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Lekensamenvatting 

Hart- en vaatziekten zijn wereldwijd doodsoorzaak nummer één en resulteren vaak in hartfalen, 

waarbij verminderde toevoer van zuurstof naar organen optreedt. Voor patiënten met 

eindstadium hartfalen blijft harttransplantatie de beste behandeling voor lange-termijn overleving 

met goede levenskwaliteit. Helaas zijn er meer patiënten die een harttransplantatie nodig 

hebben, dan beschikbare donorharten. Momenteel worden donorharten op ijs bewaard tot de 

transplantatie. Deze donorharten moeten binnen vier uur na overlijden getransplanteerd worden, 

omdat het complicatierisico daarna groot is door ondervonden schade. Om de bewaartijd van 

donorharten met behoud van hartfunctie te verlengen worden nieuwe bewaringstechnieken 

ontwikkeld. 

In dit onderzoek werden varkensharten vier uur bewaard op ijs of in een machine met een 

daarvoor ontwikkelde vloeistof die door het hart werd gepompt. Koude doorstroming van het hart 

zorgt, net zoals bewaring op ijs, voor verlaagde energiebehoeften van het hart, maar vermindert 

ook ophoping van schadelijke stoffen. Deze bewaarmethode staat het toe om hartfunctie indirect 

te beoordelen via stoffen vrijgekomen in de doorstroomvloeistof. Lactaat is de belangrijkste 

bepalende factor tijdens machine perfusie voor het kiezen van te gebruiken harten voor 

transplantatie, omdat dit in eerder onderzoek voorspellend is gebleken voor harttransplantatie-

uitkomsten. De betrouwbaarheid van lactaat als indicator voor harttransplantatie-uitkomsten 

wordt nog in twijfel getrokken, dus het is belangrijk dat nieuwe indicatoren worden onderzocht. 

In dit onderzoek hebben we bestudeerd of cel-vrij DNA en RNA (cf-DNA en cf-RNA), welke 

voorkomen in de doorstroomvloeistof, gebruikt kunnen worden voor het voorspellen van 

hartfunctie. Na koude bewaring werden de harten vier uur lang gekoppeld aan een warme 

perfusiemachine voor hart reperfusie. Hiermee werd de situatie na transplantatie nagebootst en 

was functionele beoordeling mogelijk. Tijdens koude en warme perfusie werden niveaus van 

zowel cf-DNA en cf-RNA als andere markers voor hartschade en ontsteking gemeten.  

Cf-DNA is hoogstwaarschijnlijk afkomstig van stervende cellen. We hebben gekeken cf-DNA-

niveaus afkomstig uit celkernen of mitochondriën. Dit zijn respectievelijk markers voor algemene 

cellulaire en mitochondriële schade. Cf-RNA, daarentegen, wordt voornamelijk door levende 

cellen vrijgelaten. Hierdoor wordt gedacht dat cf-RNA-niveaus de genexpressieprofielen van de 

cellen die het uitscheiden weerspiegelen. Hiermee kunnen we voorspellen welke cellen het RNA 

uitscheiden en of die cellen beschadigd zijn. Het onderzoek toonde aan dat totale en 

mitochondriële cf-DNA niveaus afnamen tijdens koude perfusie en toenamen tijdens warme 

perfusie, terwijl de nucleaire niveaus redelijk gelijk bleven. We zagen positieve correlatietrends 

van mitochondriële cf-DNA levels tijdens koude perfusie met lactaat levels tijdens warme 

perfusie. Ook zagen we negatieve correlatietrends tussen warme perfusie cf-DNA levels en 

linker atrium druk, wat een maat is voor de voorbelasting van het hart. Het gebrek aan sterke 

correlaties is verklaarbaar door het minimale verschil van functionele waardes tussen harten van 

verschillende kwaliteit. We zagen dat hartspiercellen de voornaamste bron waren van cf-RNA en 

dat biologische processen betrokken in energieproductie en metabolisme verslechterden tijdens 

zowel koude als warme perfusie. Genregulatie processen en immuunreacties werden opgewerkt 

tijdens koude en warme perfusie, respectievelijk.   

Ons onderzoek indiceert dat cf-DNA- en/of cf-RNA levels mogelijk voorspellend zijn voor 

hartfunctie. Wellicht kunnen therapieën die mitochondriële schade beperken, het 

energiemetabolisme behouden, en/of een immuunreactie voorkomen, een mogelijke uitkomst 

bieden om donorharten langer te kunnen bewaren met hart machine perfusie. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract  

Due to the shortage of donor hearts, improvement of cardiac graft preservation remains 

important. Hypothermic machine perfusion (HMP) might increase preservation times compared to 

standard static cold storage (SCS) by reducing ischaemia-reperfusion injury and enabling 

biochemical assessment.  Nuclear and mitochondrial cell-free DNA (cf-DNA) are markers for 

general cellular damage/death and mitochondrial damage, respectively. Therefore, cf-DNA in 

perfusate was expected to potentially reflect heart damage and thus serve as a biomarker for 

post-transplantation cardiac function. Cf-RNAs could reflect the gene expression profiles of the 

cells that released them. Therefore, cf-RNAs could potentially be used as biomarkers for cardiac 

function whilst also providing information about the role of specific cell types or processes 

throughout machine perfusion.  

Porcine slaughterhouse hearts were subjected to 4-hour SCS or HMP, followed by 4-hour 

reperfusion on the Physioheart™ platform, a normothermic machine perfusion (NMP) set-up that 

enabled functional assessment. Total cf-DNA levels in perfusate samples from different time 

points during HMP and NMP were quantified using a Qubit fluorescence assay, whereas qPCR 

and ddPCR revealed their cf-nDNA and cf-mtDNA levels. Correlations between cf-DNA levels and 

functional parameters or other metabolic, damage, and inflammation markers were studied. Cf-

mRNA sequencing data was used for cell type deconvolution, differential gene expression 

analysis, and gene set enrichment pathway analysis. 

Total and mitochondrial cf-DNA levels decreased and increased during HMP and NMP, 

respectively, whereas nuclear cf-DNA levels remained unchanged. There were no significant 

differences between storage groups. Correlation data showed positive correlation trends for HMP 

cf-mtDNA levels with lactate levels during NMP and negative correlation trends of NMP cf-DNA 

levels with left atrial pressure. Cf-RNA data analysis revealed cardiomyocytes as its main source 

and showed affected biological processes involved in energy production and metabolism during 

HMP and NMP. Results showed that gene regulation processes and immune responses were 

elicited during HMP and NMP, respectively.  

Together, these results indicate that cf-DNA and -RNA levels may predict cardiac function. 

Moreover, targeting mitochondrial and metabolic dysfunction or preventing immune responses 

during machine perfusion could facilitate donor heart preservation.  

  

  

 

 

 



 

Introduction 

Background heart transplantations 

Cardiovascular diseases (CVDs) are the number one cause of death worldwide1,2. Of all CVD patients, 

roughly 65 million suffer from heart failure and this number is expected to rise even more in the 

upcoming years3,4. Heart failure is a complicated syndrome in which aberrant ventricular filling or blood 

ejection prevents the heart from supplying the body with an adequate blood flow 5. To date, heart 

transplantation remains the most effective treatment for patients with end-stage heart failure who do 

not benefit from other treatments, as it facilitates long-term survival with a good quality-of-life6. 

However, the shortage of donor hearts remains a limiting factor for heart transplantation. This is 

because the number of patients on the waiting list continues to increase, whilst the number of 

performed heart transplants stays relatively unchanged6–8. Occasionally, a donor heart might arrive too 

late for the patient, as around thirty percent of the patients still die or become ineligible for heart 

transplantation within the first three years after entering the waiting list. This happens even when 

patients receive inotropic therapies and/or ventricular assist devices whilst being waitlisted9–12. There 

is room for improvement in reducing the donor shortage, as only one third of the available donor 

hearts is used for heart transplantation. This is due to the strict selection criteria regarding the donor’s 

age, co-morbidities, and ischemic time13–15. 

Grounds for using ex vivo heart machine perfusion instead of static cold storage  

The current standard preservation method for donor hearts is static cold storage (SCS), in which the 

coronary vessels are first flushed with a cold cardioplegic solution. Subsequently, hearts are stored on 

ice (4°C) in a bag containing preservation solution16. This preservation method elevates the risk of 

primary graft failure (PGF) and cardiac death due to ischemic damage. Ischemic damage is caused by 

the occurrence of anaerobic metabolism, which leads to increased acidosis and depleted ATP stores 
17. This contributes to reduced cellular function and causes cell death18.  

A total ischemic time that exceeds 4 hours is associated with an increased risk of PGF. Moreover, 

hearts that are preserved under ischemic conditions for longer than 6 hours are considered unsafe for 

use8. The available time between harvesting of the heart and transplantation is therefore restricted. 

Prolongation of the heart graft preservation time without the loss of cardiac function would be a 

compelling method for enlarging the donor pool. In addition, easing donor selection criteria could 

further help increase the donor pool.  To realize these solutions, developments in the ex vivo coronary 

machine perfusion field have gained profound interest.  

Ex vivo heart machine perfusion has several advantages over SCS, including a decreased total 

ischemic time, which allows for an increased total preservation time19–22. For example, human case 

reports of successfully transplanted hearts after total preservation times of more than 10 and 16 hours 

emerged with the use of ex vivo heart perfusion systems23,24. Since the optimal perfusion conditions 

are not established yet, optimisation of the perfusion conditions could further prolong the preservation 

time without loss of cardiac function25–30. Another benefit of ex vivo perfusion is that it allows for 

aerobic metabolism by continuously supplying the heart with oxygenated perfusate, thus possibly 

leading to maintenance of cellular ATP levels, membrane conditions, and better graft function31–33. 

Furthermore, continuous perfusion leads to the removal of toxic metabolites that are produced during 

ischemic conditions. It is for these reasons that machine perfusion has a protective effect against 

ischaemia reperfusion injury (IRI), leading to reduced cell death. In addition this perfusion leads to the 

mitochondria experiencing less damage during reperfusion due to reduced oxidative stress18. Machine 

perfusion can also provide clinicians with additional heart evaluation methods, as SCS does not allow 

for metabolic and functional assessment of the heart between harvesting and transplantation34. 

Furthermore, machine perfusion enables the administration of drugs to the heart to prevent further 



myocardial damage and to restore cardiac function35.  In addition, machine perfusion may stimulate 

the recovery of ischemic damage 31,32.  

For SCS, only donation after brain death (DBD) hearts are considered safe to use. However, suitable 

brain death hearts have been vastly outnumbered by the recipients on transplant lists36. The benefits 

of machine perfusion may allow for the ease of donor selection criteria and may even enable the use 

of donation after circulatory death (DCD) hearts, which are considered to be high-risk, due to warm 

ischemic injury37. This is because machine perfusion protects these high-risk DCD grafts against the 

damaging effects of SCS and IRI. The study of Messer et al. showed promising results regarding an 

increase of nearly fifty percent in the number of heart transplantations38. 

Rationale behind utilization of ex vivo hypothermic heart machine perfusion  

Hypothermic  (4°C to 10°C) and normothermic machine perfusion (35°C to 37°C) are the two major 

developed ex vivo heart perfusion techniques. Up until now, no studies have been performed that 

directly compare HMP and NMP. Despite the advantages of NMP regarding prevention of low 

temperature-induced cardiomyocyte injury, improved evaluation of heart viability, and enhanced 

opportunity for drug delivery, NMP is considered to be expensive and complicated. This is due to the 

complex machines that are needed for normothermic blood perfusion to supply sufficient oxygen to the 

beating heart for metabolic processes 37,39–41.  Hypothermic machine perfusion is based on an 

(oxygenated) crystalloid solution that is delivered to the coronary arteries of the arrested heart39. 

Hypothermic conditions reduce the metabolic requirements of the heart in comparison to 

normothermic conditions37. This enables the heart to maintain more sufficient ATP levels, thereby 

slowing down the process of cell death18. Due to the reduced metabolic demands, a less complicated, 

cheaper machine can be used for HMP than for NMP, which comes with a lower risk of device 

malfunction. In addition, if the device malfunctions, the organ is stored in a cold, static manner, which 

further reduces the risk of heart damage in comparison to normothermic perfusion42. In preclinical 

studies that compared HMP to SCS, several preferable characteristics regarding ATP preservation, 

cell structure preservation, low lactate levels, reduced endothelial dysfunction, and preserved 

myocardial function were observed in the HMP group32,33,43–47. Moreover, the ongoing clinical studies 

show promising results for the HMP group regarding event-free survival and cardiac-related adverse 

effects when compared to the SCS group48.  

Assessment criteria for heart turn-down on machine perfusion  

Currently, the Organ Care System (OCS) is the only perfusion machine apparatus that is used 

clinically for heart transplantation38,40,49. The OCS apparatus relies on NMP and keeps the heart in a 

beating, near-physologcial, but unloaded state. Therefore, functional assessment is not enabled. The 

donor hearts must thus be examined via visual inspection by the transplant team and via assessment 

of perfusate lactate levels, aortic pressure, and coronary flow50. The lactate levels are used as the 

main biomarker to determine whether a heart is still declined after OCS preservation, as it was a more 

specific and sensitive indicator of PGD compared to aortic pressure and coronary flow51. Lactate is the 

final product of anaerobic glycolysis and is therefore a measure of hypoxic metabolism52. However, the 

utility of lactate as main argument for determining transplantability after perfusion is questioned. In 

addition, there is no comparable lactate data available for static cold storage. Therefore, new reliable 

biomarkers that can predict cardiac function and viability on an ex vivo heart perfusion system are 

required.  

Cell-free Nucleic Acids as biomarkers for ex vivo cardiac function 

A variety of biomarkers in ex vivo heart perfusion for predicting cardiac viability have been suggested 

previously, including lactate dehydrogenase, ammonia, and troponin-I53. The lactate dehydrogenase 

(LD) enzyme converts pyruvate into lactate during anaerobic glycolysis and acts as a non-specific 

cellular injury marker54. However, due to the ex vivo isolated heart system, LD levels might indicate 

general heart injury. Ammonia is another metabolic marker, which could serve as a marker for 



myocardial injury in the isolated heart system55. Moreover, myocardial injury is also reflected by the 

sensitive and specific damage marker Troponin I56. However, it should be noted that the findings for 

these markers with regards to cardiac viability are inconsistent.  

Fast molecular diagnosis is an important aspect to ensure that the biomarkers have clinical potential 

for predicting cardiac viability during ex vivo cardiac perfusion. This creates the opportunity to explore 

the use of cell-free DNA and RNA in predicting heart function in an isolated heart system for the first 

time. Cell-free nucleic acids (cfNAs), such as nuclear DNA, mitochondrial DNA, messenger RNA, and 

non-coding RNAs, have increasingly gained attention for use in clinical applications including 

screening, diagnosis, prognosis, follow-up and treatment of pathological conditions, because they are 

available in non-invasive liquid biopsies, which includes perfusate57. The release mechanisms and 

potential applications during ex vivo heart machine perfusion of cf-DNA and -RNA are depicted in 

Figure 1. The main source of cf-DNA are apoptotic and necrotic cells, but the cf-DNA could also be 

derived by active release via secretion58–60. Other evidence suggests that cf-RNA is primarily derived 

from living cells61,62. 

Currently, cell-free DNA has already proven its diagnostic value in the field of prenatal testing for 

trisomies, tumor detection, and allograft rejection63–70. However, in these cases the diagnostic value of 

cf-DNA is dependent on differences in DNA sequences from different origins. This principle cannot be 

used to assess the donor heart damage during ex vivo heart machine perfusion, because this damage 

is not of genetic origin. Nevertheless, previous research showed that the cf-DNA concentration is also 

often elevated in patients with various pathological conditions related to tissue damage, including 

trauma, sepsis, immunological conditions, acute myocardial infarction, and acute coronary 

syndrome71–80. For example, the study of Antonatos, et al. showed that the cf-DNA levels were 

increased in acute myocardial infarction patients and positively correlated with the biomarkers that are 

currently used for assessing heart injury (e.g. troponin I), thereby indicating that plasma cf-DNA levels 

reflect the degree of myocardial damage78. Whether cf-DNA levels in perfusate can be used as 

damage and function marker for allografts before transplantation was investigated recently during ex 

vivo liver and lung perfusion81–83. The fact that these studies indicated that cf-DNA may be predictive 

for the functionality of several donor organs emphasizes the possibility that it might also be a 

promising marker for donor heart function.  

The cf-DNA content is composed of DNA molecules of different sizes and forms. Cf-DNA can be found 

in extracellular membrane vesicles, can be bound to nucleosomes, lipids or lipoproteins, or can be 

available as free fragments57,84–87. The fragment sizes of cf-DNA might indicate the mechanism by 

which it was released. Apoptotic cell death results in release of shorter cf-DNA fragments (~80-200 

bp) with a peak length of around 167 bp, because these DNA fragments are wrapped around 

nucleosomes, and lengths that are multiples of the nucleosomal unit 59,88,89. The longer fragments (~10 

kb) are derived from necrosis and are longer due to incomplete degradation 59,88,89. Cf-DNA can be 

derived from both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA)90. Because cf-mtDNA is not 

protected by histones, the size of mtDNA fragments differs, often ranging from 20 to 100 bp57. 

Damaged cells and mitochondria contribute to the release of damage-associated molecular patterns 

(DAMPs), including cf-nDNA and cf-mtDNA 76,77,91–93. The levels of cf-nDNA could be used as marker 

for general cellular damage and cell dealth. For that reason, it is considered to be an indicator of 

general DAMP release 94,95. However, the effect of cf-nDNA on the immune response is still unknown. 

Increased levels of cf-mtDNA could indicate cell damage and  mitochondrial damage87 . Due to its 

bacterial ancestry, cf-mtDNA has gained attention as a DAMP. Cf-mtDNA might provoke an immune 

response that could lead to organ damage, thereby affecting primary graft outcome during heart 

transplantation76,77,96. Previous research already indicated that cf-mtDNA is a potential biomarker for 

several cardiovascular diseases that have underlying mitochondrial dysfunction, such as cardiac 

arrest, acute myocardial infarction, and atrial fibrillation97–100. Cf-DNA levels might be a good indicator 

of cardiac viability during ex vivo heart machine perfusion, since cf-DNA is derived from damaged 

and/or dying cells and injured mitochondria.  



Unlike cf-DNA, cf-RNA is primarily derived from living cells and it is believed that cf-RNA reflects the 

gene expression patterns of the cells that release them61,62. Cf-RNA thus has the potential to give 

insights about the pathological condition of these cells. Cf-RNAs are protected from ribonuclease-

mediated degradation due to their encapsulation within extracellular membrane vesicles (e.g. 

apoptotic bodies, exosomes, and microvesicles), or their association with proteins to form 

ribonucleoprotein complexes71,101. Up until now, most of the research towards cf-RNA in the 

cardiovascular damage biomarker discovery field regarding cf-RNA focussed on non-coding RNAs, 

especially miRNAs102–105.  For example, Matton, et al. demonstrated the predictive value of specific 

miRNAs for liver injury and function in ex vivo liver perfusion106. Nevertheless, miRNAs comprise only 

a small portion of the transcriptome and only a small fraction of these miRNAs appears to be specific 

for a particular tissue or disease making it difficult to understand their function. On the other hand, long 

non-coding RNAs and messenger RNAs have well-established tissue-specific and/or disease-related 

gene expression patterns107–109. At present, no miRNA biomarkers are clinically available due to their 

low specificity. Moreover,   insufficient reproducibility of existing studies into miRNA biomarkers, 

caused by unreliable miRNA levels that are affected by sample- and experiment-related components, 

impedes their clinical use110.   

Due to the fact that cf-mRNA has low abundance, their quantification is considered to be relatively 

complex57. However, a few recent studies performed cf-mRNA sequencing that enabled cf-mRNA 

profiling to gain a better understanding of the dynamic transcriptomal changes in pathological 

conditions including Alzheimer’s disease, cancer, bone marrow transplantation, and nonalcoholic fatty 

liver disease61,111–114. For example, the clinical potential of cf-mRNA was reflected in a study of Yan, et 

al. where they identified a new biomarker for predicting Alzheimer’s disease before its onset by 

examining the cf-RNA expression profiles over time114. In addition, Rotich, et al. performed gene-

expression profiling on heart tissue biopsies obtained from porcine hearts mounted to an ex vivo heart 

perfusion system115. This study indicated that throughout the machine perfusion a molecular cardiac 

tissue injury response was provoked that correlated with cardiac function, caused by underlying gene 

expression phenotypes of inflammation, apoptosis and necrosis115. This indicates that cf-mRNAs 

might be promising potential biomarkers for predicting ex vivo heart function.  

To be able to elicit its essential pump function, the heart consists of multiple cell types including 

cardiomyocytes, endothelial cells, fibroblasts, smooth muscle cells, pericytes, adipocytes, neuronal 

cells, and some immune cells116. Cardiomyocytes are the most prevalent cell type making up for most 

of the heart mass (around 70-80%)117. However, the heart has also high abundance of fibroblasts, 

pericytes and smooth muscle cells, and endothelial cells116,118. In addition, the adipose tissue 

contributes to about 20% of the heart mass119. By applying cell atlases that contain expression profiles 

of common cell types, cf-mRNA sequencing also enables the elucidation of the cell types that are 



affected during ex vivo heart perfusion and how these proportions of cell type contribution change over 

time120. 

Figure 1: Schematic representation of the release mechanisms of cf-DNA and -RNA and their potential applications in 

ex vivo heart perfusion. Ischemic reperfusion injury caused by heart transplantation leads to the release of cf-DNA and -RNA. 

Apoptotic and necrotic cell death mechanisms are the major source of cf-nDNA and cf-mtDNA. Active secretion is primarily 

responsible for the release of cf-RNA. Moreover, active secretion is more likely to secrete cf-mtDNA than cf-nDNA, because cf-

mtDNA can act as a damage signal. Cf-DNA and RNA can be assessed through a non-invasive liquid biopsy. After processing 

and extracting the cf-DNA, its levels can be quantified and used for prediction of ex vivo heart function and cardiac viability. After 

cf-RNA processing and extraction, gene expression profiles can be used to elucidate which cell types contribute to the release 

of the cf-RNA and which biomolecular processes are influenced during ex vivo cardiac perfusion. 

Study design, hypotheses and aims  

In this study, the aim is to explore the use of cf-DNA and -RNA in predicting heart function in an 

isolated heart perfusion system for the first time. The hearts were preserved for 4 hours using SCS or 

HMP. This was followed by 4 hours of NMP on the Physioheart™ platform,, which enables functional 

assessment and thus mimicksthe post-transplantation state. The effects of HMP on cf-DNA and -RNA 

levels were examined. Furthermore, the effect of 4 hours of HMP was compared to 4 hours of SCS in 

a porcine ex vivo heart preservation model in terms of cf-DNA and -RNA levels. In particular, the 

release of total, mitochondrial, and nuclear cf-DNA during HMP and NMP were examined. The total cf-

DNA levels were quantified using the Qubit fluorescence assays, whereas the cf-nDNA and cf-mtDNA 

levels were quantified using qPCR and ddPCR. Because cf-nDNA and cf-mtDNA are markers of 

damaged and/or dying cells as well as injured mitochondria, it was hypothesized that cf-DNA levels 

increase over time during HMP, but also following reperfusion on an NMP platform. Furthermore, it 

was expected that HMP leads to decreased occurrence of IRI compared to SCS, resulting in higher cf-

DNA levels in the SCS group than in the HMP group after heart reperfusion.  

In addition, this study aimed to assess how the cf-DNA levels correlated with functional cardiac 

parameters (cardiac output, coronary flow, left atrial pressure, mean arterial pressure, cardiac index, 

and coronary flow index), measured after 4 hours of NMP. It was furthermore assessed whether the 

cf-DNA levels at different time points during HMP and NMP correlated with other known metabolic 

(lactate, lactate dehydrogenase, ammonia), damage (troponin-I), and inflammatory markers (TNF-α, 

and IL-6). This was all done to assess whether cf-DNA levels could predict cardiac function. In this 

study, the transcriptome profiles of the cf-mRNA during HMP and NMP were also determined using 

mRNA sequencing. The obtained unbiased gene expression profiles were compared to the expression 

profiles common cell types in the body, and to a specific heart cell dataset. This was assessed to 

elucidate which cells contributed to the release of the RNA and how these contributions changed 

throughout HMP and NMP. Moreover, the changes in gene expression profiles throughout HMP and 



NMP were analysed to investigate which biomolecular processes were ongoing during ex vivo heart 

perfusion. It was expected to find changes in the gene expression of genes involved in energy 

metabolism, apoptosis, necrosis, and inflammation throughout machine perfusion, as this was also the 

case in the tissue expression profiles mentioned above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods 

Animals  

Eighteen hearts were harvested from slaughterhouse pigs sacrificed for human consumption (Dutch 

Landrace pigs),  weighing about 110 kg. The procedures executed by the laboratory and slaughterhouse 

were in agreement with EC regulations 1069/2009 on the utilization of slaughterhouse animal materials 

for diagnostic and research purposes, supervised by the Dutch Government (Dutch Ministry of 

Agriculture, Nature and Food Quality). Moreover, these procedures were approved by the associated 

legal authorities of animal welfare (Food and Consumer Product Safety Authority). 

