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1 Introduction

This is a Computing Science Master’s Thesis about the online car-sharing problem. This document
contains the following: An explanation of the online car-sharing problem, an analysis of work done on
this problem, a glimpse into the work on closely related problems, a clear indication of the scope of our
thesis, a compilation of techniques used in prior research on the topic, and finally, our contributions to
the field.

The car-sharing problem is named after its basis in car-sharing services. Such services provide cars
to people when and where they ask for them. These people then use the car to get from the location
they asked the car from, to the location they want to go, where they leave the car for someone else to
pick-up. Such rent-able cars are helpful for, for example, tourists who arrived by airplane, and do not
have their own car available to them. Another advantage of rent-able cars is that high usage of such cars
could reduce the amount of privately owned cars. Therefore, this problem is not just of theoretical, but
also of practical interest.

The problem is also more widely applicable than just car-sharing services, such as Uber. Another
application could be a river crossing that operates on demand, ferrying people from one side to the other.
Bike sharing systems have become more popular as of late, as well. It is therefore common practice to
refer to servers instead of cars. Though the basic car-sharing problem might oversimplify some of the
practical problems it is trying to solve, any good solution needs a solid foundation. And even then, the
solutions to the basic problem might provide some helpful insight that would help improve these systems,
be that for the company or the customer.

Intuitively, the car-sharing problem consists of a series of requests from customers to be moved from
one location to another at a certain time. It is up to the car-sharing company to decide whether or not
to accept each of these requests. If a request is accepted, the company must provide a server at the first
location at the requested time, that proceeds to move the customer to the new location. This action
provides the company with a certain profit. The goal of the car-sharing problem is often to maximize
that profit, though there are variations that instead implicitly try to maximize the amount of served
customers.
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2 Definitions and Problems

In this chapter, we formalize the definition of the general car sharing problem. The general car sharing
problem is a very broad problem. Many different parameters influence the results algorithms can achieve
on this problem. That is the reason why we have decided to limit our scope in this thesis. We discuss
the manner in which we have limited our scope after discussing the general definition of the car sharing
problem.

Generally, consider a setting with m locations and k servers (denoted s1, s2, ..., sk). These two values
denote the most common way to describe the car-sharing problem: the kSmL notation. This notation is
used to quickly provide information about the amount of servers and locations. For example, 2S2L refers
to the car sharing problem, in which an algorithm has two servers to serve requests that release at two
different locations. Let I be an instance of a series of requests released over time. Customers request
servers over time and the decision whether or not to serve such a request must be made immediately and
irrevocably, without any knowledge of future requests. Requests arriving can be handled in a multitude
of ways, most commonly by arbitrarily deciding one arrives before the other. Denote request r as
r = (br, tr, lr, l̄r) in which br is the booking time of the request, tr is the pick-up time or starting time of
the request, lr is the pick-up location of the request and l̄r is the drop-off location of the request. Also,
let τ(l, o) denote the travel time between location l and location o. Furthermore, let t̄r = tr + τ(lr, l̄r)
denote the drop-off time of request r. For the purposes of this thesis, we assume that τ(l, o) = τ(o, l).

The kSmL notation is often accompanied by a dash and then another letter denoting some other
quality about the problem, usually concerning the booking time of the problem. The additive -F signifies
a fixed booking time. This means that for every request r the time between the booking time br and
the starting time tr is some constant φ = tr − br. We call this tr − br the notification interval. More
flexibility is provided in the variable booking time variant, designated by -V. This variant gives a time
frame, denoted by a maximum notification interval υ and a minimum notification interval λ in which
the booking for a certain start time should take place. More formally: t − υ ≤ b ≤ t − λ ∀r ∈ I. The
variable booking time variant has one major difference from the fixed booking time variant. In the fixed
booking time variant, requests are served in the order that they are booked. This need not be the case
in the variable booking time variant. We call such requests served prior to a request that was booked
earlier a line-skipping request. Formally, a request r = (br, tr, lr) line-skips a request j = (bj , tj , lj) if
br > bj and tr < tj .

We assume each server can serve at most one request at a time. If two requests are such that a
server cannot serve both, we say these requests are in conflict. Formally, requests r and j with tr ≤ tj
are in conflict if tj < t̄r + τ(l̄r, lj). Multiple different servers are needed to serve requests that are in
conflict. A request r is called acceptable if there is a server that serves no request that is in conflict
with r. Serving a request r grants a certain reward pr. This reward usually is either a constant p > 0
or dependent on τ(lr, l̄r). It is often allowed to move a server from one location to another whilst not
serving a request, especially when doing so to serve a request immediately afterward. Such a move is
called an empty movement or empty move. Performing an empty move for a request j accrues a cost
cj ≥ 0, which might be a constant, or dependent on the distance travelled. However, unprompted moves,
which are empty moves that are performed despite not having a released request mandating such a move,
are often strictly prohibited. Empty moves made specifically to pick-up requests immediately after are
also referred to as distant pick-ups.

The basic goal of the car-sharing problem is create an algorithm that finds a set of served requests
RA to maximize the total profit PRA =

∑
r∈RA pr −

∑
j∈RAe

cj , where RAe is the set of accepted requests
that required an empty move to be served. The online variant focuses on trying to achieve a profit as
close as possible to what an optimal offline algorithm could provide. To this purpose the competitive

analysis technique is used [5]. The competitive ratio of algorithm A is defined as ρA = supR
PROPT
PRA

,

in which ROPT is the set of requests chosen by the optimal scheduler. Furthermore, PROPT stands for
the profit earned by the optimal scheduler. We say A is ρ-competitive or has an upper bound of ρ if
PROPT ≤ ρ · PRA for every possible request sequence R. On top of that, β is considered a lower bound
on the competitive ratio if ρA ≥ β for all possible online algorithms A. With that basic outline, many
different problems can be investigated by altering the parameters. For example, setting cj = 0, the goal
becomes equivalent to serving as many customers as possible. Fiddling around with these parameters
leads to many angles that have not yet been investigated by prior work. In the same vein, some of the
solutions that have been found thus far have very stringent parametric requirements, making them less
impressive than they seem at first glance.

In this thesis, we limit our settings to the 2S2L-V car sharing problem. Because we limit ourselves
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to this setting, we can cull some notation. First, we simplify the notation τ(l, o) to simply τ . We can
make this simplification because the travel time between the two locations is the same for all requests.
Second, we can simplify the notation for request r = (br, tr, lr, l̄r) to r = (br, tr, lr). Because we only
work with two locations, l̄r follows directly from lr. Third, we can simplify pr and cr to p and c, because
we only need consider the same two locations, with the same profit and same cost of empty movement
for each request. Furthermore, we limit ourselves to only those instances I in which, for every request
r = (b, t, l) ∈ I there is another request r′ = (b, t, l) ∈ I. We call request r′ the paired request to r. It is
not necessary for a pair of request to be accepted in full. If r is accepted, r′ is still allowed be rejected,
and vice versa.

Finally, we make some small assumptions to simplify our analyses. The first small assumption is
that requests booked at the same time are handled in deterministic order. Without loss of generality,
we further narrow down this assumption by assuming that r is handled before its paired request r′.
The second small assumption is that all servers are at location 0 at time 0. The third and final small
assumption is that an empty movement is only performed at the last moment possible. If request
r = (b, t, l) requires an empty movement to be served, this empty movement is performed starting only
at t− τ .

We finish this chapter by showing a figure conveying a snapshot from a 1S2L timeline. We include
this figure to familiarize the reader with this sort of imagery. The image is a time-location diagram,
with time on the horizontal axis and location on the vertical axis. A colored line tracks the location of a
server over time. This way, we can show the difference between the path taken by an online algorithm,
and the path taken by an optimal schedule over that same instance, over some amount of time.

Figure 1: Example of a short 1S2L segment. The location of an online algorithm (in green) and the
optimum algorithm (in pink, dotted) are shown over time, as is the length of a trip (τ).
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3 Prior Work

This chapter takes a look at work that has been done in the field of not only car-sharing, but also several
online problems that seem closely related to the main problem. Learning from the approaches of previous
authors gives valuable insight into which strategies might work in advancing the field.

3.1 Car-Sharing

3.1.1 Two Location Networks

1S2L Work on the online car-sharing problem has only started rather recently. As far as we know, K.
Luo et al. were the first ones to discuss any variation of the problem in detail in a 2018 paper. Their
paper focuses on the 1S2L problem, with both the fixed and variable versions being investigated [12].
Many parameters were tweaked for a plethora of upper bounds and lower bounds. They considered
various different lengths booking intervals, booking times and empty movement costs. They start by
proving a series of lower bounds via extensive case distinction and induction. After that, they proceed
to prove that an intuitively simple greedy algorithm achieves the proven lower bounds. This greedy
algorithm accepts any request as long as two simple requirements hold. First, the request must not be
in conflict with any already accepted request, and second, serving the request must yield a net profit.
Regrettably, some upper bound proofs were omitted due to lack of space.

0 ≤ c < p c = p
Problem Constraint LB (= UB) LB (= UB)
1S2L-F 0 ≤ φ < τ 1 1

1S2L-F φ ≥ τ 2p
p−c 1

1S2L-V 0 < υ < τ 3 3

1S2L-V υ = τ max{ 2p
p−c , 3} 3

1S2L-V υ > τ 3p−c
p−c 1 + 2dυ−λ2τ e

Table 1: The results from [12]

2S2L-F Over the course of the next two years, members from this team would expand the scope of
the problem in five further papers. The first of these delves into the 2S2L-F problem [13]. First they
prove the lower bounds of various parameter settings of the problem. If the distant pick-up cost is lower
than the reward of a request (0 ≤ c < p), this lower bound is proven to be 2. If the cost of a distant
pick-up is, instead, as expensive as the reward (c = p), they claim the proof is trivial, and results in a
lower bound of 1. They subsequently provide a Smart Greedy algorithm, which achieves both of these
lower bounds, which adheres to a few simple rules. If a request does not require a distant pick-up and
is acceptable, it is accepted. If the request requires a distant pick-up, however, that request must start
later than τ time units after the end of the last request that was served by either of the servers. If a
request does not abide by these rules, it is rejected. Although more work has been done on 2-location
models, this is the only paper focusing on specifically using two servers. That means the 2S2L-V problem
has not yet been thoroughly analyzed.

kS2L Rather than continue their work on 2S2L, this group of authors decided to set their sights
on the kS2L problem in their next paper [15]. They claim lower bounds and algorithms for both the
variable and fixed booking time variants, but they add a condition simplifying the problem by a great
amount: their algorithm and analyses rely on the starting time of requests being limited to multiples
of the travel time (∀r ∈ I tr = ντ ν ∈ N ). On top of that, this paper allows unprompted moves, and
such movements are done with no cost. Furthermore, the authors assume that the difference between
the booking time and starting time of every request i is no greater than the travel time (bi ≤ ti − τ).
No reasoning is given as to why these specific restrictions were put in place, so the results this paper
provides are not generally applicable for kS2L. As a further result of the restrictions, the algorithm to
achieve the proposed lower bound is significantly different than those that came before it. Regardless
of what requests arrive where and when, their Greedy Balanced Algorithm functions mostly the same
throughout the release of requests. At the start of the algorithm servers are assigned one of three groups.
Two of these groups are specified servers that start at one location and then periodically start movements
(empty or not) to the location they are not at every τ time units. The final group contains unspecified
servers that actually take into account where requests (that exceed the amount of specified servers) are
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posed, and tries to serve those. Though the theoretical competitive ratio of the algorithm is impressive,
its narrow specifications make it hard to put it into practice.

Other kS2L findings S. Li et al. provide a less restricted look at the kS2L problem, placing only
the restrictions in place in the first paper on the problem [10]. They claim lower bounds for variations in
distant pick-up cost and the different booking variations, but leave out a lot of the proofs due to space
constraints. For the lower bound proof they do provide, they attempt to distract the online server(s)
and then release requests based on the reaction of the online servers. Furthermore, they provide two
suboptimal online algorithms for this problem. The first one, Greedy Dispatching, is meant to address
instances where distant pick-ups are impossible by simply greedily dispatching servers. A slightly altered
version is used for the kS2L-F problem with distant pick-ups. The alteration ensures that at most a
certain amount of requests are picked up at either of the two locations, within a time frame of 2τ . The
second algorithm, Balanced Dispatching, instead used a smaller time frame of τ and tries to divide which
servers are utilised between even and odd frames, as well as between the two locations, evenly.

Problem Booking Constraint Lower Bound Upper Bound
kS2L-F, (0 ≤ c < p) 0 ≤ φ < τ 1 1
kS2L-F, (c = p) 0 ≤ φ < τ 1 1

kS2L-F, (0 ≤ c < p) τ ≤ φ min{ k
b 2kp
3p+c c

, 2kp

2kp−(p+c)d 2kp
3p+c e

} max{ k
b kp
2p+c c

, 2kp

kp−b kp
2p+c cc

}
kS2L-F, (c = p) τ ≤ φ 1 1
kS2L-V, (0 ≤ c < p) 0 < υ < τ 3 3
kS2L-V, (c = p) 0 < υ < τ 3 3

kS2L-V, (0 ≤ c < p) τ ≤ υ min{ 2k
b 2kp
3p+c c

, k(3p−c)
kp−cd 2kp

3p+c e
} k

b k4 c
(k ≥ 4)

kS2L-V, (c = p) τ ≤ υ min{ 2k
b k2 c

, 2k
k−d k2 e

} k
b k4 c

(k ≥ 4)

Table 2: The results from [10]

Randomized results A different group further investigated the requirement that servers are only
expected to start every τ time units. K. Lai et al. provide a randomized algorithm that assumes decisions
on requests can be postponed until multiples of τ . They also look into booking intervals of longer than
τ [9]. This way, they can provide a Greedy Balanced algorithm that relies on costless empty moves
to facilitate a balanced split between the servers. However, this algorithm only makes moves when it
is necessary, as opposed to the Balanced Greedy algorithm by K. Luo et al. Their Adaptive Greedy
Balanced algorithm instead balances the amount of servers on each side relative to the proportional
amount of requests on each side. The final server is then proportionally randomly decided (if necessary).
This is the only result using any random techniques I have encountered thus far.

3.1.2 Star Network

Returning to the papers released by K. Luo et al., we find an investigation of the possibilities of online
car-sharing with k servers on a star network [14]. Where this situation would naturally lend itself to
empty moves back to the central nodes, the forbiddance of unprompted moves is once again put back
into full effect. The restrictions on the starting times are lifted again, which is natural, because different
edge lengths are now possible in a star network. The approach of the authors differs depending on the
respective lengths of the edges. If the edges are of arbitrary length, they prove that a greedy algorithm
will achieve a competitive ratio depending on the ratio between the longest and shortest edge. With
edges of uniform length, the length of the notification interval dictates the lower bounds. To achieve these
lower bounds as competitive ratio, the servers are split into groups and then run a greedy algorithm. If
the notification interval is too short to serve any distant pick-up, the servers are split in as many groups
as there are non-center vertices. If distant pick-ups are possible in the notification interval, the servers
are instead split by whether they serve requests to or from the central node.

3.1.3 kSmL

K. Luo et al. also look into the most unrestricted basic scope one can imagine in their notation: kSmL-V
in general metric space [11]. They work out a series of requests on the line-network to conclude a general
lower bound dependent on the ratio between the longest and shortest edge. They do this by releasing
requests in such a manner that serving the requests leads to being unable to serve all of the later requests.
Not serving these later requests gives the optimal algorithm the chance to serve many requests that an
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online algorithm cannot. The greedy algorithm is able to reach this bound, making it a theoretically
optimal algorithm.

3.1.4 Paired Requests on a Two Location Network

Finally, K. Luo et al. also looked into the consequences of having more than one trip per request in a
kS2L model [16]. To gain a profit on a request, all trips requested must be served. Once again separating
the problems by notification interval, the authors discover that a notification interval shorter than the
travel time leads to a lower bound of infinity. For longer notification intervals, a lower bound of 4 is
proven. To achieve that ratio of 4 as an upper bound, a greedy algorithm balancing the amount of servers
on both sides is used. Note that this paper once again makes the assumption that the starting time of
requests is a multiple of travel time τ .

Many of the lower bounds regarding this problem have been proven using an extensive case dis-
tinction. Meanwhile, most upper bounds were achieved using some variation on a greedy algorithm,
often balancing the amount of servers at any location at any time. While the greedy approach is not an
uncommon one to finding an online algorithm, some nearby problems use different techniques to achieve
their competitive ratios. The field of car-sharing is young, and perhaps more complicated variations
require inspiration from other problems. Problems similar to online car-sharing are the online travelling
salesman problem, the k-server problem, or online dial-a-ride.

3.2 Related problems

3.2.1 Online Travelling Salesperson problem (OLTSP)

The travelling salesperson problem is a classic problem in computing science in which one server has to
serve a series of requests in different locations as quickly as possible. In the online variant, however, these
requests arrive over time, instead of all at once. Furthermore, the online variant has two subproblems.
The first is the homing variant, where the server has to return to the origin at the end of the problem,
after serving all requests. The second is the nomadic variant, in which the server does not need to
return to the origin after serving all requests. The two different variations have different competitive
ratios and use different algorithms to achieve them [2]. One such an algorithm for the nomadic variant
recalculates a new Hamiltonian Path serving all unserved requests when a new request arrives. This
theoretically is a 2.5-competitive algorithm, but calculating a Hamiltonian path is known to be NP-
Complete, making such an algorithm infeasible in practice. An algorithm that returns to the origin
before it starts planning a new Hamiltonian Path is introduced for the homing version. Even though this
algorithm is theoretically 2-competitive, it also suffers from the same problem as the previous one. Using
a polynomial-time 2-approximation of Hamiltonian path, both algorithms would become 3-competitive.

When compared to the online car-sharing problem, OLTSP is different in quite a multitude of ways.
In OLTSP, requests have no start time, nor do they have a destination, or a travel time. Moving around
without having any requests to serve is allowed in OLTSP, whereas it is often disallowed in online
car-sharing. Nonetheless, the work done on different sorts of networks in OLTSP make it a valuable
reference. Different networks require different approaches, with many bounds on specific networks not
corresponding to the bound on a general network. An example of this is a cyclic network. In this network,
serving requests far away from the origin first is very profitable, because all requests are placed between
two extremes [7]. Another different network is a line network. A. Bjelde et al. propose an algorithm
for the homing variant that only plans schedules at the origin, and waits with starting these schedules
until serving them any later would violate the competitive ratio [4]. This strategy is reminiscent of an
algorithm used in the Online Dial-a-Ride Problem.

3.2.2 Online Dial-a-Ride (OLDARP)

As a problem, OLDARP is somewhere in between the online travelling salesperson problem, and car-
sharing. A series of requests for transporting objects from a source to a destination are released online.
Similar to the online travelling salesman problem, the goal is still optimizing the amount of time it takes
to serve all requests. Furthermore, the nomadic and homing variants are mirrored as open and closed
variants. Similar to car-sharing, OLDARP can employ multiple servers, and requests consist of both
a source and a destination. Well-known algorithms used for OLDARP are similar to the ones used on
OLTSP. Three of these algorithms are the REPLAN, IGNORE and SMARTSTART algorithms [1]. The
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REPLAN algorithm recalculates the optimum schedule to follow every time a new request is released.
The IGNORE algorithm calculates an optimal route for serving all unserved requests while in the origin,
then ignores any requests coming in while it is serving that route. After it returns to the origin, it
calculates a new route with the requests that came in during its tour. The SMARTSTART algorithm is
similar to IGNORE, only planning at the origin. However, SMARTSTART waits on starting a new route
until postponing that route any longer would cause a loss in competitive ratio. As an example, imagine
a request arriving at time unit 5. If SMARTSTART includes that request in a route of length 4, and
wants to achieve a competitive ratio of 2, it waits until time unit 6 to start this route, instead of greedily
starting it at time unit 5. This waiting technique of SMARTSTART could be of great interest if applied
to variations on the car-sharing problem. In fact, most algorithms for car-sharing already implicitly use
a similar strategy when deciding when to perform an empty move.

3.2.3 k-server

Perhaps the most well known online scheduling problem that is close to car-sharing is the k-server problem
[8]. In that problem, multiple servers travel a metric space, serving requests at different locations as
quickly as possible. The goal of k-server is to minimize the travel distance of the servers when serving all
requests. The k-server problem has many open questions still, with the k-server conjecture unproven for
over three decades now. One of the more well known algorithms for tackling this problem is the Work
Function algorithm. The Work Function algorithm tries to assign servers to requests depending on both
the optimum as calculated from the beginning and the cost of changing from the previous formation to
the prospective one. Whether an algorithm inspired by the Work Function algorithm will work on the
car-sharing problem is unclear.
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4 Techniques

This chapter summarizes the strategies applied in the previous work. We look at what strategies were
used, when they were used, and how they could be applied to different problems. This list is in no way
exhaustive. Instead, it should serve as an indication of which techniques are common and likely to see
an application in the thesis.

Most of the techniques described in this chapter are used to perform a competitive analysis. Com-
petitive analysis is the standard for measuring the efficiency of any online algorithm. It compares the
results an optimal offline algorithm achieves on an instance to the results of online algorithms. This
instance is constructed by an all-knowing adversary, most commonly done in such a way that the results
of the online algorithms are as poor as can be. The analysis consists of two parts: finding the lower
bound and the upper bound. To find a lower bound, the adversary releases a sequence of requests that
shows that any online algorithm cannot perform better than β ·PROPT (a multiplicative factor times the
profit of an optimal algorithm), whatever decision it might make. This idea could also be applied to a
single algorithm, focusing on their worst case performance instead of the worst case performance of any
algorithm. Looking into an upper bound compares the performance of one specific online algorithm with
the optimal performance. The adversary attempts to create a sequence that uses the properties of the
algorithm against itself. Both bounds are of interest, but competitive analysis does not specify how to
establish these bounds besides comparing the results of both algorithms. Different techniques are used
for that.

4.1 Greedy Strategy

The crux of most algorithms devised thus far on online car-sharing is the greedy strategy. That is,
accepting any request as long as it can be accepted without being in conflict with other already accepted
requests. Slight variations often apply to avoid some particularly bad situations, but once some restric-
tions are put in place, the computations are often incredibly simplistic. This makes way to a conjecture
that some variation of a greedy algorithm achieves the optimal competitive ratio on every standard in-
stance of the online car-sharing problem. Whether this turns out to be true is to be seen, and probably
outside the scope of this thesis. However, when designing a new algorithm for a new variation, a greedy
algorithm might be an excellent starting point.

4.2 Wait to Start

Most algorithms on online car-sharing wait until the last moment to move a server to serve a distant
request. They wait to see if there is a request to serve so that they can forego the empty move that would
otherwise be induced. This is different from the ideas applied in algorithms like SMARTSTART, where
more requests are gathered before any server leaves its starting location. If immediate decisions are part
of the problem, waiting is usually a bad plan. But if we consider the proposed delayed booking instance
(where requests can be postponed for a certain amount of time, perhaps with a penalty), looking into
algorithms similar to SMARTSTART might yield improvements to the competitive ratio.

4.3 Balancing

The more locations and servers there are, the more servers can be tricked into a suboptimal decision.
That could be serving a request with cost, or serving a request to an outpost of the network. Such a
server might end up where it would be impossible to serve any other request without a preemptive move,
which is often disallowed. One way to avoid mistakes such as these is to assign servers to groups that
serve requests to or from certain locations. Balancing the server load evenly across the locations might
be a way to reduce the competitive ratio of any algorithm with more servers than locations.

4.4 Case Distinction for Finding Lower Bounds

One such technique is case distinction. Most of the literature on car-sharing uses this to obtain the
lower bounds, especially. The adversary places one or multiple requests, and every reaction possible
by an algorithm is separated into different cases. Depending on what decision the algorithm made,
the adversary might release new requests that this algorithm cannot serve, until the sequence that an
optimum could serve is as good as it can be compared to any algorithm. After that the bounds found
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on the different cases are compared with each other, with the best case serving as a lower bound for the
problem.

4.5 Potential Functions

Another technique which has not yet been truly utilized on online car-sharing is the use of a potential
function. A potential function is used to balance out certain costs that are made throughout an algorithm
with other decisions made later or earlier on. If the sum of the potential function and the cost function
do not exceed the bound sought after, we can conclude that, in a general case, the bound holds. It can
also be used to measure the difference between the optimal profit and the aggregate profit. Whether the
analysis of a potential function will be necessary will remain to be seen.
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5 2S2L-V, Lower Bounds

In this chapter, we discuss our findings on the lower bounds of the 2S2L-V problem. This problem
remained untouched in the work by K. Luo et al. [12] on the two server two location model. This
contrasts their work on 1S2L, which included findings on both the Fixed and Variable variants of that
problem. Recall that we limit our instance to only releasing pairs of requests.

Throughout this chapter, we vary two parameters, the empty movement cost c and the range of
notification intervals, denoted by [λ, υ]. The setting of the first of these parameters, the empty movement
cost c, is denoted relative to p, the reward for serving a single request. The settings we consider for this
parameter are c = p and 0 < c < p. Note that the 0 < c < p setting of these is actually a range of
settings. Every setting in that range follows the same analysis. Despite these 0 < c < p settings sharing
the same analysis, specific results of this analysis vary depending on the specific setting c takes. This is
because some approaches give a performance ratio that is a function on the value of c. Such a function
might lead to the lowest performance ratio on some values of c, whereas a different approach might lead
to a lower performance ratio on different values of c. In the scenario that the lowest performance ratio
follows a function for some, but not all values of c, we will explicitly mention the point where the results
cross over.

The other parameter, the range of notification intervals [λ, υ], also has multiple settings that need
to be looked into. A λ setting of λ < τ gives an adversary a boost in strength. This boost in strength is
caused by the possibility to release requests that are impossible to serve because of server positioning.
To create the most potent adversaries, we assume λ < τ on the bounds we discuss in this chapter. On
the other hand, an υ setting of υ < τ weakens adversaries. This weakening is caused because it is harder
to release serviceable distant requests. With υ < τ , it is impossible for an adversary to release requests
that can be served by all servers, regardless of server positioning. Such distant requests often cause
hard, costly decisions, that an adversary can take great advantage of, in order to achieve higher lower
bounds. Finally, we consider the setting of the notification interval length υ−λ. It takes τ time to serve
a single request. The setting of υ − λ thus indicates how many requests can be planned ahead of time.
In some settings, this limits the strength of the adversary. We consider the following settings for [υ, λ]:
0 < υ < τ , υ = τ , τ < υ−λ ≤ 2τ , 2τ < υ−λ ≤ 3τ , 3τ < υ−λ ≤ 5τ , 5τ < υ−λ ≤ 7τ , 7τ < υ−λ ≤ 9τ ,
9τ < υ − λ.

