UNIVERSITEIT UTRECHT

FACULTY OF SCIENCE

MASTER THESIS

ARTIFICIAL INTELLIGENCE

Identifying Topic-Specific
Opinion Leaders Through Graph
Embedding

Author:
Luuk Buijsman (6665500)

Primary supervisor:
Dr. S. Wang
Secondary supervisor:
Dr. M.W. Chekol

March 8, 2022

N
% N -):‘; Utrecht University
NN

1 Abstract

In social networks, some users have an exceptional ability to affect the opinions
and behaviours of others. Such people are known as opinion leaders. Accu-
rately identifying opinion leaders can assist greatly in the study of information
flow throughout social networks, in addition to providing valuable insights for
marketing purposes. Furthermore, contemporary graph embedding tools can
significantly improve the process of identifying opinion leaders. Despite this,
little research has focused on combining graph embedding and opinion leader
detection. Consequently, this thesis focuses on research that integrates these
two areas together. I do this by first creating graph embeddings that capture
the information contained in the data. Then, I feed these embeddings to an
opinion leader detection algorithm that is designed to use the information cap-
tured by the embeddings to create a ranking of users, with the highest-ranking
users being the designated opinion leaders. I compare these results with several
benchmarks of opinion leader detection methods that do not use graph embed-
dings. The quality of opinion leaders is similar for each method, though not
all models designate the same users as opinion leaders. To conclude, I discuss
this research in the broader context of the field of graph embedding and opinion
leader detection, and provide suggestions for further research. All code used in
this thesis can be found on GitHuH]

Thttps://github.com/LuukBuijsman/Master-Thesis

Contents

[I_Abstractl
2__Introductionl 71
2.1 Background| @
22 Motivationl 0]
23 Researchfocud, [
RAOutlind @
3 Literature reviewl 8]
8.1 Graph Embedding] 8
8.1, Mlatrix Factorizationl 9)

3.1.2 Edge Reconstruction| 9

B.1.3 Graph Kernel| o oo 10

B.1.4 Generative Modeld)

3.1.0 Deep Learning| 0. 10

BI16 Bvaluation methodd 14

[3.27 Opinion Leader Detection|
[3.2.1 Topological measures|.

[3.2.2 Data mining and machine learning methods| T

B23 FEvaluation methodd 1R

4 Datal 20)
41 _Dataintroductionl 20
4.2 Data collection| L 201
4.3 Data description| L oL 22
4.4 Baseline dataset! [22)
[4.4. Facebook datasetl

[Methodology]| 24
15, Network definitionl 24
p.1.1 Twitter graph|. 0. 24]

b.1.2 Facebook graph|. 000 25

5.2 Gra mbedding method]. D6

5.3 pinion Leader Detection method| 28]
b.4 Baseline algorithms|. 00000 20
b5 Evaluation methodsl 34

[6 Experimental setup|
6.1 Research questions| 351
6.2 Procedure 30
[6.2.1 Data preprocessing| 36

[6:22 Training the models) 39

623 TEvaluation] oo ovi 0

[T Results and discussionl 47

7.1 SIR hyperparameter tuning] 41
[.2 Model robustnesd 41
3 Ablafionl o o 13
[7.4 Graph Embedding], [43]
[741 Social distancing dataset]. 13

[[42 ASNE variantsl, 44

[1.4.3 Facebook datasetl 40)

[7.5 Opinion Leader Detection] 47
[T.5. Kendall’'s 7l 47

[7.5.2 Shared opinion leaders| 49
S T 2 19

7.6 Qualitative results| 52
[7.6.1 Top 5 opinion leaders]

[(.6.2 Network visualizationl B4

7.7 Research questions| b%!

I8 _General discussion| 57
8.1 Datal B7
8.2 Evaluating Opinion Leader Detection models Y
9 Conclusionl 59
9.1 Futureresearchlo 50
Append 68
[A"STR Hyperparameter results|
IB_Ablation results|

|C Link prediction results|

ID_Kendall’s 7 results|
I[E Shared opinion leaders results| 89
[F_SIR results| 03]

2 Introduction

2.1 Background

One of the main distinctive features of the contemporary internet is the way
it allows people to interact with each other like never before. It allows them
to convey their opinions regarding a particular topic and engage in discussions
not just with acquaintances such as friends, colleagues and family members,
but also with complete strangers. Consequently, social networking websites

such as Twitter, Facebook, and Reddit, which serve as essential communication
platforms aimed at facilitating these interactions, are among the most popular
websites on the contemporary internet [I]. On these websites, some users have a
remarkable ability to influence the opinions and viewpoints of others. Through
their activity on social media, these users can affect many other people, thereby
shaping the general public opinion on certain topics. Consequently, such users
are known as opinion leaders [2]. Perhaps unsurprisingly, the task of finding
these opinion leaders by distinguishing them from ”regular” (non-opinion leader)
users in a social network is known as Opinion Leader Detection (OLD) [3].

In the area of online communication, microblogging is becoming increasingly
more popular [4]. This form of communication is characterized by short mes-
sages which typically contain a real-time update of the user’s life, or cover a
certain thematic. Twitter is arguably the most well-known microblogging web-
site, and, as mentioned earlier, one of the most popular websites in general. It
allows users (also known as twitterers) to publish short messages called Tweets
with a maximum length of 280 characters. Twitter also functions as a social
network by allowing users to follow other users (without requiring permission).
The Twitter homepage (also known as the timeline) then shows a stream of
Tweets from twitterers a user has chosen to follow (their friends), so they can
keep up-to-date with their latest developments and easily interact with Tweets
sent by their friends. The main forms of interaction between users comes from
liking, replying to, or Retweeting a Tweet. When someone Retweets a Tweet,
they publish an exact copy of the Tweet to their followers, even if the followers
do not follow the original author of the Tweet.

As mentioned earlier, OLD involves finding opinion leaders in a social net-
work. A common way to represent data in a large variety of real-life situations,
including social network data, is through the use of graphs. They consist of
a series of nodes as well as edges connecting the different nodes together [5].
Graphs will be discussed in more detail in section [3.1] Every OLD method dis-
cussed in this paper also uses a graph for its analysis. Given the importance of
graphs, it is no surprise that there exists a large number of models dedicated to
analysing them in order to discover information hidden inside. Such analytical
methods include node classification [6], link prediction [7], node clustering [8]
and visualizing large-scale high-dimensional data [9].

For instance, a graph can be constructed from social media data based on
user interactions. This graph can then be used to detect certain communities
or anomalous individuals, or it can be used to predict whether two users will
interact with each other in the future.

Despite the widespread use of graphs and graph analytical methods, there are
some major downsides in the form of high computational and spatial costs. Con-
sequently, a significant portion of contemporary research focuses on improving
upon these aspects of graph analysis. One application that is gaining popularity
in recent years is graph embedding, which involves converting a graph into a
low-dimensional space in which the information contained in the original graph
is maintained [5]. Such an embedding typically comes in the form of a series of
low-dimensional vectors representing the graph which enable both high compu-

tational and spatial efficiency. While most embedding methods only consider
the structural information contained in a graph in order to construct the graph
embedding, there are several methods which enable the use of extra informa-
tion (such as semantic properties) in creating the embedding [10]. Furthermore,
existing embeddings can be refined and augmented using semantic information
[11]. Since these two extensions of classical embedding methods both add extra
information to the embedding process, the quality of the resulting graph em-
bedding could be higher than traditional graph embeddings that only consider
structural information.

2.2 Motivation

This research will focus on the intersection between graph embedding and opin-
ion leader detection applied to social media data. Finding opinion leaders might
prove to be lucrative for marketing purposes, as they can be used to promote
products or services and raise awareness to certain topics [12]. Furthermore,
since opinion leaders have a large influence over the spread of information
throughout a network, finding and studying them can aid in understanding the
flow of information throughout a social network [2]. Generally, opinion leaders
are selected based on all data available from the social network [3].

However, it stands to reason that a user can be an opinion leader regarding a
certain topic, but not other topics. For example, if a user is an opinion leader on
physics it does not necessarily mean that this same user is also an opinion leader
on politics. Because of this, the TwitterRank [4] method is proposed which aims
to find opinion leaders for each topic available in the data. In this research, I
will also endeavour to distinguish between opinion leaders for different topics as
opposed to 'general’ opinion leaders which are agnostic to the topics present in
the data.

The types of graphs that are typically used for OLD only contain structural
information [13]. However, social media data contains much more information
that could be relevant for finding opinion leaders, such as semantic information
that can be extracted from the data. Incorporating this extra information into
the experiments might result in higher-quality analysis. Some of the graph
embedding methods briefly mentioned above serve as a way to include semantic
information in the embedding in addition to structural information. As such,
this paper will use a graph embedding for the process of finding opinion leaders.

Furthermore, graph analytical methods such as opinion leader detection
suffer from high computational costs because of the high-dimensional data in
graphs [3}[14], which severely diminishes the scalability of these methods. Graph
embeddings offer a solution in this regard, by converting a graph into a low-
dimensional vector. By applying opinion leader detection methods to these
embeddings, their computational efficiency increases greatly, which allows these
analytical methods to be applied even to large-scale graphs.

As such, because graph embeddings allow better scalability and offer the po-
tential to include additional information for the opinion leader detection meth-
ods, these algorithms are a valuable tool to better identify opinion leaders in

social networks.

2.3 Research focus

This paper will focus on defining a new method for detecting opinion leaders
by using graph embedding methods. The graph embedding method that will be
used allows for the inclusion of semantic information in addition to structural
information from the graph, which could lead to embeddings of higher quality.
As such, the first research question is as follows:

e What is the influence of including both semantic and structural informa-
tion in a graph embedding on opinion leader detection, compared to using
only structural information?

As discussed above, one of the goals of this research is to find topic-specific
opinion leaders through topic-specific embeddings. The TwitterRank method
[4] also creates topic-specific rankings for their opinion leaders. However, this
method does not use embeddings, whereas my method will. Therefore, the
second research question will concern the effect of embeddings on the OLD
process:

e What is the influence of using graph embeddings on opinion leader detec-
tion?

Since the embeddings can include semantic information, it is important to
decide which features to include in the creation of the embedding. Specifically,
the stance of a user regarding a certain topic (be it positive or negative) might
have a major effect on finding opinion leaders [I5]. Therefore, the third research
question is dedicated to determining the effect of this feature specifically:

e What is the influence of a user’s stance (positive or negative) on detecting
opinion leaders?

Finally, the available data spans multiple months. Consequently, the data
can be split by creation date. This allows the investigation of how opinion
leaders develop over time in a social network. For this reason, the final research
question is:

e How do opinion leaders develop over time in a social network?

To answer these questions, I will use a large collection of Dutch Twitter
messages regarding COVID-19 [I6]. T will use these data as a case study to
compare several methods with the one I propose in this thesis.

2.4 Outline

The next section will review related work on both graph embedding and OLD
methods when applied specifically to social media data. Following this review, I

will outline how I have the most appropriate methods for both graph embedding
and OLD to be used in my experiments.

Section [4 will cover the Twitter data used in the experiment, the data col-
lection process, as well as an explanation of the baseline dataset. In section [5] I
will give an in-depth explanation of the algorithms I used in my experiments in
addition to explaining the construction of the graph for the experiments, as well
as outlining the features from the data that will be used for the construction of
the graph.

In section [f] I explain how I am going to conduct the experiments using
the methods as defined in section [5] how I will evaluate them and explain the
hyperparameter settings that I explored during my research.

Then, in section [7] I showcase all results from the experiments and analyze
them as well, while I will also answer the research questions.

Afterwards, in section [§] I will have a general discussion about the results
and place them in the broader context of the fields of both graph embedding
and opinion leader detection.

Finally, in section [9] I conclude with an outlook on how to proceed given
the results of this thesis as well as some interesting avenues to explore in future
research.

3 Literature review

3.1 Graph Embedding

The two types of graphs that I will discuss in this section are homogeneous
graphs and heterogeneous graphs. A homogeneous graph is a graph in which
all nodes belong to a single type and all edges also belong to only one type.
Conversely, a heterogeneous graph is a graph in which there are multiple types
of nodes and/or multiple types of edges [I7]. A graph with multiple types of
nodes but only one type of edges is also known as a node-heterogeneous graph,
and unsurprisingly, a graph with multiple types of edges but only one type
of nodes can also be called an edge-heterogeneous graph [I8]. Figure [1| shows
examples of both a homogeneous and a heterogeneous graph.

Not all graph embedding methods have been shown to work with both ho-
mogeneous and heterogeneous graphs. As such, when deciding upon a suitable
graph embedding method, it is of vital importance to consider the desired type
of graph, as this can limit the number of available options. Most embedding
methods will function properly with homogeneous graphs, and when a method
has also been shown to work with heterogeneous graphs I will specifically indi-
cate this.

Graph embedding methods can be divided up into several classes [17]:

e Matrix Factorization
e Edge Reconstruction

e Graph Kernel

(a) Homogeneous graph (b) Heterogeneous graph

Figure 1: (a) shows a homogeneous graph where the nodes and edges all have
the same type; (b) shows a heterogeneous graph with four types of nodes and
two types of edges.

e Generative Models

e Deep Learning

3.1.1 Matrix Factorization

Embedding methods using matrix factorization involve depicting a graph as
a matrix, then factorizing that matrix to create the embeddings [B]. As such,
this typically involves converting a high-dimensional representation (the matrix)
into a low-dimensional representation (the factorization), while at the same time
preserving the information contained within the graph (structural properties).
Methods that use matrix factorization construct the matrix representation of the
graph either using Laplacian eigenmaps [19, 20, 2I] or through node proximity
[22 23 24].

Embeddings created using this class of methods generally have good perfor-
mance on local graph reconstruction problems [5] and link prediction problems
[19]. However, they neglect global structural properties of the graph in favour
of local structural properties, which might affect performance when informa-
tion regarding those properties is desired. Furthermore, the high computational
complexity makes it difficult to scale these methods up to large graphs. Finally,
using the node proximity to create the matrices typically result in overfitting,
which negatively impacts the reliability of these methods [14].

3.1.2 Edge Reconstruction

This class of embedding models attempts to ensure that edges that are created
based on the node embeddings are as close to the edges in the original graph
as possible. That objective can be accomplished by either maximizing the edge
reconstruction probability, or by minimizing the edge reconstruction loss [17].
Maximizing the edge reconstruction probability is done by maximizing the
probability of re-creating all observed edges in the original graph using the node
embeddings. In order to achieve this, every node pair that was connected by an

edge in the original graph should be connected in the embedding as well [25].
Furthermore, every node pair that was not connected in the original graph also
should not be connected in the embedding. This is modelled through pairwise
node proximity: nodes that are close to each other in the embedding space are
likely to be connected by an edge in the original graph [7].

Conversely, minimizing the edge reconstruction loss builds on the insight that
an edge between two nodes indicates the relative importance of these two nodes
to each other: nodes that are connected to a target node are more relevant
to that target node than nodes that are not connected to it [I7]. Therefore,
minimizing the edge reconstruction loss can be modelled as creating similar
embeddings for connected nodes, while creating dissimilar embeddings for un-
connected nodes [26].

Since these models focus so heavily on pairwise node proximity, the em-
beddings prioritize local structure over global structure. This means that edge
reconstruction-based models are unsuited for modelling entire graphs, but rather
are designed to embed small communities within graphs instead.

3.1.3 Graph Kernel

Contrary to the edge reconstruction methods discussed in the previous section,
the graph kernel methods focus primarily on properly representing the global
graph structure, as opposed to the local structure [27]. It accomplishes this by
breaking up a graph into subgraphs (also known as graphlets), and embedding
these subgraphs based on how often they occur in the complete graph [28].

The primary drawback of kernel methods is that they fail to concisely capture
local structure of a graph, but focus only on the global structural information.
As such, information regarding the local structures is lost.

3.1.4 Generative Models

Generative models create graph embeddings by modelling all nodes in a graph
as a vector of its latent variables [29]. The intuition behind this way of creating
embeddings is that the original graph was generated by some underlying model,
which the embedding attempts to approximate [I7]. Node embeddings that are
placed close to each other in the embedding space correspond to nodes close
to each other in the original graph as well, which enables the embedding to
accurately model the graph.

An advantage of generative models is that it is possible to use more than
merely structural information to create embeddings, which allows the embedding
space to also incorporate semantic information. However, these types of models
are notoriously difficult to train, and as such require a lot of data to be trained
properly [30].

3.1.5 Deep Learning

In the area of graph embedding, a large portion of the most commonly-used
methods applied specifically to social media data fall under the umbrella of

10

deep learning methods. In this class of models, a clear distinction can be made
between models that use random walks, and those that do not. A random walk
is defined as a stochastic process starting at a certain node where a random
neighbouring node is chosen every step [3I]. The probability of choosing a
neighbouring node is often dependent on several factors, such as the weight
of the edge between the starting node and candidate target node. As such,
it is typically used as a measure of the similarity between two nodes. In this
way, a graph is represented in the embedding as a series of paths generated
by random walks. Nodes that are similar to each other in the original graph
will also share similar embeddings due to the random walk procedure, whereas
nodes that are dissimilar will have different embedding values [17]. Therefore,
creating embeddings using random walks preserves the structural properties of
the graph.

Models using random walks Embedding models that use random walks to
create their embeddings typically are easily scalable because multiple random
walks can be executed at the same time, allowing for easy parallelization [17, [31].
This means that they can be applied to large networks (such as certain com-
munities on social networking sites such as Twitter and Facebook) with relative
ease. Running these models will not take as long as some of the other types of
embedding models, while also offering high spatial efficiency, which could make
them a very attractive options in certain circumstances. Furthermore, embed-
dings created through random walks are also very robust: if a small part of
the original graph changes, there is no need to re-train the entire model. The
existing model can be updated by replacing the random walks in the affected
region of the graph with new random walks. This way, only the new random
walks will have to be run on the new graph while allowing the remainder of the
random walks to remain unchanged. Therefore, adjusting the model to small
changes in the original graph takes little time, which adds to the flexibility and
robustness of these methods.

