuary length (see figure 35a). However, the
data shows that overall, the estuary length becomes longer if the estuary is more tide-dominated, except for the
run “Discharge+B+H” (indicated by the orange open circles). In the run “Discharge+B+H”, the discharge ratio
Qtide/Qriver increases when the river discharge is decreased, and additionally, the upstream river width and channel
depth is decreased. The discharge ratio and the width ratio are related, and so if the width ratio decreases, the
discharge ratio decreases. As explained in section 5.1.2, decreasing the river discharge or the channel depth lead
to different responses of the estuary length and the width ratio. In the run “Discharge+B+H”, the width ratio de-
pends more on the changing river discharge, and the estuary length depends more on the changing channel depth. This
eventually leads to decreasing estuary lengths with increasing width ratio and so additionally increasing discharge ratio.

The e-folding length scale does not show any relation with the tide dominance (35b). The runs where the tidal am-
plitude or river discharge is changed (runs: Tidal amplitude, Tidal amplitude+bed, Discharge+B, Discharge+B+H
and Discharge+B+bed) generally have a shorter e-folding length scale, so the estuary is more convergent if the es-
tuary is more tide-dominated. However, the runs where the slope, depth or drag coefficient is changed (runs: Slope,
Slope+bed, Depth, Depth+bed, Drag coefficient, Drag coefficient+bed) show an almost opposite trend; the estuary
becomes generally less convergent when it is more tide-dominated. This will be further discussed in section 6.2.
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(a) (b)

Figure 35: Estuary length Le and e-folding length scale Lb plotted against the discharge ratio Qtide/Qriver
at the mouth for the runs with the same model paramter α and β. The closed circles indicate the runs with
an adjustable width and stable bed, as indicated in the legend. The open circles indicate the runs with an
adjustable width and stable bed, where additionally the channel depth is changed. The triangles indicate the
equivalent runs, but with an adjustable width and an adjustable bed. For the complete legend see figure 31.

5.4 Hydraulic geometry relations

As the model determines the channel width using a hydraulic geometry relation, the hydraulic geometry relations
that the model’s output actually follows were studied. This was done for the runs where the model parameters α and
β were not altered, as changing these parameters leads to the model using a different hydraulic geometry relation.
As can be seen in figure 36a, the model produces the exact same hydraulic geometry relation between the width B
and the total peak discharge Qtide + Qriver as is used. This verifies that the model indeed determines the width in
the prescribed way. Furthermore, the output of the runs with an adjustable bed shows a hydraulic geometry relation
between the depth H and the total peak discharge Qtide +Qriver, where H = 0.6(Qtide +Qriver)

0.4. Only the data of
the run ”Drag coefficient+bed” does not follow this relation.

Besides the hydraulic geometry relations that relate channel properties to discharge, the hydraulic geometry rela-
tion between the cross-sectional area A and the tidal prism P was studied. In figure 37a it can be seen that the runs
with a stable bed, where the channel depth and the model parameters α and β are unchanged, follow the relation:
A = 0.027P 0.62. This relation has a smaller exponent than expected. The depth is the same in these runs, namely 6
m, and stays constant through time. Apparently, the width does not adapt such that the cross-sectional and the tidal
prism follow an almost linear relation, as presumed (see section 2.3). The runs where the channel depth or the model
parameters α or β is changed, do not follow this relation (see figure 37b). When one of these parameters is changed, the
cross-sectional area tidal prism relation is altered. The runs where the channel depth is changed additional to another
parameter (runs: “Discharge+B+H”. “Slope+H”, “Drag coefficient+H”, “Alpha+Q+H”, “Beta+Q+H”) follow a bit
different cross-sectional tidal prism relation as the channel depth is changed in every runs. Note that this difference
is due to a difference in channel depth that is prescribed and not developed by the model itself.

The model develops a better cross-sectional area tidal prism relation in the runs with a movable bed (see figure 38).
In these runs, both the width and depth can adapt, so the cross-sectional area in the estuary is not prescribed, and
the cross-sectional area tidal prism relation is a combination of the width and depth adapting to the hydrodynamics.
An almost linear relation can be fitted through this data, where

A = 2.05× 10−4P 0.94. (5.1)
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(a) (b)

Figure 36: The channel width B (a) and the channel depth H (b) against the peak discharge Qtide + Qriver
at the mouth for the runs where the model parameters α and β are unchanged. The closed circles indicate
the runs with an adjustable width and stable bed, as indicated in the legend. The open circles indicate the
runs with an adjustable width and stable bed, where additionally the channel depth is changed. The triangles
indicate the equivalent runs, but with an adjustable width and an adjustable bed. For the complete legend see
figure 31.
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(a) (b)

(c)