Heart harvesting 

The harvesting protocol for the hearts was identical in all slaughterhouse pigs, as was described 

previously121,122. Prior to the harvesting of the hearts, the pigs were stunned electrically to reach 

unconsciousness. Subsequently, the pigs were hung up by their hindlimbs for immediate 

exsanguination. During this procedure, no heparin was administered to the pigs. Subsequently, a 

minimum of 3 L blood from the same pig was obtained and heparinized with 5000 IU/L for usage during 

NMP. This was followed by creating an parasternal incision to open the thorax, allowing en-bloc removal 

of the heart and lungs. Immediate topical cooling was performed by putting them in cold saline (4°C). 

Next, the pericardium was opened and the pulmonary artery and aorta were cut downstream of the 

pulmonary artery bifurcation and first supra-aortic vessel, respectively. The aorta was cannulated for 

delivery of 1.8 L of heparinized (5000 IU/L) modified St. Thomas cardioplegic solution No. 2 at 4°C and 

a pressure of 80–100 mmHg. To guarantee the warm ischemic time threshold of 5 minutes was not 

passed, the harvesting time was measured. In addition, heart weight was measured. The hearts were 

randomly distributed to one of the two storage groups (SCS or HMP).  

Hypothermic storage of the hearts  

The hearts were stored on ice (n=7; static cold storage (SCS)) or placed on a hypothermic machine 

perfusion (HMP) system (n=11) for 3.5 hours. Hearts in the HMP group were placed onto a modified 

Kidney Assist-transport perfusion system (Organ Assist, Groningen, Groningen, The Netherlands). This 

system contains a reservoir, a rotary pump for the generation of a pressure-controlled pulsatile flow of 

60 beats per minute and a maximum pressure of 35 mmHg, a control unit, and an oxygenator without 

active oxygenation (Figure 2). For HMP, 1.5 L of  a hyperoncotic cardioplegic nutrition Steen Solution™ 

(LifeTec, Eindhoven, North Brabant, The Netherlands) was used to perfuse the hearts via the coronary 

arteries at a starting perfusion pressure of 25 mmHg and a temperature of  8°C123. This perfusion 

solution contained several hormonones, including insulin, T3/T4, cortisol, noradrenalin, and adrenalin, 

but lacked erythrocytes. Throughout HMP, the perfusion pressure was adapted to the lowest perfusion 

pressure within 20-25 mmHg that still maintained a coronary flow exceeding 100 mL/min. The 

temperature of the organ and the reservoir were cooled to around 8°C with ice. The SCS hearts were 

preserved in a bag with modified St. Thomas cardioplegic solution No. 2 at 4°C by storing them on ice. 

HMP was stopped at 3.5 hours to prepare the hearts under cold and cardioplegic conditions for 

resuscitation of the heart on the PhysioHeart™ platform (LifeTec) as previously described121. SCS 

hearts were prepared in the same manner as HMP hearts after 3.5 hours of storage.  

 



 

Figure 2: Schematic representation of the hypothermic machine perfusion circuit (unpublished Figure from Selma Kaffka 
genaamd Dengler).  

Normothermic machine perfusion for reperfusion and functional assessment of the hearts 

After 4 hours of hypothermic storage, the hearts were mounted onto the PhysioHeart™ platform 

(LifeTec) for reperfusion and functional assessment of the hearts, as was described previously121,122. 

The aorta and left atrium were linked to PhysioHeart platform, which facilitated coronary perfusion in 

both the non-working Langendorff mode and in working mode.  In addition, this enabled the heart to fill 

with perfusate in working mode. The venous blood was returned to the reservoir via the cannulated 

pulmonary artery. Furthermore, the cannulation of this artery allowed for coronary flow measurements. 

The NMP system was primed with perfusate consisting of modified Krebs solution (1.5 L) and 

normothermic heperanized blood (5000 IU/L, 3L)  from the same pig. To manage physiological levels of 

blood, glucose levels, pH and calcium levels, glucose, insulin, sodium bicarbonate and calcium chloride 

were manually administered.  

During the first hour of NMP, the hearts were perfused in Langendorff mode through the aorta, 

maintaining a coronary perfusion pressure of 80 mmHg. During Langendorff mode, the aortic valves 

were closed, which allowed for perfusion of the coronary arteries. The hearts were first perfused in 

Langendorff mode to recover contractile myocardial activity. When the hearts demonstrated abnormal 

contractions, lidocaine was administered intracoronary and the hearts were defibrillated with 30 J. 

During Langerdorff mode, the coronary flow was measured and the electrical activity of the hearts was 

tracked by connecting the right ventricle to temporary pacing leads (Medtronic Inc., Minneapolis, 

Minnesota, USA). These leads were also used to pace the heart at 90-110 beats per minute (BPM), 

which is the regular heart rhythm of pigs, when necessary. The 500 mL of the perfusate that ran through 

the circuit once, named the reperfusate, was removed from the circulation. The remaining 4 L of 

perfusate was recirculated during the rest of the perfusion.   

After one hour in Langendorff mode, the hearts were transitioned into working mode by opening up the 

preload and afterload of the circuit. During working mode, the perfusate from the preload flows into the 

heart via the left atrium and the left ventricle pumps the perfusate into the afterload. The preload (atrial 

pressure) and afterload (aortic pressure) were regulated to generate mean loads of 10-20 mmHg and 

100-110 mmHg, respectively. The associated pressures and flows were monitored. When the cardiac 

output (CO) dropped below 3.5 L/min or when the left atrial pressure (LAP) rose above 15 mmHg, 

dobutamine was infused in ascending dosages with steps of 1.2 mL/h, beginning at 2.4 mL/h and ending 

at a maximum of 6 mL/h when needed. If dobutamine administration did not help in maintaining the CO 

and LAP, the associated pressures and flows were maintained at physiological values and manually 

adjusted to adhere to the optimal clinical pump function of the heart, as was previously described by 

Schampeart et al.124 Initially, hearts were removed from the platform if the CO still dropped below 3.0 

L/min and the LAP remained above 20 mmHg. Later, additional hearts were preserved using SCS and 

these hearts where preserved for the full 4 hours of NMP, even if they did not meet these criteria.  



Assessment of the mean CO and coronary flow (CF) was done by placing two ultrasound flow probes 

(SonoTT™ Clamp-On Transducer, em-tec GmbH, Finning, Germany) after the afterload and the 

pulmonary artery. Mean arterial pressure (MAP) and left atrial pressure (LAP) were measured using 

pressure sensors (P10EZ-1™; Becton Dickinson Medical, Franklin Lakes, USA). The MAP was 

calculated by doubling the diastolic aortic pressure together with the systolic aortic pressure divided by 

3. The change of left ventricular pressure over time (dP/dT) was calculated to evaluate the cardiac 

function in means of cardiac contractility (dP/dTmax; maximum dP/dT) and diastolic relaxation 

(dP/dTmin; minimum dP/dT). The left ventricular pressure was assessed using a pressure wire 

(PressureWire4, Radi Medical Systems, Uppsala, Sweden) that was transapically inserted into the 

ventricle with a needle.  Furthermore, the total cardiac output was determined by calculating the sum of 

the aortic and coronary flow. The cardiac index (CI) and coronary flow index (CFI) were determined by 

correcting CO and CF for harvesting weight. These functional assessments took place at predetermined 

time points (90, 120, 180, and 240 minutes) throughout NMP. After 4 hours of HMP, the hearts were 

halted by adding 10 mL of potassium chloride solution (1 mmol/mL) to the perfusate.  

Collection and processing of perfusate samples  

Perfusate samples from 18 ex vivo porcine hearts (7 HMP, 11 SCS; different NP numbers) were 

collected at 5 minutes (T0.05), 90 minutes (T1.5) and 4 hours (T4) for hypothermic perfusion and at 

baseline (T02), after the perfusion fluid has run through once (T02R; reperfusate), 1 hour (T60), 2 hours 

(T120), and 4 hours (T240) for normothermic perfusion (Figure 3). For HMP samples, 10 mL consisting 

of 5 mL perfusate plus 5.5 mL PBS was collected, and for NMP samples 10 mL of perfusate was 

collected into Cell-Free DNA BCT® CE and Cell-Free RNA BCT® CE (STRECK) tubes. To get rid of 

cells and cell debris, the samples were centrifuged at 300 g for 20 minutes and 1800 g for 15 minutes 

at room temperature for the cf-DNA and cf-RNA samples, respectively. The supernatant was collected 

into 15-mL Falcon tubes. This supernatant was centrifuged for 5000 g for 10 minutes and 2800 g for 15 

minutes at room temperature for the DNA and RNA samples, respectively. The upper plasma layer was 

aliquoted into cryo vials and Eppendorf tubes and stored at -80°C preceding extraction.  

 

Figure 2: Schematic representation of the  timeline of the experimental set-up and the perfusate collection sampling 
(adapted from an unpublished figure of Mudit Mishra).  

For protocol optimization and validation, the effect of centrifugation forces on cf-DNA fragment size was 

examined by comparing the abovementioned two-step centrifugation to a three-step centrifugation. The 

third centrifugation step was at 15,000 g for 5 minutes at room temperature. For this, the  T0.05, and 

T1.5 NP03,  and T02Rb, T60 and T120 NP17 samples were used. The fragment size of these samples 

was determined using the 2100 Agilent Bioanalyzer and the Agilent High Sensitivity DNA chip, according 



to the manufacturer’s instructions. The electropherograms of the DNA patterns were obtained using the 

Agilent 2100 Expert software. 

The cold perfusate samples for the other metabolic and damage markers (ammonia, lactate , lactate 

dehydrogenase, and troponin I) were taken and analysed at the same time points as cf-DNA, but lacked 

the T60 time point. For the inflammatory marker TNF-α, samples were collected and analysed at 

identical time points as the cf-DNA samples, whereas for IL-6 only perfusate samples were analysed 

during all NMP corresponding time points, except for T60. 

DNA extraction 

For protocol optimization and validation, the effect of proteinase K (ProtK) incubation on cf-dna yield 

was examined by comparing the standard QIAGEN QIAamp MinElute ccfDNA kit  (Qiagen, Hilden, 

Germany) protocol with 10 minute ProtK incubation to 60 minute protK incubation at  60°C. For this, the 

T02 and T02Ra NP07, T240c NP16, and T02, T120, and T240 HFP04 were used. The HFP samples 

were samples from the hemofiltration pilot studies, but these were not used for further analysis in this 

report.  In addition, the fragment size of the T02 and T02Ra NP07, and T240c NP16 were determined 

using the 2100 Agilent Bioanalyzer to investigate the effect of ProtK incubation time.  

The cell-free DNA was extracted from the plasma perfusate samples using the QIAGEN QIAamp 

MinElute ccfDNA kit  (Qiagen, Hilden, Germany), according to the manufacturer’s protocol. However, 

one modification was made, namely an increase in ProtK incubation time from 10 minutes at room 

temperature to 60 minutes at 60°C. Briefly, 4 mL and 2 mL plasma perfusate per sample were incubated 

with the appropriate volume of ProtK and bead binding buffer for 1 hour at 60°C for hypothermic and 

normothermic perfusion samples, respectively. After the ProtK incubation, the samples were cooled 

down on ice for 5 minutes. Subsequently, the magnetic bead suspension was added in the 

recommended ratio, followed by mixing on a roller mixer for 10 minutes at room temperature. The tubes 

containing the magnetic beads with bound cf-dna were placed onto a magnet rack for their collection 

and the supernatant was discarded.  The pellet was dissolved in 200 µL bead elution buffer to elute the 

cf-dna from the beads. The pre-eluate, mixed with 300 µL of buffer ACB, was transferred onto a QIAamp 

UCP MinElute column for optimal adsorption of the cf-dna onto the column membrane. To remove any 

residual contaminants, the columns were washed with 500 µL ACW2. Subsequently, the membrane 

was dried at 56°C for 3 minutes to prevent ethanol carry-over. Finally, the cell-free DNA was eluted in 

20 µL ultra-clean water and a re-elution was performed. The extracted DNA samples were stored at -

20°C until further use. 

The cf-dna concentration was quantified before and after cf-dna extraction by using the Qubit 

Fluorometer 3.0 (Invitrogen, Carlsbad, CA, USA), and Qubit dsDNA HS (Molecular Probes, Eugene, 

OR, USA) and Qubit dsDNA BR (Molecular Probes, Eugene, OR, USA) assay kits according to the 

manufacturer’s instructions. The cf-dna concentrations were obtained from a calibration curve generated 

with the Qubit standards.  

mtDNA and nDNA quantification by qPCR 

cfnDNA and cfmtDNA were quantified by quantitative polymerase chain reaction (qPCR) using the 

BioRad CFX96 Real-time system (Bio-Rad Laboratories, Hercules, CA, USA). For this, specific 

primers to amplify the nuclear GAPDH gene and unique mitochondrial sequences were designed 

using Primer3 and BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/), and the NCBI  database 

(NC_010447.5 chr5:64129678-64135194 and NC_000845.1). BLAST was used to investigate which 

parts of the mitochondrial chromosome do not overlap with other pig chromosomes. Nuclear DNA 

primers were designed to sequences of the GAPDH gene at chromosome 5, as this region is one of 

the most conserved ones. Mitochondrial DNA primers were designed to location mt-chr:5000-5500. 

The primers were purchased at Integrated DNA technologies (Coraville, Iowa, USA) and their 

sequences are displayed in Table 1.  

 

 

 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/


Table 1: Primer sets used for the amplification of cell-free nuclear and mitochondrial DNA with the qPCR assay 

Name Forward primer  
5’-3’  

Reverse primer 
5’-3’ 

Amplicon 
length  

N1 GTAAAGTCGCGAGTAGCCGA GTGCACATTGGCAGAACCAG 75 bp 

N2 CACCAAGCTCACCTGACGAT CCATGTTTGTGATGGGCGTG 70 bp 

MT3 TATCGGGCCCATACCCCG ATGAGTAGTCAGTGTGAGCTGATT 134 bp 

MT4 TCATAACAGTAATGTCCGGAACCA TCAGATGAGTAGTCAGTGTGAGC 62 bp  

 

For their use in qPCR reactions, the cf-dna eluates were diluted 6- and 100-fold with Tris-HCl (5 mM, 

pH 8.5) for the cold and warm perfusion samples, respectively.  The composition of the 10 µL standard 

reaction volume used in the qPCR assay is shown in Table 2.  

Table 2: The composition of the 10 µL standard reaction volumed used in the qPCR assay 

Reagent Volume per reaction  Final concentration  

2X PerfeCTa SYBR Green Super Mix 
Mix (Quantabio, Gaithersburg, MD, USA) 

5 µL  1X 

3 µM of forward primer 1 µL  300 nM 

3 µM of reverse primer 1 µL  300 nM 

RNase/DNAse free water 2 µL  

Cf-DNA sample 1 µL  

 

The cycling conditions used in the qPCR assays are outlined in Table 3. The primer specificity was 

confirmed with a melt-curve analysis. In addition, the efficiency of the assays was determined by 

generating 5-point standard curves, based on a 1:8 dilution series of a perfusate sample ranging from 

5 to 1.2 x 10-3 ng/µL (including 5, 6.25 x 10-1, 7.8 x 10-2, 9,8 x 10-3, and 1.2 x 10-3 ng). 

Table 3: The PCR thermal cycler profile used in qPCR assays for the quantification of cell-free mitochondrial and 

nuclear DNA in the perfusate samples.  

Stage Temperature  Time Cycles 

DNA polymerase activation  95 °C 3 minutes 1 cycle 

Denaturation 
Annealing 
Extension 

95 °C 
60 °C 
72 °C 

10 seconds  
10 seconds 
30 seconds 

40 cycles  

Melt curve 95 °C 
65 – 95 °C with 0.5 °C 
increments 

10 seconds 
5 seconds per 
temperature  

1 cycle 

 

Moreover, calibration curves for all primer sets were generated using a 7-point 2-fold dilution series 

from approximately 1 x 105 to 1 x 102 copies/µL (including 1* 105 - 5* 104 - 1* 104 - 5* 103 - 1* 103 - 5* 

102 - 1* 102  copies/µL) of each PCR amplicon product. The samples were analysed in duplicate and 

the mean of this was used in subsequent analyses.  

mtDNA and nDNA quantification using ddPCR 

The cf-mtDNA and cf-nDNA levels were also quantified using ddPCR. The primers and probes used 

during ddPCR were designed in the same way and around the same chromosomal locations as for 

qPCR. They were obtained from Integrated DNA technologies with FAM or HEX probes (Table 4).  

 

 

 

 

 



Table 4: Primer sets used for the amplification of cell-free nuclear and mitochondrial DNA with the ddPCR assay 

Name Forward primer  
5’-3’ 

Reverse primer 
5’-3’ 

Probe 
5’-3’   

Amplicon 
length 

N1 GAGCTTGACG
AAGTGGTCGT 

CCAGGTTGTGTCCTG
TGACT 

[FAM]-
TGAGGGCAATGCCAG
CCCCAGCATCAA 
-[IABkFQ] 

94 bp 

N2 ATTTCCTCCTC
CTCGCACAA 

GCAGGATGGGAGCTT
TTCAC 

[FAM]-
AGCCTGGCTTCCCAG
CACAGCCACAAA 
-[IABkFQ] 

79 bp 

MT1 AATGCCTGCCC
AGTGACA 

GGAGAACAAGTGATT
ATGCTACC 

[HEX]- 
ACGGCCGCGGTATTCT
GACCGTGCAAA 
-[IABkFQ] 

76 bp 

MT2 AAACCCCGCCT
GTTTACCAA 

TTGCACGGTCAGAAT
ACCGC 

[HEX]- 
AGAGGCAATGCCTGC
CCAGTGACACCAGT 
-[IABkFQ] 

106 bp 

 

For the ddPCR assays, standard reaction volumes of 22 µL were made (Table 5)  and applied in droplet 

generation using the QX200 AutoDG Droplet Digital PCR System (Bio-Rad Laboratories).  For the use 

in ddPCR reactions, the cf-DNA eluates were diluted 12-fold with RNAse/DNAse free water. In the no 

template controls (NTCs), the cf-DNA samples were replaced by RNAse/DNAse free water. 

Table 5: The composition of the 22 µL standard reaction volumed used in the ddPCR assay 

Reagent Volume per reaction  Final concentration  

2X ddPCR Supermix for 
Probes (No dUTP) 

11 µL 1X 

20 µM of each forward primer 1 µL * 2 = 2 µL ±910 nM 

20 µM of each reverse primer 1 µL * 2 = 2 µL ±910 nM 

5 µM of each probe 1 µL * 2 = 2 µL ±227 nM 

RNase/DNAse free water 1 µL  

Cf-DNA sample 4 µL   

 

Prior to PCR, the plates were heat-sealed with foil using the PX1 PCR Plate Sealer (Bio-Rad 

laboratories). Temperature gradient assays with perfusate cf-DNA samples were performed to find the 

optimal PCR thermal cycler profile for the final ddPCR assays that were performed on a T100™ Touch 

Thermal Cycler (Bio-Rad Laboratories) (Table 6).  

Table 6: The PCR thermal cycler profile used in ddPCR assays for the absolute quantification of cell-free mitochondrial 

and nuclear DNA in the perfusate samples 

Stage Temperature Time Cycles 

DNA 
polymerase 
activation 

95 °C 10 minutes 1 cycle 

Denaturation 
Annealing 

95 °C 
64.5 °C 

30 seconds 
1 minute 

40 cycles 

Enzyme 
deactivation 

98 °C 10 minutes 1 cycle 

Infinite hold 12 °C ∞ N/A 

Ramp rate was set to 2.5 °C/sec 

 

Subsequently, the fluorescence of each droplet was determined using the QX200 Droplet Reader (Bio-

rad laboratories). The samples were analysed in duplicate and the mean of the positive droplets was 



utilized to estimate the absolute cf-nDNA and cf-mtDNA levels. Data quality was guaranteed by 

removing wells in which less than 10,000 droplets were generated from further analysis. The data was 

analysed with QuantaSoft v1.7.4.0917 software (Bio-Rad Laboratories). A fluorescence threshold of 

1500 for both channels, which was determined based on the negative droplet clusters in the NTC 

samples, was used to calculate the positive droplet concentrations in all perfusate samples. The results 

were expressed as copies per mL of perfusate sample.  

Statistics 

Both the standard protocol and the longer protK incubation protocol were performed on 6 individual 

samples, each of which were taken at different time points or involved different experimental set-ups. 

Therefore, the cf-DNA yield of the standard protocol was considered to be 100% and the yield of the 

longer ProtK incubation protocol was expressed as a percentage of the yield of the standard protocol.  

To investigate whether longer ProtK incubation resulted in a significantly different cf-DNA yield,  a paired 

t-test  was performed. To compare the difference of the cf-DNA levels between the SCS and HMP 

groups at each time point, unpaired t-tests were performed. In addition, it was examined whether the 

different cf-DNA levels significantly changed over time using repeated measures ANOVA (no missing 

values) or mixed effects model (missing values) analyses. Because the reperfusate samples are 

separate measurements, they were excluded from the over time analyses. For all these analyses, a p-

value below 0.05 was considered to be significant.  

The data for correlation analysis was normalised by subtracting the T02 (baseline) measurement values 

from all the other time point measurements during NMP for the cf-DNA and other metabolic and damage 

biomarker levels (ammonia, lactate, lactate dehydrogenase, and troponin-I). Subsequently, these 

laboratory measurement values were corrected by dividing them by the individual heart weight multiplied 

by the average heart weight of all hearts. Spearman’s rank correlation coefficients for the correlations 

between cf-DNA levels and functional data were calculated using the GGally package in Rstudio 

(Supplementary Code 1). In addition, the Spearman’s rank correlation coefficients were also calculated 

to assess the association between the cf-DNA levels and  other laboratory markers levels (ammonia, 

lactate, lactate dehydrogenase, troponin-I, TNF-α, and IL-6) (Supplementary Code 1). Significant 

correlations are marked with .p < 0.1,* p < 0.05, ** p <0.01, and *** p < 0.001. 

RNA extraction  

The cell-free RNA was extracted from 2.5 and 1.5 mL plasma perfusate samples and whole blood 

samples, respectively, using the Plasma/Serum cfc-RNA Advanced Purification Kit (Norgen  Biotek, 

Thorold, Canada) following the manufacturer’s protocol. Briefly, 2.5 and 1.5 mL perfusate were first 

incubated for 5 minutes with Binding Buffer A. After centrifugation, the supernatant was discarded and 

the pellet was resuspended in Elution Solution C. Subsequently, ProtK was added and the samples 

were incubated for 30 minutes at room temperature. Until this step in the protocol, all reagents were 

added to the perfusate in the recommended ratio. After incubation, 200 µL Slurry E and 1.5 mL Lysis 

Buffer A were added to the samples and incubated for 2 minutes at room temperature to perform sample 

lysis. Subsequently, to precipitate the nucleic acids, 2 mL of 96-100 percent ethanol was added to the 

samples and incubated for 2 minutes at room temperature, after which the samples were transferred to 

the columns. Subsequently, the columns were  washed twice with 600 µL Wash Solution A. The cell-

free RNA was then eluted in 250 µL Elution Solution A. To lyse the eluted RNA samples, 500 µL Lysis 

Buffer A was added. Nucleic acids were precipitated by adding 750 µL of 96-100 percent ethanol and 

samples were applied to the microcolumns. To obtain maximal removal of leftover DNA, the optional 

On-Column DNA Removal Protocol was performed by applying 50 µL RNase-free DNase I solution to 

the column, after which the flowthrough was reapplied. Subsequently, the column was  incubated at 

30°C for 15 minutes. Next, the second wash-step was performed by adding 600 µL Wash Solution A. 

Cell-free RNA was eluted in 25 µL of Elution Solution A and stored at -20°C until further use.  

RNA sequencing  

RNA sequencing was performed on 29 samples of 4 different hearts (2x HMP (WB, T0.05, T1.5, T4, 

T02, T02R, T60, T120, and T240 from NP01 and NP06) and 2x SCS (WB (only from NP24), T02, 

T02R, T60, T120, and T240 from NP21 and NP24). 3’ mRNA sequencing libraries were prepared by 



the Epigenomics facility at the UMC Utrecht by Noortje van den Dungen. 50 ng or the maximal volume 

was used as input for library preparation. Bulk cfRNA sequencing libraries were prepared according to 

the CEL-seq2 protocol125. This method enables direct counting of unique mRNA molecules in the 

perfusate samples by capturing the 3’-end of polyadenylated RNA and by utilizing unique molecular 

identifiers (UMIs) barcodes. The resulting cDNA libraries were sequenced on the Illumina 

NextSeq2000 platform (Utrecht Sequencing Facility, Utrecht, The Netherlands) to obtain paired-end 

reads with read lengths of 25 and 75 bp.  

The sequencing read mapping and quality filtering was performed by Michal Mokry 

(https://github.com/mmokry). Briefly, the obtained reads were demultiplexed and mapped against the 

pig reference genome (ENSEMBL: SScrofa11.1; https://www.ncbi.nlm.nih.gov/genome/?term=pig) 

using the Burrows-Wheeler Aligner (0.7.13)126. When multiple reads aligned to the same genes and 

had an identical unique molecular identifier (UMI, 6 bp long), they were considered a single read. 

