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Abstract 9 

Many autoinflammatory disorders are caused by a dysregulation of inflammasomes. This 10 

leads to a divergent expression pattern of inflammasome-dependent cytokines IL-1β and IL-11 

18. Although IL-1 blockade is very effective in many autoinflammatory disorders, and has sig-12 

nificantly improved quality of life, the molecular pathways by which the symptoms are inhibited 13 

remain incompletely understood. The canonical activation of the inflammasome is character-14 

ized by a two-signal cascade, consisting of increased expression of inflammasome compo-15 

nents caused by recognitions of pathogen associated molecular patterns (PAMPs), damage 16 

associated molecular patterns (DAMPs) or homeostasis-altering molecular processes 17 

(HAMPs) as the first signal, and a second signal of recognition of such signals by the inflam-18 

masome itself leading to its activation. Noncanonical activation of the inflammasome can be 19 

acquired via activation of caspase-8. On a posttranscriptional level inflammasome activation 20 

can be regulated by processes such as phosphorylation and deubiquitination. Inflammasome 21 

activation leads to cleavage of pro-IL1β, pro-IL18 and gasdermin D, leading to pyroptosis and 22 

an proinflammatory response. Despite the canonical cleavage of pro-IL1β and pro-IL18 by 23 

caspase-1, also other proteases from different immune cells are able to cleave the immature 24 

proteins into pro-inflammatory molecules. Although pro-IL-18 is constitutively expressed in 25 

many cell types, in contrast to pro-IL-1β, much remains unknown about the specific homeo-26 

static functions of IL-18 and its role in (the persistence of) autoinflammatory diseases. Hence, 27 

it is not known how IL-1 blockade can contribute to the silencing of the whole inflammasome 28 

pathway when just one component is inhibited. Here, we review the current knowledge of 29 

inflammasome activation and IL-1β and IL-18 processing, as well molecular mechanisms of 30 

inflammasome-dependent cytokine regulation by IL-1 blockade. 31 

 32 

Laymen summary 33 

Autoinflammatory disorders are diseases that are primary caused by the innate immune sys-34 

tem and more specifically by changes in the inflammasome activation. The inflammasome is 35 

a complex of multiple proteins that, once activated, will cleave the immature form of the in-36 

flammatory mediators IL-1β and IL-18 into biologically active proteins. Cleavage of the inactive 37 

precursors of IL-1β and IL-18 is mainly done by the protein caspase-1, which is part of the 38 

inflammasome complex. These proteins will be released from the cell, bind to their receptors 39 

and aggravate the inflammatory reactions, resulting in clinical symptoms such as fever and 40 

ultimately organ damage. The inflammasome is normally activated by a two-signal cascade. 41 

Signal 1 consists of binding of danger signals such as microbial molecules to the immune cells 42 

which leads to an increased expression of inflammasome components. Binding of other dan-43 

ger signals to the inflammasome results in activation of the inflammasome and is considered 44 

as signal 2. The inflammasome can also be regulated by modifying the different components 45 

of the inflammasome with phosphate or ubiquitin molecules. Phosphorylation or the removal 46 
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of ubiquitin generally leads to an increased activation, whereas removal of the phosphate 47 

groups or the addition of ubiquitin leads to an inhibition of the inflammasome. Autoinflamma-48 

tory disorders are often treated with biological drugs that target IL1, which have significantly 49 

improved the quality of life of these patients. IL-1 blockade not only neutralizes IL-1, but also 50 

seems to decrease  the production and secretion of IL-1β and IL-18. However, the exact mech-51 

anisms by which IL1 blockade inhibits inflammasome activation remains unclear. This review 52 

will cover the current knowledge of inflammasome activation and IL-1β and IL-18 processing 53 

and will give an overview of what is known about the modulation of inflammasome activation 54 

by IL-1 blockade. 55 

 56 

Introduction 57 

Autoinflammatory disorders (AIDs) are characterized by uncontrolled episodes of inflamma-58 

tion mainly caused by activation cells and molecules of the innate immune system. Disorders 59 

that are caused by autoinflammation can be either monogenetic hereditary disorders, or mul-60 

tifactorial disorders. In many autoinflammatory disorders the autoinflammation is in some way 61 

caused by dysregulation of inflammasomes, leading to an aberrant expression of IL-1β (1). IL-62 