Figure 37: The cross-sectional area A against the tidal prism P for the runs with a stable bed. a) for the runs
where the model parameters α and β and the channel depth are unchanged and equal to the default settings.
b) for the runs where α, β or the channel depth are changed. c) for the runs where the depth is additionally
changed according to the Chézy equation. The different markers indicate the cross-sectional area and tidal
prism at different locations along the channel. The closed circles indicate the values at the mouth (x = 400
km), the plus signs indicate the values 100 km from the mouth (x = 300 km) and the crosses indicate the
values 200 km from the mouth (x = 200 km).
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Figure 38: The cross-sectional area A against the tidal prism P for the runs with an adjustable bed. The
different markers indicate the cross-sectional area and tidal prism at different locations along the channel. The
open triangles pointing up indicate the values at the mouth (x = 400 km), the closed triangles pointing up
indicate the values 50 km from the mouth (x = 350 km), the open triangles pointing down indicate the values
100 km from the mouth (x = 300 km), the closed triangles pointing down indicate the values 150 km from the
mouth (x = 250 km), the open triangles pointing right indicate the values 200 km from the mouth (x = 200
km).
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6 Discussion

In this section, the results will be discussed. This will be done by looking back at the previously discussed theory about
and studies to tide-dominated estuaries and their equilibria (see section 2). The results will moreover be compared
to observed estuary characteristics (see table 1 and other characteristics discussed in section 2). The fact that the
model developed an equilibrium will be discussed. Then the equilibrium channel width, estuary length and e-folding
length scale will be discussed and compared to predictors of previous studies. Thereafter the equilibrium bed level
profiles, the hydraulic geometry relation used for the width adjustment and the cross-sectional tidal prism relation
will be discussed. Last, there will be some recommendations for future studies.

6.1 Equilibrium

The model that was used in this study developed a steady-state with respect to the channel width and bed level.
This was not necessarily expected. When the channel width increases, the tidal prism can likewise increase. This
could, in turn, result in larger tidal peak discharges, and this would again increase the width further (as hypothe-
sised by Braat et al. (2017), see section 2.2). However, evidently, an equilibrium between the width and the tidal
prism is eventually reached, and the width stabilises. This means that the presence of cohesive sediments or vege-
tation (not included in this model) is probably not necessarily needed to reach an equilibrium in channel width, as
was first thought by Braat et al. (2017). However, that an equilibrium is reached in the model does not directly
mean that an equilibrium will be reached in the “real world”, as explained in section 2.2. To further note is that
most natural estuaries are not in equilibrium and will probably never reach an equilibrium as they are continuously
adapting to changing boundary conditions (Braat et al., 2017). The presence of cohesive sediments or vegetation
will in any way influence the estuary width and could force another equilibrium on the system. Furthermore, in this
model, it is assumed that the underlying geology does not limit the estuary. If the estuary lies in a valley where the
underlying geology limits the channel width, this will, of course, lead to a different estuary (Davies & Woodroffe, 2010).

The results show that the timescale for width adjustment does not influence the eventually reached equilibrium
in the model, even when the timescale is close to the timescale for bed adjustment (around 20000 year) or even bigger.
As the timescale for width adjustment is prescribed, no conclusions can be drawn on typical time scales for width
change. Including the width change in the sediment balance and using another Exner equation (equation 4.18 instead
of equation 4.9) likewise does not affect the equilibrium, but only the time it takes to reach the steady-state. Moreover,
the results show that the initial shape of the width profile does not affect the equilibrium. This is surprising since
starting with a convergent channel with a larger initial width at the mouth leads to a larger initial total discharge
peak. However, apparently, this will not lead to another equilibrium and both the width and the total discharge peak
decrease. This is even more surprising since starting with another initial channel depth, so another initial bed level,
but with the same river discharge and other parameters, does lead to another equilibrium width and bed level profile.
If the channel has a larger initial depth, the tidal wave can propagate further into the channel, and so a longer estuary
is developed. This longer estuary leads to a larger total discharge peak, and so the width and depth at the mouth
increase more. Leuven et al. (2021), who modelled the morphodynamic equilibrium in bed level in a model with fixed
widths, found that with very similar hydrodynamics, significantly different bed profiles were found. Maybe multiple
different equilibria may develop with the same forcing, but with a dependence of the bed level and width profile on
each other. Another reason for the dependence of the equilibrium on the initial depth in our model could be the way
the friction coefficient Cf is determined. Equation 4.8 shows that the friction coefficient is based on the channel depth,
so starting with another initial depth corresponds to starting with another friction coefficient.

6.2 Channel width

The model developed quite small width ratios Bmouth/Briver with the model parameter α set to 4 and the model
parameter β set to 0.5. These width ratios were larger when the bed could adjust but still not in the expected range.
Width ratios observed in nature often range from 5 to 40, and even larger width ratios can be observed (Nienhuis et
al., 2018). Increasing the model parameters α or β did result in more realistic width ratios. The effect of α and β will
be further discussed in section 6.6.