However, the random walk typically conveys more information regarding a
node’s local neighbourhood within a path, which in turn means it might not be
able to capture the global structure of the original graph compared to the local
structure. This might affect the quality of the embedding and its down-stream
applications, especially if those applications rely heavily on the global graph
structure, and not so much on the local structure. Some methods attempt to
alleviate this problem through several means, as I will discuss below.

Node-based embeddings The first major model using such random walks
for creating its graph embedding is the DeepWalk model [31]. It takes as its
input a graph (either homogeneous or heterogeneous) and outputs a matrix of
latent vertex representations as the network embedding in the form of vectors.
It maximizes the probability of observing the last ¥ nodes and the next k& nodes
in the random walk using an optimization method inspired by the Skip-gram
architecture [32], thereby preserving higher-order proximity between nodes: it

11

retains the structure of the original graph. The model generates multiple ran-
dom walks each of length 2k + 1 and performs this maximization at each step.
One great advantage of DeepWalk compared to most other graph embedding
methods is that it has been shown to work for both homogeneous and hetero-
geneous models.

Similar to DeepWalk, node2vec [33] preserves higher-order proximity be-
tween nodes. However, contrary to DeepWalk, node2vec instead uses a biased-
random walk strategy with the aim of balancing between a breadth-first search
(BFS) and a depth-first search (DFS). Choosing the right balance between these
two strategies enables node2vec to preserve community structure as well as
structural equivalence between nodes. Furthermore, this balance between BFS
and DFS also allows node2vec to more effectively capture the global structure
in a graph, which, as mentioned above, is typically one of the weaknesses of
graph embedding models.

While both DeepWalk and node2vec both embed the data based solely on
structure, social networks often contain information about the users (nodes)
that extends beyond mere structural information. This is what the Attributed
Social Network Embedding (ASNE) model [10] attempts to capture. It learns
representations by preserving both structural proximity and attribute proximity
to take advantage of attribute homophily: the observation that people similar
to each other tend to become friends [34]. Following this principle, it places
users close to each other in vector space based on both structural and attribute
information. As such, it outperforms node2vec on social media data.

Even though ASNE has not been tested on heterogeneous graphs, the at-
tribute information can be used to create differences between nodes. As such,
even though technically all nodes are of the same type (namely simply a user
in the social network), by assigning different attributes to nodes they can func-
tionally still become different from each other, even in a homogeneous graph.

g ~ 77 Structure Pro:{|m|tv ~

»
i Attribute Proximity |

| |

: { @ . - Co-edit Wiki page social structure’ :

: { @ @ @ @ Major in computer scnence:

] @ @ @ Live in university town

Figure 2: An illustration of social network embedding. The numbered nodes
correspond to users. Users with the same colour share the denoted attribute.
Image taken from [I0].

12

As illustrated in figure 2| the ASNE model attempts to place nodes together
based on both their structural information as well as their attribute informa-
tion. For example, nodes 1 and 10 are far away from each other in the original
graph, but the embedding places them closer together because they share the
same value for a particular attribute. However, even when placing these two
nodes closer together, they are both also clearly placed close to their structural
neighbours.

Since the DeepWalk, node2vec, and ASNE models all function similarly and
have all been successfully tested on social media data [10], I will be using these
three models in my thesis to create the embeddings. As such, I will discuss
these approaches in more detail in section

Edge-based embeddings The aforementioned embedding methods are
all node-based. Even though node2vec has a way of indirectly representing
edges, it is still important to represent edges directly rather than indirectly,
because an edge representation vector generated from the embedding vectors
of its endpoints cannot preserve the complete properties of this edge, as ar-
gued in [35]. Hence, the authors propose edge2vec: an edge-based embedding
method aimed at directly embedding the structural information held by edges in
a social network [35]. The main applications are related to link prediction and
finding similarly structured communities within the overall network. In order
to preserve both global and local structural information, edge2vec combines a
deep autoencoder with a Skip-gram model. The authors found the performance
of edge2vec to be higher than other node-based embeddings like node2vec on
edge-based applications (such as link prediction).

Another situation in which edge-based embeddings could be more useful
than node-based embeddings is when trying to compare pairs of nodes with
each other. This way, the edge embedding allows easy comparison of node pairs.
For example, when predicting the probability that two users in a social network
will interact with each other (link prediction), the edge embedding outperforms
other state-of-the-art node embedding models [30].

Models not using random walks Embedding models that do not use ran-
dom walks to create their embeddings typically require no feature engineering
and are better at capturing both local and global structural information from
the original graph compared to models using a random walk. However, the lack
of a random walk typically results in significantly higher spatial and computa-
tional costs, meaning that such models might be less viable options for certain
projects [I7].

Most embedding methods struggle to learn a proper embedding when given
an extremely sparse, heterogeneous network. Nonetheless, the Deep User-Image
Feature (DUIF) model [37] is capable of transforming sparse, heterogeneous data
into homogeneous, low-dimensional representations. This is done through maxi-
mizing a modularity measure which represents how well a network is partitioned.
The modularity is maximized indirectly by training a deep convolutional neural

13

network to learn intermediate features of the data. This results in a computa-
tionally efficient deep learning framework capable of creating embeddings even
for very sparse, heterogeneous networks.

3.1.6 Evaluation methods

When creating graph embeddings an important question to consider is how good
the graph embeddings actually are. Obviously, ”good” is a rather vague term:
it depends entirely on what the graph embedding will be used for. Sometimes,
a graph embedding might fail to capture certain nuances in the data. However,
if this information is not important to the down-stream application that the
embedding will be used for, then it will not detract from the quality of the
model. Conversely, if the embedding method fails to capture a key aspect of the
information contained in the original graph, the embedding might not perform
well at all on its intended task.

Node Classification Keeping this important consideration in mind, the first
commonly-used task to evaluate the quality of graph embeddings is node clas-
sification [38]. This task involves correctly labelling the nodes in a graph from
a finite set of categorical values. Applications for which node classification is a
useful evaluation method include the assigning of users to groups such as demo-
graphic values or political alignments [39]. Node classification works by training
a classifier on the node representations created by the graph embedding models,
and evaluating the classifier using traditional classification evaluation metrics
such as Macro-F1 (arithmetic mean Fl-score of all per-class F1 scores) and
Micro-F1 (Global proportion of correctly classified observations) [40]. The most
commonly-used classifier used for node classification is the logistic regression
model [10] BT, 41].

Link Prediction The second popular evaluation method for graph embed-
dings is link prediction, which involves finding missing links in networks, as well
as predicting which links might form in the network in the future [42]. Ap-
plications of link prediction include predicting the complete network in case of
missing information [43 @4] or recommender systems which help people find
new friends in social networks [45], recommend experts in academic networks
[46], or provide alternative and/or interesting products in online shopping [47].
In essence, link prediction measures an embedding’s ability to capture the struc-
tural properties contained in a graph.

Link prediction works by predicting the probability that an edge exists be-
tween two given nodes. This creates a probability score for all tested node pairs.
We can then consider node pairs with P > 0.5 to have an edge, and node pairs
with P <= 0.5 to not have an edge between them [48, 42]. Now we have a
classification problem, to which we can compare the test labels to determine
the performance of the classifier.

Some metrics that can be used to evaluate these scores are traditional metrics
such as accuracy, precision, recall, and F1-score. Another metric that can be

14

used is the area under the receiver operating characteristic (AUROC) which
measures the degree to which a classification model is capable of distinguishing
between different classes [48]. In this case, the AUROC measures how well the
classifier can distinguish between positive test examples (node pairs that share
an edge) and negative test examples (node pairs that do not share an edge). The
AUROC is often used to evaluate link prediction tasks [10, 49, (0, 511, 52, £3].

Because it is used often to evaluate contemporary graph embedding meth-
ods, including the three methods I use in my thesis (DeepWalk, node2vec, and
ASNE), T will use the link prediction task and the AUROC measure to evaluate
the quality of my graph embeddings.

3.2 Opinion Leader Detection

The methods related to Opinion Leader Detection (OLD) discussed here will be
split up over two main categories: topological measures, and data mining and
machine learning methods [3].

3.2.1 Topological measures

Firstly, topological measures are characterized by their focus on identifying
nodes as opinion leaders based on their structural location within the network.
These methods rank nodes based on their position in the network, and the
highest-ranking nodes are consequently selected as being opinion leaders. The
PageRank [54] algorithm is a widely-used ranking algorithm for determining the
importance of web pages. The main idea behind PageRank is that the impor-
tance of a node is related to the importance of its neighbouring nodes and it
is based on the eigenvector centrality measure. In its original implementation,
PageRank was created to determine the importance of webpages. The intuition
behind PageRank is that if a webpage is referred to often by other webpages
then it is likely an important webpage. Furthermore, if the websites pointing to
a page were themselves also important, that would further increase the impor-
tance of the page they point to. This essentially creates a recursive definition
of importance leading to a cascade of rankings throughout the network.

However, as argued in [55], the PageRank algorithm cannot be used directly
to identify opinion leaders since it fails to take into account the novelty of the
information provided by each node. The authors claim that if a node adds
no new information to what is already known in the network, it is not a good
opinion leader. To incorporate this factor into opinion leader detection, the
authors propose the InfluenceRank model [55], which ranks nodes based on
their information novelty as well as their importance in the network. They
compare it against several other models, including PageRank and Information-
Novely-based Ranking (which includes only the information novelty measure
also used by InfluenceRank), and InfluenceRank scores higher than all other
tested methods.

An additional extension of PageRank by the name of TwitterRank [4] adds
topical similarity to the OLD process, specifically for analysing Twitter net-

15

work data. The authors confirm the presence of homophily [34] on Twitter [4].
Because of this, they argue that the influence of an opinion leader varies de-
pending on the topic they discuss. If a large portion of their followers are not
interested in a particular topic, their influence drops significantly. Conversely, if
the majority of their followers show interest in a topic, the opinion leader’s in-
fluence increases dramatically. Therefore, the authors propose a topic-sensitive
TwitterRank model. The model uses a directed graph to capture the network,
and employs a random walk to move around the network. This random walk
is different for each topic, such that a set of topic-specific TwitterRank vectors
is created, which measures a user’s influence for each individual topic. These
vectors can also be aggregated to form a measure of a user’s overall influence.
This aggregated measure of influence allows for easy comparison to other mod-
els. Because of TwitterRank’s widespread influence, in addition to its specific
application on Twitter data, I use this method in my thesis to find opinion
leaders.

Yet another extension of PageRank comes in the form of TrustRank [I5],
which uses a signed network to consider both positive and negative links to a
node in order to identify opinion leaders. Concretely, TrustRank is built on the
idea that negative links signal distrust in the leader, and as such, lower their
rank as an opinion leader. As such, a user’s opinion leader score is based upon
not just the size of the influence of their comments, but also on whether the
influence of each comment is influential or detrimental. When comparing this
method to similar models using negative links, TrustRank performs significantly
better.

The final extension of PageRank that I will discuss here is the LeaderRank
method [56]. Its main difference with PageRank is the introduction of a new
node (the ground node) that is connected to every other node in the network by
a bi-directional edge. As such, the graphs created by LeaderRank are strongly
connected, since every node is separated from any other node by at most one
node. This strong connectivity in turn means that LeaderRank is guaranteed
to converge: networks that are not as well connected run the risk of a random
surfer getting ”stuck” in nodes that are not connected to any other node. As
such, they often require an extra parameter representing a probability to jump
to any random node in the network, just to get out of this problem. This pa-
rameter then needs to be tuned as it can have a major effect on how the model
is trained, which removes some flexibility from the models [54, [56]. However,
since LeaderRank’s network is so strongly connected there is no need for such
a parameter, which in turn adds to the flexibility of the algorithm. The added
flexibility of LeaderRank compared to PageRank, alongside its strong perfor-
mance in finding opinion leaders [56] make it an excellent choice for this task,
which is why I will be using this method in my experiments as well.

Finally, the SNERank [I3] model uses the Attributed Social Network Em-
bedding (ASNE) graph embedding model which I discussed earlier in section
to calculate the difference between nodes in vector space. The embedding
creates a vector representation that is based upon both the network structure
and the text content; hence, these values are taken into consideration in vec-

16

tor space. This results in an opinion leader ranking based on the calculated
weight /distance in the low-dimensional representation. This method overall
outperforms TwitterRank on the tested data. Since I also use TwitterRank and
the ASNE model in my thesis, I also use SNERank. This allows me to test
the robustness of this model and see if it will outperform TwitterRank on other
datasets as well.

3.2.2 Data mining and machine learning methods

The next major category of opinion leader detection methods is data mining
and machine learning methods.

The first framework discussed here uses the k-means clustering algorithm
to separate the nodes and identify candidate opinion leaders [57] on a forum
for predicting stock prices. These candidate opinion leaders are then further
refined based on the correlation between their sentiments and the actual stock
price changes to determine their effectiveness. The candidates with the highest
effectiveness are selected as the true opinion leaders. This model shows that sen-
timent analysis can help with identifying opinion leaders regarding a particular
topic or sentiment in a social network.

The next framework relies on defining a trust measure between nodes to
determine which nodes are opinion leaders [58]. The authors argue that there
exists a positive correlation between the similarity among users and the strength
of their trust, which is why this can be used for OLD. The model thus selects
opinion leaders based on the similarity (determined by the overall number of
positive comments received from other users) which is another measure of the
centrality of a node in a network. Another machine learning-based model is
the TCOL-Miner model [59]. It selects opinion leaders in several steps. Firstly,
a graph is constructed from the data. Next, the model uses the H-clustering
algorithm [60] to discover community structure in the network. Afterwards,
the communities detected in the previous step are used to select opinion lead-
ers through a second clustering step, using the k-means clustering algorithm.
Finally, the candidate opinion leaders are ranked, and the highest-ranking can-
didates are selected as actual opinion leaders.

In the first step, a homogeneous, directed, weighted graph is constructed
from the data (the data is from a forum for car enthusiasts), with users as the
nodes. A directed edge exists from user a to user b if user a responded to an
article written by user b. The weight of an edge is determined by a similarity
measure, which in this case is defined by how many common neighbours the two
nodes have, as well as the time of the day that the users are typically active.

Secondly, the H-clustering (or hierarchical clustering) algorithm [60] is used
to detect communities. Each individual node is selected as a community. Then,
a pair of nodes becomes grouped together in a community if the weight between
these two nodes is higher than with any other neighbour. So for example, for
two nodes a and b, if the edge between a and b is larger than any edge connecting
to node a and it is larger than any edge connecting to node b, they become a
community together. When two nodes are combined in such a way, a check is

17

performed to evaluate the quality of this new community. This is known as
the modularity gain [60] and is calculated using the sum of the total similarity
between nodes in a community. If this value is below a certain threshold, the
iteration stops. Next, these communities are used to determine the candidate
opinion leaders. A score is calculated for each node based on several factors,
namely the total number of articles published, the probability that a user’s
articles will get replies from other users, the degree of expertise (total number
of articles) a user has written in a specific domain, and the probability that a
user will reply to articles written by other users. Then, the k-means algorithm
is used on each community to group nodes with similar scores together. After
sorting the clusters by score, the opinion leaders are selected from each high-
scoring cluster until the number of opinion leaders has reached the specified
number.

3.2.3 Evaluation methods

Evaluation methods for Opinion Leader Detection are not as clear-cut as they
are for Graph Embedding. Many papers use different methods to evaluate
their OLD models, and unfortunately, there seems to be no consensus on which
evaluation method is best [61]. Despite this, there exist some methods that are
still used regularly, which I will cover here.

Expert rating The first method involves using an expert to provide a ranking
of opinion leaders in a network [62] [63]. This method simply involves letting an
expert provide a subjective rating of comments made by users in the network as
either having a strong or weak influence. These ratings can then be aggregated
for each user to provide a rating of the users themselves. These experts are
typically asked to use criteria such as social competence/popularity, knowledge
and expertise and leadership qualities to inform their ratings [61].

Core Radio Core Radio [64] is a metric based on the intuition that opinion
leaders generally interact with a large number of users at a high frequency. As
such, this method scores a user based on the proportion of interactions in the
network that involve that user. The more a user is involved in interactions, the
more likely this user is to be an opinion leader [65].

Coverage, Diversity, and Distortion Another way of determining how an
opinion leader affects the overall network is through measuring the coverage [55)
of a user: this metric covers how many users are influenced by the comments of
another user (where influence is measured through InfluenceRank as discussed
above), with the intuition being that opinion leaders influence a larger number
of people than non-opinion leaders.

Furthermore, as discussed by [55], opinion leaders that are able to cover
their area of expertise from multiple perspectives are superior than those that
cannot. This quality is captured by the diversity metric which measures the
dissimilarity of the messages created by a user.

18

Finally, the authors argue that even though opinion leaders should cover
their area of expertise from multiple perspectives, they should also be a driving
force behind the way that this topic is discussed throughout the entire network.
As such, the distortion metric measures the dissimilarity between the sub-topics
that a user talks about and the sub-topics that are discussed in the entire
network. For this metric, lower values of dissimilarity are one indicator for
opinion leadership, since it indicates that the user discusses the same subjects
as the overall network.

Combining the results from these three metrics together gives a nuanced
perspective of opinion leaders, namely a user who influences a large number of
other users, covers a topic from numerous perspectives and discusses the same
subjects within a topic as the rest of the network.

SIR The SIR model [66] was originally designed as a way of modelling the way
diseases spread throughout a population. However, this method has also been
used for modelling the spread of information throughout a network [67], which
is why it can also be applied to the task of assessing opinion leaders. The main
idea behind this application is that opinion leaders cause information to spread
throughout a network much faster and better than non-opinion leaders. As such,
regular users might only cause the information to slowly spread throughout part
of the network, whereas opinion leaders might cause the information to spread
rapidly throughout the entire network.

The SIR model works by creating a graph where each node has one of three
statuses in keeping with the origin as a model of spreading disease: suscepti-
ble, infected, or recovered [I3]. Initially, a certain number of nodes are infected,
whereas the remainder of the nodes are susceptible. Then, every iteration neigh-
bouring nodes to infected nodes have a change of becoming infected as well, and
infected nodes have a change of recovering from their infection.