1 blockade is a very effective therapy in those disorders (1). 63 

Examples of monogenetic hereditary disorders are familial Mediterranean fever (FMF), TNF-64 

receptor associated periodic syndrome (TRAPS), the cryopyrin associated periodic syndrome 65 

(CAPS), hyperimmunoglobulinemia D (HIDS), mevalonate kinase deficiency (MKD), Blau syn-66 

drome, deficiency of the IL-1-receptor antagonist (DIRA), and pyogenic arthritis with pyoderma 67 

gangraenosum and acne (PAPA) syndrome (2). CAPS belongs to the intrinsic inflammasomo-68 

pathies, referring to hereditary autoinflammatory disorders that are caused by mutations of 69 

proteins that are a part of the inflammasome (2). FMF, HIDS, DIRA, PAPA syndrome, and 70 

MKD are examples of extrinsic inflammasomopathies, meaning that the mutations are found 71 

in proteins that associate with the inflammasome (2). 72 

Systemic Juvenile Idiopathic Arthritis (sJIA) and adult-onset Still’s Disease (AOSD) belong to 73 

the multifactorial autoinflammatory disorders, which are diseases of which the genetic and 74 

environmental factors still need to be fully elucidated. Recently also gout, pseudogout, type II 75 

diabetes, Schnitzler syndrome and atherosclerosis have been linked to dysregulated inflam-76 

masome activation (1,2). sJIA (and its adult counterpart AOSD) is an example of a complex 77 

auto-inflammatory disease in which increased understanding of underlying disease mecha-78 

nisms, has led to both the identification of potential (diagnostic) biomarkers like IL-18, S100A8 79 

(MRP8), S100A9 (MRP14) and S100A12 and to improve therapeutic strategies. However, the 80 

exact etiopathogenesis is still far from elucidated (3–7). Neutrophils, macrophages, mono-81 

cytes and natural killer (NK) cells are all involved in the disease progression, but which cell 82 

type is dominant in the onset of sJIA remains unknown (8–10). Finally, macrophage activation 83 

syndrome (MAS) and sJIA-associated lung disease (sJIA-LD), severe complications that oc-84 

cur in some patients with sJIA and AOSD, are incompletely understood (11,12). 85 

Although autoinflammatory disorders are caused by the innate immune system, the adaptive 86 

immune system can also get involved resulting in a more complex, and often refractory dis-87 

ease course (13,14). Together with IL-6 and TGF-β, IL-1β is able to promote Th17 differenti-88 

ation (15,16). Patients with sJIA also have higher levels of IL-17A produced by γ/δ T cells 89 

compared to healthy controls, which partially normalized after administration of IL-1 blockade 90 

(17). In fact, healthy γ/δ T cells cultured in medium from sJIA patients or medium enriched 91 

with IL-1β, IL-18, and S100A12 also showed increased IL-17 expression (17). Furthermore, 92 
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IL-18 in synergy with IL-12 was found to promote Th1 differentiation (18). In the last decade, 93 

the concept of trained immunity has gained attention.  94 

To better understand how the inflammasomes are dysregulated in AIDs and how come IL-1 95 

blockade is so effective in many patients, this review describes (in short) the mechanisms of 96 

inflammasome activation, and how blockade of the IL-1 pathway regulates the activation of 97 

different inflammasomes and the processing of inflammasome-derived cytokines. 98 

 99 

Mechanisms of inflammasome activation 100 

The inflammasome comprises a complex of proteins that, once assembled, will activate cyto-101 

kines that induce inflammation. In the last decades, different inflammasomes have been de-102 

scribed. During an infection, the inflammasome is activated by a two-signal cascade (canoni-103 