The overall trend in the effect of changing the parameters or boundary conditions on the width ratio Bmouth/Briver
did behave as expected. As was also shown by Todeschini et al. (2005) and Lanzoni and D’Alpaos (2015), larger tidal
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amplitudes result in larger width ratios. Moreover, the results show that all parameters settings that lead to a greater
tide dominance, so a larger discharge ratio Qtide/Qriver, result in larger width ratios. The control of this discharge
ratio on the width ratio explains why increasing or decreasing the tidal amplitude or river discharge had one of the
greatest effects on the width ratio.

The model results of the runs with a movable bed were tested against the width ratio predictor of Nienhuis et
al. (2018) (see equation 2.6 and figure 39). Overall are, the modelled width ratios smaller than the predicted width
ratios. However, when the modelled width ratio is larger (> 5) the predicted width ratio is smaller. The predictor
especially underpredicts the effect of a larger tidal amplitude or a smaller river discharge. The trend in the predicted
width ratio with changing river discharge and changing drag coefficient is different than our results show see figure 22.
The predicted width ratio becomes smaller with decreasing river discharge or decreasing drag coefficient, while our
results clearly show an increase in width ratio with decreasing river discharge or drag coefficient. Furthermore, the
figure shows that increasing the model parameter α or β a bit could better fit the predicted to the modelled width
ratio. If the model parameters would be increased too much, the modelled width ratios become would become much
larger than the predicted width ratios. A β between the 0.5 and 0.65 would probably lead to the best fit.

Figure 39: The predicted width ratio plotted against the modeled width ratio for the predictor of Nien-
huis et al. (2018) (see equation 2.6). The colors indicate the different sets of runs as labeled in the
legend. Note: there is one data point that is not shown in this plot. This data point belongs to the run
”Beta+alpha+bed” and lies on (48, 6).

6.3 Estuary length

Generally, the estuary lengths increased with increasing tide dominance (except for the runs “Discharge+B+H” as
explained in section 5.3), but the relation was not that clear. Furthermore, the estuary lengths are within the expected
range but longer than the average estuary length (see 1). In the runs with a movable bed, estuary lengths that were
even longer developed with respect to the runs with a stable bed. This is probably due to the large depths of the
channels. In all the runs with a movable bed, the depth profile shows an increase in depth towards the mouth. This
increase results in less dampening of the tidal wave so that the wave can propagate further into the channel, and the
estuary length increases. Besides, the initial slope of the channel has a significant effect on the estuary length. For the
default settings, a slope of 3×10−5 was chosen, which is quite a slight slope. The average slope of tide-dominated deltas
from the data from Nienhuis et al. (2018) was 5.7×10−5. This slope is almost twice as big as the default setting of the
model. When a slope of 5.7× 10−5 would be used in combination with the other default settings in a run where the
bed is adjustable, this would probably result in an estuary length of approximately 120 km instead of 200 km (see 23b).

Another reason for the long estuary lengths could depend on how the estuary length is determined. The upstream
boundary of the estuary is the tidal limit, as explained in section 4.2.3. Other options for determining the estuary
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length are based on the salinity or facies boundary, as explained in section 2.1, and result in shorter estuaries (see
figure 1).

Nienhuis et al. (2018) based the estuary length on the upstream river depth Hupstream divided by the delta channel
slope Supstream (see section 2.1):

Le =
Hupstream

Supstream
. (6.1)

The average estuary length for tide-dominated deltas from their data was 170 km. Determining the estuary length in
this way with our data results in somewhat shorter estuary lengths than in the way it was determined for this study
(see figure 40, closed triangles). A few other studies tried to derive a relation for estuary length analytically, as briefly
discussed in section 2.1. One is the predictor of van Rijn (2011), who derived that the estuary length of an ideal
estuary with constant tidal range should depend on the depth at the mouth Hmouth, the tidal amplitude az,mouth, the
drag coefficient Cd and the phase φ:

Le =
12πH2

mouth

16Cd az,mouth cos(φ)
. (6.2)

Another one is the predictor of Prandle (2004), that is also depended on the depth at the mouth Hmouth, the tidal
amplitude az and the drag coefficient Cd and additionally on the tidal angular velocity ω = 2π

T :

Le =
4

5

(2 g)1/4√
1.33Cd ω

H
5/4
mouth

a
1/2
z,mouth

. (6.3)

Both these predictors do not show a good fit with the determined modelled estuary length (see figure 40, circles and
plus signs, respectively). This could be because the modelled estuaries are not ideal. However, both predictors relate
inversely to the tidal amplitude, though we expect the estuary length to become longer with increasing amplitude.
Based on the predictor of Nienhuis et al. (2018) and the fact that the determined estuary length is based on the tidal
limit, a new predictor was developed:

Le =
az,mouth +Hmouth

Sestuary
, (6.4)

which does show a good fit with the determined modeled estuary length (see figure 40, open triangles). This dependence
on the tidal amplitude, depth at the mouth and estuary slope could be expected as the results show that these indeed
mainly control how far the tide can propagate up the estuary.