Quality control RNA sequencing data 

To filter out the samples that had low total raw counts and represented background noise, the column 

sum for each sample was calculated in Rstudio (Supplementary Code 2 and 3). In addition, for each 

sample the gene coverage was examined by calculating the amount of genes that had at least 5 

reads. RNA sequencing samples were excluded from further data analysis when their total raw read 

counts were below the threshold of 25,000 and/or when their gene coverage was lower than 1500 

genes.  

Furthermore, a principal component analysis (PCA) based on the 500 most variable genes of the 

remaining RNA sequencing data was performed to examine whether time, heart number (NPnr), 

and/or storage conditions were responsible for the variation in the transcriptome. RNA sequencing 

data was regularized log transformed before it was used for PCA using the DESeq2 package in 

Rstudio.  

Differential gene expression analysis  

Differential gene expression analysis was performed using the DEseq2 package (Supplementary 

code 4). For this, the read count data was used and genes that had 10 or less reads across all 

samples were removed from further downstream DEG analysis. To analyse which genes 

demonstrated a consistent change in expression over the time-course of ex vivo machine perfusion, 

the DESeq2 Wald test analysis was performed with time as a continuous variable in the design 

formula. The HMP and NMP samples were analysed separately in this DEG analysis. In addition, it 

was examined whether there were genes that had a condition-specific effect over time by performing a 

likelihood ratio test (LRT) using a full model that included the condition (SCS or HMP), time and the 

interaction between them. The reduced model used in this test consisted of condition and time as 

predictive variables. The Benjamini-Hochberg multiple-testing correction method was executed in all 

DEG analyses to derive the adjusted p-values and an adjusted p-value of 0.1 was used as 

significance cut-off. The DEG analyses were performed on time-normalised data, meaning that each 

time point were divided by the mean of all time points and the Log2 fold changes were per unit.  

Pathway analysis  

Gene Ontology (GO) gene set enrichment and pathway analysis were performed using the 

clusterProfiler package in Rstudio (Supplementary Code 4). For these analyses, the genes that had a 

total count below 10 across all samples were also included. For these gene set enrichment and 

pathway analyses, the genes were ranked based on dividing the -log10(p-value) by the direction 

(positive or negative) of the Log2 fold change. Adjusted P-values were acquired by applying the 

Benjamini-Hochberg multiple-testing correction method.  

Cf-RNA deconvolution and cell type annotation 

SingleR was used to deconvolute the cell types of origin of cf-RNA. Because there are no available pig 

reference sets for cell type annotation, the pig gene names were converted to human gene names by 

using the biomaRt package in Rstudio. The counts of genes that had an identical human ensembl 

gene code were added up. The same accounts for genes that had a similar human gene name. In 



addition, counts per million (CPM) normalization was applied to the count data before proceeding with 

cell type annotation (Supplementary Code 5).  

Subsequently, the sources of the cf-RNA were estimated by correlating the gene expression of 43 

human pure stroma and immune cell types from the merged Blueprint/ENCODE built-in reference to 

the gene expression profiles of the perfusate samples using SingleR (Supplementary Code 5) 127–129. 

The Blueprint/ENCODE built-in reference, which is based on the normalized expression values of 259 

bulk RNA-seq samples, was accessed via the celldex package. In addition, data was obtained from  

https://singlecell.broadinstitute.org/single_cell/study/SCP498/transcriptional-and-cellular-diversity-of-

the-human-heart#study-download to create a custom reference set that included 17 observed heart 

cell types (Supplementary Code 6)116. The Normalized Sparse Expression Matrix data was read into 

R and the data was converted into a Seurat Object. Before the cf-RNA sequencing data was used in 

SingleR to annotate cell types, the reference data was transitioned into a SingleCellExperiment using 

the Seurat package. Subsequently, the Blueprint/ENCODE built-in reference and custom heart 

reference were used together for cell type annotation by comparing the scores across the references 

(Supplementary Code 6). Here, the annotated cell type was based on the label with the highest score 

across both references. For this, the scores across the identified marker subset were recalculated to 

establish comparable scores across both references originating from an identical gene set.  
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Results 

Optimisation of cf-dna recovery from perfusate samples  

In initial explorative studies (unpublished data by Judith Marsman), it was observed that the perfusate 

samples contained a relatively high contribution of high molecular weight fragment sizes compared to 

previously reported plasma size distribution profiles. Large fragment sizes are regarded as an indication 

of contamination by intracellular genomic DNA. Therefore, the effect of centrifugation forces on the cf-

DNA fragment size profiles was determined by comparing a two-step to a three-step centrifugation 

protocol.  

As the HMP samples resulted in unusable cf-DNA fragmentation patterns due to their low initial sample 

concentration, they are not shown. Figures 4A, 4B, and 4C  illustrate that the three-step centrifugation 

protocol resulted in a highly similar size distribution profile as the two-step centrifugation protocol across 

different normothermic cf-DNA perfusate samples. Therefore, the two-step centrifugation protocol was 

used for the processing of perfusate samples in further experiments.  

In general, the bioanalyzer fragment size profiles of all normothermic perfusate samples showed the 

largest peak between 150 and 200 base pairs, which demonstrates the presence of mono-nucleosomal 

fragments. In addition, smaller peaks were observed at a size of 300 to 350 base pairs and 475 to 525 

base pairs. This inidates the presence of di-, and tri-nucleosomal subunits. These peaks indicate the 

presence of cf-DNA derived from apoptotic cell death. In addition, different amounts of large cf-DNA 

fragments with  lengths of 1-10 kb were observed. These fragment sizes might indicate cf-DNA obtained 

from active secretion. Necrotic cell death is likely to be responsible for the peak observed at around 10 

kb. The electropherograms of this one replicate showed that over the time course of NMP, the relative 

amount of multi-nucleosomal and larger fragments increases.  

In addition, it was examined whether 1 hour ProtK incubation at 60°C of the perfusate samples resulted 

in higher cf-dna yield than the standard 10 minutes ProtK incubation at room temperature that is 

described in the QIAamp MinElute ccfDNA protocol. There was intervened in this step, because 

denaturation and digestion of the proteins present in the perfusate is an essential step for efficient cf-

dna extraction. The obtained cf-DNA concentrations significantly increased by 38% after ProtK 

incubation at 60°C for 1 hour compared to the standard protocol (Supplementary Figure 1).  The effect 

of longer ProtK incubation on cf-DNA fragment size was also examined and the electropherograms 

showed no clear difference in the fragment size profiles (Supplementary Figure 2).  Together, these 

results led to the use of  1 hour ProtK incubation at 60°C for cf-DNA extraction in further experiments.  

 

 



 

Figure 4: Electropherogram fragment size distribution profiles of perfusate cf-dna after two-step or three-step 

centrifugation protocols The cf-DNA fragment distribution profiles of A) T02Rb NP17, B) T60 NP17, and C) T120 NP17 with a 

two- and three-step centrifugation protocol were investigated using the Agilent BioAnalyzer 2100. The different centrifugation 

protocols resulted in comparable fragment size distribution profiles. The X-axis depicts the fragment size (bp), whereas the Y-axis 

displays the fluorescence intensity (FU). The peaks at 35 (green) and 10380 (purple) base pairs are derived from the two internal 

High Sensitivity DNA markers. The non-marker peaks reflect mono-, di-, or tri-nucleosomal fragment sizes, as well as longer 

fragments (1-10 kb).  

 



Total cf-DNA levels decrease over time during HMP, corresponding to a decrease in cf-mtDNA 

levels, but not cf-nDNA levels 

The total, mitochondrial, and nuclear cf-DNA levels were quantified to explore their predictive value for 

cardiac function during and following HMP. During HMP, the total cf-DNA levels were measured by the 

Qubit fluorescence method immediately after the hearts were mounted onto the machine, and after 1.5 

and 3.5 hours of HMP. The total cf-DNA concentration in the perfusate samples showed a significant 

decrease over time (p = 0.0239) during HMP (Figure 5A).  Moreover, the cf-nDNA and cf-mtDNA levels 

were examined by qPCR using two specific amplicons for both different locations of the nuclear GAPDH 

gene (N1 and N2) and unique locations of the porcine mitochondrial DNA (MT3 and MT4). Double 

amplicons were used for cf-nDNA and cf-mtDNA to account for sequence inequalities of the individual 

slaughterhouse pigs. As shown in Figure 5B, qPCR demonstrated that the initial peak of cf-mtDNA 

levels was followed by a significant drop in these cf-mtDNA levels (MT3 qPCR p = 0.0137, and MT4 

qPCR p = 0.0083) throughout HMP. The cf-nDNA levels, however, did not significantly change over time 

(N1 qPCR p = 0.2652 and N2 qPCR) during HMP (Figure 5B). ‘ 

Furthermore, the cf-nDNA and cf-mtDNA levels were quantified using ddPCR, which is a more absolute 

quantification method compared to qPCR. Here, there was also made use of the two amplicons specific 

for the nuclear GAPDH gene (N1 and N2) and the porcine mitochondrial chromosome (MT1 and MT2). 

As depicted in Figure 5C, the ddPCR also showed a significant decrease of cf-mtDNA levels (MT1 

ddPCR p = 0.0355 and MT2 ddPCR p = 0.0280) during HMP. The cf-nDNA levels also did not 

significantly change over time (N1 ddPCR p = 0.6792 and N2 ddPCR p = 0.9891) during HMP according 

to the ddPCR results (Figure 5C). In general, it was observed that cf-mtDNA levels were higher than 

the cf-nDNA levels in the perfusate samples. This difference was more pronounced in the ddPCR data, 

as the mitochondrial and nuclear amplicons showed more overlap in ddPCR than in qPCR analysis. 

Together, these results showed that total cf-DNA levels decreased during HMP due to a selective 

decrease in cf-mtDNA levels, but not cf-nDNA levels.  

 

 



 

Figure 5: Total, mitochondrial and nuclear cf-DNA level changes during ex vivo hypothermic porcine heart machine 

perfusion. The total cf-DNA levels were quantified using A) Qubit, whereas the mitochondrial and nuclear cf-DNA levels were 

quantified using B) qPCR , and C) ddPCR. For the quantification of cf-nDNA and cf-mtDNA, two amplicons on different locations 

of the nuclear GAPDH gene (N1 qPCR, N2 qPCR, N1 ddPCR, and N2 ddPCR) and two amplicons on unique locations of the 

mitochondrial pig chromosome (MT3 qPCR,  MT4, qPCR, MT1 ddPCR, and MT2 ddPCR) were used in both qPCR and ddPCR 

.  The perfusate cf-DNA levels were determined after the heart was mounted to the machine (5 minutes), and at 1.5 and 3.5 

hours of hypothermic machine perfusion. A log2 scale was used on the y-axis. The cf-DNA levels are depicted as the actual 

mean and standard error of the mean (SEM). Repeated measures one-way ANOVA or mixed effects model analyses were 

performed to assess the change of cf-DNA levels over time and are marked with  * p < 0.05 and  ** p <0.01.  

Total, mitochondrial and possibly nuclear cf-DNA levels increase over time throughout NMP, but 

do not differ between SCS and HMP hearts 

To examine the potential of total perfusate cf-DNA levels during NMP as predictor for ex vivo cardiac 

function, the total cf-DNA perfusate concentrations of the HMP hearts were first compared to those of 

the SCS hearts (Figure 6A). During NMP, the total cell-free DNA levels for both the SCS and HMP 

hearts increased over time. However, this increase was only significant for the SCS hearts (p = 

0.0054)  and not HMP hearts (p = 0.1129). In addition, there were no significant differences in total cf-

DNA levels between the SCS and HMP hearts at any of the time points according to the Qubit 

fluorescence assay.  

Next, it was investigated whether this increase in total cf-DNA levels was caused by the release of 

mitochondrial or nuclear DNA. The qPCR results showed that there was an increase in cf-mtDNA 

levels of both the MT3 and MT4 amplicon for SCS hearts as well as HMP hearts, as depicted in 

Figure 6B. However, this increase was only significant for the SCS group (MT3 qPCR p = 0. 0052 and 

MT4 qPCR p = 0.0193) and not for the HMP group (MT3 qPCR p = 0.1957 and MT4 qPCR p = 

0.1700). As illustrated in Figure 6B, the cf-nDNA levels did not significantly elevate over time for both 

storage conditions according to qPCR. Comparable to the total cf-DNA levels, both cf-mtDNA and cf-

nDNA levels did not significantly differ at any time point between the SCS and HMP groups for any of 

the qPCR amplicons (Figure 6). 

Subsequently, the cf-mtDNA and cf-nDNA levels were absolutely quantified using ddPCR. In the ddPCR 

results, a trend of higher cf-mtDNA concentrations compared to cf-nDNA levels in the perfusate samples 

was observed (Figure 6C). During NMP, the cf-mtDNA levels were significantly increased in a time-

dependent manner in the SCS group (MT1 ddPCR p = 0.0044  and MT2 ddPCR p = 0.0023), but there 

was no significant increase over time observed in the HMP hearts (MT1 ddPCR p = 0.1699 and MT2 

ddPCR p = 0.1632) as shown in Figure 6C. Moreover, the cf-nDNA N2 amplicon levels were significantly 

elevated in the SCS group (N1 ddPCR p = 0.1095 and N2 ddPCR p = 0.0151). The cf-nDNA levels in 

the HMP preservation group did not significantly increase over time (N1 ddPCR p= 0.2828 and N2 

ddPCR p = 0.2141). Similar to the qPCR results, no significant differences were observed between the 

SCS and HMP groups at any of the sampling time points.  

Taken together, these results demonstrated that total cf-DNA levels increased over time during NMP. 

This was caused by a selective increase in cf-mtDNA levels and less by an increase in cf-DNA levels. 

In most cases, the increase in cf-nDNA levels was not significant. Moreover, there were no significant 

differences between the two preservation methods at any of the time points during reperfusion of the 

heart using a NMP set-up.  

. 



 

Figure 6: Total, mitochondrial and nuclear cf-DNA level changes during ex vivo normothermic porcine heart machine 

perfusion for SCS and HMP preserved hearts. The total cf-DNA levels were quantified using A) Qubit, whereas the 

mitochondrial and nuclear cf-DNA levels were quantified using B) qPCR , and C) ddPCR. For the quantification of cf-nDNA and 

cf-mtDNA, two amplicons on different locations of the nuclear GAPDH gene (N1 qPCR, N2 qPCR, N1 ddPCR, and N2 ddPCR) 

and two amplicons on unique locations of the mitochondrial pig chromosome (MT3 qPCR,  MT4, qPCR, MT1 ddPCR, and MT2 

ddPCR) were used in both qPCR and ddPCR . The perfusate cf-DNA levels were determined in unused perfusate (T=0), 

reperfusate (T=5), and at 60, 120 and 240 minutes of normothermic machine perfusion. A log2 scale was used on the y-axis. The 

cf-DNA levels are depicted as the actual mean and standard error of the mean (SEM). Repeated measures one-way ANOVA or 

mixed effects model analysis were performed to assess change of cf-DNA levels over time and are marked with  * p < 0.05 and  

** p <0.01.  

Cf-DNA levels during HMP did not correlate with cardiac functional parameters  

There is a lack of reliable biomarkers that can predict post-transplantation cardiac viability on a machine 

perfusion system that keeps the heart in a unloaded state prior to transplantation. Therefore, the 

potential use of cf-DNA levels as biomarkers for ex vivo heart function during HMP was explored.  This 

was done by correlating weight-normalized the HMP cf-DNA levels to the functional cardiac parameters 

(Figure 7) using Spearman’s rank correlation tests. For the functional cardiac parameters, cardiac 

output (CO), coronary flow (CF), left atrial pressure (LAP), mean arterial pressure (MAP), maximum and 

minimum rate of left ventricular pressure change (dP/dTmax and dP/dTmin), cardiac index (CI) and 

coronary flow index (CFI), and the measurement values at T240 (NMP) were used. LAP, MAP, 

dP/dTmax, and dP/dTmin are measures of preload, afterload, diastolic function, and myocardial 

contractility, respectively. The cf-DNA levels were normalized for heart weight, because larger hearts 

are likely contain more cells that can undergo damage and were thus expected to release more cf-DNA. 

Regarding all the cardiac functional parameters, no significant correlations between total, mitochondrial, 

and nuclear cf-DNA levels and CO, CF, LAP, MAP, dP/dTmax, dP/dTmin, CI, and CFI were observed 

throughout the HMP period according to the Spearman’s rank correlations (Figure 7). These results 

demonstrated that cf-DNA levels during HMP were not able to predict cardiac function following 

reperfusion. 



 

Figure 7: Spearman correlation matrix of cf-DNA levels during HMP with functional cardiac parameters. The matrix depicts 
the Spearman’s correlation coefficient of weight-normalized HMP total, nuclear and mitochondrial cf-DNA levels at 5 minutes 
(T0.05), 1,5 (T1.5), and 3.5 (T4)  hours  with the cardiac functional parameters measured at T240 (NMP).  The colors (blue, white, 
and red) indicate the size and direction of the Spearman’s correlation values ranging from -1 to 1, with red and blue indicating the 
strongest positive and negative correlation values, respectively. Significant correlations are marked with .p < 0.1,* p < 0.05, ** p 
<0.01, and *** p < 0.001.  



Cf-DNA levels during HMP positively correlated with HMP lactate dehydrogenase levels, and 

NMP ammonia and lactate levels  

The predictive capacity of HMP cf-DNA levels for cardiac injury and heart function was also investigated 

by assessing their correlations with the levels of regularly used cardiac metabolic and damage markers 

(lactate, lactate dehydrogenase (LD), ammonia, troponin-I). Perfusate lacate is currently the best 

indicator of post-transplantation cardiac viability during machine perfusion preservation. Moreover, 

persistent high lactate serum levels post-transplantation are also an indicator of mortality after heart 

transplantation. LD in the perfusate indicates general heart injury and troponin-I reflects myocardial 

injury. Perfusate ammonia might indicate metabolic dysfunction in the heart due to the inactivity of the 

heart, and reflect myocardial damage. Ammonia is not very well investigated in heart transplantation, 

but is known to be produced by hearts that experience stress, injury, and/or cell death. 

Spearman rank correlation tests were performed between the cf-DNA levels measured at different time 

points during HMP and the other metabolic and damage markers measured at the same time points 

(Figure 8A) and at different time points during NMP (Figure 8B). In Figure 8A, it was illustrated that 

several of the HMP total cf-DNA, cf-nDNA and cf-mtDNA levels at the different time points were 

positively correlated with lactate dehydrogenase measured at T0.05. More specifically, total cf-DNA 

levels at T0.05 and T1.5, N1 and N2 qPCR amplicon levels at T1.5 and T4, MT3 and MT4 qPCR 

amplicon levels at T0.05, N1 and N2 qPCR amplicon levels at T0.05, T1.5 and T4 (only N1),  and MT1 

ddPCR amplicon levels at T0.05 showed significant positive correlations with T0.05 LD levels. No 

significant correlations were found for cf-DNA levels with any of the metabolic or damage markers 

measured at T1.5 and T4.  

The HMP mt-DNA levels measured at T0.05 showed significant positive correlations with lactate levels 

after 2 hours of NMP (∆T120), except for the MT4 qPCR amplicon levels (Figure 8B). In addition, the 

ddPCR cf-mtDNA levels at T0.05 and T1.5 were found to have a significant positive correlation with 

lactate levels after 4 hours of NMP (∆T240). As illustrated in Figure 8B, the HMP cf-mtDNA levels at 

T0.05, except for the MT1 ddPCR amplicon, showed significant positive correlations with reperfusate 

ammonia levels. The ddPCR cf-nDNA levels were also found to have a significant positive correlation 

with these reperfusate ammonia levels. Significant positive correlations between ddPCR cf-mtDNA 

levels measured after 1.5 (T1.5) and 3.5 (T4) hours of HMP and reperfusate ammonia were also 

observed. Aside from the N2 qPCR amplicon, the T1.5 cf-nDNA levels showed a significant positive 

correlation with reperfusate ammonia levels. Moreover, the N2 qPCR amplicon and N1 ddPCR amplicon 

levels were found to have a positively correlate with ammonia in the reperfusate. The HMP N1 qPCR 

amplicon levels at T0.05 showed significant positive correlations with ammonia levels measured at 2 

and 4 hours of NMP. According to ddPCR, there were also significant positive correlations between T1.5 

and T4 HMP cf-mtDNA levels and ammonia measured after 4 hours of NMP. The N2 qPCR and N1 

ddPCR amplicon levels measured at T1.5 and N2 ddPCR amplicon levels measured at T4 revealed 

positive significant correlations with these ∆T240 ammonia levels. T1.5 and T4 ddPCR cf-mtDNA levels 

also correlated with the ∆T240 ammonia levels. A significant negative correlation of the cf-mtDNA 

ddPCR amplicon levels with LD and troponin-I levels was measured at T0.05.  Moreover, MT4 qPCR 

amplicon levels showed a negative correlation with LD measured after 2 and 4 hours of NMP.  

Taken together, these results indicated that HMP cf-mtDNA levels might predict lactate levels during 

reperfusion of the heart using NMP. Therefore, cf-mtDNA levels might aid in assessing post-

transplantation cardiac viability during machine perfusion.  

 



 



 

Figure 8: Spearman correlation matrix of cf-DNA levels during HMP with other cardiac metabolic and damage markers. 
The matrix depicts the Spearman’s correlation coefficients of weight-normalized HMP total, nuclear and mitochondrial cf-DNA 
levels at 5 minutes (T0.05), 1,5 (T1.5), and 3.5 (T4)  hours with the weight-normalized  levels of other metabolic and damage 
markers, ammonia, lactate, lactate dehydrogenase (LD), and troponin-I, measured during A) HMP measured at T0.05, T1.5, and 
T4 and B) NMP measured in the reperfusate (∆T02R)  and at 2 (∆T120) and 4 hours (∆T240). The colors (blue, white, and red) 
indicate the size and direction of the Spearman’s correlation values ranging from -1 to 1, with red and blue indicating the strongest 
positive and negative correlation values, respectively. Significant correlations are marked with .p < 0.1,* p < 0.05, ** p <0.01, and 
*** p < 0.001.  

No clear correlation trends between HMP cf-DNA levels and inflammatory markers were 

observed 

Since it is believed that cf-dna plays an important role in regulating the immune response,  Spearman’s 

correlations between the cf-dna levels during HMP and levels of inflammatory markers (TNF-α and IL-

6) during NMP were also examined. For this, TNF-α levels were normalised for the T02 baseline. It 

should be noted that IL-6 levels were not normalised for baseline levels,  because T02 IL-6 values were 

below the detection threshold of the assay. In addition, weight-normalisation was performed for all 

measurements.  As shown in Figure 9, there was a significant positive correlation between the MT4 



qPCR amplicon levels at T0.05 and TNF-α levels in the reperfusate. Furthermore, a significant positive 

relationship between cf-nDNA levels of the N1 ddPCR amplicon and TNF-α levels measured at 4 hours 

of NMP was observed. The ddPCR cf-mtDNA levels at T1.5 showed positive correlations with ∆T240 

TNF-α levels.  From the HMP cf-DNA levels at T4, only the MT3 qPCR amplicon cf-mtDNA levels 

showed a negative correlation with IL6 levels at T240( Figure 9). These results demonstrated that there 

were no clear correlation trends that were persistent over time between HMP cf-DNA levels and 

inflammatory marker levels following reperfusion.  

 



 

Figure 9: Spearman correlation matrix of cf-DNA levels during HMP with inflammatory marker levels during NMP. The 
Spearman correlation matrix depicts the Spearman’s correlation coefficients between weight-normalised cf-DNA levels at 5 
minutes (T0.05), 1,5 (T1.5), and 3.5 (T4)  hours with the weight-normalised levels of the inflammatory markers, TNF-α and IL-6, 
across NMP in the reperfusate, and after 1 (∆T60), 2 (∆T120) and 4 (∆T240) hours. The TNF-α were normalised for the baseline 
values measured at T02. The colors (blue, white, and red) indicate the size and direction of the Spearman’s correlation values 
ranging from -1 to 1, with red and blue indicating the strongest positive and negative correlation values, respectively. Significant 
correlations are marked with .p < 0.1,* p < 0.05, ** p <0.01, and *** p < 0.001.  



Cf-DNA levels during reperfusion of the heart were found to negatively correlate with functional 

cardiac parameters, especially after 2 hours of NMP 

It was also tested whether cf-DNA levels could serve as an indicator of ex vivo heart function during 

NMP by perfoming Spearman’s rank correlation tests (Figure 10). The data was normalised by weight 

and the T02 baseline values. As depicted in Figure 10, the perfusate (∆T02R) MT1 ddPCR amplicon 

levels showed a positive correlation with LAP and dP/dTmin.  In addition, cf-nDNA and cf-mtDNA 

reperfusate qPCR amplicon levels showed significant negative correlations with dP/dTmax, and positive 

correlations with dP/dTmin. As illustrated in Figure 10, these correlations seem to be stronger for cf-

mtDNA levels. After 1 hour of NMP (∆T60), negative correlations between cf-nDNA N1 qPCR and N1 

ddPCR amplicon levels and LAP were observed (Figure 10).  