To apply this to the task of assessing an opinion leader method, we can set
the opinion leaders (as found by that method) as the initially infected nodes.
Furthermore, we can set the probability of an infection spreading to be based on
the influence of the opinion leader nodes. Then, we can let the model run and
observe how fast the information spreads throughout the network by counting
the number of influenced people (# infected + # recovered). The intuition dic-
tates that good opinion leaders spread the information throughout the network
quickly and cover the entire network, rather than only a part of it [67].

As such, this task can be used to effectively compare different opinion leader
methods: if the SIR spreads much more quickly and further for one model than
for another, this indicates that the first model has identified better opinion
leaders than the second [3].

Since this is a method that allows for comparing different models to each
other without needing expert ratings, I will be using this in my thesis to evaluate
the quality of the chosen opinion leader detection methods.

19

Kendall’s 7 The Kendall 7 correlation method is used to determine how
similar two ranking lists are to each other [68]. The metric can be used to
compare two ranking lists created by opinion leader detection methods with
each other to see if the opinion leaders generated by both methods are similar
to each other [4].

If the Kendall’s 7 correlation is positive (up to 1), this indicates that there is
a high degree of agreement between the two ranking lists. On the other hand, if
the correlation is negative (down to -1), this signals that there is a high degree of
disagreement between the two ranking lists. For example, users that are ranked
highly by one list are ranked badly by the other list, and vice versa.

I will use this evaluation method in my thesis as well. This method, alongside
SIR, can give me a more complete picture of the similarities and differences
between opinion leader detection models.

4 Data

4.1 Data introduction

The data that I used in this experiment is a large collection of messages on
Twitter (also known as Tweets) in Dutch [16], all written between February
2020 and November 2020. The Tweets all concern the COVID-19 pandemic: the
data was filtered based on several COVID-19-related keywords such as ”corona”,
"covid”, "huisarts” (general practitioner) and "mondkapje” (face mask).

Each Tweet is represented by a Tweet object as defined by the Twitter APIﬂ
As such, it contains attributes like the time of creation, the raw text contained
in the Tweet, its accompanying URL and the user who posted it.

Furthermore, preliminary data analysis performed in [I6] assigned a topic
and a sentiment to each Tweet. These provide extra information that can
be added to the input of the embedding model. The sentiment can be either
positive or negative, and the topics include ”face masks”, ”social distancing”,
and ”vaccinations”.

4.2 Data collection

The data was collected through twigs.nl. This website is a service provided by
Surf, and the Netherlands eScience Center. It collects Dutch Tweets and makes
them publicly available to the research community, in addition to providing
analyses done on these data. The earliest Tweets in the collection were written
in February 2020 as this was the month in which the first COVID-19 patient
was diagnosed in the Netherlands. The latest publication date included in the
collection of Tweets is November 2020. Using the Twitter API it was possible
to discern the language in which a Tweet is written by courtesy of the lang
feature. Tests show that more than 80% of the Tweets written in Dutch during

2https://developer.twitter.com/en/docs/twitter-api/v1/data-dictionary /object-
model/Tweet

20

that period were contained in the collection [16]. An outline of the number of
collected Tweets per month is outlined in Table

Month Number of Tweets Per day Per hour
February 2020 14,852,678 512,126 21,338
March 2020 21,180,942 683,256 28,507
April 2020 18,715,900 623,863 25,994
May 2020 18,044,679 582,086 24,253
June 2020 20,807,966 693,598 28,899
July 2020 19,154,442 617,885 25,745
August 2020 20,314,042 655,291 27,303
September 2020 20,340,753 678,025 28,251
October 2020 21,987,100 709,261 29,513
November 2020 19,370,135 654,671 26,902

Table 1: Total number of Dutch Tweets collected. Data in bold was used in
this thesis for further filtering and processing.

The collection of Tweets was then filtered, to extract only the T'weets con-
cerning COVID-19 [16]. This was done by filtering on a list of keywords which
were selected because of their relation to COVID-19. An overview of the key-
words can be found in Table 2L

Category Keyword English Translation
Disease corona

covid
Health care huisarts doctor

mondkapje face mask
Government rivm national health organization
Social flattenthecurve

blijfthuis stay home

houvol hang in there

Table 2: Keywords used for filtering Tweets related to COVID-19

The filtering was agnostic to the case of the letters and also considered words
which had one of the keywords as a substring, like the word coronavirus which
contains the keyword corona.

As mentioned above, a topic was assigned to each Tweet, and due to the time
limit associated with the thesis as well as the limited availability of computing
resources, I only used the data from the topic ”social distancing” from the month
of October 2020. This subsection of the data contains a total of 56,173 Tweets
written by 24,588 unique users.

To construct the social network, information about both the nodes and edges
is needed. Typically, social networks like these define their graphs using users as
nodes and interactions (following/friendship relations) as edges [10]. However,

21

the data described in Table [I] only contained user ids, but no information about
the following relationships.

Because of this, I manually collected the following relationships between the
users through the Twitter API. By collecting the followers for each user and
filtering out the followers that did not appear in the data described in Table
only the followers for each user in the dataset were left. From this, I extracted
the friends for each user by making use of a simple observation: if user i follows
user j, then that means that user j is a friend of user i.

Nonetheless, this method might not be entirely accurate: I extracted the
followers as they were at that point in time (around September 2021) whereas
the tweets were collected much earlier than that (see table . It is impossible
to guarantee that the following relationships between the users were already
established when the data was collected, as Twitter does not collect that kind
of historical data. However, when considering the alternatives, and finding that
sufficiently large networks on Twitter tend to be relatively stable in the following
structure [69], I decided that this would still be the best course of action.

4.3 Data description

As I discussed above, the data that I used for my experiments contains a total of
56,173 Tweets written by 24,588 unique users. Figure |3| shows two histograms
of these Tweets. The maximum number of Tweets written by a single user is
162, but as can be seen in Figure [3h, the vast majority of users only have a few
Tweets. In fact, 66.61% of all users only have published one Tweet, and 98.25%
of all users have 10 Tweets or less.

The data set contains several important attributes for each Tweet, which
served various purposes throughout the experiments. Table [3| contains a list of
the relevant attributes, alongside a description and a short explanation of what
I used them for. Essentially, the Tweets themselves and the stance probabil-
ities were used to construct the semantic information for each user, while the
remainder of the attributes were used for structural information to create the
network graph.

To be able to track changes in the network over time, I split the data by
week, creating 5 weeks worth of data. However, some computational issues arose
with weeks 2 and 3 of the data due to their size, which is why I split those two
weeks up into two parts each. Some descriptive statistics regarding these slices
of the dataset can be found in Table @

4.4 Baseline dataset

To verify the results of all models, I used another dataset as baseline. Running
the experiments on this data as well provides additional corroboration for the
results found on the social distancing dataset.

22

20000 Histogram of Tweets (topic "social distancing”, October 2020) | Complete

17500

15000

12500

10000

Frequency

Number of tweets

(a) Complete histogram

20000 Histogram of Tweets (topic "social distancing”, October 2020) | 1-20 tweets

17500

15000

12500

10000

Frequency

176 139 a7 Bl 52 50 31 43 33 2 15 20 10
3 9 10 1n 12 13 14 15 16 17 18 19 20
Number of tweets

(b) Partial histogram showing distribution of users with 1-20 Tweets

Figure 3: Histogram showing the distribution of Tweets created per user. (a)
shows the complete histogram (the maximum number of Tweets written by a
single user is 162), whereas (b) shows a more detailed overview of the distribu-
tion of users with 1-20 T'weets.

4.4.1 Facebook dataset

The baseline dataset that I used is the Facebook datasetf] that is also used to
test node2vec [33]. This Facebook data originates from the Stanford Network
Analysis Project (SNAP) [70, [71].

It contains anonymized friend lists from Facebook in the form of user profiles
which represent the nodes, and friendship relations between pairs of users which
represent the edges. This information is sufficient to construct a graph which
I can use to conduct the experiments and form a baseline: the graph contains
4.039 nodes and 88.234 edges.

It is, however, important to note that the Facebook dataset does not contain
any attribute information like the Tweet texts or stance. Thus, it is less rich

3https://snap.stanford.edu/data/ego-Facebook.html

23

Attribute name
id_str

created_at
user_mentions

full _text

user

prob_soc_dist

followers_list

following_list

Description
Unique Tweet identifier

Tweet creation date and time
Represents other Twitter users
mentioned in the Tweet
Complete Tweet text, including
mentions, hashtags and URLs
User information such as user
id, screen name, and followers
count of the Tweet’s creator

A list containing three probabilities
for the T'weet’s stance: supports,
rejects, irrelevant

A list of all users that follow the
Tweet’s creator

A list of all users that the
Tweet’s creator follows

Usage

Used to extract more information
about the Tweet from the Twitter API
Used for filtering the Tweets by date
Used for determining how often users
interact with each other

Used to determine a user’s total text
attribute

Used to construct the network and
find user interactions

Used to determine a user’s overall
stance regarding the topic of

social distancing

Used to construct the network graph

Used to construct the network graph

Table 3: Explanation of Tweet attributes contained in the data set

‘Week
Tweets
nodes

edges

1 2(1) 2(2) 3(Q1) 32 4 5
9.604 5473 5449 7448 7318 9.091 7.311
5980 3.999 4192 5880 5607 5707 4.606
288.571 180.386 183.225 262.117 249.168 281.078 215.321

Table 4: Information regarding the sizes of each week of data. Weeks 2 and 3
were split up into two parts because of their sizes, in order to solve computational

issues.

with information compared to the social distancing dataset. Despite this, using
the Facebook dataset will allow me to compare the results of my models with
the results of reported in the original node2vec paper [33].

5 Methodology

5.1 Network definition
5.1.1 Twitter graph

The main network that forms the input for the embedding model is a homo-
geneous, directed, unweighted graph G = (U, &, A) where U is the node set
containing all Twitter users (or Twitterers), £ are the links between the Twit-
terers, and A are the attributes of the Twitterers. A Twitterer is defined here
as a collection of all Tweets made by a single user, in addition to all Tweets in

24

which that user is mentioned. E is the edge set. A directed edge exists from
Twitterer 7 to Twitterer j if ¢ (the follower) follows j (the friend). Isolated
nodes (nodes that are not connected to any other edges in the graph) have been
removed from the graph. As suggested in [13], the frequency with which Twit-
terer ¢ retweets Twitterer j’s T'weets could serve as a measure of the quality
of their relationship since the more they retweet each other, the more interests
they share. Therefore, the weight of an edge can be defined as:

(L+ fi;)/(Ni + fi) (1)

In , N; is the number of friends user ¢ has, f;; is the number of times user ?
retweeted the Tweets of j, and f; is j’s total number of retweets.

However, due to the limited number of Tweets available for each user (as
shown in Figure , the differences between the weights calculated in equation
for all users are negligible: all weights still end up extremely close to 1. As
such, including the weight will not have any major effect on the quality of the
embedding nor the quality of the selected opinion leaders. Therefore, I chose to
exclude the weight for the experiments using this dataset, which results in the
graph being a homogeneous, directed unweighted graph.

With this graph, there are generally two ways in which opinion leaders can
be determined. The first involves finding the topic-specific opinion leaders using
the topic-specific graphs. The second involves finding the overall opinion leaders
using the main graph containing all topics. The latter method might prove to be
useful in comparing the effectiveness of this model against other models that do
not have the ability to find topic-specific opinion leaders. Another way in which
this might be done is to aggregate the topic-specific opinion leaders together
to find the overall opinion leaders. However, since the dataset contains only a
single topic, for the purposes of my analysis the topic-specific opinion leaders
and the overall opinion leaders are considered to be identical. Thus, I will not
make any additional distinction between these two types of opinion leaders in the
remainder of this thesis. It will be relevant when discussing the TwitterRank[4]
OLD algorithm later, which is why I clarify this distinction here.

5.1.2 Facebook graph

The network that I use for the baseline experiments differs slightly from the
network described above. It is a homogeneous, undirected, unweighted graph
G = U, &) where U is the node set containing all Facebook users, and &
are the undirected edges (or links) between the nodes. Such an edge exists
between two users if there exists a friendship relation between those users on
Facebook. As opposed to the social distancing Twitter network, the edges in the
Facebook network are undirected since, contrary to Twitter, users cannot create
a connection with other users without needing consent from the other party.
Instead, both users need to give their consent before a connection (in the form
of a friendship relation) is established. Hence, the graph created from this data
is also undirected. Furthermore, the Facebook data contains no information

25

that T could use to estimate an edge weight, which is why the graph is also
unweighted, like the Twitter graph.

5.2 Graph Embedding method

The graph embedding method that I used is the Attributed Social Network
Embedding (ASNE) model [I0]. The ASNE model is the only embedding model
incorporating more than merely the structural information. Therefore, since
both the network structure as well as attribute information (text content, text
topic, overall sentiment, etc.) play a pivotal role in this social network, the
ASNE model is a prime candidate for creating the required embedding. The
extra attribute information should result in higher-quality embeddings than only
using structural information. ASNE uses a homogeneous, unweighted, directed
graph. The network is defined as G = (U, &, A) where U are the users, £ are
the links between users, and A are the attributes of the users. Each edge e;;
can be associated with a weight s;; indicating the connection strength between
u; and u;.

The goal of this embedding method is to preserve both structural proximity
as well as attribute proximity. Structural proximity is denoted by links between
users. If there is a link between two nodes then there is a direct proximity
between them. Conversely, if a node is within the context of another node,
there is indirect proximity between them. A context is generated for a node by
performing a random walk over the network [31] [10]. Just like the random walk
used by the node2vec [33] method, the ASNE model employs the use of a biased
random walk strategy balancing between breadth-first search and depth-first
search.

Based on this definition of structural proximity, the key lies in estimating
the pairwise proximity of nodes. The conditional probability of node u; on u;
is a softmax function which measures the likelihood that node u; is connected
to node u;:

eXp(f(ui7 u])) (2>
M
Zj’:l eXp(f(ui7 uj’))
To account for a node’s structural proximity with regards to all its neigh-

bours, a conditional probability of a node set is defined by assuming conditional
independence:

p(ujlui) =

pWNilw;) = H p(ujus) (3)
JEN;
By maximizing this conditional probability, the model preserves global struc-

tural proximity. Concretely, the global structure is modelled by a likelihood
function using this conditional probability of a node set:

M M
L= TTpNitu) =TT T plushes) (4)

i=1 jENL

26

This likelihood function [can be used to create the actual embedding model.
The authors use a neural network with multiple hidden layers to better capture
the non-linearities of real-world networks, as shown in Figure @l Specifically,
the pairwise proximity of nodes ¢ and j is calculated by taking the embedding
vector of ¢ and passing it through all hidden layers with their weights, biases,
and activation functions. Finally, that result is multiplied by the weight vector
of j to get the pairwise proximity.

Output Layer |o.1|0.05| 0.2 I 01 |0.05|0.1 |0.04 o.zhmbmlo.ll

1
1
Hidden Layers i .
1
\

| Layer 1, R |

Embedding Layer | u | | u’ |

Wid weatt
Input Layer [o[o[1] 0Jo[o] o o[o[o]o] [o[o]1[o]1]olo7josfo1]0]1]0]

Figure 4: Framework of the Attributed Social Network Embedding (ASNE)
model. Image taken from [I0].

Attribute proximity is denoted by the proximity of nodes as evidenced by
their attributes. The attribute intersection of two nodes indicates their attribute
proximity. Firstly, all attributes are converted to a generic feature representa-
tion: discrete attributes are converted to a set of binary features via one-hot
encoding. Conversely, continuous attributes are transformed into a real-valued
vector. The vector representations of all attributes are then concatenated to
form the generic feature vector. This vector is then used as input for the same
neural network as was used for the structural proximity. The result of this is
the attribute proximity.

So, to conclude, an overview of the ASNE model. The input layer (as can
be seen in Figure 4] consists of two parts: the structural fragment (which is
a one-hot encoded vector where only the node being considered has the value
1 and all other nodes have the value 0) and the attribute fragment (which
contains the generic feature vector as discussed earlier). Next, the embedding
layer takes the input and converts it into two dense vectors as described above:
the one-hot vector gets converted into a dense vector which captures structural
information, and the feature vector gets converted into a dense vector which
captures attribute information. A vector is dense if it consists primarily of non-
zero values, as opposed to a sparse vector which in turn consists mainly of zero
values [72].

These two dense vectors are then fed into the hidden layers, consisting of a
multi-layer perceptron. The hidden layers multiply the vectors by the layer’s
weight, add a bias, and pass it through an activation function, before passing

27

it to the next layer. The activation function used in this paper is the soft-sign
function. The soft-sign function is similar to the tanh function, but where tanh
converges exponentially, soft-sign converges polynomially [73]. Each successive
hidden layer contains only half as many neurons as the last. The authors argue
that this is done in order to enable the model to better learn the abstract
features of the data.

Finally, the output vector of the last hidden layer is transformed into a
probability vector, which contains the predictive link probability of a node to
all nodes in the network. This transformation is done by multiplying the output
of the hidden layer by the weight of the corresponding node. This is then fed
into the softmax function to obtain the probability vector. This vector contains
the predictive link probability between any pair of nodes in the network.

