
 

Studying the tumor microenvironment 

of Hodgkin Lymphoma  

with scRNA-seq   
 

 

 

 

 

 

 

 

  
 

 

Date: 04-01-2021, 31-08-2021  

Student: Kees Blijleven  

Supervisor: Msc. Jurrian de Kanter  

PI: dr. Ruben van Boxtel  

Second examiner: dr. Patrick van Kemmeren  

 



1 

Table of contents  

 

Table of contents 1 

Abstract 2 

Laymen summary 2 

Introduction 3 

Material and Methods 5 

Results 9 

Discussion 18 

References 21 

 

  



2 

Abstract  

  

The treatment of Hodgkin lymphoma (HL) is considered a success story: cure rates surpass 

80%1. However, the successful treatment of HL can result in adverse side-effects later in life. 

Thus, there remains a need for novel therapies that result in a better quality-of-life after 

treatment. The tumor microenvironment (TME) affects tumor proliferation and progression. 

Interactions between tumor cells and their TME are being targeted as novel treatment options. 

A well-known inhibitory interaction in HL is PD-1 mediated inhibition of cytotoxic T-cell activity, 

which renders the immune system in the TME inactive and lets Hodgkin cancer cells escape 

immune detection2. To study HL TME composition in pediatric patients, samples were 

analysed on a single cell level. A T-cell dominant TME marked with exhaustion markers 

CTLA4 and LAG3 was identified. Tumor cells were identified for seven out of eight patients 

using a SORT-seq strategy. Interactions between tumor cells and their TME were studied with 

CellChat, a method that reconstructs cell-cell interaction by computing a probability score 

based on scRNA-seq data3. Finally, identified interactions were compared to previously 

published results. Both similarities and discrepancies were found, indicating that there is a 

likely biological difference between published Hodgkin protein data focussing on adults and 

pediatric scRNA-seq data that has been described here.  

Laymen summary   

Hodgkin Lymphoma is a cancer prevalent in both children and adults. The treatment success 

of HL is high compared to other types of cancer. However, the treatment is rough which can 

result in adverse effects later in life, such as infertility, cardiovascular disease and a second 

cancer. This is especially relevant for younger patients, since they have more time to develop 

these side-effects. It is not yet known whether Hodgkin Lymphoma in adults differs from 

Hodgkin Lymphoma in children or whether they are the exact same disease. Most conducted 

research focusses on adults, therefore a better characterization of Hodgkin Lymphoma in 

children is needed. Hodgkin Lymphoma is also a unique cancer in that there are few malignant 

cells present in the tumor. The majority of the tumor consists of immune cells that fail to detect 

and act upon the malignant tumor cells. This study aims to learn to understand how few 

malignant tumor cells can create an environment in which they can thrive and survive. To do 

so interactions between malignant tumor cells and surrounding cells in the tumor environment 

will be studied based on their molecular expression profiles. Each cell expresses a distinct set 

of molecules, some of these molecules can interact with each other. Multiple known molecular 

interactions will be checked to see if there are any interactions present which can explain the 

formation of the tumor environment. For example, an inhibitory interaction between the 

malignant cell and its surrounding which reduces the chance of detection by the immune 

system. Besides, samples from children with Hodgkin Lymphoma will be used to create a 

characterization of Hodgkin Lymphoma in children. Overall, both similarities and discrepancies 

were found with previously published results describing Hodgkin Lymphoma. The malignant 

tumor cells mostly behave as expected but the identified tumor environment lacks expected 

interactions, indicating that the Hodgkin Lymphoma environment can be diverse and might 

differ in children compared to adults.   
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Introduction 

  

Almost 200 years ago Hodgkin lymphoma (HL) was first described by Thomas Hodgkin. It is 

a malignancy of the lymphoid system, which is characterized by an enlargement of lymph 

nodes, usually in the upper body. Each year 3 in 100.000 people are diagnosed with HL in 

Western countries4. It is the most common lymphoma among children and young adult1. The 

treatment of Hodgkin lymphoma is considered a success story: by combining several cycles 

of chemotherapy, radiation and alkalytic agents, cure rates surpass 804. However, the 

successful treatment of HL results in adverse side-effects later in life. Examples include 

infertility5,6, a second neoplasm7 and increased chances of developing cardiovascular 

disease8. Some of these side-effects are more frequent in patients that receive treatment at a 

younger age, such as infertility. This is especially relevant for patients that receive treatment 

at a younger age. Thus, there is a need for novel treatments that result in a better quality-of-

life after treatment. In addition, there remains a significant difference in treatment outcome 

between age groups in the short term after treatment, with a relatively poor outcome for older 

adults (>50 years)1. This age group has a five-year survival rate of 65% compared to 94% for 

pediatric patients1. Therefore, both adult and pediatric patients would benefit from the 

development of novel therapies. To be able to develop effective targeted therapies for all 

patient groups, a better characterization of HL is needed and the similarities and differences 

of adult and pediatric cases should be investigated. Currently most published literature on the 

molecular characterization of HL focusses on adult patients: a clear characterization of 

pediatric Hodgkin lymphoma is lacking.    

  

Hodgkin lymphoma is an unusual cancer because the tumor consists of few malignant 

Hodgkin Reid-Sternberg cells (HRS cells, 1%) and many reactive infiltrate immune cells4. The 

HRS cells originate from germinal center B cells. In the germinal center, B cells undergo a 

multitude of mutations to effectively bind an antigen9. However, many mutations render these 

B cells ineffective whereupon apoptosis sets in. The HRS precursors probably evade 

apoptosis by some, yet unknown, rescue event. They have lost their B cell phenotype, most 

notably the loss of CD20 and CD79 expression and a diminishing of PAX5 expression, which 

might contribute to the escape of apoptosis10. HRS cells are characterized by high CD30, 

CD40 and TARC (CCL17) expression4. Other, more variable markers, include CD15 (FUT4), 

MUM1 (IRF4) and CD95 (FAS)11,12. Another hallmark of HRS cells is the constitutive activation 

of the nuclear factor kB (NF-kB) and Janus kinase STAT (JAK-STAT) signalling pathways4. 

Excessive activation of these oncogenic pathways in HL can be caused by both genetic 

lesions and paracrine and/or autocrine signalling4. This is likely one of the mechanisms with 

which the malignant HRS cells escape apoptosis. Besides activation of the NF-kB and JAK-

STAT pathways, a multitude of other possible mechanisms have been proposed by which the 

HRS cells might escape immune detection. Despite the predominant presence of immune 

cells in the tumor there seems to be no effective immune response against the malignant HRS 

cells. 

  

There is increasing evidence that tumor cells shape their tumor microenvironment (TME) via 

genetic alterations and altered cytokine and chemokine signalling. An example of such an 

interaction frequently observed in HL is the expression of PD-L1 and PD-L2 on HRS cells, 

usually acquired via a copy number gain or amplification on the 9th chromosome13. These two 

ligands bind the PD-1 receptor which is frequently expressed on activated T-cells, thereby 
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reducing their activity, proliferation and cytokine production2. Another regularly observed 

interaction is the expression of CD80 and CD86 by the HRS cells which bind the receptor 

CTLA4 expressed on several T-cells thereby antagonizing T-cell activation14. Recognition of 

the importance of the TME in cancer progression and treatment has led to the development 

and FDA approval of specific drugs targeting the tumor-TME interplay. Patients with a 9p24.1 

locus gain or amplification for example responded well to the drug nivolumab, a PD-1 antibody 

that blocks PD-L1 from binding to PD-1 and thereby blocking PD-1 activation15. Refractory or 

relapsed patients are treated with Brentuximab Vedotin, an anti-CD30 antibody-drug 

conjugate which is especially effective in advanced HL stages16. These drugs are administered 

in concert with chemotherapy and often work only in a subset of patients. An increased 

understanding of the interactions between malignant HRS cells and their tumor 

microenvironment can lead to a myriad of possible targets for therapeutics in a disease with 

already promising cure rates.  