After 2 hours of normothermic machine perfusion (∆T120), total cf-DNA levels negatively correlated with 

CF with CF, MAP, LAP, CI, and CFI (Figure 10). All the T120 cf-nDNA levels showed negative 

correlations with MAP. Moreover, the cf-nDNA and the cf-mtDNA levels of the qPCR amplicons were 

negatively correlated with LAP. As is illustrated in Figure 10, other negative correlations included the 

N1 ddPCR amplicon levels with CO, cf-nDNA qPCR levels with CF, and N1, N2 and MT2 ddPCR 

amplicon levels with CI. The total cf-DNA levels and cf-nDNA levels at 4 hours of NMP (∆T240) showed 

significant negative correlations with LAP, as depicted in Figure 10.  

The Spearman correlations of NMP cf-DNA levels demonstrated that there were mostly negative 

correlations with cardiac functional parameters. In particular, negative correlation trends of total cf-DNA 

and cf-nDNA with LAP, a measure of preload, were observed. Moreover, the cf-DNA levels at 2 hours 

of NMP seem to be the best predictors of cardiac function post-transplantation.  

  



 



Figure 10: Spearman correlation matrix of cf-DNA levels during heart reperfusion with functional cardiac parameters. 
The matrix depicts the Spearman’s correlation coefficient of baseline(T02)- and weight-normalized total, nuclear and mitochondrial 
cf-DNA levels after reperfusion (∆T02R) and at 1 (∆T60) , 2 (∆T120) and 4 (∆T240) hours of NMP with the cardiac functional 
parameters measured at T240 (NMP).  The colors (blue, white, and red) indicate the size and direction of the Spearman’s 
correlation values ranging from -1 to 1, with red and blue indicating the strongest positive and negative correlation values, 
respectively. Significant correlations are marked with .p < 0.1,* p < 0.05, ** p <0.01, and *** p < 0.001.  

Several significant negative and positive correlations were found between the NMP cf-DNA levels 

and other metabolic and damage markers measured across HMP and NMP 

Spearman’s correlation tests were also performed to assess whether there were correlations between 

the cf-DNA levels during NMP and the other metabolic and damage markers (ammonia, lactate, LD, and 

troponin-I) measured during HMP and NMP (Figures 11A and 11B). The ddPCR cf-nDNA reperfusate 

levels showed significant negative correlations with LD measured at T0.05 and T1.5 (Figure 11A). 

Moreover, the ∆T60 MT4 qPCR and N1 ddPCR were found to negatively correlate with lactate levels at 

T1.5 and T4, respectively. The ∆T120 N2 ddPCR amplicon levels showed negative correlations with 

T0.05 troponin-I and T4 ammonia levels, as well as a positive correlation with T1.5 lactate levels. 

Furthermore, a negative correlation was found between the ∆T240 N1 qPCR amplicon levels and T0.05 

LD levels.  

As illustrated in Figure 11B, total cf-DNA reperfusate levels showed a significant negative correlation 

with ammonia at ∆T120 and lactate in the reperfusate and at ∆T120.  Moreover, significant negative 

correlations were observed between the cf-mtDNA levels at 1 hour of NMP and ammonia, LD, and 

troponin-I at 4 hours of NMP, except for the MT3 qPCR amplicons levels with ammonia and troponin-I. 

∆T120 cf-mtDNA levels were found to have a significant positive correlation with lactate at that same 

time point and had a significant negative correlation with troponin-I at ∆T240. ∆T120 N1 qPCR and MT4 

qPCR amplicon levels also showed positive correlations with ammonia levels at the same time point. 

Cf-nDNA after 4 hours of NMP showed significant negative correlations with reperfusate LD and 

troponin-I. Furthermore, the total cf-DNA and ddPCR cf-mtDNA levels also were significantly negatively 

correlated with reperfusate troponin-I. The N1 and MT4 qPCR amplicon levels were found to have a 

significant negative correlation with reperfusate lactate levels.  

Together, the results demonstrated that there were several positive and negative correlations of the cf-

DNA levels during heart reperfusion (NMP) and levels of other metabolic and damage markers during 

both HMP and NMP. However, the correlation trends seemed to be inconsistent over time, except for 

the negative correlations of cf-mtDNA levels and ∆T240 troponin-I levels.  



 

 



 

 

Figure 11: Spearman correlation matrix of cf-DNA levels during heart reperfusion with other cardiac metabolic and 
damage markers. The matrix depicts the Spearman’s correlation coefficient of baseline(T02)- weight-normalized NMP total, 
nuclear and mitochondrial cf-DNA levels in the reperfusate (∆T02R) , and after 1 (∆T60), 2 (∆T120) and 4 (∆T240) hours with the 



weight-normalized  levels of other metabolic and damage markers, ammonia, lactate, lactate dehydrogenase, and troponin-I, 
measured during A) HMP measured at T0.05, T1.5, and T4 and B) NMP measured at ∆T02R, ∆T120, ∆T240. The colors (blue, 
white, and red) indicate the size and direction of the Spearman’s correlation values ranging from -1 to 1, with red and blue 
indicating the strongest positive and negative correlation values, respectively. Significant correlations are marked with .p < 0.1,* 
p < 0.05, ** p <0.01, and *** p < 0.001.  

No clear correlation trends between NMP cf-DNA levels and inflammatory markers were 

observed 

The reperfusate cf-nDNA of the N1 qPCR and N2 ddPCR amplicons and cf-mtDNA levels of the MT3 

qPCR amplicon showed significant positive correlations with the TNF-α levels at the same time point 

(Figure 12). Total cf-DNA reperfusate levels were found to have a significant negative correlation with 

NMP TNF-α levels at ∆T60, ∆T120,  and ∆T240.  According to the ddPCR data, there was a significant 

positive correlation of  cf-nDNA reperfusate levels with IL-6 levels at T240 and a significant negative 

correlation of the cf-mtDNA reperfusate levels and ∆T120. The Spearman’s correlation results showed 

that the qPCR ∆T60 cf-mtDNA levels were negatively associated with T240 IL-6 levels (Figure 12). Only 

the MT3 qPCR amplicon levels also showed a significant negative correlation with IL-6 levels at T120. 

In addition, a significant positive correlation between MT4 amplicon levels and reperfusate TNF-α levels 

was found. ∆T120 cf-nDNA levels were found to have significant positive correlations with ∆T240 TNF-

α and for the N2 amplicon also with T120 IL-6 levels, according to the ddPCR data.The ddPCR MT2 

amplicon levels also showed a positive correlation with T120 IL-6 levels. In addition,  the MT4 qPCR 

amplicon levels showed a positive correlation with TNF-α levels in the reperfusate and after 1 hour of 

NMP. Cf-mtDNA levels of the MT1 ddPCR amplicon also showed a positive correlation with ∆T60 TNF-

α levels.At 4 hours of NMP, the total cf-DNA levels and cf-mtDNA qPCR amplicon levels were 

significantly negatively correlated with IL-6 levels at T240. 

Altogether, these correlations demonstrated that cf-DNA following reperfusion using NMP showed 

several significant positive and negative correlations with inflammatory markers. These correlations, 

however, did not have trends that persisted over time.  

 

 



 



Figure 12: Spearman correlation matrix of cf-DNA levels during NMP with inflammatory marker levels during NMP. The 
Spearman correlation matrix depicts the Spearman’s correlation coefficients between baseline (T02) – and weight-normalised cf-
DNA levels in the reperfusate (∆T02R) and at 1 (∆T60), 2 (∆T120)  and 4 (∆T240) hours with the weight-normalised levels of the 
inflammatory markers, TNF-α and IL-6, across NMP in the reperfusate, and after 1 (only for TNF-α), 2 and 4 hours. The TNF-α 
were normalised for the baseline values measured at T02. The colors (blue, white, and red) indicate the size and direction of the 
Spearman’s correlation values ranging from -1 to 1, with red and blue indicating the strongest positive and negative correlation 
values, respectively. Significant correlations are marked with .p < 0.1,* p < 0.05, ** p <0.01, and *** p < 0.001.  

Quality control of cf-RNA seq data 

All collected time samples from 2 SCS and 2 HMP replicates were subjected to CEL-seq2 after RNA 

extraction to examine whether this mRNA-sequencing method enables usable cf-mRNA transcriptome 

profiles. Sample-level quality control on the count-data is a crucial part in RNA sequencing data analysis 

to guarantee that only the useful samples are used in downstream analysis. cf-RNA-seq data may 

contain more variability than tissue biopsy RNA-seq data, because cf-RNA processing and extraction 

protocols are not optimized and standardized yet.  In addition, variability in cf-mRNA seq data can be 

explained by the fact that the extracellular space is abundant in nucleases. Quality control was 

performed by assessing the total raw counts and gene coverage per sample (Supplementary Figure 

3). Supplementary Figure 3 depicts that the samples had a lot of variability in the total raw counts and 

gene coverage. The whole blood and T02 NP21 samples were excluded from further analysis, because 

they did not reach the thresholds of 25,000 total raw read counts and 1500 covered genes with more 

than 5 reads. Furthermore, principal component analysis (PCA) was performed on the samples to 

examine their similarity and to investigate to what extend time, storage conditions, or heart replicate (NP 

number) contributed to the variation. PCA of the 500 most variable genes of the residual samples 

showed that about 80% and 3% of the variability in the RNA sequencing data was explained by the first 

and second principal components, respectively (Supplementary Figure 4). NP number 

(Supplementary Figure 4A) and storage condition (Supplementary Figure 4B). did not result in 

separation of the samples, indicating that these factors did not explain the variability of the first and 

second principal component. The results indicate that the variation in the first principal component was 

explained by time, because separation between HMP and NMP samples between earlier and later time 

points during NMP occurred (Supplementary Figure 4C). Therefore, time was treated as a continuous 

variable in further analysis.  

Differential gene expression and pathway analyses revealed downregulation of energy 

metabolism pathways throughout HMP and NMP, and upregulation of gene regulation (HMP) and 

inflammatory pathways (NMP) 

To examine which genes were differentially expressed during HMP, DEG analysis was performed with 

time as a continuous variable. This was performed on data from perfusate samples of two HMP 

replicates per time point obtained at 5 minutes, 1.5 hours and 3.5 hours of HMP.  79 genes were 

significantly upregulated and 34 genes significantly downregulated (adjusted p-value < 0.1) during HMP 

(Figure 13A).  

For the differential gene expression throughout NMP, 2 replicates from both the SCS and the HMP 

group were included in the analysis. To identify if there were any differences between SCS and HMP 

samples, differential gene expression analysis was performed between the two storage groups and this 

showed that there were no significant condition-specific differences over time (Supplementary Figure 

5). Therefore,  the samples of both storage conditions were combined. In this way, differential gene 

expression analysis with time as a continuous variable showed that 54 genes were significantly 

upregulated, whereas 30 were significantly downregulated (adjusted p-value < 0.1) during NMP, as 

depicted in Figure 13B. 

Together, these results indicated that these differentially expressed genes might be predicters of cardiac 

function after transplantation.  

 



Figure 13: Volcano plots of identified differentially expressed genes of cf-mRNA in the perfusate over time during both 

hypothermic and normothermic ex vivo heart machine perfusion. Volcano plots illustrate the differentially expressed genes 

of cf-mRNA in perfusate samples calculated with the DESeq2 algorithm A) throughout hypothermic machine perfusion, and B) 

normothermic machine perfusion. Significant differentially expressed genes are depicted in blue-green and were considered 

significant for adjusted p-values lower than 0.1.  The grey dots that were present in significant area of adjusted p-values lower 

than the  0.1 cut-off, indicated NA adjusted p-values. The x-axis depicts the log2 fold change, and the y-axis the -log10(p-value). 

 

Next, a GO gene set enrichment and pathway analysis was conducted to examine the biological role of 

these genes. The GO pathway analysis revealed that energy metabolism pathways, including oxidative 

phosphorylation and the electron transport chain, were suppressed during HMP, whereas GO terms 

involved in transcription, such as regulatory region nucleic acid binding, were activated (Figure 14A).   

GO gene set enrichment and pathway analysis showed that pathways related to energy metabolism 

were also downregulated throughout NMP (Figure 14B). For example, the GO pathway analysis 

identified terms such as ‘ATP metabolic processes’ ,‘generation of precursor metabolites and energy’, 

and ‘cellular respiration’ as suppressed over the time-course of heart reperfusion using NMP.  The 

enrichment of GO terms including ‘response to external biotic stimulus’, ‘immune response’, and 



‘immune system process’ indicated that the heart responded to stimuli during NMP, and that an immune 

response was provoked.  

Together, our cf-mRNA data indicates that the energy metabolism was disturbed during both HMP and 

NMP. During HMP, the heart might attempt to minimize ischemia-reperfusion injury by activating gene 

regulation processes, while throughout NMP an immune response was generated.   

 



 

Figure 14: Gene ontology  gene enrichment and pathway analysis throughout A) hypothermic and B) normothermic 
machine perfusion. The dot plots illustrate the activated and/or suppressed pathways throughout HMP (A) and NMP (B).   The 
y-axis shows the enriched GO terms. The x-axis depicts the GeneRatio, which is the number of genes affected from a certain 
gene set (count), divided by the total number of genes included in this gene set (setSize).  The dot size indicates the gene count, 
whereas the dot color displays the Benjamini-Hochberg adjusted p-value of < 0.1 and < 0.3 for HMP and NMP, respectively.   



 

Ventricular cardiomyocytes and adipocytes are most likely major sources of cf-NA 

Because RNA is very unstable, it is thought that the main source of cf-RNA that we can extract is 

derived from living cells, therefore it is believed that cf-RNA reflects the gene expression patterns of 

the cells that release them. To get an insight about which cells release the cf-RNA, cell type 

deconvolution using SingleR was performed using prevalent cell types of the body as a reference 

dataset. The origin of the cf-RNA is deciphered as SingleR compares the transcriptomic input data to 

transcriptomic reference data sets of pure cell types. 

SingleR predicted that most of the cf-RNA was derived from adipocytes during HMP (Figure 15A). 

Skeletal muscle cells were also predicted to be major contributors to the cf-RNA content in the HMP 

samples. Moreover, the skeletal muscle cells also seem to release cf-RNA at the beginning of NMP 

(Figure 15A). In addition, neurons were identified as the main origin of the cf-RNA when the heart was 

in working mode during normothermic machine perfusion. Another potential source of cf-RNA during 

NMP were the hematopoietic stem cells (HSC). However, these cell types are not the most abundant 

cell types in the heart. Importantly, the deconvolution reference set did not contain cardiomyocytes. 

Therefore, it may not be an accurate reflection of which cell types release the cf-RNA. However, from 

these results it could be concluded that the main source of cf-RNA are not blood and/or immune cells. 

Because the standard reference set for SingleR did not contain cardiomyocytes and other abundant 
cardiac cell types, deconvolution was subsequently performed with a reference set containing cell 
types found in the heart. Classification of these heart cell types was determined by single nuclear 
RNA-seq on human hearts1. Among the cardiac cell types, the ventricular cardiomyocytes I and 
cytoplasmic cardiomyocytes II were estimated to be the predominant sources of the cf-RNA (Figure 
15B).  In this case, cytoplasmic cardiomyocytes indicate cardiomyocytes that have a higher than 
normal number of reads in the exonic regions. Cytoplasmic cardiomyocytes II were predicted to be the 
main source of cf-RNA during HMP and earlier time points of NMP, whereas ventricular 
cardiomyocytes were most likely the main contributors at later time points of NMP. Furthermore, it was 
predicted that adipocytes also release cf-RNA throughout NMP. The results demonstrated that the 
most abundant cardiac cell type and the protective layer of the heart, the cardiomyocytes and adipose 
tissues, contributed the most to cf-RNA release.  



 

 

 

 



Figure 15: Deciphering the cell-type of origin of cf-RNA using SingleR. SingleR heatmap annotation scores obtained using 
the A) Blueprint/ENCODE built-in reference and B) cardiac cell type reference obtained from Tucker, et al1. The samples were 
depicted on the y-axis, whereas the x-axis represents the reference cell types. The cell type annotation scores were normalised 
and therefore the lowest score is 0 (blue) and highest score is 1 (yellow). Below the heatmap, the HMP and NMP perfusate 
samples were marked with blue and red labels, respectively. The annotated labels are depicted on top of the heatmap using 
different colours, indicating the adipocytes (orange), hematopoeietic stem cells (blue), neurons (green),  and skeletal muscle 
cells (yellow) in A and ventricular cardiomyocytes I (orange), adipocytes (blue), and cytoplasmic cardiomyocytes II (green) in B.  

To examine whether the gene expression profiles overlap more with cardiac cell types, both reference 

sets were combined. In this manner, the label with the highest score across both references is 

annotated. For this, the scores across the identified marker subset were recalculated to establish 

comparable scores across both references originating from an identical gene set. 

When the reference sets were combined, ventricular cardiomyocytes were considered to be the main 

cell type of origin of both HMP and NMP perfusate cf-RNA  (Figure 16). In addition, cf-RNA extracted 

from HMP samples was predicted to be derived from adipocytes, endothelial cells, and skeletal muscle 

cells (Figure 16). Almost all NMP samples had a gene expression profile that resembled the 

ventricular cardiomyocyte expression profile most. Only a few samples across NMP had higher label 

scores for adipocytes or cytoplasmic cardiomyocytes. 

 

 

Figure 16: Deciphering the cell-type of origin of the cf-RNA using SingleR by combining the Blueprint/Encode and 
heart cell reference from Tucker, et al1. The combined cell type annotation scores were normalised and therefore the lowest 
score is 0 (blue) and highest score is 1 (yellow). Here, the combined cell type annotation scores were recalculated for only the 
labels that were predicted in the separate reference sets, and the other labels got NA assigned (grey boxes). The samples were 
depicted on the y-axis, whereas the x-axis represents the reference cell types. The cell type annotation scores were normalised 
and therefore the lowest score is 0 (blue) and highest score is 1 (yellow). Below the heatmap the HMP and NMP perfusate 
samples were marked with blue and red labels, respectively. The annotated labels based on the scores are depicted on top of 
the heatmap using different colours, indicating the ventricular cardiomyocytes (orange), endothelium I (blue), adipocytes 
(green), cytoplasmic cardiomyocytes II (yellow), adipocytes (dark blue), and skeletal muscle cells (red).   

Taken together, the data demonstrated that the predominant sources of cf-RNA during HMP were 

cardiomyocytes and adipocytes, whereas for NMP the predominant sources were the cardiomyocytes. 

This indicates that the cells that take up a large part of the heart mass or cover a large part of the heart 

were most likely to release their RNA into the perfusate.  



Discussion 

Heart transplantation remains the standard treatment for patients with end-stage heart failure. 

However, due to the lack of available donor hearts, ex vivo heart machine perfusion gained profound 

interest to replace SCS, as this method can prolong preservation times and increase the donor pool. 

Currently, the assessment of donor hearts during machine perfusion mainly relies on lactate levels, 

which display the best predictive power for heart graft dysfunction. Nevertheless, the use of lactate as 

a biomarker for this purpose remains debatable. Therefore, cf-DNA and -RNA were assessed to 

investigate if they could predict heart function and to gain a better mechanistical understanding of the 

biological processes that are affected during machine perfusion. In this study, cf-DNA and -RNA levels 

were examined during HMP, followed by experiments that compared the HMP and SCS groups in 

which hearts were mounted to an NMP system that mimics the post-transplantation state and that 

enabled functional assessment.  

In the present study, the trends of total, mitochondrial, and nuclear cf-DNA levels in perfusate of ex 

vivo perfused slaughterhouse porcine hearts were investigated. Surprisingly, a decreasing trend in 

total and mitochondrial cf-DNA levels was observed during HMP. The high initial concentrations may 

be due to myocardial ischemic injury. The downward trend of total and mitochondrial DNA during ex 

vivo machine perfusion might indicate that hypothermic machine perfusion does not cause any 

additional damage to the hearts. However, the downward trend might also be a result of a significant 

amount of the DNA sticking to the tubing set of the perfusion system at low concentrations. In addition, 

the short cf-DNA fragments might become denatured when they are adsorbed to the tube walls130. 

Therefore, future studies should also investigate the effect of the tubing material on cf-DNA adsorption 

and denaturation.  

In addition, it was examined whether SCS and HMP resulted in different cf-DNA levels and whether 

these levels could aid in examining cardiac damage and post-transplantation cardiac function. To this 

end, the cf-DNA levels and trends were assessed when the hearts were mounted for 4 hours onto the 

normothermic PhysioHeart™ perfusion platform. This platform is a working porcine heart model that 

simulates the human physiological state post-transplantation, following 4 hours of HMP or SCS. It was 

observed that the total and mitochondrial cell-free DNA levels increased over time, but this increase 

was only significant in the SCS hearts. There were no significant differences between those two 

groups at any time point during NMP. This indicates that a comparable amount of damage arises in 

hearts of different treatment groups, which was also reflected in the trends of other damage and 

metabolic markers that did not show any significant differences between the two storage groups 

(unpublished data from Selma Kaffka genaamd Dengler). This also adds up with the observations that 

except for survival based on CO, HMP did not result in beneficial functional outcomes in dP/dTmax, 

dP/dTmin, LAP, MAP, compared to SCS (unpublished data Selma Kaffka genaamd Dengler). 

Especially in ddPCR, it was observed that cf-mtDNA levels were higher than cf-nDNA levels. Besides 

the different types of damage that cf-nDNA (general cellular damage and cell death marker) and cf-

mtDNA (mitochondrial damage marker) reflect, the differences between cf-nDNA and cf-mtDNA levels 

might be due to the fact that most cells contain a similar amount of genomic material, whereas the 

amount of mitochondria is variable between different cell types and even the same cell type131,132. It 

should, however, be noted that cardiomyocytes are often multinucleated or polyploid133. 

Furthermore, it was assessed whether cf-DNA levels correlated with functional cardiac parameter 

values measured after 4 hours on the PhysioHeart™ platform to examine whether these levels 

predicted cardiac function. The results demonstrate that across HMP, none of the weight-normalised 

cf-DNA levels showed a reliable predictive capacity for ex vivo cardiac function. During NMP, however, 

a negative correlation between the total and nuclear cf-DNA levels and LAP, a measure of preload, 

was found in the working mode. This is in agreement with the observation that LAP was found to be 

lower in the SCS compared to the HMP group, although this was not statistically significant 

(unpublished data Selma Kaffka genaamd Dengler). This might indicate that cf-DNA levels during 

heart reperfusion using NMP might be predictors of heart function, and therefore targeting cf-DNA 

prior to transplantation might have beneficial effects on preserving cardiac function.   

Moreover, it was assessed whether cf-DNA levels correlated with commonly used damage and 

metabolic markers to examine their potential for predicting cardiac viability. Here, positive correlations 



of HMP cf-DNA levels with LD at the beginning of HMP were observed, which can be explained by 

both markers serving as general heart damage markers in this isolated heart set-up134. Early HMP cf-

DNA levels, especially the cf-mtDNA levels, were positively correlated with lactate levels when the 

heart was in working mode during NMP. Elevated levels of lactate and cf-mtDNA both indicate 

mitochondrial injury and disturbed metabolism. These findings are in agreement with the findings of 

Wang et al. and suggest that cf-mtDNA could be predictive of lactate levels135. Because post-

transplantation lactate levels also are predictors of cardiac graft outcome, our results demonstrate that 

cf-mtDNA levels may predict post-transplantation cardiac function136. The apparent later onset of 

lactate release compared to cf-mtDNA release may be due to the accumulation of lactate in the tissue 

before its release into perfusate43. Nevertheless, this requires further study. The positive correlations 

found between HMP cf-DNA levels and ammonia during HMP seemed to precede the correlations of 

cf-DNA with lactate. This can be explained by the fact that ammonia contributes to energy metabolism 

dysfunction and therefore leads to elevated lactate levels55,137,138.  

Surprisingly, some negative correlations of NMP cf-DNA levels with for example troponin-I and LD, 

which are considered cardiac damage markers, were observed, especially during NMP. This 

correlation in the opposite direction than expected might also be explained that the difference in these 

levels between hearts with different qualities was rather small due to the fact that the functional 

difference was also small (unpublished data Selma Kaffka genaamd Dengler) .  

Inflammation is a commonly occuring process during organ perfusion. It is also known that 

inflammation causes cell damage and cell death and vice versa139–141. Therefore, it was expected to 

find a two-way relationship between cf-DNA and the inflammatory markers. In the present study, the 

correlation between cf-DNA levels and inflammation was assessed. Several positive and negative 

correlations were found between cf-DNA levels and inflammatory markers, but there were no clear 

trends that persisted over time. Here, the release kinetics of cf-DNA and the inflammatory markers 

may also play a role. Future research should aim to get a deeper understanding of the mechanisms 

underlying the interplay of cf-DNA and the immune system, as this might offer therapeutic treatment 

options139–141. Treatment options that target DNA receptors that are involved in provoking an immune 

response could have a dual beneficial effect by reducing both inflammation and cf-DNA release and 

thus hold a promising treatment option for the future.  

Cf-DNA has the potential to be used as a therapeutic target in the ex vivo heart perfusion system. 