cal activation), initiating eradication of the pathogen (19). Signal 1 is recognition of pathogen 104 

associated molecular patterns (PAMPs), damage associated molecular patterns (DAMPs) or 105 

homeostasis-altering molecular processes (HAMPs) by a Toll-like receptor (TLR), leading to 106 

an upregulated expression of the different components of the inflammasome (20). Signal 2 is 107 

the activation of the inflammasome, predominantly by DAMPS, such as reactive oxygen spe-108 

cies (ROS), heat shock proteins (HSPs), hyaluronan fragments, ATP, uric acid, DNA, cathep-109 

sin B, cholesterol crystals, and the potassium efflux. However, many PAMPs can directly ac-110 

tivate inflammasomes as well. Posttranscriptional modifications to the inflammasome compo-111 

nents such as phosphorylation and ubiquitination can not be defined as signal 1 or 2 per se, 112 

but regulate activation by modulation of inflammasome response to signal 2. Activation of the 113 

inflammasome will lead to maturation of cytokines such as IL-1β and IL-18 that will activate 114 

other pro-inflammatory pathways. The inflammasomes are named after the pattern recognition 115 

receptor (PRR). Nucleotide-binding oligomerization domain, leucine rich repeat and pyrin do-116 

main containing 1 (NLRP1), NLRP3, NLR family CARD domain containing 4 (NLRC4), Pyrin, 117 

and absent in melanoma 2 (AIM2) are the most well known described inflammasomes (21,22). 118 

As of yet, also other members of the NOD-like receptor (NLR) family and the pyrin and HIN 119 

domain (PYHIN) family are thought to form an inflammasome, but their exact functions remain 120 

unknown (22). 121 

The NLRP3 inflammasome 122 

The NLRP3 (also known as NALP3) inflammasome is the best studied inflammasome and is 123 

linked to hereditary AIDs such as CAPS (2). NLRP3 binds with an amino-terminal pyrin domain 124 

(PYD) to ASC (apoptosis-associated speck-like protein containing a caspase recruitment do-125 

main (CARD)) (19). ASC binds with a CARD domain to procaspase-1 (19). Many such com-126 

plexes bind together, resulting in conformational changes that lead to proteolytic cleavage of 127 

pro-caspase-1 into the cysteine protease caspase-1 (19). This protein will then cleave pro-IL-128 

1β and pro-IL-18 into active IL-1β and IL-18 and will release the N-terminal part of gasdermin 129 

D. Gasdermin D is a pyroptosis regulator which belongs to the family of pore-forming proteins 130 

and is important for the secretion of mature IL-1β and IL-18 (23). Caspase-1 activity is also 131 

known for induction of pyroptosis, a proinflammatory type of cell death (24). 132 

The transcription of NLRP3 can be induced by a diverse range of stimuli, such as PAMPs and 133 

DAMPS as mentioned before, but also by proteins such as IL-1β and TNFα, (25,26). On a 134 

posttranscriptional level, interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 have 135 

been implicated in activation of the NLRP3 inflammasome by phosphorylation, whereas 136 

BRCA1/BRCA2-containing complex subunit 3 (BRCC3) showed to induce activation of NLRP3 137 

by deubiquitination (27–31).  The vitamin D receptor (VDR) was recently found to inhibit the 138 
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function of BRCC3, thereby indirectly inhibiting the inflammasome activation (32). A20, an-139 

other deubiquitinating enzyme, was found to be a negative regulator of NLRP3 activation and 140 

showed to protect against arthritis (33). A recent review describes different (de-)ubiquitination 141 

enzymes that play a role in NLRP3 activation (34). Human monocytes are also capable of 142 

alternatively activating the NLRP3 inflammasome (35). LPS directly activated the TLR4 – TIR-143 

domain-containing adapter-inducing interferon-β (TRIF) – receptor-interacting serine / threonine-144 

protein kinase 1 (RIPK1) – Fas associated via death domain (FADD) – caspase-8 signaling 145 

pathway, leading to activation of NLRP3 and subsequently cleavage of pro-IL-1β into IL-1β 146 