Many of these proofs in the following sections follow a similar structure, reacting to the response of
the algorithms in the face of request arrivals. We use case distinction to differentiate between different
reactions. This showcases the best reaction of OPT when provided a reaction by ALG. Note that the
theorems that follow in this chapter might build upon theorems proven before them. A case that was
discussed in one theorem is not reiterated in a following theorem. For each new theorem, we note which
theorems handle cases that are relevant to the new theorem. Using this process, we start out simple,
steadily increasing the complexity by steadily giving an adversary more freedom.

Finally, we introduce the following terminology for this chapter. We use ALG to refer to any online
algorithm. Meanwhile, OPT is used to refer to the optimal scheduler. We refer to the servers as moved
by ALG as s′1 and s′2, and to the servers as controlled by OPT as s∗1 and s∗2. We now show the lower
bounds we discovered in this chapter:

0 ≤ c < p Theorem
Constraint LB
0 < υ < τ 3 Theorem 5.4

υ = τ max { 4p
2p−c , 3} Theorem 5.5

τ < υ − λ ≤ 2τ min { 3p−cp−c , 4} Theorem 5.6

2τ < υ − λ ≤ 3τ min { 3p−cp−c , 4} Theorem 5.7

3τ < υ − λ ≤ 5τ max {min { 3p−cp−c , 4},
10p

4p−2c} Theorem 5.8

5τ < υ − λ ≤ 7τ max {min { 3p−cp−c , 4},
12p−2c
4p−2c } Theorem 5.9

7τ < υ − λ ≤ 9τ max {min { 3p−cp−c , 4},min { 16p−2c6p−4c ,
12p−2c
3p−c }} Theorem 5.10

8τ < υ − λ max {min { 3p−cp−c , 4},min { 6p+4p(d υ−λ−4τ
4τ e)+(2p−2c)(d υ−λ−6τ

4τ e)
2p+(2p−2c)(d υ−λ−4τ

4τ e) , 12p−2c3p−c }} Theorem 5.11

Table 3: The results of the lower bounds on the low-cost variant (0 < c < p) of 2S2L-V
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c = p Theorem
Constraint LB
0 < υ − λ ≤ 2τ 3 Theorem 5.4
2τ < υ − λ ≤ 3τ 4 Theorem 5.7
3τ < υ − λ 5 Theorem 5.8

Table 4: The results of the lower bounds on the high-cost variant (c = p) of 2S2L-V

5.1 Gadgets

Before we show the proofs themselves, we first introduce some gadgets that are commonplace in these
proofs. Very often, an adversary can react to a request accepted by ALG in a set way. Instead of
repeating ourselves using a similar strategy, we give these reactions names. We call these predetermined
reactions gadgets, and we discuss them in this section, before we get into the proofs themselves.

First, we introduce the Zig gadget. A Zig gadget is a series of four requests, two overlapping pairs
to be precise, starting at opposing sides. Specifically, a Zig gadget starting at time a is defined as four
requests: r1 = r2 = (..., a, lr1) and r3 = r4 = (..., a + τ, l̄r1). Note that these requests can be served by
the same pair of servers in quick succession. Also note that the second pair of requests does not require
an empty movement to serve. Therefore, that second pair of requests will always grant a profit of 2p.
Furthermore, note that we do not specify the booking time of these requests.

Lemma 5.1 All requests in the Zig gadget, starting at time a, conflict with any request rd for which
a− τ < trd < a+ τ and lr3 = lrd .

Proof To prove this Lemma, we show that request r1 and r3 are in conflict with rd. Since r1 = r2
and r3 = r4, if r1 and r3 are in conflict with rd it follows that all four requests comprising the Zig gadget
are in conflict with rd. Therefore, if we prove that r1 and r3 are in conflict with rd, we prove the entire
lemma.

We first show that r1 is in conflict with rd. Because of the premise that a−τ < trd < a+τ , we know
that rd is certainly in conflict with r1 and thus r2. Recall the definition of conflicting requests. Requests
r and j are in conflict iff, for tr ≤ tj , tj < t̄r + τ(l̄r, lj). Since r1 ends where rd starts (lrd = lr3 = l̄r1),
we find that the travel time between the requests is 0 (τ(l̄r1 , lrd) = 0). Thus, we only need to show that
trd ≤ tr1 < t̄rd = trd + τ or tr1 ≤ trd < tr1 + τ holds for any value of trd allowed under the premise.
Since tr1 = a, we find trd ≤ a < trd + τ and a ≤ trd < a + τ . This is the case for a − τ < trd ≤ a and
a ≤ trd < a+ τ , respectively. That covers all values trd can take by the premise of the Lemma, proving
that lr1 , and thus lr2 is in conflict with lrd .

Now, we show that r3 is in conflict with rd. This time, r3 starts where rd starts (lr3 = lrd), we find
that the travel time between these requests is τ (τ(l̄r3 , lrd) = τ). We also know, since tr3 = a+ τ > trd ,
that we need only check the conflict formula once. Following the formula to check whether requests are
in conflict, we find that r3 and rd are in conflict iff tr3 < t̄rd + τ . We note that tr3 = a + τ . Thus, we
find trd ≤ a + τ < trd + 2τ , which holds, because, by the premise of the Lemma, a − τ < trd < a + τ .
Thus, all requests in the Zig gadget are in conflict with rd �

Next, we define the Zig-Zag gadget. The Zig-Zag gadget is a series of six requests. These six requests
form a series of three overlapping pairs of requests, starting at alternating sides. Specifically, a Zig-Zag
gadget starting at time a is defined as six requests: r1 = r2 = (..., a, lr1), r3 = r4 = (..., a + τ, l̄r1) and
r5 = r6 = (..., a+2τ, lr1). Once again, the booking times of these servers are not defined and the requests
can be served by the same pair of servers in quick succession. The second and third of these pairs do
not require an empty move to serve, so those four requests always grant 4p profit.

Lemma 5.2 All requests in the Zig-Zag gadget, starting at time a, conflict with any request rd for
which a < trd < a+ 2τ and lr1 = lrd .

Proof To prove this lemma, we need to show that requests r1, r3 and r5 of the Zig-Zag gadget starting
at time a are in conflict with rd. Since r2, r4 and r6 are identical to r1, r3 and r5, respectively, their
conflict with rd follows.

First, we show that request r1 is in conflict with rd. Recall the definition of conflicting requests.
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Figure 2: Lemma 5.1, colourized. Any request that fully takes place inside the green zone is in conflict
with the pink Zig gadget. Note that all requests have the same gradient because of the consistent travel
time τ

Requests r and j are in conflict iff, with tr ≤ tj , tj < t̄r + τ(l̄r, lj). Per the premise of this Lemma, note
that tr1 = a < trd . Also note that lr1 = lrd . This means τ(l̄r1 , lrd) = τ . Therefore, we need to check
that trd < a+ 2τ . Per the premise of this Lemma, this holds. Therefore, r1 = r2 are in conflict with rd.

Next, we show that request r3 is in conflict with rd. r3 differs from r1 in that tr3 = a+τ , and lr3 = l̄r1 .
This has an impact on two facts of the formula for conflicting requests. For one, neither tr3 ≤ trd nor
trd ≤ tr3 is guaranteed. Therefore, we need to check both formulas. Furthermore, τ(l̄r3 , lrd) = 0. Filling
in the formulas, we find that either tr3 < trd + τ , or trd < tr3 + τ . Since tr3 = a + τ we find that
a + τ < trd + τ or trd < a + 2τ . Per the premise of the lemma, these two formulas hold. Therefore,
r3 = r4 are in conflict with rd.

Finally, we show that request r5 is in conflict with rd. r5 effectively transposes r1 by 2τ . This means
tr5 = a+ 2τ Since a < trd < a+ 2τ we note that, trd < tr5 . This effectively inverses the roles of rd and
the request in the gadget. Note that lr5 = lrd . This means τ(l̄rd , lr5) = τ . Therefore, we need to check
that tr5 < trd + 2τ . Rephrasing tr5 as a+ 2τ , we find a+ 2τ < trd + 2τ . Since a < trd , per the premise
of this Lemma, this holds. Therefore, r5 = r6 are in conflict with rd. �

Note that removing the final pair of requests from a Zig-Zag gadget produces a Zig gadget. This
means, for every Zig-Zag gadget with all requests conflicting with one request, there must exist a Zig
gadget with all requests conflicting with that same request. This produces the following corollary.

Corollary 5.3 All requests in the Zig gadget, starting at time a, conflict with any request rd for
which a < trd < a+ 2τ and lr1 = lrd .

5.2 No distant Requests

The first sets of settings for c and [λ, υ] that we prove are those parameters that do not see any benefit
from including distant requests in the cases. This is caused by the setting for υ, though the range for
these settings is increased if c = p.
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Figure 3: Lemma 5.2, colourized. Any request that fully takes place inside the green zone is in conflict
with the pink Zig-Zag gadget. Note that all requests have the same gradient because of the consistent
travel time τ

Theorem 5.4 For 0 < υ < τ , or υ − λ ≤ 2τ and c = p, no deterministic online algorithm can
achieve a competitive ratio of lower than 3.

These parameters are grouped together because they share the property that any distant request rd
is never worth considering. In the former situation, (0 < υ < τ) this is the case because it takes τ
time to perform the movement to get to the starting situation of rd, yet brd − trd < τ . That means
there is no time to perform the empty movement to pick up rd. In the latter situation (υ − λ ≤ 2τ and
c = p) there is time to perform the empty movement. However, the reward of serving rd is completely
mitigated by the cost of the empty movement. Therefore, serving rd only distracts at least one of ALG’s
servers for no benefit. Because υ − λ ≤ 2τ , the time in which OPT can make any profit over ALG is
very limited. Therefore, using at least one server to serve a request that is not profitable is detrimental
to the performance ratio of any ALG in this situation. Having discussed the caveats for serving distant
requests in both situations laid out by the proof, we conclude that distant requests are not of interest
for the settings of this particular proof.

Proof Initially, the adversary releases r1 = r2 = (0, υ, 0). We distinguish three cases.
Case 1: ALG rejects both r1 and r2. OPT subsequently accepts r1 and r2. We find PRA = 0 and
PR∗ = 2p, hence PR∗/PRA =∞. (See also figure 4a).
Case 2: ALG accepts r1 or r2, but not both. The adversary subsequently releases r3 = r4 = (ε, υ− ε, 0).
Note that these requests (r3, r4) are in conflict with the accepted request. Thus at most one of r3 or r4
can be accepted. ALG is faced with two options this time.
Case 2a: ALG rejects both r3 and r4. OPT then accepts both of these, and the adversary releases
r5 = r6 = (τ + ε, υ + τ − ε, 1), which are not profitably acceptable by ALG, but are acceptable to OPT.
Regardless of whether ALG accepts any of r5 or r6, we find PRA = p and PR∗ = 4p, hence PR∗/PRA = 4.
(See also figure 4b).
Case 2b: ALG accepts r3 or r4. The adversary then releases a Zig-Zag gadget starting at location 0 at
time υ − 2ε. Per Lemma 5.2, all of these requests are in conflicted with the requests ALG accepted, yet
OPT is free to accept them all. We find PRA = 2p and PR∗ = 6p, hence PR∗/PRA = 3. (See also figure
4c).
Case 3: ALG accepts both r1 and r2. The adversary then releases a Zig-Zag gadget starting at location
0 at time υ − ε. We know ALG’s servers cannot serve this Zig-Zag gadget (Lemma 5.2), whereas OPT
can. OPT subsequently accepts all requests in the gadget. We find PRA = 2p and PR∗ = 6p, hence
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PR∗/PRA = 3. (See also figure 4d). �

5.3 Short Notification Intervals

In this section, we discuss the settings with a notification interval shorter than 3τ . These settings are
substantially different from the settings discussed in the previous sections, because ALG and OPT can
benefit from accepting distant requests with these settings. This access to distant requests strengthens
the adversary. We still separate the cases with these notification intervals from the cases with notifi-
cation intervals longer than 3τ , because the adversary gains an important extra tool with notification
intervals longer than 3τ . This tool will be explained in the section pertaining Long Notification Intervals.

Theorem 5.5 For υ = τ and 0 < c ≤ p, no deterministic online algorithm can achieve a competi-
tive ratio of lower than max { 4p

2p−c , 3}.

We group these parameter settings together mainly because of the υ = τ . This setting ensures that
distant requests are possible, whilst making it impossible for a distant request to line-skip an accepted
distant request. Because distant requests are possible, and profitable, they need to be considered in the
following proof.

Next, please note that the crossover point between these two bounds can be calculated beforehand.
These lower bounds are equal when the cost for an empty movement c = 2p

3 . Following this, we conclude

that the bound of 4p
2p−c is higher when the cost is higher than 2p

3 , whereas the bound of 3 is higher when

the cost is smaller than 2p
3 . Since an adversary decides the instance showing the lower bound, it can

release the instance resulting in the higher lower bound for the chosen setting of c. This explains the
max function present when describing the lower bound of this setting.

The bound of 3 can be proven by using the same steps taken in Theorem 5.4. We do not repeat
the analysis of the cases used in the proof of that theorem. Instead, we need to investigate the impact of
distant requests, since the current settings make distant requests possible. To investigate what happens
when the first request is a distant request, we will distinguish three main cases.

Proof Initially, the adversary releases r1 = r2 = (0, τ, 1). We distinguish three cases.
Case 1: ALG accepts neither r1 nor r2. OPT then accepts both of the requests. We find PRA = 0 and
PR∗ = 2p, hence PR∗/PRA = ∞. (See also figure 5a).
Case 2: ALG accepts either r1 or r2. Following this, the adversary releases two more requests:
r3 = r4 = (ε, υ + ε, 0). ALG is faced with two options this time.
Case 2a: ALG accepts neither r3 nor r4. OPT subsequently accepts both of them. We find PRA =
p− c and PR∗ = 2p, hence PR∗/PRA = 2p

p−c . (See also figure 5b). For completeness’ sake, note that it is
possible for an adversary to release two more requests from 1 to 0, such that OPT can serve them, but
ALG cannot. This would make the performance ratio of any algorithm entering this case even higher
than the one shown. Since we explore this setting for the lower bound, we end this case here.
Case 2b: ALG accepts r3 or r4. The adversary then releases a Zig gadget starting at location 0 at
time λ+ 2ε. By Lemma 5.1 and 5.2, these requests are in conflict with ALG’s accepted requests. OPT
accepts all four. We find PRA = 2p− c and PR∗ = 4p, hence PR∗/PRA = 4p

2p−c . (See also figure 5c).
Case 3: ALG accepts both r1 and r2. The adversary then releases a Zig gadget starting at location
0 and time λ + ε. By Lemma 5.2, we know all of these requests fully conflict with the requests ALG
accepted, but are fully acceptable to OPT. Indeed, OPT accepts all of the requests in the Zig-gadget.
We find PRA = 2p− 2c and PR∗ = 4p, hence PR∗/PRA = 2p

p−c . (See also figure 5d). �

Theorem 5.6 For τ < υ − λ ≤ 2τ and 0 < c < p, no deterministic online algorithm can achieve a
competitive ratio of lower than min { 3p−cp−c , 4}

We note that the bound we prove is higher than the one found in Theorem 5.4 and Theorem 5.5.
While the cases covered in those theorems are still possible, they are no longer the cases leading to the
highest lower bound. This change comes about because line-skipping distant requests are possible when
τ < υ−λ. (See, for example, Figure 6a). This extra freedom gives the adversary opportunities to create
a higher lower bound. The crossover point between 3p−c

p−c and 4 is c = p
3 . For c < p

3 , the lower bound is
3p−c
p−c , whereas for c > p

3 the lower bound is 4.
A big difference between the lower bound found in Theorem 5.5, and the lower bound discussed in

this theorem, is that the resulting lower bound from Theorem 5.5 includes a max function, whereas the
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Figure 4: All cases of Theorem 5.4, illustrated with appropriate competitive ratio. The location of the
online algorithm (in green) and the optimum algorithm (in pink, dashed) are shown over time, as is the
length of a trip (τ). If the green line is dashed, that means the two servers are not at the same location
at that time.
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Figure 5: All cases of Theorem 5.5, illustrated with appropriate competitive ratio. The location of the
online algorithm (in green) and the optimum algorithm (in pink, dotted) are shown over time, as is the
length of a trip (τ). If the green line is dashed, that means the two servers are not at the same location at
that time. If a line is both dotted and dashed, it indicates an empty movement performed by a number
of servers equal to the amount of dots.
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lower bound in this theorem includes a min function. This change comes about because the reason why
these functions are included are very different. In Theorem 5.5, the adversary had to fully change its
released instance to show the lower bound. In this theorem, however, it is the behaviour of ALG that
should change when c = p

3 is reached. Since the instance is the same for both parts of the function, the
decision which path to take is solely on ALG, explaining the min function in this lower bound.

Note that releasing a non-distant request as first request will not lead to the highest possible lower
bound. There is no way to release a request turning the non-distant request into a distant request with
the settings for λ and υ used in this theorem. We can use the adversary laid out in Theorem 5.4 to show
that starting the releases with a non-distant request cannot achieve a lower bound higher than 3. That
is lower than the bounds we prove in this theorem.

Proof Initially, the adversary releases r1 = r2 = (0, υ, 1). We distinguish three cases.
Case 1: ALG accepts neither r1 nor r2. OPT then accepts both r1 and r2. We find PRA = 0 and PR∗ =
2p− 2c, hence PR∗/PRA = ∞. (See also Figure 6a).
Case 2: ALG accepts either r1 or r2. The adversary then releases two more requests rs1 = rs2 =
(ε, υ − 2ε, 1). ALG is faced with two options after that.
Case 2a: ALG rejects both rs1 and rs2 . OPT accepts both of these requests, and the adversary releases
two more requests rs3 = rs4 = (2τ, υ + 2τ − 2ε, 1). These requests are still in conflict with r1 and r2.
Hence at most one of them can be accepted by ALG, which is faced with two choices.
Case 2a-a: ALG accepts neither rs3 nor rs4 . OPT accepts both of those requests. Here, we can end
the release of requests. We find PRA = p and PR∗ = 4p, hence PR∗/PRA = 4. (See also Figure 6b).
Case 2a-b: ALG accepts rs3 or rs4 . The adversary then releases a Zig gadget starting at location 0
and time υ+ τ − ε. Both of the requests accepted by ALG are in conflict with this gadget (Lemma 5.1).
Therefore, these requests can only be accepted by OPT. We find PRA = 2p − 2c and PR∗ = 6p − 2c,
hence PR∗/PRA = 3p−c

p−c . (See also Figure 6c).
Case 2b: ALG accepts rs1 or rs2 . The adversary then releases the same Zig-Zag gadget as described
in Case 1: starting at location 1 at time υ − 3ε. Per Lemma 5.2, These requests are in conflict with the
requests ALG accepted, but OPT accepts all of them. We find PRA = 2p− 2c and PR∗ = 6p− 2c, hence
PR∗/PRA = 3p−c

p−c . (See also Figure 6d).
Case 3: ALG accepts both r1 and r2. The adversary then releases a Zig-Zag gadget starting at location
1 and time υ − 3ε. These requests are in conflict with the requests that have been accepted by ALG
(Lemma 5.2), and OPT accepts all of them. Note that the first two requests of this Zig-Zag gadget are
distant requests, as are both requests ALG accepted. We find PRA = 2p− 2c and PR∗ = 6p− 2c, hence
PR∗/PRA = 3p−c

p−c . (See also Figure 6e). �

Theorem 5.7 For 2τ < υ − λ ≤ 3τ and 0 < c ≤ p, no deterministic online algorithm can achieve
a competitive ratio of lower than min { 3p−cp−c , 4}

We note that the bound is the exact same as in Theorem 5.6. This is because releasing a distant
request first still leads to this lower bound. To show this, we expand our case distinction with a new
beginning, where the first request released is a non-distant request with br1 − tr1 between 2τ and 3τ . We
show that the adversary has no reaction improving upon the min { 3p−cp−c , 4} bound. We do not reiterate
the case distinction of releasing a distant request first in this theorem. For that, we refer to Theorem
5.6.

In this preamble, we give special attention to the setting that c = p. This setting differs from
0 < c < p, in that starting the timeline with a distant request does not lead to the lower bound of the
problem. Instead, the lower bound for that setting (4) is supported by the findings in this proof. Filling
in c = p in all of the ratios we find, we find that case 2a still leads to a lower bound of 4 in this setting,
even if distant requests do not give any profit.

Proof Initially, the adversary releases r1 = r2 = (0, υ, 0). We distinguish three cases.
Case 1: ALG accepts neither r1 nor r2. OPT then accepts both r1 and r2. We find PRA = 0 and PR∗ =
2p, hence PR∗/PRA = ∞. (See also Figure 7a).
Case 2: ALG accepts either r1 or r2. OPT rejects both r1 and r2. The adversary then releases
r3 = r4 = (ε, υ − ε, 0). We distinguish two cases.
Case 2a: ALG accepts neither r3 nor r4. OPT then accepts both r3 and r4. The adversary then waits
until it releases r5 = r6 = (υ − λ, υ + τ − ε, 1). These requests conflict with r1, so s′1 cannot serve it.
Furthermore, these requests are distant to s′2. Assuming λ < τ , they are in conflict with s′2 as well. OPT
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Figure 6: All cases of Theorem 5.6, illustrated with appropriate competitive ratio. The location of the
online algorithm (in green) and the optimum algorithm (in pink, dotted) are shown over time, as is the
length of a trip (τ). If the green line is dashed, that means the two servers are not at the same location at
that time. If a line is both dotted and dashed, it indicates an empty movement performed by a number
of servers equal to the amount of dots.
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accepts both r5 and r6. We find PRA = p and PR∗ = 4p, hence PR∗/PRA = 4. (See also Figure 7b)
Case 2b: ALG accepts either r3 or r4. The reaction to this case mirrors the reaction used in Case 3.
The adversary’s reaction in Case 3 can be used in this case, changing only a few ε counts. The results
from Case 3 reflect the results achieved in this case.
Case 3: ALG accepts both r1 and r2. Over time, the adversary then releases a Zig-Zag gadget starting
at location 0 and time υ − ε. These requests are in conflict with the requests that have been accepted
by ALG (Lemma 5.2), and OPT accepts all of them. Whilst releasing this gadget, the adversary also
releases r3 = r4 = (ε, λ + 5ε, 0). Note that there is at least τ time between t̄r3 and the Zig-Zag gadget.
Therefore, there are no conflicts regarding r3 and r4. We distinguish three cases.
Case 3a: ALG rejects both r3 and r4. OPT accepts both r3 and r4. The adversary then releases
r5 = r6 = (τ + ε, λ+ 5ε+ τ, 1). OPT accepts both r5 and r6. These requests are not acceptable to ALG.
We find PRA = 2p and PR∗ = 10p, hence PR∗/PRA = 5. (See also Figure 7c)
Case 3b: ALG accepts either r3 or r4. OPT rejects both r3 and r4. The adversary then releases
r5 = r6 = (2ε, λ+ 4ε, 0). We distinguish two cases.
Case 3b-a: ALG rejects both r5 and r6. OPT accepts both r5 and r6. The adversary then releases
r7 = r8 = (τ + 2ε, λ + 4ε + τ, 1). OPT accepts both r7 and r8. These requests are not acceptable to
ALG. We find PRA = 3p− c and PR∗ = 10p, hence PR∗/PRA = 10p

3p−c . (See also Figure 7d)
Case 3b-b: ALG accepts either r5 and r6. OPT rejects both r5 and r6. The adversary then releases
a Zig gadget at location 0 starting at time λ + 3ε. OPT fully accepts this Zig gadget. Since this Zig
gadget fully conflicts with r3 and r5, by Corollary 5.3, these requests are not acceptable to ALG. We
find PRA = 4p− 2c and PR∗ = 10p, hence PR∗/PRA = 10p

4p−2c . (See also Figure 7e)
Case 3c: ALG accepts both r3 and r4. OPT rejects both r3 and r4. The adversary then releases a Zig
gadget at location 0 starting at time λ + 4ε. OPT fully accepts this Zig gadget. Since this Zig gadget
fully conflicts with r3 and r4, by Corollary 5.3, these requests are not acceptable to ALG. We find PRA =
4p− 2c and PR∗ = 10p, hence PR∗/PRA = 10p

4p−2c . (See also Figure 7f) �

5.4 Long Notification Intervals

In this section we discuss the impacts of notification intervals of longer than 3τ on the lower bounds
2S2L-V problem. In section 5.2, we found the lower bound for the settings disallowing distant requests
by first releasing a pair of non-distant requests. In section 5.3, we found the lower bound for the settings
with notification interval shorter than 3τ by first releasing a pair of distant requests. In this section, we
find that the way to find the lower bounds for settings with υ − λ > 3τ may differ based on the setting
for c. This is the case because requests released as non-distant requests may become distant by the time
the requests need to be served. The longer the notification interval, the more an adversary can take
advantage of non-distant requests turning into distant requests.

Importantly, in this section, we do not analyze the case starting with a pair of distant requests again.
This is unnecessary, because even distant requests planned with a large notification interval do not get
any less profitable as time goes on. Therefore, the reaction and bounds resulting from releasing a distant
request first do not change with more time. For analysis of the lower bounds caused by a pair of distant
requests released first, we refer to Theorem 5.6.

Before we analyze the lower bounds for these long booking intervals, we first discuss a new gadget.
We call this gadget the commitment gadget. The commitment gadget is released in the far future to in-
fluence the behaviour of ALG. ALG has to accept part of the commitment gadget to remain competitive.
Because of that ALG has to move its servers to serve the requests accepted in the commitment gadget.
This is how OPT manages to make more profit over ALG than possible in the short booking interval
settings, despite starting with a non-distant request.