Figure 40: The predicted estuary length plotted against the modeled estuary length for 4 different
predictors. The crosses indicates the predictor of van Rijn (2011) (equation 6.2), the plus sign indicates
the predictor of Prandle (2004) (equation 6.3), the closed triangle indicates the predictor of Nienhuis et
al. (2018) (equation 6.1) and the open triangle indicates our own predictor (6.4). The colors indicate the
different sets of runs as labeled in the legend.
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6.4 E-folding length scale

The e-folding length scales were longer than expected, as typical estuary e-folding length scales are of an order 10
to 50 km (van Rijn, 2011) (see section 2.1). However, estuaries with larger e-folding length scales up to 230 km are
observed in nature (Todeschini et al., 2008). Interesting is that the effect of changing the tidal amplitude, the initial
slope or the model parameter α on the e-folding length scale show two different trends in the runs with an adjustable
bed (see figure 24). When these parameters are small and are then increased, the e-folding length scale becomes quite
rapidly shorter, but if the parameters become even larger, the e-folding length scale increases again. It looks as if the
e-folding length scale is limited and can not be shorter only if the model parameter β is increased. This leads us to
believe that only increasing the coefficient β with respect to the default settings could lead to the model developing
realistic e-folding length scales.

Furthermore, the width profiles of the runs with an adjustable bed do not all show a typical exponential profile.
A linear fit would probably be okay in some cases, too. Figure 41 confirms this presumption. If the width profile
would indeed be exponential, i.e. Bmouth = Brivere

Le/Lb , then Bmouth/Briver = eLe/Lb . The figure shows that not
all data lies on this line. Especially, the data of the runs where the bed is adjustable, and the tidal amplitude or the
model parameter α is large, or the river discharge is minimal, deviate from the line. In addition to the data of the
runs with a huge model parameter β > 0.85. Although, this data from the runs with a large β do not deviate because
the width profile increases more linear like (see figure 13g, 21g).

Todeschini et al. (2005) used an erosion model to simulate channel widening. Their model did not always pro-
duce a perfect convex width profile but concave profiles as well, especially when no river discharge was forced at
the upstream boundary. Our result confirms this: they show a less convex shape with minimal river discharge. The
runs with a larger tidal amplitude but the same river discharge deviate from this convex shape too. This shows the
importance of the balance between the river discharge and the tidal amplitude for the characteristic convex shape.
The research of Lanzoni and D’Alpaos (2015) who used a 2-dimensional hydrodynamic and morphodynamic model to
study short tidal channels, agrees with this hypothesis as well, as the width profiles likewise showed an almost better
linear relation, and in their model, no upstream river discharged was forced upon the tidal channels. Furthermore,
Todeschini et al. (2005) hypothesised that the width profile is more convergent if the estuary slope is small. This was
confirmed by their results of a run with a fixed horizontal bed, that indeed resulted in a more convergent estuary.
The width profiles of our results of the runs with a fixed but sloping bed also show a better exponential fit than their
equivalent runs with a movable bed.

Figure 41: eLe/Lb plotted against the width ratio Bmouth/Briver.The circles indicate the runs with an
adjustable width and stable bed and the triangles indicate the equivalent runs, but with an adjustable
width and an adjustable bed (”Name changing parameter”+bed). The red line indicates the line where
eLe/Lb = Bmouth/Briver.
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Interestingly, our results show first more convergent convex width profiles when the river discharge is decreased instead
of the concave shape when the river discharge is even more decreased. Leuven, van Maanen, et al. (2018) showed that
the e-folding length scale of estuaries are correlated to the upstream channel width, where shorter e-folding length
scales were observed, so more convergent channels, with smaller upstream channel width. In the runs in this thesis,
the upstream channel width is additionally decreased when the river discharge is decreased. For these runs, we indeed
see that until a certain limit, a smaller river discharge, so a smaller river width, results in shorter e-folding length
scale. If the river discharge falls below this limit, the estuary shape changes from convex to concave, as explained.
This again confirms that the shape and degree of convergence are determined by the balance between the tide and
the river discharge. A certain river discharge is needed to result in a convex shape. An even larger river discharge
then leads to a more convergent shape, but the convergence rate again decreases if the river discharge is even more
prominent. How much river discharge leads to the most convergent convex estuary shape depends on the tidal ampli-
tude and other channel characteristics. This explains why there is no exact relation between the tide dominance and
the e-folding length scale. The channel needs to be tide-dominated to have a convergent convex shape, and at first, a
more tide-dominated channel is more convergent, but if the channel is even more tide-dominated, the channel has a
less convergent convex shape.