  

Due to the scarcity of HRS cells in HL, studies focussing on gene expression profiles of HL 

have mostly used cell lines representing HL17. Besides altered gene expression of these cells, 

most studies focus on tumor cell profiling in bulk, thereby losing intratumor heterogeneity18,19. 

A better characterization of gene expression profiles of single malignant HRS cells is needed 

for improved disease characterization and to infer possible tumor-TME interactions which 

explain apoptosis and immune escape. As of yet there has been one paper published, looking 

into the HL TME of adult patients on a single cell level20. To provide a more accurate 

characterization of pediatric HL and HRS single cells and their interaction with the TME, 

samples from pediatric HL patients were analysed. First a panel with specific HRS cell markers 

was established to enrich tumor cells during FACS sorting. For each patient both enriched 

HRS cells as well as immune cells from the TME were collected after FACS sorting for single-

cell RNA sequencing (scRNA-seq). Expression profiles were clustered based on similarity and 

assigned with cell types, including some HRS cell specific clusters. Known tumor-TME 

interactions from published literature were checked to confirm the Hodgkin lymphoma 

phenotype. Lastly, readily available R packages were used to study cell-cell interactions 

between the HRS cell clusters and the TME clusters, aiming to find novel interactions 

explaining the immune escape and tumor maintenance of pediatric Hodgkin lymphoma. 
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Material and Methods 

 

SORT-seq sample preparation  

Lymph nodes of HL patients (aged 14 ± 2) of the Prinses Máxima Center for pediatric oncology 

were surgically removed for diagnostic purposes. Single cell suspensions were made from 

left-over material and viably frozen. For each patient, a vial of single lymph node cells was 

thawed (containing 5-50 x 106 cells). Cells were preincubated for 5 min in FACS buffer 

containing 5% mouse serum and cells were kept on ice directly after thawing for the entire 

procedure. Of each sample, 1 x 106 cells were stained with 1 uM DAPI and 5 uM DRAQ5 and 

the rest of the cells stained with the antibody mix for 45-60 min. Antibody mix: CD20-BV421 

(1:100), CD15-FITC (1:100), CD95-PE (1:100), CD30-APC (1:50), CD40-Alexa Fluor 700 

(1:100), CD3-APC/Fire750 (1:100) and 0.5 uM DAPI.  

 

Sorting cells with FACS 

Following the SORT-seq protocol which combines Cel-seq2 with flow cytometry, flow 

cytometry-sorted single cells were deposited in 384-well plates filled with scRNA-seq reagents 

and primers. Per patient two 384-well plates were filled using fluorescence activated cell 

sorting (FACS, Sony SH800S). One plate per patient was filled with live single cells (DAPI-

/DRAQ5+ singlets) and another was enriched for HRS cells. Two columns of the DAPI-

/DRAQ5+ plate were filled with larger cells: SSC+, whilst all cells of the HRS plate were SSC+. 

For patient 25404 an extra plate of unbiased cells was analysed. Samples from patients 25404 

and 26023 were enriched for tumor cells by sorting the 5% and 2% biggest cells, respectively. 

All other samples were enriched for HRS cells with a specific HRS cell FACS panel: DAPI-, 

CD20-, CD95+, CD15+, CD30+ and CD40+ for the first twelve columns of the plate. The last 

eleven columns were selected with the less specific HRS cell FACS panel: DAPI-, CD20-, 

CD95+.  

 

Library preparation and scRNA-seq  

After sorting the single cells into the 384-well plates, the plates were sent to Single Cell 

Discoveries, a company specialized in single-cell sequencing, for single cell RNA sequencing 

following the Cel-seq2 protocol21. In short, first reverse transcription of the RNA yielded cDNA 

which was pooled for in vitro transcription to amplify the RNA. After purification an Illumina 

sequencing library was prepared from the sample and sequenced.  

 

Filtering and normalization  

The mapping, UMI counting and other pre-processing of the data was performed with the in-

house developed pipeline Sharq222. Failed reactions were filtered out of the data based on the 

number of ERCC transcripts using the SCutils package (version 1.87). Afterwards, the scRNA-

seq data was processed in R (version 4.0.3) using the Seurat package (version 4.0)23. Genes 

were filtered out of the data if there were fewer than five cells expressing the gene or if there 

were fewer than two transcripts of the gene in at least one cell. Count data of all cells was 

added to a single SeuratObject. Empty and unassigned wells were removed from the 

SeuratObject. Cells with few transcripts (<1000) were also removed. The count data was 

normalized with a natural log transformation using Seurat. For clustering and visualization cell 

cycle genes and sex genes were filtered out of the variable genes, they were included in further 

downstream analysis. 
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Clustering and cell typing  

For clustering and visualization principal component analysis was performed using Seurat to 

reduce the number of dimensions and noise of the data. Out of 100 principal components the 

first 20 were selected based on their JackStraw score and standard deviation. The 20 

components were used as input for unsupervised clustering with the shared nearest neighbour 

algorithm. UMAP transformation was done with the same components to visualize the clusters 

in UMAP space (Figure S1A). Multiple cell type classification methods were applied to the data 

and each cluster was manually assigned the cell type that was supported by most methods. 

The SingleR package (version 1.4.1)24 was used to assign the best annotation to each cell 

based on a labelled reference dataset. Four bulk expression profiling databases with labelled 

reference cell types from the celldex package (version 1.2.0)25 were consulted: 1) Human 

Primary Cell Atlas Data, 2) Blueprint Encode Data 3) Database Immune Cell Expression Data 

and 4) Monaco Immune Data. First more general cell types were assigned using canonical 

markers, resulting in four main cell types: 1) B-cells 2) T-cells, 3) myeoloid cells and 4) tumor 

cells. Each main cell type, except the tumor cells (see section Verify tumor cell annotation) 

was subsetted into a new SeuratObject and clustered again, thereby allowing for a more fine-

grained clustering in which less represented (sub)types are separated better. In these new 

objects, SingleR was used to assign more precise cell types. For clusters with ambiguous cell 

typing the CHETAH package (version 1.8.0)26 was used in addition to SingleR. This package 

works similarly to SingleR but assigns cell types in a hierarchical manner. Finally, known 

canonical markers found in published scRNA-seq papers were checked: both their expression 

level per cluster (Seurat VlnPlot) and their localization in UMAP space (Seurat FeaturePlot). 

The most common annotation found with SingleR (and CHETAH), that was in agreement with 

canonical marker expression, was assigned as the cell type of the cluster (Figure S1B). To 

verify the assigned cell types, gene ontology terms and differential expression were checked 

for each cluster with the clusterProfiler package (version 3.18.1)27 and the FindMarkers 

function in Seurat respectively. If a newly formed cluster in the subset SeuratObject could be 

annotated this cluster was adopted in the complete SeuratObject. If separate clusters showed 

no clear difference, they were merged in the complete SeuratObject.  