Previous research showed that inhibiting cf-mtDNA by administration of DNAse I resulted in a reduced 

infarction size in an ischemia-reperfusion rat model142. Therefore, future research should also focus on 

applying therapeutics, such as DNAse I, during ex vivo heart perfusion to examine what their effects 

on cardiac function. This may provide opportunities to minimize the donor heart damage and to make 

more hearts eligible for transplantation. 

The conducted study had several limitations, including a small sample size. The small sample size 

limited the statistical power of the study. Another limitation of the study was the use of a non-

oxygenated hypothermic machine perfusion set-up. Previous research had already shown that 

oxygenation during HMP resulted in improved cardiac function and reduced oedema formation143. 

Although the unoxygenated HMP resulted in improved cardiac function in the HMP hearts, the switch 

to an oxygenated HMP system might provide bigger differences in cf-DNA levels and the other 

metabolic markers between the two different storage methods. It should be mentioned that the other 

biomarkers also did not show clear correlation trends with the functional parameters (unpublished data 

Selma Kaffka genaamd Dengler). Thus  all hearts in this study accumulated damage over time, 

independent of the preservation method. Because the functional differences between the hearts was 

not large enough, the discovery of potential biomarkers in the present study was impeded.   

Furthermore, the hearts that had a low cardiac output (≤ 3.0 L/min) at the beginning of the study were 

removed from the NMP platform, and were thus excluded before completion of the 4-hour NMP. This 

might have facilitated a misrepresentation of the measurements at later time-points, thereby 

benefitting the SCS results. Another limiting factor in the study design was the use of slaughterhouse 

pigs. Despite the advantages that slaughterhouse pig hearts offer concerning ethics, availability, costs, 

and patient population variability resemblance, the health status of slaughterhouse pig hearts is often 

negatively affected by uncontrolled breeding and nurturing circumstances121,144. In addition, the cell-



free nucleic acid levels, as well as the levels of the other damage and metabolic markers, might not 

only be affected by ischemic-reperfusion injury, but also by the uncontrolled harvesting procedure-

related damage122. Moreover, these levels may be affected by reduced heart capacity, which is 

caused by the stress that slaughterhouse pigs experience during transport and slaughtering 

processes122,145. Therefore, it would be of profound interest to assess biomarker levels and their 

variability in experiments involving experimental pig hearts. Moreover, comparing such biomarker 

levels between experimental and slaughterhouse pig hearts aids the elucidation of the effects of the 

storage methods on these levels.  

The hearts were reperfused using a  NMP system (Langendorff first, followed by working mode) 

instead of an in vivo heart transplantation. In this manner, the perfusion solution is reused and 

therefore not cleared from several products (including  inflammatory markers and cf-DNA) that could 

affect the affect heart function. The blood that was used to perfuse the hearts during NMP was thus 

suboptimal43. One of the possible solutions to create better circumstances is to add a leukocyte filter 

into the set-up, as these are also used in clinical settings 21,146. In addition, hemofiltration might have 

beneficial effects on the NMP set-up. Hemofiltration gets rid of toxic metabolic products, as well as 

damage and inflammatory markers43,147. Moreover, the elimination of the excess of water might also 

make the reperfusion system more resemblant of the physiological state.  

Another limitation of this study is that the hearts were only preserved for 4 hours with HMP or SCS. 

However, this is also the time that hearts are considered safe when preserved using static cold 

storage.  As the long-term goal of machine perfusion is the prolongation of heart preservation times for 

heart transplantation, future research should aim to perform 24-hour experiments with a HMP set-up 

and compare these to 4 and 24 hours of SCS.  This will give a better understanding of the marker 

levels when the functional differences between the groups are bigger. Nevertheless, to preserve the 

hearts during such a prolonged period of time, the HMP set-up requires improvements, such as the 

incorporation of continuous oxygenation into the system.  

In addition to the cf-DNA levels, the corresponding fragment sizes should also be studied. The 
difference in fragment size between static cold storage and hypothermic perfused hearts was not 
explored in this study. However, previous research showed that cf-DNA size might give an indication 
about health status148,149.  Its use in  distinguishing the good from the bad functioning hearts and 
predicting cardiac viability might also have potential and thus should be explored. Other exploration 
options in the future include the assessment of epigenetic features of the cf-DNA (e.g. DNA 
methylation or cell-free histones and its modifications) as these might be more specific in 
distinguishing hearts viable enough for transplantation from those that are not150.  This might be due to 
the fact that epigenetic features might give more insight in the pathological state of the cells.   
 

Besides the use of cf-DNA as predictors for cardiac function during machine perfusion, there was also 

looked at the potential use of cf-RNA levels. This was done to investigate whether cf-RNA was a 

predictor of cardiac function and to see which cell types and biological processes are affected during 

machine perfusion.  To the best of this author's knowledge, this was the first study that examined 

transcriptomic cf-mRNA profiling in an organ machine perfusion system. First, this study showed that 

CEL-seq2, a single-cell sequencing method, was able to identify and to quantify genes in the 

perfusate with a mean coverage of roughly 10,000 (>5 reads per gene)125. Based on the gene 

expression profiles, it was examined which cell types contributed most to the release of cf-RNA.  

First, the cell type deconvolution was performed using a built-in reference and this showed that the 

major sources of cf-DNA were adipocytes (HMP + NMP), hematopoietic stem cells (NMP), neurons 

(NMP), and skeletal muscle cells (HMP + NMP). The enrichment of adipocytes during HMP and at the 

beginning of HMP might be explained by the fact that around 80 percent of the heart surface is 

surrounded with adipose tissue and that it has several roles concerning metabolism, thermoregulation, 

mechanical protection, and immunity151. It might especially be due to the protective effects on the 

heart that adipocytes elicit in response to hypothermia. Skeletal muscle enrichment could be caused 

by the fact that these cells have similarities with cardiomyocytes, which are not included in the 

reference set152. In addition, some of the NMP samples were enriched in hematopoietic stem cells, 

which can be explained, as the hearts were perfused with diluted blood perfusion fluid. The neuronal 



enrichment may be caused by the disturbance of the intrinsic cardiac autonomic network, which plays 

a role in regulating cardiac function, predominantly by the harvesting procedure153. Technical issues of 

the analysis could also have resulted in wrong annotations, as the reference set for example does not 

contain all the important cell types present in the heart. In addition, some gene signatures can be 

assigned to different cell types, which causes enrichment of multiple cell types that are not necessarily 

all present. For this reason, the cell type deconvolution was also performed with a heart cell type 

reference set. Here, enrichment of cardiomyocytes and adipocytes was observed. In addition, an 

enrichment of endothelium, one of most prevalent cell types in the heart, was observed. However, this 

signal was seemingly overshadowed by the signals related to cardiomyocytes, which are even more 

abundant in the heart. When the references are combined by recomputing the highest score based on 

the labels that were enriched in the individual data sets and  based on an identical gene sets. 

Therefore, become some genes are removed from analysis, labels might have switched when the 

references were combined. Altogether, the main finding was that main source of cf-RNA appeared to 

be cardiac cell types, and not immune and blood cells. 

A disadvantage of cell type deconvolution using SingleR was that there were no built-in pig reference 

sets. Therefore, the cf-RNA seq data results had to be converted to the human ortholog genes. This 

probably resulted in loss of data, because not all the human orthologs are known.  

Our study demonstrated that dozens of genes were differentially expressed during HMP, but also 

during the reperfusion of the hearts using NMP. Moreover, our data indicated that the affected genes 

during HMP were involved in biological processes and pathways that relate to functional recovery after 

heart transplantation 154. More specifically, the results showed that pathways involved in maintaining 

the mitochondrial structure and  energy metabolism were downregulated, whereas processes that 

regulate gene transcription were activated. During reperfusion of the heart with an NMP set-up, 

suppression of pathways related to energy metabolism was also observed and immune response 

associated pathways were activated. Despite the major negative impact that metabolic and 

mitochondrial dysfunction have on heart transplantation, the focus of previous studies did not lie on 

metabolic and mitochondrial condition of the donor hearts. Nevertheless, the administration of 

therapies that target this metabolic and mitochondrial dysfunction during machine perfusion and/or 

post-transplantation, in combination with an improved, oxygenated, HMP set-up, might provide 

beneficial effects on ameliorating cardiac function and viability. Our research emphasized the potential 

use of non-invasive perfusate cf-mRNA profiling for identifying markers that enable assessment 

cardiac function and identifying new potential therapeutic targets. Based on our research, future 

research should thus focus on applying these potential therapies during machine perfusion to assess 

how it affects cardiac function and viability. 

Even though ex vivo heart machine perfusion might prolong the preservation times of donor hearts, 

the transplantation process remains  time-restricted. Therefore, biomarkers for ex vivo heart function in 

the perfusate rely on rapid detection. Because RNA-seq is a time-consuming approach, it is only 

useful to detect candidate biomarkers. it is paramount to move the identified markers that are able to 

predict ex vivo cardiac function into the clinic, where they could help the transplant teams to decide 

whether the heart is transplantable or not. To this end, the RNA levels could be quantified by 

developing standardized RT-qPCR- or antibody-based detection methods. For example, ultra-rapid 

RT-qPCR that generates results within 15-30 minutes already exists and may be harnessed for this 

purpose155,156.  

As this was started as an explorative study to check whether cf-mRNA sequencing in the RNA would 

work, the sample size was a limiting factor of the study. Because only 2 replicates of  both HMP and 

SCS were included in the cf-RNA seq study, no differentially expressed genes could be identified 

between the two different preservation methods over time. Therefore, the RNA-seq data set should be 

extended with the rest of the available samples from this experiment.   

In this study, a CEL-seq2 protocol was performed, which is an mRNA-only sequencing method125. 

However, miRNAs might also be important players in the ischemic heart and could possibly even 

serve as a therapeutic target. For example, Ren et al. identified miR-320 as a key player in the 

development of cardiac ischemia-reperfusion injury157. In addition,  the value of exploring the 

expression profile of miRNAs in a machine perfusion system was already proven by a study involving 



an ex vivo lung perfusion system158. Therefore, it might be useful to perform Phospho-RNA-seq, 

PALM-seq (PolyAdenylation Ligation Mediated-Seq), or cf-RNA-seq in the future to cover a wider 

range of RNAs159,160.  

Future research should include the comparison between gene expression profiles of the cf-RNA and 

those of heart tissue biopsies. It would be highly advantageous if cf-RNA could replace the biopsy, 

because these biopsies often cause myocardial injury or are obtained from unrepresentative sites of 

the heart, such as the left atrial appendage161. Moreover, correlations between the cf-RNA 

transcriptome profiles and functional cardiac parameters should be assessed to get a better indication 

of cf-RNA profiles could predict cardiac function during machine perfusion.  

cf-RNA is believed to be predominantly derived from living cells and therefore is thought to reflect the 

gene expression profile of the cells that secrete them. However, it should be noted that in our set-up, 

some of the cf-RNA might also as be released as cargo into vesicles for signalling purposes162. In this 

case, the cf-RNA does not reflect the gene expression of the cells that release them.  

Besides the potential of targeting affected pathways during machine perfusion,  cf-RNA, in general, 

might be used as a therapeutic target. Previous research namely indicated that RNAse I administration 

resulted in a reduced infarct size, a better cardiac function, and overall reduced cell death in an 

ischemia-reperfusion rat model by targeting the crosslink between cf-RNA and TNF-α163.  

Moreover, the important question remains whether cf-DNA would make a good biomarker. For one, 

cell damage and death, both marked by cf-DNA release, may not be the main problem in functional 

decline of the heart during transplantation. Moreover, cell damage and death are not considered to be 

accurate predictors of post-transplantation cardiac viability53. The levels of damage markers, such as 

cf-DNA, are subject to variability due to their potential release upon extended cold storage and during 

the harvesting procedure and perfusion set-up. Keeping this in mind, cardiac edema, for example, 

might have more potential as a measurement, as this was also found to be associated with PGD23.  

Moreover, the use of imaging techniques during HMP should be considered as predictors for post-

transplantation cardiac viability, especially because HMP would enable imaging of the heart after its 

exposure to potential harmful events during storage53. It is expected that assembling a panel of 

several biomarkers would allow for the most accurate examination of hearts on machine perfusion 

prior to transplantation 

In conclusion, this study demonstrated that HMP perfusate cf-mtDNA levels positively correlated with 

lactate levels during reperfusion of the heart using NMP. This indicates that cf-mtDNA levels in the 

perfusate might be able to predict post-transplantation cardiac function. In addition, the cf-DNA levels 

during NMP showed negative correlation trends with cardiac function. This illustrated that cf-DNA 

during reperfusion could predict cardiac function, but also suggests that it might be a potential 

therapeutic target that could be used to preserve improved cardiac function post-transplantation. Cf-

RNA levels showed that biological processes involved in energy production and metabolism were 

affected during HMP and NMP. Furthermore, gene regulation processes and immune responses were 

activated during HMP and NMP, respectively. Altogether, the data demonstrated that targeting 

mitochondrial and metabolic dysfunction or preventing immune responses during machine perfusion 

may potentially facilitate better donor heart preservation in the future. Further studies are required for 

the validation of cf-DNA and cf-RNA as biomarkers for predicting post-transplantation cardiac function 

during machine perfusion. Moreover, combining cf-DNA and cf-RNA with other biomarkers may prove 

to be pivotal in obtaining the optimal donor heart assessment. 
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Supplementary materials  

 

Supplementary Figure 1: The effect of different ProtK incubation protocols on cf-DNA yield. The cf-DNA yield of the 1-hour 
ProtK incubation at 60°C protocol was expressed as a percentage of the standard protocol. The standard protocol refers to the 
QIAamp MinElute ccfDNA protocol in which the samples are incubated with ProtK for 10 minutes at room temperature. The results 
are illustrated as bars that represent the mean of cf-DNA yield from 6 replicate extractions using the standard or 1-hour ProtK 
protocol with error bars that indicate the standard error of the mean (SEM). The asterisk (*) represents a significant difference 
(paired t-test p-value <0.05) between the standard protocol and the 1-hour ProtK incubation. 

 

Supplementary Figure 2: Electropherogram fragment size distribution profiles of perfusate cfDNA after standard protocol 
ProtK or 1-hour ProtK incubation at 60 °C . The cf-DNA fragment distribution profiles of A) T02Rb NP07, and B) T240 NP16 
incubated with Proteinase K for 10 minutes at room temperature (standard protocol) or 1 hour at 60 °C, were examined using the 
Agilent BioAnalyzer 2100. The standard protocol was the QIAamp MinElute ccfDNA protocol. The different ProtK incubation 
protocols did not show clear differences in fragment size profiles. The X-axis depicts fragment size (bp) or the migration time (s) 
of the DNA,  whereas the Y-axis displays the fluorescence intensity (FU). The peaks at 35 and 10380 base pairs are derived from 



the two internal High Sensitivity DNA markers. The non-marker peaks reflect mono-, di-, or tri-nucleosomal fragment sizes, and 
also longer fragments (1-10 kb). 

 

 



Supplementary Figure 3: Quality control of mRNA sequencing data by assessing total raw counts and gene coverage 
across all samples. Bar plot visualisation of the total raw counts (A) and gene coverage (B) per sample. The gene coverage 
included genes that had at least 5 reads.  

 

Supplementary Figure 4: Principal component analysis (PCA) on regularized log-transformed (rlog) read counts from 
the 500 most variable genes for each sample. The PCA plot was based on mRNA-sequencing data obtained using CEL-
seq2. The PCA analysis was performed using the DESeq2 package in Rstudio. The first and second principle components 
explain 80 and 3% of the variance in the transcriptome data. The samples were separated by NP number (A), condition (B), and 
time (C).  

 



 

Supplementary Figure 5: MA plot generated using DESeq2 for the exploration of condition-specific changes over time 
during normothermic machine perfusion. In the MA plot, the mean of normalised counts (x-axis) was plotted  against the 
log2 fold changes (y-axis). An adjusted p-value cutoff of 0.1 was used for the detection of differentially expressed genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Code 

Supplementary Code 1 
```{r} 
#read in the data of the cf-DNA levels, other metabolic markers, and functional cardiac parameters - 
not normalized - normalized by T02 - normalized by weight 
setwd("~/MRP/RNA seq") 
library(readxl) 
correlationdata = read_excel('~/MRP/AllData_Correlation.xlsx', sheet = 1, col_names = TRUE) 
correlationdataWN = read_excel('~/MRP/AllData_Correlation.xlsx', sheet = 2, col_names = TRUE) 
library(tidyverse) 
correlationdata <-  correlationdata %>% remove_rownames %>% column_to_rownames(var="Heart 
number") 
correlationdataWN <- correlationdataWN[-c(19:23), ] 
correlationdataWN <-  correlationdataWN %>% remove_rownames %>% 
column_to_rownames(var="Heart number") 
 
#correlation of HMP cf-DNA levels with functional cardiac parameters -  weight normalised  
correlationdataWNC0.05 <- correlationdataWN[-c(1:11),-c(1:6, 16:106, 111, 114, 117:175)] 
correlationdataWNC0.05 <- correlationdataWNC0.05[c(1, 2, 4, 5, 3 , 6, 8, 7, 9, 10:17)] 
correlationdataWNC1.5 <- correlationdataWN[-c(1:11),-c(1:19, 29:106, 111, 114, 117:175)] 
correlationdataWNC1.5 <- correlationdataWNC1.5[c(1, 2, 4, 5, 3 , 6, 8, 7, 9, 10:17)]  
correlationdataWNC4 <- correlationdataWN[-c(1:11),-c(1:32, 42:106, 111, 114, 117:175)] 
correlationdataWNC4 <- correlationdataWNC4[c(1, 2, 4, 5, 3 , 6, 8, 7, 9, 10:17)] 
# correlation of NMP cf-DNA levels with functional cardiac parameters normalised by T02, and weight 
normalised  
 
 
correlationdataWNTRPT02N <- correlationdataWN[,-c(1:106, 111, 114, 117:123, 133:175)] 
correlationdataWNTRPT02N <- correlationdataWNTRPT02N[c(9, 10, 12, 13, 11, 14, 16, 15, 17, 1:8)] 
correlationdataWNT60T02N  <- correlationdataWN[,-c(1:106, 111, 114, 117:136, 146:175)] 
correlationdataWNT60T02N <- correlationdataWNT60T02N[c(9, 10, 12, 13, 11, 14, 16, 15, 17, 1:8)] 
correlationdataWNT120T02N  <- correlationdataWN[,-c(1:106, 111, 114, 117:145, 155:175)] 
correlationdataWNT120T02N <- correlationdataWNT120T02N[c(9, 10, 12, 13, 11, 14, 16, 15, 17, 1:8)] 
correlationdataWNT240T02N  <- correlationdataWN[,-c(1:106, 111, 114, 117:158, 168:175)] 
correlationdataWNT240T02N <- correlationdataWNT240T02N[c(9, 10, 12, 13, 11, 14, 16, 15, 17, 1:8)] 
 
#correlation of cf-DNA levels with other metabolic and damage markers - weight normalised and for 
NMP levels also T02 normalised 
CorrelationwithMMWNC0.05 <- correlationdataWN[-c(1:11),-c(1:6,  20:28, 33:41, 46:132, 137:154, 
159:167, 172:175)] 
CorrelationwithMMWNC0.05 <- CorrelationwithMMWNC0.05[c(1, 2, 4, 5, 3 , 6, 8, 7, 9, 10:33)] 
CorrelationwithMMWNC1.5 <- correlationdataWN[-c(1:11),-c(1:15, 33:41,  46:132, 137:154, 
159:167,172:175)] 
CorrelationwithMMWNC1.5 <- CorrelationwithMMWNC1.5[ c(5,6, 8, 9, 7, 10, 12, 11, 13, 1:4, 14:33)] 
CorrelationwithMMWNC4<- correlationdataWN[-c(1:11),-c(1:15, 20:28, 46:132, 137:154, 159:167, 
172:175)] 
CorrelationwithMMWNC4<- CorrelationwithMMWNC4[ c(9,10, 12, 13, 11, 14, 16, 15, 17, 1:8, 18:33)] 
CorrelationwithMMW02C <- correlationdataWN[,-c(1:15, 20:28, 33:41, 46:123, 137:154, 159:167, 
172:175)] 
CorrelationwithMMW02C <- CorrelationwithMMW02C[c(13, 14, 16, 17, 15, 18, 20, 19, 21, 1:12, 
22:33)] 
CorrelationwithMMW60C <- correlationdataWN[,-c(1:15, 20:28, 33:41, 46:132, 146:154, 159:167, 
172:175)] 
CorrelationwithMMW60C <- CorrelationwithMMW60C[c(17, 18, 20, 21, 19, 22, 24, 23, 25, 1:16, 
26:33)] 
CorrelationwithMMW120C <- correlationdataWN[,-c(1:15, 20:28, 33:41, 46:132, 137:145, 159:167, 
172:175)] 
CorrelationwithMMW120C <- CorrelationwithMMW120C[c(17, 18, 20, 21, 19, 22, 24, 23, 25, 1:16, 
26:33)] 
CorrelationwithMMW240C <- correlationdataWN[,-c(1:15, 20:28, 33:41, 46:132, 137:154, 172:175)] 



CorrelationwithMMW240C  <- CorrelationwithMMW240C[c(21, 22, 24, 25, 23, 26, 28, 27, 29, 1:20, 
30:33)] 
 
#correlation of cf-DNA levels with inflammatory markers - weight normalised and for NMP levels also 
T02 normalised 
CorrelationwithWNC0.05I <- correlationdataWN[-c(1:11),-c(1:6, 16:121, 124: 171)] 
CorrelationwithWNC0.05I  <- CorrelationwithWNC0.05I[c(1, 2, 4, 5, 3, 6, 8, 7, 9, 12:15, 10, 11)] 
CorrelationwithWNC1.5I <- correlationdataWN[-c(1:11),-c(1:19, 29:121, 124:171)] 
CorrelationwithWNC1.5I <- CorrelationwithWNC1.5I[c(1, 2, 4, 5, 3, 6, 8, 7, 9, 12:15, 10, 11)] 
 
 
ggpairs(CorrelationwithWNC4I   , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
CorrelationwithWNC4I<- correlationdataWN[-c(1:11),-c(1:32, 42:121, 124:171)] 
CorrelationwithWNC4I <- CorrelationwithWNC4I[c(1, 2, 4, 5, 3, 6, 8, 7, 9, 12:15, 10, 11)] 
CorrelationwithWNC4I  <- CorrelationwithWNC4I [, -c(5,14)]  
CorrelationwithWNC4I<- correlationdataWN[-c(1:11),-c(1:32, 42:121, 124:171)] 
CorrelationwithWNC4I <- CorrelationwithWNC4I[c(1, 2, 4, 5, 3, 6, 8, 7, 9, 12:15, 10, 11)] 
CorrelationwithWNC4I  <- CorrelationwithWNC4I [ -c(1:4,6:9, 14)]  
CorrelationwithWNC4I<- correlationdataWN[-c(1:11),-c(1:32, 42:121, 124:171)] 
CorrelationwithWNC4I <- CorrelationwithWNC4I[c(1, 2, 4, 5, 3, 6, 8, 7, 9, 12:15, 10, 11)] 
CorrelationwithWNC4I <- CorrelationwithWNC4I [-c(2:4), -c(5)]  
CorrelationwithWNC4I<- correlationdataWN[-c(1:11),-c(1:32, 42:121, 124:171)] 
CorrelationwithWNC4I <- CorrelationwithWNC4I[c(1, 2, 4, 5, 3, 6, 8, 7, 9, 12:15, 10, 11)] 
CorrelationwithWNC4I <- CorrelationwithWNC4I [, -c(1:4, 6:13, 15)]  
 
CorrelationwithW02CI <- correlationdataWN[,-c(1:121, 133:171)] 
CorrelationwithW02CI <- CorrelationwithW02CI [c(3, 4, 6, 7, 5, 8, 10, 9, 11, 12:15, 1,2  )] 
 
CorrelationwithW60CI <- correlationdataWN[,-c(1:121, 124:136 , 146:171)] 
CorrelationwithW60CI <- CorrelationwithW60CI[c(3, 4, 6, 7, 5, 8, 10, 9, 11, 12:15, 1,2  )] 
CorrelationwithW120CI <- correlationdataWN[,-c(1:121, 124:145, 155:171)] 
CorrelationwithW120CI <- CorrelationwithW120CI[c(3, 4, 6, 7, 5, 8, 10, 9, 11, 12:15, 1,2  )] 
CorrelationwithW240CI <- correlationdataWN[,-c(1:121, 124:158, 168:171)] 
CorrelationwithW240CI <- CorrelationwithW240CI[c(3, 4, 6, 7, 5, 8, 10, 9, 11, 12:15, 1,2  )] 
``` 
 