Again the e-folding length scale from our results was tested against the predictors that were discussed in section
2.1, the predictor of Savenije (2005) (see equation 2.3) and of Chappell and Woodroffe (1994) (see equation 2.4) (see
figure 42). To note is that these predictors were made for ideal estuaries with a constant water level amplitude,
velocity amplitude and channel depth. None of our runs developed an ideal estuary. The predictor of Chappell and
Woodroffe (1994) largely under predicts the e-folding lengths scales. This predictor related the e-folding length scale
to the time-averaged product of the depth H and the flow velocity U , HU . In the derivation it was assumed that two
times the tidal prism P equals the product of this HU , the channel width B and the tidal period T . However, this
leads to a great under prediction of the tidal prism. As from our model results the tidal prism can be determined the
predictor can be rewritten to directly use the tidal prism. The corrected predictor is:

Lb =
P

2 az B
, (6.5)

where P is the tidal prism (m3), az is the water level amplitude (m) and B is the channel width (m). This corrected
predictor for the e-folding length scale lies closer to the modelled e-folding length scale, but there is still not a good
match. The predictor of Savenije (2005) shows a better match with our results, but the predicted e-folding lengths
are still generally shorter than the modelled e-folding length scales. As the data of the model runs “Slope+bed”,
“Depth+bed” and “Drag coefficient+bed” are parallel to the y = x line, we do think that the predictor of Savenije
(2005) shows the same kind of trend between the e-folding length scale and the slope, depth or drag coefficient than
our results. However, the figure shows that the predictor does not capture the same trend between the e-folding
length scale and the river discharge or tidal amplitude. Interestingly, when the model parameter β is increased, so the
modelled e-folding length scales become shorter, the modelled e-folding length scale better matches with the predicted
e-folding length scales (best match when β = 0.65).
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Figure 42: The predicted e-folding length scale plotted against the modeled e-folding length scale for 3
different predictors. The open triangles indicate the predictor of Savenije (2005) (eq 2.3). The plus signs
indicate the predictor of Chappell and Woodroffe (1994) (eq 2.4). The crosses indicate the corrected
predictor or Chappell and Woodroffe (1994) (eq 6.5). The colors indicate the different sets of runs as
labelled in the legend.

6.5 Bed level profiles

The model produces concave down bed level profiles with channel depths at the mouth that are pretty deep. However,
these channel depths do lie within the expected range of 1 m to 45 m (see section 2.1). In the model, the depth ratio
Hmouth/Hriver scaled with the discharge ratio Qtide/Qriver, while estuaries in nature often have an almost constant
depth throughout the estuary (Todeschini et al., 2008) or have an increasing depth toward the mouth and at the
mouth a sudden decrease in depth (Canestrelli et al., 2014; Hibma et al., 2003; Leuven et al., 2021). Leuven et al.
(2021) studied this scour like bed profile in estuaries by using a one-dimensional hydro- and morphodynamic model
(with fixed channel widths). A predictor was found based on the ratio between the tidal and river discharge, and
e-folding length scale, that predicts if the bed profile will have this sudden decrease at the mouth:

Qtide/Qriver
Lb/(Bmouth −Briver)

> 0.3. (6.6)

If this condition is met, the bed profile will show a scour like profile, whereas if this condition is not met, the bed
profile will show a constantly increasing depth. The estuaries modelled in this thesis do not meet this requirement,
so it is indeed expected that the bed profiles show a constantly increasing depth towards the mouth. This is mainly
due to the low convergence. Moreover, Leuven et al. (2021) tested the predictor against the results of the studies of
Bolla Pittaluga et al. (2015) and Canestrelli et al. (2014). The results of Bolla Pittaluga et al. (2015) showed bed
levels that corresponded more to the bed levels of this thesis, and indeed their estuaries did not follow the condition.
The results of Canestrelli et al. (2014) do show a scour like profile and do meet the requirement.

That the convergence of the width profile has a large control on the shape of the estuary bed profile is moreover
shown by Toffolon and Lanzoni (2010), Lanzoni and Seminara (2002), Lanzoni and D’Alpaos (2015) and Seminara et
al. (2010), who all found that a shorter e-folding length scale, so a more convergent estuary, has a more concave up
bed level profile. While channels with longer e-folding length scales develop concave down bed level profiles, as is the
case in this thesis. The results showed a relatively good power-law relation between the depth ratio Hmouth/Hriver

and the tide dominance ratio Qtide/Qriver, and the width ratio Bmouth/Briver. With keeping in mind the results of
the study of Leuven et al. (2021), we hypothesise that if the tide dominance ratio or width ratio will increase even fur-
ther, the data will deviate from these power-law relations as the depth at the mouth will stabilise or even decrease again.