 

Verify tumor cell annotation  

The reference databases used by SingleR and CHETAH do not contain HRS cells. HRS cells 

were annotated by SinlgeR as dendritic cells and or monocytes, indicating they have similar 

expression profiles. Therefore, clusters in which each patient’s cells were clearly separated, 

were assigned as tumor cells, as tumor cells are expected to have distinct expression profiles 

per patient. To verify the tumor cell identity, expression of canonical HRS markers was 

checked (Figure S2 and S3). Genes that are generally expressed in HRS cells are CD30, 

CD40, CD95 (FAS), IRF4 (MUM1), CD15 (FUT4) and CCL17 (TARC). HRS cells consistently 

lose expression of CD20 and CD79A and have intermediate expression of PAX5. RNA 

expression of these markers was also compared to protein expression found by the 

diagnostics department of the Prinses Máxima Center (Table S1). Lastly copy number 

variation of the suspected HRS cells was estimated using the inferCNV package (version 

1.6.0, Figure 2)28. inferCNV estimates copy number variation based on RNA-seq expression 

profiles by centering the data and subtracting the expression profile of reference cells for each 

corresponding gene in log-space. Gains and losses relative to the mean expression of the 

reference cells are visualized per chromosome in a heatmap. All T-cell clusters, NK cells, 

monocytes, plasmacytoid and conventional dendritic cells were used as reference cells.  
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iCellNet to reconstruct cell-cell interaction 

iCellNet (version 0.99.1) reconstructs cell-cell interaction by computing communication scores 

based on co-expression of receptor-ligand pairs in transcriptomic profiles of a sender cell type 

(ligand expression in corresponding transcriptomes) and two receiving cell types (receptor 

expression in corresponding transcriptomes29. iCellNet uses a curated database containing 

538 receptor-ligand interaction pairs including multi-subunit interactions. First, transcriptomes 

of both the sender and receiver cells were filtered for genes present in the iCellNet database. 

Then gene expression was rescaled, and a communication score was computed. This score 

is a product of the expression level of a specific ligand in the sender cell transcriptome and 

the expression of the corresponding receptor in the receiving cell its transcriptome. These 

individual scores are integrated into a single score representing the communication between 

two cell types. Note that iCellNet was used one directional (ligand to receptor) whilst it can be 

used to assess interaction from receptors to ligands as well. Finally, the communication score 

was visualized using iCellNets bubblepot.   

 

GO term and pathway enrichment 

Gene ontology (GO) terms were checked for each cell type to see if they were in accordance 

with the assigned cell type. GO terms were assigned based on differentially expressed genes 

(p < 0.05) using the clusterProfiler package (version3.18.1)27. KEGG pathway enrichment was 

performed using the same package to compare possibly up- and downregulated pathways 

between different cell types.  

 

CellChat to reconstruct cell-cell interaction 

CellChat reconstructs cell-cell interaction by computing a probability score based on 

differentially co-expressed receptor-ligand pairs in different cell types3. The default database 

used by CellChat contains 2,021 ligand-receptor interactions, taking both multi-subunit 

interactions as well as several cofactors into account. CellChat (version 1.1.0) first cross-

references the ligand-receptor pairs in the scRNA-seq data and the CellChat database. Then 

CellChat checks for differentially expressed ligands and receptors in all cell types. To quantify 

interactions between cell types CellChat computes a probability value based on the law of 

mass action, which takes the average expression of a certain ligand in a cell type and the 

average expression of the corresponding receptor in another cell type. By randomly permuting 

cell type labels and re-assessing the communication probability the significance of an 

interaction between two cell types is checked. CellChat offers multiple visualization methods 

to aid the interpretation of the data, here the dotplot visualization was used. Since the dataset 

contains both abundant cell types (e.g., naive B-cells #951) and rare cell types (e.g., TFH cells 

#36) the communication probability was corrected for population size (computeCommunProb 

function from CellChat). Running CellChat was computationally intensive therefore analyses 

were performed using a different, smaller, database (see Database preparation for CellChat). 

To further restrict CellChat output ligand-receptor pairs were selected based on their pathway 

involvement.  

 

Database preparation for CellChat 

CellChat needs multisubunit information to run. Since the curated database from iCellNet 

contains a limited number of well-curated human ligand-receptor interactions and includes 

multisubunit information, this database was chosen. iCellNets database was formatted in 

Excel (Microsoft version 16.51) to meet CellChats input requirements. The database from 

iCellNet does not contain pathway information. To be able to filter output on pathway 
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involvement this information was copied from the default CellChat database for each 

corresponding ligand-receptor pair in the iCellNet database.  

 

Using literature to filter HL TME interactions  

To compare interactions found in the scRNA-seq data, published reviews were consulted. To 

find relevant reviews a search on PubMed was performed with the search key: ‘hodgkin 

lymphoma tumor microenvironment’. Filtering for reviews and publications between 2015 and 

2021, resulted in 182 papers. Reviews were then selected based on their topic: 1) they had to 

focus on (classical) Hodgkin Lymphoma and not another type of lymphoma and 2) the majority 

of the paper needed to cover the tumor microenvironment. Reviews that were not written in 

English were also not included. This resulted in nine reviews that were used to establish the 

best-known interactions found in the HL TME30–38.  

 

 

 

 

 

 

 

 
Figure 1. Single cell expression from pediatric HL in UMAP space. Pediatric HL scRNA-seq data 

in UMAP space, colored based on the final cell type labels. Cell types were based on unsupervised 

clustering on the first 20 principal components using nearest neighbour clustering from Seurat and 

subsequent subclustering of the four main cell types (T-cells, B-cells, tumor cells and myeloid cells).  
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Results 

 

Hodgkin Lymphoma microenvironment at single cell level   

To characterize the transcription profile of pediatric HL, samples from eight patients (14 ± 2 

years old) were collected and processed. For each patient both live immune cells and tumor 

cells were sorted via Fluorescence-activated cell sorting (FACS) followed by scRNA-seq. After 

quality control, gene and cell filtering and normalization transcription profiles of 3625 live single 

cells were obtained (453 ± 130 cells per patient), with on average 2430 genes and 6978 

transcripts per cell. Unsupervised clustering using Seurat identified eleven clusters in UMAP 

space, including three B-cell clusters, four T-cell clusters, two myeloid clusters and two tumor 

cell clusters. Cell types of these clusters were established using SingleR24, a tool that assigns 

cell types based on known expression profiles, and scRNA-seq markers found in literature. 

No batch correction was performed because after such correction the tumor cells did not 

cluster separately but with other immune cells, making their analysis impossible. Also, cells 

from different patients contribute to the same clusters showing a heterogeneous spread of the 

cells. To assign more specific cell subtypes, all cells belonging to a single cell type, e.g., T-

cells, were clustered again with only cells belonging to this cell type. Now smaller clusters 

could be distinguished which could be identified as separate cell types using SingleR and the 

canonical markers, such as Natural Killer (NK) cells and T Follicular Helper (TFH) cells (Figure 

S4). Some clusters were also merged for better visualization and downstream analyses based 

on similar expression profiles, for example the tumor cells of different patients. The cell type 

labels of the four subsets were merged, resulting in fourteen identified cell types in total (Figure 

1).   

 

Tumor cells were identified for seven out of eight patients (225 cells in total) although the 

number of tumor cells was strongly dependent on sample size and quality (28 ± 22 cells on 

average per patient). The tumor cells show clear CD30, CD40, CD95 and MUM-1 expression, 

there is variable expression of CD15 and TARC and the cells mostly lack CD20 expression, 

which is all in accordance with published literature (Figure S2 and S3). Expression patterns 

are also in accordance with the protein-based markers found by the pathology department 

(Table S1). Cells showing the canonical HRS markers were subjected to copy number 

variation (CNV) analysis using inferCNV to confirm their tumorigenic identity (Figure 2). This 

tool estimates chromosomal gains and losses based on RNA expression profiles using a non-

malignant reference cell type, here all T-cells, NK cells, monocytes, plasmacytoid and 

conventional dendritic cells. Patient specific CNV patterns were obtained indicating that 1) the 

suspected tumor cells based on canonical markers are also identified as tumor cells based on 

CNV analysis and 2) the tumor cells are likely to have a clonal origin, as suspected in HL, and 

3) chromosomal aberrations were unique for each tumor. To validate inferCNV’s estimation, 

samples of another patient were whole genome sequenced and single cell RNA sequenced 

(Figure S5). CNV analysis of both techniques resulted in similar patterns indicating that 

inferCNV can make accurate chromosomal gain and loss estimations based on RNA 

expression profiles.  