The Commitment gadget is constructed using the following steps. First, the adversary releases
requests r1 = r2 = (0, υ − τ, 0). Note that this request is booked nearly as far in advance as possible. If
an algorithm rejects all of these requests, that immediately classifies that algorithms as uncompetitive,
because OPT can accept r1 to make uncontested profit over the algorithm. If an algorithm accepts both
of these requests, an adversary can release a Zig-Zag gadget starting at location 0 at time υ − τ − ε.
Per Lemma 5.2, all of this Zig-Zag gadget is in conflict with r1 and r2. Therefore, ALG cannot accept
this Zig-Zag gadget. OPT then accepts this Zig-Zag gadget. We call this variation of the commitment
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Figure 7: All cases of Theorem 5.7, illustrated with appropriate competitive ratio. The location of the
online algorithm (in green) and the optimum algorithm (in pink, dotted) are shown over time, as is the
length of a trip (τ). If the green line is dashed, that means the two servers are not at the same location at
that time. If a line is both dotted and dashed, it indicates an empty movement performed by a number
of servers equal to the amount of dots.
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gadget, a Class A commitment gadget (See also Figure 8 Class A).
Having handled the cases where ALG accepts either both or neither of r1 and r2, we now consider

the case where ALG accepts just one of these requests. The first step the adversary takes after ALG
accepts either r1 or r2 is releasing r3 = r4 = (ε, υ − τ − 2ε, 0). If ALG accepts either r3 or r4 (ALG
cannot accept both, because r3 and r4 conflict with r1 or r2), the adversary simplifies the situation into
a Class A commitment gadget. The adversary does this by releasing a Zig-Zag gadget at location 0 at
time υ − τ − 3ε.

We now handle the final cases in the commitment gadget. We know one of ALG’s servers is busy
serving r1 or r2 at υ − ε, while the other is available. At the same time, both of OPT’s servers have
accepted a request line-skipping r1 or r2, making them available at υ − ε. The adversary now releases
r5 = r6 = (2ε, υ − ε, 1). This gives ALG two choices: either accepting or rejecting r5 (or r6). If ALG
accepts either of these requests, the adversary releases a Zig-gadget starting at location 1 at time υ− 2ε.
By Corollary 5.3 and Lemma 5.1, all requests in this Zig-gadget conflict with r1 and r5. Since r1 and
r5 also conflict with one another, it is impossible for ALG to accept this Zig-gadget. OPT accepts the
Zig-gadget. We call this variation of the commitment gadget a Class B commitment gadget (See also
Figure 8 Class B). Meanwhile, if ALG rejects both r5 and r6, OPT accepts both of these requests and
the releases for the commitment gadget end. We call this final variation a Class C commitment gadget
(See also Figure 8 Class C).

The commitment gadget is a strong tool, that forces ALG into committing to a certain course of action
near the end of the notification interval. Because ALG needs to stick to its commitment, it becomes
vulnerable to shorter term releases. Indeed, because of the request(s) OPT accepted in the commitment
gadget, non-distant requests line-skipping the commitment gadget come with an empty movement cost
later down the line. This has a profound impact on the lower bounds of this problem.

The lower bound proofs on the 2S2L-V problem from here on all have very similar structures. The
adversary begins by either releasing a distant request, or a commitment gadget. The cases starting
with a distant request have been thoroughly discussed in Theorem 5.6. Following Theorem 5.6, we find
that an adversary can force a ratio of {min { 3p−cp−c , 4}. Alternatively, the adversary can try to find a
higher lower bound by releasing a non-distant request first. To this end, the adversary first releases a
commitment gadget. Once again note that this commitment gadget is initiated such that it is near the
end of the notification interval, despite being released first. The cases starting with a commitment gadget
continue with the release of non-distant requests line-skipping the gadget. Depending on the reaction
of ALG, and the amount of time between the commitment gadget and the start of the timeline, the
adversary releases Zig gadgets or Zig-Zag gadgets in conflict with requests ALG accepts. This approach
constructs a formula for the lower bound that trends towards 3p−c

p−c as υ − λ trends to infinity. However,
for υ − λ > 9τ , this formula becomes less competitive than accepting a Class B commitment gadget.
Therefore, the lower bound no longer changes when υ − λ > 9τ .

Before we show the proofs, we once more reiterate what the min functions and max functions used
in the lower bounds stand for. min functions are caused by a change in ALG behaviour. The instance
released by the adversary remains the same for both of the elements in the min function. Meanwhile,
max functions are caused by a change in instance released by the adversary. Even if ALG’s behaviour
remains consistent, the adversary forces a worse lower bound purely by releasing an instance that has
no response causing a lower bound that is lower than the other element in the max function.

Theorem 5.8 For 3τ < υ − λ ≤ 5τ and 0 < c ≤ p, no deterministic online algorithm can achieve
a competitive ratio of lower than max {min { 3p−cp−c , 4},

10p
4p−2c}

Proof We prove this theorem by use of case distinction. First the adversary releases either a dis-
tant request or a non-distant request. We note that releasing a distant request first leads to the analysis
seen in Theorem 5.6. Therefore, the lower bound of this setting cannot be lower than {min { 3p−cp−c , 4}.
We note that this value is higher than 10p

4p−2c for c ≤ 3p
4 . Thus, the lower bound is 3p−c

p−c for c ≤ p
3 , 4 for

p
3 ≤ c ≤

3p
4 and 10p

4p−2c for c ≥ 3p
4 . To prove the lower bound, we only have to use case distinction on new

cases. Those are found by having the adversary release non-distant requests first.

The adversary first releases the commitment gadget. If ALG’s reaction causes a Class B commitment
gadget, the release of requests ends. We find PRA = 2p− c and PR∗ = 6p, hence PR∗/PRA = 6p

2p−c .
Alternatively, either a Class A or Class C commitment gadget is caused. This does not matter for the
response of the adversary, who releases r1 = r2 = (3ε, λ+ 7ε, 0). We distinguish three cases.
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Figure 8: All classes of the commitment gadget. The location of the online algorithm (in green) and the
optimum algorithm (in pink, dotted) are shown over time, as is the length of a trip (τ). If the green line
is dashed, that means the two servers are not at the same location at that time. If a line is both dotted
and dashed, it indicates an empty movement performed by a number of servers equal to the amount of
dots.
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Case 1: ALG accepts neither r1 nor r2. OPT accepts both of these requests. The adversary then
waits to release r3 = r4 = (3ε+ τ, τ + λ+ 7ε, 1). Since neither of ALG’s servers can be at location 1 in
time to serve r3 and r4 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both r3 and
r4. If ALG’s reaction to the commitment gadget created a Class A commitment gadget, we find PRA =
2p and PR∗ = 10p, hence PR∗/PRA = 5. Alternatively, if ALG’s reaction created a Class C commitment
gadget, we find PRA = p and PR∗ = 8p, hence PR∗/PRA = 8.
Case 2: ALG accepts either r1 or r2. OPT rejects both requests. The adversary releases r3 = r4 =
(4ε, λ+ 6ε, 0). We distinguish two cases.
Case 2a: ALG rejects both r3 and r4. OPT then accepts both r3 and r4. The adversary releases
r5 = r6 = (6ε + τ, λ + 6ε + τ, 1). Since neither of ALG’s servers can be at location 1 in time to serve
r5 and r6 if λ < τ , these requests cannot be accepted by ALG. If ALG’s reaction to the commitment
gadget created a Class A commitment gadget, we find PRA = 3p− c and PR∗ = 10p, hence PR∗/PRA =
10p
3p−c . Alternatively, if ALG’s reaction created a Class C commitment gadget, the adversary releases two

more requests r7 = r8 = (υ + τ − ε− λ, υ + τ − ε, 0). Since neither of ALG’s servers can be at location
0 in time to serve r7 and r8 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both of
these requests. We find PRA = 2p and PR∗ = 10p, hence PR∗/PRA = 5.
Case 2b: ALG accepts either r3 or r4. OPT rejects both requests. The adversary releases a Zig-gadget
starting from location 0 at time 5ε + λ. By Corollary 5.3, ALG cannot accept any requests in this
Zig-gadget. OPT fully accepts the Zig-gadget. If ALG’s reaction to the commitment gadget created a
Class A commitment gadget, we find PRA = 4p− 2c and PR∗ = 10p, hence PR∗/PRA = 10p

4p−2c . Alterna-
tively, if ALG’s reaction created a Class C commitment gadget, the adversary releases two more requests
r9 = r10 = (υ+τ−ε−λ, υ+τ−ε, 0). Since neither of ALG’s servers can be at location 0 in time to serve
r9 and r10 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both of these requests. We
find PRA = 3p− c and PR∗ = 10p, hence PR∗/PRA = 10p

3p−c .
Case 3: ALG accepts both r1 and r2. The reaction to this case mirrors the reaction used in Case 2b.
The adversary’s reaction in Case 2b can be used in this case, changing only a few ε counts. The results
from Case 2b reflect the results achieved in this case.
We find that the lower bound of first releasing a non-distant request is achieved by first releasing a Class
A commitment gadget, followed by either Case 2b or Case 3. The lower bound of first releasing a distant
request remains unchanged from the one discovered in Theorem 5.6. Therefore, we find a lower bound
of max {min { 3p−cp−c , 4},

10p
4p−2c} �

Theorem 5.9 For 5τ < υ − λ ≤ 7τ and 0 < c ≤ p, no deterministic online algorithm can achieve
a competitive ratio of lower than max {min { 3p−cp−c , 4},

12p−2c
4p−2c }

Proof We prove this theorem by use of case distinction. First the adversary releases either a dis-
tant request or a non-distant request. We note that releasing a distant request first leads to the analysis
seen in Theorem 5.6. Therefore, the lower bound of this setting cannot be lower than {min { 3p−cp−c , 4}.
We note that this value is higher than 12p−2c

4p−2c for c ≤ 2p
3 . Thus, the lower bound is 3p−c

p−c for c ≤ p
3 , 4 for

p
3 ≤ c ≤ 2p

3 and 12p−2c
4p−2c for c ≥ 2p

3 . To prove the lower bound, we only have to use case distinction on
new cases. Those are created by releasing non-distant requests first.

The adversary first releases the commitment gadget. If ALG’s reaction causes a Class B commitment
gadget, the release of requests ends. We find PRA = 2p− c and PR∗ = 6p, hence PR∗/PRA = 6p

2p−c .
Alternatively, either a Class A or Class C commitment gadget is caused. This does not matter for the
response of the adversary, who releases r1 = r2 = (3ε, λ+ 7ε, 0). We distinguish three cases.

Case 1: ALG accepts neither r1 nor r2. OPT accepts both of these requests. The adversary then
waits to release r3 = r4 = (3ε+ τ, τ + λ+ 7ε, 1). Since neither of ALG’s servers can be at location 1 in
time to serve r3 and r4 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both r3 and
r4. If ALG’s reaction to the commitment gadget created a Class A commitment gadget, we find PRA =
2p and PR∗ = 10p, hence PR∗/PRA = 5. Alternatively, if ALG’s reaction created a Class C commitment
gadget, we find PRA = p and PR∗ = 8p, hence PR∗/PRA = 8.
Case 2: ALG accepts either r1 or r2. OPT rejects both requests. The adversary releases r3 = r4 =
(4ε, λ+ 6ε, 0). We distinguish two cases.
Case 2a: ALG rejects both r3 and r4. OPT then accepts both r3 and r4. The adversary releases
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r5 = r6 = (6ε + τ, λ + 6ε + τ, 1). Since neither of ALG’s servers can be at location 1 in time to serve
r5 and r6 if λ < τ , these requests cannot be accepted by ALG. If ALG’s reaction to the commitment
gadget created a Class A commitment gadget, we find PRA = 3p− c and PR∗ = 10p, hence PR∗/PRA =
10p
3p−c . Alternatively, if ALG’s reaction created a Class C commitment gadget, the adversary releases two

more requests r7 = r8 = (υ + τ − ε− λ, υ + τ − ε, 0). Since neither of ALG’s servers can be at location
0 in time to serve r7 and r8 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both of
these requests. We find PRA = 2p and PR∗ = 10p, hence PR∗/PRA = 5.
Case 2b: ALG accepts either r3 or r4. OPT rejects both requests. The adversary releases a Zig-Zag
gadget starting from location 0 at time 5ε+ λ. By Lemma 5.2, ALG cannot accept any requests in this
Zig-Zag gadget. OPT fully accepts the Zig-Zag gadget. If ALG’s reaction to the commitment gadget
created a Class A commitment gadget, we find PRA = 4p − 2c and PR∗ = 12p − 2c, hence PR∗/PRA =
12p−2c
4p−2c . Alternatively, if ALG’s reaction created a Class C commitment gadget, the adversary releases

two more requests r9 = r10 = (υ + τ − ε − λ, υ + τ − ε, 0). Since neither of ALG’s servers can be at
location 0 in time to serve r9 and r10 if λ < τ , these requests cannot be accepted by ALG. OPT accepts
both of these requests. We find PRA = 3p− c and PR∗ = 12p− 2c, hence PR∗/PRA = 12p−2c

3p−c .
Case 3: ALG accepts both r1 and r2. The reaction to this case mirrors the reaction used in Case 2b.
The adversary’s reaction in Case 2b can be used in this case, changing only a few ε counts. The results
from Case 2b reflect the results achieved in this case.
We find that the lower bound of first releasing a non-distant request is achieved by first releasing a Class
A commitment gadget, followed by either Case 2b or Case 3. The lower bound of first releasing a distant
request remains unchanged from the one discovered in Theorem 5.6. Therefore, we find a lower bound
of max {min { 3p−cp−c , 4},

12p−2c
4p−2c } �

Theorem 5.10 For 7τ < υ − λ ≤ 9τ and 0 < c ≤ p, no deterministic online algorithm can achieve
a competitive ratio of lower than max {min { 3p−cp−c , 4},min { 16p−2c6p−4c ,

12p−2c
3p−c }}

Proof We prove this theorem by use of case distinction. First the adversary releases either a distant re-
quest or a non-distant request. We note that releasing a distant request first leads to the analysis seen in
Theorem 5.6. Therefore, the lower bound of this setting cannot be lower than {min { 3p−cp−c , 4}. Next, we

consider the two possible lower bounds claimed by releasing a non-distant request first. 16p−2c
6p−4c ≤

12p−2c
3p−c

for c ≤ 19−
√
217

6 p. Furthermore 16p−2c
6p−4c ≤ 4 for c ≤ 4p

7 Thus, we find that the complete lower bound is 3p−c
p−c

for 0 < c ≤ p
3 , 4 for p

3 ≤ c ≤
4p
7 , 16p−2c

6p−4c for 4p
7 ≤ c ≤

19−
√
217

6 p, and finally 12p−c
3p−c for 19−

√
217

6 p ≤ c ≤ 1.

The adversary first releases the commitment gadget. If ALG’s reaction causes a Class B commitment
gadget, the release of requests ends. We find PRA = 2p− c and PR∗ = 6p, hence PR∗/PRA = 6p

2p−c .

Alternatively, either a Class A or Class C commitment gadget is caused. This does not matter for
the response of the adversary, who releases r1 = r2 = (3ε, υ − 5τ − 10ε, 0), We distinguish three cases.

Case 1: ALG accepts neither r1 nor r2. OPT accepts both of these requests. The adversary then
waits to release r3 = r4 = (3ε + υ − λ − 4τ − 10ε, υ − 4τ − 10ε, 1). Since neither of ALG’s servers can
be at location 1 in time to serve r3 and r4 if λ < τ , these requests cannot be accepted by ALG. OPT
accepts both r3 and r4. If ALG’s reaction to the commitment gadget created a Class A commitment
gadget, we find PRA = 2p and PR∗ = 10p, hence PR∗/PRA = 5. Alternatively, if ALG’s reaction created
a Class C commitment gadget, we find PRA = p and PR∗ = 8p, hence PR∗/PRA = 8.
Case 2: ALG accepts either r1 or r2. OPT rejects both requests. The adversary releases r3 = r4 =
(4ε, υ − 5τ − 12ε, 0). We distinguish two cases.
Case 2a: ALG rejects both r3 and r4. OPT accepts both requests. The adversary then releases
r5 = r6 = (5ε, υ − 3τ − 12ε, 0). We distinguish two more cases.
Case 2a-a: ALG rejects both r5 and r6. OPT accepts both requests. The adversary then waits to
release r7 = r8 = (υ − 4τ − λ− 12ε, υ− 4τ − 12ε, 1). Since neither of ALG’s servers can be at location 1
in time to serve r7 and r8 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both r7 and
r8. If ALG’s reaction to the commitment gadget created a Class A commitment gadget, we find PRA =
3p− c and PR∗ = 12p− 2c, hence PR∗/PRA = 12p−2c

3p−c . Alternatively, if ALG’s reaction created a Class C

commitment gadget, the adversary releases two more requests r7 = r8 = (υ+τ−ε−λ, υ+τ−ε, 0). Since
neither of ALG’s servers can be at location 0 in time to serve r7 or r8 if λ < τ , these requests cannot be
accepted by ALG. OPT accepts both of these requests. We find PRA = 2p and PR∗ = 12p − 2c, hence
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PR∗/PRA = 12p−2c
2p .

Case 2a-b: ALG accepts either r5 or r6. OPT rejects both requests. The adversary releases a Zig-
gadget starting at location 1 at time υ − 4τ − 11ε. By Corollary 5.3, this Zig-gadget is in conflict with
requests r1 and r5. Therefore, no part of this Zig gadget can be accepted by ALG. OPT fully accepts
the Zig-gadget. The adversary then releases r7 = r8 = (5ε, λ+ 9ε, 0). We distinguish three cases.
Case 2a-b-1: ALG accepts neither r7 nor r8. OPT accepts both of these requests. The adversary then
waits to release r9 = r10 = (6ε+ τ, λ+ τ + 9ε, 1). Since neither of ALG’s servers can be at location 1 in
time to serve r9 and r10 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both r9 and
r10. If ALG’s reaction to the commitment gadget created a Class A commitment gadget, we find PRA =
4p− 2c and PR∗ = 16p− 2c, hence PR∗/PRA = 16p−2c

4p−2c . Alternatively, if ALG’s reaction created a Class

C commitment gadget, the adversary releases two more requests r11 = r12 = (υ+ τ − ε−λ, υ+ τ − ε, 0).
Since neither of ALG’s servers can be at location 0 in time to serve r11 or r12 if λ < τ , these requests
cannot be accepted by ALG. OPT accepts both of these requests. We find PRA = 3p − c and PR∗ =
16p− 2c, hence PR∗/PRA = 16p−2c

3p−c .
Case 2a-b-2: ALG accepts either r5 or r6. OPT rejects both of these requests. The adversary releases
r7 = r8 = (6ε, λ+ 8ε, 0). We distinguish two cases.
Case 2a-b-2a: ALG accepts neither r7 nor r8. OPT accepts both of these requests. The adversary
releases r9 = r10 = (8ε + τ, λ + 8ε + τ, 1). Since neither of ALG’s servers can be at location 1 in time
to serve r9 and r10 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both of them.
If ALG’s reaction to the commitment gadget created a Class A commitment gadget, we find PRA =
5p− 3c and PR∗ = 16p− 2c, hence PR∗/PRA = 16p−2c

5p−3c .. Alternatively, if ALG’s reaction created a Class

C commitment gadget, the adversary releases two more requests r11 = r12 = (υ+ τ − ε−λ, υ+ τ − ε, 0).
Since neither of ALG’s servers can be at location 0 in time to serve r11 or r12 if λ < τ , these requests
cannot be accepted by ALG. OPT accepts both of these requests. We find PRA = 4p − 2c and PR∗ =
16p− 2c, hence PR∗/PRA = 16p−2c

4p−2c .
Case 2a-b-2b: ALG accepts either r7 or r8. OPT rejects both requests. The adversary releases a Zig
gadget starting at location 0 at time λ+ 7ε. By Corollary 5.3, ALG cannot accept any requests in this
Zig gadget. OPT fully accepts the Zig gadget. If ALG’s reaction to the commitment gadget created a
Class A commitment gadget, we find PRA = 6p − 4c and PR∗ = 16p − 4c, hence PR∗/PRA = 16p−4c

6p−4c ..
Alternatively, if ALG’s reaction created a Class C commitment gadget, the adversary releases two more
requests r11 = r12 = (υ + τ − ε− λ, υ + τ − ε, 0). Since neither of ALG’s servers can be at location 0 in
time to serve r11 or r12 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both of these
requests. We find PRA = 5p− 3c and PR∗ = 16p− 4c, hence PR∗/PRA = 16p−4c

5p−3c .
Case 2a-b-3: ALG accepts both r7 and r8. This reaction mirrors the reaction used in Case 2a-2b,
changing only a few ε counts. The results from Case 2a-2b reflect the results achieved in this case.
Case 2b: ALG accepts either r3 or r4. OPT rejects both requests. The adversary releases a Zig-Zag
gadget starting at location 0 at time υ − 5τ − 13ε. By Lemma 5.2, ALG cannot accept any requests in
this Zig-Zag gadget. OPT fully accepts the Zig-Zag gadget. This reaction mirrors the reaction used in
Case 2a-b, changing a few ε counts, and slightly delaying the final four requests in the Zig-Zag gadget.
The results from Case 2a-b reflect the results achieved in this case.
Case 3: ALG accepts both r1 and r2. This reaction mirrors the reaction used in Case 2a-b, changing
only a few ε counts. The results from Case 2a-b reflect the results achieved in this case.

Theorem 5.11 For 8τ < υ − λ and 0 < c ≤ p, no deterministic online algorithm can achieve a

competitive ratio of lower than max {min { 3p−cp−c , 4},min { 6p+4p(d υ−λ−4τ
4τ e)+(2p−2c)(d υ−λ−6τ

4τ e)
2p+(2p−2c)(d υ−λ−4τ

4τ e) , 12p−2c3p−c }}

Proof We prove this theorem by use of case distinction. First the adversary releases either a dis-
tant request or a non-distant request. We note that releasing a distant request first leads to the analysis
seen in Theorem 5.6. Therefore, the lower bound of this setting cannot be lower than {min { 3p−cp−c , 4}.
Next, we consider the two possible lower bounds claimed by releasing a non-distant request first.
6p+4p(d υ−λ−4τ

4τ e)+(2p−2c)(d υ−λ−6τ
4τ e)

2p+(2p−2c)(d υ−λ−4τ
4τ e) and 12p−2c

3p−c . For what values of c each of these bounds is the lower

of the bounds depends on the maximum difference between notification intervals. We first explain that
releasing a traditional commitment gadget for these lengths of notification interval does not always result
in the highest lower bound for the adversary. This is because for values of υ−λ > 8τ , an algorithm could
react to the commitment gadget with a class B commitment. For a class B reaction, we find PRA =
2p− c and PR∗ = 6p, hence PR∗/PRA = 6p

2p−c .. For these different sizes of notification intervals, we find
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that
6p+4p(d υ−λ−4τ

4τ e)+(2p−2c)(d υ−λ−6τ
4τ e)

2p+(2p−2c)(d υ−λ−4τ
4τ e) > 6p

2p−c . Therefore, reaching a class B commitment gadget would

not be good for the adversary. However, we still need to show that a class B commitment gadget might
lead to a lower ratio, if the adversary releases requests prior to or after the commitment gadget. To show
this, we look at potential requests released prior to or after the commitment gadget.

For requests starting prior to the commitment gadget, we note that we know that both of ALG’s
servers need to be at opposite locations before the start of the commitment gadget. Therefore, a request
released from location 0 would first remove the empty movement needed to serve the distant request
served during the commitment gadget. Thus, releasing such a request would increase the profit of ALG
by p + c. This bypasses the strength of the commitment gadget, which forces ALG to accept requests
that cause empty movements after being line-skipped. Thus, we know that the adversary cannot release
requests starting from 0 without ALG gaining a lot of profit proportional to OPT.

Being able to release only requests starting from 1 prior to the commitment is also not very pro-
portionally profitable. These requests are guaranteed to be distant requests for both OPT and ALG
until a request is released from 0. Releasing only requests starting from 1 prior to the commitment
asymptotically trends towards the min { 3p−cp−c , 4} bound we discussed in Theorem 5.6. That asymptote

is not an improvement on 6p
2p−c for 0.5 < c. Therefore, releasing requests prior to the commitment does

not create a higher lower bound than the Class B commitment gadget.
For requests starting after the commitment gadget, we note that we know both of ALG’s servers are

at opposite locations immediately after the commitment gadget. Therefore, the first request released on
either side is fully profitable to ALG. Furthermore, since both servers of ALG are at different locations, it
is not possible to release a Zig or Zig-Zag gadget without giving ALG the option to accept two profitable
requests. Furthermore, after those requests, ALG’s servers are still at different locations. So, releasing
a Zig or Zig-Zag gadget still would not work. Tirelessly releasing Zig-Zag gadgets in this situation has
an asymptotic Lower bound of 3, lower than 6p

2p−c . To reunite ALG’s servers at the same location, an
adversary has to release just one pair of requests. This action increases ALG’s profit by p, whereas
OPT’s profit only increases by 2p. Releasing just such a pair leads to a situation as if starting from time
0, but with PRA = 3p − c and PR∗ = 8p, which is lower than the bounds we have seen starting from 0
profit. This shows us that the ratio provided by a Class B commitment gadget cannot be improved upon
once the gadget has been accepted.

From there, we need to show that releasing a different stream of requests causes a slightly higher
lower bound. For this, we release the following requests. First, the adversary releases r1 = r2 = (0, υ, 0).
As always, ALG has three options. Either rejecting both of these requests, accepting one of them and
rejecting the other, or accepting both requests. If both requests are rejected, OPT can accept both
requests, and we find PRA = 0 and PR∗ = 2p, hence PR∗/PRA = ∞. If both requests are accepted,
the adversary is free to release a zig-zag gadget starting at υ − ε. This essentially causes a Class A
commitment gadget. Meanwhile, if only one request is accepted by ALG, we release the following pair.

The adversary releases r3 = r4 = (ε, υ − 2ε, 0). Since one of ALG’s servers is busy serving r1 or r2,
ALG can either accept or reject one of these requests. If ALG accepts one of these requests, we can
simplify to a Class A commitment gadget. If ALG rejects both of these requests, OPT accepts r3 and
r4. We then wait for 2τ time to release the next requests.