5.3 Opinion Leader Detection method

The OLD method I have used to complement the embedding created by the
ASNE model is the SNERank [I3] method. This OLD method was specifically
designed to supplement the ASNE model. Furthermore, it has been shown to
outperform the other main candidate TwitterRank [4]. The SNERank method
uses the node embeddings created by the graph embedding method to calculate
a score for each node in the graph. These node scores can then simply be
sorted to find the most influential users (highest scoring nodes) and the least
influential users (lowest scoring nodes). Specifically, the algorithm calculates
the extent to which a particular node can influence other nodes in the network,
by calculating the similarity between the embeddings of that node and any other
node. I calculate the similarity of two nodes i and j as follows:

| exp(uy - uy), if j is ¢’s friend
Wij = { 0 , otherwise (5)

where wu; is the embedding of user ¢ and u; is the embedding is user j [I3]. The
embeddings here are the concatenated embeddings, rather than the individual
embeddings as this has been shown to increase performance for downstream
applications [I0]. The final score for all nodes can then be calculated with:

sumie|ar) (Wi j)

+d > Wi AR! (6)

AR = (1-d
’ () sum(W) i€ M| Zj’ENeighbour(i) W’L—J—I
where M represents the nodes of the network, AR} is the ranking value of user
i in iteration ¢ and d is the dumping factor in the interval [0, 1]. The original
paper used d = 0.85 [I3], and I opted to stick with this same value as well.
Since the ASNE embedding algorithm creates embeddings based on both
structural and attribute information, and SNERank evaluates nodes based on
their embeddings, the score calculated by SNERank (and by extension their final
rank) is also based upon both structural and attribute information. The nodes

28

that are closest together in the embedding vector space have similar structural
and attribute information and are thus more likely to influence each other [13].
Thus, the highest-scoring nodes as selected by SNERank also have the highest
probability of influencing the highest number of other users in the network on the
corresponding topic of the data. For this reason these nodes can be considered
opinion leaders.

5.4 Baseline algorithms

In order to properly gauge the effectiveness of the described method, I used
several other algorithms to ensure ample opportunity to compare the results.
Specifically, T used the DeepWalk [31] and node2vec [33] Graph Embedding
models, as well as the TwitterRank [4] and LeaderRank [56] Opinion Leader
Detection models.

DeepWalk The DeepWalk [31] model takes as its input a graph and produces
node embeddings in the form of vector representations of the nodes. The method
is primarily based off of language modeling, and the authors adapt those meth-
ods to create graph embeddings after observing that the distribution of nodes
in random walks is extremely similar to the distribution of words in natural
language.

This observation indicates that methods capable of creating embeddings for
natural language might also be capable of generating embeddings for graphs as
well. Specifically, the authors employ the use of the Skip-Gram language model
in the DeepWalk architecture. Skip-Gram is a model that aims to find the most-
related words for a given word. Concretely, given a certain word, Skip-Gram
attempts to predict the context words that best fits that target word. It is
primarily based on the Distributional hypothesis, which posits that when words
appear in similar contexts, their meanings generally are found to be very similar
as well [74].

This can then be adapted from natural language to graphs by treating nodes
visited by random walks as words in a sentence: nodes that appear in similar
contexts (surrounding nodes) are likely to be similar to each other as well.
Thus, these nodes should also be placed close together in the embedding vector
space created by the embedding algorithm. Following this line of reasoning, the
optimization function for DeepWalk is as follows:

ming — log P((Vi—w, -+ Vigw)| #(v:)) (7)

where ¢ is the mapping function between the nodes and their vector repre-
sentations, v; is node 7, w is the size of the context of the random walk, and
o(v;) is the vector representation of node v;.

Essentially, creates vector embeddings from the nodes in the graph by
using their context to get information about the node itself. As such, the em-
beddings capture the neighbourhood structure of the nodes, ensuring that the

29

structural properties of the original graph are maintained. When incorporat-
ing the Skip-Gram model into this, it removes the ordering constraint, thereby

changing to:
1+w
P((0imws s Vi) (i) = T Plujle(vi)) (8)
Jj=i—w
J#i

where P(v;|é(v;)) is approximated by a hierarchical softmax function. The
reason that this probability needs to be approximated rather than calculated
directly is simple: to calculate this probability precisely would require a massive
amount of time and computational resources, thereby decimating the scalability
of the algorithm altogether. As such, the authors opt to use a hierarchical
softmax to approximate the probability distribution rather than calculating it
directly, which in turn introduces additional error into the model, but speeds
up the computation enormously.

The hierarchical softmax works as follows: first, it creates a binary tree where
every leaf is a node of the graph. Thus, to find P(v;|¢(v;)), we can maximize
the probability that a certain path (in this case: the path from the root to node
v;) occurs in the tree. This particular path in the tree can be represented by a
series of points in the tree: we can travel through all these points to arrive at
node v;. Therefore, the objective function here aims to maximize the probability
that we find this path specifically:

log |V

P(ujlo(vi)) = [Pbelo(vi)) 9)

In (9), |V| is the number of nodes in the original graph, and P(b;|¢(v;)) is
a binary classifier which decides whether to go left or right at every branch in
the binary tree.

The end result of this entire process involving the hierarchical softmax is a
tremendous improvement in computation speed: since a balanced binary tree
like the one used here has a depth of log(|V|) [75], at worst we need to evalauate
log(|]V]) nodes to determine the final probability of a node. Therefore, instead
of O(|V]?), the complexity of the Skip-Gram model becomes O(|V|log(|V])).

When the probabilities have been calculated according to @D, the vector
representations of node v; are updated according to .

After training the model, the embedding vectors of all nodes reflect the
structural context of the original graph, so nodes that are close to each other
in the graph also have similar embedding vectors, which can then be used for
downstream applications such as opinion leader detection.

I used the implementation of DeepWalk provided by the authors of the orig-
inal paper [31], which can be found on GitHuHﬂ I was able to use DeepWalk
for any dataset without needing to change any fundamental aspects of the code.

4https://github.com/phanein/deepwalk

30

node2vec The node2vec model takes as its input a homogeneous graph, weighted
or unweighted, directed or undirected, and returns a mapping of the nodes of the
graph to a low-dimensional vector space as its output, very similar to DeepWalk.
The objective function that node2vec aims to optimize is:

max 3 log Pr(Ns(w)|f(w) (10)

ueV

This objective function serves to maximize the log-probability of observing
a neighbourhood Ng(u) in the network for a node u conditioned on its feature
representation f.

To accomplish the goal of maximizing this objective function, the authors
propose the use of a biased random walk strategy to sample the neighbourhood
nodes. The random walk combines both the breadth-first search (BFS) and
depth-first search (DFS) search strategies. The reason for this is that this
combination allows the model to learn both the local and the global network
structure. the BFS is restricted to only the nearby nodes to get a view of the
neighbourhood of each node. Furthermore, when using BFS, the nodes in a
neighbourhood are typically sampled numerous times, leading to a reduction
in variance of the distribution of the source node’s neighbourhood. Conversely,
DFS is capable of exploring nodes further away from the source node: this
enables it to learn the more global network structure, thus gaining a more high-
level view of the communities present within the network.

As mentioned earlier, the random walk is biased based on the edge weights
and two parameters p and ¢ which guide the walking process. The parameter p
denotes the return parameter, controlling the likelihood of instantly revisiting a
node during the random walk. If it is high then the random walk is encouraged
to do more exploration, whereas if it is low the random walk is more likely to stay
close to the starting node. The parameter ¢ designates the in-out parameter,
which allows the random walk to distinguish between nodes that are ”inward” or
nodes that are ”outward”. With large values of ¢(> 1), the model will obtain a
local view of the network, thereby simulating a BFS, whereas with small values
of ¢(< 1), the random walk is more likely to explore, thereby mimicking DFS.

By applying the stochastic gradient descent algorithm on the random walks,
we gain the optimized result of the objective function 7 thereby learning the
optimized vector representation. The random walks used by node2vec are com-
putationally efficient concerning both space and time when compared to using
traditional BFS or DFS approaches. This, combined with its flexible balance
of learning local and global representations of the network make node2vec it an
exquisite option to use when creating embeddings.

I used the implementation of node2vec provided by the authors of the original
paper [33], which can be found on the SNAP Websiteﬂ I was able to use node2vec
for any dataset without needing to make any fundamental changes to the code.

Shttp://snap.stanford.edu/node2vec/

31

TwitterRank The TwitterRank method uses a directed cyclical unweighted
graph where each node corresponds to a Twitter user, and an edge exists between
two users if one follows the other, with the direction going from the follower to
user they follow (also known as the friend). A topic-specific TwitterRank is
then assigned to each user for each topic that is present in the data. Topics are
identified by a Latent Dirichlet Allocation model.

LDA is an unsupervised machine learning model with the goal of determin-
ing topic information from text data. It uses a bag-of-words representation,
which entails that the documents (in this case a document is a collection of all
Tweets by a single user) are managed as vectors containing the counts of each
word. Using this, each document is represented by a probability distribution
over several topics, whereas a topic is represented by a probability distribution
over several words. The LDA model then learns these two distributions from
the data. These distributions confer information regarding which topics people
usually write about, in addition to a representation of which topics are contained
in each document. The end result from applying the LDA model is contained in
three matrices: a matrix containing the number of times a word in each user’s
Tweets has been applied to each topic, a matrix containing the number of times
each word has been assigned to each topic, and a vector containing all unique
words.

In order to assign a topic-specific TwitterRank to each user for each topic,
the model uses a topic-specific random walk on the graph to create a topic-
specific relationship network among twitterers, which is modelled as a transition
probability from user ¢ to user j:

71l
P(i,j) = * simy (i, J) (11)
Za: s; follows sq |7——||
where simy(i, j) is defined as:
simy(i,j) = 1 — |DT}, — DTJ{t| (12)

The transition probability in from user ¢ to user j for a topic ¢ consists
of two parts: firstly, the fraction of Tweets that a user i sees that have been
posted by user j. Essentially, this encapsulates the idea that the more T'weets
user ¢ sees from user j, the larger the influence of user j on user i. The second
part of the transition function consists of the similarity of the interest users 4
and j for topic ¢. The more similar the interests of the two users are, the higher
the transition probability from ¢ to j. This transition probability models the
idea that friends on Twitter who interact with each other frequently and both
have a similar level of interest in a particular topic are more likely to influence
each other on that specific topic.

There exists the possibility that some users would share a following rela-
tionship in a loop, without sharing this relationship with users not in the loop.
Therefore, the model also uses a teleportation vector to capture the probability
of jumping to a pseudo-random other user (node) that is not necessarily con-

32

nected by an edge. This teleportation vector is added to prevent the random
walk from getting ”stuck” in the same group of nodes every iteration.

Finally, the TwitterRank of a user gets calculated by iteratively updating
the transition probability matrix and the teleportation vector:

— —

where ﬁ is a vector of TwitterRank scores for all users in the network for
topic t, v is the weight parameter, P; is the matrix of transition probabilities as
defined in for topic ¢, and E; is the teleportation vector for topic ¢.

The weight parameter v controls the probability of teleportation. Lower
values of y correspond to a higher probability of teleporting to a random user in
the network, thus promoting a higher exploration rate of the random walk over
the graph. When is applied to all topics in the data, the result is a vector
for each user containing their influence score for each topic. This vector can also
be aggregated by summing over all topics multiplied by each topic’s weight. A
topic’s weight can be determined in several ways, but the simplest way is to
simply calculate the weight for each topic by how often it is present in the data.
The aggregated value of all topic-specific TwitterRank scores corresponds to a
Twitter user’s general influence across all topics in the data.

LeaderRank LeaderRank uses a graph where each node corresponds to a
user, and a directed edge corresponds to a relationship between two users, with
the direction of the edge corresponding to the following relationship. In case
the following relationship is mutual, the edge is bidirectional as well.

LeaderRank operates by assigning each node the value 1. Then, in each
iteration, a node’s value is evenly divided among its neighbours, so if a node
with value 1 has 4 neighbours, each neighbour receives 0.25. This iterative
process continues until a steady state is reached (until the values in all nodes
no longer changes).

Before starting the iteration process, LeaderRank adds a ground node to
the graph which is connected to every other node in graph by a bidirectional
edge. This step makes the graph very strongly connected, which ensures that
the iteration process converges without needing to define hyperparameters to
control the walking process.

This process corresponds to a random walk on the graph:

Aij
Dij k;)ut

(14)

where p;; denotes the probability that the random walk at 7+ moves to node
J in the next iteration, a;; has the value 1 if there exists a directed edge from i
to j and 0 otherwise, and k9*! is the number of outgoing links of ¢ (the number
of users that ¢ follows.

A node’s value can then be determined by:

33

Ntl
sit+1)=>_ o 51 (1) (15)
j=1 7

where s;(t) is the value of node i at time ¢ and N is the number of nodes
in the graph. As explained above, the initial scores s;(0) = 1 for all nodes i
(except for the ground node) and s4(0) = 0 for the ground node.

After convergence, the values of each node correspond to the scores assigned
to them by the LeaderRank model. The higher a node’s score, the more that
node is considered to be an opinion leader. As such, the node with the highest
value is considered to be the best opinion leader by LeaderRank.

5.5 Evaluation methods

Link prediction To evaluate the graph embedding methods, I use the link
prediction task. The reason for this is that link prediction is better suited for
my data than node classification, as the latter requires the nodes to have labels,
which is not the case in my data.

An added benefit is that ASNE, DeepWalk, and node2vec have all been
evaluated using link prediction in the past, which gives me a great opportunity
to compare the results and hopefully draw more meaningful conclusions.

The graph embeddings are fed to the link prediction method alongside the
test set (how the test set is created is explained in section .

Then, for each node pair in the test set, the model calculates the cosine
similarity between the embeddings of the two nodes:

Z?:l Az X Bl
where A is the embedding of node 1, B is the embedding of node 2, and n
is the number of dimensions of the embedding.
This results in a cosine similarity value between -1 and 1, where -1 is perfect

dissimilarity between the two embeddings and 1 is perfect similarity. These
values are then used together with the test set labels to calculate the AUROC.

sim(A, B) = (16)

SIR To evaluate the opinion leader detection methods, I use the SIR model.
This method attempts to model the spreading of information throughout a
network, starting from several key nodes. Each node in the network can have
three states, denoted by ”Susceptible”, "Infected”, and ”Recovered”. Initially,
only the key nodes will be Infected, whereas the other nodes are all Susceptible.
Every iteration, Susceptible nodes that are connected to Infected nodes have a
chance to become Infected themselves. In my implementation, similar to [13],
this chance is defined as a probability A; if the text similarity between the target
node and one of the initial nodes is greater than a threshold e. Otherwise, the
probability is Ag, with A\; >= Ay. Every iteration, Infected nodes also have

a chance to become Recovered, with probability %, where k% is the average

34

in-degree of all users in the network. To run the SIR model on an opinion
leader detection model, I take the top 20 opinion leaders as defined by the OLD
model, and set those as the initial infected nodes. Then, I let the SIR model
run until convergence. The total number of Infected + Recovered users are
the users that have been influenced the initial nodes. As such, the higher that
number is, the better the initial nodes are at spreading influence throughout
the network. The speed at which the SIR model reaches convergence is also
important, as it indicates that the opinion leaders are better/worse at spreading
their information throughout a network at a high speed.

Kendall’s 7 Kendall’s 7 is a correlation measure for ordinal lists, which is
why it can be used to evaluate the rankings created by the opinion leader de-
tection methods [4]. It provides an indication of the strength of the monotonic
relationship between two ordinal lists, between -1 and 1. Intuitively, a 7 of 1
corresponds to high values in list a being associated with high values in list b,
whereas a value of -1 corresponds to high values in list a being associated with
low values in list b [6§].

The correlation measure T between two lists a and b is defined as:

T= r-Q (17)
VIP+Q+T)«(P+Q+U)

where P is the number of concordant pairs, @) is the number of discordant
pairs, T is the number of ties only in a, U is the number of ties only in b.
Following these definitions, if a tie occurs for the same pair in both a and b, it
will not be added to either T or U.

A pair of observations X, Y; and Xj;,Y] is concordant if X; > X; and Y; > Yj
or X; < X; and Y; <Yj. Conversely, such a pair is discordant if X; > X; and
Y;<Yjor X; < X;and Y; > Y.

6 Experimental setup

6.1 Research questions

I performed several experiments using both the social distancing Twitter data
(section and the Facebook data (section to provide an answer to the
research questions. In this section, I will reiterate the four research questions
from section alongside an explanation of how I plan to answer these.

What is the influence of including both semantic and structural infor-
mation in a graph embedding on opinion leader detection, compared
to using only structural information? To test the effect of both semantic
and structural information on opinion leader detection, I compared the ASNE
model [T0] combined with SNERank [I3] against the node2vec model [33] and
the DeepWalk model [31], both combined with SNERank as well. Since ASNE
uses both semantic and structural information and the node2vec and DeepWalk

35

models only considers the network structure when creating the embedding, this
comparison should yield a clear result as to the effectiveness of incorporating se-
mantic information in a graph embedding. Furthermore, to eliminate differences
in the creation of the structural embeddings by all three models, I also tested
the ASNE model without including attribute information, so that the embed-
dings can only contain structural information. This will provide a baseline to
compare the node2vec and DeepWalk models with as well.

What is the influence of using graph embeddings on opinion leader
detection? To determine the influence of graph embeddings, ASNE, Deep-
Walk, and node2vec in combination with SNERank will be compared to the
TwitterRank [4] and LeaderRank [56] methods. The TwitterRank and Leader-
Rank models uses a graph without creating an embedding for it first. Therefore,
comparing both of these different classes of models will provide a clear indication
of the effects of using a graph embedding.

What is the influence of a user’s stance (positive or negative) on
detecting opinion leaders? One of the features that could have a major
effect on the process of finding opinion leaders is the stance of a user. Using the
ASNE model I can include this feature in the embedding, which means it will in
turn also be included in the OLD process. As such, to find the effect of a user’s
stance on detecting opinion leaders, I have created embeddings both with and
without this feature.

How do opinion leaders develop over time in a social network? The
social distancing Twitter data spans one month, as described in section [I
have split these data up into segments spanning one week each. Then, I trained
several opinion leader detection models on each week of the data and found a
set of opinion leaders for each model. This allows me to see how the opinion
leaders develop and change over the course of time.

6.2 Procedure

The experiments consisted of three phases: preprocessing the data, training the
models, and evaluating the models. Figure [5|shows a flowchart outlining these
steps. In this section I will cover each of these steps in more detail.

6.2.1 Data preprocessing

Structural and attribute information To ensure that the data was in the
proper input format for the majority of the main algorithms (ASNE, DeepWalk,
node2vec and LeaderRank), I had to preprocess the datasets in several steps: I
had to create an edge list containing all the edges in the graph, and I had to
create an attribute list containing the values of all attributes for all nodes.