 

For one patient (25404) no tumor cells were identified, likely due to a difference in sorting 

strategy for tumor cell enrichment. Instead of sorting based on specific tumor cell markers, the 

first two patient samples (25404, 26023) were sorted based on cell size: the 5% and 2% 

biggest cells respectively. In the case of sorting the 5% biggest cells, germinal center (GC) B-
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cell and TFH cells were identified. Almost no other patients contribute to these cell types, 

indicating that this sorting strategy could enrich for different cell types or that there is a 

difference in cell type composition between lymph node samples with or without HRS cells. 

Since HRS cells are derived from GC B-cells, this cluster could contain possible progenitor 

tumor cells. However, CNV analysis showed no clear gains or losses compared to the 

reference cell types and expression of canonical HRS markers were lacking (Figure S6).   

 
Figure 2. inferCNV analysis of HRS cells. Copy number variation, based on RNA expression, in 

observation cells (suspected HRS cells) have been compared to copy number variation in reference 

cells (T-cells, NK cells, DC cells and monocytes) using the inferCNV package.  

 

No clear regulatory T (Treg) cell cluster was identified, while Treg involvement has often been 

described in HL31,34,36. The canonical Treg markers FOXP3 and IL2RA are expressed by some 

cells in the CD4 CTLA4+ cluster but not in the majority of the cells (Figure 3). Most cells do 

express the canonical Treg exhaustion cell marker CTLA4, hence the name of the cluster 

(Figure 3). Patel et al. also described a non-Treg CTLA4+ cluster in HL found by multiplexed 

immunofluorescence staining with a minority of FOXP3 positive cells39. However, Patel et al. 

also identify a separate FOXP3+ CTLA4- Treg population. Aoki et al. studied scRNA 

sequenced HL cells from adult patients and did not identify a typical FOXP3+, IL2RA+ Treg 

cell population as well20. Instead, they identified a LAG3+, CTLA4+, FOXP3- cluster, which 

they identify as a suppressive Treg cluster. They suggest that this is a distinct subpopulation  
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Figure 3 Marker expression in T-cells. A) Single cell expression from pediatric HL in UMAP space. 

B) T-cell subset of the dataset displayed in A. C) Expression of markers FOXP3, IL2RA, LAG3 and 

CTLA4 in the T-cell subset, shown both in a violin plot per cell type (left) and on the T-cell subset in 

UMAP space (right).  



12 

of CTLA4+, FOXP3- Tregs which have been described by Patel et al. The CD4+ CTLA4+ 

cluster identified here does not clearly express LAG3 as found in the adult HL samples (Figure 

3), this seems in accordance with the CTLA4+ population described by Patel et al. However, 

Patel et al. do not find other inhibitory Treg markers in this population whereas the pediatric 

dataset presented here contains some LAG3 and FOXP3 expression in the CTLA4+ cluster.  

 

When looking at patient specific CTLA4+ T-cells even more patient heterogeneity is 

discovered (Figure S7). Three patients show expression of all three exhaustion markers, 

FOXP3, CTLA4 and LAG3 (25404, 26023, 26634), whilst one patient expressed both FOXP3 

and CTLA4 (25699). Three different patients express CTLA4 and LAG3, which is in line with 

the adult HL results published by Aoki et al. One patient expressed only CTLA4 (26893), as 

described by Patel et al. Thus, taking all samples together gives a different overview of the 

population composition (mostly CTLA4+FOXP3-LAG3- like Patel et al.) than looking at the 

markers on patient basis (most patients express at least two exhaustion markers).  

 

CTLA4 and PD-1, two known interactions in establishing an immunosuppressive TME 

Multiple interactions between HRS cells and their TME have been described that explain the 

immunosuppressive onset of the immune infiltrate (See Table S2 for an overview of inhibitory 

T-cell interactions). For example, CTLA4 which binds the ligands CD80 and CD86 which are 

expressed on the HRS cells (Figure S8A). Binding of CTLA4 to either ligand antagonizes T-

cell activity whereas binding of CD28 to CD80 and CD86 agonizes T-cell activity14. CTLA4 is 

known to outcompete CD28, thus even at similar expression levels of CTLA4 and CD28 T-cell 

activity is reduced. It is a well-known and validated inhibitory interaction in HL, which makes it 

likely that this inhibitory interaction is taking place in these samples. Another well-known 

inhibitory interaction between HRS cells and their microenvironment is between the receptor 

PD-1, expressed on T cells, and its ligands PD-L1 and PD-L2, expressed on HRS cells8. Upon 

binding PD-1 T-cell activity is reduced. In this dataset PD-1 is expressed by TFH cells and 

some CD8 Tcm/Tem cells (Figure S8B). All tumor cell samples show PD-L1 expression and 

four out of seven patients also show PD-L2 expression. These four patients (26023, 25699, 

26893, 26831) show gain of the chromosome 9 p-arm where the PD-L1/2 genes are located13.  

 

Using iCellNet and CellChat to study known inhibitory interactions in the HL TME 

To be able to identify other novel (inhibitory) interactions between HRS cells and their 

microenvironment, two R packages, iCellNet and CellChat have been used. iCellNet focusses 

on the most different interactions between one outgoing cell type (ligand) and two incoming 

cell types (receptors) or vice versa, whereas CellChat compares one cell type and its most 

differential interactions with all other cell types (Figure 4A/C). iCellNet finds an interaction 

between the HRS cells (ligand, CD80, CD86) and T-cells (receptor, CTLA4) when comparing 

the CTLA4+ cell cluster with the TFH cell cluster (Figure 4B). According to iCellNet the 

CTLA4+ cell cluster has more CTLA4+-CD80/CD86 interaction with the HRS cells than the 

TFH cells, and this interaction is among the 30 most different interactions between CTLA4+ 

and TFH cells. Within the same comparison iCellNet also distinguishes the PD-L1/2 (HRS 

cells) interaction with PD-1 (T-cells), showing that this interaction takes place in all TFH cells 

but almost no CTLA4+ cells. However, neither interaction is found when comparing HRS cells 

(ligand) to other cell types (receptor) e.g., HRS cells interaction difference between CD4, CD8 

naïve T cells and CD4 Tcm/Tem cells. Meaning that both the CTLA4 and PD-1 interaction are 

only among the 30 most different interactions when comparing HRS cells with CTLA4+ and 

TFH cells. This means that all remaining cell types have at least 30 ligand-receptor interactions  
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Figure 4 Methods used for cell-cell interactions. A) Schematic overview of iCellNet’s operation. B) 

Bubbleplot output of iCellNet when comparing tumor (ligand, blue in A) with CTLA4+ (cell type 1 

receptors, orange in A) and TFH cells (cell type 2 receptors, green in A). Plot has been shortened to 11 

instead of 30 interactions. C) Schematic overview of CellChat’s operation. D) Bubble plot output of 

CellChat when comparing tumor ligands CD80, CD86, PD-L1 (CD274) and PD-L2 (PDCD1LG2)) with 

receptors CTLA4, CD28 and PD-1 (PDCD1) on all other cell types. 

 

that differ more between the cell types than the CTLA4 and PD-1 interaction: either both cell 

types have no CTLA4 or PD-1 interaction or the interaction level is very similar. CellChat finds 

interactions between HRS cells (ligand, CD80, CD86) and all T-cells (receptor, CTLA4) 

clusters (Figure 4D). It shows that the CTLA4-CD86 interaction between HRS cells and 

CTLA4+ cells are the most probable interaction followed by CTLA4-CD80. This is likely caused 

by the higher expression of CD86. CellChat also identifies an interaction between PD-L1/2, 

expressed in HRS cells, and PD-1 in both TFH cells and CD8 Tcm/Tem cells.  