 
 
```{r} 
# Made a function to perform Spearman correlations  
my_fn <- function(data, mapping, use="pairwise", ...){ 
 
              # grab data 
              x <- eval_data_col(data, mapping$x) 
              y <- eval_data_col(data, mapping$y) 
 
              # calculate correlation 
              corr <- cor(x, y, method="spearman", use=use) 
 
              # calculate colour based on correlation value 
              # Here I have set a correlation of minus one to blue,  
              # zero to white, and one to red  
              # Change this to suit: possibly extend to add as an argument of `my_fn` 
              colFn <- colorRampPalette(c("#3B9AB2", "white", "#F21A00"), interpolate ='spline') 



              fill <- colFn(100)[findInterval(corr, seq(-1, 1, length=100))] 
 
              ggally_cor(data = data, mapping = mapping, ...) +  
                theme_void() + 
                theme(panel.background = element_rect(fill=fill)) 
} 
``` 
 
 
```{r} 
library(ggplot2) 
library(GGally) 
ggpairs(correlationdataWNC0.05 , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
    #this does spearman https://github.com/ggobi/ggally/issues/60 #,fontface="bold" 
  )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(correlationdataWNC1.5 , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(correlationdataWNC4  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(correlationdataWNTRPT02N  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
    #this does spearman https://github.com/ggobi/ggally/issues/60 #,fontface="bold" 
  )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(correlationdataWNT60T02N , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(correlationdataWNT120T02N  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(correlationdataWNT240T02N  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  



     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
``` 
 
 
 
 
 
```{r} 
ggpairs(CorrelationwithMMWNC0.05  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=4,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
    #this does spearman https://github.com/ggobi/ggally/issues/60 #,fontface="bold" 
  )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithMMWNC1.5  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=4,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithMMWNC4  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=4,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithMMW02C  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=4,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
    #this does spearman https://github.com/ggobi/ggally/issues/60 #,fontface="bold" 
  )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithMMW60C  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=4,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithMMW120C   , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=4,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithMMW240C   , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=4,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
``` 



 
 
 
```{r} 
ggpairs(CorrelationwithWNC0.05I   , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
    #this does spearman https://github.com/ggobi/ggally/issues/60 #,fontface="bold" 
  )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithWNC1.5I   , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
 
ggpairs(CorrelationwithWNC4I   , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithW02CI  , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
    #this does spearman https://github.com/ggobi/ggally/issues/60 #,fontface="bold" 
  )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithW60CI   , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithW120CI   , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
 
ggpairs(CorrelationwithW240CI    , labeller = label_wrap_gen(0, multi_line = TRUE),  
    upper = list( 
    continuous = wrap(my_fn, method = "spearman",size=6,color="black",fontface="bold", 
vjust=0.1,digits=2 )  
     )) +  theme(axis.text.x = element_text(angle = 90, hjust = 1))  + 
  theme(strip.background =element_blank(), strip.placement = "outside") 
``` 
 
 
 
 



Supplementary Code 2 
 
## Total number of read counts per sample and gene coverage 
 
First the raw count data txt files were imported. I checked the # of total raw counts per sample and if 
each sample has an approx. equal # of covered reads. In most RNA-seq data sets at least 12-14k 
genes are covered. If a sample has less than this, it might be better to remove it from the analysis. I 
continued the analysis with the samples that had a total raw read count above 25,000 and gene 
coverage of 1500 genes that had at least 5 reads.  
 
```{r setup DESeq2 data set, include=F} 
Genetics = read.delim('~/MRP/RNA seq/cfRNA_combined_raw_counts.txt', row.names = 1) 
colnames(Genetics) <- sub(".sam.counts", "", colnames(Genetics)) # remove .sam.counts from column 
names 
colnames(Genetics) <- sub("__", "_", colnames(Genetics)) # remove other stuff 
colnames(Genetics) <- sub("_$", "", colnames(Genetics)) # remove last _ 
colnames(Genetics) <- sub("NP15T4_warm", "NP15_T4_warm", colnames(Genetics)) # adjust 
colnames(Genetics) <- sub("NP16T4_warm", "NP16_T4_warm", colnames(Genetics)) # adjust 
colnames(Genetics) <- sub("T01", "T0", colnames(Genetics)) # adjust 
GeneticsT = Genetics[,c(1:101)] # tissue 
GeneticsCf = Genetics[,c(102:130)] # cfRNA 
GeneticsTs = 
Genetics[,c(c(1,3,4,5,2,6,8,9,7,15,17,16,31,33,34,35,32,46,48,49,50,47,56,58,59,60,57,61,63,64,65,6
2),c(10,12,13,14,11,18,20,21,19,22,24,25,23,26,28,29,30,27,36,38,39,40,37,41,43,44,45,42,51,53,54,
55,52,66,67,68,69,70,71,72,73,74,77,76,78,75,79,82,81,83,80,84,87,86,88,85,89,92,91,93,90,94,97,9
6,98,95,99,101,100))] # sorted to get 7x HMP first, then 14x SCS 
GeneticscfRNA = GeneticsCf[,c(24:29,1,2,20,21,13,14,5,6,9,10,3, 4, 22,23,15,16,7,8,11,12, 17:19)] 
GeneticscfRNAfilter = GeneticsCf[,c(24:29,1,2,20,21,13,14,5,6,9,10,4,22,23,15,16,7,8,11,12)] # sorted 
to get 2x cold perfusion, then 2x HMP, then 2x SCS 
# 3 is the W02 sample that is deleted and 17:19 are the whole blood samples that are deleted 
for (i in c(1:25)){ 
  print(length(which(GeneticscfRNA[,i]==0))) 
} # this outputs the # of genes that have 0 reads for each sample 
nrow(GeneticscfRNA) 
``` 
 
```{r QC plots} 
# number of total counts per sample 
sum <- data.frame(sample = colnames(GeneticscfRNA),sum = colSums(GeneticscfRNA)) 
sum$sample <- factor(sum$sample, levels = row.names(sum)) 
ggplot(sum, aes(x=sample,y=sum)) + 
  geom_bar(stat='identity', fill=c(rep('#33638DFF',6),rep('#29AF7FFF',10), rep('#482677FF', 10), 
rep('#B8DE29FF',3))) +  
  theme_minimal() + ggtitle("total counts per sample") +  
  theme(axis.text.x = element_text(angle = 60, hjust = 1, size = 10), axis.text.y = element_text(size = 
12)) 
 
# quality check to see if each sample has an equal coverage of reads 
cov <- c(1:29) 
for (i in c(1:29)){  
  cov[i] <- length(which(GeneticscfRNA[,i]>4)) 
  } 
covData = data.frame(sample = colnames(GeneticscfRNA),cov) 
covData$sample <- factor(covData$sample, levels = row.names(sum)) 
ggplot(covData, aes(x=sample,y=cov)) + 
  geom_bar(stat='identity', fill=c(rep('#33638DFF',6),rep('#29AF7FFF',10), rep('#482677FF', 10), 
rep('#B8DE29FF',3))) +  
  theme_minimal() + ggtitle(">5 read gene coverage out of total of 30354 genes") + 
  theme(axis.text.x = element_text(angle = 60, hjust = 1, size = 10), axis.text.y = element_text(size = 
12)) 



``` 
 
 
```{r QC plots} 
# number of total counts per sample 
sum <- data.frame(sample = colnames(GeneticscfRNAfilter),sum = colSums(GeneticscfRNAfilter)) 
sum$sample <- factor(sum$sample, levels = row.names(sum)) 
 
ggplot(sum, aes(x=sample,y=sum)) + 
    geom_bar(stat='identity', fill=c(rep('#33638DFF',6),rep('#29AF7FFF',10), rep('#482677FF', 9), 
rep('#B8DE29FF',0))) +  
  theme_minimal() + ggtitle("total counts per sample") +  
  theme(axis.text.x = element_text(angle = 60, hjust = 1, size = 10), axis.text.y = element_text(size = 
12)) 
 
# quality check to see if each sample has an equal coverage of reads 
cov <- c(1:25) 
for (i in c(1:25)){  
  cov[i] <- length(which(GeneticscfRNAfilter[,i]>4)) 
  } 
covData = data.frame(sample = colnames(GeneticscfRNAfilter),cov) 
covData$sample <- factor(covData$sample, levels = row.names(sum)) 
ggplot(covData, aes(x=sample,y=cov)) + 
  geom_bar(stat='identity', fill=c(rep('#33638DFF',6),rep('#29AF7FFF',10), rep('#482677FF', 9), 
rep('#B8DE29FF',0))) +  
  theme_minimal() + ggtitle("Gene coverage out of total of 30354 genes") + 
  theme(axis.text.x = element_text(angle = 60, hjust = 1, size = 10), axis.text.y = element_text(size = 
12)) 
``` 
 
# PCA plots  
 
I used rlog transformation as it inherently accounts for differences in sequencing depth, which is the 
case for these samples. Variance stabilising transformation  is not good to use when there is a lot of 
variation in samples due to the experimental design. I could try vst if the samples with low sequencing 
depth are excluded. 
 
I also removed genes that had less than a sum of 10 counts. 
 
DESeq2 plots the PC1 and PC2 based on the top 500 most variable genes. I used the PCAtools 
package to get the other PCAs, which utilizes all genes. 
 
```{r, include=F} 
T = colnames(GeneticscfRNA) 
T = sub("_*[^_]*$","",T) 
T = gsub("a", "", T) 
ColData = data.frame(row.names=colnames(GeneticscfRNA), condition = c(rep('HMP Cold 
perfusate',6),rep('HMP Warm perfusate',10), rep('SCS Warm Perfusate', 10), rep('Whole Blood', 3)), 
NPnr = 
c(rep('NPC1',3),rep('NPC16',3),rep('NPW1',5),rep('NPW16',5),rep('NPW21',5),rep('NPW24',5),rep('WB'
,3)),time=T) 
                      
ColData 
dds <- DESeqDataSetFromMatrix(countData = GeneticscfRNA, 
                                    colData = ColData, 
                                    design = ~ condition) 
dds 
dds$NPnr <- factor(dds$NPnr, levels = c("NPC1", "NPC16", "NPW1", "NPW16", "NPW21", "NPW24", 
"WB")) # to order the levels, otherwise it will be on alphabetical order 



dds$time <- factor(dds$time, levels = c("C05","C1.5","C4","W02","WRP",  "W60", "W120", "W240",  
"WB")) 
 
dds <- dds[ rowSums(counts(dds)) > 10, ] # removed genes with a sum of 0-10 counts 
#vsd <- vst(dds) # not good to use 
rld <- rlog(dds) #rlog transformation inherently accounts for differences in sequencing depth 
save.image("QC.RData") 
``` 
 
```{r, include=F} 
T1 = colnames(GeneticscfRNAfilter) 
T1 = sub("_*[^_]*$","",T1) 
T1 = gsub("a", "", T1) 
ColData1 = data.frame(row.names=colnames(GeneticscfRNAfilter), condition = c(rep('HMP Cold 
perfusate',6),rep('HMP Warm perfusate',10), rep('SCS Warm Perfusate', 9), rep('Whole Blood', 0)), 
NPnr = 
c(rep('NPC1',3),rep('NPC16',3),rep('NPW1',5),rep('NPW16',5),rep('NPW21',4),rep('NPW24',5),rep('WB'
,0)),time=T1) 
                      
ColData1 
dds1 <- DESeqDataSetFromMatrix(countData = GeneticscfRNAfilter, 
                                    colData = ColData1, 
                                    design = ~ condition) 
dds1 
dds1$NPnr <- factor(dds1$NPnr, levels = c("NPC1", "NPC16", "NPW1", "NPW16", "NPW21", 
"NPW24", "WB")) # to order the levels, otherwise it will be on alphabetical order 
dds1$time <- factor(dds1$time, levels = c("C05","C1.5","C4","W02", "WRP", "W60", "W120",  "W240", 
"WB")) 
 
dds1 <- dds1[ rowSums(counts(dds1)) > 10, ] # removed genes with a sum of 0-10 counts 
#vsd <- vst(dds) # not good to use 
rld1 <- rlog(dds1) #rlog transformation inherently accounts for differences in sequencing depth 
save.image("QC.RData1") 
``` 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Code 3 
 
## Total number of read counts per sample and gene coverage 
 
First the raw count data txt files were imported. I checked the # of total raw counts per sample and if 
each sample has an approx. equal # of covered reads. In most RNA-seq data sets at least 10.000 
genes are covered. If a sample has less than this, it might be better to remove it from the analysis. I 
performed the quality control / PCA analyses for all samples, and also for the dataset with the 
excluded samples (thus only samples that had a total raw read count above 25,000 and gene 
coverage of 1500 genes that had at least 5 reads).  
 
 
```{r QC plots} 
# number of total counts per sample 
sum <- data.frame(sample = colnames(GeneticscfRNA),sum = colSums(GeneticscfRNA)) 
sum$sample <- factor(sum$sample, levels = row.names(sum)) 
#br = c(brewer.pal(7,"Blues"),brewer.pal(7,"Reds")) 
ggplot(sum, aes(x=sample,y=sum)) + 
  geom_bar(stat='identity', fill=c(rep('#33638DFF',6),rep('#29AF7FFF',10), rep('#482677FF', 10), 
rep('#B8DE29FF',3))) +  
  theme_minimal() + ggtitle("total counts per sample") +  
  theme(axis.text.x = element_text(angle = 60, hjust = 1, size = 10), axis.text.y = element_text(size = 
12)) + labs(x = "sample", y = "total raw counts") 
 
# quality check to see if each sample has an equal coverage of reads 
cov <- c(1:29) 
for (i in c(1:29)){  
  cov[i] <- length(which(GeneticscfRNA[,i]>4)) 
  } 
covData = data.frame(sample = colnames(GeneticscfRNA),cov) 
covData$sample <- factor(covData$sample, levels = row.names(sum)) 
ggplot(covData, aes(x=sample,y=cov)) + 
  geom_bar(stat='identity', fill=c(rep('#33638DFF',6),rep('#29AF7FFF',10), rep('#482677FF', 10), 
rep('#B8DE29FF',3))) +  
  theme_minimal() + ggtitle("Gene coverage out of total of 30354 genes") + 
  theme(axis.text.x = element_text(angle = 60, hjust = 1, size = 10), axis.text.y = element_text(size = 
12)) + labs(x = "sample", y = "gene coverage") 
``` 
```{r} 
# number of total counts per sample 
sum <- data.frame(sample = colnames(GeneticscfRNAfilter),sum = colSums(GeneticscfRNAfilter)) 
sum$sample <- factor(sum$sample, levels = row.names(sum)) 
#br = c(brewer.pal(7,"Blues"),brewer.pal(7,"Reds")) 
ggplot(sum, aes(x=sample,y=sum)) + 
    geom_bar(stat='identity', fill=c(rep('#33638DFF',6),rep('#29AF7FFF',10), rep('#482677FF', 9), 
rep('#B8DE29FF',0))) +  
  theme_minimal() + ggtitle("total counts per sample") +  
  theme(axis.text.x = element_text(angle = 60, hjust = 1, size = 10), axis.text.y = element_text(size = 
12)) 
 
# quality check to see if each sample has an equal coverage of reads 
cov <- c(1:25) 
for (i in c(1:25)){  
  cov[i] <- length(which(GeneticscfRNAfilter[,i]>4)) 
  } 
covData = data.frame(sample = colnames(GeneticscfRNAfilter),cov) 
covData$sample <- factor(covData$sample, levels = row.names(sum)) 
ggplot(covData, aes(x=sample,y=cov)) + 
  geom_bar(stat='identity', fill=c(rep('#33638DFF',6),rep('#29AF7FFF',10), rep('#482677FF', 9), 
rep('#B8DE29FF',0))) +  



  theme_minimal() + ggtitle("Gene coverage out of total of 30354 genes") + 
  theme(axis.text.x = element_text(angle = 60, hjust = 1, size = 10), axis.text.y = element_text(size = 
12)) 
``` 
 
 
# PCA plots  
 
I used rlog transformation as it inherently accounts for differences in sequencing depth, which is the 
case for these samples. Variance stabilizing transformation  is not good to use when there is a lot of 
variation in samples due to the experimental design. I could try vst if the samples with low sequencing 
depth are excluded. 
 
I also removed genes that had less than a sum of 10 counts. 
 
DESeq2 plots the PC1 and PC2 based on the top 500 most variable genes. I used the PCAtools 
package to get the other PCAs, which utilizes all genes. 
 
```{r PCA function from DESeq2 adjustment for other PCAs, include = F} 
DESeq2:::plotPCA.DESeqTransform 
plotPCA1vs3 <- function (object, intgroup = "condition", ntop = 500, returnData = FALSE)  
{ 
    rv <- rowVars(assay(object)) 
    select <- order(rv, decreasing = TRUE)[seq_len(min(ntop,  
        length(rv)))] 
    pca <- prcomp(t(assay(object)[select, ])) 
    percentVar <- pca$sdev^2/sum(pca$sdev^2) 
    if (!all(intgroup %in% names(colData(object)))) { 
        stop("the argument 'intgroup' should specify columns of colData(dds)") 
    } 
    intgroup.df <- as.data.frame(colData(object)[, intgroup,  
        drop = FALSE]) 
    group <- if (length(intgroup) > 1) { 
        factor(apply(intgroup.df, 1, paste, collapse = ":")) 
    } 
    else { 
        colData(object)[[intgroup]] 
    } 
    d <- data.frame(PC1 = pca$x[, 1], PC3 = pca$x[, 3], group = group,  
        intgroup.df, name = colnames(object)) 
    if (returnData) { 
        attr(d, "percentVar") <- percentVar[c(1,3)] 
        return(d) 
    } 
    ggplot(data = d, aes_string(x = "PC1", y = "PC3", color = "group")) +  
        geom_point(size = 3) + xlab(paste0("PC1: ", round(percentVar[1] *  
        100), "% variance")) + ylab(paste0("PC3: ", round(percentVar[2] *  
        100), "% variance")) + coord_fixed() 
} 
 
plotPCA2vs3 <- function (object, intgroup = "condition", ntop = 500, returnData = FALSE)  
{ 
    rv <- rowVars(assay(object)) 
    select <- order(rv, decreasing = TRUE)[seq_len(min(ntop,  
        length(rv)))] 
    pca <- prcomp(t(assay(object)[select, ])) 
    percentVar <- pca$sdev^2/sum(pca$sdev^2) 
    if (!all(intgroup %in% names(colData(object)))) { 
        stop("the argument 'intgroup' should specify columns of colData(dds)") 
    } 



    intgroup.df <- as.data.frame(colData(object)[, intgroup,  
        drop = FALSE]) 
    group <- if (length(intgroup) > 1) { 
        factor(apply(intgroup.df, 1, paste, collapse = ":")) 
    } 
    else { 
        colData(object)[[intgroup]] 
    } 
    d <- data.frame(PC2 = pca$x[, 2], PC3 = pca$x[, 3], group = group,  
        intgroup.df, name = colnames(object)) 
    if (returnData) { 
        attr(d, "percentVar") <- percentVar[c(2,3)] 
        return(d) 
    } 
    ggplot(data = d, aes_string(x = "PC2", y = "PC3", color = "group")) +  
        geom_point(size = 3) + xlab(paste0("PC2: ", round(percentVar[1] *  
        100), "% variance")) + ylab(paste0("PC3: ", round(percentVar[2] *  
        100), "% variance")) + coord_fixed() 
} 
 
``` 
 
### PCAs with the top 500 of most variable genes 
## time 
```{r PCA time, message=FALSE} 
# this only does PCA 1 and 2: plotPCA(vsd, intgroup=c("condition", "type")) 
# intgroup is set at the 500 genes with the highest variance 
pcaData <- plotPCA(rld, intgroup="time", returnData=TRUE) 
percentVar <- round(100 * attr(pcaData, "percentVar")) 
PCA1vs2 <- ggplot(pcaData, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar[2],"% variance")) +  
  coord_fixed() +  
  theme_set(theme_minimal(base_size = 20))  
pcaData1vs3 <- plotPCA1vs3(rld, intgroup="time", returnData=TRUE) 
percentVar1vs3 <- round(100 * attr(pcaData1vs3, "percentVar")) 
PCA1vs3 <- ggplot(pcaData1vs3, aes(PC1, PC3, color=time)) + 
  geom_point(size=2) + 
  xlab(paste0("PC1: ",percentVar1vs3[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar1vs3[2],"% variance")) +  
  coord_fixed()  +  
  theme_set(theme_minimal(base_size = 20))  
pcaData2vs3 <- plotPCA2vs3(rld, intgroup="time", returnData=TRUE) 
percentVar2vs3 <- round(100 * attr(pcaData2vs3, "percentVar")) 
PCA2vs3 <- ggplot(pcaData2vs3, aes(PC2, PC3, color=time)) + 
  geom_point(size=2) + 
  xlab(paste0("PC2: ",percentVar2vs3[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar2vs3[2],"% variance")) +  
  coord_fixed() + 
  theme_set(theme_minimal(base_size = 20)) 
PCA1vs2  
PCA1vs3 
PCA2vs3 
ggarrange(PCA1vs3,PCA2vs3, legend = F, align = "h") 
``` 
```{r} 
# this only does PCA 1 and 2: plotPCA(vsd, intgroup=c("condition", "type")) 
# intgroup is set at the 500 genes with the highest variance 
pcaData1 <- plotPCA(rld1, intgroup="time", returnData=TRUE) 



percentVar.1 <- round(100 * attr(pcaData1, "percentVar")) 
PCA1vs2.1 <- ggplot(pcaData1, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar.1[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar.1[2],"% variance")) +  
  coord_fixed() +  
  theme_set(theme_minimal(base_size = 20)) 
pcaData1vs3.1 <- plotPCA1vs3(rld1, intgroup="time", returnData=TRUE) 
percentVar1vs3.1 <- round(100 * attr(pcaData1vs3.1, "percentVar")) 
PCA1vs3.1 <- ggplot(pcaData1vs3.1, aes(PC1, PC3, color=time)) + 
  geom_point(size=2) + 
  xlab(paste0("PC1: ",percentVar1vs3.1[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar1vs3.1[2],"% variance")) +  
  coord_fixed()  +  
  theme_set(theme_minimal(base_size = 20))  
pcaData2vs3.1 <- plotPCA2vs3(rld1, intgroup="time", returnData=TRUE) 
percentVar2vs3.1 <- round(100 * attr(pcaData2vs3.1, "percentVar")) 
PCA2vs3.1 <- ggplot(pcaData2vs3.1, aes(PC2, PC3, color=time)) + 
  geom_point(size=2) + 
  xlab(paste0("PC2: ",percentVar2vs3.1[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar2vs3.1[2],"% variance")) +  
  coord_fixed() + 
  theme_set(theme_minimal(base_size = 20))  
PCA1vs2.1 
PCA1vs3.1 
PCA2vs3.1 
ggarrange(PCA1vs3.1,PCA2vs3.1, legend = F, align = "h") 
``` 
 
## NPnr 
```{r PCA NPnr, message=FALSE} 
pcaData <- plotPCA(rld, intgroup="NPnr", returnData=TRUE) 
percentVar <- round(100 * attr(pcaData, "percentVar")) 
PCA1vs2 <- ggplot(pcaData, aes(PC1, PC2, color=NPnr)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar[2],"% variance")) +  
  coord_fixed() +  
  theme_set(theme_minimal(base_size = 20))  
pcaData1vs3 <- plotPCA1vs3(rld, intgroup="NPnr", returnData=TRUE) 
percentVar1vs3 <- round(100 * attr(pcaData1vs3, "percentVar")) 
PCA1vs3 <- ggplot(pcaData1vs3, aes(PC1, PC3, color=NPnr)) + 
  geom_point(size=2) + 
  xlab(paste0("PC1: ",percentVar1vs3[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar1vs3[2],"% variance")) +  
  coord_fixed() + 
  theme_set(theme_minimal(base_size = 20))  
pcaData2vs3 <- plotPCA2vs3(rld, intgroup="NPnr", returnData=TRUE) 
percentVar2vs3 <- round(100 * attr(pcaData2vs3, "percentVar")) 
PCA2vs3 <- ggplot(pcaData2vs3, aes(PC2, PC3, color=NPnr)) + 
  geom_point(size=2) + 
  xlab(paste0("PC2: ",percentVar2vs3[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar2vs3[2],"% variance")) +  
  coord_fixed() +  
  theme_set(theme_minimal(base_size = 20))  
PCA1vs2  
ggarrange(PCA1vs3,PCA2vs3, legend = F, align = "h") 
``` 
  
```{r PCA NPnr, message=FALSE} 



pcaData1 <- plotPCA(rld1, intgroup="NPnr", returnData=TRUE) 
percentVar1 <- round(100 * attr(pcaData1, "percentVar")) 
PCA1vs2.1 <- ggplot(pcaData1, aes(PC1, PC2, color=NPnr)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar1[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar1[2],"% variance")) +  
  coord_fixed() +  
  theme_set(theme_minimal(base_size = 20))  
pcaData1vs3.1 <- plotPCA1vs3(rld1, intgroup="NPnr", returnData=TRUE) 
percentVar1vs3.1 <- round(100 * attr(pcaData1vs3.1, "percentVar")) 
PCA1vs3.1 <- ggplot(pcaData1vs3.1, aes(PC1, PC3, color=NPnr)) + 
  geom_point(size=2) + 
  xlab(paste0("PC1: ",percentVar1vs3.1[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar1vs3.1[2],"% variance")) +  
  coord_fixed() + 
  theme_set(theme_minimal(base_size = 20))  
pcaData2vs3.1 <- plotPCA2vs3(rld1, intgroup="NPnr", returnData=TRUE) 
percentVar2vs3.1 <- round(100 * attr(pcaData2vs3.1, "percentVar")) 
PCA2vs3.1 <- ggplot(pcaData2vs3.1, aes(PC2, PC3, color=NPnr)) + 
  geom_point(size=2) + 
  xlab(paste0("PC2: ",percentVar2vs3.1[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar2vs3.1[2],"% variance")) +  
  coord_fixed() +  
  theme_set(theme_minimal(base_size = 20))  
PCA1vs2.1  
ggarrange(PCA1vs3.1,PCA2vs3.1, legend = F, align = "h") 
``` 
  