For the social distancing Twitter dataset, I split the data by week number
to acquire five datasets, each corresponding to approximately one week of data.

36

Data Preprocessing

[Split the data into 5 weeks]
{ Aggregate Tweets for each user]

/ Create edge list \

Add followers

Create attribute list

TwitterRank input
Create text Extract user ids and
embedding for all Tweet counts
Tweets by a user
Remove non-

probabilities over all Create follower list

Tweets by a user

Remove non-
connected users

Use remaining
connections to create

edge list Extract unique words

~ Create from all Tweets
train/test/validation
sets / Create train/validation

Create
train/test/validation
sets

:

Model training

SNERank] [LeaderRank } TwitterRank

—)[node2vec

DeepWalk

Figure 5: Visualization of the experimental procedure. The data preprocessing
creates the edge list, attribute list, and TwitterRank input for each of the 5
weeks in the data; the model training trains the GE and OLD models; the
evaluation assesses the quality of each model.

During the training phase, the networks of weeks 2 and 3 turned out to be too
large and caused memory errors which made me unable to train the models on
these networks. Therefore, I split the data from weeks 2 and 3 up into two parts
each and trained those separately.

To create the input of each time interval, I first aggregated all tweets for each
user in order to view the data per user rather than per tweet. Next, I added the
lists of followers and friends for each user (since these variables were collected
separately, as explained in section [4.2)). However, these lists contained all users
ids that were connected on Twitter to the users in the dataset. Therefore, 1
removed any user ids that did not have a single Tweet in the dataset, so that
the remaining connections could be used as edges in the graph. To prevent
overfitting, I randomly sampled 10% of the links for hyperparameter tuning,
and another 10% as the test set. The models were trained on the remaining
80% of the links, just as done in [I0].

Then, to construct the attribute list, for each user I converted the text of

37

all their tweets combined into a vector through TF-IDF, as explained in section
This vector forms the Text attribute. However, since an overwhelming
majority of the users only published a single Tweet in the dataset, the TF-
IDF vector provided mainly useless information: since TF-IDF creates vector
representations based on the inverse document frequency, it is unable to provide
information that would be helpful in discerning between different nodes for graph
embedding with only one single document as reference material.

Therefore, I added a pre-trained language model named FastText [76] to
create vector representations of the Tweet text as well. With these two ways
to obtain the text attribute, I could compare both to observe which one would
be more suited given the current dataset. Thus, I created two variants of the
attribute information: one containing the text attribute as created by TF-IDF,
and one containing the text attribute as created by FastText.

The Stance attribute consists of three probabilities (supports, rejects, irrel-
evant: see table [3). Every Tweet has one of each of these three probabilities,
that together sum up to 1. Therefore, in order to calculate these probabilities
for a user I simply averaged the probabilities from all of a user’s Tweets, which
resulted in three average probabilities for that user. All three of these average
probabilities were added to the attribute list as part of the Stance attribute of
a user.

The Text and Stance attributes together make up the attribute information
for the nodes, which the ASNE model will use for creating its embedding. The
edge list constitutes the structural information, which is what the ASNE, Deep-
Walk, node2vec, and LeaderRank models will use for creating their embedding.

TwitterRank input The input required for TwitterRank differed slightly
from the input required for the other algorithms. Specifically, TwitterRank
requires:

e A list of user ids

A list of Tweet counts for each user

A list of followers for each user

e A list with Tweet content (words that made up the Tweets) for each user

To create these attributes, I aggregated all tweets for each user, just like
with the other algorithms. Afterwards, I could directly extract the user ids and
Tweet counts for all users.

I filtered the followers in the same way as before: by removing user ids who
did not have a single Tweet in the dataset. Then, the follower input for each
user was simply a binary list of size n where n is the total number of users.
Each follower would be represented by a 1 in the list, and all other users by a 0.

Finally, to get the Tweet content for each user I simply extracted the unique
words from all Tweets made by a single user and concatenated them together
in a list to be given to TwitterRank as input.

38

6.2.2 Training the models

Graph Embedding To properly train the models, I first experimented with
different hyperparameter settings to determine the best values for each model
and each dataset. The values I selected to run these tests with are adapted
from several papers also testing these models [4} [10, B3], BI] and can be found
in Table [5| with the values generating the best results displayed in bold.

Model Parameter Social distancing dataset | Facebook dataset
ASNE batch size 64 128 256 64 128 256
learning rate 0.1 0.01 0.001 0.1 0.01 0.001
P 05 1 2 05 1 2
node2vec q 05 1 2 05 1 2
Walk length 20 40 80 20 40 80
Walks per node | 10 20 40 10 20 40
Walk length 20 40 80 20 40 80
DeepWalle | 1 1ies pegr node | 10 20 40 10 20 40
TwitterRank | ~ 0.1 0.2 0.3 0.1 02 0.3

Table 5: Tested hyperparameter settings for both datasets. Best-performing
values are displayed in bold.

After finding the best values for the hyperparameters of each model, I trained
all embedding models on the datasets using these values for the hyperparame-
ters. To try and ensure that the models were trained until convergence, I trained
them for 100 epochs each. Observing the results does confirm that the models
converged after this time, so I deemed it not necessary to increase the number
of epochs for any of the models.

I also trained multiple versions of the ASNE model with different attribute
parameters on week 1 of the data:

e A version including both the Text and Stance features
e A version with only the Text feature
e A version with only the Stance feature

e A version with no attribute information at all

Training these models and comparing the results on the link prediction task
will provide insight in the specific effects of these attributes alone.

For the baseline Facebook dataset I did not have any attribute information.
As such, the input for all embedding models is simply the edge list containing
the structural information of the graph.

Model robustness The robustness of a graph embedding model depends in
part on how it performs with more sparse networks. Therefore, I also trained the
three graph embedding models (ASNE, node2vec, and DeepWalk) on the data

39

from week 1 with varying training link ratios. The change in performance as
less and less links are available for training indicates the robustness of the graph
embedding model: the faster the decrease in performance with less training
links, the less robust a model is [10].

Ablation Since there is some randomness involved in creating the test set
(selecting random nodes to check in the link prediction task), I also ran an
ablation study to determine the effect of randomness on the results of the study.

I generated 10 different test sets using the exact same procedure (so the only
factor affecting changes between the test sets is the randomness involved) and
tested the data from week 1 on all these test sets.

If the randomness does not have a major effect on the quality of the results,
the link prediction results should be (nearly) identical. If they are not, this
indicates that the random variation might drastically affect the results.

Opinion Leader Detection I then trained three Opinion Leader Detection
models: TwitterRank and LeaderRank directly on the data, and SNERank on
the embeddings created by DeepWalk, node2vec, and the various versions of
ASNE. For TwitterRank I used the best value for v as found by the hyperpa-
rameter testing (Table , whereas LeaderRank and SNERank did not require
any hyperparameter tuning.

Similar to the graph embeddings, for the Facebook dataset I simply used the
edge list as input for LeaderRank, and the embeddings from ASNE, node2vec
and DeepWalk for SNERank. Unfortunately, since this dataset does not contain
any Tweet information, TwitterRank could not be used on this dataset.

6.2.3 Evaluation

In order to evaluate the quality of the graph embeddings, I used the link predic-
tion task as explained in section[5.5] The AUROC score of the models provides
an indication of the quality of the embedding.

To evaluate the results of the Opinion Leader Detection methods, I used
Kendall’s 7 [68], as well as a variant of the SIR model [67]. With the SIR model
I tested several different hyperparameters as well, to determine the influence of
text similarity on the spread of information, similar to what is discussed in [13].
Similar to the other experiments, to test the hyperparameter values I used week
1 of the social distancing data. The specific values of the hyperparameters that
I tested can be found in Table [f] and are based off of [13].

40

Parameter ‘ Values

A1 0.1 0.3
A2 0.1 0.3
€ 02 04

initial infected | 20 50

Table 6: Hyperparameters used in the SIR model.

7 Results and discussion

7.1 SIR hyperparameter tuning

Figure [6] contains two of the results from the SIR hyperparameter testing. The
complete results can be found in Appendix [A]

The hyperparameters Ag, €, and Ny (as explained in section offer little
influence on the spread of the information throughout the network for any of the
five models. The A\, parameter, however, does affect the rate at which the infor-
mation spreads through the network: SIR models with A\; = 0.1 converge more
slowly compared to SIR models with A\; = 0.3. Despite this slower convergence,
all models do achieve a similar spread of information after converging, which
can be observed near the final iterations of the graphs and in the zoomed-in
parts of the plots.

Since A\; = 0.3 offers faster convergence of the SIR models, I used this value
for the evaluation of the opinion leader detection models. Because the other
parameters do not seem to impact the results with the chosen value ranges, 1
used Ay = 0.1, ¢ = 0.2, and Ny = 20, as these correspond to values used in [13]
(alongside A; = 0.3), thus allowing for easier comparison between their results
and my own. The results for these hyperparameter values can be observed in

Figure [0

7.2 Model robustness

Figure[7]shows the performance of ASNE, DeepWalk and node2vec with regards
to different levels of training links. One important observation is that ASNE
decreases much more quickly than node2vec and DeepWalk do. Furthermore,
node2vec hardly decreases at all and DeepWalk’s performance only worsens
slightly even with less than half of the links used for training.

This indicates that the effect of attribute information (which is only present
in ASNE, but not in node2vec or DeepWalk) does not compensate for link
sparsity, as the performance decrease in ASNE is stronger than in the other
two embedding models. Node2vec’s higher performance on all levels of network
sparsity compared to DeepWalk could be explained by the balanced random
walk that node2vec uses, which allows it to more easily maintain higher-order
proximity information that DeepWalk does not have access to.

Comparing these results to a similar test done in [I0], the performance of
ASNE on the link prediction task is similar with high ratio of links used for

41

5000 1
4000 4
3000 1
]
2000 1
Ene
1000 4 deepwalk
node
twitterrank
0 keaderrank
T T T T T T T
] 5 10 15 20 25 30
Iterations
(a) A1z 0.1, A2: 0.1, e 0.2, No: 20
5000 1
4000 1
3000 1
=
2000 1
ENE
1000 - despwalk
node
twitterrank
o keademrank
T T T T T T T
] 5 10 15 20 25 30

Iterations
(b) A1: 0.3, A2: 0.1, e 0.2, No: 20

Figure 6: Two results from testing the different combinations of hyperparameter
values from Table [f] on week 1 of the data. Ny is the number of initial infected
nodes before iteration starts. In the legend, "asne” corresponds to the ASNE
embedding model + SNERank, ”deepwalk” is DeepWalk + SNERank, "node”
is node2vec + SNERank.

training, but the performance drop as the network sparsity increases is greater
on this data than reported for most datasets in [I0], with the exception of the
CITESEER dataset, which features a similar decrease in performance.

The relative decrease in performance from both node2vec and DeepWalk
on my dataset is similar to what is reported in [I0], but both models perform
vastly superior on all levels of network sparsity in that paper than on my data.
I explore this unexpected result in more detail in section

42

09

08\

07

— ane
node
06 —— deepwalk

AUROC

05

04 %
09 0.8 0.7 06 05 04
Ratio of links used for training

Figure 7: Performance of link prediction on week 1 of the data with varying
levels of network sparsity.

7.3 Ablation

Figure [8|shows two of the results of the ablation study to investigate the effect of
randomness on the outcome of the link prediction task. Each image represents
the results of one of the 10 randomly generated test sets as described in section
[6:2:2] The complete results showing all 10 graphs can be found in Appendix [I7]
Figures 8| reveals that the results of the tests are essentially identical, indicating
that the effect of randomness is negligible on the outcome of the link prediction
task.

Since the results on the link prediction task are nearly identical, I postulate
that the way in which the data sets are split using randomness does not play a
noticeable role in finding opinion leaders either, since the embeddings will be of
the same quality regardless of how the data for training and testing has been
split.

7.4 Graph Embedding
7.4.1 Social distancing dataset

As the results of the link prediction task show, the models perform similarly
over all weeks of the data. This indicates that both the structural and attribute
information contained in the data are consistent over time, which enables the
embedding models to learn these embeddings that also perform similarly over
time. The ASNE model is the slowest to converge, but it converges to a much
higher AUROC value (0.94) compared to both DeepWalk and node2vec. Deep-
Walk converges to AUROC values of 0.42, whereas node2vec converges to ap-
proximately 0.56.

43

10

08

0.6

AJROC

0.4

0z

— =ne
node
— deepwalk

0.0

0 P 10 &0 &0 100

10

08

0.6

AJROC

04

0z

— =ne
node
— deepwalk

0.0

0 20 0 &0 80 100
Epochs

(b)

Figure 8: Partial results from the link prediction task on week 1 of the social
distancing data for the ASNE, DeepWalk and node2vec graph embedding mod-
els. Each image corresponds to a different randomly generated test set.

7.4.2 ASNE variants

Figure [I0] contains the results of the DeepWalk and node2vec models for refer-
ence, in addition to several variants of the ASNE model:

o ASNE with FastText and Stance attributes (asne_fasttext)

e ASNE with TF-IDF and Stance attributes (asne_tfidf)

e ASNE without any attribute information (asne_without_attr)

e ASNE with the Stance attribute but no text attribute (asne_only_stance)

As can be seen in Figure both the ”ASNE with FastText and Stance”
variant and ”ASNE with only Stance” variants converge to the same value,
but ” ASNE with only Stance” converges much faster, indicating that the text
attribute is actually slowing down the training process for ASNE on this dataset.

44

10

0.8

0.6

[*]
o
g /-"/——‘-—“A_ﬂ—-—
2 04
02 —_— 3Ene
deepwalk
— node
0.0 T T T T T
0 20 40 G0 80 100
Epochs
(a) Week 1
10
0.8
06

AROC

0.4

0.2

— amne
deepwalk
— node

0.0

0 20 40 60 80 100
Epochs

(b) Week 4

Figure 9: Partial results of the Link Prediction task on the ASNE, DeepWalk,
and node2vec graph embedding models on the social distancing dataset. Results
from all weeks can be found in Appendix @

Furthermore, ” ASNE with TF-IDF” has a very irregular training process, with
the performance fluctuation slightly between different iterations. Even though
there is still an overall positive trend, it converges to a lower value than the other
ASNE variants. Finally, the ”ASNE without attributes” variant shows similar
training progress to the ” ASNE with FastText and Stance” but performs slightly
worse at all iterations, indicating that the overall effect of attribute information
is positive.

Despite the performance of ASNE being substantially higher than that of
DeepWalk and node2vec, this dramatic increase in performance cannot be cred-
ited solely to the presence of attribute information in ASNE (which is not used
by DeepWalk and node2vec): Figureshows that when excluding the attribute
information from ASNE, the model’s performance only drops slightly (from 0.94
to 0.92).

45

10

0.8

0.6

AUROC

04
= a=ne_fasttext
asne_tfidf
— deepwalk
0.2 — nodelvec
asne_without_attr
—— aEne_only_stance
0.0 T T T T T T
o 20 40] 80 100
Epochs

Figure 10: Performance of link prediction on week 1 of the data, including
several variants of ASNE.

Comparatively, when trained on the exact same data, DeepWalk only has an
AUROC value of 0.42, and node2vec has a value of 0.55. Figure [J]indicates that
the results of the link prediction task are stable across all weeks in the data,
which shows that the training is systematically underwhelming for DeepWalk
and node2vec.

Furthermore, as Figure [8] shows, the randomness factor has also been ac-
counted for regarding its influence on the embedding results: there are no sub-
stantial differences between any of the experiments conducted on the 10 different
randomly generated test sets. As such, the only remaining factor influencing
results are the embedding models themselves.

Therefore, the way in which ASNE creates the embeddings makes up the
majority of the difference in embedding quality, compared to any other factor
such as attribute information or randomness.

7.4.3 Facebook dataset

The performance of both DeepWalk and node2vec increases only marginally
over the course of the training process on the Facebook dataset, as shown in
Figure Conversely, ASNE follows a similar curve to the social distancing
datasets, and reaches near-perfect AUROC when it converges.

Given that the Facebook dataset has also been used to test both DeepWalk
and node2vec in [33], this result is quite alarming, as in that paper both models
achieved an AUROC value of up to 0.9680, compared to DeepWalk’s 0.51 and
node2vec’s 0.54 in my experiment.

The dataset and source code are, to the best of my knowledge, the same in
both experiments. I also used the same hyperparameter settings as reported in

When looking into the embedding vectors created by DeepWalk and node2vec,

46

10

— =ne
deepwalk
— node

(k]

0.6

AUROC

04

02

00

o 20 40 60 a0 100
Epochs

Figure 11: Performance of link prediction on the Facebook dataset.

I noticed that the vast majority of the nodes were vastly different from each
other. To calculate their similarity, I used the cosine similarity measure. Al-
most all node embedding pairs had a cosine similarity of near 0. Compared
to the average pairwise cosine similarity of ASNE (0.43), the average pairwise
cosine similarity of DeepWalk (0.02) and node2vec (0.04) are substantially lower.

This might be the reason why the link prediction task has trouble differen-
tiating between node pairs that should have an edge between them, and node
pairs that should not. In that case, the AUROC hovering around 0.5 would
make sense given that the link prediction task is primarily based on the cosine
similarity.

However, due to time constraints associated with the Master thesis I was
unable to allocate additional time to investigating this finding further. As such,
exploring these results more could prove a fruitful area of research.

7.5 Opinion Leader Detection
7.5.1 Kendall’s 7

The pairwise correlation displayed in Figure [12] between the algorithms follows
a similar trend for each week of the data. Generally, the correlations between
ASNE, DeepWalk, node2vec, and TwitterRank are quite high (around 0.75)
whereas the correlations between LeaderRank and the other methods starts off
high as well, but tapers off towards 0 as k increases. This shows that the meth-
ods typically agree well on the top opinion leaders, but LeaderRank’s selection
process differs from the others for lower ranks, so as the number of ranks in-
creases, the ranking created by LeaderRank starts to diverge from the rankings
created by the other methods.