    

CellChat is able to identify and visualize all probable interactions and not the topmost different 

ones as iCellNet does. Thereby showing multiple interactions that are not visualized by 

iCellNet. Besides, CellChat provides an overview of all significant interactions between one 

cell type and all other cell types whereas iCellNet shows a comparison of one cell type 

interacting with two other cell types. Using either method to identify novel interactions without 

filtering led to too many interactions to manually inspect and prioritize. Therefore, known 

interactions found in nine published reviews were used to direct the search and filter 
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interactions beforehand. These interactions were subdivided into three categories: tumor 

driving mechanisms, mechanisms that shape the tumor microenvironment and immune 

escape mechanisms.     

 

HRS cell proliferation and survival mechanisms 

Germinal Center B cells with non-functional V gene mutations go into apoptosis in the germinal 

center. HRS precursors probably evade apoptosis by some, yet unknown, rescue event4,9. 

Once HRS cells are established there are several mechanisms which can enable their 

survival. HRS cells express CD30 and CD40, both members of the tumor necrosis factor 

receptor superfamily (TNFRSF) (Figure S9). Even in the absence of CD30 ligand (CD30L) 

CD30 can interact with itself and lead to activation of the NFkB pathway40. This effect can be 

enhanced by expression of CD30L but expression of CD30L is not encountered in the dataset 

(Figure S9). CD30 is not expressed by GC B-cells, it is likely that CD30 expression aids HRS 

cells in escaping apoptosis by activating the NFkB pathway. Constitutive and/or enhanced 

activation of NFkB is a hallmark of HL4,41. CD40 can also activate NFkB by binding CD40L, 

this ligand is expressed by CD4 Tcm/Tem and TFH cells (Figure S9). It has been shown that 

rosetting T-cells (CD4+ T-cells attached to HRS cells) frequently express CD40L42. Here some 

CD40L expression is seen in HRS clusters in UMAP space. There are also some T cells that 

show up in the HRS cluster in UMAP space.  These could be rosetting T-cells that remained 

attached to the HRS cells during flow cytometry. Since CD40 is expressed by both GC B-cells 

and HRS cells (Figure S9), CD40 expression alone cannot account for apoptosis evasion. It 

is likely that it is the rosetting T-cells that help HRS cells escape apoptosis by expressing 

CD40L, thereby stimulating NFkB signalling and thus proliferation. Surprisingly KEGG 

pathway enrichment comparing HRS cells with GC B-cells do not show significant NFkB 

pathway enrichment in HRS cells (Figure S10). It does detect a significant enrichment of the 

JAK-STAT pathway, which is another well-known proliferative pathway with aberrant signalling 

in HL4. Several STAT factors are present in the HRS cells, e.g., STAT3, STAT5A/B and STAT6 

(Figure S11A). STAT6 can be activated with autocrine signalling via IL-13 which is also 

expressed by HRS cells43. STATs can also be activated via enhanced NFkB signalling or other 

tyrosine kinases, of which there are many in HRS cells. Besides autocrine and paracrine 

stimulation of the NFkB and JAK-STAT pathways, genetic alterations are also known to cause 

aberrant signalling41,44.  

 

Receptor tyrosine kinases (RTKs) also regulate cellular proliferation, differentiation and 

survival. Renné et al. found that 75% of HL patients express the RTK PDGFRA whereas 30% 

express the RTKs DDR2, TRKA, TRKB EPHB1 and RON45. This is reflected in this dataset, 

all patients express PDGFRA whilst expression of DDR2, TRKA, TRKB, EPHB1 and RON is 

much more variable (Figure S11B). They found no genetic aberrations that could explain 

constitutive RTK activity and suggest that aberrant activity of the RTKs is likely due to 

autocrine (in the case of PDGFRA and EPHB1) and paracrine signalling (in the case of DDR2 

and TRKA). Ligands for PDGFRA, EPHB1 and TRKA are not found in the dataset thus it 

remains elusive whether these RTKs are activated and if so how (Figure S11B). There is 

expression of collagen type 1, the ligand of DDR2, in HRS cells of the same patients which 

express DDR2 indicating a possible autocrine relation instead of a paracrine one as suggested 

by Renné et al (Figure S11B). This could also be paracrine signalling of rosetting T-cells to 

neighbouring HRS cells.    

 

 



15 

Shaping the HL tumor microenvironment  

HRS cells secrete a plethora of cytokines that shape the HL tumor microenvironment (see 

Table S3 for an overview). In the dataset presented here, HRS cells express TGFβ, Galectin-

1 and the immunosuppressive IL-10 which contribute to the suppression of cytotoxic T-cell 

activity43,46,47. CellChat finds significant interactions between HRS cells expressing TGFβ and 

IL-10 and multiple T-cell types (Figure 5).  HRS cells also secrete cytokines that induce a Treg 

rich TME, which have an immunosuppressive effect on cytotoxic T-cells48. HRS cells recruit 

Tregs via chemoattractants such as CCL5, CCL17, and CCL247,49,50, which are highly 

expressed in all patients except 25993. T-cells in this dataset express the corresponding 

receptors of CCL5 (CCR5) but not the receptor of CCL17 and CCL22 (CCR4). CellChat 

identifies this CCL5-CCR5 interaction between HRS cells and T-cells as well (Figure 5). It also 

identifies other CCL interactions, most notably the CCL21-CCR7 interaction which is a known 

CCR7+ T-cell chemoattractant but not discussed by one of the nine HL reviews. It has been 

shown in cell culture that HRS cells can not only attract Tregs, but also promote the 

differentiation of naive CD4+ T-cells into Tregs thereby shifting even more towards a Treg 

dominant T-cell population51. T-helper cells can be polarized towards a suppressive Treg 

phenotype by exposure to IL-4, IL-6, IL-15 and PGE231,35, which are expressed in a patient 

dependent manner by HRS cells (Table S3). Lastly it has been shown that some HRS cells 

can produce IL-7 which stimulates survival and proliferation of Tregs52. Here only patient 

26893 expresses IL-7.  

 

As discussed, CD8 and CD4 T-cells express the T-cell exhaustion markers LAG3 and CTLA4 

respectively, which signifies the dysfunction of the (cytotoxic) T-cells in the HL TME.  

In this dataset PD-1 is expressed by a small part of the cytotoxic T-cells and all TFH cells. 

HRS cells express the corresponding ligands. Upon activation LAG3, CTLA4 and PD-1 

suppress T-cell activation. This is in accordance with previously described HL that show a T-

cell dominant tumor microenvironment marked by T-cell exhaustion53. Even though distribution 

of these markers differs from previously described exhausted T-cell populations. It has also 

been shown that CD4+ T-cells interact with HRS cells via CD40, CD80 and CD54 thereby 

physically protecting them from the effects of cytotoxic T-cells and NK cells35,42.  

 

HRS cells can stimulate the microenvironment to produce cytokines that contribute to 

immunosuppression, this is referred to as educating the TME (see Table S4 for an overview 

of educated cell types). HRS cells secrete M-CSF and or GM-CSF which stimulates monocyte 

differentiation into macrophages47. When these macrophages are exposed to TGFβ, IL-13 and 

MIF, also expressed by HRS cells, they can differentiate into immunosuppressive tumor 

associated macrophages (TAMs)30,54. These TAMs are CD68+ and CD163+ and can for 

example produce TGFβ, CCL17, CCL22, PD-L1, STAT3 and STAT631, thereby contributing to 

Treg accumulation, suppression of T-cell activity and reinstatement of HRS cells. CellChat 

does not identify more significant TGFβ and MIF interactions with monocytes compared to 

other cell types (Figure 5). In our dataset no CD68+, CD206+ macrophages were identified. 