  
  
  
## HMP vs SCS 
```{r PCA condition, message=FALSE} 
br = c('mediumspringgreen','darkorchid1', 'deepskyblue', 'hotpink')  
pcaData <- plotPCA(rld, intgroup="condition", returnData=TRUE) 
percentVar <- round(100 * attr(pcaData, "percentVar")) 
PCA1vs2 <- ggplot(pcaData, aes(PC1, PC2, color=condition)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar[2],"% variance")) +  
  coord_fixed() + 
 
  theme_set(theme_minimal(base_size = 20)) 
pcaData1vs3 <- plotPCA1vs3(rld, intgroup="condition", returnData=TRUE) 
percentVar1vs3 <- round(100 * attr(pcaData1vs3, "percentVar")) 
PCA1vs3 <- ggplot(pcaData1vs3, aes(PC1, PC3, color=condition)) + 
  geom_point(size=2) + 
  xlab(paste0("PC1: ",percentVar1vs3[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar1vs3[2],"% variance")) +  
  coord_fixed() + 
   
  theme_set(theme_minimal(base_size = 20)) 
pcaData2vs3 <- plotPCA2vs3(rld, intgroup="condition", returnData=TRUE) 
percentVar2vs3 <- round(100 * attr(pcaData2vs3, "percentVar")) 
PCA2vs3 <- ggplot(pcaData2vs3, aes(PC2, PC3, color=condition)) + 
  geom_point(size=2) + 
  xlab(paste0("PC2: ",percentVar2vs3[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar2vs3[2],"% variance")) +  
  coord_fixed()  +  
  theme_set(theme_minimal(base_size = 20)) 



PCA1vs2  
ggarrange(PCA1vs3,PCA2vs3,legend = F, align = "h") 
``` 
 
```{r} 
 
pcaData1 <- plotPCA(rld1, intgroup="condition", returnData=TRUE) 
percentVar1 <- round(100 * attr(pcaData1, "percentVar")) 
PCA1vs2.1 <- ggplot(pcaData1, aes(PC1, PC2, color=condition)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar1[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar1[2],"% variance")) +  
  coord_fixed() + 
   
  theme_set(theme_minimal(base_size = 20)) 
pcaData1vs3.1 <- plotPCA1vs3(rld1, intgroup="condition", returnData=TRUE) 
percentVar1vs3.1 <- round(100 * attr(pcaData1vs3.1, "percentVar")) 
PCA1vs3.1 <- ggplot(pcaData1vs3.1, aes(PC1, PC3, color=condition)) + 
  geom_point(size=2) + 
  xlab(paste0("PC1: ",percentVar1vs3.1[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar1vs3.1[2],"% variance")) +  
  coord_fixed() + 
 
  theme_set(theme_minimal(base_size = 20)) 
pcaData2vs3.1 <- plotPCA2vs3(rld1, intgroup="condition", returnData=TRUE) 
percentVar2vs3.1 <- round(100 * attr(pcaData2vs3.1, "percentVar")) 
PCA2vs3.1 <- ggplot(pcaData2vs3.1, aes(PC2, PC3, color=condition)) + 
  geom_point(size=2) + 
  xlab(paste0("PC2: ",percentVar2vs3.1[1],"% variance")) + 
  ylab(paste0("PC3: ",percentVar2vs3.1[2],"% variance")) +  
  coord_fixed() + 
 
  theme_set(theme_minimal(base_size = 20)) 
PCA1vs2.1  
ggarrange(PCA1vs3.1,PCA2vs3.1,legend = F, align = "h") 
``` 
 
 
 
 
 
 
### PCA1 and 2 with different numbers of most variable genes 
```{r PCA different number of genes included} 
# 1,000 genes with the highest variance 
pcaData1k <- plotPCA(rld, intgroup="time", returnData=TRUE, ntop = 1000) 
percentVar1k <- round(100 * attr(pcaData1k, "percentVar")) 
K1 <- ggplot(pcaData1k, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar1k[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar1k[2],"% variance")) +  
  coord_fixed() + ggtitle(label = "Top 1,000") + 
  theme_set(theme_minimal(base_size = 20))  
 
# 2,000 genes with the highest variance 
pcaData2k <- plotPCA(rld, intgroup="time", returnData=TRUE, ntop = 2000) 
percentVar2k <- round(100 * attr(pcaData2k, "percentVar")) 
K2 <- ggplot(pcaData2k, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar2k[1],"% variance")) + 



  ylab(paste0("PC2: ",percentVar2k[2],"% variance")) +  
  coord_fixed() + ggtitle(label = "Top 2,000") + 
  theme_set(theme_minimal(base_size = 20))  
 
# 5,000 genes with the highest variance 
pcaData5k <- plotPCA(rld, intgroup="time", returnData=TRUE, ntop = 5000) 
percentVar5k <- round(100 * attr(pcaData5k, "percentVar")) 
K5 <- ggplot(pcaData5k, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar5k[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar5k[2],"% variance")) +  
  coord_fixed() + ggtitle(label = "Top 5,000") + 
  theme_set(theme_minimal(base_size = 20))  
   
# All genes 
pcaDataAll <- plotPCA(rld, intgroup="time", returnData=TRUE, ntop = nrow(rld)) 
percentVarAll <- round(100 * attr(pcaDataAll, "percentVar")) 
Kall <- ggplot(pcaDataAll, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVarAll[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVarAll[2],"% variance")) +  
  coord_fixed() + ggtitle(label = "All genes") + 
  theme_set(theme_minimal(base_size = 20))  
K1 
K2 
K5 
Kall 
 
ggarrange(K1,K2,K5,Kall, as_ggplot(get_legend(Kall, position = "right")), legend = F, align = "h") 
``` 
 
 
```{r PCA different number of genes included} 
# 1,000 genes with the highest variance 
 
 
pcaData1k.1 <- plotPCA(rld1, intgroup="time", returnData=TRUE, ntop = 1000) 
percentVar1k.1 <- round(100 * attr(pcaData1k.1, "percentVar")) 
K1.1 <- ggplot(pcaData1k.1, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar1k.1[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar1k.1[2],"% variance")) +  
  coord_fixed() + ggtitle(label = "Top 1,000") + 
  theme_set(theme_minimal(base_size = 20))  
 
# 2,000 genes with the highest variance 
pcaData2k.1 <- plotPCA(rld1, intgroup="time", returnData=TRUE, ntop = 2000) 
percentVar2k.1 <- round(100 * attr(pcaData2k.1, "percentVar")) 
K2.1 <- ggplot(pcaData2k.1, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar2k.1[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar2k.1[2],"% variance")) +  
  coord_fixed() + ggtitle(label = "Top 2,000") + 
  theme_set(theme_minimal(base_size = 20))   
 
 
# 5,000 genes with the highest variance 
pcaData5k.1 <- plotPCA(rld1, intgroup="time", returnData=TRUE, ntop = 5000) 
percentVar5k.1 <- round(100 * attr(pcaData5k.1, "percentVar")) 
K5.1 <- ggplot(pcaData5k.1, aes(PC1, PC2, color=time)) + 



  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar5k.1[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar5k.1[2],"% variance")) +  
  coord_fixed() + ggtitle(label = "Top 5,000") + 
  theme_set(theme_minimal(base_size = 20))  
   
# All genes 
pcaDataAll.1 <- plotPCA(rld1, intgroup="time", returnData=TRUE, ntop = nrow(rld1)) 
percentVarAll.1 <- round(100 * attr(pcaDataAll.1, "percentVar")) 
Kall.1 <- ggplot(pcaDataAll.1, aes(PC1, PC2, color=time)) + 
  geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVarAll.1[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVarAll.1[2],"% variance")) +  
  coord_fixed() + ggtitle(label = "All genes") + 
  theme_set(theme_minimal(base_size = 20)) 
 
K1.1 
K2.1 
K5.1 
Kall.1 
 
ggarrange(K1.1,K2.1,K5.1,Kall.1, as_ggplot(get_legend(Kall.1, position = "right")), legend = F, align = 
"h") 
``` 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Code 4 
 
#load pig genes  
 
```{r} 
 
 
 
fix_genes <- . %>% # this doesn't work 
  tbl_df %>%  
  distinct %>%  
  rename(ensgene=ensembl_gene_id, 
         entrez=entrezgene, 
         symbol=external_gene_name, 
         chr=chromosome_name, 
         start=start_position, 
         end=end_position, 
         biotype=gene_biotype) 
 
# update of fix_genes based on error messages 
fix_genes <- . %>%  
  tibble::as_tibble() %>%  
  distinct %>%  
  rename(ensgene=ensembl_gene_id, 
         symbol=external_gene_name, 
         chr=chromosome_name, 
         start=start_position, 
         end=end_position, 
         biotype=gene_biotype) 
 
myattributes <- c("ensembl_gene_id", # removed entrezgenes, as it's not present in attributes) 
                  "external_gene_name", 
                  "chromosome_name", 
                  "start_position", 
                  "end_position", 
                  "strand", 
                  "gene_biotype", 
                  "description") 
 
 
# Pig 
sscrofa <- useMart("ensembl") %>%  
  useDataset(mart=., dataset="sscrofa_gene_ensembl") %>%  
  getBM(mart=., attributes=myattributes) %>%  
  fix_genes 
 
rm(fix_genes, myattributes) 
 
 
``` 
 
 
 
 
##### Analysis with time normalised - cold samples 
Same analysis with centering and scaling time - this does not give any DESeq2 message. Time was 
divided by the mean of all time points (which is ~100). With this method the p-values are 
approximately the same (the lower digits are different) as without scaling time. The log2-fold changes 
are different, as it's reported per unit.  



Note that I use 210 minutes for T4, because HMP is stopped at 3.5 hours to prepare the heart for 
NMP.  
```{r time scaled, include=T} 
t <- c(0,90,210)  
tn <- t/mean(t) 
ColDataContN = data.frame(row.names=colnames(GeneticscfRNAfilter[, 1:6]), time = rep(tn,each=2), 
condition = c(rep('HMP Cold perfusate',6)), NPnr = 
c(rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP16',1))) 
ddsColdN <- DESeqDataSetFromMatrix(countData = GeneticscfRNAfilter[,1:6], 
                                 colData = ColDataContN[1:6,], 
                                 design = ~ time) 
ddsColdN <- ddsColdN[ rowSums(counts(ddsColdN)) > 10, ] # removed genes with a sum of 0-10 
counts 
ddsTimeColdN = DESeq(ddsColdN) 
resTimeColdN <- results(ddsTimeColdN) 
resTimeColdN 
resTimeColdNOrdered <- resTimeColdN[order(resTimeColdN$pvalue),] 
summary(resTimeColdN) 
sum(resTimeColdN$padj < 0.1, na.rm=TRUE) 
plotMA(resTimeColdN, ylim=c(-2,3), main="Differentially expressed genes") # standard 
 
``` 
 
 
 
 
 
```{r} 
ensembl1 <- useEnsembl(biomart = "ensembl",  
                       dataset = "sscrofa_gene_ensembl") 
 
genesCold <- rownames(resTimeColdN) 
G_listCold <- getBM(filters= "ensembl_gene_id", attributes= c("ensembl_gene_id", 
"external_gene_name", 
"description", "entrezgene_id"),values=genesCold,mart= ensembl1) 
 
dim(G_listCold) 
length(unique(G_listCold$ensembl_gene_id)) 
 
G_listCold %>%   
    add_count(ensembl_gene_id) %>%   
    dplyr::filter(n>1) 
 
G_listCold <- G_listCold %>% distinct(ensembl_gene_id, .keep_all = TRUE) 
 
library(tidyverse) 
G_listCold <- G_listCold %>% 
     remove_rownames() %>% 
     column_to_rownames(var = 'ensembl_gene_id') 
 
 
 deCold <- merge(as.data.frame(resTimeColdN), G_listCold, by=0, all=TRUE)  # merge by row names 
(by=0 or by="row.names") 
 #de[is.na(de)] <- 0                 # replace NA values 
 deCold 
``` 
 
 
```{r} 
  #BiocManager::install('EnhancedVolcano') 



library(EnhancedVolcano) 
EnhancedVolcano(deCold, 
    lab = deCold$external_gene_name, 
    x = 'log2FoldChange', 
    y = 'pvalue', 
    pCutoff = 0.1, 
    pCutoffCol = 'padj', 
    labSize = 4.0, 
    drawConnectors = TRUE, 
    #maxoverlapsConnectors = Inf, 
    widthConnectors = 0.75, 
    labCol = 'black', 
    labFace = 'bold', 
    
    FCcutoff = 0.0, 
     col=c('gray', 'gray', 'gray', 'darkcyan'), 
    colAlpha = 1, 
    gridlines.major = FALSE, 
    gridlines.minor = FALSE) 
``` 
The grey dots in the significant field indicate NA padjust values.  
 
### Analysis with time normalised - warm samples 
 
```{r} 
 
 
t1 <- c(0,5,60, 120, 240)  
tn1 <- t1/mean(t1) 
ColDataContN1 = data.frame(row.names=colnames(GeneticscfRNAfilter[, 7:25]), time = 
c(rep(tn1,each=2), rep(tn1[1],1 ), rep(tn1[2:5], each=2)), condition = c(rep('HMP Warm perfusate',10), 
rep('SCS Warm perfusate', 9)), NPnr = 
c(rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP1
6',1),rep('NP1',1),rep('NP16',1), rep('NP24',1), rep('NP21', 1), rep('NP24', 1), rep('NP21', 1), 
rep('NP24', 1),rep('NP21', 1), rep('NP24', 1),rep('NP21', 1), rep('NP24', 1))) 
ddsWarmN <- DESeqDataSetFromMatrix(countData = GeneticscfRNAfilter[,7:25], 
                                 colData = ColDataContN1[1:19,], 
                                 design = ~ time) 
ddsWarmN <- ddsWarmN[ rowSums(counts(ddsWarmN)) > 10, ] # removed genes with a sum of 0-10 
counts 
ddsTimeWarmN = DESeq(ddsWarmN) 
resTimeWarmN <- results(ddsTimeWarmN) 
summary(resTimeWarmN) 
plotMA(resTimeWarmN, ylim=c(-2,2), main="Differentially expressed genes") # standard 
resTime.tidyN <- cbind(tidy.DESeqResults(resTimeWarmN),counts(ddsTimeWarmN)) 
resTime.tidyN[,3] <- round(resTime.tidyN[,3],digits = 3)  
resTime.tidyN[,7] <- signif(resTime.tidyN[,7],digits = 3)  
resTime.tidy.namesN <- resTime.tidyN %>%  
  arrange(p.adjusted) %>%  
  dplyr::filter(p.adjusted<0.1) %>%  
  inner_join(sscrofa, by=c("gene"="ensgene")) %>%  
  
dplyr::select(names(resTime.tidyN[1]),names(sscrofa[c(2,7)]),names(resTime.tidyN[2:7]),names(resTi
me.tidyN[8:26])) 
resTime.tidy.namesN[,c(2:5,8:9)] %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
``` 
 
 
 



 
```{r} 
genesWarm <- rownames(resTimeWarmN) 
G_listWarm <- getBM(filters= "ensembl_gene_id", attributes= c("ensembl_gene_id", 
"external_gene_name", 
"description", "entrezgene_id"),values=genesWarm,mart= ensembl1) 
 
dim(G_listWarm) 
length(unique(G_listWarm$ensembl_gene_id)) 
 
G_listWarm %>%   
    add_count(ensembl_gene_id) %>%   
    dplyr::filter(n>1) 
 
G_listWarm <- G_listWarm %>% distinct(ensembl_gene_id, .keep_all = TRUE) 
 
library(tidyverse) 
G_listWarm <- G_listWarm %>% 
     remove_rownames() %>% 
     column_to_rownames(var = 'ensembl_gene_id') 
 
 
 deWarm <- merge(as.data.frame(resTimeWarmN), G_listWarm, by=0, all=TRUE)  # merge by row 
names (by=0 or by="row.names") 
 #de[is.na(de)] <- 0                 # replace NA values 
 deWarm 
``` 
 
```{r} 
EnhancedVolcano(deWarm, 
    lab = deWarm$external_gene_name, 
    x = 'log2FoldChange', 
    y = 'pvalue', 
    pCutoff = 0.1, 
    pCutoffCol = 'padj', 
    labSize = 4.0, 
    drawConnectors = TRUE, 
    widthConnectors = 0.75, 
    labCol = 'black', 
    labFace = 'bold', 
   
    FCcutoff = 0, 
      col=c('gray', 'gray', 'gray', 'darkcyan'), 
    colAlpha = 1, 
    gridlines.major = FALSE, 
    gridlines.minor = FALSE) 
``` 
 
 
 
 
 
 
 
```{r} 
t <- c(0,90,210)  
tn <- t/mean(t) 
ColDataContN = data.frame(row.names=colnames(GeneticscfRNAfilter[, 1:6]), time = rep(tn,each=2), 
condition = c(rep('HMP Cold perfusate',6)), NPnr = 
c(rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP16',1))) 



ddsColdN <- DESeqDataSetFromMatrix(countData = GeneticscfRNAfilter[,1:6], 
                                 colData = ColDataContN[1:6,], 
                                 design = ~ time) 
#ddsColdN <- ddsColdN[ rowSums(counts(ddsColdN)) > 10, ] # removed genes with a sum of 0-10 
counts 
ddsTimeColdN = DESeq(ddsColdN) 
resTimeColdN <- results(ddsTimeColdN) 
resTimeColdN 
resTimeColdNOrdered <- resTimeColdN[order(resTimeColdN$pvalue),] 
summary(resTimeColdN) 
sum(resTimeColdN$padj < 0.1, na.rm=TRUE) 
plotMA(resTimeColdN, ylim=c(-2,3), main="Differentially expressed genes") # standard 
# export for GSEA. These were done based on all genes, so genes with <10 counts per row were not 
removed. 
# Two methods: apeglm schrunken log2 FCs and a combi of FC and p-value. Regarding the latter: 
people either multiply the sign of the Log2FC and -log10(p-value), or divide it (doesn't matter which 
way).See https://www.biostars.org/p/279097/ 
res_apeglmCold <- lfcShrink(ddsTimeColdN, coef = "time", type="apeglm")  
plotMA(res_apeglmCold, ylim=c(-0.5,2), main="Differentially expressed genes")  
head(res_apeglmCold) 
resTimeColdN$lfcShrink <- res_apeglmCold$log2FoldChange 
resTimeColdN$fcsign <- sign(resTimeColdN$log2FoldChange) 
resTimeColdN$logP <- -log10(resTimeColdN$pvalue) 
resTimeColdN$metric <- resTimeColdN$logP/resTimeColdN$fcsign  
res_OrderedCold <- resTimeColdN[order(resTimeColdN$pvalue),] 
head(res_OrderedCold,10) 
tail(res_OrderedCold,10) 
nrow(res_OrderedCold) 
final <- na.omit(resTimeColdN) 
nrow(final) 
finalOrdered <- final[order(final$metric),] 
plot(finalOrdered$metric) 
length(which(finalOrdered$metric<0))  
length(which(finalOrdered$metric>0))  
head(final[order(final$pvalue),]) 
tail(final[order(final$pvalue),]) 
metricCold <- data.frame(gene=row.names(final), final$metric) 
lfcShrinkCold <- data.frame(gene=row.names(final), final$lfcShrink) 
options(scipen = 999) # switch off printing e numbers 
write.table(metricCold,file="resTimeContinuousWaldCold_metric.rnk",sep = "\t",row.names = F, 
col.names = F,quote = F)  
write.table(lfcShrinkCold,file="resTimeContinuousWaldCold_lfcShrink.rnk",sep = "\t",row.names = F, 
col.names = F,quote = F) 
options(scipen = 0) 
``` 
 
```{r} 
ensembl1 <- useEnsembl(biomart = "ensembl",  
                       dataset = "sscrofa_gene_ensembl") 
metricCold2 <- metricCold %>% remove_rownames %>% column_to_rownames(var="gene") 
 
genesColdmetric <- rownames(metricCold2) 
G_listColdmetric <- getBM(filters= "ensembl_gene_id", attributes= c( "ensembl_gene_id", 
"external_gene_name", "entrezgene_id"),values=genesColdmetric,mart= ensembl1) 
 
 
G_listColdmetric %>%   
    add_count(ensembl_gene_id) %>%   
    dplyr::filter(n>1) 
 



G_listColdmetric<- G_listColdmetric %>% distinct(ensembl_gene_id, .keep_all = TRUE) 
 
library(tidyverse) 
G_listColdmetric <- G_listColdmetric %>% 
     remove_rownames() %>% 
     column_to_rownames(var = 'ensembl_gene_id') 
 
 
finalmetricCold <- merge(as.data.frame(metricCold2), G_listColdmetric, by=0, all=TRUE)  # merge by 
row names (by=0 or by="row.names") 
 #de[is.na(de)] <- 0                 # replace NA values 
 finalmetricCold  
``` 
 
```{r} 
 
library(clusterProfiler) 
## Remove any NA values 
deCold_entrezmetric <- subset(finalmetricCold , is.na(entrezgene_id) == FALSE) 
 
 
## Remove any Entrez duplicates 
deCold_entrezmetric<- deCold_entrezmetric[which(duplicated(deCold_entrezmetric$entrezgene_id) 
== F), ] 
geneCold_matrixmetric <- deCold_entrezmetric$final.metric 
names(geneCold_matrixmetric) <- deCold_entrezmetric$entrezgene_id 
 
 
 
geneCold_matrixmetric = sort(geneCold_matrixmetric, decreasing = TRUE) 
 
head(geneCold_matrixmetric) 
 
``` 
GO gene enrichment and pathway analysis 
```{r} 
gseColdmetric <- gseGO(geneList = geneCold_matrixmetric,  
              ont = "ALL", 
              pvalueCutoff = 0.1, 
              pAdjustMethod = "BH", 
              OrgDb = org.Ss.eg.db 
              ) 
require(DOSE) 
dotplot(gseColdmetric, showCategory =25, split = ".sign") + facet_grid(.~.sign) 
 
 
``` 
 
 
 
 
 
```{r export for GSEA II, include= F} 
t1 <- c(0,5,60, 120, 240)  
tn1 <- t1/mean(t1) 
ColDataContN1 = data.frame(row.names=colnames(GeneticscfRNAfilter[, 7:25]), time = 
c(rep(tn1,each=2), rep(tn1[1],1 ), rep(tn1[2:5], each=2)), condition = c(rep('HMP Warm perfusate',10), 
rep('SCS Warm perfusate', 9)), NPnr = 
c(rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP16',1),rep('NP1',1),rep('NP1



6',1),rep('NP1',1),rep('NP16',1), rep('NP24',1), rep('NP21', 1), rep('NP24', 1), rep('NP21', 1), 
rep('NP24', 1),rep('NP21', 1), rep('NP24', 1),rep('NP21', 1), rep('NP24', 1))) 
ddsWarmN <- DESeqDataSetFromMatrix(countData = GeneticscfRNAfilter[,7:25], 
                                 colData = ColDataContN1[1:19,], 
                                 design = ~ time) 
#ddsWarmN <- ddsWarmN[ rowSums(counts(ddsWarmN)) > 10, ] # removed genes with a sum of 0-
10 counts 
ddsTimeWarmN = DESeq(ddsWarmN) 
resTimeWarmN <- results(ddsTimeWarmN) 
summary(resTimeWarmN) 
plotMA(resTimeWarmN, ylim=c(-2,2), main="Differentially expressed genes") # standard 
# export for GSEA. These were done based on all genes, so genes with <10 counts per row were not 
removed. 
res_apeglmW <- lfcShrink(ddsTimeWarmN, coef = "time", type="apeglm")  
plotMA(res_apeglmW, ylim=c(-0.7,0.7), main="Differentially expressed genes")  
head(res_apeglmW) 
resTimeWarmN$lfcShrink <- res_apeglmW$log2FoldChange 
resTimeWarmN$fcsign <- sign(resTimeWarmN$log2FoldChange) 
resTimeWarmN$logP <- -log10(resTimeWarmN$pvalue) 
resTimeWarmN$metric <- resTimeWarmN$logP/resTimeWarmN$fcsign  
res_OrderedW <- resTimeWarmN[order(resTimeWarmN$pvalue),] 
head(res_OrderedW,10) 
tail(res_OrderedW,10) 
nrow(res_OrderedW) 
finalW <- na.omit(resTimeWarmN) 
nrow(finalW) 
finalOrderedW <- final[order(finalW$metric),] 
plot(finalOrderedW$metric) 
length(which(finalOrderedW$metric<0)) #339 
length(which(finalOrderedW$metric>0)) #1176 
 
head(finalW[order(finalW$pvalue),]) 
tail(finalW[order(finalW$pvalue),]) 
metricW <- data.frame(gene=row.names(finalW), finalW$metric) 
lfcShrinkW <- data.frame(gene=row.names(finalW), finalW$lfcShrink) 
options(scipen = 999) 
write.table(metricW ,file="resTimeContinuousWaldWarm_metric.rnk",sep = "\t",row.names = F, 
col.names = F,quote = F)  
write.table(lfcShrinkW,file="resTimeContinuousWaldWarm_lfcShrink.rnk",sep = "\t",row.names = F, 
col.names = F,quote = F) 
options(scipen = 0) 
``` 
 