The graphs in Figure[I2)display the pairwise correlation between the opinion
leader detection models for different numbers of ranks. The higher the Kendall’s
T correlation between two models, the more similar the orderings of the data are.
As can be seen in Figure[I2] the agreement between ASNE, DeepWalk, node2vec
and TwitterRank is consistently high (larger than 0.50). This indicates that the

47

100
0.75 4
- asne - deepwalk
0.50 asne - node
- @sne - twitterrank
g 0.25 1 = asne - leaderrank
E 0.00 - —— deepwalk - node
u) —— deepwalk - twitterrank
] 025 4 deepwalk - leaderrank
— node - twitterrank
—0.50 1 node - leaderrank
twitterrank - leaderrank
=075 1
_].I]U T T T T T T T T T T
5 1 13 20 25 30 33 40 45 50
Number of ranks
(a) Week 1
100
075
— asne - deepwalk
050 1 asne - node
— asne - twitterrank
g 0.25 1 —— @asne - leaderrank
E 0.00 4 — despwalk - node
z : —— deepwalk - twitterrank
] 0325 1 deepwalk - leaderrank
—— node - twitterrank
—0.50 - node - leaderrank
twitterrank - leaderrank
—0.75 1
_].I}U T T T T T

T T T T T
5 1 1= 20 25 30 3% 40 45 5O
Number of ranks

(b) Week 4

Figure 12: Pairwise correlations between ranking lists. Number of ranks corre-
sponds to the top k£ ranks in the ranking lists. Results from all weeks can be
found in Appendix El

rankings created by these four models are monotonously related: high values in
one of these rankings is associated with high values on the other rankings.
Contrary to the previously mentioned four models, the LeaderRank model
is an outlier as its correlations with any of the other models is not stable at
all. It does start off similarly with high correlations for the first several ranks.
However, as the number of ranks increases, the correlation quickly tapers off

48

towards 0, and sometimes even below 0.

Note that the Kendall’s 7 correlation does not provide any evidence as to
which users are actually opinion leaders: it simply measures how similar the
rankings created by the opinion leader detection models are. This important
distinction can be illustrated by a simple example: if every model simply selects
the first 20 nodes in the dataset as opinion leaders, then they would all share a
Kendall’s 7 correlation of 1 (indicating perfect agreement). However, it is highly
unlikely that the first 20 nodes in the dataset will actually be the real opinion
leaders. More importantly, for the purposes of the Kendall’s 7 correlation, which
users are actually opinion leaders is irrelevant: whether the first 20 or last 20
nodes are the real opinion leaders, the Kendall’s 7 correlation will still be 1,
simply because the models are in agreement.

As such, the results in Figure [12|indicate that the models are in high agree-
ment over the opinion leaders, with the exception of LeaderRank, which shows
moderate to high agreement with the other models only for the top 20 opinion
leaders.

7.5.2 Shared opinion leaders

The graphs in Figure [13]indicate that there is substantial overlap between the
opinion leaders selected by the embedding-based ranking algorithms (ASNE +
SNERank, node2vec + SNERank, and DeepWalk + SNERank). Furthermore,
LeaderRank and the aforementioned embedding-based also share a small to
moderate proportion of opinion leaders. Conversely, TwitterRank shares no
opinion leaders with the other four ranking algorithms in most weeks, indicating
that its method of selecting opinion leaders is substantially different from those
methods.

This difference might be explained by the design of the algorithms: Twit-
terRank is designed heavily around the Tweet content of the users in addition
to structural information, as explained in section whereas node2vec, Deep-
Walk, and LeaderRank primarily involve identifying opinion leaders based on
structural information. ASNE does also take Tweet content into consideration,
but it also involves other factors such as the structural information and the
user’s stance.

Since the social distancing dataset contains few Tweets for most users (as
outlined in section , TwitterRank might not be able to properly distinguist
between different users due to the data sparsity.

7.5.3 SIR

The SIR results shown in Figure [I4] show very similar spreading rate as well as
similar total spread (measured by total number of users infected) for most mod-
els across the several weeks spanning the social distancing data. The exception
to this is the TwitterRank model, which generally converges at a slightly slower
rate than the other models.

49

10

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

0.8 1

Proportion shared members

I].':I T T II T T
5 10 15 20 25 30 35 40 45 50
Number of ranks
(a) Week 1

10

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

0.8

Proportion shared members

I].l::lllll T
5 o 15 20 235 30 33 40 45 50

Number of ranks

(b) Week 4

Figure 13: Proportion of shared opinion leaders between ranking lists. OLs
are shared between ranking lists when they occur in both lists, regardless of
position. Number of ranks corresponds to the top k ranks in the ranking lists.
Results from all weeks can be found in Appendix El

I have not included the variants of ASNE as shown in Figure[I0] because their
performance on the SIR task was identical to the ASNE model with FastText
and the user stance.

Since the SIR model measures how well the chosen opinion leaders cause

50

5000 1
4000 1
3000 1
]
2000 1
— EENE
1000 1 T T T ' ::pwalk
—_ e
55 6.0 &5 o twitterrank
Ny = leaderank
T T ! : |
0 15 0 5 £
Iterations
(a) Week 1
5000 1
4000 1
3000 1
=
2000 1
— e
1000 | deepwalk
— dE
70 — twitterrank
N — leaderank
T T T J y : I
0 5 10 15 a0 = *
Iterations
(b) Week 4

Figure 14: Partial results of the SIR model for the ASNE + SNERank, Deep-
Walk + SNERank, node2vec + SNERank, TwitterRank, and LeaderRank meth-
ods. Results from all weeks can be found in Appendix E

a cascade of spreading information throughout the network, we can conclude
that the opinion leaders found by the five models perform very similarly in this
regard. The curves are remarkably similar, disregarding the minute change in
the curve of TwitterRank. Therefore, even though the opinion leaders chosen
by the models are not always the same (as can be seen in Table El, whichever
users are classified as opinion leaders still spread the information throughout
the network efliciently.

In [13], the authors perform a similar analysis with SIR, where the values of
A1, A2 and € affect how far the information spreads throughout the network: with

o1

A1 = 0.3, Ao = 0.1, and € = 0.2, the text attribute influences the information
spread, which leads to their SNERank model outperforming TwitterRank.

On the social distancing dataset, with the same values for A1, A2, and €, 1
do not observe this same result. This might be affected by the content of the
text attribute of this dataset: in [I3], the text attribute of each user is made
up of 500 Tweets. However, for the social distancing dataset, most users only
have a single Tweet, and no user has more than 162 Tweets, as shown in Figure
This means that there is a lot less text information making up the attribute
for each user. As such, there might simply not be enough data to replicate the
difference that was observed in [I3].

Nonetheless, the graphs in Figure do indicate that the selected opinion
leaders spread the information around effectively and efficiently, regardless of
the method that was used to select the opinion leaders.

7.6 Qualitative results

7.6.1 Top 5 opinion leaders

Week 1 2 (1) 2 (2) 3(1) 3(2) 4 5

1 Matthijs85 JohnZuyderduyn Matthijs85 EelcoHoecke GrootKo Matthijs85 ducom99

2 JohnZuyderduyn OBraeckenssieck ZilteBotte Hannesz1956 Hannesz1956 ZilteBotte lewinskylou2
ASNE 3 Hannesz1956 Hannesz1956 2deKamerFVD OBraeckenssieck Bos_M OBraeckenssieck ~ OBraeckenssieck

4 GrootKo Ingeborgvraagt Hannesz1956 Gaia_Universe adrianxleconte poeetweet Hannesz1956

5 OBraeckenssieck FlapFriesland OBraeckenssieck ~ moeval8 FTI.momentum FlapFriesland widtvoet

1 Breinbrouwsels EricStallinga 2deKamerFVD EelcoHoecke colourbird00 2deKamerFVD LidwienNews

2 MastersLars FlapFriesland GoThorium OBraeckenssieck celalaltuntasl johnjljacobs esther241101
DeepWalk 3 jokebronkhorst FLP05480448 burgercomiteeu vlimmertje frelke75 FlavioPasquino Breinbrouwsels

4 Hannesz1956 burgercomiteeu Matthijs85 flakes010 Bengegenislam OBraeckenssieck ~ MastersLars

5 twopcharts_nl HrothN PeterK43579783 Wegaandiep ter_borgh MarianneCramer rinushoogstad

1 Matthijs85 AYingyang2012 Jetemetet Ri_qua0910 AmberBrouwer2 Ron_ZCNH TheRightNL

2 twopcharts_nl Ingeborgvraagt CorrieBult Hoofdzusterl pim_braakhuis poeetweet AsbaiBadr
node2vec 3 GrootKo EricStallinga Matthijs85 laCarretje AdriaanBeenen Matthijs85 ducom99

4 elliedeb2 ZiggoWebcare 2deKamerFVD EelcoHoecke werthernieland SpyMacho Edvdijk

5 OBraeckenssieck PeterdeLeur Waulffraat OBraeckenssieck — eradus2911 ann_castrel TonvanDam

1 pApowerX haitskevdlinde coco_riga Martin68676610 Rob020111 jorispinter3 jop-n

2 arnovj Schnitger2017 Rikkkiee EddieBree pAUL91872260 SMeerbeeck AnSophEls
TwitterRank | 3 NLCryptoOracle eetschrijver AbrahamOmerl dan_kroon oltho57 _Ramona27_ cvrauwdeunt

4 Specifiekl LMirjamv ottomanius bastion2211 KOKCON NathalieBosman2 IENouwen

5 DamnlJen_ MissG47013113 RudivanZandwijk CarloGiugie Geleiding Fred_1277 BrouwersKarin

1 MinPres hugodejonge MinPres rivim volkskrant rivin wierdduk

2 Matthijs85 nrc mauricedehond RTLnieuws RTLnieuws FTM.nl nrc
LeaderRank | 3 thierrybaudet telegraaf FTM.nl SaskiaBelleman Nieuwsuur Matthijs85 shossontwits

4 hugodejonge umarebru Matthijs85 wierdduk telegraaf RTLnieuws umarebru

5 telegraaf chrisklomp RTLnieuws hugodejonge hugodejonge vanranstmarc oplnpo

Table 7: Top 5 opinion leaders for the Opinion Leader Detection methods over

all weeks.

Table [7] shows the top 5 opinion leaders selected by the 5 opinion leaders for
all the weeks making up the social distancing dataset. Upon inspection of the
selected users, these choices make intuitive sense: many of the users are either

92

prominent Dutch politicians or news outlets, whose Tweets typically have a high
engagement rate and reach a large audience. Some examples include:

e "Matthijs85” is the Twitter account of Matthijs Pontier, a Dutch politician
in the Pirate party who Tweets regularly during the pandemic and whose
Tweets get a lot of interaction.

e "thierrybaudet” is the Twitter account of Thierry Baudet, the chairper-
son of the Dutch right-wing political party Forum for Democracy, whose
Tweets regularly generate controversy, which results in them reaching a
massive audience.

e "telegraaf” is the Twitter account of the Telegraaf, the largest Dutch daily
newspaper. They Tweet very often about the news, and especially during
the pandemic their Tweets receive a high engagement rate when reporting
on new development surrounding the Coronavirus.

e "MinPres” is the Twitter account of Mark Rutte, the current Prime Min-
ister of the Netherlands. Just like the other politicians he often Tweets
about new developments concerning the pandemic. Since these Tweets
are often published shortly after new announcements have been officially
made public, it stands to reason that these Tweets could be many people’s
first time hearing the news. Because of the topic’s inherent controversial
subject matter, these Tweets always receive a huge amount of responses
and spark large debates in the replies. As such, it is no surprise that the
"MinPres” Twitter account is selected as an opinion leader.

The remainder of the users are mostly Twitterers with a relatively small
number of followers that either publish a lot of T'weets, or have published one
or two Tweets that have become very popular. For example:

e "esther241101” is a user with less than 100 followers who has published 30
Tweets during the period of the social distancing dataset, which is more
than 99.9% of users in the network. While none of their Tweets have
become popular, the relatively high number of Tweets still makes them
stand out.

e "frelke75” is a user with less than 700 followers who has published 5 Tweets
during the period of the social distancing dataset, one of which gathered
over 2500 likes, indicating that it reached a large audience.

Though these are not definitive indicators as to why these users were selected
as opinion leaders, they do make sense from an intuitive standpoint, especially
given the extremely limited amount of Tweet information per user.

Furthermore, some similarities can be observed between the embedding-
based algorithms: the user ” OBraeckenssieck” appears in the top 5 for all three
methods throughout the weeks, but it does not appear in the top 5 for either

93

TwitterRank or LeaderRank in any week. This user has a large number of fol-
lowers (11.326) and has published 12 Tweets during October 2020, which would
put him in the top-1% most active Twitter users in the social distancing dataset.

However, this user has a large in-degree in the graph (537), compared to its
out-degree (87). It is possible that the embedding algorithms value this property
higher than TwitterRank or LeaderRank, which is why they rank this user so
highly.

7.6.2 Network visualization

The visual representation of the network in Figure [[5] shows the opinion leaders
closely grouped together. This area of the network contains nodes with relatively
high degree, with the nodes towards the right of the figure specifically having
a high in-degree compared to out-degree. This is confirmed by the observation
that all the opinion leaders depicted here have a high in-degree.

Intuitively, this is a logical observation: opinion leaders influence other users,
and the easiest way to do that is to directly affect a large number of users
through Twitter’s following system. By reaching a large number of people with
each Tweet, the chances of influencing a larger number of people with those
Tweets also increase. Conversely, by having a small number of followers, it is
more difficult to influence a large number of people because each Tweet does
not necessarily reach the same large audience. As such, it is logical for the
opinion leaders as depicted here to have a large in-degree, corresponding to a
large number of followers.

Even though the network has changed slightly between weeks 1 and 4, the
opinion leaders are relatively stable in terms of their overall position within
the network. This indicates that the large in-degree is a trait that most opinion
leaders possess which remains stable over time. Even though not the exact same
nodes have been selected as opinion leaders in both weeks, they do all share a
similar position within their respective networks.

7.7 Research questions

What is the influence of including both semantic and structural infor-
mation in a graph embedding on opinion leader detection, compared
to using only structural information? The ASNE model can incorpo-
rate both semantic and structural information when creating its embeddings,
whereas embedding models such as DeepWalk and node2vec can only incorpo-
rate structural information into their embeddings. Figure [7] [8] [0} and
all show the differences between ASNE, DeepWalk and node2vec, with ASNE
clearly outperforming the other two options. However, Figure shows the
comparison between different variants of the ASNE model, both with and with-
out attribute information. It is this result that best showcases the influence of
using both semantic and structural information, compared to using only struc-
tural information. When semantic information is included in the ASNE model,
the performance on the link prediction task increases by 2%, as the AUROC

o4

(b) Week 4

Figure 15: Network visualization of week 1 and 4 of the social distancing dataset.
Black dots correspond to nodes, the white/red lines are the edges connecting
the nodes together. The large cyan dots represent the top-50 opinion leaders
as found by the ranking algorithms. Nodes are placed according to the force-
directed layout configuration, which attempts to minimize cross-over between
edges. Images were created using Graphia [77].

score increases from 0.92 to 0.94. By looking at Figure [9] I deduce that these
performances are similar over time, showing that DeepWalk and node2vec sys-

99

tematically score lower than any of the variants of ASNE. When looking at
Figure there is no discernable difference between the performance of the
ASNE model, and that of DeepWalk and node2vec, which both only used struc-
tural information.

As such, I argue that the semantic information improves the quality of the
graph embeddings, but not the quality of opinion leader detection models.

What is the influence of using graph embeddings on opinion leader
detection? To determine the influence of graph embeddings on opinion leader
detection, I tested different classes of models on the social distancing data.
As Figures [12] shows, there is a large difference between ASNE, DeepWalk,
node2vec and LeaderRank which might indicate that this is caused by graph
embeddings. However, that same figure also shows that there is fairly minor
difference between ASNE, DeepWalk, node2vec and TwitterRank, even though
the latter also does not use a graph embedding method.

Therefore, I argue it is unlikely that this difference is caused by the presence
or absence of a graph embedding, rather that it is more likely caused by another
factor. For example, the influence of the text attribute might affect the chosen
opinion leaders more, as both SNERank and TwitterRank use this information
to decide on their opinion leaders.

Furthermore, Figure [[4] shows that there is essentially no difference between
ASNE, DeepWalk, node2vec and LeaderRank since both the spread of informa-
tion as well as the rate at which the information spreads are nearly identical.
Even though there is a slight difference in the rate at which information spreads
for TwitterRank compared to these other four models, it is not nearly large
enough to imply any substantial differences between the models’ performance
exists.

One of the main motivations for using graph embeddings is the compu-
tational efficiency that they offer. However, in my experiments, running the
graph embedding models followed by an opinion leader detection method took
up significantly more time compared to running just the opinion leader detection
methods that did not require embeddings (TwitterRank and LeaderRank).

As such, according to the findings in this thesis, graph embedding has a
negligible influence on opinion leader detection.

What is the influence of a user’s stance (positive or negative) on
detecting opinion leaders? As is shown in Figure the ASNE model
containing only the stance probabilities as attribute information converges faster
than any other version of ASNE, and, after convergence, achieves the same
AUROC score as the ASNE model including both the stance and the FastText
text attribute on the link prediction task.

Additionally, when comparing the ASNE model with only the stance to the
ASNE model without any attributes, the former clearly has a superior perfor-
mance on the link prediction task, since it converges faster and attains a higher
AUROC score.

96

Given these two observations, I argue that the Stance attribute has a positive
on the quality of graph embeddings.

However, when taking into account the conclusion to the previous question,
and observing no major differences between models with the Stance and models
without the Stance attribute on either the Kendall’s 7 correlation metric or the
results of the SIR model, I argue that the overall effect of the user’s stance on
opinion leader detection is negligible, just like the effect of graph embedding in
general.

It is still possible that this factor could provide a positive influence to opinion
leader detection if it was modelled differently (perhaps without graph embed-
ding), but the results from my experiments do not allow me to make such a
conclusion. That being said, this is certainly an area worth investigating, given
the increase in performance on link prediction.