(35). Examples of regulators of NLRP3 inflammasome activation are double-stranded RNA-147 

dependent protein kinase (PKR), guanylate-binding protein 5 (GBP5), platelet-activating factor 148 

(PAF) and NIMA related kinase 7 (NEK7) (36–41). PKR and GBP5 have both shown to be 149 

positive regulators of NLRP3 inflammasome activation, although their role remain controver-150 

sial (36,37,42,43). PAF and NEK7 are also positive regulators and required for NLRP3 inflam-151 

masome activation but not for NLRC4 and AIM2 inflammasome activation (38–41). Potassium 152 

efflux and calcium influx were required for activation of the NLRP3 inflammasome by PAF, but 153 

presence of the PAF-receptor (PFAR) was indispensable (41). The potassium efflux channel 154 

that contributes to NLRP3 inflammasome activation has long remained elusive, but was re-155 

cently found to be TWIK2 (also known as potassium channel subfamily K member 6 (KCNK6)) 156 

(44). NEK7 binds with its catalytic domain to the carboxy-terminal leucine-rich repeat (LRR) 157 

domain of NLRP3, but potassium efflux is necessary for the interaction (38). The interaction 158 

between NEK7 and NLRP3 most likely provide the conformational change that is necessary 159 

for the association of the complete inflammasome, however, the exact mechanism remains 160 

unclear. ATP can induce NLRP3 inflammasome activation by binding the P2X7 receptor (45). 161 

This receptor is also known for its role in cytokine and chemokine release, including IL-1β (46). 162 

Bruton tyrosine kinase (BTK), which is known for its role in X-linked agammaglobulinemia, 163 

was found to act as a physiological inhibitor of the NLRP3 inflammasome, by binding to the 164 

NLRP3 protein and thereby inhibiting the formation of the inflammasome (47). Finally, a ge-165 

netic polymorphism in the inositol-triphosphate 3-kinase C (ITPKC) gene which was associ-166 

ated with Kawasaki’s disease, was found to induce a higher expression of NLRP3 by a con-167 

tributing to a dysregulated intracellular calcium level leading to an increased production of IL-168 

1β and IL-18 (48). 169 

The NLRC4 inflammasome 170 

Research over the last decade has shown that genetic variants in components of the NLRC4 171 

inflammasome can also contribute to autoinflammatory disorders and recurrent MAS epi-172 

sodes, including variants of unknown significance (VUS) in the NLRC4 protein (49–52). The 173 

NLRC4 inflammasome can be activated by flagellin and proteins of the type III secretion sys-174 

tem of bacteria that are recognized by both functional isoforms of the NLR family apoptosis 175 

inhibitory protein (NAIP) protein (53–55). Conformational changes in the NAIP protein will fa-176 

cilitate binding to NLRC4, inducing its oligomerization. NLRC4 activation can be regulated by 177 

phosphorylation in murine macrophages by Protein Kinase C (PKCδ) or Leucine Rich Repeat-178 

containing Kinase-2 (LRRK2) (56,57). A recent study showed that Sirtuin3 (SIRT3) also influ-179 

ences NLRC4 activation by deacetylation of the protein (58). Furthermore, β-arrestin, a regu-180 

lator of G protein–coupled receptor signaling, also played an important role in facilitating the 181 

oligomerization of the NLRC4 inflammasome (59). NLRC4 can activate procaspase-1 indi-182 

rectly via binding to ASC, but also by directly binding to procaspase-1 (60). The NLRC4 in-183 

flammasome was also found to recruit and activate the pro-apoptotic procaspase-8 (61). Be-184 

sides cleaving pro-IL-1β, pro-IL18 and gasdermin D in their functional counterparts, NLRC4 185 

has also been reported to induce expression of the IL-1R via NF-κB (62). 186 

 187 
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Functions of IL-1β and IL-18 and regulation of their expression and action 188 

The IL-1 cytokine family consists of the proteins IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-189 