Furthermore, Leuven et al. (2021) found that the depth at the mouth in case of a concave down profile increases
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with increasing tidal amplitude and decreasing river discharge, which the results of this thesis confirm. The role of the
river discharge was emphasised by Guo et al. (2015) who specifically studied the role of the river discharge on the bed
profile of estuaries. They argued that increasing river discharges supply more sediment, which results in a shallower
estuary with smaller slopes, while decreasing river discharges lead to larger depths and steeper slopes. Even smaller
discharges would limit the ebb flow and lead to less erosive capacity, and the depths would decrease again. However,
the latter can not be deduced from our results. This could be because the river discharge is not decreased that much in
our runs. Bolla Pittaluga et al. (2015), Todeschini et al. (2008) and Lanzoni and D’Alpaos (2015) moreover researched
the effect of the tide, and all confirmed that the depth at the mouth and estuary slope increases with increasing tidal
amplitude.

In the runs where the model parameter β was increased (run called: Beta+alpha+bed), the bed profile showed a
decrease in depth at the upstream boundary of the estuary. This decrease in depth was also modelled by Canestrelli
et al. (2014) and Todeschini et al. (2008), where likewise this decrease became more pronounced with shorter e-
folding length scales. Tambroni et al. (2005) moreover showed that this “beach” developed in experimental settings.
Canestrelli et al. (2014) hypothesised that this deposition is a result of the break in the trend of the width profile from
convergent to straight.

6.6 Hydraulic geometry relation coefficients

The chosen hydraulic geometry relation coefficients α and β for the width adjustment (see equation 4.16) have a
large influence on the results of the model. As a first approximation, a β of 0.5 and an α of 4 were chosen for the
default settings. However, as previously mentioned, do these settings lead to smaller width ratios Bmouth/Briver,
larger channel depths at the mouth Hmouth, and longer e-folding length scales Lb than expected. As explained in
section 2.3, there has been much discussion around hydraulic geometry relations. Our choice for the value for β and
α was mostly based on rivers generally corresponding to these values. Most hydraulic geometry relations for tidal
channels relate to the cross-sectional area instead of width, so determining a β from these relations is quite complex
as the width-to-depth ratio is not necessarily constant. (If the width-to-depth ratio B/H is constant than B =

√
A

and β = 0.5βA.) The underestimation of the model parameter β and perhaps α could explain the small width ratios,
large channel depths, and long e-folding length scales.

In section 2.3 the exponents determined by Myrick and Leopold (1963) and Langbein (1963) were also discussed.
They arrived at a exponent b for the relation between width and discharge of 0.71 and 0.72 respectively. This is con-
firmed by Rinaldo et al. (1999) as well, who used the data of various tidal channels to related the total peak discharge
Qtide +Qriver to the channel width by Qtide +Qriver ∝ B1.38. Rewriting this equation gives B ∝ (Qtide +Qriver)

0.72.
Furthermore, does Leuven, De Haas, et al. (2018) show that B = 0.05P 0.59 corresponds to data of 35 estuaries.
Rewriting this equation with using equation 2.16, gives B ∝ (Qtide+Qriver)

0.70. This in combination with our results
make us believe that using a β around 0.70 in the model would better simulate the width profile of an estuary.

Even less studies have been done to the coefficient α in estuaries or a of equation 2.9 in rivers. There is a possi-
bility that α is not universal and describes some channel properties indirectly and will vary between estuaries with
different channel properties. For example, Simons and Albertson (1960) showed that for rivers a depended on soil prop-
erties of the bank where a is 3.1 for coarse material and 6.3 for sand (Savenije, 2005). Also, Gleason (2015) pointed out
that some researchers included other bank strength variables in this coefficient a so the hydraulic geometry relations
better match nature.

6.7 Cross-sectional area tidal prism relation

Interesting is that even though the model develops channel widths that are smaller than expected and channel depths
that are deeper than expected, the cross-sectional area follows a realistic relation with the tidal prism along the estuary
in case of the runs with a movable bed that is in independent of any boundary conditions, channel characteristics and
model parameters (see equation 5.1). The tidal prism at the mouth varies between the 8 × 106 and 7 × 108, which
is in the range observed in estuaries of 106 to 1011 (see section 2.1, Leuven, De Haas, et al. (2018); Nienhuis et al.
(2018)). As discussed, the exponent βAP of the cross-sectional tidal prism relation often lies between the 0.85 and 1.1
and the coefficient αAP can vary between 6.6×10−5 and 1.2×10−3. The model developed a relation with an exponent
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βAP = 0.94 and a coefficient αAP = 2.05× 10−4, so these are all in the expected range. That the cross-sectional area
does follow a good relation with the tidal prism could be why large channel depths are developed. The channel width
remains quite small and is limited by the empirical hydraulic geometry relation that is used. The channel depth then
adapts and becomes quite large to still meet the cross-sectional area tidal prism relation. If the model parameter
α and β would be optimized to develop more realistic wider channel width profiles, the developed channel depths
will probably be smaller and so too be more realistic. This is because cross-sectional area tidal prism relation is not
dependent on the model parameters α or β.