How do opinion leaders develop over time in a social network? Table
[7] shows the development of the top 5 opinion leaders over time, as selected by
all five opinion leader detection models. It is clear that the selected opinion
leaders are not stable over time. Even though several users appear in multiple
lists across time and across different models, there is also a lot of variation in
the users that appear in the top 5 opinion leaders.

A critical observation to make here is that this is in part due to the sparsity
of the data. Many users did not publish a Tweet in every single week of the
social distancing dataset. On the contrary, many users only appear in one of
the weeks due to only having published a single Tweet in the entire dataset.
This indicates that it is entirely possible a user would have been an opinion
leader across all weeks, but they just happened to not have a single Tweet for
some weeks, which means they are automatically ineligible to become an opinion
leader for those weeks.

This observation makes the results in Table [7] seem more volatile than they
likely are in reality. Despite these confounding factors, numerous users still
appear in multiple weeks. As such, I argue that the opinion leaders would likely
have been rather stable if the dataset had contained more Tweets from all users
over time. This is supported by the network visualization in which shows
that the opinion leaders hold a relatively stable position within the network
over time. Although this is far from the only factor influencing the selection
of opinion leaders, it does lend additional credit to the postulation that the
volatility of the attribute information might be the cause of the changes in
opinion leaders over time.

8 General discussion

8.1 Data

As mentioned in section [£:3] the vast majority of users only have 1 Tweet in the
dataset, which makes it difficult to draw conclusions regarding the effectiveness

o7

of some of the methods. For example, the SNERank and TwitterRank models
rely heavily on the text attribute, and the SIR model also bases its probability
of spreading infection on the similarity between text attributes. Furthermore,
I wonder if the data truly is representative of the topic ”social distancing”.
Since Twitter is heavily censoring Covid-19 misinformation [78], some parts of
the discussion might be lost. To combat this, some people have started using
different terms to describe the same phenomenon, with the express purpose of
avoiding Twitter’s censorship. For example, instead of talking about ”social
distancing”, people might be talking about the ”1.5 meter circle”, or the 1.5
meter civilization”.

These terms are not picked up by our filter, and as such we missed out
on potentially useful data regarding particular perspectives concerning social
distancing. Another way of avoiding Twitter’s misinformation filters is to in-
tentionally misspell key words in the Tweet (for example ”socail dlst” instead
of ”social distancing”).

Repeating the experiments from this thesis with a larger, richer dataset
might yield results that are more consistent both within themselves and com-
pared to previous research [I3] [311 [33].

8.2 Evaluating Opinion Leader Detection models

When experimenting with opinion leader detection methods, having a way to
compare the results of the methods is of vital importance. Comparing the
methods, not only to each other, but to a baseline or ground truth can add
much needed context to the experiment. Because of this, I was stunned during
my literature research that there seemed to be no industry standard way of
evaluating OLD models.

As covered in section [3:233] many authors devise their own measure for
evaluating the OLD model they discuss in their paper [3], 13} 55, [61), [62] 63], 64
65]. This makes sense because this way, they can adjust the metric to properly
fit with their model, which makes it easier for them to perform the evaluation.

However, the cost of this is that there is a plethora of different evaluation
metrics, none of which can be considered to be the standard way of evaluating
a model. This hampers the ability to properly compare different models with
each other, as the results might change depending on which evaluation method
is used. As such, one method will always hold an advantage over the other(s).

Unfortunately, this problem is further exacerbated by the fact that the def-
inition of what exactly constitutes an opinion leader is notoriously vague [61].
This makes it even more difficult to compare different methods against each
other. If one has a different definition of an opinion leader, then both models
will likely find the best opinion leaders, according to their own definition. How-
ever, comparing the two results with each other might prove to be hard due to
the different definitions.

Defining an industry standard definition of an opinion leader, as well as
an accompanying evaluation method, ideally combined with a versatile ground

98

truth dataset would go a long way in aiding cross-over examinations of OLD
methods to truly discern which method is best.

9 Conclusion

Here I first summarize the main findings and contributions of my thesis:

e Semantic information improves the performance of the ASNE model on
the link prediction task, but this increase in performance does not carry
over to the opinion leader detection task.

e Graph embeddings provide no clear advantage on opinion leader detection:
the selected opinion leaders are not noticeably better for models using
graph embeddings.

e The user’s stance improves graph embeddings, but just like the other
semantic information, this performance increase does not carry over to
the opinion leader detection task.

e Opinion leaders fluctuated slightly over time, but that might be because
of the lack of data for each user: the network visualization indicates that
all opinion leaders share structural properties in the original network.

9.1 Future research

Over the years, Twitter has introduced new features on its platform such as
quote Tweets. The dataset I used did not incorporate quote Tweets yet, nor was
I able to find any research that did. However, these quote T'weets might contain
information that could be used to better identify opinion leaders. Therefore,
including quote Tweets in addition to retweets when gathering data might yield
valuable new insights into the field of social network analysis.

In this thesis, I tried out two methods of text embedding: TF-IDF and
FastText [76]. T observed substantial influences of both these attributes on the
link prediction task. Therefore, testing out more methods of text embedding
such as Predictive text embedding [79] or Spherical text embedding [80] could
provide new information regarding text embedding and attribute information
in social network analysis.

The attributes I included in my experiments were rather limited by both the
computational resources at my disposal and by the data itself. Thus, future re-
search could include more attribute information, to try and discover new sources
of information for graph embeddings and opinion leader detection as well. Ex-
amples of such features include edge weights or demographical information that
might be able to take advantage of attribute homophily.

As my experiments certainly showed, performance can vary greatly depend-
ing on the dataset. Thus, testing out existing methods on new datasets can lead
to new information regarding the interactions between certain model features.

99

The stance attribute that I used in my experiments has some noteworthy
similarities to signed network embeddings [81]. An interesting approach might
be to model topic-specific edge weights in a network using this stance attribute.
For instance, if both users share the same attitude towards a certain topic they
share an edge with a positive edge weight, whereas if they have conflicting
attitudes towards that topic the edge weight is negative instead.

60

References

[1]
2]

[3]

Dorothy Neufeld. The 50 most visited websites in the world. 2021.

Everett M Rogers, Arvind Singhal, and Margaret M Quinlan. Diffusion of
innovations. Routledge, 2014.

Seyed Mojtaba Hosseini Bamakan, Ildar Nurgaliev, and Qiang Qu. Opinion
leader detection: A methodological review. FEzpert Systems with Applica-
tions, 115:200-222, 2019.

Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: find-
ing topic-sensitive influential twitterers. In Proceedings of the third ACM
international conference on Web search and data mining, pages 261-270,
2010.

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applica-
tions, and performance: A survey. Knowledge-Based Systems, 151:78-94,
2018.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shigiang
Yang. Community preserving network embedding. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 31, 2017.

Xiaokai Wei, Linchuan Xu, Bokai Cao, and Philip S Yu. Cross view link pre-
diction by learning noise-resilient representation consensus. In Proceedings
of the 26th international conference on World Wide Web, pages 1611-1619,
2017.

Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. Scalable
graph embedding for asymmetric proximity. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-
scale and high-dimensional data. In Proceedings of the 25th international
conference on world wide web, pages 287-297, 2016.

Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. Attributed
social network embedding. IEEE Transactions on Knowledge and Data
Engineering, 30(12):2257-2270, 2018.

Melisachew Wudage Chekol and Giuseppe Pirro. Refining node embeddings
via semantic proximity. In International Semantic Web Conference, pages

74-91. Springer, 2020.

Kenny K Chan and Shekhar Misra. Characteristics of the opinion leader:
A new dimension. Journal of advertising, 19(3):53-60, 1990.

61

[13]

[18]

[22]

23]

Jiaxing Luo, Yajun Du, Ruomiao Li, and Fei Cheng. Identification of
opinion leaders by using social network embedding. In 2019 IEEE 5th In-
ternational Conference on Computer and Communications (ICCC), pages
1412-1416. IEEE, 2019.

Mengjia Xu. Understanding graph embedding methods and their applica-
tions. STAM Review, 63(4):825-853, 2021.

Yi Chen, Xiaolong Wang, Buzhou Tang, Ruifeng Xu, Bo Yuan, Xin Xi-
ang, and Junzhao Bu. Identifying opinion leaders from online comments.
In Chinese national conference on social media processing, pages 231-239.
Springer, 2014.

Shihan Wang, Marijn Schraagen, Erik Tjong Kim Sang, and Mehdi Das-
tani. Dutch general public reaction on governmental covid-19 measures and
announcements in twitter data. arXiv preprint arXiw:2006.07283, 2020.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A com-
prehensive survey of graph embedding: Problems, techniques, and applica-
tions. IEEE Transactions on Knowledge and Data Engineering, 30(9):1616—
1637, 2018.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and
Nitesh V Chawla. Heterogeneous graph neural network. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 793-803, 2019.

Asan Agibetov. Graph embeddings via matrix factorization for link predic-
tion: smoothing or truncating negatives? arXiv preprint arXiv:2011.09907,
2020.

Marcus Chen, Ivor W Tsang, Mingkui Tan, and Tat Jen Cham. A unified
feature selection framework for graph embedding on high dimensional data.
IEEE Transactions on Knowledge and Data Engineering, 27(6):1465-1477,
2014.

Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang,
and Stephen Lin. Graph embedding and extensions: A general framework
for dimensionality reduction. IEEFE transactions on pattern analysis and
machine intelligence, 29(1):40-51, 2006.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asym-
metric transitivity preserving graph embedding. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1105-1114, 2016.

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis.
Matching node embeddings for graph similarity. In Thirty-first AAAI con-
ference on artificial intelligence, 2017.

62

[24]

[25]

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th
ACM international on conference on information and knowledge manage-
ment, pages 891-900, 2015.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu
Mei. Line: Large-scale information network embedding. In Proceedings
of the 24th international conference on world wide web, pages 1067-1077,
2015.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Rep-
resentation learning of knowledge graphs with entity descriptions. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

David Haussler. Convolution kernels on discrete structures. Technical re-
port, Technical report, Department of Computer Science, University of
California ..., 1999.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Pro-
ceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1365—-1374, 2015.

Basma Alharbi and Xiangliang Zhang. Learning from your network of
friends: A trajectory representation learning model based on online social
ties. In 2016 IEEFE 16th International Conference on Data Mining (ICDM),
pages 781-786. IEEE, 2016.

Tuan MV Le and Hady W Lauw. Probabilistic latent document network
embedding. In 2014 IEEFE International Conference on Data Mining, pages
270-279. IEEE, 2014.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learn-
ing of social representations. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
701-710, 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiw preprint
arXiw:1801.8781, 2013.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 855-864, 2016.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of
a feather: Homophily in social networks. Annual review of sociology,
27(1):415-444, 2001.

63

[35]

[40]

[41]

Changping Wang, Chaokun Wang, Zheng Wang, Xiaojun Ye, and Philip S
Yu. Edge2vec: Edge-based social network embedding. ACM Transactions
on Knowledge Discovery from Data (TKDD), 14(4):1-24, 2020.

Na Zhao, Hanwang Zhang, Meng Wang, Richang Hong, and Tat-Seng
Chua. Learning content—social influential features for influence analysis.
International Journal of Multimedia Information Retrieval, 5(3):137-149,
2016.

Xue Geng, Hanwang Zhang, Jingwen Bian, and Tat-Seng Chua. Learning
image and user features for recommendation in social networks. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages
4274-4282, 2015.

Lise Getoor and Christopher P Diehl. Link mining: a survey. Acm Sigkdd
Explorations Newsletter, 7(2):3-12, 2005.

Shenghuo Zhu, Kai Yu, Yun Chi, and Yihong Gong. Combining content and
link for classification using matrix factorization. In Proceedings of the 30th
annual international ACM SIGIR conference on Research and development
in information retrieval, pages 487-494, 2007.

Jiliang Tang, Charu Aggarwal, and Huan Liu. Node classification in signed
social networks. In Proceedings of the 2016 SIAM international conference
on data mining, pages 54-62. STAM, 2016.

Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embed-
ding. In Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1225-1234, 2016.

Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. Link predic-
tion in social networks: the state-of-the-art. Science China Information
Sciences, 58(1):1-38, 2015.

Myunghwan Kim and Jure Leskovec. The network completion problem:
Inferring missing nodes and edges in networks. In Proceedings of the 2011
SIAM International Conference on Data Mining, pages 47-58. STAM, 2011.

David J Marchette and Carey E Priebe. Predicting unobserved links in
incompletely observed networks. Computational Statistics & Data Analysis,
52(3):1373-1386, 2008.

Luca Maria Aiello, Alain Barrat, Rossano Schifanella, Ciro Cattuto, Ben-
jamin Markines, and Filippo Menczer. Friendship prediction and homophily
in social media. ACM Transactions on the Web (TWEB), 6(2):1-33, 2012.

Milen Pavlov and Ryutaro Ichise. Finding experts by link prediction in
co-authorship networks. FEWS, 290:42-55, 2007.

64

[47]

[48]

[49]

[50]

[52]

[53]

[54]

Cuneyt Gurcan Akcora, Barbara Carminati, and Elena Ferrari. Network
and profile based measures for user similarities on social networks. In 2011
IEEFE International Conference on Information Reuse € Integration, pages
292-298. TEEE, 2011.

Yang Yang, Ryan N Lichtenwalter, and Nitesh V Chawla. Evaluating link
prediction methods. Knowledge and Information Systems, 45(3):751-782,
2015.

Debra S Goldberg and Frederick P Roth. Assessing experimentally derived
interactions in a small world. Proceedings of the National Academy of
Sciences, 100(8):4372-4376, 2003.

Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi.
On the evolution of user interaction in facebook. In Proceedings of the 2nd
ACM workshop on Online social networks, pages 37-42, 2009.

Lars Backstrom and Jure Leskovec. Supervised random walks: predicting
and recommending links in social networks. In Proceedings of the fourth
ACM international conference on Web search and data mining, pages 635—
644, 2011.

Yang Yang, Nitesh Chawla, Yizhou Sun, and Jiawei Hani. Predicting links
in multi-relational and heterogeneous networks. In 2012 IEEFE 12th inter-
national conference on data mining, pages 755-764. IEEE, 2012.

Aaron Clauset, Cristopher Moore, and Mark EJ Newman. Hierarchi-
cal structure and the prediction of missing links in networks. Nature,
453(7191):98-101, 2008.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

Xiaodan Song, Yun Chi, Koji Hino, and Belle Tseng. Identifying opinion
leaders in the blogosphere. In Proceedings of the sizteenth ACM conference
on Conference on information and knowledge management, pages 971-974,

2007.

Linyuan Lii, Yi-Cheng Zhang, Chi Ho Yeung, and Tao Zhou. Leaders in
social networks, the delicious case. PloS one, 6(6):€21202, 2011.

Jiangjiao Duan, Jianping Zeng, and Banghui Luo. Identification of opin-
ion leaders based on user clustering and sentiment analysis. In 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT), volume 1, pages 377-383.
IEEE, 2014.

65

[58]

[63]

[64]

[66]

Hongpeng Cao, Jun Wang, and Zhe Wang. Opinion leaders discovery in so-
cial networking site based on the theory of propagation probability. In 2018
2nd IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC), pages 700-704. IEEE, 2018.

Yi-Cheng Chen, Ju-Ying Cheng, and Hui-Huang Hsu. A cluster-based opin-
ion leader discovery in social network. In 2016 conference on technologies
and applications of artificial intelligence (TAAI), pages 78-83. IEEE, 2016.

Yi-Cheng Chen, Wen-Yuan Zhu, Wen-Chih Peng, Wang-Chien Lee, and
Suh-Yin Lee. Cim: community-based influence maximization in social net-
works. ACM Transactions on Intelligent Systems and Technology (TIST),
5(2):1-31, 2014.

Katrin Jungnickel. New methods of measuring opinion leadership: a sys-
tematic, interdisciplinary literature analysis. International Journal of Com-
munication, 12:23, 2018.

Baocheng Huang, Guang Yu, and Hamid Reza Karimi. The finding and
dynamic detection of opinion leaders in social network. Mathematical prob-
lems in engineering, 2014, 2014.

Kaisong Song, Daling Wang, Shi Feng, and Ge Yu. Detecting opinion
leader dynamically in chinese news comments. In International conference
on web-age information management, pages 197-209. Springer, 2011.

Xiao Yu, Xu Wei, and Xia Lin. Algorithms of bbs opinion leader mining
based on sentiment analysis. In International Conference on Web Infor-
mation Systems and Mining, pages 360-369. Springer, 2010.

Chun Wang, Ya Jun Du, and Ming Wei Tang. Opinion leader mining algo-
rithm in microblog platform based on topic similarity. In 2016 2nd IEEFE In-
ternational Conference on Computer and Commaunications (ICCC), pages
160-165. IEEE, 2016.

William Ogilvy Kermack and Anderson G McKendrick. A contribution
to the mathematical theory of epidemics. Proceedings of the royal society
of london. Series A, Containing papers of a mathematical and physical
character, 115(772):700-721, 1927.

Robert M May and Alun L Lloyd. Infection dynamics on scale-free net-
works. Physical Review E, 64(6):066112, 2001.

Maurice G Kendall. A new measure of rank correlation. Biometrika,
30(1/2):81-93, 1938.

Reza Motamedi, Soheil Jamshidi, Reza Rejaie, and Walter Willinger. Ex-
amining the evolution of the twitter elite network. Social Network Analysis
and Mining, 10(1):1-18, 2020.

66

[70]

[71]

[72]

73]

[74]

[75]

[76]

[79]

Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network
dataset collection, 2014.

Julian J McAuley and Jure Leskovec. Learning to discover social circles in
ego networks. In NIPS, volume 2012, pages 548-56. Citeseer, 2012.

Tain S Duff, Albert Maurice Erisman, and John Ker Reid. Direct methods
for sparse matrices. Oxford University Press, 2017.

Tomasz Szandala. Review and comparison of commonly used activation
functions for deep neural networks. In Bio-inspired Neurocomputing, pages
203-224. Springer, 2021.

Magnus Sahlgren. The distributional hypothesis. Italian Journal of Dis-
ability Studies, 20:33-53, 2008.