36γ, IL-37, IL-38, IL-1 receptor antagonist (IL-1Ra) and IL-36 receptor antagonist (IL-36Ra) 190 

(63). IL-37 and IL-38 have anti-inflammatory functions, IL-1Ra and IL-36Ra are antagonists, 191 

whereas the other cytokines activate pro-inflammatory pathways. In this review we will mainly 192 

focus on the inflammasome-dependent IL-1 family members IL-1β and IL-18. Both cytokines 193 

are produced as pro-cytokines and need to be cleaved at their N-terminal to become active. 194 

The most dominant protease that cleaves both pro-cytokines is caspase-1, but both pro-cyto-195 

kines can be cleaved by a variety of other proteases in different cell types and tissues (63,64). 196 

Caspase-1 also cleaves gasdermin D, from which the N-terminal part forms pores. It was 197 

found that although IL-1β and IL-18 lack an export signal peptide, they both are be released 198 

from the cell by the pores created by the cleaved form of gasdermin D (23,35). 199 

IL-1β is released from hematopoietic cells, generally only during an inflammatory response. 200 

IL-1β binds the receptor IL-1R1 and the co-receptor IL-1RAcP to activate pro-inflammatory 201 

pathways, whereas binding to IL-1R2 does not result in activation. IL-1Ra is the natural an-202 

tagonist of IL-1β, also able to (competitively) bind to IL-1R1, resulting in decreased activation 203 

of pro-inflammatory pathways. IL-1β is normally hardly detectable in serum, probably due to 204 

its short half-life and the neutralizing properties of IL-1Ra and IL-1R2. IL-1β is known for in-205 

ducing its own production (65,66). The conventional way for IL-1β cleavage and release from 206 

the cell is via the NLRP3 inflammasome. Cleavage via the inflammasome is achieved by 207 

caspase-1, however also caspase-8, chymase released by mast cells or neutrophil-released 208 

cathepsin G, proteinase 3 and neutrophil elastase have already shown to process pro-IL1β to 209 

its active form, independently of the inflammasome (67–73). A recent study also showed that 210 

in murine macrophages multiple cathepsins can mediate IL-1β cleavage (74). Moreover, a 211 

recent study showed that IL-1β was released from dendritic cells (DCs) independent of the 212 

NLRP3 inflammasome after interaction of the DC with the invariant Natural Killer T (NKT) cell 213 

via Fas-Fas ligand interaction (75). Multiple studies investigated the role of murine caspase-214 

11 in the activation of IL-1β, but much less is known about the human homologs caspase-4 215 

and caspase-5. Capase-4 can physically interact with and thereby induce caspase-1 activity 216 

to cleave pro-IL-1β (76). When caspase-4 was inhibited during infection with the dengue virus 217 

serotype-2 (DENV-2) in human macrophages, the production of IL-1β was reduced (76). In-218 

duction of the production of IL-1β by caspase-4 and -5 is also supported in other studies where 219 

these proteins where found to be responsible for the one-step non-canonical activation of the 220 

NLRP3 inflammasome in human monocytes and where caspase-4 mediated non-canonical 221 

inflammasome activation is induced by gram-negative bacteria (77–79). The Ubiquitin E2 Con-222 

jugase UBE2L3 was found to ubiquitinate K48 at pro-IL1β to induce degradation of pro-IL1β 223 

(80). During inflammation, UBE2L3 is an indirect substrate for caspase-1 and is subsequently 224 

degraded (80). Macrophages that were deficient for the deubiquitinase POH1 showed an in-225 

creased production of IL-1β, therefore POH1 is a negative regulator of inflammation (81). An-226 

other recent study showed that binding of K11-linked, K63-linked and K48-linked ubiquitination 227 

chains to IL-1β is important in the regulation of its activity (82). 228 

IL-18, often in synergy with IL-12, is best known for it’s ability to induce the expression of IFN-229 