There are CD68+ monocytes but they lack both CD206 and the expression of cytokines 

associated with TAMs. The HRS cells do express the cytokines needed for TAM induction.  
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Figure 5 Cellchat interactions for TGFβ, MIF, IL-10 and CCL. Significant interactions identified by 

Cellchat for all TGFβ, MIF, IL-10 and CCL interactions present in the database, looking from tumor 

(ligand) towards all other cell types (receptor).   

 

HRS immune escape mechanisms  

HRS cells escape the immune system by establishing a protective and immunosuppressive 

microenvironment, but they also harbour some other mechanisms to evade immune detection 

(see Table S5 for an overview). A study showed that 79% (85/108) of the HL patients have 

reduced HLA-I protein expression on HRS cells and 67% (72/108) of the patients have 

reduced HLA-II expression is55. Surprisingly in this HL dataset there is no significant reduction 

of either HLA-I or HLA-II transcripts (Figure S12).   

 

Most HRS cells have high CD95 (FAS) expression but escape FAS ligand (FASLG) induced 

apoptosis by overexpressing cFLIP12. In the presented dataset cFLIP is highly expressed by 

all cell types, there is no clear overexpression in HRS cells compared to other cell types 

(Figure S13). cFLIP inhibition of FAS-dependent apoptosis does not stop the CD95 mediated 

activation of the NFkB pathway, which thereby stimulates the proliferation and survival of the 

HRS cell instead of inducing apoptosis. It has been found that circa 30% of the HRS cells 

express FASLG12. This is not observed in this dataset, FASLG is mainly produced by NK cells 

and cytotoxic T-cells. In line with this, CD8 Tcm/Tem mostly interact with FAS on HRS cells 

(Figure 6B) according to CellChat. CellChat also identifies significant interactions between 

HRS cells expressing FASLG and all T-cells, most notably CTLA4+ cells (Figure 6A).  
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Figure 6 Cellchat interaction: FAS-FASLG. A) CellChat bubble plot visualization of HRS FASLG 

interaction with FAS on T-cells. B)  CellChat bubble plot visualization FASLG expressed by the TME 

interaction with HRS cell FAS.    
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Discussion  

Access to pediatric HL samples have enabled further study of HRS cells and their 

microenvironment at a single cell level. With the help of Seurat and CellChat, interactions 

between HRS cells and their TME were compared to known HL interaction. Both similarities 

and discrepancies have been observed and will be further discussed here.  

   

In the unsupervised clustering of the filtered SeuratObject all tumor cells, except for tumor 

cells of patient 26831, were part of one cluster. This indicates that there is more difference 

between the expression profiles of the infiltrate immune cells than between tumor cells of 

different patients. Even when clustering tumor cells separately, cells did not separate based 

on all patient ids. This is probably due to the number of tumor cells acquired per patient. For 

patients 26831 and 25699, 64 and 54 HRS cells were identified respectively, and these formed 

clear separate clusters. Whereas for patients 25713 and 26893, 11 and 14 HRS cells were 

acquired respectively, and they were not separated from each other into different clusters. 

Because it is well known that there is inter-patient heterogeneity in tumor cells, HRS cells were 

labelled with patient ids even though the unsupervised clustering did not recognize them all 

as different clusters. This provided an easier comparison between patient differences, for 

example their differences in copy number variation. Both patients 25713 and 26893 have 

distinct CNV patterns (Figure 2). It would be valuable to check if the identified HRS cells are 

the same cells as selected by the HRS FACS panel.  

 

No HRS cells were identified for patient 25404, this is possibly due to the difference in sorting 

strategy (5% biggest cells instead of HRS FACS panel). For patient 26023 30 HRS cells were 

identified when sorting the 2% biggest cells to enrich HRS cells. However, this patient was 

specifically selected based on their high HRS cell count. It could be that isolated cells from 

patient 25404 did not contain any malignant cells. Interestingly, the identified GC B-cells and 

TFH cells almost all belong to patient 25404. Perhaps the alternative sorting strategy enabled 

different cells to be sorted besides the HRS cells. However, the DAPI-DRAQ5+ plates also 

contained two columns with SSC+ cells (big cells) and these did not yield any GC B-cells or 

TFH cells, thus it seems unlikely that the difference in cell types is caused by the sorting 

strategy. Perhaps the tissue sample of patient 25404 does not contain HRS cells and this type 

of tissue does contain GC B-cells and TFH cells. inferCNV analysis of patient 25404 GC B-

cells did not show any signs of aberrant CNV compared to the reference cells (Figure S6). It 

is therefore unlikely that these GC B-cells are progenitor HRS cells. It would be of interest to 

identify GC B-cells of a patient with HRS cells to compare their CNV patterns, thereby possibly 

identifying a progenitor HRS cell. For this purpose, GC B-cells could be enriched for with a 

specific FACs panel. Because a separate control tissue was lacking and because GC B-cells 

are recognized as the HRS cell-of-origin, GC B-cells have been used to compare HRS 

expression profiles. Adding scRNA-seq data of reactive lymph nodes would aid comparisons 

of tumor expression profiles, in addition to the intrinsic control of the immune infiltrate.  

 

As discussed, the CTLA4+, Treg-like, population was characterized by different combinations 

of exhaustion markers per patient. FOXP3 and LAG3 expression were higher than anticipated 

when analysing the cells on a patient basis. When looking at all CTLA4+ cells, CTLA4 

expression is probably dominating the lower FOXP3 and LAG3 expression, especially 

because the majority of the CTLA4+ cells (31%) is derived from the patient with the CTLA4+ 

FOXP3-LAG3- phenotype. Thus, the Treg-like cells are characterized by high expression 
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levels of CTLA4, and they have altering expression of FOXP3 and LAG3 per patient. 

Interestingly, three out of eight patients have the CTLA4+FOXP3-LAG3+ phenotype, which is 

described by the (only) other published scRNA-seq analysis of HL, whereas only one patient 

has the CTLA4+FOXP3-LAG3- phenotype as described by Patel et al. The data presented 

here does not support Patel et al. their assumption that HL CTLA4+ T-cells mainly express 

only one exhaustion marker. However, all three papers show that the T-cell population in HL 

is dominated by exhausted T-cells, contributing to the immunosuppressive environment of the 

HRS cells. This is in line with most published literature, even though a paper by Greaves et 

al. describes a HL TME with dominating active T-helper cells (Th1, CCR5+, TNFA+, IFNG+,  

IL2+)56, showing that the T-cell population in HL can be very diverse and is not clearly 

understood.  

 

In the T-cell populations no CCR4 expression was observed, even though its ligands CCL17 

and CCL22 are highly expressed by the HRS cells and the interaction has been described in 

multiple reviews. CCR4 is mostly expressed by FOXP3+ Tregs but here the FOXP3+ T-cells 

do not express CCR4. This indicates that the T-cell population is not a typical Treg one.  

 

 

Multiple interactions resulting in the immunosuppressive HL TME have been described. One 

of the most prominent examples is the PD-1 interaction with its ligand PD-L1 and PD-L2, 

thereby repressing T-cell activation. In this dataset PD-1 was mostly expressed by TFH cells, 

meaning that PD-1 expression was almost solely found in patient 25404 (Figure S8C). 