Robert Endre Tarjan. Updating a balanced search tree in o (1) rotations.
Information Processing Letters, 16(5):253-257, 1983.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and
Tomas Mikolov. Learning word vectors for 157 languages. In Proceed-
ings of the International Conference on Language Resources and Evaluation

(LREC 2018), 2018.

Tom C Freeman, Sebastian Horsewell, Anirudh Patir, Josh Harling-Lee,
Tim Regan, Barbara B Shih, James Prendergast, David A Hume, and Tim
Angus. Graphia: A platform for the graph-based visualisation and analysis
of complex data. bioRxiv, 2020.

Hans Rosenberg, Shahbaz Syed, and Salim Rezaie. The twitter pandemic:
The critical role of twitter in the dissemination of medical information
and misinformation during the covid-19 pandemic. Canadian journal of
emergency medicine, 22(4):418-421, 2020.

Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1165-1174, 2015.

Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang,
Lance Kaplan, and Jiawei Han. Spherical text embedding. Advances in
Neural Information Processing Systems, 32:8208-8217, 2019.

Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu.
Signed network embedding in social media. In Proceedings of the 2017
SIAM international conference on data mining, pages 327-335. SIAM,
2017.

67

Appendices

A SIR Hyperparameter results

5000 1
4000 4
3000 1
=
2000 1
— FENE
lﬂ{lﬂ i EEPWE”:
— node
— twitterrank
0 = lpaderrank
T T T T T T T
0 5 10 15 20 25 30
Iterations
(a) A1: 0.1, A2z 0.1, e: 0.2, No: 20
5000 1
4000 1
3000 1
=
2000 1
—_— ENE
deepwalk
1000 - - mdf__"a
T e twitterrank
0 — leaderrank
L) L) L) L) L)] L)
] 5 10 15 20 25 30

lterations

(b) A1: 0.1, A2: 0.1, e 0.2, No: 50

68

5000 1

Z —

4000 1 . —
|II
3000 - 0% 1
£ ".
2000 #4001
2200 I' —
_ | deepwalk
1000 T T I ! ! — m'dzwa
5.0 55 6.0 6.5 o __ twitterrank
o —— lpaderank
T T J I I :
0 5 10 15 20 = -
lterations
(¢) A1z 0.1, A2z 0.1, e: 0.4, No: 20
000 4
4000 1
3000 4
=
2000
— AEME
deepwialk
1000 1 T T T T L nndz
5.0 55 B0 6.5 o twitterrank
o = lpaderank
T T ! I I :
0 5 10 15 20 & -
lterations

(d) A1z 0.1, A2: 0.1, e 0.4, No: 50

5000 4
___________-
A000 4 ""-—-_____
3000 1 /
=
2000
— FEIE
i deepwalk
mﬂu I 1 1 — rmzwa
6.0 6.5 7.0 — fwitterrank
0- = lpaderank
! ! ! I I ! I
0 5 10 15 20 25 Ll
lterations
(e) A1: 0.1, A2: 0.3, € 0.2, No: 20
5000 4
4000 1 ||
|
4?".]‘.} 7
3000 1 |
i 400 1
= 1:I||
|
2000 - 45'31},'
4400 — e
' deepwalk
1000 1 4300 L5 : . ; o
50 55 6.0 b5 10 — itterrank
0- — leaderrank
T T T T T T T
i) 5 10 15 20 25 o

lterations

(f) A1: 0.1, A2: 0.3, e 0.2, No: 50

70

5000
A000 1
3000 4
=
2000
— FEIE
m{lu i EEFII'IE”;
— e
— fwitterrank
0 = lpaderank
! ! ! I I ! I
0 5 10 15 20 5 30
lterations
(g) A1: 0.1, A2: 0.3, e: 0.4, No: 20
5000
4000 -
3000 -
=
2000 1
— FENE
| deepwalk
1000 o rode
— twitterrank
0 —— leaderank
T T T T T T T
) 5 10 15 20 25 30
lterations

(h) A1: 0.1, A2: 0.3, e 0.4, No: 50

ME

Mt

5000

4000 - T
200 /
2000 1
— FEIE
i deepwalk
1000 T T T T mdzwa
5.5 6.0 6.5 7.0 — fwitterrank
0- = lpaderank
! ! I I ! I
5 10 15 20 25 Ll
Iterations
(i) A1: 0.3, A2: 0.1, e: 0.2, No: 20
S000 1
R_____
4000 T
3000 1
2000 1
— FENE
deepwalk
1000 - T T T o rlldz
2.5 6.0 6.3 70 — twitterrank
0- — leaderrank
T T T T T T
5 10 15 20 25 o

lterations

(G) A1: 0.3, A2: 0.1, e: 0.2, No: 50

5000 1 T
4000 1 T
3000 1
=
2000 1
— T
| dee Ik
1000 T T ! ! o |— m'dzwa
50 55 6.0 6.5 o __ twitterrank
o = lpaderank
T T T J I : I
0 5 10 15 20 = -
lterations
(k) A1: 0.3, A2: 0.1, e: 0.4, No: 20
5000 —
4000 - i
3000 1
=
2000 1
—_— EEnE
deepwalk
1000 1 T T T T l|— “ﬂdz
5.0 55 6.0 6.5 o twitterrank
o — lpademank
T T T ' I I I
0 5 10 15 20 & *
lterations

(1) A1: 0.3, A2: 0.1, e 0.4, No: 50

ME

Mt

5000

4000 - T
3000 -
2000 1
— e
i deepwalk
1000 T T T T mdzwa
5.5 6.0 6.5 7.0 — twitterrank
0- = lpaderank
! ! ! I I ! I
0 5 10 15 20 5 30
Iterations
(m) A1: 0.3, A2: 0.3, € 0.2, No: 20
S000 1 .
4000 T
3000 -
2000
—_— e
deepwalk
1000 - T T T o rlldz
2.3 6.0 6.3 70 — twitterrank
0 — leaderrank
T T T T T T T
) 5 10 15 20 25 30

lterations

(n) A1z 0.3, A2t 0.3, e 0.2, No: 50

74

5000 4
4000 1
3000 1
=
2000 1
— N
lﬂ{lﬂ i |:I=_-E|:|Hall:
—_— e
— twitterrank
0 - leaderank
1 1 1)) 1)
1] 5 10 15 20 25 £l
lterations
(0) A1: 0.3, A2: 0.3, e: 0.4, No: 20
5000 1
4000 4 —
3000 "
=
2000 1
— FEIE
deepwalk
1004 T T T T — mdzwa
5.5 6.0 6.5 7.0 — fwitterrank
0- —— leaderank
1 1 1)) 1)
1] 5 10 15 20 25 E i

Iterations
(p) A1: 0.3, A2: 0.3, e 0.4, No: 50

Figure 16: Complete results of testing the different combinations of hyperpa-
rameter values from Table [6] on week 1 of the data. Ny is the number of initial
infected nodes before iteration starts. In the legend, ”asne” corresponds to the
ASNE embedding model + SNERank, ”deepwalk” is DeepWalk + SNERank,
"node” is node2vec + SNERank.

()

B Ablation results

AURCC

AJROC

10
0.8 1
0.6 - N
0.4 - /(_”_——
024 ane
node
— deepwalk
00 T T T T
0 20 40 100
Epochs
(a)
10
0.8 4
0.6 4
o /,-—"_
029 — e
node
— deepwalk
0.0 T T T !
0 20 40 100
Epochs
(b)

76

AJROC

AUROC

140

0.8 4
0.6 4
- — e —
0.4 - ffffﬂrr—'——
021 — z=pe
node
— geepwalk
ﬂ-{l T T T T T
0 20 40 B0 100
Epochs
(c)
10
0.8 -
0.6 -
04 4 Hfﬂgﬂrrr'——
0.2 1 — ane
node
— deepwalk
'D.{l T T T T T
0 20 40 B 100
Epochs
(d)

7

AJROC

AUROC

140

0.8 4
0.6 4
™ /ffaﬂ"‘____
021 — z=pe
node
— deppwalk
0.0 T T T
20 40 100
Epochs
(e)
10
0.8 -
0.6 -
04 4 ﬁfﬂ,ﬂJJ‘—'__
0.2 1 — ane
node
— deepwalk
'D.{l T T !
0 20 40 100

78

AJROC

AUROC

140

0.8 4
0.6 4 -
0.4 - fffﬂ,#—*ﬂ'——
021 — z=pe
node
— geepwalk
ﬂ-{l T T T T T
20 40 B0 100
Epochs
(2)
10
0.8 -
0.6 -
04 4 ff#r,ﬂ‘ﬂﬁ———
0.2 1 — ane
node
— deepwalk
'D.{l T T T T T
0 20 40 B 100
Epochs
(h)

79

10

0.8 -
0.6 -
2 [— S
: |/
2 04 /,—""—
0.2 1 — z=pe
node
— deepwalk
0.0 : : T T T T
0 20 40 60 B0 100
Epochs
(i)
10
0.8 4
0.6
S S - ,
i ffp
2 ., —
0.2 1 — z=pe
node
— geepwalk
0.0 : J T T T T
0 20 40 60 B0 100
Epochs

Figure 17: Link prediction results on week 1 of the data for the ASNE, DeepWalk
and node2vec graph embedding models. Each image corresponds to a different
randomly generated test set.

80

C Link prediction results

10

0.8 1

0.6

ALRDC

044 e
f,#
027 — zne
deepwalk
—_ e
D.{I I I ! I
0 20 40 104
Epochs
(a) Week 1
10
0.5 4
0.6
- —e
& T
< sl —_
024 ___ ane
deepwalk
— npde
D.{I T T T T
o 20 40 100

Epochs

(b) Week 2, part 1

81

ALRDC

AUROC

14
— FENE
deepwalk l/_/,——/_’-/—
—_— e
08 4
0.6
044 ~
02 A
ﬂ.{l 1 1 I I 1
o 20 40 B0 104
Epochs
(c) Week 2, part 2
10
0.8 4
06
04 A /’,r—*‘f__
029 — e
deepwalk
— o
'D.ﬂ T T T T T
o 20 40 &0 100

Epochs

(d) Week 3, part 1

82

ALRDC

AUROC

10

08 4
0.6
—
044 J___,_ﬂ——“__
029 — e
deepwalk

— niede
ﬂ.{l 1 1 I 1

o 20 40 104

Epochs
(e) Week 3, part 2
10
0.8 4
06
Y
04 A /,f——___
L J——
deepwalk

— node
'D.ﬂ T T T T

o 20 40 100

Epochs
(f) Week 4

83

14
0.8 1
06 4
e e
2
04 ..f""_____
027 — zne
deepwalk
—_ node
D.{I I I ! ! I I
o 20 40 =] 8o 104
Epochs
(g) Week 5

Figure 18: Complete results of the Link Prediction task on each week of the
data for the ASNE, DeepWalk, and node2vec graph embedding models.

84

D Kendall’s 7 results

Correlation

Correlation

100

075 4

050 1

025 1

0.00 1

—0.25 1

—0.50 -

—0.75 1

—1.00

T T T T T T
20 2% 3 35 40 45
Number of ranks

(a) Week 1

50

100

075

050

0.25

000

—0.25

—0.50 1

—0.75 1

=100

5

T
10

T
15

T T T T T T
20 25 30 35 40 45
Number of ranks

(b) Week 2, part 1

85

50

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

Correlation

Correlation

100

075

0.50 1

025 1

000 A

—0.25 1

—0.50 1

—0.75 4

—1.00

5

T
10

T
15

20

T
5 30

T T T
i3 40 45

Number of ranks

(c) Week 2, part 2

50

100

0.75 4

050 1

025 1

000 1

—0.25 1

—0.50 -

—0.75 1

—1.00

20

T
5 30 3B

T T
40 45

Number of ranks

(d) Week 3, part 1

86

50

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

Correlation

Correlation

100

075

0.50 1

025 1

000 A

—0.25 1

—0.50 1

—0.75 4

—1.00

5

T
10

T
15

20

T
5 30

T T T
i3 40 45

Number of ranks

(e) Week 3, part 2

50

100

0.75 4

050 1

025 1

000 1

—0.25 1

—0.50 -

—0.75 1

—1.00

20

LI B |
5 30 33 40 45

Number of ranks

(f) Week 4

87

50

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

100
075 4
asne - deepwalk
0501 asne - node
asne - twitterrank
g 0.25 1 asne - leaderrank
E 0.00 deepwalk - node
z : deepwalk - twitterrank
] 025 1 deepwalk - leaderrank
node - twitterrank
—0.50 - node - leaderrank
—— twitterrank - leaderrank
—0.75 1
—lﬂﬂ T T T T T

T T T T T
5 1 15 20 25 30 35 40 45 5O
Number of ranks

(g) Week 5

Figure 19: Pairwise correlations between ranking lists. Number of ranks corre-
sponds to the top k ranks in the ranking lists.

88

E Shared opinion leaders results

Proportion shared members

=
P
.

Proportion shared members

=
.
L

_r"__f_ I
—

00

10

T
20 25 30 35
Number of ranks

L |
5 1o 15

(a) Week 1

0.8 1

06 1

ST

T
20 25 30 33 40 45 50
Number of ranks

L |
5 1o 15

(b) Week 2, part 1

89

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

Proportion shared members

=
P
.

Proportion shared members

=
.
L

00

1ad

T T T T
20 2% 30 35
Number of ranks

LI |
40 45 50

(c) Week 2, part 2

08 1

T T
20 2% 30 35
Number of ranks

(d) Week 3, part 1

90

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

Proportion shared members

=
P
.

Proportion shared members

=
o
L

=
=
A

=
.
L

00

1ad

T T T
20 2% 30 35
Number of ranks

(e) Week 3, part 2

08 1

T T
20 2% 30 35 40 45 50
Number of ranks

(f) Week 4

91

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

asne - deepwalk

asne - node

asne - twitterrank

asne - leaderrank
deepwalk - node
deepwalk - twitterrank
deepwalk - leaderrank
node - twitterrank

node - leaderrank
twitterrank - leaderrank

10
" 08 - — asne - deepwalk
2 asne - node
E —— asne - twitterrank
E ng A _/—\— —— asne - leaderrank
T ~ —— deepwalk - node
E —— deepwalk - twitterrank
g 0.4 deepwalk - leaderrank
= — node - twitterrank
E node - leaderrank
a 02 1 /J ~ twitterrank - leaderrank
I].{I T i'} llll f T T - T T T

T
510]520253(]354(]455(]
Number of ranks

(g) Week 5
Figure 20: Proportion of shared opinion leaders between ranking lists. OLs

are shared between ranking lists when they occur in both lists, regardless of
position. Number of ranks corresponds to the top k ranks in the ranking lists.

92

F SIR results

5000 1
4000 ~
3000 4
=
2000 4
— SR
| deepwalk
1000 . ' ' T ""df-'m
55 .0 6.5 0 __ twitterrank
N = lpaderrank
T T T J y : I
0 5 10 15 20 » »
Iterations
(a) Week 1
3500
3000 - T
2500 1
2000 4
=
1500 4
1000 4 —
deepwalk
500 1 I I | o o
5.5 6.0 6.5 0 __ twitterrank
. —— leaderrank
T T T ! : : I
0 5 10 15 20 = *

lterations

(b) Week 2, part 1

93

ME

3500 1

3000 1
2500 1
2000 1
1500 1
1000 A .
deepwalk
500 | T T T T — e
5.0 5.5 6.0 6.5 10 | itterrank
o = leaderank
T T J : : I
0 10 15 20 25 0
Iterations
(c) Week 2, part 2
5000 1
4000 1 T
3000 4
2000 1
— FENE
1000 - deepwalk
T T T | node
B0 6.5 7.0 — twitterrank
o = leaderrank
T T J y : I
M 10 15 20 25 0
Iterations

(d) Week 3, part 1

94

ME

ME

5000 1

4000 T
3000 1
2000 1
— FENE
mﬂu] T T T T d:;zwalk
3.5 6.0 6.5 7.0 : twitterrank
0 = lpaderrank
T T T T T T
o 10 15 20 25 30
Iterations
(e) Week 3, part 2
5000 1 ~—
4000 1 T
3000 1
2000 1
— FETE
1000 - T T T T ::EWEW
3.5 6.0 6.5 7.0 : twitterrank
0 —— leadarank
T T T T T T
o 10 15 20 25 30
Iterations
(f) Week 4

95

4000 1 .
3000 1
Z 2000 -
— FENE
1000 - deepwalk
T T T T | node
55 6.0 6.5 LA twitterrank
Ny = lpaderank
T T T ! y : I
0 5 10 15 20 = *
Iterations
(g) Week 5

Figure 21: Results of the SIR model on each week of the data for the ASNE +
SNERank, DeepWalk + SNERank, node2vec + SNERank, TwitterRank, and
LeaderRank models.

96

	Abstract
	Introduction
	Background
	Motivation
	Research focus
	Outline

	Literature review
	Graph Embedding
	Matrix Factorization
	Edge Reconstruction
	Graph Kernel
	Generative Models
	Deep Learning
	Evaluation methods

	Opinion Leader Detection
	Topological measures
	Data mining and machine learning methods
	Evaluation methods

	Data
	Data introduction
	Data collection
	Data description
	Baseline dataset
	Facebook dataset

	Methodology
	Network definition
	Twitter graph
	Facebook graph

	Graph Embedding method
	Opinion Leader Detection method
	Baseline algorithms
	Evaluation methods

	Experimental setup
	Research questions
	Procedure
	Data preprocessing
	Training the models
	Evaluation

	Results and discussion
	SIR hyperparameter tuning
	Model robustness
	Ablation
	Graph Embedding
	Social distancing dataset
	ASNE variants
	Facebook dataset

	Opinion Leader Detection
	Kendall's
	Shared opinion leaders
	SIR

	Qualitative results
	Top 5 opinion leaders
	Network visualization

	Research questions

	General discussion
	Data
	Evaluating Opinion Leader Detection models

	Conclusion
	Future research

	Appendices
	SIR Hyperparameter results
	Ablation results
	Link prediction results
	Kendall's results
	Shared opinion leaders results
	SIR results