The adversary releases r5 = r6 = (2τ, υ + 2τ − 2ε, 0). Note that these requests are in conflict with
r1 and r2. Since one of ALG’s servers has served r1 or r2, ALG can accept at most one request from
r5 and r6. If ALG accepts one of these requests, We can simplify to a Class A commitment gadget by
releasing a Zig gadget starting at time υ + τ − ε at location 1. Meanwhile, if ALG rejects r5 and r6,
OPT can accept these requests. Per our assumption that λ < τ , we wait with releasing the next request
until υ. Then, the adversary releases r7 = r8 = (υ, υ + τ − 2ε, 1). These requests are not acceptable
to ALG, but can be accepted by OPT. After this, the adversary can stop releasing requests. We find
PRA = p and PR∗ = 6p, hence PR∗/PRA = 6. Since 6 > 12p−2c

3p−c for all 0 ≤ c ≤ p, and all other reactions
are either non-competitive, or cause a Class A commitment gadget, we can limit our further reasoning
to only Class A commitment gadgets. Note that this release schedule takes 2τ extra time out of υ − λ
compared to the standard Class A commitment gadget.

The position of the servers after this alternative gadget is symmetrical to the position of the servers
at time 0. Therefore, any release performed after the alternative gadget is discussed by showing possible
releases from time 0. Therefore, we only need to find a strategy to fill the time between 2τ + λ and υ as
conveniently as possible. To this purpose, we formalize the line-skip gadget. We have used this strategy
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repeatedly in Theorem 5.7-5.10.
The line-skip gadget is constructed in the following way: the adversary first releases the alternative

gadget, then releases a pair of requests r1 = r2 at (x, y, 0), with x > 2τ and 2τ + λ ≤ y ≤ υ − 4τ . We
distinguish three cases based on the reaction of the Algorithm.

Case 1: ALG accepts neither r1 nor r2. OPT accepts both of these requests. The adversary then
waits to release r3 = r4 = (y − λ + τ, y + τ, 1). Since neither of ALG’s servers can be at location 1 in
time to serve r3 and r4 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both r3 and
r4. The adversary ends their releases here.
Case 2: ALG accepts either r1 or r2. OPT rejects both requests. The adversary releases r3 = r4 =
(x+ ε, y − 2ε, 0). We distinguish two cases.
Case 2a: ALG rejects both r3 and r4. OPT accepts both requests. The adversary then releases
r5 = r6 = (x+ 2ε, y + 2τ − 2ε, 0). We distinguish two more cases.
Case 2a-a: ALG rejects both r5 and r6. OPT accepts both requests. The adversary then waits to
release r7 = r8 = (y − λ − 2ε + τ, y + τ − 2ε, 1). Since neither of ALG’s servers can be at location 1 in
time to serve r7 and r8 if λ < τ , these requests cannot be accepted by ALG. OPT accepts both r7 and
r8. The adversary ends their releases here.
Case 2a-b: ALG accepts either r5 or r6. OPT rejects both requests. The adversary releases a Zig-
gadget starting at location 1 at time y − ε + τ . By Corollary 5.3, this Zig-gadget is in conflict with
requests r1 and r5. Therefore, no part of this Zig gadget can be accepted by ALG. OPT fully accepts
the Zig-gadget. The adversary ends their releases here.
Case 2b: ALG accepts either r3 or r4. OPT rejects both requests. The adversary releases a Zig-Zag
gadget starting at location 0 at time y − 3ε. By Lemma 5.2, ALG cannot accept any requests in this
Zig-Zag gadget. OPT fully accepts the Zig-Zag gadget. This reaction mirrors the reaction used in Case
2a-b, changing a few ε counts. The adversary ends their releases here
Case 3: ALG accepts both r1 and r2. This reaction mirrors the reaction used in Case 2a-b, changing
only a few ε counts. The results from Case 2a-b reflect the results achieved in this case. The adversary
ends their releases here.

We notice three different general responses to the line-skip gadget. ALG can accept nothing, ALG
can accept one request, or ALG can accept two requests. If the Algorithm accepts nothing, the adversary
can react with a zig-gadget that ALG can no longer accept. If ALG accepts one request, the adversary
reacts with a zig-zag gadget. After using that zig-zag gadget, both of OPT’s servers are at location 1,
whereas ALG has one server at location 0 and one server at location 1. However, to have OPT serve this
particular zig-zag gadget, no further releases by the adversary can be made. Accepting an alternative
gadget, then accepting a Case 2a-a line-skip gadget achieves a lower bound of 12p−2c

3p−c .
If ALG accepts two requests, however, the adversary reacts with a zig-zag gadget. The adversary

does not need to wait to release any requests for this zig-zag gadget. After using this zig-zag gadget,
all servers of both OPT and ALG are at location 1. However, to serve another line-skip gadget, or to
serve the alternative gadget, all servers need to be moved to location 0. This costs 2c for both OPT
and ALG. That means that each line-skip gadget adds 6p − 2c to OPT’s profits and 2p − 2c to ALG’s
profits. It takes 4τ time to serve a line-skip gadget. Therefore an adversary can force an algorithm
using this reaction to line-skip gadgets to serve bυ−λ4τ c line-skip gadgets. Furthermore, if there is more
than 2τ time between the end of the final line-skip gadget and the start of the alternative gadget, the
adversary can release one more line-skip gadget, but only release a zig gadget for OPT to serve instead
of a zig-zag gadget. This would add an additional 4p to OPT’s profits at a cost of adding at most 2p−2c
to ALG’s profits. Combining this with the 2τ time it takes to set up the alternative gadget explains the
6p+4p(d υ−λ−4τ

4τ e)+(2p−2c)(d υ−λ−6τ
4τ e)

2p+(2p−2c)(d υ−λ−4τ
4τ e) part of the claimed lower bound.

This all shows that by releasing a distant request pair first, an adversary can achieve a lower bound
of min { 3p−cp−c , 4}, and that by releasing a non-distant request pair first, an adversary can achieve a lower

bound of min { 6p+4p(d υ−λ−2τ
4τ e)+(2p−2c)(d υ−λ−4τ

4τ e)
2p+(2p−2c)(d υ−λ−2τ

4τ e) , 12p−2c3p−c }. Therefore, the lower bound of 2S2L-V with 0 <

c ≤ p and 8τ < υ−λ is shown to be max {min { 3p−cp−c , 4},min { 6p+4p(d υ−λ−4τ
4τ e)+(2p−2c)(d υ−λ−6τ

4τ e)
2p+(2p−2c)(d υ−λ−4τ

4τ e) , 12p−2c3p−c }}
�
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Figure 9: An example of the flow of proofs 5.8-5.11. The location of the online algorithm (in green)
and the optimum algorithm (in pink, dotted) are shown over time, as is the length of a trip (τ). If the
green line is dashed, that means the two servers are not at the same location at that time. If a line is
both dotted and dashed, it indicates an empty movement performed by a number of servers equal to
the amount of dots. We subdivided the total time-location line into possible gadgets, to help ease the
understanding.
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6 Previous Algorithms

In this chapter, we analyze the performance lower bounds of two algorithms created for car sharing on
2S2L. These algorithms are a simple Greedy Algorithm that can be run on (nearly) all settings for car
sharing, and Smart Greedy by K. Luo et al., designed for 2S2L-F [13]. Smart Greedy was optimal for
2S2L-F. We find that Smart Greedy needs to be redesigned for 2S2L-V. A simple redesign is not enough
to make Smart Greedy very competitive on 2S2L-V, however. It performs worse than Greedy on some
settings for c and [υ, λ]. Even when limited to our special instance that releases a paired request for every
request in the instance, Greedy and Smart Greedy do not perform well. The sub-optimal performance
of these previous algorithms on this problem informs us that a new algorithm is needed to achieve a
respectable competitive ratio on 2S2L-V.

6.1 The Greedy Algorithm

In this first section, we discuss the strengths and weaknesses of The Greedy Algorithm (GA). This
algorithm is conceptually simple, and can be described as follows. If a request seems acceptable at the
booking time, it is accepted. Otherwise, the Greedy Algorithm rejects the request. Keep in mind that
this means that profit is not a consideration for GA when deciding whether or not to accept a request.
We formally define Greedy Algorithm as follows:

Algorithm 1 Greedy Algorithm (GA(I))

Input: Instance I of requests ri arriving over time with υ ≥ tri − bri ≥ λ.
Output: Series of accepted requests RA

begin
RA = ∅
foreach r ∈ I do

if r is acceptable then
RA = RA ∪ r

else
Reject r

end

end

end

This greedy approach ensures that the servers of the algorithm are as busy as they can be, without
violating acceptability. This means that the set of requests accepted by GA can always be transformed
into a feasible schedule. Note that no acceptable request is ever declined, even if there is no profit to
be gained by serving them. That is both a benefit and a detriment to the lower bound achieved by this
approach.

We need only differentiate between three settings to discuss all lower bounds of this algorithm. One
of the reasons why this is the case, is because GA makes no exceptions for requests with 0 profit. All
requests are only checked based on acceptability. That ensures that the setting of c is not relevant to
GA. Therefore, we need only consider various settings of [υ, λ]. For these settings, it is important to
differentiate the settings where distant requests are possible from those where they are not. Furthermore,
we need to differentiate between the settings where distant requests can be line-skipped and where they
cannot. This explains the three settings for which we prove the lower bounds.

0 ≤ c ≤ p Theorem
Constraint LB
0 < υ < τ 3 Theorem 6.1

υ = τ max { 2p
p−c , 3} Theorem 6.2

τ < υ − λ 3p−c
p−c Theorem 6.3

Table 5: The results of the lower bounds of Algorithm GA on 2S2L-V

We prove the results shown in this table by providing an adversary that releases an instance on which
GA does not perform better than the claimed lower bound. Because GA’s reactions are deterministic,
we need only show one reaction of an adversary to show the claimed lower bound.
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Theorem 6.1 For 0 < υ < τ , Algorithm GA cannot achieve a competitive ratio of lower than 3.

Proof We prove this theorem by providing an adversary. This adversary first releases r1 = r2 = (0, υ, 0).
By the workings of GA, GA accepts these requests. The adversary then releases a zig-zag gadget at lo-
cation 0 starting at time υ− ε. By Lemma 5.2, all requests in this gadget are in conflict with r1 and r2.
Therefore, the gadget is not acceptable to GA, and GA thus rejects it. OPT accepts all requests in the
gadget. We find PRA = 2p and PR∗ = 6p, hence PR∗/PRA = 3. �

If this lower bound is tight, we find that Algorithm GA is optimal for the settings 0 < c ≤ p and
0 < υ ≤ τ . We now investigate the lower bound achieved by GA on the settings of υ = τ

Theorem 6.2 For υ = τ , Algorithm GA cannot achieve a competitive ratio of lower than max { 2p
p−c , 3}.

Proof We prove this theorem by providing two adversaries. The first of these adversaries is the one
discussed in Theorem 6.1. This adversary is used when c < p

3 , because 3 > 2p
p−c for those settings

of c. When c ≥ p
3 , we use a different adversary. This adversary first releases r1 = r2 = (0, υ, 1). By

the workings of GA, GA accepts these requests. The adversary then releases a zig gadget at location 0
starting at time υ−ε. By Lemma 5.1, all requests in this gadget are in conflict with r1 and r2. Therefore,
all requests in the gadget are not acceptable to GA, and GA thus rejects them. OPT accepts all requests
in the gadget. We find PRA = 2p− 2c and PR∗ = 4p, hence PR∗/PRA = 2p

p−c . �

If this lower bound is tight, we find that Algorithm GA is optimal for the settings 0 < c ≤ p
3 and

υ = τ . That means its utility on this setting is limited. This is the case because its reaction to the pair
of distant requests is not optimal.

Finally, we investigate the performance lower bound of GA on all other settings of 2S2L-V.

Theorem 6.3 For τ < υ − λ, Algorithm GA cannot achieve a competitive ratio of lower than 3p−c
p−c .

Proof We prove this theorem by providing an adversary. This adversary first releases r1 = r2 = (0, υ, 1).
By the workings of GA, GA accepts these requests. The adversary then releases a zig-zag gadget at lo-
cation 1 starting at time υ− ε. By Lemma 5.2, all requests in this gadget are in conflict with r1 and r2.
Therefore, the gadget is not acceptable to GA, and GA thus rejects it. OPT accepts all requests in the
gadget. We find PRA = 2p− 2c and PR∗ = 6p, hence PR∗/PRA = 3p−c

p−c . �

If this lower bound is tight, we find that Algorithm GA is optimal for the settings 0 < c ≤ p
3 and

υ − λ > τ .
Despite GA seeming without merit on the setting with υ = τ , it seems that this algorithm performs

quite well, taking into account its relative simplicity. Even when booking times get very long, if the cost
of an empty movement is relatively low, we find that GA performs well. If these bounds prove tight,
we can consider using GA as a basis for an algorithm dealing with low cost settings for 2S2L-V. The
downside of GA, however, is that it is extremely poor on settings with high empty movement cost. In
those settings, GA accepts distant requests that are barely profitable, making way for OPT to accept
requests that are much more profitable. For c close to p, the lower bound of this algorithm trends toward
infinity. That means we definitely need different algorithms for settings with high empty movement costs.

6.2 Smart Greedy

The results we found on GA imply that we need to take more care to not accept requests with expensive
empty movement costs too often. To this end, we look at an improvement upon Greedy for 2S2L-F created
by K. Luo et al [13]. Smart Greedy might perform well on 2S2L-V, or at least provide inspiration for new
algorithms. The reasoning leading to Smart Greedy is admirable. Serving a distant request is often a
risky endeavor. Accepting two distant requests that start close to one another, an adversary could make
use of the time that an algorithm has to take to serve these distant requests. In this time, the adversary
could release two pairs of non-distant requests, in conflict with the requests accepted by the algorithm.
In order to avoid this, Smart greedy was created with the following three main rules. Firstly, if a request
does not require an empty move to be served, it is accepted. Secondly, if a request requires an empty
move, and neither server is busy at or after the time of the empty movement, accept this distant request.
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Finally, if neither of these two conditions are met, reject the incoming request.
The implementation that K. Luo et al provided for Smart Greedy was geared towards 2S2L-F. It

checked whether adding a request to the set of accepted requests would increase profit by p to check
whether a request was distant or not. This might not be accurate for 2S2L-V. Therefore, Smart Greedy
needs to be slightly refactored for 2S2L-V. Note that this is an algorithm that checks profitability of
requests alongside acceptability. This should ensure a better lower bound than Greedy provided. After
a simple refactor, we find our new definition of Smart Greedy to be as follows.

Algorithm 2 Smart Greedy (SG(I))

Input: Instance I of requests ri arriving over time with υ ≥ tri − bri ≥ λ.
Output: Series of accepted requests RA

begin
RA = ∅
foreach r ∈ I do

if r is acceptable and PRA∪r − PRA ≥ p; then
RA = RA ∪ r

else if r is acceptable and PRA∪r − PRA > 0 and @rj ∈ RA such that tr − t̄rj < τ then
RA = RA ∪ r

else
Reject r

end

end

end

Note that Smart Greedy creates a set of requests that can be converted into a viable schedule. This
is the case because it explicitly mandates all accepted requests to be acceptable. Since requests are only
acceptable if they fit into a viable schedule, we conclude that the set of requests accepted by Smart
Greedy only includes requests that can be served in a schedule.

Next, we show the lower bounds of Smart Greedy. Note that this algorithm takes profit into account
when deciding whether to accept a request or not. Therefore, the amount of lower bounds that can be
proven with one proof is lower. Hence, we have more lower bounds we need to prove. The lower bounds
we prove are as follows:

0 < c < p Theorem
Constraint LB
0 < υ < τ 3 Theorem 6.4

υ = τ max { 4p
2p−c , 3} Theorem 6.5

τ < υ − λ ≤ 2τ 4 Theorem 6.6
2τ < υ − λ 2bυ−λ2τ c+ 3 Theorem 6.4

Table 6: The results of the lower bounds of Algorithm GA on 2S2L-V with 0 < c < p

c = p Theorem
LB
2bυ−λ2τ c+ 3 Theorem 6.4

Table 7: The results of the lower bounds of Algorithm GA on 2S2L-V with c = p

We prove the results shown in these tables by providing an adversary that releases an instance on
which SG does not perform better than the claimed lower bound. Because SG’s reactions are determin-
istic, we need only show one reaction of an adversary to prove the claimed lower bound.

Theorem 6.4 On the 2S2L-V problem, Algorithm GA cannot achieve a competitive ratio of lower
than 2bυ−λ2τ c+ 3.

Proof We prove this theorem by providing an adversary. This adversary first releases r1 = r2 = (0, υ, 0).
By the workings of SG, SG accepts these requests. With r1 and r2 accepted, we show that SG accepts
no requests r with tr < υ, regardless of starting location.

33



Assume the release of non-distant request rn = (ε, a, 0), with a < υ − 2τ such that rn is acceptable
to SG. If rn were not acceptable, the request would be rejected, so we need not continue that line of
reasoning. Observe that accepting rn would require an empty movement to serve r1. Thus, PRA∪rn −
PRA = p − c < p. For non-distant request rn to be accepted by SG, SG requires that, for all requests
rj in RA, trn − t̄rj ≥ τ . However, because tr1 > trn , we already find that trn − t̄r1 < τ . Therefore, any
non-distant request with starting time lower than tr1 would be rejected.

Next, assume the release of distant request rd = (ε, a, 1), with τ < a < υ−τ such that rd is acceptable
to SG. If rd were not acceptable, the request would be rejected, so we need not continue that line of
reasoning. Observe that accepting rd would require an empty movement. Thus, PRA∪rd−PRA = p−c < p.
For distant request rd to be accepted by SG, SG requires that, for all requests rj in rA, trd − t̄rj ≥ τ .
However, because tr1 > trd , we already find that trd − t̄r1 < τ . Therefore, any non-distant request with
starting time lower than r1 would be rejected.

Having proven that any request with tr < tr1 is rejected by SG, we observe that an adversary is free
to use the time between λ and tr1 = υ. The limit on the profit an optimal algorithm can make over SG
during this time is found by the size of the booking interval υ−λ, and the time it takes to serve requests
τ . The adversary can release Zig-gadgets starting at location 0 on an interval of 2τ , starting at λ. These
gadgets are rejected by SG, whereas OPT accepts all of them without conflict. This grants OPT a profit
of 4p for every 2τ in υ − λ. Following just the release of the zig-gadgets in the pattern described, OPT
would make 4bυ−λ2τ c profit.

An adversary can still implement an improvement over the 4bυ−λ2τ c profit. To this purpose, we focus
on the timeframe of [υ− 2τ, υ]. Because Zig-gadgets are started every 2τ during the [λ, υ], we know that
one such Zig-gadget must end during this timeframe. We now discuss what should be done with the
remainder of this timeframe. We propose the release of a Zig-Zag gadget directly after the end of the
Zig-gadget ending in the [υ − 2τ, υ] timeframe. By Lemma 5.2, all requests in this gadget conflict with
r1 and r2. Therefore, these requests do not abide by the acceptability constraint set by SG, and are thus
rejected. This Zig-Zag gadget is subsequently accepted by OPT. After the Zig-Zag gadget, however, both
OPT and SG’s servers are at location 1, and SG will start accepting requests again. After all the profit
OPT has made over SG, we find PRA = 2p and PR∗ = 4pbυ−λ2τ c+ 6p, hence PR∗/PRA = 2bυ−λ2τ c+ 3. �

Theorem 6.4 has proven that there is a gap between the proven problem lower bound for 2S2L-V,
and the lower bound achieved by Smart Greedy. For any setting with υ − λ > 2τ , we find that Smart
Greedy’s performance is subpar compared to the problem lower bounds. For υ < τ , we note that there
is no request that is acceptable to SG and has a profit lower than p. Therefore, for those settings, SG’s
performance is the same as GA’s. This leaves the settings 2τ ≥ υ − λ ≥ τ open for further exploration.

Theorem 6.5 For υ − λ = τ and 0 < c < p Algorithm GA cannot achieve a competitive ratio of
lower than max { 4p

2p−c , 3}.

Proof First note that the Lower Bound of this problem is decided by the value of c. The adver-
sary can decide whether it pursues the lower bound of 4p

2p−c or the lower bound of 3, depending on the

value of c. For c ≤ 2p
3 , the adversary rather lures SG to the bound of 3. It can achieve this by following

the release schedule laid out in Theorem 6.4 or, equivalently, Theorem 6.1. For the lower bound of
4p

2p−c we need to provide a different adversary.

We prove this theorem by providing an adversary. This adversary first releases r1 = r2 = (0, τ, 1).
By the workings of SG, SG accepts one of these requests and rejects the other because these requests
provide less than p profit. The adversary then releases r3 = r4 = (ε, λ+3ε, 0). By the workings of SG, SG
accepts one of these requests (without loss of generality, we assume this to be r3), needing to reject the
other because it conflicts with r1 and r3. Thus, r4 is not acceptable to SG. Finally, the adversary releases
a Zig-gadget starting at time 2ε+ λ at location 0. By Lemma 5.1 and Corollary 5.3, these requests are
in conflict with r1 and r3. Therefore, the gadget is not acceptable to SG, and SG thus rejects it. OPT
accepts all of the requests in this gadget. We find PRA = 2p−c and PR∗ = 4p, hence PR∗/PRA = 4p

2p−c . �

If this Lower Bound proves tight, Smart Greedy would prove optimal for the very specific setting of
0 < c < p and υ = τ for 2S2L-V.

Theorem 6.6 For τ < υ − λ ≤ 2τ and 0 < c < p, Algorithm SG cannot achieve a competitive ra-
tio of lower than 4.
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Proof We prove this theorem by providing an adversary. This adversary first releases r1 = r2 = (0, υ, 1).
By the workings of GA, GA accepts these requests. The adversary then releases r3 = r4 = (ε, τ + ε, 1)
and r5 = r6 = (2τ, 3τ + ε, 1). We observe that both tr3 − t̄r1 < τ and tr5 − t̄r1 < τ . We also note that
r3, r4, r5 and r6 require an empty movement to be served by SG. Therefore, their profit is p − c. This
means, by the workings of SG, that r3 through r6 are rejected by SG. OPT accepts all four of these
requests. We find PRA = p− c and PR∗ = 4p− 4c, hence PR∗/PRA = 4. �

We observe that Smart Greedy’s decisions regarding requests to be served with empty movement do
not work on 2S2L-V. This is because Smart Greedy was not designed with line-skipping in mind. Re-
quests that line-skip a pair of non-distant requests always require an empty movement to be served.
Since SG rejects any requests with profit lower than p, unless it is the final known request, it rejects
nearly all line-skipping requests. This often means that SG performs worse than even GA.

We have seen in this chapter that thoughtlessly accepting requests without scrutinizing costs does
not create an algorithm that can achieve the problem lower bounds. Similarly, rejecting requests purely
based on their profit does not achieve the 2S2L-V problem Lower Bounds, either. We need a different
algorithm that does not falter when empty movements become prominently involved.
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7 The Exclusionary family

In this chapter, we discuss the competitive ratio upper bounds of the Exclusionary Family of algorithms
(to be defined). We first observe properties of the family, and then investigate the performance of
various algorithms inside this family on the 2S2L-V problem. We vary the following settings in the
2S2L-V problem: maximum notification interval υ, minimum notification interval λ and cost of empty
movement c. As we have done throughout, we focus on a special instance that contains only of paired
requests.

7.1 The Exclusionary Family

In this section, we define a family of Algorithms called the Exclusionary Family FE . All of the algorithms
we discuss in this chapter are a part of this family. We prove that these algorithms perform well on all
possible paired 2S2L-V instances. We first prove a set of properties over the entire family that will be
reused throughout this chapter.

The idea behind these algorithms is as follows: the number of servers available to any algorithm for
2S2L-V is fixed. In order to serve any request, one server has to spend time performing the movements
required to get to the starting location, then serve the request. This means that having a server serve
a request blocks that server from serving different request with a similar starting time. If both servers
are busy serving requests at around the same time, it is be impossible to serve any requests starting at
close to that time.

To formalize this idea, we introduce the notion of location-time pairs. This notation is meant to
succinctly describe a location at a certain time. We denote a location-time pair as follows: (l, t). In
this notation, l is the location we indicate, and t is the time. To describe a location over a longer
stretch of time, we introduce location-time intervals: (l, (x, y)). In essence, this is the contiguous set of
location-time pairs with the same location, starting from the pair at (l, x), ending at the pair at (l, y),
including all pairs in between. We measure the size of a location-time interval |(l, (x, y))| by the size of
the time-interval. In other words, |(l, (x, y))| = y − x. All this notation will simplify other constructs
that we need to define the Exclusionary Family.

Using these location-time intervals, we define Exclusion Zones, and upon those Exclusion Zones,
we define the Exclusionary Family. Exclusion Zones are a continually updated set of location-time
intervals, constructed in accordance with some deterministic Method M. These location-time intervals
that comprise the Exclusion Zones are used to specify when an algorithm in the Exclusionary Family
accepts or rejects a request. If a request r = (br, tr, lr) is released in such a way that (lr, tr) is in the
set of Exclusion Zones as constructed by Method M at time br, this request is rejected by the algorithm
that is part of the Exclusionary Family and follows this set of Exclusion Zones. If request r is not in the
Exclusion Zones at br, the request is accepted. The Method M changes per algorithm in the Exclusionary
Family. Two different algorithms in the Exclusionary Family may very well have two very different sets
of Exclusion Zones when ran on the same instance. The set of Exclusion Zones changes over time.

We differentiate three different notations for Exclusion Zones. The first notation EZM (b), denotes
the set of Exclusion Zones as constructed by Method M at time b on the timeline, with time b not
included. This means any request with release time b is not considered when constructing the set of
Exclusion Zones at time b. Note that time b is compared to booking times (which is a continuously
increasing value) rather than starting times (which vary from request to request). Meanwhile, EZM (r−)
denotes the set of Exclusion Zones constructed by Method M immediately before processing request r.
Very specifically, EZM (r−) is constructed at br right before deciding whether request r is accepted or
rejected. Finally, EZM (r+) denotes the set of Exclusion Zones constructed by Method M immediately
after processing request r.

Definition 7.1 Method (M(R, b))
A deterministic algorithm M that takes a set of requests R with br ≤ b ∀r = (br, tr, lr) ∈ R as input,
and processes them to create a set of Exclusion Zones.

Definition 7.2.1 Exclusion Zones (EZM (b))
A set of location-time intervals EZM (b) = {(l1, (x1, y1)), (l2, (x2, y2)), ..., (ln, (xn, yn))} constructed by a
Method M at time b on the timeline.
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Definition 7.2.2 Exclusion Zones (EZM (r−))
The set of location-time intervals EZM (r−) = {(l1, (x1, y1)), (l2, (x2, y2)), ..., (ln, (xn, yn))} constructed
by a method M immediately before request r has been processed by an algorithm in the Exclusionary
Family.