γ, the induction of Th1 proliferation and the activation of NK cells (83). Solitary IL-18 is capable 230 

of inducing Th2 proliferation, contributing to allergic inflammation (83). Pro-IL18 is cleaved by 231 

caspase-1 after activation of the NLRP3 inflammasome, but it can also be cleaved by mast 232 

cell derived chymase and granzyme B derived from NK and NKT cells, although chymase-233 

cleaved IL-18 shows only 20% biologic activity (84,85). Moreover, caspase-8 is most likely a 234 

pro-IL18 processing enzyme, although cleavage is induced independent of the inflammasome 235 

(86). Finally, IL18 processing and release was induced upon incubation with proteinase-3 and 236 
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LPS, but direct cleavage by proteinase-3 could not be proved (87). IL-18 binds to the receptor 237 

IL-18Rα and the co-receptor IL-18Rβ and IL-18 binding protein (IL-18BP) functions as a nat-238 

ural inhibitor. In contrast to IL-1β, IL-18 is easily detected in serum. Pro-IL-18 is constitutively 239 

expressed in blood monocytes, macrophages, dendritic cells from healthy subjects as well as 240 

in endothelial cells, keratinocytes, and intestinal epithelial cells throughout the gastrointestinal 241 

tract (83,88). Despite being constitutively expressed, TLR4, TLR2, or TLR7 ligands can cause 242 

a further prolonged upregulation of IL18 mRNA levels (89). In contrast, IL-1β expression de-243 

clines directly after induction (89). In addition, IL-18 was found to induce Fas ligand in Kupffer 244 

cells and was found to be responsible for skin and liver damage in murine CAPS, which could 245 

explain the hepatic damage that is occurring in AIDs (90,91). Production of IL-18, but not IL-246 

1β, requires cooperative TLR and IFNα/β signaling in human monocytes (92). IL-18 is also 247 

important for the expression of cell adhesion molecules, chemokines and nitric oxide (88). 248 

Although a homeostatic role for IL-18 is suspected because of its constitutive expression, the 249 

exact function still needs to be elucidated. However, a reduced level of IL-18 expression 250 

caused by NLRP3 or caspase-1 deficiency in mice led to an increased colorectal tumor bur-251 

den, suggesting that IL-18 is necessary to prevent cancer (93). 252 

 253 

Does IL-1 blockade interfere with inflammasome activation? 254 

IL-1 blockade has proven to be very effective in AIDs. Most inflammatory markers will de-255 

crease, although in some cases IL-18 protein expression remains high even in clinically inac-256 

tive disease (50). IL-1 blockade diminishes the pro-inflammatory effect of IL-1β binding to its 257 

receptor. However, this does not explain the relief of all clinical and laboratory symptoms of 258 

patients with AIDs, therefore there is most likely another form of indirect regulation that is 259 

involved in inhibiting the inflammatory mechanisms. The molecular pathways by which the 260 

systemic symptoms are inhibited are still unclear. At this moment, anakinra, canakinumab and 261 

rilonacept are approved therapies in different AIDs and some data is known about the molec-262 

ular mechanisms besides blocking the IL-1 pathway (Figure 1). 263 

Anakinra is an IL-1 receptor antagonist, resembling the human IL-1Ra but lacking the post-264 

transcriptional glycosylation. It is approved for different AIDs and included in several guide-265 

lines for treating sJIA and AOSD as a first line therapy, both in the US and Europe (94). It 266 

binds the IL-1R1 and blocks the subsequent inflammatory pathway. Due to it’s short serum 267 

half-life of 4-6 hours it needs to be administered daily. In sJIA, anakinra reduced inflammatory 268 

markers such as C-reactive protein (CRP), ferritin, IL-18, S100A12 and S100A8/A9 already 269 

within a month (95). The human IL-1Ra has four isoforms of which three lack a signal peptide 270 

and are retained intracellularly (96). It has previously been shown that type one of the intra-271 

cellular IL-1Ra (IL-1Ra1) is able to decrease IL-1 gene expression, without altering the pro-272 

inflammatory signal by IL-1β (97). IL-1Ra1 directly binds to the third component of the COP9 273 