Consulted reviews highlight treatment with PD-1 blockade because it can be successful in 

patients with refractory or relapsed HL with high PD-1 ligand expression33. HRS cells 

overexpress PD-1 ligands and are frequently PD-L1+, this is in accordance with the presented 

data. However, there is little evidence showing PD-1 expression in the HRS TME. The same 

study by Greaves et al. showed that 42% of the patients had no PD-1 expression, whilst a 

further 40% showed PD-1 expression in less than 0.5% of their cells56. Thus, it could be that 

PD-1 blockade treatment is not successful for most HL patients but works for a specific group 

of patients. It could also be that PD-1 expression is induced when HL progresses due to the 

high PD-1 ligand exposure. Another possibility is that the difference is due to the age difference 

in patients, most literature describe adult HL whereas here only pediatric samples have been 

studied.  

 

To further study interactions between HRS cells and their TME two R packages, iCellNet and 

CellChat, were used. Using the packages on their own resulted in too many different identified 

interactions to be interpretable. Therefore, some filter steps were incorporated. Firstly, 

CellChat was chosen as it provided a clearer visualization. Secondly, iCellNet’s database was 

used because it contained fewer, well-curated ligand-receptor pairs. Finally, recent reviews 

were used to direct the search of interactions identified by CellChat. As a proof of concept, the 

CTLA4 and PD-1 interactions were checked with CellChat. CellChat indeed identified a 

probable interaction between these receptor-ligand pairs in the TME and HRS cells. Other 

interactions described in literature were also identified by CellChat, for example IL-10 

expression by HRS that bind to their corresponding receptor in multiple cell types, thereby 

sustaining the immunosuppressive T-cell population (Figure 5). Similarly, CellChat identified 

TGFβ, FAS and CCL interactions between HRS cells and the TME (Figure 5). A disadvantage 

of using the tailored database for CellChat was that some relevant interactions could not be 

identified because they were not included in the database. Galectin-1 was for example for 
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included in the database and therefore not identified by CellChat, even though the interaction 

is frequently described in literature (Table S5). CellChat could benefit from a better curated 

database, more tailored towards interactions found in the immune system and HL TME.  

However, another disadvantage of this filtering approach is that no novel interactions were 

identified. It is more realistic to use a different method than CellChat to identify novel 

interaction. For example, more in-depth differential expression analysis between different cell 

types of interest. In this analysis it would be of interest to include data of reactive lymph nodes 

to aid the identification of interactions that sustain a malignant environment.  

 

Because of the mentioned disadvantages some known interactions were not studied with 

Cellchat but using cell type expression profiles. Both well-known TNFSRF (e.g., CD30-

CD30LG) and RTK (e.g., PDGFRA-PDGFA) ligand-receptor pairs were expressed by HRS 

cells and the TME. Also, high STAT expression has been observed (Figure S11A) in HRS 

cells and the TME, indicating stimulation of the JAK-STAT pathway. In some patients copy 

number gain of the 9p24.1 locus was observed, the JAK2 gene is located here besides PD-

L1/2. JAK-STAT pathway enrichment was also detected by KEGG pathway enrichment 

analysis. Receptors, such as CD30, were highly expressed in HRS cells implying NFkB 

activation even though this was not detected by the KEGG pathway enrichment analysis. 

Aberrant signalling of JAK-STAT and NFkB are mostly caused by genomic mutations and can 

therefore be more accurately determined with WGS instead of single cell RNA expression 

profiles. Furthermore, in accordance with published literature, CD95 (FAS) was highly 

expressed by the HRS cells, however they do not overexpress cFLIP compared to other cell 

types to evade FAS induced apoptosis. HRS cells do express IL-21R which has been shown 

to be able to protect HRS cells from apoptosis (Table S3)57. Its ligand IL-21 is expressed in 

the HRS TME by multiple cell types. This escape mechanism has been observed in the 

HDLM2 cell line but could be a possible explanation for the high CD95 expression levels and 

the presence of (live) HRS cells.  

 

Published results are mostly based on bulk data, whilst the results here are based on single 

cell data. Finding out whether cell types and global expression profiles of both methods are 

similar will aid the understanding of HL. Either they are similar, and the dataset can properly 

be compared to previously published results, or the datasets contain methodological biases, 

making a direct comparison more difficult. Also, most published results are based on protein 

expression instead of RNA expression which can explain differing expression patterns found 

here and described in literature. A direct comparison of the adult scRNA-seq HL data and the 

pediatric dataset presented here can reveal interactions not previously described by Aoki et 

al and might add to a better understanding of HL on a single cell level. Lastly, interactions 

identified with scRNA-seq need to be validated with for example immunohistochemistry 

staining of patient tissue samples.   

 

Overall, both CellChat and ligand-receptor expression profiles show that HRS cells in the 

presented data have similar expression profiles compared to HRS cells described in published 

literature. There remain some discrepancies, HLA expression was for example not clearly 

reduced in HRS cells compared to the infiltrate, perhaps due to low FAS ligand expression 

levels, which normally induce HLA reduction37. However, there remains more ambiguity 

regarding the infiltrate, some cell types where not identified (e.g., macrophages and clear T 

helper and/or Tregs), HRS educated cell populations such as TAMs were not observed, and 

some well-known interactions were lacking (e.g., low PD-1 and no CCR4 expression in the 
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infiltrate). Since multiple papers use different patient samples and different methods to analyse 

HL it is no surprise that the TME compositions differs per publication. As a whole, the 

presented data is in accordance the predominant published results: HL consists of a T-cell 

rich TME, characterized by exhaustion markers and few HRS cells that have lost their typical 

B-cell phenotype and secrete a plethora of cytokines to create an immunosuppressive 

environment to aid their survival and proliferation.   
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Supplementary figures 

 
Figure S1. Clustering of the count data. A) Unsupervised clustering of the 20 first principal 

components of the count data visualized in UMAP space. B) Clusters after assigning cell types. C) 

Cell cycle phase of each cell mapped onto the UMAP clusters. D) Patient id’s of each cell mapped 

onto the UMAP clusters. E) Barplot with patient contribution per cluster.   



 

 

 
Figure S2. Canonical HRS cell marker expression. A) Single cell expression from pediatric HL in 

UMAP space. B) UMAP plot where each cell is colored with its HRS module score. A module score 

shows the average expression of a given set of markers compared to a random set of markers. Here 

the HRS markers CD30, CD40, CD15, CD95, CCL17 and IRF4 have been used to calculate the 

module score. There is on average more expression of these markers in the red cells compared to the 

blue cells, indicating that they are HRS cells. C) Violin plots of all canonical HRS markers mentioned 

in B plus CD20, which is absent in HRS cells. The number of HRS cells per patients identified: 25404: 

0, 25699: 54, 25993: 22, 26023: 30, 25713: 11, 26634: 30, 26893: 14, 26831: 64.   



 

 
Figure S3. Dotplot of canonical HRS cell marker expression. Alternative visualization of figure 

S2C. Showing the average expression of canonical HRS cell markers compared to all other cell types.  

 

Table S1. Diagnostics HRS cell marker comparison. The RNA tables show expression levels 

found in scRNA-seq of HRS cells: +) high expression +/-) moderate expression -) no expression. The 

IHC (immunohistochemistry) tables show expression levels found on HRS cells by the diagnostics 

department using the same legend. In red differing outcomes have been highlighted.  

 



 

 
Figure S4A-F. Module scores of all non-tumor cell types. UMAP plots where each cell is colored 

with its respective module score. A module score shows the average expression of a given set of 

markers compared to a random set of markers. A) B-cell markers used: CD19, CD20, CD79A, 

CD79B, BLNK. B) T-cell markers used: CD2, CD3D, CD3E, CD3G. C) Plasma B-cell markers used: 

SDC1, TNFRSF17, PRDM1, XBP1, FKBP11. D) CD8 T-cell markers used: CD8, GZMA, GZMB, 

GZMH, GZMK, PRF1. E) Germinal center B-cell markers used: PTPRC, CD27, CD19, CD40, CD38, 

CD83, CIITA. F) NK cell markers used: CD3, NCAM1, CD16, GZMA, KIR2DL1, KIR2DL3, FASLG, 

KLRB1.  