Definition 7.2.3 Exclusion Zones (EZM (r+))
The set of location-time intervals EZM (r+) = {(l1, (x1, y1)), (l2, (x2, y2)), ..., (ln, (xn, yn))} constructed
by a method M immediately after request r has been processed by an algorithm in the Exclusionary
Family.

Having defined Methods and Exclusion Zones, we now define the Exclusionary Framework. Adher-
ence to this framework is the sole requirement to test whether an algorithm A is part of the Exclusionary
Family or not.

Definition 7.3 Exclusionary Framework (EF (I,M(RA, b)))
Given an instance I of requests r arriving over time by increasing br, with υ ≥ tr − br ≥ λ ∀r ∈ I
and a method M(RA, b) to construct EZ(b) for any time b, over an accepted set of requests RA, the
Exclusionary Framework mandates that that the following all hold:

1. At t = 0, RA = ∅

2. For each r = (br, tr, lr) ∈ I:

3. EZM (r−) = M(RA, br)

4. If (lr, tr) /∈ EZM (r−): RA = RA ∪ r

5. Else: reject r

We now define our Exclusionary Family based on this Exclusionary Framework.

Definition 7.4 Exclusionary Family (FE)
Let I be an instance of requests r = (br, tr, lr) arriving over time.
Let M(R, b) be a method to construct EZM (b).
Let A(I) be an algorithm producing a set of requests RA ∈ I that can be feasibly scheduled.
A ∈ FE if and only if there exists a Method M(R, b) such that EF (I,M(R, b)) = A(I) ∀I.

Note that there is a one-to-one relation between an algorithm in the Exclusionary Family, and a Method.
Each algorithm in the Exclusionary Family has a Method that describes the Exclusion Zones the algo-
rithm uses. Similarly, every Method has a corresponding algorithm that is a part of the Exclusionary
Family.

Now that the Exclusionary Family has been defined, we expand on some of the properties of algo-
rithms in this family. These properties are helpful in proving the competitive ratio of the algorithms in
the Exclusionary Family. We derive these properties using details from Definitions 7.1-7.4.

We observe the following properties based on the definition of FE .

Observation 7.5 Any Algorithm A in FE accepts requests greedily with regards to its Exclusion Zones.

Proof By definition 7.4, any A ∈ FE has a formulation that adheres to the Exclusionary Framework laid
out in Definition 7.3. Definition 7.3 defines only one check that decides whether a request is accepted or
rejected. This check regards only whether a request is inside the Exclusion Zones or not. Therefore, we
can safely say that any Algorithm A in FE accepts requests greedily with regards to its Exclusion Zones.
�

Observation 7.6 For any two conflicting requests r, j accepted by any algorithm A ∈ EF that ac-
cepts requests that can feasibly be scheduled, any set of exclusion zones EZM (b) with b > max {br, bj}
includes the following location-time intervals:
If lr = lj , [max {tr, tj} − 2τ,min {tr, tj}+ 2τ ] at lr and [max {tr, tj} − τ,min {tr, tj}+ τ ] at l̄r, or
If lr 6= lj , [tj − τ, tj + τ ] at lr and [tr − τ, tr + τ ] at lj .

Proof By Observation 7.5, we know any algorithm A accepts requests greedily with regards to its
Exclusion Zones. Thus, any requests outside the Exclusion Zones will be accepted by A. If requests r
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and j are in conflict, that means both servers must serve one of these requests. Therefore, this means
both servers are unavailable for some time. During that time, neither server can serve a different request.
Requests released during that time should, thus, be rejected. Requests are only rejected if they are inside
the set of Exclusion Zones present during their booking time. Therefore, any request released at a time
in conflict with r and j should be inside an Exclusion Zone.

To support our further specification, we investigate for which location-time intervals (l, (x, y)) re-
quests k = (bk, tk, lk) with lk = l and x < tk < y are in conflict with both r and j. For that, we need the
definition of conflicting requests. Formally, requests i and j with t ≤ tj are in conflict if tj < t̄+ τ(l̄, lj).
Recall that t̄ = t + τ . This means, request k is in conflict with r if tr ≤ tk < tr + τ + τ(l̄r, lk) or
tk ≤ tr < tk + τ + τ(l̄k, lr). In other words: if max {tr, tk} −min {tr, tk} < τ + τ(l̄k, lr), r and k are in
conflict. Similarly, j conflicts with k if max {tj , tk} −min {tj , tk} < τ + τ(l̄k, lj), j and k are in conflict.
And, since r and j are in conflict, we know max {tr, tj} −min {tr, tj} < τ + τ(l̄r, lj).

Case distinction
If lr = lj = lk, we find max {tr, tj}−min {tr, tj} < 2τ , max {tr, tk}−min {tr, tk} < 2τ and max {tj , tk}−
min {tj , tk} < 2τ . In other words, for lr = lj = lk we find a conflict for any tk such that |tr − tk| < 2τ
and |tj − tk| < 2τ . This holds for tk > max {tr, tj} − 2τ if tk < min {tr, tj}, for tk < min {tr, tj} + 2τ
if tk > max {tr, tj} and both, for any min {tr, tj} ≤ tk ≤ max {tr, tj}. Concluding, any k = (bk, tk, lk)
conflicts with any r, j in conflict for lr = lj = lk if tk ∈ [max {tr, tj} − 2τ,min {tr, tj}+ 2τ ]

If lr = lj = l̄k, we find max {tr, tj} − min {tr, tj} < 2τ , max {tr, tk} − min {tr, tk} < τ and
max {tj , tk} − min {tj , tk} < τ . In other words, for lr = lj = l̄k we find a conflict for any tk such
that |tr − tk| < τ and |tj − tk| < τ . This holds for tk > max {tr, tj} − τ if tk < min {tr, tj}, for
tk < min {tr, tj}+ τ if tk > max {tr, tj} and both, for any min {tr, tj} ≤ tk ≤ max {tr, tj}. Concluding,
any k = (bk, tk, lk) conflicts with any r, j in conflict for lr = lj = l̄k if tk ∈ [max {tr, tj}−τ,min {tr, tj}+τ ]

If lr = l̄j = lk, we find max {tr, tj} − min {tr, tj} < τ , max {tr, tk} − min {tr, tk} < 2τ and
max {tj , tk} − min {tj , tk} < τ . In other words, for lr = l̄j = lk we find a conflict for any tk such
that |tr− tk| < 2τ and |tj− tk| < τ . Since |tr− tj | < τ , we note that any k in conflict with j also conflicts
with r. Therefore, any k = (bk, tk, lk) conflicts with any r, j in conflict for lr = l̄j = lk if tk ∈ [tj−τ, tj+τ ]

If lr = l̄j = l̄k, we find max {tr, tj} − min {tr, tj} < τ , max {tr, tk} − min {tr, tk} < τ and
max {tj , tk} − min {tj , tk} < 2τ . In other words, for lr = l̄j = l̄k we find a conflict for any tk such
that |tr− tk| < τ and |tj− tk| < 2τ . Since |tr− tj | < τ , we note that any k in conflict with r also conflicts
with j. Therefore, any k = (bk, tk, lk) conflicts with any r, j in conflict for lr = l̄j = l̄k if tk ∈ [tr−τ, tr+τ ]
�

Observation 7.7 Any request r in instance I, not accepted by Algorithm A ∈ FE does not change
EZM (b) for any time b.

Proof We have seen in Definition 7.3 that a Method M(RA, b) elaborating Exclusion Zones receives
only the requests accepted by A and time b when setting up the Exclusion Zones. Therefore, any request
not in RA does not have any influence on the creation of Exclusion Zones by the Method. �

Corollary 7.7.1 For any request r in instance I, not accepted by Algorithm A ∈ FE we find EZM (r−) =
EZM (r+).

Using these properties, we investigate a Lemma that shows the power of the Exclusion Zone approach.
Specifically, this lemma limits the amount of time an adversary has that it can use to make profit over
A ∈ FE .

Lemma 7.8 For any instance over paired requests I, for any Method M(R, b) dictating the Exclu-
sion Zones for Algorithm A ∈ EF , any request r = (br, tr, lr) ∈ I, has (lr, tr) ∈ EZM (r′+), in which r′

is the paired request of r.

Proof We prove this Lemma by contradiction. Assume, for that contradiction, that there exists a
request r = (br, tr, lr) with (lr, tr) /∈ EZM (r′+). Recall the assumption that request r is handled prior
to request r′. By Definition 7.2.3, request r and r′ have been processed by A. Here, we distinguish two
cases: either A accepts both r and r′, or A rejects r′.

For the first case, where both r and r′ are accepted by A, we note that r and r′ are in conflict with
each other. By Observation 7.6, this implies an Exclusion Zone at (lr, [tr − 2τ, tr + 2τ ]). This interval
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clearly includes (lr, tr). This contradicts our assumption that (tr, lr) /∈ EZM (r′+).
In the second case, A does not accept r′. Recall Observation 7.5 stating that any algorithm in FE ac-

cepts requests greedily with regards to its Exclusion Zones. If r′ is rejected, we find (lr′ , tr′) ∈ EZM (r′−).
By Corollary 7.7.1, we then find EZM (r′+) = EZM (r′−). Since r′ = r, we find (lr, tr) ∈ EZM (r′+),
once again contradicting our assumption that (tr, lr) /∈ EZM (r′+). This proves a contradiction in our
assumption, showing that any request r = (br, tr, lr) ∈ I, has (lr, tr) ∈ EZM (r′+), in which r′ is the
paired request of r. �

Corollary 7.8.1 OPT only accepts requests with (lr, tr) ∈ EZM (r′+).

Next, we further delve into the exact reasons that could cause location-time intervals (l, (x, y)) to be
part of Exclusion Zones. We subdivide these reasons into three categories by these three cases: Either a
Method excludes a certain location-time interval from the outset, or a Method excludes certain location-
time intervals because it is impossible to serve such a request given the current or predicted locations of
the servers, or a Method excludes location-time intervals because they would cause conflicts with already
accepted requests.

The first category of Exclusion Zone are the location-time intervals rejected from the outset. The
Exclusionary Family includes Algorithms that reject certain location-time pairs per their definition. For
instance, consider an algorithm rejecting any request r with lr = 0 and 50 < tr < 100. This condition
can easily be included in a Method. Despite this being unwanted behaviour, we quickly discuss this
case for completeness. Therefore, we define a subfamily of the Exclusionary Family. We refer to this
subfamily as the lunchbreak-algorithm subfamily. Exclusion Zones caused by lunchbreak algorithms are
called lunchbreak Exclusion Zones. We define this subfamily, then show that any algorithm in the
lunchbreak-algorithm subfamily is not competitive.

Definition 7.9 Any Algorithm A ∈ FE is part of the lunchbreak-algorithm FLA subfamily if there exists
a location-time pair (l, t) with t > τ or l = 0 such that (l, t) ∈ EZ(b)∀b.

Lemma 7.10 Any Algorithm A∈ FLA is not competitive.

Proof To prove this Lemma, we construct an adversarial instance I to show non-competitiveness of any
Algorithm A ∈ FLA. By Definition 7.9, there exists a location-time pair (l, t) such that (l, t) ∈ EZ(b)∀b.
Consider instance I containing two requests r = r′ = (br, t, l). Note that these requests are rejected
by Algorithm A, since (l, t) ∈ EZ(r−). OPT can accept these requests to make x profit over A. Thus
P (OPT (I))
ALG(I) = x

0 , which shows the non-competitive nature of FLA. �

Since lunchbreak Exclusion Zones only occur in the non-competitive lunchbreak-algorithm subfamily,
we need not consider them for the rest of this analysis.

The second category of Exclusion Zone is the Exclusion Zones covering location-time intervals in
which serving requests is impossible by the current or predicted location of the algorithm’s servers.
Specifically, if both of an Algorithm’s servers are at the same location l at booking time b, it is impossible
for these servers to reach 1 − l within τ time. Hence it is impossible to serve any requests r = (b, t <
b+ τ, 1− l) in this case and request r must be in an Exclusion Zone. If r were not in an Exclusion Zone,
by Definition 7.3 it would be accepted by an algorithm in the Exclusionary Family. This would lead to
accepting a request that cannot be served, which would lead to an infeasible schedule. Alternatively,
some Algorithms A ∈ FE reject requests that provide 0 profit. In such a case, if all of A’s servers are
at l at booking time b, A would not accept any request r = (b, t, 1 − l) if c = p. Different yet, some
Algorithms A ∈ FE reject requests that are booked very far in advance, if another request has already
been booked as far in advance. We call these Exclusion Zones location-based Exclusion Zones.
In short, location-based Exclusion Zones are caused because, by the location of A’s servers at time b,
A’s servers would need to perform an inconvenient or even impossible amount of movements to serve a
request inside those Exclusion Zones.

The third and final category of Exclusion Zone are the location-time intervals during which requests
are rejected because these requests start too close in location-time relative to other requests served by
the algorithm. We call these Exclusion Zones request-based Exclusion Zones.

We now more succinctly define request-based Exclusion Zones.

Definition 7.11 We define ez(r), the Exclusion Zone caused by a request r, as EZ(r+) \ EZ(r−).
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Using the definition of the location- and request-based Exclusion Zones, we now create a framework
for the upper bound analyses we run over the Exclusionary family. Recall Corollary 7.8.1, that states
that all requests that OPT accepts must be inside an Exclusion Zone. This means the amount of requests
OPT can serve in an Exclusion Zone is limited by its size and location. Indeed, it takes τ time to serve
one non-distant request, and 2τ for one distant request. If we prove a cost for creating location- or
request-based Exclusion Zones of predetermined size, we can show the performance of an algorithm on
the worst possible Exclusion Zone.

We note that location-based Exclusion Zones only exist when constructed at specific times EZM (b).
In other words, these exclusion zones require a costly set-up to create an opportunity so that OPT can
serve these requests. For upper bound proofs on A, we note the presence of location-based Exclusion
Zones whenever necessary, and then reason on their impact.

Next, we reason on request-based Exclusion Zones. We can calculate the competitive ratio of algo-
rithms in FE by calculating the profit of ROPT over ez(r), and dividing that by the profit of r. Since
the amount of profit OPT can make over ALG depends on the size of ez(r), there is little an adversary
can do to increase the amount of requests OPT can serve inside ez(r). As such, the best way to increase
the ratio of OPT over ALG in I is to try and maximize the average size |ez(r)| of each ez(r)∀r ∈ RA.
Formalizing this, we find

Observation 7.12 The ratio of P (ROPT (ez(r)))
P (r) is maximized in ez(r) when |ez(r)| is maximized. Fur-

thermore, the ratio of P (ROPT )
P (RA)

is maximized when
|∪r∈RAez(r)|
|RA| is maximized.

Finally we prove a property that, to maximize the average of the sizes of the request-based Exclu-
sion Zones, A either needs to accept pairs of requests, or requests for which the exclusion zones do not
overlap. This Lemma limits the amount of instances that could show the competitive ratio for each of
the algorithms in FE .

Lemma 7.13 To maximize
|∪r∈RAez(r)|
|RA| for every two requests r, j ∈ RA, either r = j, or ez(r)∩ez(j) = ∅.

Proof We prove this Lemma by contradiction. Assume that there exists some pair of requests r and j
for which |ez(r) ∪ ez(j)| is maximized, whilst r 6= j and ez(r) ∩ ez(j) 6= ∅. We distinguish two cases.
Either ez(r) = ez(j) or ez(r) 6= ez(j).

If ez(r) 6= ez(j), then |ez(r) ∪ ez(j)| = |ez(r)| + |ez(j)| − |ez(r) ∩ ez(j)| < |ez(r)| + |ez(j)|. That
contradicts the size of location-time interval |ez(r) ∪ ez(j)| being maximized with ez(r) ∩ ez(j) 6= ∅.

If ez(r) = ez(j), then |ez(r) ∪ ez(j)| = |ez(r) \ ez(j)| + |ez(j) \ ez(r)| + |ez(r) ∩ ez(j)| = 0 + 0 +
|ez(r) ∩ ez(j)|. Therefore, to maximize |ez(r) ∪ ez(j)| when ez(r) = ez(j), we maximize |ez(r) ∩ ez(j)|.
That happens when r = j, contradicting our premise. �

All this preparation work has severely limited the amount of instances we need to construct to attempt
to prove the competitiveness of the Algorithms in FE .

7.2 Restriction Zone Algorithm (RZA)

In this section, we introduce the Restriction Zone Algorithm (RZA). This Algorithm is very rigid in its
adherence to the Exclusionary Framework, but that rigidity delivers a steady competitive ratio that is
not influenced by the size of the booking interval. This makes Restriction Zones an excellent pick for

the setting with υ − λ > 9τ and 5−
√
13

2 p > c > p
3 . These settings give ample time to benefit from the

steadfast nature of RZA.
RZA is created as a cautionary response to the eagerness of many algorithms to accept a pair of

similar requests. We do this because accepting a pair of requests with similar starting times, booking
times and location comes with a drawback. This drawback is that accepting such similar requests often
gives the adversary a chance to release a series of requests that require empty movements. If too many
requests are released in such a series, the competitive ratio of an algorithm accepting that series will
become very dependant on the cost of empty movement c. Meanwhile, rejecting such a series will cause
an algorithm to miss out on profit. These are the pitfalls GA and Smart Greedy fall into, respectively.
Smart Greedy, particularly, performs poorly, because it refuses to accept requests requiring an empty
movement.
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RZA takes a very different approach. Instead of focusing on profit like Smart Greedy, or on ac-
ceptability like GA, RZA accepts no request that conflicts with another request, unless these requests
start at different locations. It does this by adhering to a strict method, based on Observation 7.6. This
method creates an Exclusion Zone spanning 2τ around the start time of any request r that is accepted
at location lr. If a request j starting from l̄r conflicts with r, this request is still acceptable, and the
method shortens the zone around r to the 2τ before the end time of j. It also creates a new Exclusion
Zone at lj , spanning the 2τ before the end time of r. Formally, the method is defined as follows:

Algorithm 3 Method RZ(RA, b)

Input: Set of requests RA with b > br∀r ∈ RA, sorted by increasing b.
Output: Set of location-time intervals EZ(b)
begin

EZ(b) = ∅
request-based Exclusion Zones
foreach r ∈ RA do

if there is a request j ∈ RA with bj < br such that l̄j = lr and |tr − trj | < τ : then
EZ(b) = EZ(b) \ ((lj , (tj − 2τ, tr − τ)) ∪ (lj , (tr + τ, tj + 2τ))) ∪ (lr, (tj − τ, tj + τ))

else
EZ(b) = EZ(b) ∪ (lr, (tr − 2τ, tr + 2τ))

end

end
location-based Exclusion Zones
if It is not feasible, given RA, that any server is at location l at time b then

if It is feasible, given RA, that any server is at location l at time c with b < c < b+ τ then
EZ(b) = EZ(b) ∪ (l, (b, c))

else
EZ(b) = EZ(b) ∪ (l, (b, b+ τ))

end

end

This method differentiates between Exclusion Zones caused by a single request, and Exclusion Zones
caused by two requests. Note that Exclusion Zones caused by two requests cause two noticeably smaller
zones than a Exclusion Zones caused by a single request. We call two requests causing such smaller
Exclusion Zones crossing requests. Note that a clever adversary can take advantage of the enlarged
Exclusion Zone around a single request before introducing its crossing request. We now formally define
the Restriction Zones Algorithm:

Algorithm 4 Algorithm RZA(I)

Input: Instance I of requests r arriving by increasing br.
Output: Set of requests accepted by RZA RA

begin
RA = ∅
foreach r = (br, tr, lr) ∈ I do
EZ(br) = RZ(RA, br) if (lr, tr) /∈ EZ(br) then

RA = RA ∪ r
else

reject r
end

end

end

Observe that Algorithm RZA perfectly follows EF (I, RZ(R, b). Therefore, we conclude that Al-
gorithm RZA is a part of the Exclusionary Family. That means Observations 7.5 − 7.7 and Lemmas
7.8− 7.10 hold. We now analyze the upper bound of this Algorithm on the instance with λ > τ .
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We prove this upper bound by systematically enumerating all possible Exclusion Zone sets. For
every Exclusion Zone set, we observe the profit RZA gains when creating that Exclusion Zone set, the
size of the created Exclusion Zone set, and the repeatability of that Exclusion Zone set. We use this data
to find the Exclusion Zone set that causes the greatest ratio between size and profit for RZA, which,
according to Observation 7.12, leads us to the competitive ratio. In order to find this Exclusion Zone
set with greatest ratio between size and profit, we enumerate all cases that warrant a distinct reaction
from RZA. We perform this enumeration in three phases. In the first phase, we consider different series
of requests from the starting position in which all of RZA’s servers and OPT’s servers are at location 0.
In the second phase, we consider possible follow-ups to the series released in the starting position, and
how well RZA performs compared to OPT on the zone sets created by these follow-up requests. In the
third and final phase, we instead consider the impact of requests line skipping the starting situation. We
enumerate in phases, because that allows us to eliminate some cases with a low performance ratio early
on. This cuts down on the amount of cases we need to check.

Observation 7.14.1.1 No request released in the location-based Exclusion Zone is acceptable from
the starting position, if no other request is released first.

Proof By Algorithm 3, there is a location-based Exclusion Zones at the starting position. This location-
based Exclusion Zone is one of size τ at location 1. Because a movement from location 0 to location 1
takes τ time, and because all servers start at location 0, it is impossible for OPT to accept requests to
be served in that Exclusion Zone, without other requests being released first. Hence, the location-based
Exclusion Zone is inaccessible from the starting position without a different request being released first. �

Lemma 7.14.1 Case distinction starting from starting position: all servers at one location.

Proof We enumerate all possible reactions to requests released by an adversary in the starting sce-
nario. This enumerates four cases: RZA accepting a single non-distant requests starting at 0, RZA
accepting a single distant request at location 1, RZA accepting a pair of crossing requests with the first
request arriving at location 0, and RZA accepting a pair of crossing requests, with the first request
arriving at location 1. Other cases that would cause an interaction between Exclusion Zones caused
by all released and accepted requests after the starting scenario would violate Lemma 7.13. Violating
Lemma 7.13 shows that such cases do not maximize the performance ratio. Therefore, we can discard
such cases.

Case 1 For the first possible Exclusion Zone set from the starting scenario, we consider a pair of
requests r1 = r2 = (b, t, 0). Note that we do not require a specific b or t for this case, representing a
general pair of non-distant requests. Introducing this pair of requests, we find that RZA accepts one of
them, gaining a profit of p. This adds location-time interval (0, (t − 2τ, t + 2τ)) to EZ(r2+). The size
of that combined location-time interval is 4τ . By Corollary 7.8.1, this is all the time OPT has to accept
requests. Since requests need to alternate to not require empty movements to be served, OPT can serve
at most four requests in this Exclusion Zone, two of which requiring an empty movement. Therefore,
serving these four requests, with two empty movements, OPT gains a profit of 4p − 2c. The requests
causing this Exclusion Zone set moves all of OPT’s servers, and one of RZA’s servers from location 0
to location 1, with the other RZA server staying at location 0 Therefore, this Exclusion Zone set is not
infinitely repeatable. We note that we need to analyze this new formation in the second phase. For this
Exclusion Zone set, we find the performance of OPT compared to RZA to be 4p−2c

p .
Case 2 For the second possible Exclusion Zone set from the starting scenario, we consider a pair of
requests r1 = r2 = (b, t, 1). Note that we do not require a specific b or t for this case, representing a
general pair of distant requests. Introducing this pair of requests, we find that RZA accepts one of them,
gaining a profit of p − c. This adds location-time interval (1, (t − 2τ, t + 2τ)) to EZ(r2+). The size of
that location-time interval is 4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can
only accept requests starting between t − 2τ and t + 2τ at location 1. Since requests need to alternate
to not require empty movements to be served, OPT can serve at most four requests in this Exclusion
Zone. Since the first requests already require an empty movement, all four accepted requests require
empty movements, noting a profit of 4p − 4c for OPT. Since all servers end where they started this
Exclusion Zone set, this Exclusion Zone set is infinitely repeatable. For this Exclusion Zone set, we find
the performance of OPT compared to RZA to be 4p−4c

p−c = 4.
Case 3 For the third possible Exclusion Zone set from the starting scenario, we consider a pair of re-

42



quests r1 = r2 = (b, t, 0), followed by the release of another pair of crossing requests r3 = r4 = (d, u, 1),
with d ≥ b and t−τ < u < t+τ . Note that we do not require a specific b or t for this case, and that d and
u are only relative to b and t, representing a general pair of non-distant requests followed by a general
pair of crossing distant requests. We start this analysis by looking at the impact of the adversary’s first
release: r1 and r2. Introducing this first pair of requests, we find that RZA accepts one of them, gaining
a profit of p. The first accepted request adds location-time interval (0, (t− 2τ, t+ 2τ)) to EZ(r2+). The
size of that location-time interval is 4τ . Since there is no Exclusion Zone at 1, by Corollary 7.8.1, OPT
only accepts requests starting between t− 2τ and t+ 2τ at location 0. Since requests need to alternate
to not require empty movements to be served, OPT can serve at most 4 requests in this Exclusion Zone.
Since the first two requests are at location 0, and OPT’s servers are at location 0, only the latter two
requests require an empty movement. After this, we analyze the impact the adversary’s subsequent
release of r3, r4 has. Introducing this pair of requests, we find that RZA accepts one of them, gaining
a profit of p − c. This shortens the Exclusion Zone at (0, (t − 2τ, t + 2τ)), and adds an extra zone to
the set at (1, (t − τ, t + τ)). This zone is of size 2τ . Thus, since OPT only serves requests starting in
Exclusion Zones by Corollary 7.8.1, OPT can only serve two requests from location 0. These requests
do not require an empty movement, and, in fact, serve as two of the required empty movements. This
means OPT serves six requests for a profit of 6p. The requests causing this Exclusion Zone set causes
RZA’s servers to be spread between location 0 and location 1. Therefore, this Exclusion Zone set is not
infinitely repeatable. For this Exclusion Zone set, we find the performance of OPT compared to RZA to
be 6p

2p−c .
Case 4 For the fourth possible Exclusion Zone set from the starting scenario, we consider a pair of
requests r1 = r2 = (b, t, 1), followed by the release of another pair of crossing requests r3 = r4 = (d, u, 0),
with d ≥ b and t− τ < u < t+ τ . Note that we do not require a specific b or t for this case, and that d
and u are only relative to b and t, representing a general pair of distant requests followed by a general
pair of crossing non-distant requests. We start this analysis by looking at the impact of the adversary’s
first release: r1 and r2. Introducing this first pair of requests, we find that RZA accepts one of them,
gaining a profit of p − c. The first accepted request adds location-time interval (1, (t − 2τ, t + 2τ)) to
EZ(r2+). The size of that location-time interval is 4τ . Since there is no Exclusion Zone at 0, by Corol-
lary 7.8.1, OPT only accepts requests starting between t − 2τ and t + 2τ at location 1. Since requests
need to alternate to not require empty movements to be served, OPT can serve at most 4 requests in this
Exclusion Zone. Since the first two requests are at location 1, while OPT’s servers are at location 0, all
four of those require an empty movement. After this, we analyze the impact the adversary’s subsequent
release of r3, r4 has. Introducing this pair of requests, we find that RZA accepts one of them, gaining a
profit of p. This shortens the Exclusion Zone at (1, (t− 2τ, t+ 2τ)), and adds an extra zone to the set at
(0, (t−τ, t+τ)). This zone is of size 2τ . Thus, since OPT only serves requests starting in Exclusion Zones
by Corollary 7.8.1, OPT can only serve two requests from location 0. These requests do not require an
empty movement, and, in fact, serve as two of the required empty movements. This means OPT serves
six requests for a profit of 6p − 2c. The requests causing this Exclusion Zone set causes RZA’s servers
to be spread between location 0 and location 1. Therefore, this Exclusion Zone set is not infinitely re-
peatable. For this Exclusion Zone set, we find the performance of OPT compared to RZA to be 6p−2c

2p−c . �

This was a distinction of all possible releases by an adversary from the starting scenario. Note that, in
order to continue releasing different requests, any adversary first has to release one of these four cases.
With that, we end the case distinction on this phase. From the case distinction on phase one, we make
the following observations.