signalosome complex (CSN3) in keratinocytes which is involved in the regulation of degrada-274 

tion of proteins belonging to the pro-inflammatory p38 MAPK pathway (98). Another study in 275 

intestinal epithelial cells likewise showed that IL-1Ra1 inhibited the p38 MAPK phosphoryla-276 

tion and nuclear translocation of nuclear factor κB (NF-κB), resulting in a decreased expres-277 

sion of IL-6 and IL-8 (99). Anakinra was found to reduce inflammasome activity by activating 278 

superoxide dismutase 2 (SOD2) in murine macrophages leading to a protection from mito-279 

chondrial oxidative stress (100). Prevention of SOD2 degradation by anakinra was achieved 280 

by association of SOD2 with deubiquitinase USP36 at the level of CSN3, suggesting that an-281 

akinra has the same properties as IL-1Ra1 and thus can bind more targets than the IL-1R 282 

(100). However, it is not likely that anakinra is transported into the cell while it contains an 283 

export signal. Thus, it is unknown how anakinra, like IL-1Ra1, can associate with CSN3. SOD2 284 
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knockdown resulted in oxidative damage and an increased NLRP3 inflammasome activation 285 

(101). Anakinra also inhibited inflammasome activity by restoring autophagy in chronic gran-286 

ulomatous disease (CGD) and cystic fibrosis (CF) (62,102). Furthermore, anakinra also atten-287 

uated acute liver injury in mice specifically by blocking IL-1R1 (103). In patients with Schnitz-288 

ler’s syndrome, the loss of Th1, Th2 and Th17 cells was reversed upon treatment with ana-289 

kinra (104). IL-1 blockade with anakinra in a patient with AOSD resulted in normalization of 290 

activated peripheral T lymphocytes (105). Blocking IL-1 in mice with CGD also resulted in a 291 

decreased neutrophil recruitment, Th17 responses and restored expression of autophagy 292 

genes (102). A case report about Synovitis Acne Pustulosis Hyperostosis Osteitis (SAPHO) 293 

syndrome showed a dysregulated P2X7-IL1β axis which was resolved when the patient was 294 

treated with anakinra (106).  295 

Canakinumab is a human monoclonal antibody specific against IL-1β. It was approved in the 296 

US for sJIA and in Europe for AOSD (94). It can be used to avoid the daily injections of ana-297 

kinra due to is significantly longer half-life of 21-28 days. Canakinumab resulted in a rapid 298 

resolve of symptoms and inflammatory markers in sJIA (107,108). However, a study on ath-299 

erothrombosis revealed that after inhibition of IL-1β, the risk of an auto-inflammatory reaction 300 

caused by IL-18 and IL-6 remains, which suggests that canakinumab might be less effective 301 

in the inhibition then anakinra of the inflammatory pathways (109). This might be due to the 302 

additional effect anakinra has on inhibiting the inflammasome and mitochondrial damage. Fi-303 

nally, rilonacept is a human dimeric fusion protein of the extracellular domains of both IL-1R1 304 

and IL-1RAcP which targets both IL-1α and IL-1β and also has a significantly longer half-life 305 

of 67 hours compared to anakinra. Its safety and efficacy was shown in sJIA (110,111). For 306 

both canakinumab and rilonacept there are currently no other molecular effects than inhibiting 307 

the inflammatory response known. 308 

Figure 1 Mechanism of activation and blockade of the IL-1 pathway. IL-1 pathway activation will lead to induc-
tion of NF-κB and subsequently to transcription of inflammasome components and pro-IL1β and pro-IL18. A dis-
turbed P2X7-IL1β axis will result in activation. Inhibition of the IL-1 pathway will quench the IL-1 pathway and 
inhibition of NF-κB, but also to increase of SOD2 and a decrease in ROS, as well as a restored P2X7-IL-1β axis. 
Image created with Biorender.com 
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As of yet, there is limited data available on how IL-1 blockade can inhibit the inflammasome 309 

expression and activation. Anakinra showed to inhibit inflammasome activation by preventing 310 

mitochondrial damage (62,100,102). The other types of IL-1 blockade, however, are not in-311 

vestigated yet for a role in ROS inhibition. Treatment of AIDs with IL-1 blockade have shown 312 

to inhibit the processing of the inflammasome-dependent cytokines IL-1β and IL-18. The exact 313 

mechanism responsible for quenching the inflammasome activation when just one component 314 