 

 

 



 

  

 
Figure S4G-L. Modulescores of all non-tumor cell types. UMAP plots where each cell is colored 

with its respective module score. A module score shows the average expression of a given set of 

markers compared to a random set of markers. G) conventional dendritic cell markers used: 

SERPINA1, LST1, AIF1, S100A9, LYZ, CLEC10A. H) CD4 T-cell markers used: CD4, FOXP3, IL2RA. 

I) Plasmacytoid dendritic markers used: GZMB, IL3RA, SERPINF1, ITM2C. J) CTLA4 T-cell markers 

used: CTLA4, FOXP3, IL2RA. K) Monocyte markers used: CD14, S100A8, S100A9, FCN1, CSF3R. 

L) T follicular helper cell markers used: IL6ST, TOX, CD200, SLAMF6, RILPL2, PLEKOH1, IL-4, LIF, 

CXCR5, BCL6.  



 

Figure S5. inferCNV and WGS of one HL patient. To validate inferCNV HL cells of one patient were 

scRNA sequenced and analysed with inferCNV and compared to CNV found after whole genome 

sequencing (WGS). Red indicates a copy number gain and blue a copy number loss.  

 
Figure S6. inferCNV analysis of HRS cells and GC B-cells. Copy number variation, based on RNA 

expression, from observation cells (suspected HRS cells and GC B-cells (orange arrow)) have been 

compared to copy number variation in reference cells (T-cells, NK cells, DC cells and monocytes).  

  



 

Figure S7. Treg marker expression in CTLA4+ cell type per patient. A) CTLA4+ cells have been 

visualized per patient showing patient specific expression of the Treg marker IL2RA and the three 

Treg exhaustion markers FOXP3, LAG3 and CTLA4. B) dominating CTLA4+ cell phenotype per 

patient.  

 

Table S2. Inhibitory interactions between HRS cells and T-cells. Summary of inhibitory 

interactions between HRS cells and T-cells in their TME, described by the nine reviews used to 

establish a current understanding of the HL TME. The PD-1 interaction has been described by all nine 

reviews whereas the other interactions described less frequently.  

Inhibitory T-cell interactions  expressed by HRS expressed by TME  Review  

HRS cells supress T-cell activity 
by activating inhibitory 
receptors  

PD-L1/L2  PD-1 30-38 

CD80/CD86 CTLA4 31,34 

N/A LAG3 34 

HRS cells supress T-cell activity 
by competing for the ligand in 
the TME 

CD137  CD137LG 31,35,36 

CD200  CD200R 31 

HVEM  BTLA 31 
 



 

 
Figure S8 Inhibitory interactions in HL. A) Expression of receptors CTLA4 and CD28 and their 

corresponding ligands CD80 and CD86. B) Expression of PD-1 and its ligands PD-L1 and PD-L2. C) 

UMAP plots of PD-1 expression and patient IDs, cells that express PD-1 mostly belong to patient 

25404.  



 

 
Figure S9 Expression of some TNFSFs. High CD30 and CD40 expression is observed in tumor 

cells. The HRS TME expresses CD40 ligand and little CD30 ligand.  

 
Figure S10 KEGG pathway enrichment HRS cells vs. GC B-cells. Most significantly enriched 

pathways in HRS cells compared to GC B-cells, based on genes that are differentially expressed.  



 

 
Figure S11 STAT and RTK expression. A) STAT3, STAT5A and STAT6 are highly expressed in 

HRS cells. IL-13 is also expressed by HRS cells, which can activate STAT6 signalling. B) There is 

variable tyrosine kinase (receptors, (R)TK) expression in patients. PDGFRA and DDR2 are RTKs and 

PDGFA and COL1A1 their respective ligands.  



 

Table S3. Shaping the HRS TME: cytokines. Cytokine expression and function according to literature, 

and their expression in the presented data for both HRS cells and the TME. Only cytokines listed in the 

nine HL TME reference reviews haven been included. If the cytokine receptor was mentioned in the 

literature their expression is included between brackets after the cytokine expression. V = expressed, 

X = not expressed.  ‘Other cell type’ indicates that the in literature described cell type was not identified 

in the presented dataset. ‘N/A’ implies that there was no information regarding the cytokine expression 

in either literature or the dataset. Gene names have been used to name the cytokines.  

 

  



 

Table S4. Cell types educated by the HRS cells. In the nine reviews, used as HL TME reference, 

different cell types that were educated by the HRS cells were described. Most reviews mention the 

immunosuppressive Treg population and the TAMs, their characteristics have been summarized here. 

The remaining cell types have been listed.  

Cell type Characteristics 

Tumor associated macrophages (TAMs) express: CD68+30,31,32,35,38, CD163+30,31,32,35,38,  PD-L131,32, IDO31, CD20631 

  induced by: IL-430,32, IL-1031, Il-1332, MIF30, M-CSF31,32, GS-CSF31 

  secrete: IL1031,32, IL-1331, TGFb31,32, CCL17/2231, STAT3/631, PGE232 

  reqruited by: CCR230 

  TAMs are associated with angiogenesis35 

Regulatory T-cells (Tregs) express: CD4, IL2RA, FOXP330,31,34,38, CTLA431,32,36, LAG332,34, PD-133, CCR436 

  induced and maintained by: IL431,34, IL534, IL631, IL734,38, IL1034, IL1334,36, IL1531, 

   PGE231,35, galectin134,35,37,38, MIF34, TGFb35, TIMP35 

  secrete: IL-1032,33,38, CD40L36, galectin136, TGFb36,38, MIF36 

  
reqruited by: CCL530-38, CCL1730-38, CCL2031,35,36,38, CCL2230,36,38, IDO34, 
CXCL1038 

  promotes proliferation and survival: IL736  

Myeloid-derived suppressor cells (MDSCs) named by review: 32,34 

Tumor-associated neutrophils (TANs) named by review: 32 

Lymph node mesenchymal stromal cells (LN-MSCs) named by review: 35 

 

Table S5. Summary of HRS cell immune escape mechanisms. Summary of the most described 

mechanisms, based on the nine HL TME reference reviews, with which HRS cells escape apoptosis 

and immune detection.   

Mechanism Factor 

Treg population expansion  

TGFB30-33,35,36,38 

IL-1030-35,38 

IL-1330,31,34,35,36,38 

cytotoxic T-cell inhibition Galectin-131-36,38 

recrute Treg and or TAMs 

MIF - CD7434,36,38 

TIMP-131,35 

PGE231,32,33,35 

overexpressed by HRS to escape apoptosis cFLIP31,32,35 

overexpressed by HRS to induce apoptosis FAS-LG31,32,35,36,37 

expression loss by HRS to evade immune 
detection 

HLA-I31-38 

HLA-II31-38 

NKG2D ligand31,35 

overexpressed by HRS to protect from cytotoxic 
effects 

HLA-G31,32,35 

HLA-E31,32,35 

  



 

 

 

 

 
Figure S12 MHC class-I/II expression. Violin plots of each cell type and their corresponding module 

score. A module score shows the average expression of a given set of markers compared to a 

random set of markers. MHC-I markers used: HLA-A, HLA-B and HLA-C. MHC-II markers used: HLA-

DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5 and HLA-DRB6.  

 

 
Figure S13 Expression of (anti-)apoptosis markers. FAS ligand (FASLG) can induce apoptosis by 

binding FAS. cFLIP can inhibit the FAS dependent apoptosis pathway by interfering with the 

downstream signalling of FAS.  

 