Corollary 7.14.1.2 The only formation of servers that the starting scenarios can result in, that is
not symmetric to the starting scenario, is a scenario with one of RZA’s servers at location 0 and location
1 each, and OPT’s servers together at one location.

Having explored all four possible Exclusion Zone sets from the starting positions of the servers, we
move on to the second phase. In this second phase, we consider starting from the different configurations
of servers we encountered. By Corollary 7.14.1.2, we have only seen one different configuration of servers
after the starting configuration: a configuration where one of RZA’s servers is at location 0, with the
other server at location 1, and OPT’s servers together at one location. Without loss of generality, we
assume location 1 to be the location of OPT’s servers. We refer to this new scenario as the follow-up
scenario.
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Observation 7.14.2.1 There is no location-based Exclusion Zone in the follow-up scenario.

Proof Since RZA has a server at both location 0 and 1, any request released at 0 or 1 can be ac-
ceptable. Therefore, there is no need for a location-based Exclusion Zone. �

Lemma 7.14.2 Case distinction starting from follow-up scenario: one RZA server at 0, one RZA server
at 1, and OPT servers united at one location.

Proof We enumerate all possible reactions to requests released by an adversary in the follow-up scenario.
This requires four cases: either RZA accepts one request from location 0, or RZA accepts one request
from location 1, or RZA accepts one request from location 0, then one from location 1, or RZA accepts
one request from location 1, then one from location 0. Other cases besides the ones enumerated require
a substantial gap between accepted requests, from where we would be able to analyze before and after
the gap separately. If this gap were smaller, the Exclusion Zones on both sides of the gap would overlap,
violating Lemma 7.13. Thus, such cases need not be handled in this Lemma.

Case 1 For the first possible follow-up Exclusion Zone set, we consider a pair of requests r5 = r6 =
(e, w, 0), with e > b, and w > t. Note that e and w are only specified with a relation to b and t. This
makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Introducing this pair
of requests, we find that RZA accepts one of them, gaining a profit of p. Accepting this request adds
location-time interval (0, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is 4τ .
Since there is no Exclusion Zone at 1, by Corollary 7.8.1, OPT can only accept requests starting between
t − 2τ and t + 2τ at location 0. Since the first two requests are at location 0, while OPT’s servers are
at location 1, all four of those require an empty movement. This means OPT serves four requests for a
profit of 4p− 4c. The requests causing this Exclusion Zone set unites RZA’s servers at location 1, with
OPT’s servers also at location 1. Therefore, this Exclusion Zone set is infinitely repeatable in tandem
with Lemma 7.14.1’s Cases 1, 3 and 4. However, even when combining the ratio of this case with the
ratio of Lemma 7.14.1’s Case 3, we find the performance of OPT compared to RZA to be lower than
6p

2p−c .
Case 2 For the second possible follow-up Exclusion Zone set, we consider a pair of requests r5 = r6 =
(e, w, 1), with e > b, and w > t. Note that e and w are only specified with a relation to b and t. This
makes r5, r6 a pair of general requests at location 1 released and served after r1, r2. Introducing this pair
of requests, we find that RZA accepts one of them, gaining a profit of p. Accepting this request adds
location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is 4τ .
Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only accept requests starting between
t− 2τ and t+ 2τ at location 1. Since the first two requests are at location 1, and OPT’s servers are at
location 1, only two of those require an empty movement. This means OPT serves four requests for a
profit of 4p− 2c. The requests causing this Exclusion Zone set unites RZA’s servers at location 0, with
OPT’s servers also at location 0. Therefore, this Exclusion Zone set is infinitely repeatable in tandem
with Lemma 7.14.1’s Cases 1, 3 and 4. However, for this combined Exclusion Zone set, we still find the
performance of OPT compared to RZA to be lower than 6p

2p−c .
Case 3 For the third possible follow-up Exclusion Zone set is created by releasing a pair of requests
r5 = r6 = (e, w, 0), with e > b, and w > t, then following up with a pair of requests r7 = r8 = (f, x, 1)
with b < e ≤ f and t < x − τ < w < x + τ . Note that e and w are only specified with a relation to b
and t. This makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Also,
note that f and x are only specified with a relation to e, w, b and t. This makes r7, r8 a pair of general
requests crossing r5, r6. We first discuss the impact of the first pair of requests. Introducing this pair
of requests, we find that RZA accepts one of them, gaining a profit of p. Accepting this request adds
location-time interval (0, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is 4τ .
Since there is no Exclusion Zone at 1, by Corollary 7.8.1, OPT can only accept requests starting between
t− 2τ and t+ 2τ at location 0. Since the first two requests are at location 0, while OPT’s servers are at
location 1, all four of those require an empty movement.

After this, we consider the pair of requests r7 = r8 = (f, x, 1). Introducing this pair of requests,
we find that RZA accepts one of them, gaining a profit of p. This shortens the Exclusion Zone at
(0, (w − 2τ, w + 2τ)), and adds an extra zone to the set at (1, (w − τ, w + τ)). This zone is of size
2τ . Thus, OPT can only serve two requests from location 1. These requests do not require an empty
movement, and, in fact, serve as two of the required empty movements. This means OPT serves six
requests for a profit of 6p − 2c. After the requests causing this Exclusion Zone set are served, RZA’s
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servers are still at the two separate locations: one at location 0 and the other at location 1. OPT’s servers
stay at the same location. Therefore, this Exclusion Zone set is infinitely repeatable. Repeating this
follow-up Exclusion Zone set infinitely many times we find the performance of OPT compared to RZA
to be 6p−2c

2p . This is markedly lower than 6p
2p−c . Furthermore, even when combining this Exclusion Zone

set with Lemma 7.14.1’s Case 3 from the starting scenario, we find the performance of OPT compared
to RZA to be lower than 6p

2p−c .
Case 4 For the fourth possible follow-up Exclusion Zone set we consider a pair of requests r5 = r6 =
(e, w, 1), with e > b, and w > t, then following up with a pair of requests r7 = r8 = (f, x, 0) with
b < e ≤ f and t < x − τ < w < x + τ . Note that e and w are only specified with a relation to b
and t. This makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Also,
note that f and x are only specified with a relation to e, w, b and t. This makes r7, r8 a pair of general
requests crossing r5, r6. We first discuss the impact of the first pair of requests. Introducing the first
pair of requests, we find that RZA accepts one of them, gaining a profit of p. Accepting this request
adds location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is
4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only accept requests starting
between t− 2τ and t+ 2τ at location 1. Since the first two requests are at location 1, and OPT’s servers
are at location 1, only two of these require an empty movement.

After this, we consider the pair of requests r7 = r8 = (f, x, 0). Introducing this pair of requests,
we find that RZA accepts one of them, gaining a profit of p. This shortens the Exclusion Zone at
(1, (w − 2τ, w + 2τ)), and adds an extra zone to the set at (0, (w − τ, w + τ)). This zone is of size
2τ . Thus, OPT can only serve two requests from location 0. These requests do not require an empty
movement, and, in fact, serve as two of the required empty movements. This means OPT serves six
requests for a profit of 6p. After the requests causing this Exclusion Zone set are served, RZA’s servers
are still at the two separate locations: one at location 0 and the other at location 1. OPT’s servers
stay at the same location. Therefore, this Exclusion Zone set is infinitely repeatable. Repeating this
follow-up Exclusion Zone set infinitely many times we find the performance of OPT compared to RZA
to be 6p

2p = 3. This is markedly lower than 4. Furthermore, even when combining this Exclusion Zone set

with Lemma 7.14.1’s Case 3, we find the performance of OPT compared to RZA to be lower than 6p
2p−c . �

This was a distinction of all possible releases by an adversary from the follow-up scenario reached after
Lemma 7.14.1’s Cases 1, 3 and 4. With that, we end the case distinction on this phase. From this phase,
we make the following observations.

Corollary 7.14.2.2 An adversary cannot release a series of requests starting from the follow-up scenario
such that the performance ratio of RZA and OPT rises above 4.

Corollary 7.14.2.3 An adversary cannot release a series of requests starting from follow-up scenario
such that the formation the servers at the end of the follow-up scenario are left in a scenario other than
the starting scenario, or the follow up scenario.

Having explored all four follow-up Exclusion Zone sets, we move on to the third and final phase. In
this third phase, we focus on the line-skipping case. The line-skipping case can be very beneficial to the
performance. Non-distant requests that were booked in Lemma 7.14.1 could require an empty movement
to serve if they are line-skipped. However, RZA is very particular in dealing with this problem.

Lemma 7.14.3 Line-skipping any of RZA’s reactions to the starting scenario does not increase the
performance ratio achieved upon those reactions.

Proof Recall that any non-crossing request r accepted by RZA causes an Exclusion Zone of size 4τ
centered on the accepted request. This guarantees that any non-crossing request can be served by either
server. Therefore, Observation 7.6 never mandates that any Exclusion Zone exists at l̄r. To create an
Exclusion Zone at l̄r, a request needs to be released at l̄r. If such a request is not released - aside from
the first Exclusion Zone created, which we discussed in Lemma 7.14.1 - OPT can only accept requests
requiring empty movements in 4τ long Exclusion Zones. In such a zone, OPT can accept at most 4
requests, all of which require empty movements, for a profit of 4p − 4c. Since RZA also accepts one
request to create these Exclusion Zones, the performance ratio on such Exclusion Zones does not exceed
4.

In the case a crossing request is released, note that RZA’s servers are spread out, with one server at
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location 0 and one server at location 1 afterwards. Serving any formation of requests described in Lemma
7.14.1 does not mandate an extra distant request from that formation. Therefore, we can still treat the
line-skipping requests and the starting position requests separately. This means the performance ratio
is not improved upon introducing crossing line-skipping requests to the consideration. �

We conclude that there is no need to further distinct the line-skipping scenario to the reactions pro-
vided in Lemma 7.14.1. We have found closing arguments for all possible releases by an adversary,
starting from the starting scenario, following-up on that scenario, or line-skipping that scenario. Having
enumerated everything, we provide the Competitive Ratio of RZA.

Theorem 7.14 Algorithm RZA is max {4, 6p
2p−c} competitive for the 2S2L-V problem with arbitrary

c, and λ > τ .

Proof We proof this Theorem by enumerating all possible releases of an adversary that do not violate
Lemma 7.13. We have done this in Lemmas 7.14.1 and 7.14.2. We know that these Lemma’s enumerate
all cases relevant to the performance ratio by Corollaries 7.14.1.2, 7.14.2.3, and Lemma 7.14.3. In those
numerous cases, we found that the releases leading to Lemma 7.14.1’s case 3 provided the highest perfor-
mance ratio for c > p

2 . For c < p
2 , we found various cases achieving a performance ratio of 4. Therefore,

the competitive ratio of RZA is max {4, 6p
2p−c}. �

7.3 Arrogant Greedy (AG)

In this section, we introduce the Arrogant Greedy Algorithm (AG). As with all algorithms in this chapter,
AG is part of the Exclusionary Family. This particular algorithm takes inspiration from Smart Greedy,
whilst becoming more flexible to avoid the problems SG runs into. Whereas Smart Greedy simply
investigates whether a request gains maximum profit, Arrogant Greedy investigates whether a request
requires a distant movement to be served prior to the request. That way, AG accepts more requests than
Smart Greedy would. Furthermore, AG is less strict about accepting less profitable requests, accepting
them when the servers are not predicted to be busy. Settings with long booking time intervals still
cause issues for AG. In such settings, Arrogant Greedy will keep accepting requests to the point of being
exploitable by a clever adversary.

After properly introducing the algorithm, we show its competitive ratio. AG achieves a tight upper
bound for various settings of c with 2τ < υ − λ ≤ 9τ . For 2τ < υ − λ ≤ 7τ , AG achieves a tight upper
bound for all settings p

3 < c ≤ p. Additionally, for 7τ < υ − λ ≤ 9τ , AG achieves a tight upper bound

for p
3 < c < 19−

√
217

6 p.
In this section, we first discuss the definition of AG. Next, we show the Method to construct its Ex-

clusion Zones. This shows that AG is part of the Exclusionary Family. Finally, we prove its performance
on 2S2L-V.

For the definition of AG, we harken back to Smart Greedy. The great difficulty Smart Greedy has
on 2S2L-V is line-skipping. SG does not perform well, because it does not anticipate that a request
booked later can be performed earlier. Furthermore, Smart Greedy is very strict with its profit margins.
We loosen up the prior problem by allowing Arrogant Greedy to accept requests requiring an empty
movement if neither server has to be used to serve a request in conflict with the new request. Furthermore,
we loosen up the empty movement requirements. Instead of being strict for all empty movements,
Arrogant Greedy only focuses on whether a request seems to require an empty movement prior to
serving it. This gives it more flexibility that Smart Greedy did not have.

Having discussed the main ideas behind AG, we introduce one more optimization before we introduce
the algorithm itself. This optimization concerns requests to be served υ− τ or more time after they were
booked. Algorithms greedily accepting non-distant requests, such as AG, can be taken advantage of
by releasing a pair of non-distant requests that are served close to υ after being booked. Normally,
algorithms such as AG would accept these requests. This causes a request-based Exclusion Zone, that
stretches at most 2τ beyond υ. such a request based Exclusion Zone can be exploited with a Zig-Zag
gadget. We are able to shorten that zone stretching beyond υ by withholding accepting requests near
υ away from the booking time. This forces the adversary to waste a bit of time to set up this faraway
Exclusion Zone. (See also section 5.4 concerning the commitment gadget, where waiting to accept such
requests caused the second request pair accepted by OPT to also need to be released prior to releasing
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line-skipping zig-gadgets). Hence, we introduce a clause concerning requests released in the final τ time
in the booking interval.

The eventual Algorithm is as follows:

Algorithm 5 Algorithm AG(I)

Input: Instance I of requests r arriving by increasing br.
Output: Set of requests accepted by AG RA

begin
RA =∅
foreach r = (br, tr, lr) ∈ I do

if r is acceptable then
if There is a request j ∈ RA such that |tj − tr| < τ + τ(l̄r, lj) and tr − br > υ − τ then

reject r
else if r does not require an empty movement to be performed prior to serving it. then

RA = RA ∪ r
else if There is no request j ∈ RA such that |tj − tr| < τ + τ(l̄r, lj) then

RA = RA ∪ r
else

reject r
end

end

end

Having shown the contents of Arrogant Greedy, we now need to show that it is part of the Exclu-
sionary Family. To that purpose, we need a method encapsulating the if-clauses of AG into a set of
Exclusion Zones. To that purpose, we analyze method AZ.

Algorithm 6 Method AZ(RA, b)

Input: Set of requests RA of requests with b > br∀r ∈ RA, sorted by increasing b.
Output: Set of location-time intervals EZ(b)
begin

EZ(b) = ∅
request-based Exclusion Zones
foreach r ∈ RA do

if request r or paired request r′ requires an empty movement to be served starting at tr− τ , in the
most profitable schedules then
EZ(b) = EZ(b) ∪ (lr, (tr − 2τ, tr + 2τ))

if request r requires no empty movement to be served, and does not change the amount of empty
movements required to serve all requests in RA then
EZ(b) = EZ(b) \ (l̄r, (t̄r,∞)) ∪ (l̄r, (t̄r − 2τ, t̄r))

if there is a request j ∈ RA with bj < br such that l̄j = lr and |tr − tri | < τ : then
EZ(b) = EZ(b) ∪ (lr, (tj − τ, tj + τ)) ∪ (lj , (tr − τ, tr + τ))

else if there is a request j ∈ RA with bj < br such that lj = lr and |tr − tri | < 2τ : then
EZ(b) = EZ(b)∪(lr, (max {tj , tr}−2τ,max {tj , tr}+2τ))∪(l̄j , (max {tj , tr}−τ,min {tj , tr}+
τ))

end

location-based Exclusion Zones if It is not feasible, given RA, that any server is at location l at
time b then

if It is feasible, given RA, that any server is at location l at time c with b < c < b+ τ then
EZ(b) = EZ(b) ∪ (l, (b, c))

else
EZ(b) = EZ(b) ∪ (l, (b, b+ τ))

end

end

End of line Exclusion Zone if There exists a request j ∈ RA such that tj > b+ υ− τ and there exists
a schedule over R of maximum profit such that both servers are at lj at time b then
EZ(b) = EZ(b) ∪ (lj , (b+ υ − τ, b+ υ))
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We observe seven different if-clauses in method AZ. We discuss them one by one, to see how they
compare to the if-clauses of algorithm AG. If we can show a one to one correspondence, we have con-
structed a set of Exclusion Zones that - when followed in the Exclusionary Framework- emulates the
behaviour of AG. That proves that AG is part of the Exclusionary Family.

The first if-clause of AZ corresponds to the else if-clause of AG. We observe that this first if-clause
creates an Exclusion Zone of 2τ around the starting time tr of any request r served without its paired
request. This could be the case because the two servers are at different locations, or because r requires
an empty movement. This bars an Algorithm following the AZ zones from accepting a distant request
close to an already accepted distant request. AG also does not accept such requests.

The second if-clause of AZ is necessary to ensure that the Exclusionary Algorithm following AZ
handles an edge case correctly. This edge case happens when a distant request is accepted, followed by
two line-skipping non-distant requests. Because the Exclusionary Algorithm would follow the Exclusion
Zones caused by the first if-clause, the algorithm would differ from AG’s decision when it comes to
requests around the accepted distant request (that request would now no longer be distant). Removing
the zone around this request in this specific case rectifies this behaviour. This way, every acceptable
non-distant request is accepted by the Exclusionary Algorithm implementing AZ.

The third if-clause of AZ corresponds to a reaction to crossing requests. If a newly introduced request
crosses a previously accepted one, Exclusion Zones are appended, such that Observation 7.6 is followed.
Similarly, the fourth if-clause of AZ corresponds to the standard reaction to two nearby requests being
accepted. Once again, this appends Exclusion Zones, such that Observation 7.6 is followed. The fifth
and sixth if-clauses of AZ correspond to setting up location-based Exclusion Zones in positions that the
servers just cannot reach. These four if-clauses combined make sure that all unacceptable requests start
in Exclusion Zones. That takes care of the acceptability constraint on AG.

The seventh and final if-clause of AZ corresponds to the check whether a request which is booked
long in advance has been accepted. If such a request exists, no other request can be accepted with a
booking time near υ. This corresponds to the first if-statement after acceptability in AG.

Having explored all if-clauses, and comparing them to AG, we find that EF (I, AZ(RA, b)) abides
by the exact same constraints as AG. Therefore, AG is in the Exclusionary Family. That means Obser-
vations, Corollaries and Lemmas 7.5− 7.13 hold on AG. Having shown this, we now set out to prove the
competitive ratio of AG on the unbounded instance.

We prove this upper bound by systematically enumerating all possible Exclusion Zone sets. For
every Exclusion Zone set, we observe the profit AG gains when creating that Exclusion Zone set, the
size of the created Exclusion Zone set, and the repeatability of that Exclusion Zone set. We use this
data to find the Exclusion Zone set that causes the greatest ratio between size and profit for AG, which,
according to Observation 7.12, leads us to the competitive ratio. In order to find this Exclusion Zone
set with greatest ratio between size and profit, we enumerate all cases that warrant a distinct reaction
from AG. We perform this enumeration in three phases. In the first phase, we consider different series
of requests from the starting position in which all of AG’s servers and OPT’s servers are at location 0.
In the second phase, we consider possible follow-ups to the series released in the starting position, and
how well AG performs compared to OPT on the zone sets created by these follow-up requests. In the
third and final phase, we instead consider the impact of requests line skipping the starting situation. We
enumerate in phases, because that allows us to eliminate some cases with a low performance ratio early
on. This cuts down on the amount of cases we need to check.

Observation 7.15.1.1 No request released in the location-based Exclusion Zone is acceptable from
the starting position, if no other request is released first.

Proof By Algorithm 6, there is a location-based Exclusion Zones at the starting position. This location-
based Exclusion Zone is one of size τ at location 1. Because a movement from location 0 to location 1
takes τ time, and because all servers start at location 0, it is impossible for OPT to accept requests to
be served in that Exclusion Zone, without other requests being released first. Hence, the location-based
Exclusion Zone is inaccessible from the starting position without a different request being released first. �

Lemma 7.15.1 Case distinction starting from starting position: all servers at one location.

Proof We enumerate all possible reactions to requests released by an adversary in the starting sce-
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nario. This enumerates four cases: AG accepting a pair of non-distant requests starting at 0 with
notification interval no larger than υ − τ , AG accepting a single distant request at location 1, AG ac-
cepting a pair of crossing requests, with the first request arriving at location 1, and AG accepting a
single non-distant request starting at 0 with notification interval larger than υ − τ . Other cases that
would cause an interaction between Exclusion Zones caused by all released and accepted requests after
the starting scenario, would violate Lemma 7.13. Violating Lemma 7.13 shows that such cases do not
maximize the performance ratio. Therefore, we can discard such cases. We now bring special attention
to the fact that there is no case with a pair of crossing requests, with the first request accepted at 0. The
reason for this is twofold. Either requests arriving at location 0 are released at a short enough notification
interval that the paired request released alongside would also be accepted, or the notification interval
is so long that any other request would be rejected. This would put us in Case 1 or 4, respectively, instead.

Case 1 For the first possible Exclusion Zone set from the starting scenario, we consider a pair of
requests r1 = r2 = (b, t, 0), with t − b < υ − τ . Note that we do not require a specific b or t for this
case, representing a general pair of non-distant requests with notification interval smaller than υ − τ .
Introducing this pair of requests, we find that AG accepts both of them, gaining a profit of 2p. This adds
location-time interval (0, (t− 2τ, t+ 2τ)) and (1, (t− τ, t+ τ)) to EZ(r2+). The size of those combined
location-time intervals is 6τ . By Corollary 7.8.1, this is all the time OPT has to accept requests. Since
there is an Exclusion Zone at both locations, OPT can accept requests starting between t−2τ and t+2τ
at location 0, and between t− τ and t+ τ at location 1. In this time, OPT can serve six requests: four
starting from 0, and two more starting from 1. None of these requests require an empty movement to
be served. Therefore, serving these six requests, OPT gains a profit of 6p. The requests causing this
Exclusion Zone set moves all servers from location 0 to location 1. Therefore, this Exclusion Zone set is
infinitely repeatable. For this Exclusion Zone set, we find the performance of OPT compared to AG to
be 6p

2p .
Case 2 For the second possible Exclusion Zone set from the starting scenario, we consider a pair of
requests r1 = r2 = (b, t, 1). Note that we do not require a specific b or t for this case, representing a
general pair of distant requests. Introducing this pair of requests, we find that AG accepts one of them,
gaining a profit of p − c. This adds location-time interval (1, (t − 2τ, t + 2τ)) to EZ(r2+). The size of
that location-time interval is 4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can
only accept requests starting between t − 2τ and t + 2τ at location 1. Since requests need to alternate
to not require empty movements to be served, OPT can serve at most four requests in this Exclusion
Zone. Since the first requests already require an empty movement, all four accepted requests require
empty movements, noting a profit of 4p − 4c for OPT. Since all servers end where they started this
Exclusion Zone set, this Exclusion Zone set is infinitely repeatable. For this Exclusion Zone set, we find
the performance of OPT compared to GRZA to be 4p−4c

p−c = 4.
Case 3 For the third possible Exclusion Zone set from the starting scenario, we consider a pair of re-
quests r1 = r2 = (b, t, 1), followed by the release of another pair of crossing requests r3 = r4 = (d, u, 0),
with d ≥ b and t−τ < u < t+τ . Note that we do not require a specific b or t for this case, and that d and
u are only relative to b and t, representing a general pair of distant requests followed by a general pair
of crossing non-distant requests. We start this analysis by looking at the impact of the adversary’s first
release: r1 and r2. Introducing this first pair of requests, we find that AG accepts one of them, gaining a
profit of p−c. The first accepted request adds location-time interval (1, (t−2τ, t+2τ)) to EZ(r2+). The
size of that location-time interval is 4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT
only accepts requests starting between t− 2τ and t+ 2τ at location 1. Since requests need to alternate
to not require empty movements to be served, OPT can serve at most 4 requests in this Exclusion Zone.
Since the first two requests are at location 1, while OPT’s servers are at location 0, all four of those
require an empty movement. After this, we analyze the impact the adversary’s subsequent release of r3,
r4 has. Introducing this pair of requests, we find that AG accepts one of them, gaining a profit of p. This
shortens the Exclusion Zone at (1, (t− 2τ, t+ 2τ)), and adds an extra zone to the set at (0, (t− τ, t+ τ)).
This zone is of size 2τ . Thus, since OPT only serves requests starting in Exclusion Zones by Corollary
7.8.1, OPT can only serve two requests from location 0. These requests do not require an empty move-
ment, and, in fact, serve as two of the required empty movements. This means OPT serves six requests
for a profit of 6p − 2c. The requests causing this Exclusion Zone set causes AG’s servers to be spread
between location 0 and location 1. Therefore, this Exclusion Zone set is not infinitely repeatable. For
this Exclusion Zone set, we find the performance of OPT compared to AG to be 6p−2c

2p−c .
Case 4 For the fourth possible Exclusion Zone set from the starting scenario, we consider a pair of
requests r1 = r2 = (b, t, 0) with t − b > υ − t. Note that we do not require a specific b or t for this

49



case, representing a general pair of non-distant requests with notification interval greater than υ − τ .
Introducing this pair of requests, we find that AG accepts one of them, gaining a profit of p. This creates
two different kinds of Exclusion Zones. A request-based Exclusion Zone at (1, (t− τ, t+ τ)) is added to
EZ(r2+), and a location-based Exclusion Zone based at (0, (b+ υ− τ, b+ υ)) is added to EZ(a) for any
time a with b < a ≤ t−υ−τ . The size of these location-time intervals are 2τ and τ , respectively. In these
intervals, by Corollary 7.8.1, OPT can accept at most four requests, none of which require an empty
movement, for a profit of 4p. The request causing this Exclusion Zone causes AG’s servers to spread
between location 0 and location 1, whilst OPT’s servers move together, ending together at location 1.
Therefore, this Exclusion Zone set is not infinitely repeatable. For this Exclusion Zone set, we find a
performance ratio of OPT compared to AG to be 4p

p . �

This was a distinction of all possible releases by an adversary from the starting scenario. Note that, in
order to continue releasing different requests, any adversary first has to release one of these four cases.
With that, we end the case distinction on this phase. From the case distinction on phase one, we make
the following observations.