(IL-1β) of the inflammasome pathway is inhibited remains elusive.  It is not known yet how IL-315 

1 inhibition also affects both transcription and processing of IL-18, and why IL-18 expression 316 

is inhibited after IL-1 blockade in some patients but not in others. There is no data yet available 317 

on the exact mechanism of IL-1 blockade affecting the regulation of inflammasome-dependent 318 

processing of IL-1β and IL-18 and will be studied in future studies. 319 

 320 

Discussion 321 

In the last decades we gained more knowledge about the pathogenesis of AIDs as well as the 322 

molecular mechanisms behind inflammasome activation and IL-1β and IL-18 processing and 323 

functions.  IL-1 blockade has immensely improved the outcome of IL-1 dependent AID and 324 

the quality of live of many patients. IL-1 blockade decreases the downstream pro-inflammatory 325 

pathway by quenching the signal cascade of the IL-1R, but how IL-1 blockade is mechanisti-326 

cally able to regulate the expression and processing of inflammasome-dependent cytokines 327 

needs to be elucidated. Anakinra resulted a decreased mitochondrial stress, normalization of 328 

peripheral T lymphocytes, decreased neutrophil recruitment and restored expression of au-329 

tophagy genes. However, it is not yet fully known how IL-1 blockade specifically interferes with 330 

the inflammasome activation and subsequently with the cytokine maturation. Earlier studies 331 

revealed that the intracellular IL-1Ra1 also regulates the pro-inflammatory response by reduc-332 

ing mitochondrial damage by ROS and inhibiting nuclear translocation of NF-κB (97–99). An-333 

akinra was found to decrease mitochondrial damage at the same level as IL-Ra1, however, it 334 

contains a export signal peptide and is most likely not transported into the cell (100). How 335 

anakinra is able to provoke the same effect IL-1Ra1 is remains elusive. Recently, single-nu-336 

cleotide polymorphisms (SNPs) found in sJIA patients in the promotor of the IL-Ra gene 337 

showed a strong correlation with IL-1Ra expression, as well as a correlation between presence 338 

of homozygous IL-1Ra high expression alleles and the response to anakinra therapy, showing 339 

the relevance of the molecular mechanisms of IL-1Ra in the regulation of pro-inflammatory 340 

response (112). Furthermore, it remains unclear how IL-1 blockade is mechanistically respon-341 

sible for the rapid decline in expression of other pro-inflammatory cytokines such as IL-18, and 342 

why this decrease is not seen in all cases. IL-1 blockade definitely results in quenching the IL-343 

1 pathway because of a lack of stimulation, resulting in loss of the positive feedback loop of 344 

IL-1β transcription (113). How this mechanism is responsible for the decreased expression of 345 

the inflammasome components and how IL-1 blockade affects the maturation of IL-18 remains 346 

elusive. Even though patients with a constitutively high IL-18 expression respond very well 347 

clinically to IL-1 blockade, they are more at risk of developing MAS. Interestingly, not all AID 348 

patients respond very well to IL-1 blockade and thus new therapies need to be developed. 349 

MAS825 is a novel bispecific antibody against IL-1β and IL-18 and is now being studied in 350 

phase 2 in patients with a NLRC4 gain-of-function (GOF) mutation (114). 351 

In conclusion, this review summarized the current knowledge on inflammasome activation, IL-352 

1β and IL-18 processing and the regulation of the inflammasomes and the inflammasome-353 

dependent cytokine by IL-1 blockade. It remains important to unravel the exact molecular 354 

mechanisms of IL-1 blockade so that better treatments can be offered to patients with AIDs 355 

and side-effects and complications can be restricted or even prevented. 356 
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