6.8 Future research

A hydraulic geometry relation determined the width in this model because the effect of the hydrodynamics and sed-
iment transport on the width of an estuary is not yet entirely clear. However, the hydraulic geometry relations for
estuaries are moreover not intensively studied. This leads to a significant knowledge gap in the theory about estuary
width. This knowledge gap becomes even more apparent in this thesis, where one of the most significant results is the
effect of the chosen coefficients β and α on the width and bed level profile. When looking at the long term evolution
of estuaries, it is essential to study the bed level and the width profile. This is why this knowledge gap must be closed.
Hydraulic geometry relations can be beneficial in predicting the width profiles, so it is meaningful to study these more
in relation to estuaries. Testing the model with different coefficients α and β to data of estuaries would be a significant
first step. It is essential that future studies also include the coefficient α in their research since this coefficient was less
intensively investigated in the past. As discussed, the coefficient α could depend on other channel characteristics, like
soil properties. Integrating these characteristics into the hydraulic geometry relation could lead to a more universal
hydraulic geometry relation.

Another option for future research is to use an erosion law in combination with a sedimentation law to simulate
bank adjustment of an estuary. Models that only include an erosion law do produce realistic widths and e-folding
length scales but do not reach an equilibrium, as the width constantly widens (Braat et al., 2017; Lanzoni & D’Alpaos,
2015; Van der Wegen & Roelvink, 2008). Adding a sedimentation law is a good solution to oppose this constant
widening. Xu et al. (2019) modelled erosion and sedimentation processes in a coupled 2D model, and it would be
interesting to apply this method in a 1D model. However, this would complicate the model further as modelling
erosion and sedimentation processes are still quite complex (Kleinhans et al., 2011). Researchers have made good
steps in studying these processes for upstream rivers. Parker et al. (2011) reconsidered the eroding and depositing
bank processes and Dunne and Jerolmack (2020) studied which factors determine river width.

Suppose the model would be adjusted by changing the hydraulic geometry coefficients or using erosion and sedi-
mentation laws. In that case, this model could predict the effect of changing boundary conditions on estuaries and
tidal channels, for example, sea-level rise or a decrease in sediment supply. Sea level rise induces deepening of the
channel, decreases friction and increases the tidal dominance over the fluvial dominance (Leuven et al., 2021). The
model results show that this will lead to longer and broader estuaries. Leuven et al. (2021) explained that if the banks
are fixed, sea-level rise will lead to large scour, which in turn can lead to bank instability. Reducing the sediment
supply can have the same effect and lead to bank instability (Hackney et al., 2020). This could probably be mitigated
by the estuary laterally expanding (Leuven et al., 2021). If this indeed can be mitigated by letting the estuary expand
can be studied with this model if it would be optimized.
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7 Conclusion

In this thesis, the morphodynamic equilibrium of the width and the bed level profile of an estuary in response to ad-
justable channel widths are studied. This was done by using an one-dimensional hydrodynamic and morphodynamic
model that included variable channel widths. The width in this model was determined by a hydraulic geometry rela-
tion that related the width to the peak in total discharge. This total peak discharge is the sum of the river discharge
and the peak in tidal discharge, so the hydraulic geometry relation includes the tidal and fluvial influence. In the first
runs, the bed was kept stable to single out the effect of channel properties and boundary conditions on the equilibrium
width profile. Then runs were done where the bed was moreover variable, and the response of the bed and width to
each other could be studied.

The modelled estuaries evolved towards a stable width and bed level profile, so a morphodynamic equilibrium in
width and bed level profile was reached. This means an equilibrium exists between the channel width and total peak
discharge, so also between the channel width and the tidal prism. This equilibrium was not dependent on the chosen
time scale for width adjustment or on the initial width shape of the channel. The eventually reached equilibrium did
furthermore not change if the width change was taken into account in the sediment balance by adding a term to the
Exner equation. However, the equilibrium was dependent on the initial channel depth, so another equilibrium was
reached if the initial bed shape was changed.

The model results showed a large dependence on the choice of the model parameters β and α used in the hydraulic
geometry relation for the width adjustment. Especially the width ratio and e-folding length scale were greatly influ-
enced by β and α in all runs. Additionally, the channel depth and estuary slopes were greatly affected by β and α in
the runs where the bed was not fixed. The model parameter β has the most effect on the width ratio and e-folding
length scale, and the model parameter α has the most effect on the depth and slope. The default setting of β = 0.5
and α = 4 were probably an underestimation. A value of β around 0.7 is suggested for future studies and studying the
option to include other channel properties in the model parameter α. The model did show a realistic cross-sectional
tidal prism relation in the runs with an adjustable width and bed that did not depend on the model parameter β or
α or any other channel characteristics or boundary conditions.