Corollary 7.15.1.2 The only formation of servers that the starting scenarios can result in, that is
not symmetric to the starting scenario, is a scenario with one of AG’s servers at location 0 and location
1 each, and OPT’s servers together at one location.

Corollary 7.15.1.3 Only one case of the starting scenario requires both of AG’s servers to be at
location 0 at time t, the starting time of the first request.

Corollary 7.15.1.4 Two cases of the starting scenario require one of AG’s servers to be at location
1 at time t, the starting time of the first request.

Corollary 7.15.1.5 One case of the starting scenario does not require the use of both of AG’s servers.

Having explored all four possible Exclusion Zone sets from the starting positions of the servers, we
move on to the second phase. In this second phase, we consider starting from the different configurations
of servers we encountered. By Corollary 7.15.1.2, we have only seen one different configuration of servers
after the starting configuration: Lemma 7.15.1’s Cases 3 and 4 cause a configuration where one of AG’s
servers is at location 0, with the other server at location 1, and OPT’s servers together at one location.
Without loss of generality, we assume location 1 to be the location of OPT’s servers. We refer to this
new scenario as the follow-up scenario.

Observation 7.15.2.1 There is no location-based Exclusion Zone in the follow-up scenario.

Proof Since AG has a server at both location 0 and 1, any request released at 0 or 1 can be ac-
ceptable. Therefore, there is no need for a location-based Exclusion Zone. �

Lemma 7.15.2 Case distinction starting from follow-up scenario: one AG server at 0, one AG server at
1, and OPT servers united at one location.

Proof We enumerate all possible reactions to requests released by an adversary in the follow-up scenario.
This requires four cases: either AG accepts one request from location 0, or AG accepts one request from
location 1, or AG accepts one request from location 0, then one from location 1, or AG accepts one
request from location 1, then one from location 0. Other cases besides the ones enumerated require a
substantial gap between accepted requests, from where we would be able to analyze before and after the
gap separately. If this gap were smaller, the Exclusion Zones on both sides of the gap would overlap,
violating Lemma 7.13. Thus, such cases need not be handled in this Lemma.

Case 1 For the first possible follow-up Exclusion Zone set, we consider a pair of requests r5 = r6 =
(e, w, 0), with e > b, and w > t. Note that e and w are only specified with a relation to b and t. This
makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Introducing this
pair of requests, we find that AG accepts one of them, gaining a profit of p. Accepting this request adds
location-time interval (0, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is 4τ .
Since there is no Exclusion Zone at 1, by Corollary 7.8.1, OPT can only accept requests starting between
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t − 2τ and t + 2τ at location 0. Since the first two requests are at location 0, while OPT’s servers are
at location 1, all four of those require an empty movement. This means OPT serves four requests for a
profit of 4p − 4c. The requests causing this Exclusion Zone set unites AG’s servers at location 1, with
OPT’s servers also at location 1. Therefore, this Exclusion Zone set is infinitely repeatable in tandem
with Lemma 7.15.1’s Cases 3 and 4. However, even when combining the ratio of this case with the ratio
of Lemma 7.15.1’s Cases 3 and 4, we find the performance of OPT compared to AG to be lower than 4.
Case 2 For the second possible follow-up Exclusion Zone set, we consider a pair of requests r5 = r6 =
(e, w, 1), with e > b, and w > t. Note that e and w are only specified with a relation to b and t. This
makes r5, r6 a pair of general requests at location 1 released and served after r1, r2. Introducing this
pair of requests, we find that AG accepts one of them, gaining a profit of p. Accepting this request adds
location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is 4τ .
Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only accept requests starting between
t− 2τ and t+ 2τ at location 1. Since the first two requests are at location 1, and OPT’s servers are at
location 1, only two of those require an empty movement. This means OPT serves four requests for a
profit of 4p − 2c. The requests causing this Exclusion Zone set unites AG’s servers at location 0, with
OPT’s servers also at location 0. Therefore, this Exclusion Zone set is infinitely repeatable in tandem
with Lemma 7.15.1’s Cases 3 and 4. However, for this combined Exclusion Zone set, we still find the
performance of OPT compared to AG to be lower than 4.
Case 3 For the third possible follow-up Exclusion Zone set is created by releasing a pair of requests
r5 = r6 = (e, w, 0), with e > b, and w > t, then following up with a pair of requests r7 = r8 = (f, x, 1)
with b < e ≤ f and t < x−τ < w < x+τ . Note that e and w are only specified with a relation to b and t.
This makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Also, note that
f and x are only specified with a relation to e, w, b and t. This makes r7, r8 a pair of general requests
crossing r5, r6. We first discuss the impact of the first pair of requests. Introducing this pair of requests,
we find that AG accepts one of them, gaining a profit of p. Accepting this request adds location-time
interval (0, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is 4τ . Since there is
no Exclusion Zone at 1, by Corollary 7.8.1, OPT can only accept requests starting between t − 2τ and
t+ 2τ at location 0. Since the first two requests are at location 0, while OPT’s servers are at location 1,
all four of those require an empty movement.

After this, we consider the pair of requests r7 = r8 = (f, x, 1). Introducing this pair of requests,
we find that AG accepts one of them, gaining a profit of p. This shortens the Exclusion Zone at
(0, (w − 2τ, w + 2τ)), and adds an extra zone to the set at (1, (w − τ, w + τ)). This zone is of size
2τ . Thus, OPT can only serve two requests from location 1. These requests do not require an empty
movement, and, in fact, serve as two of the required empty movements. This means OPT serves six
requests for a profit of 6p − 2c. After the requests causing this Exclusion Zone set are served, AG’s
servers are still at the two separate locations: one at location 0 and the other at location 1. OPT’s
servers stay at the same location. Therefore, this Exclusion Zone set is infinitely repeatable. Repeating
this follow-up Exclusion Zone set infinitely many times we find the performance of OPT compared to
AG to be 6p−2c

2p . This is markedly lower than 4. Furthermore, even when combining this Exclusion Zone
set with Lemma 7.15.1’s Cases 3 and 4 from the starting scenario, we find the performance of OPT
compared to AG to be lower than 4.
Case 4 For the fourth possible follow-up Exclusion Zone set we consider a pair of requests r5 = r6 =
(e, w, 1), with e > b, and w > t, then following up with a pair of requests r7 = r8 = (f, x, 0) with
b < e ≤ f and t < x − τ < w < x + τ . Note that e and w are only specified with a relation to b
and t. This makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Also,
note that f and x are only specified with a relation to e, w, b and t. This makes r7, r8 a pair of general
requests crossing r5, r6. We first discuss the impact of the first pair of requests. Introducing the first
pair of requests, we find that AG accepts one of them, gaining a profit of p. Accepting this request adds
location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is 4τ .
Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only accept requests starting between
t− 2τ and t+ 2τ at location 1. Since the first two requests are at location 1, and OPT’s servers are at
location 1, only two of these require an empty movement.

After this, we consider the pair of requests r7 = r8 = (f, x, 0). Introducing this pair of requests,
we find that AG accepts one of them, gaining a profit of p. This shortens the Exclusion Zone at
(1, (w − 2τ, w + 2τ)), and adds an extra zone to the set at (0, (w − τ, w + τ)). This zone is of size 2τ .
Thus, OPT can only serve two requests from location 0. These requests do not require an empty move-
ment, and, in fact, serve as two of the required empty movements. This means OPT serves six requests
for a profit of 6p. After the requests causing this Exclusion Zone set are served, AG’s servers are still at
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the two separate locations: one at location 0 and the other at location 1. OPT’s servers stay at the same
location. Therefore, this Exclusion Zone set is infinitely repeatable. Repeating this follow-up Exclusion
Zone set infinitely many times we find the performance of OPT compared to AG to be 6p

2p = 3. This is
markedly lower than 4. Furthermore, even when combining this Exclusion Zone set with Lemma 7.15.1’s
Cases 3 and 4, we find the performance of OPT compared to AG to be lower than 4. �

This was a distinction of all possible releases by an adversary from the follow-up scenario reached after
Lemma 7.15.1’s Cases 3 and 4. With that, we end the case distinction on this phase. From this phase,
we make the following observations.

Corollary 7.15.2.2 An adversary cannot release a series of requests starting from the follow-up scenario
such that the performance ratio of AG and OPT rises above 4.

Corollary 7.15.2.3 An adversary cannot release a series of requests starting from follow-up scenario
such that the formation the servers at the end of the follow-up scenario are left in a scenario other than
the starting scenario, or the follow up scenario.

Having explored all four follow-up Exclusion Zone sets, we move on to the third and final phase. In
this third phase, we focus on the line-skipping case. Specifically, we focus on line-skipping Lemma
7.15.1’s Case 1, in which two non-distant requests were accepted by AG. This ensures that both of AG’s
servers need to be at location 0 come time t. This causes line-skipping requests with starting location 0
to require an empty movement to be served, unless there is another request accepted starting at location
1 in between. We will refer to this new scenario as the line-skipping scenario.

To explain why we do not consider Lemma 7.15.1’s Cases 2, 3 and 4, we prove that line-skipping a
scenario requiring a distant request - such as these cases - does not create a performance ratio exceeding 4.

Observation 7.15.3.1 A request line-skipping a scenario in which an empty movement is required
causes an Exclusion Zone in which the performance ratio of AG compared to OPT does not exceed 4.

Proof By the premise of the Lemma, one server serves a request starting at a distant location. If
a request is released prior to that distant request, to be served from a non-distant location, that would
replace the empty movement. This replaced empty movement would cause AG’s profit to rise by p+ c,
whilst only creating an Exclusion Zone of size 4τ . It is not possible to gain more than 4p + 4c profit
in such an Exclusion Zone. Therefore, the performance ratio of AG compared to OPT on an Exclusion
Zone created by a non-distant request line-skipping a scenario in which an empty movement is required
would not rise above 4. If the line-skipping request is distant instead, that creates an Exclusion Zone of
size 4τ at a distant location. We note that all servers are at the same location when this request needs
to be served. If AG’s servers were not at the same location, the request would not require an empty
movement. If OPT’s severs were not with AG’s, an adversary could release a pair of requests to be served
in the location-based Exclusion Zone to unite all servers at the same location. This implies that all re-
quests to be served at the distant location are ultimately distant, providing no more than p− c profit per
request. Therefore, the performance ratio of AG compared to OPT on an Exclusion Zone created by a
distant request line-skipping a scenario in which an empty movement is required would not rise above 4 �.

Observation 7.15.3.2 If the two requests with the lowest starting time accepted by AG start at location
0, they do not require an empty movement, and can thus be served as a pair.

By Observation 7.15.3.1, line-skipping Lemma 7.15.1’s Cases 2, 3 and 4 does not create a performance
ratio between AG and OPT exceeding 4. Since we intend to prove an upper bound exceeding 4, we need
only focus on Lemma 7.15.1’s Case 1. Next, we note the existence of a location-based Exclusion Zone of
size τ at location 1 from the time at which the Exclusion Zones are checked, until τ time after that. To
explain this, we refer to Observation 7.15.1.1. We now continue the enumeration of all possible releases
an adversary might do.

Lemma 7.15.3 Case distinction starting from line-skipping scenario: all servers at one location, Lemma
7.15.1’s Case 1 planned.

Proof We enumerate three options in the line-skipping scenario: either AG accepts a pair of requests
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from location 0, or AG accepts one request from location 1, or AG accepts one request from location
1, then one crossing request from location 0. Exclusion Zones are created for each request, unless both
servers could serve that request without performing an empty movement first. By Observation 7.15.3.2
we find that, since we line-skip all other requests, a pair of non-distant requests can be accepted without
first having to perform an empty movement. This explains why we have no case that accepts just one
non-distant line-skipping request. Note that Lemma 7.15.1’s case 1 demands that both of AG’s servers
are at location 0 at time t, and that those servers are at location 0 currently. Releasing any sequence of
requests other than the ones we enumerated would either release requests in an Exclusion Zone (causing
them to be rejected by definition 7.3), or require such a large gap between different pairs of requests,
that their Exclusion Zones do not overlap, and therefore do not relate to each other. If the Exclusion
Zones did overlap, that would violate Lemma 7.13. Such instances violating Lemma 7.13 do not show
the worst performance ratio on any settings, and are, therefore, irrelevant to this proof.

Case 1 For the first possible Exclusion Zone set line-skipping Lemma 7.15.1’s Case 1, we consider
a pair of requests r5 = r6 = (e, w, 0), with e > b, but w < t. Note that e and w are only specified
with a relation to b and t. This makes r5, r6 a pair of general requests at location 1 released and served
after r1, r2. Introducing this pair of requests, we find that AG accepts both of them, gaining a profit of
2p− 2c, because the servers serving these request need to perform an empty movement in order to serve
the requests accepted in Lemma 7.15.1’s Case 1. Accepting these requests add location-time interval
(0, (w − 2τ, w + 2τ)) and (1, (w − τ, w + τ)) to EZ(r6+). The size of those location-time interval is
6τ . Since there are Exclusion Zones at both 0 and 1, by Corollary 7.8.1, this allows OPT to serve six
alternating requests. This means OPT serves at most six requests for a profit of 6p, ending its servers
at location 1. However, since OPT has to serve its accepted requests from Lemma 7.15.1’s Case 1 after
this case, and the requests in Lemma 7.15.1’s Case 1 start at location 0, OPT has to perform two empty
movements to serve all accepted requests.
Case 2 For the second possible Exclusion Zone set line-skipping Lemma 7.15.1’s Case 1, we consider a
pair of requests r5 = r6 = (e, w, 1), with e > b, but w < t. Note that e and w are only specified with a
relation to b and t. This makes r5, r6 a pair of general requests at location 1 released and served after
r1, r2. Introducing this pair of requests, we find that AG accepts one of them, gaining a profit of p− c.
Accepting this request adds location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that
location-time interval is 4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only
accept requests starting between w − 2τ and w + 2τ at location 1. Since the first two requests are at
location 1, while OPT’s servers are at location 0, all four of those require an empty movement. This
means OPT serves four requests for a profit of 4p − 4c. This case ends with all of OPT’s servers and
all of ALG’s server’s at location 0. Therefore, this Exclusion Zone set is infinitely repeatable. However,
neither repeating this case, nor combining this set of Exclusion Zones with Lemma 7.15.1’s Case 1 causes
the performance of OPT compared to AG to exceed 4.
Case 3 For the third and final possible Exclusion Zone set line-skipping Lemma 7.15.1’s Case 1, we
consider a pair of requests r5 = r6 = (e, w, 1), with e > b, but w < t, then releasing another pair of
requests r7 = r8 = (f, x, 0), with f ≥ e, and w − τ < x < w + τ < t. Note that e and w are only
specified with a relation to b and t. This makes r5, r6 a pair of general requests at location 0 released and
served after r1, r2. Also, note that f and x are only specified with a relation to e, w, b and t. This makes
r7, r8 a pair of general requests crossing r5, r6. We first discuss the impact of the first pair of requests.
Introducing r5, r6 first, we find that AG accepts one of them, gaining a profit of p − c. Accepting this
request adds location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time
interval is 4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only accept requests
starting between w − 2τ and w + 2τ at location 1. Since the first two requests are at location 1, while
OPT’s servers are at location 0, all four of those require an empty movement.

After this, we consider the pair r7, r8. Introducing this pair of requests, we find that AG accepts one
of them, gaining a profit of p− c, because serving this request requires an empty movement to serve the
requests accepted in Lemma 7.15.1’s Case 1. This shortens the Exclusion Zone at (1, (w − 2τ, w + 2τ)),
and adds an extra zone to the set at (0, (w− τ, w+ τ)). This zone is of size 2τ . Thus, by Corollary 7.8.1,
OPT can only serve two requests from location 0. These requests do not require an empty movement,
and, in fact, serve as two of the required empty movements to serve the requests accepted at location 1.
This means OPT serves six requests for a profit of 6p − 2c. Since OPT’s servers end at location 0, no
additional empty movements are required to serve the requests accepted in starting scenario case 1. We
note that the requests causing this Exclusion Zone set moves AG’s servers, with one at location 0, and
another at location 1, while OPT’s servers are at location 0. We discuss the implications of this new
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server formation in a separate Lemma. �

This was a distinction of all possible releases by an adversary line-skipping the scenario described in
Lemma 7.15.1’s Case 1. Throughout the Lemma, we have encountered two new scenarios. One is
Lemma 7.15.3’s Case 1 followed up by Lemma 7.15.1’s Case 1. The other is Lemma 7.15.3’s Case 3,
followed up by Lemma 7.16.1’s Case 1. In these cases, we need to explore what happens when a set of
requests is released either between or before the two cases.

Observation 7.15.3.3 Further analysis of Lemma 7.15.3’s Case 1.

Proof By Observation 7.15.3.2, we now note that AG reacts to non-distant requests line-skipping to
the front of the line, line-skipping all other accepted requests, in the same way. Therefore, an adver-
sary can use this trick as many times as is possible between υ and λ. This trick creates an Exclusion
Zone of size 4τ at location 0. Therefore, the adversary only has to release a pair of requests every 4τ
to effectively lock AG out of using location 0 until the requests accepted in the starting scenario are
served. Those starting scenario requests can be accepted as long as υ before they need to be served.
This means that this trick is repeatable bυ−λ4τ c times. We make one more observation here. Currently
the adversary releases a Zig-Zag gadget to have OPT gain maximum profit over AG. However, if there is
less than 4τ time between the end of the penultimate Exclusion Zone, and the Exclusion Zones caused
by the starting scenario, performing a full Zig-Zag gadget is impossible. Therefore, if (υ − λ)%4τ > 2τ ,
instead of not using 2τ time, the adversary could introduce one more pair for AG, accompanied by a
Zig-gadget for OPT. That way, OPT could gain a little more profit over AG. Furthermore, we take note
that Lemma 7.15.1’s Case 1 can only be implemented if t − b < υ − τ . This takes a further τ time out
of υ−λ. To summarize, after releasing case one concerning the starting scenario at υ− τ , the adversary
can repeatedly release paired requests, 4τ apart, (which AG accepts) to then give OPT access to Zig-Zag
gadgets, 4τ apart, and possibly one Zig gadget, at the final 2τ . Note that both the pairs accepted by AG
and the Zig-Zag gadgets accepted by OPT require a pair of empty movements to be served together. �

Observation 7.15.3.4 Further analysis of Lemma 7.15.3’s Case 3.

Proof By Observation 7.15.3.1, we note that line-skipping Lemma 7.15.3’s Case 3 does not result in
an improvement to the performance ratio between AG and OPT. Hence, we need to focus on filling the
time between Lemma 7.15.3’s Case 3 and Lemma 7.15.1’s Case 1. We note that Lemma 7.15.3’s Case
3 is not repeatable, since AG’s servers are split between location 0 and location 1 after serving Lemma
7.15.3’s Case 3. From there, we note that releasing any other request between Lemma 7.15.3’s Case 3
and Lemma 7.15.1’s Case 1 creates a one-sided Exclusion Zone of size 4τ . In that Exclusion Zone, OPT
cannot make a profit greater than 4p− 4c, where AG makes p− c profit or better. This would pull the
overall ratio closer to 4, which is lower than the performance ratio just employing Lemma 7.15.3’s Case
3 and Lemma 7.15.1’s Case 1. �

We have now finished exploring all possible releases by an adversary from the line-skipping scenario,
reached after Lemma 7.15.1’s Case 1 was released (but served before that case starts). We have found
closing arguments for all possible releases by an adversary, starting from the starting scenario, following-
up on that scenario, or line-skipping that scenario. Having enumerated everything, we provide the
Competitive Ratio of AG.

Theorem 7.15 Algorithm AG is max {4, 6p+4pd υ−λ−3τ
4τ e+(2p−2c)d υ−λ−5τ

4τ e
2p+(2p−2c)d υ−λ−3τ

4τ e } competitive for the 2S2L-V

problem with arbitrary c, and υ − λ > τ .

Proof We proof this Theorem by enumerating all possible releases of an adversary that do not vio-
late Lemma 7.13. We have done this in Lemmas 7.15.1, 7.15.2, 7.15.3 and Observations 7.15.3.3 and
7.15.3.4.

Combining our findings on Lemma 7.15.1’s Case 1 with our findings on Lemma 7.15.3’s Case 1 and
Observation 7.15.3.3, we conclude the following. AG gains 2p profit from the the requests released by the
adversary in Lemma 7.15.1’s Case 1, plus an additional 2p−2c per pair of requests released the adversary
line-skipping Lemma 7.15.1’s Case 1. These pairs are released dυ−λ−3τ4τ e times. In the Exclusion Zones
created by these request pairs, OPT can accept the following. For the first case of the starting scenario,
OPT gains 6p profit. Furthermore, for the dυ−λ−3τ4τ e pairs accepted by AG, OPT can gain an additional
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4p profit. Finally, for dυ−λ−5τ4τ e of these request pairs accepted by AG, OPT gains an additional 2p− 2c

profit. Putting all that together, we find a competitive ratio of
6p+4pd υ−λ−3τ

4τ e+(2p−2c)d υ−λ−5τ
4τ e

2p+(2p−2c)d υ−λ−3τ
4τ e . We have

also found multiple cases that were 4-competitive. Since the adversary is in charge of deciding what case
is released, it should release the case with the highest performance ratio. We conclude that AG has a

competitive ratio of max {4, 6p+4pd υ−λ−3τ
4τ e+(2p−2c)d υ−λ−5τ

4τ e
2p+(2p−2c)d υ−λ−3τ

4τ e }. �

Having proven this upper bound, we find the settings where the competitive upper bound AG achieves
is tight. The range in which AG’s performance is tight might not be large, but it is very important.
Combining the power of AG, RZA and GA, we have algorithms achieving tight upper bounds for nearly
all settings. The only setting that we have yet to find a tight upper bound for, is υ − λ > 7τ and high
c. We introduce an algorithm fill this final gap in the next section.

7.4 Greedy Restriction Zones (GRZA)

In this section, we introduce the Greedy Restriction Zones Algorithm (GRZA). As with all algorithms in
this chapter, GRZA is a part of the Exclusionary Family. This algorithm implements Exclusion Zones
very similar to RZA, with one major difference. GRZA allows the first non-distant request pair to be
accepted as a pair, whereas RZA does not. This gives GRZA a slightly better performance ratio than
RZA from the starting scenario (where both of the algorithms’ servers are at location 0), and a very
consistent performance ratio at that. However, that consistency make GRZA a worse choice than other
algorithms we discussed thus far when it comes to settings such as short booking interval size, or low
empty movement cost.