 
```{r} 
ensembl1 <- useEnsembl(biomart = "ensembl",  
                       dataset = "sscrofa_gene_ensembl") 
metricW2 <- metricW %>% remove_rownames %>% column_to_rownames(var="gene") 
 
genesW <- rownames(metricW2) 
G_listW <- getBM(filters= "ensembl_gene_id", attributes= c( 
"ensembl_gene_id","external_gene_name", "entrezgene_id"),values=genesW,mart= ensembl1) 
 
 
G_listW %>%   
    add_count(ensembl_gene_id) %>%   
    dplyr::filter(n>1) 
 
G_listW<- G_listW %>% distinct(ensembl_gene_id, .keep_all = TRUE) 
 



library(tidyverse) 
G_listW <- G_listW %>% 
     remove_rownames() %>% 
     column_to_rownames(var = 'ensembl_gene_id') 
 
 
finalmetricW <- merge(as.data.frame(metricW2), G_listW, by=0, all=TRUE)  # merge by row names 
(by=0 or by="row.names") 
 #de[is.na(de)] <- 0                 # replace NA values 
 finalmetricW 
``` 
 
```{r} 
 
library(clusterProfiler) 
## Remove any NA values 
deW_entrez <- subset(finalmetricW , is.na(entrezgene_id) == FALSE) 
 
 
## Remove any Entrez duplicates 
deW_entrez<- deW_entrez[which(duplicated(deW_entrez$entrezgene_id) == F), ] 
geneW_matrix <- deW_entrez$finalW.metric 
names(geneW_matrix) <- deW_entrez$entrezgene_id 
 
 
 
geneW_matrix = sort(geneW_matrix, decreasing = TRUE) 
 
head(geneW_matrix) 
 
``` 
 
 
 
```{r} 
gseW <- gseGO(geneList = geneW_matrix,  
              ont = "ALL", 
              pvalueCutoff = 0.3, 
              pAdjustMethod = "BH", 
              OrgDb = org.Ss.eg.db 
              ) 
require(DOSE) 
dotplot(gseW, showCategory = 25, split = ".sign") + facet_grid(.~.sign) 
 
 
``` 
 
 
 
### Analysis using the LRT test 
 
#### Temperature-specific differences over time 
Full model: temperature + time + temperature:time. Reduced model: temperature + time. This will give 
the genes that have a temperature-specific effect over time, either by going in different direction or by 
having a different log2-FC over time. The log2-FC output is the difference between the log2-FC over 
time in cold and warm samples. Note therefore that this will not give small p values to genes that 
moved up or down over time in the same way in both temperatures. 
See 
https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#interactions 
for example explanations. 



```{r LRT temperature-specific} 
ddsLRTwarm <- DESeqDataSetFromMatrix(countData = GeneticscfRNAfilter[,7:25], 
                                 colData = ColDataContN1[1:19,], 
                                 design = ~ condition + time + condition:time) 
ddsLRTwarm <- ddsLRTwarm[ rowSums(counts(ddsLRTwarm)) > 10, ] # removed genes with a sum 
of 0-10 counts 
ddsLRTwarm = DESeq(ddsLRTwarm, test = "LRT", reduced = ~ condition + time) 
resLRTwarm <- results(ddsLRTwarm) 
resLRTwarm  
summary(resLRTwarm) 
plotMA(resLRTwarm, ylim=c(-0.5, 0.5)) 
 
 
res.tidyN <- cbind(tidy.DESeqResults(resLRTwarm),counts(ddsLRTwarm)) 
res.tidyN[,3] <- round(res.tidyN[,3],digits = 3)  
res.tidyN[,7] <- signif(res.tidyN[,7],digits = 3)  
res.tidy.namesN <- res.tidyN %>%  
  arrange(p.adjusted) %>%  
  dplyr::filter(p.adjusted<0.1) %>%  
  inner_join(sscrofa, by=c("gene"="ensgene")) %>%  
  
dplyr::select(names(res.tidyN[1]),names(sscrofa[c(2,7)]),names(res.tidyN[2:7]),names(res.tidyN[8:26])) 
res.tidy.namesN[,c(2:5,8:9)] %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
#write.csv(res.tidy.namesN, file = 'resTemp-specific_LRT_Padjusted_U0.9.csv') 
``` 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Code 5 
 
First the raw count data txt files were imported. Michal created these; first the barcodes and UMIs 
were sorted, then he mapped the reads to the transcriptome of S. Scrofa using bwa. I checked the # of 
total raw counts per sample and the read coverage across genes (Supplementary Code 2). I 
continued the analysis with the samples that had a total raw read count above 25,000 and gene 
coverage of 1500 genes that had at least 5 reads.  
 
The # of genes in the count file: 30354 (at least 1 read in any of the 29 samples). 
Total # of genes in pig: 31908.  
Total # of genes in human: 67128 
 
 
 
``` {r add pig genes, include=F} 
if (!requireNamespace("BiocManager", quietly = TRUE)) 
    install.packages("BiocManager") 
BiocManager::install("biomaRt") 
library(biomaRt) 
 
fix_genes <- . %>% # this doesn't work 
  tbl_df %>%  
  distinct %>%  
  rename(ensgene=ensembl_gene_id, 
         entrez=entrezgene, 
         symbol=external_gene_name, 
         chr=chromosome_name, 
         start=start_position, 
         end=end_position, 
         biotype=gene_biotype) 
 
# update of fix_genes based on error messages 
fix_genes <- . %>%  
  tibble::as_tibble() %>%  
  distinct %>%  
  rename(ensgene=ensembl_gene_id, 
         symbol=external_gene_name, 
         chr=chromosome_name, 
         start=start_position, 
         end=end_position, 
         biotype=gene_biotype) 
 
myattributes <- c("ensembl_gene_id", # removed entrezgenes, as it's not present in attributes) 
                  "external_gene_name", 
                  "chromosome_name", 
                  "start_position", 
                  "end_position", 
                  "strand", 
                  "gene_biotype", 
                  "description") 
 
 
# Pig 
sscrofa <- useMart("ensembl") %>%  
  useDataset(mart=., dataset="sscrofa_gene_ensembl") %>%  
  getBM(mart=., attributes=myattributes) %>%  
  fix_genes 
 
rm(fix_genes, myattributes) 



 
fix_genes <- . %>% # this doesn't work 
  tbl_df %>%  
  distinct %>%  
  rename(ensgene=ensembl_gene_id, 
         entrez=entrezgene, 
         symbol=external_gene_name, 
         chr=chromosome_name, 
         start=start_position, 
         end=end_position, 
         biotype=gene_biotype) 
 
# update of fix_genes based on error messages 
fix_genes <- . %>%  
  tibble::as_tibble() %>%  
  distinct %>%  
  rename(ensgene=ensembl_gene_id, 
         symbol=external_gene_name, 
         chr=chromosome_name, 
         start=start_position, 
         end=end_position, 
         biotype=gene_biotype) 
 
myattributes <- c("ensembl_gene_id", # removed entrezgenes, as it's not present in attributes) 
                  "external_gene_name", 
                  "chromosome_name", 
                  "start_position", 
                  "end_position", 
                  "strand", 
                  "gene_biotype", 
                  "description") 
 
# human 
hsapiens <- useMart("ensembl") %>%  
  useDataset(mart=., dataset="hsapiens_gene_ensembl") %>%  
  getBM(mart=., attributes=myattributes) %>%  
  fix_genes 
 
rm(fix_genes, myattributes) 
 
``` 
 
 
# Top 20 expressed genes per sample 
Ordered on counts from high-low for the cf-RNA samples. 
 
 
```{r} 
GeneticscfRNA2 = data.frame(gene=row.names(GeneticscfRNAfilter),GeneticscfRNAfilter[,1:25]) 
colnames(GeneticscfRNA2) 
colnames(sscrofa) 
GeneticscfRNA.tidy.names <- GeneticscfRNA2 %>%  
  inner_join(sscrofa, by=c("gene"="ensgene")) %>%  
  dplyr::select(gene, symbol, C05_NP01, C05_NP16, C1.5_NP01, C1.5_NP16, C4_NP01, C4_NP16, 
W02_NP01, W02_NP16, W02_NP24, WRPa_NP01, WRPa_NP16, WRP_NP21, WRP_NP24, 
W60_NP01, W60_NP16, W60_NP21, W60_NP24, W120_NP01, W120_NP16, W120_NP21, 
W120_NP24, W240a_NP01, W240a_NP16, W240_NP21, W240_NP24,biotype, description) 
``` 
 
 



 
``` {r top expressed genes per sample} 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(C05_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(C05_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(C1.5_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(C1.5_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(C4_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(C4_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W02_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W02_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W02_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(WRPa_NP01)) %>% 
  head(20) %>% 



  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(WRPa_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(WRP_NP21)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(WRP_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W60_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W60_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W60_NP21)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W60_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W120_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W120_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W120_NP21)) %>% 
  head(20) %>% 



  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W120_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W240a_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W240a_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W240_NP21)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
GeneticscfRNA.tidy.names %>% 
  arrange(desc(W240_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
``` 
 
 
# Top expressed heart-specific genes 
I downloaded a list from the human protein atlas with genes that are enriched in heart. Settings: 
cell_type_category_rna:Cardiomyocytes;Cell type enriched,Group enriched,Cell type enhanced AND 
sort_by:tissue specific score.  
 
665 out of 880 heart-specific genes are found in our pig gene count file. 
 
``` {r heart specific genes,include = F} 
HeartGenes = read.delim('proteinatlas_6aacaf9d.tsv', row.names = 1) 
colnames(HeartGenes[,1:10]) 
head(HeartGenes[1:50]) 
HeartGenes = data.frame(HeartGene = row.names(HeartGenes),HeartGenes) 
HeartGenesS <- GeneticscfRNA.tidy.names  %>%  
  inner_join(HeartGenes, by=c("symbol"="HeartGene")) %>%  
  dplyr::select(gene, symbol,C05_NP01, C05_NP16, C1.5_NP01, C1.5_NP16, C4_NP01, C4_NP16, 
W02_NP01, W02_NP16,  W02_NP24, WRPa_NP01, WRPa_NP16, WRP_NP21, WRP_NP24, 
W60_NP01, W60_NP16, W60_NP21, W60_NP24, W120_NP01, W120_NP16, W120_NP21, 
W120_NP24, W240a_NP01, W240a_NP16, W240_NP21, W240_NP24,  RNA.tissue.specificity.score, 
Gene.description) #RNA.tissue.specific.NX, RNA.single.cell.type.specific.NX, 
RNA.blood.cell.specificity 
nrow(HeartGenesS) #665 
nrow(HeartGenes) #880 
``` 
 



# top 20 heart-specific genes based on tissue specificity score 
``` {r list top expressed heart genes} 
# top 20 heart-specific genes based on tissue specificity score 
HeartGenesS %>% 
  arrange(desc(RNA.tissue.specificity.score)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
``` 
``` {r top expressed heart genes per sample} 
 
HeartGenesS %>% 
  arrange(desc(C05_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(C05_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(C1.5_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(C1.5_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(C4_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
HeartGenesS %>% 
  arrange(desc(C4_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
 
HeartGenesS %>% 
  arrange(desc(W02_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W02_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
 
HeartGenesS %>% 



  arrange(desc(W02_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(WRPa_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(WRPa_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(WRP_NP21)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(WRP_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W60_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W60_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W60_NP21)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W60_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W120_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 



  arrange(desc(W120_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W120_NP21)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W120_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W240a_NP01)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W240a_NP16)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W240_NP21)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
 
 
HeartGenesS %>% 
  arrange(desc(W240_NP24)) %>% 
  head(20) %>% 
  pander::pandoc.table(split.table=100, style="rmarkdown") 
``` 
 
``` {r write tables, include = F} 
HeartGenesS2 <- Genetics.tidy.names  %>%  
  inner_join(HeartGenes, by=c("symbol"="HeartGene")) %>%  
  dplyr::select(gene, symbol, C05_NP01, C05_NP16, C1.5_NP01, C1.5_NP16, C4_NP01, C4_NP16, 
WB_NP01, WB_NP16, WB_NP24, W02_NP01, W02_NP16, W02_NP21, W02_NP24, WRPa_NP01, 
WRPa_NP16, WRP_NP21, WRP_NP24, W60_NP01, W60_NP16, W60_NP21, W60_NP24, 
W120_NP01, W120_NP16, W120_NP21, W120_NP24, W240a_NP01, W240a_NP16, W240_NP21, 
W240_NP24, RNA.tissue.specificity.score, Gene.description, RNA.tissue.specific.NX, 
RNA.single.cell.type.specific.NX, RNA.blood.cell.specificity)  
write.table(HeartGenesS2,file="HeartGenes.txt",sep = "\t",row.names = F, col.names = T,quote = F)  
 
``` 
 
# convert pig genes to human genes  
 
 
```{r} 
ensembl1 <- useEnsembl(biomart = "ensembl",  
                       dataset = "sscrofa_gene_ensembl") 



humancfRNA <- getBM( mart = ensembl1, 
       filters = "ensembl_gene_id", 
       values = GeneticscfRNA.tidy.names$gene, 
       attributes = c("ensembl_gene_id", "external_gene_name", "hsapiens_homolog_ensembl_gene", 
"hsapiens_homolog_associated_gene_name") 
       ) 
``` 
 
```{r} 
library(dplyr) 
finalcfRNA <- humancfRNA %>%  
  inner_join(GeneticscfRNA.tidy.names, by=c("ensembl_gene_id" = "gene")) 
``` 
 
 
 
```{r} 
BiocManager::install("EDASeq") 
library("EDASeq") 
``` 
# Total count normalization 
 
I calculated the total count per sample using colSums 
 
```{r} 
colSums(finalcfRNA[,c(6:30)]) 
``` 
I summed up the counts for genes that have the similar human ensembl gene code.  
 
 
```{r} 
sumfinalcountstrycfRNA <-  
finalcfRNA %>% group_by(hsapiens_homolog_ensembl_gene, 
hsapiens_homolog_associated_gene_name) %>%  
  summarize_at(.vars = vars(C05_NP01, C05_NP16, C1.5_NP01, C1.5_NP16, C4_NP01, C4_NP16, 
W02_NP01, W02_NP16, W02_NP24, WRPa_NP01, WRPa_NP16, WRP_NP21, WRP_NP24, 
W60_NP01, W60_NP16, W60_NP21, W60_NP24, W120_NP01, W120_NP16, W120_NP21, 
W120_NP24, W240a_NP01, W240a_NP16, W240_NP21, W240_NP24),  
               .funs = c(sum = "sum")) 
``` 
 
 
 
 
I removed the row that does not have a homolog human gene. 
 
 
```{r} 
cfRNAwithhomolog <- sumfinalcountstrycfRNA[-c(1),] 
colSums(cfRNAwithhomolog[,c(3:27)]) 
``` 
 
 
 
I summed up the counts for genes that have the similar human gene name  
 
```{r} 
sumfinalcountcfRNA <- cfRNAwithhomolog %>% 
group_by(hsapiens_homolog_associated_gene_name) %>%    



  summarize_at(.vars = vars(C05_NP01_sum, C05_NP16_sum, C1.5_NP01_sum, C1.5_NP16_sum, 
C4_NP01_sum, C4_NP16_sum,  W02_NP01_sum, W02_NP16_sum,  W02_NP24_sum, 
WRPa_NP01_sum, WRPa_NP16_sum, WRP_NP21_sum, WRP_NP24_sum, W60_NP01_sum, 
W60_NP16_sum, W60_NP21_sum, W60_NP24_sum, W120_NP01_sum, W120_NP16_sum, 
W120_NP21_sum, W120_NP24_sum, W240a_NP01_sum, W240a_NP16_sum, W240_NP21_sum, 
W240_NP24_sum),  
               .funs = c(sum = "sum")) 
``` 
 
 
 
 
I removed the row that does not have a homolog human gene. 
 
 
```{r} 
cfRNAwithhumangenename <- sumfinalcountcfRNA[-c(1),] 
colSums(cfRNAwithhumangenename[,c(2:26)]) 
``` 
 
I calculated the total count per sample using colSums 
 
```{r} 
cfRNAtotalcountpersample <- colSums(cfRNAwithhumangenename[ , c(2:26)]) 
``` 
 
 
 
total counts per sample per million 
 
```{r} 
 
totalcountspersamplepermillioncfRNA <- cfRNAtotalcountpersample / 1e6 
``` 
 
 
I divided the gene counts / total count per sample per million 
 
 
```{r} 
cfRNAsumfinalcount<- cfRNAwithhumangenename  %>% mutate (C05_NP01 = 
C05_NP01_sum_sum / totalcountspersamplepermillioncfRNA[1], C05_NP16 = C05_NP16_sum_sum / 
totalcountspersamplepermillioncfRNA[2], C1.5_NP01 = C1.5_NP01_sum_sum / 
totalcountspersamplepermillioncfRNA[3], C1.5_NP16 = C1.5_NP16_sum_sum / 
totalcountspersamplepermillioncfRNA[4], C4_NP01 = C4_NP01_sum_sum / 
totalcountspersamplepermillioncfRNA[5], C4_NP16 = C4_NP16_sum_sum / 
totalcountspersamplepermillioncfRNA[6],  W02_NP01 = W02_NP01_sum_sum / 
totalcountspersamplepermillioncfRNA[7], W02_NP16 = W02_NP16_sum_sum / 
totalcountspersamplepermillioncfRNA[8], W02_NP24 = W02_NP24_sum_sum / 
totalcountspersamplepermillioncfRNA [9], WRPa_NP01 = WRPa_NP01_sum_sum / 
totalcountspersamplepermillioncfRNA[10], WRPa_NP16 = WRPa_NP16_sum_sum / 
totalcountspersamplepermillioncfRNA[11], WRP_NP21 = WRP_NP21_sum_sum / 
totalcountspersamplepermillioncfRNA[12], WRP_NP24 = WRP_NP24_sum_sum / 
totalcountspersamplepermillioncfRNA[13], W60_NP01 = W60_NP01_sum_sum / 
totalcountspersamplepermillioncfRNA[14], W60_NP16 = W60_NP16_sum_sum / 
totalcountspersamplepermillioncfRNA[15], W60_NP21 = W60_NP21_sum_sum / 
totalcountspersamplepermillioncfRNA[16], W60_NP24 = W60_NP24_sum_sum / 
totalcountspersamplepermillioncfRNA[17], W120_NP01 = W120_NP01_sum_sum / 
totalcountspersamplepermillioncfRNA[18], W120_NP16 = 
W120_NP16_sum_sum/totalcountspersamplepermillioncfRNA[19], W120_NP21 = 



W120_NP21_sum_sum / totalcountspersamplepermillioncfRNA[20], W120_NP24 = 
W120_NP24_sum_sum/totalcountspersamplepermillioncfRNA[21], W240a_NP01 = 
W240a_NP01_sum_sum / totalcountspersamplepermillioncfRNA[22], W240a_NP16 = 
W240a_NP16_sum_sum / totalcountspersamplepermillioncfRNA[23], W240_NP21 = 
W240_NP21_sum_sum / totalcountspersamplepermillioncfRNA[24], W240_NP24 = 
W240_NP24_sum_sum / totalcountspersamplepermillioncfRNA[25] 
 
                                                         ) 
``` 
 
 
 
```{r} 
CPMcfRNA <- dplyr::select(cfRNAsumfinalcount, hsapiens_homolog_associated_gene_name, 
C05_NP01, C05_NP16, C1.5_NP01, C1.5_NP16, C4_NP01, C4_NP16,W02_NP01, W02_NP16, 
W02_NP24, WRPa_NP01, WRPa_NP16, WRP_NP21, WRP_NP24, W60_NP01, W60_NP16, 
W60_NP21, W60_NP24, W120_NP01, W120_NP16, W120_NP21, W120_NP24, W240a_NP01, 
W240a_NP16, W240_NP21, W240_NP24) 
``` 
 
 
```{r} 
install.packages("writexl") 
library("writexl") 
``` 
 
 
```{r} 
write_xlsx(CPMcfRNA,"~/MRP/CPMcfRNA.xlsx" ) 
``` 
           
   
# SingleR 
```{r} 
BiocManager::install("SingleR") 
library(SingleR) 
BiocManager::install("celldex") 
library(celldex) 
BiocManager::install("scRNAseq") 
library(scRNAseq) 
 
BiocManager::install("scater") 
library(scater) 
``` 
 
```{r} 
hpca.se <- HumanPrimaryCellAtlasData() 
hpca.se 
reference <- BlueprintEncodeData() 
reference 
``` 
 
 
Converting our data to a SingleCellExperiment 
```{r} 
 
dfCPMcfRNA <- as.data.frame(CPMcfRNA)  
 
 
 



CPMcfRNA2 <- dfCPMcfRNA[-1] 
row.names(CPMcfRNA2)<- dfCPMcfRNA$hsapiens_homolog_associated_gene_name 
 
 
 
 
  
CPMcountscfRNA <- SingleCellExperiment(assays = list(counts = CPMcfRNA2)) 
CPMcountscfRNA 
 
 
``` 
 
```{r} 
 
 
 pred.cfRNAseq <- SingleR( test = CPMcountscfRNA, ref = hpca.se,assay.type.test = "counts", labels 
= hpca.se$label.main) 
pred.cfRNAseq 
 
table(pred.cfRNAseq$labels) 
 
 pred1.cfRNAseq <- SingleR( test = CPMcountscfRNA, ref = reference,assay.type.test = "counts", 
labels = reference$label.main) 
pred1.cfRNAseq 
 
table(pred.cfRNAseq$labels) 
table(pred1.cfRNAseq$labels) 
 
``` 
 
```{r} 
library(scRNAseq) 
BiocManager::install("scuttle") 
library(scuttle) 
 
plotScoreHeatmap(pred.cfRNAseq) 
plotScoreHeatmap(pred1.cfRNAseq, show_colnames = TRUE) 
 
``` 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Code 6 
 
 
As the standard reference set for SingleR did not contain cardiomyocytes and other cardiac cell types, 
deconvolution was next performed with cell types found in the heart 'Transcriptional and Cellular 
Diversity of the Human Heart'.  
```{r} 
HeartTranscriptome <- ReadMtx( mtx = "~/MRP/RNA seq/gene_sorted-matrix/gene_sorted-
matrix.mtx", features = "~/MRP/RNA seq/gene_sorted-matrix/genes_v2.tsv", cells = "~/MRP/RNA 
seq/gene_sorted-matrix/barcodes.tsv" ) 
SeuratHeartTranscriptome <- CreateSeuratObject(counts = HeartTranscriptome) 
 metadataHeartTranscriptome <- read.delim("~/MRP/RNA seq/gene_sorted-matrix/meta.data.v3.txt") 
 metadataHeartTranscriptome <- metadataHeartTranscriptome[-1,] 
  
  
 #trying to couple the metadata to the Seuratobject 
 
rownames(metadataHeartTranscriptome) <- metadataHeartTranscriptome[,1] #Assigning row names 
from 1st column  
metadataHeartTranscriptome[,1] <- NULL #Removing the first column 
metadataHeartTranscriptome 
HeartTranscriptomeSeurat <- AddMetaData(SeuratHeartTranscriptome, 
metadataHeartTranscriptome) 
head(HeartTranscriptomeSeurat@meta.data) 
``` 
 
 
 
```{r} 
resultsHeart <- SingleR(test = CPMcountscfRNA, ref = 
as.SingleCellExperiment(HeartTranscriptomeSeurat), assay.type.test = "counts", labels = 
HeartTranscriptomeSeurat$Cluster) 
 
resultsHeart 
``` 
 
```{r} 
library(scRNAseq) 
library(scuttle) 
plotScoreHeatmap(resultsHeart, show_colnames = TRUE) 
``` 
Then, I combined the two reference sets and this technique involves performing classification 
separately within each reference, and then collating the results to choose the label with the highest 
score across references. 
```{r} 
resultsHeartCombined <- SingleR(test = CPMcountscfRNA, ref = 
list(as.SingleCellExperiment(HeartTranscriptomeSeurat), reference), assay.type.test = "counts", labels 
= list(HeartTranscriptomeSeurat$Cluster, reference$label.main)) 
 
resultsHeartCombined 
``` 
 
```{r} 
plotScoreHeatmap(resultsHeartCombined, show_colnames = TRUE) 
 
``` 
 
```{r} 
table(resultsHeartCombined$labels) 
table(resultsHeartCombined$reference) 



 
``` 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 