The equilibrium generally showed larger ratios between the width at the mouth and the width upstream Bmouth/Briver
and longer estuary lengths as a result of increased tidal amplitude or initial channel depth or decreasing river discharge,
initial bed slope or drag coefficient. E-folding length scales generally decreased with increasing tidal amplitude, initial
bed slope or drag coefficient and increased with increasing river discharge and initial channel depth. These trends were
also seen in the runs with a movable bed. Including the bed level adjustment led to overall larger width ratios and
longer estuary lengths but had less effect on the e-folding length scales. The most important factors influencing the
width ratio were the tidal amplitude, the river discharge and the initial channel depth, next to the model parameters
β and α. There is a robust power-law relation between the width ratio and the tide dominance ratio Qtide/Qriver,
so all factors influencing the tide dominance ratio influence the width ratio. The slope and depth mainly determine
the estuary length. This was moreover made clear by the modelled estuary length following a good fit with the ratio
between the sum of the tidal amplitude and depth at the mouth and the estuary slope (az,mouth +Hmouth)/Sestuary.
The most important factor affecting the e-folding length scale is the tidal amplitude and river discharge, next to the
model parameters α and β. Interesting is that the e-folding length scales show that to develop the most convergent
convex estuary shape, the tidal amplitude and river discharge should not be too small and not be too large, but that
there is a certain optimum that probably depends on other channel characteristics like channel depth, slope and drag
coefficient.

The bed level profile generally showed concave down profiles, with a change in bed slope between upstream and
the estuary. Quite large channel depths were developed at the mouth. This could be due to the model parameters α
and β or the small initial slopes, as larger initial slopes led to smaller depths. Overall, channel depths at the mouth
increase with increasing tidal amplitude, initial depth or drag coefficient or increasing river discharge. The channel
depths upstream varied less and more erosion (so larger depths) due to increasing tidal amplitude or initial slope or
decreasing river discharge, initial depth or drag coefficient. Steeper estuary and upstream slopes were developed with
larger tidal amplitudes, initial slopes or drag coefficients and smaller river discharges and initial channel depths. That
no other bed profiles developed, like a profile with constant depth or a profile with a decrease in depth at the mouth,



7 CONCLUSION 64

is probably due to estuaries having a long e-folding length scale. The results match with the proposed condition by
Leuven et al. (2021) for bed level profiles with a scour, as the condition is not met in the model, and the model does
not develop bed profiles with a scour.

Overall, this thesis showed that it is crucial that the knowledge gap in the theory of hydraulic geometry relations
for estuaries and the theory of what determines estuary width needs to be closed if we want to gain insight into the
long term evolution of estuaries. If this insight is gained, it can be used in numerical models like the one used in this
thesis. These numerical models can be of great importance in predicting effects on estuary width and bed level of
human interference, like rapid sea-level rise or decreasing sediment supply.
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A Notation

Symbol Property Unit

au tidal velocity amplitude m/s

az tidal water level amplitude m

A cross-sectional area m2

B channel width m

Be equilibrium channel width m

Bmouth channel width at mouth m

Briver channel width of upstream river m

C chézy coefficient m1/2/s

Cd drag coefficient -

Cf friction coefficient -

D50 median grain size m

g gravitational acceleration m/s2

H water depth m

Hupstream water depth at upstream boundary m

Hmouth water depth at mouth m

I discharge ratio -

ke lateral erosion rate m/s

kt tidal efficiency coefficient 1/m

ks roughness heigth m

L channel length of whole modeled channel m

Lb e-folding length scale m

Le estuary length m

ps sediment porosity -

P tidal prism m3

qs total sediment transport per unit width m2/s

qs,bank total sediment transport affecting the channel banks per unit width m2/s

q∗b dimensionless total sediment load per unit width -

Q total discharge m3/s

Q tidally averaged total discharge m3/s

Qb bankfull discharge m3/s

Ql tidal discharge constituent m3/s

Qpeak total peak discharge m3/s

Qriver river discharge m3/s

Qs total sediment transport m3/s

Qt tidal discharge m3/s

Qt,max maximum tidal discharge amplitude m3/s

Qtide tidal discharge peak m3/s

R specific gravity of sediment -

S slope m/m

t time s

tmorfac morphological time s

trun run time s
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Symbol Property Unit

T tidal period s

Tw width adjustment timescale s

U flow velocity m/s

vk Von Karman constant -

Wp wetted perimeter m

x spatial axis m

z water level m

η bed level m

φ phase of constituent rad

ρ density of water kg/m3

ρs density of sediment kg/m3

ω angular velocity 1/s

θ Shields number -

θcr critical Shields number -

τb bed shear stress N/m2

τ∗b critical bed shear stress N/m2

a coefficient for empirical relation river width -

b exponent for empirical relation river width -

c coefficient for empirical relation river depth -

f exponent for empirical relation river depth -

k coefficient for empirical relation flow velocity -

m exponent for empirical relation flow velocity -

α coefficient empirical relation estuary width -

αAP coefficient for tidal prism relation -

αA coefficient for empirical relation estuary cross-sectional area -

β exponent empirical relation estuary width -

βA exponent for empirical relation estuary cross-sectional area -

βAP exponent for tidal prism relation -
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