In this section, we first introduce GRZ. GRZ is the method for composing the Exclusion Zones used
to define GRZA. By first providing the Method for creating the appropriate Exclusion Zones, we show
that GRZA is part of the Exclusionary Family. This gives us access to the Lemmas and Observations we
used to find the competitive ratios of RZA and AG before this. Using these Lemmas and Observations,
we prove the competitive ratio of GRZA, showing that it is 12p−2c

3p−c , for υ − λ > 4τ . This shows that

GRZA performs as well as the problem lower bound for υ − λ > 9τ and 5−
√
13

2 p ≤ c ≤ p.
Just as with RZA, we show the Method of deciding Exclusion Zones for GRZA, and define GRZA

upon those. That way, we automatically prove that GRZA is part of the Exclusionary Family. Before
we show this Method, however, we first clarify what these Exclusion Zones stand for. The Method GRZ
is comprised of three main statements. The first if-statement checks whether the accepted request is
such that both servers can serve it without accruing an empty movement cost. If this is the case, this
accepted request does not cause a new request-based Exclusion Zone. This is the major difference from
RZA. The second and third if-statement for Exclusion Zones are there to ensure that Observation 7.6 is
not violated. Note that the third if-statement and the accompanying else-statement are the exact same
as the first if-statement in Method RZ. The behaviour caused by this if-statement is equivalent to that of
RZA. Thus, these request-based exclusion zones function similarly to those in RZA. Finally, the checks
for location-based exclusion zones are put in place using the fourth and fifth if statements in GRZ. The
result is the following Method:
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Algorithm 7 Method GRZ(RA, b)

Input: Set of requests RA accepted by algorithm A, with b > br∀r ∈ RA, sorted by increasing b.
Output: Set of location-time intervals EZ(b)
begin

EZ(b) = ∅
Request-based Exclusion Zones:
foreach r ∈ RA do

if it is feasible for both servers to be at location lr at time tr, without needing to perform an extra
empty movement beforehand, and there is no request j ∈ RA with bj < br such that lj = lr and
tr > tj then
EZ(b) = EZ(b)

else if there is a request j ∈ RA with bj < br such that lj = lr and |tr − trj | < 2τ : then
EZ(b) = EZ(b)∪(lr, (max {tj , tr}−2τ,min {tj , tr}+2τ))∪(l̄j , (max {tj , tr}−τ,min {tj , tr}+τ))

else if there is a request j ∈ RA with bj < br such that l̄j = lr and |tr − tri | < τ : then
EZ(b) = EZ(b) \ ((lj , (tj − 2τ, tr − τ)) ∪ (lj , (tr + τ, tj + 2τ))) ∪ (lr, (tj − τ, tj + τ))

else
EZ(b) = EZ(b) ∪ (lr, (tr − 2τ, tr + 2τ))

end

end
Location-based Exclusion Zones:
if There exists no schedule such that any server is at location l at time b then

if There exists a schedule such that any server is at location l at time c with b < c < b+ τ then
EZ(b) = EZ(b) ∪ (l, (b, c))

else
EZ(b) = EZ(b) ∪ (l, (b, b+ τ))

end

end

Using this method, we construct the Greedy Restriction Zones Algorithm by following the Exclu-
sionary Framework. We define GRZA as follows:

Algorithm 8 Algorithm GRZA(I)

Input: Instance I of requests r arriving by increasing br.
Output: Set of requests accepted by GRZ RA

begin
RA = ∅
foreach r = (br, tr, lr) ∈ I do
EZ(r−) = GRZ(RA, br)
if (lr, tr) /∈ EZ(r−) then
RA = RA ∪ r

else
reject r

end

end

end

Observe that Algorithm GRZA perfectly follows EF (I, RZ(R, b). Therefore, we conclude that Al-
gorithm GRZA is a part of the Exclusionary Family. That means Observations, Corollaries and Lemmas
7.5−7.13 hold on GRZA. We now analyze the upper bound of this Algorithm on the unbounded instance.

We prove this upper bound by systematically enumerating all possible Exclusion Zone sets. For
every Exclusion Zone set, we observe the profit GRZA gains when creating that Exclusion Zone set, the
size of the created Exclusion Zone set, and the repeatability of that Exclusion Zone set. We use this data
to find the Exclusion Zone set that causes the greatest ratio between size and profit for GRZA, which,
according to Observation 7.12, leads us to the competitive ratio. In order to find this Exclusion Zone set
with greatest ratio between size and profit, we enumerate all cases that warrant a distinct reaction from
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GRZA. We perform this enumeration in three phases. In the first phase, we consider different series of
requests from the starting position in which all of GRZA’s servers and OPT’s servers are at location 0.
In the second phase, we consider possible follow-ups to the series released in the starting position, and
how well GRZA performs compared to OPT on the zone sets created by these follow-up requests. In the
third and final phase, we instead consider the impact of requests line skipping the starting situation. We
enumerate in phases, because that allows us to eliminate some cases with a low performance ratio early
on. This cuts down on the amount of cases we need to check.

Observation 7.16.1.1 No request released in the location-based Exclusion Zone is acceptable from
the starting position, if no other request is released first.

Proof By Algorithm 7, there is a location-based Exclusion Zones at the starting position. This location-
based Exclusion Zone is one of size τ at location 1. Because a movement from location 0 to location 1
takes τ time, and because all servers start at location 0, it is impossible for OPT to accept requests to
be served in that Exclusion Zone, without other requests being released first. Hence, the location-based
Exclusion Zone is inaccessible from the starting position without a different request being released first. �

Lemma 7.16.1 Case distinction starting from starting position: all servers at one location.

Proof We enumerate all possible reactions to requests released by an adversary in the starting sce-
nario. This enumerates three cases: GRZA accepting a pair of non-distant requests starting at 0, GRZA
accepting a single distant request at location 1, and GRZA accepting a pair of crossing requests, with
the first request arriving at location 1. Other cases, that would cause an interaction between Exclusion
Zones caused by all released and accepted requests after the starting scenario, would violate Lemma
7.13. Violating Lemma 7.13 shows that such cases do not maximize the performance ratio. Therefore,
we can discard such cases. We now bring special attention to the fact that there is no case with a pair of
crossing requests, with the first request accepted at 0. This is because we only consider the instance in
which every request is released alongside an identical paired request. If we release a pair of requests at
location 0 first, GRZA will, by Observation 7.5, accept both of these requests, putting us firmly in the
first case instead.

Case 1 For the first possible Exclusion Zone set from the starting scenario, we consider a pair of
requests r1 = r2 = (b, t, 0). Note that we do not require a specific b or t for this case, representing a
general pair of non-distant requests. Introducing this pair of requests, we find that GRZA accepts both
of them, gaining a profit of 2p. This adds location-time interval (0, (t− 2τ, t+ 2τ)) and (1, (t− τ, t+ τ))
to EZ(r2+). The size of those combined location-time intervals is 6τ . By Corollary 7.8.1, this is all the
time OPT has to accept requests. Since there is an Exclusion Zone at both locations, OPT can accept
requests starting between t− 2τ and t+ 2τ at location 0, and between t− τ and t+ τ at location 1. In
this time, OPT can serve six requests: four starting from 0, and two more starting from 1. None of these
requests require an empty movement to be served. Therefore, serving these six requests, OPT gains a
profit of 6p. The requests causing this Exclusion Zone set moves all servers from location 0 to location
1. Therefore, this Exclusion Zone set is infinitely repeatable. For this Exclusion Zone set, we find the
performance of OPT compared to GRZA to be 6p

2p .
Case 2 For the second possible Exclusion Zone set from the starting scenario, we consider a pair of
requests r1 = r2 = (b, t, 1). Note that we do not require a specific b or t for this case, representing a
general pair of distant requests. Introducing this pair of requests, we find that GRZA accepts one of
them, gaining a profit of p− c. This adds location-time interval (1, (t−2τ, t+ 2τ)) to EZ(r2+). The size
of that location-time interval is 4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can
only accept requests starting between t − 2τ and t + 2τ at location 1. Since requests need to alternate
to not require empty movements to be served, OPT can serve at most four requests in this Exclusion
Zone. Since the first requests already require an empty movement, all four accepted requests require
empty movements, noting a profit of 4p − 4c for OPT. Since all servers end where they started this
Exclusion Zone set, this Exclusion Zone set is infinitely repeatable. For this Exclusion Zone set, we find
the performance of OPT compared to GRZA to be 4p−4c

p−c = 4.
Case 3 For the third possible Exclusion Zone set from the starting scenario, we consider a pair of re-
quests r1 = r2 = (b, t, 1), followed by the release of another pair of crossing requests r3 = r4 = (d, u, 0),
with d ≥ b and t− τ < u < t+ τ . Note that we do not require a specific b or t for this case, and that d
and u are only relative to b and t, representing a general pair of distant requests followed by a general
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pair of crossing non-distant requests. We start this analysis by looking at the impact of the adversary’s
first release: r1 and r2. Introducing this first pair of requests, we find that GRZA accepts one of them,
gaining a profit of p − c. The first accepted request adds location-time interval (1, (t − 2τ, t + 2τ)) to
EZ(r2+). The size of that location-time interval is 4τ . Since there is no Exclusion Zone at 0, by Corol-
lary 7.8.1, OPT only accepts requests starting between t − 2τ and t + 2τ at location 1. Since requests
need to alternate to not require empty movements to be served, OPT can serve at most 4 requests in
this Exclusion Zone. Since the first two requests are at location 1, while OPT’s servers are at location
0, all four of those require an empty movement. After this, we analyze the impact the adversary’s sub-
sequent release of r3, r4 has. Introducing this pair of requests, we find that GRZA accepts one of them,
gaining a profit of p. This shortens the Exclusion Zone at (1, (t − 2τ, t + 2τ)), and adds an extra zone
to the set at (0, (t − τ, t + τ)). This zone is of size 2τ . Thus, since OPT only serves requests starting
in Exclusion Zones by Corollary 7.8.1, OPT can only serve 2 requests from location 0. These requests
do not require an empty movement, and, in fact, serve as two of the required empty movements. This
means OPT serves six requests for a profit of 6p − 2c. The requests causing this Exclusion Zone set
causes GRZA’s servers to be spread between location 0 and location 1. Therefore, this Exclusion Zone
set is not infinitely repeatable. For this Exclusion Zone set, we find the performance of OPT compared
to GRZA to be 6p−2c

2p−c . �

This was a distinction of all possible releases by an adversary from the starting scenario. Note that, in
order to continue releasing different requests, any adversary first has to release one of these three cases.
With that, we end the case distinction on this phase. From the case distinction on phase one, we make
the following observations.

Corollary 7.16.1.2 The only formation of servers that the starting scenarios can result in, that is
not symmetric to the starting scenario, is a scenario with one of GRZA’s servers at location 0 and loca-
tion 1 each, and OPT’s servers together at one location.

Corollary 7.16.1.3 Only one case of the starting scenario requires both of GRZA’s servers to be at
location 0 at time t, the starting time of the first request.

Corollary 7.16.1.4 Two cases of the starting scenario require one of GRZA’s servers to be at loca-
tion 1 at time t, the starting time of the first request.

Having explored all three possible Exclusion Zone sets from the starting positions of the servers, we
move on to the second phase. In this second phase, we consider starting from the different configurations
of servers we encountered. By Corollary 7.16.1.2, we have only seen one different configuration of servers
after the starting configuration: starting scenario Case 3 causes a configuration where one of GRZA’s
servers is at location 0, with the other server at location 1, and OPT’s servers together at one location.
Without loss of generality, we assume location 1 to be the location of OPT’s servers. We refer to this
new scenario as the follow-up scenario.

Observation 7.16.2.1 There is no location-based Exclusion Zone in the follow-up scenario.

Proof Since GRZA has a server at both location 0 and 1, any request released at 0 or 1 can be
acceptable. Therefore, there is no need for a location-based Exclusion Zone. �

Lemma 7.16.2 Case distinction starting from follow-up scenario: one GRZA server at 0, one GRZA
server at 1, and OPT servers united at one location.

Proof We enumerate all possible reactions to requests released by an adversary in the follow-up sce-
nario. This requires four cases: either GRZA accepts one request from location 0, or GRZA accepts
one request from location 1, or GRZA accepts one request from location 0, then one from location 1,
or GRZA accepts one request from location 1, then one from location 0. Since both of GRZA’s servers
are at different locations at the start of this scenario, we can conclude that no pair of requests can be
accepted without an empty movement. That means that any request accepted by GRZA in the follow-up
scenario creates a new Exclusion Zone. Therefore, other cases besides the ones enumerated require a
substantial gap between accepted requests, from where we would be able to analyze before and after the
gap separately. If this gap were smaller, the Exclusion Zones on both sides of the gap would overlap,
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violating Lemma 7.13. Thus, such cases need not be handled in this Lemma.

Case 1 For the first possible follow-up Exclusion Zone set, we consider a pair of requests r5 = r6 =
(e, w, 0), with e > b, and w > t. Note that e and w are only specified with a relation to b and t. This
makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Introducing this
pair of requests, we find that GRZA accepts one of them, gaining a profit of p. Accepting this request
adds location-time interval (0, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is
4τ . Since there is no Exclusion Zone at 1, by Corollary 7.8.1, OPT can only accept requests starting
between t−2τ and t+2τ at location 0. Since the first two requests are at location 0, while OPT’s servers
are at location 1, all four of those require an empty movement. This means OPT serves four requests
for a profit of 4p − 4c. The requests causing this Exclusion Zone set unites GRZA’s servers at location
1, with OPT’s servers also at location 1. Therefore, this Exclusion Zone set is infinitely repeatable in
tandem with Lemma 7.16.1’s Case 3. However, even when combining the ratio of this case with the ratio
of Lemma 7.16.1’s case 3, we find the performance of OPT compared to GRZA to be lower than 4.
Case 2 For the second possible follow-up Exclusion Zone set, we consider a pair of requests r5 = r6 =
(e, w, 1), with e > b, and w > t. Note that e and w are only specified with a relation to b and t. This
makes r5, r6 a pair of general requests at location 1 released and served after r1, r2. Introducing this
pair of requests, we find that GRZA accepts one of them, gaining a profit of p. Accepting this request
adds location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is
4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only accept requests starting
between t− 2τ and t+ 2τ at location 1. Since the first two requests are at location 1, and OPT’s servers
are at location 1, only two of those require an empty movement. This means OPT serves four requests
for a profit of 4p − 2c. The requests causing this Exclusion Zone set unites GRZA’s servers at location
0, with OPT’s servers also at location 0. Therefore, this Exclusion Zone set is infinitely repeatable in
tandem with Lemma 7.16.1’s Case 3. However, for this combined Exclusion Zone set, we still find the
performance of OPT compared to GRZA to be lower than 4.
Case 3 For the third possible follow-up Exclusion Zone set is created by releasing a pair of requests
r5 = r6 = (e, w, 0), with e > b, and w > t, then following up with a pair of requests r7 = r8 = (f, x, 1)
with b < e ≤ f and t < x − τ < w < x + τ . Note that e and w are only specified with a relation to b
and t. This makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Also,
note that f and x are only specified with a relation to e, w, b and t. This makes r7, r8 a pair of general
requests crossing r5, r6. We first discuss the impact of the first pair of requests. Introducing this pair
of requests, we find that GRZA accepts one of them, gaining a profit of p. Accepting this request adds
location-time interval (0, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is 4τ .
Since there is no Exclusion Zone at 1, by Corollary 7.8.1, OPT can only accept requests starting between
t− 2τ and t+ 2τ at location 0. Since the first two requests are at location 0, while OPT’s servers are at
location 1, all four of those require an empty movement.

After this, we consider the pair of requests r7 = r8 = (f, x, 1). Introducing this pair of requests,
we find that GRZA accepts one of them, gaining a profit of p. This shortens the Exclusion Zone at
(0, (w − 2τ, w + 2τ)), and adds an extra zone to the set at (1, (w − τ, w + τ)). This zone is of size
2τ . Thus, OPT can only serve two requests from location 1. These requests do not require an empty
movement, and, in fact, serve as two of the required empty movements. This means OPT serves six
requests for a profit of 6p − 2c. After the requests causing this Exclusion Zone set are served, GRZA’s
servers are still at the two separate locations: one at location 0 and the other at location 1. OPT’s servers
stay at the same location. Therefore, this Exclusion Zone set is infinitely repeatable. Repeating this
follow-up Exclusion Zone set infinitely many times we find the performance of OPT compared to GRZA
to be 6p−2c

2p . This is markedly lower than 4. Furthermore, even when combining this Exclusion Zone set
with Lemma 7.16.1’s Case 3 from the starting scenario, we find the performance of OPT compared to
GRZA to be lower than 4.
Case 4 For the fourth possible follow-up Exclusion Zone set we consider a pair of requests r5 = r6 =
(e, w, 1), with e > b, and w > t, then following up with a pair of requests r7 = r8 = (f, x, 0) with
b < e ≤ f and t < x − τ < w < x + τ . Note that e and w are only specified with a relation to b
and t. This makes r5, r6 a pair of general requests at location 0 released and served after r1, r2. Also,
note that f and x are only specified with a relation to e, w, b and t. This makes r7, r8 a pair of general
requests crossing r5, r6. We first discuss the impact of the first pair of requests. Introducing the first
pair of requests, we find that GRZA accepts one of them, gaining a profit of p. Accepting this request
adds location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of that location-time interval is
4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only accept requests starting
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between t− 2τ and t+ 2τ at location 1. Since the first two requests are at location 1, and OPT’s servers
are at location 1, only two of these require an empty movement.

After this, we consider the pair of requests r7 = r8 = (f, x, 0). Introducing this pair of requests,
we find that GRZA accepts one of them, gaining a profit of p. This shortens the Exclusion Zone at
(1, (w − 2τ, w + 2τ)), and adds an extra zone to the set at (0, (w − τ, w + τ)). This zone is of size 2τ .
Thus, OPT can only serve two requests from location 0. These requests do not require an empty move-
ment, and, in fact, serve as two of the required empty movements. This means OPT serves six requests
for a profit of 6p. After the requests causing this Exclusion Zone set are served, GRZA’s servers are
still at the two separate locations: one at location 0 and the other at location 1. OPT’s servers stay at
the same location. Therefore, this Exclusion Zone set is infinitely repeatable. Repeating this follow-up
Exclusion Zone set infinitely many times we find the performance of OPT compared to GRZA to be
6p
2p = 3. This is markedly lower than 4. Furthermore, even when combining this Exclusion Zone set with
Lemma 7.16.1’s Case 3, we find the performance of OPT compared to GRZA to be lower than 4. �

This was a distinction of all possible releases by an adversary from the follow-up scenario reached after
Lemma 7.16.1’s Case 3. With that, we end the case distinction on this phase. From this phase, we make
the following observations.

Corollary 7.16.2.2 An adversary cannot release a series of requests starting from the follow-up scenario
such that the performance ratio of GRZA and OPT rises above 4.

Corollary 7.16.2.3 An adversary cannot release a series of requests starting from follow-up scenario
such that the formation the servers at the end of the follow-up scenario are left in a scenario other than
the starting scenario, or the follow up scenario.

Having explored all four follow-up Exclusion Zone sets, we move on to the third and final phase. In
this third phase, we focus on the line-skipping case. Specifically, we focus on line-skipping Lemma
7.16.1’s Case 1, in which two non-distant requests were accepted by GRZA. This ensures that both of
GRZA’s servers need to be at location 0 come time t. This causes line-skipping requests with starting
location 0 to require an empty movement to be served, unless there is another request accepted starting
at location 1 in between. We will refer to this new scenario as the line-skipping scenario.

To explain why we do not consider Lemma 7.16.1’s Cases 2 and 3, we prove that line-skipping a
scenario requiring a distant request - such as these cases - does not create a performance ratio exceeding 4.

Observation 7.16.3.1 A request line-skipping a scenario in which an empty movement is required
causes an Exclusion Zone in which the performance ratio of GRZA compared to OPT does not exceed 4.

Proof By the premise of the Lemma, one server serves a request starting at a distant location. If
a request is released prior to that distant request, to be served from a non-distant location, that would
replace the empty movement. This replaced empty movement would cause GRZA’s profit to rise by p+c,
whilst only creating an Exclusion Zone of size 4τ . It is not possible to gain more than 4p+ 4c profit in
such an Exclusion Zone. Therefore, the performance ratio of GRZA compared to OPT on an Exclusion
Zone created by a non-distant request line-skipping a scenario in which an empty movement is required
would not rise above 4. If the line-skipping request is distant instead, that creates an Exclusion Zone of
size 4τ at a distant location. We note that all servers are at the same location when this request needs
to be served. If GRZA’s servers were not at the same location, the request would not require an empty
movement. If OPT’s severs were not with GRZA’s, an adversary could release a pair of requests to be
served in the location-based Exclusion Zone to unite all servers at the same location. This implies that all
requests to be served at the distant location are ultimately distant, providing no more than p−c profit per
request. Therefore, the performance ratio of GRZA compared to OPT on an Exclusion Zone created by a
distant request line-skipping a scenario in which an empty movement is required would not rise above 4 �.

By Observation 7.16.3.1, line-skipping Lemma 7.16.1’s Cases 2 and 3 does not create a performance
ratio between GRZA and OPT exceeding 4. Since we intend to prove an upper bound exceeding 4, we
need only focus on Lemma 7.16.1’s Case 1. Next, we note the existence of a location-based Exclusion
Zone of size τ at location 1 from the time at which the Exclusion Zones are checked, until τ time after
that. To explain this, we refer to Observation 7.16.1.1. We now continue the enumeration of all possible
releases an adversary might do.
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Lemma 7.16.3 Case distinction starting from line-skipping scenario: all servers at one location, Lemma
7.16.1’s Case 1 planned.

Proof We enumerate four options in the line-skipping scenario: either GRZA accepts one request from
location 0, or GRZA accepts one request from location 1, or GRZA accepts one request from location
0, then one crossing request from location 1, or GRZA accepts one request from location 1, then one
crossing request from location 0. Exclusion Zones are created for each request, unless both servers could
serve that request without accruing an empty movement. Note that Lemma 7.16.1’s case 1 demands that
both of GRZA’s servers are at location 0 at time t, and that those servers are at location 0 currently.
Therefore, every request that is accepted requires an extra empty movement to be served, meaning that
every request in this scenario causes new Exclusion Zones. Releasing any sequence of requests other than
the ones we enumerated would either release requests in an Exclusion Zone (causing them to be rejected
by definition 7.3), or require such a large gap between different pairs of requests, that their Exclusion
Zones do not overlap, and therefore do not relate to each other. If the Exclusion Zones did overlap, that
would violate Lemma 7.13. Such instances violating Lemma 7.13 do not show the worst performance
ratio on any settings, and are, therefore, irrelevant to this proof.

Case 1 For the first possible Exclusion Zone set line-skipping Lemma 7.16.1’s Case 1, we consider
a pair of requests r5 = r6 = (e, w, 0), with e > b, but w < t. Note that e and w are only specified with
a relation to b and t. This makes r5, r6 a pair of general requests at location 1 released and served after
r1, r2. Introducing this pair of requests, we find that GRZA accepts one of them, gaining a profit of
p − c, because the server serving this request needs to perform an empty movement in order to serve
the requests accepted in Lemma 7.16.1’s Case 1. Accepting this request adds location-time interval
(0, (w−2τ, w+2τ)) to EZ(r6+). The size of that location-time interval is 4τ . While there is no request-
based Exclusion zone at 1, there is a location-based Exclusion Zone. By releasing the requests at location
1 such that they are booked after OPT has started serving its requests, an adversary can give OPT access
to the location-based Exclusion Zone, without releasing any additional requests. By Corollary 7.8.1, this
allows OPT to serve two more requests, on top of the four it can serve in the request-based Exclusion
Zone at location 0. This means OPT serves six requests for a profit of 6p, ending its servers at location 1.
However, since OPT has to serve its accepted requests from Lemma 7.16.1’s Case 1 after this case, and
the requests in Lemma 7.16.1’s Case 1 start at location 0, OPT has to perform two empty movements
to serve all accepted requests. Therefore, OPT makes a total profit of 12p − 2c. Meanwhile, GRZA’s
accepted requests requires one empty movement, making a profit of 3p − c. The requests causing this
Exclusion Zone set spreads out GRZA’s servers, with one at location 0, and another at location 1, with
OPT’s servers also at location 1. Therefore, this Exclusion Zone set is not infinitely repeatable. We
discuss the implications of this new scenario in a separate Lemma. For now, we find the performance of
OPT compared to GRZA to be 12p−2c

3p−c .
Case 2 For the second possible Exclusion Zone set line-skipping Lemma 7.16.1’s Case 1, we consider a
pair of requests r5 = r6 = (e, w, 1), with e > b, but w < t. Note that e and w are only specified with a
relation to b and t. This makes r5, r6 a pair of general requests at location 1 released and served after
r1, r2. Introducing this pair of requests, we find that GRZA accepts one of them, gaining a profit of
p− c. Accepting this request adds location-time interval (1, (w − 2τ, w + 2τ)) to EZ(r6+). The size of
that location-time interval is 4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can
only accept requests starting between w − 2τ and w + 2τ at location 1. Since the first two requests are
at location 1, while OPT’s servers are at location 0, all four of those require an empty movement. This
means OPT serves four requests for a profit of 4p − 4c. This case ends with all of OPT’s servers and
all of ALG’s server’s at location 0. Therefore, this Exclusion Zone set is infinitely repeatable. However,
neither repeating this case, nor combining this set of Exclusion Zones with Lemma 7.16.1’s Case 1 causes
the performance of OPT compared to GRZA to exceed 4, which does not exceed 12p−2c

3p−c , either.
Case 3 For the third possible Exclusion Zone set line-skipping Lemma 7.16.1’s Case 1, we consider a
pair of requests r5 = r6 = (e, w, 0), with e > b, but w < t, then releasing another pair of requests
r7 = r8 = (f, x, 1), with f ≥ e, and w − τ < x < w + τ < t. Note that e and w are only specified
with a relation to b and t. This makes r5, r6 a pair of general requests at location 0 released and served
after r1, r2. Also, note that f and x are only specified with a relation to e, w, b and t. This makes r7, r8
a pair of general requests crossing r5, r6. This case is very comparable to Case 1 of this line-skipping
discussion. GRZA accepts one request from r5 or r6, creating an Exclusion Zone at location 0, spanning
(w − 2τ, w + 2τ). That Exclusion Zone is of size 4τ , allowing OPT to serve four requests by Corollary
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7.8.1. However, instead of using the location-based Exclusion Zone at location 1 to serve two more
requests, another pair of requests is released at location 1. GRZA accepts one of these requests, causing
an Exclusion Zone between (w − τ, w + τ) at location 1. This Exclusion Zone is of size 2τ , allowing
OPT to serve two more requests, whilst still in compliance with Corollary 7.8.1. As in Case 1 of this
line-skipping discussion, OPT serves a total of 6 requests, two of which require an empty movement.
Meanwhile, GRZA serves two requests in this case, compared to the one request served in Case 1. There-
fore, we find that the profit of OPT on this third case of line-skipping, combined with Lemma 7.16.1’s
Case 1 is 12p−2c, whereas GRZA gains 4p−2c. This makes the performance of OPT compared to GRZA
12p−2c
4p−2c , which is lower than the 12p−2c

3p−c shown for Case 1 of line-skipping, combined with Lemma 7.16.1’s
Case 1. Finally, we note that the requests causing this Exclusion Zone set moves GRZA’s servers, with
one at location 0, and another at location 1, while OPT’s servers are at location 1. This server formation
is the same as the formation after Lemma 7.16.3’s Case 1, making this case an overall inferior approach
to Case 1.
Case 4 For the fourth and final possible Exclusion Zone set line-skipping Lemma 7.16.1’s Case 1, we
consider a pair of requests r5 = r6 = (e, w, 1), with e > b, but w < t, then releasing another pair of
requests r7 = r8 = (f, x, 0), with f ≥ e, and w − τ < x < w + τ < t. Note that e and w are only
specified with a relation to b and t. This makes r5, r6 a pair of general requests at location 0 released and
served after r1, r2. Also, note that f and x are only specified with a relation to e, w, b and t. This makes
r7, r8 a pair of general requests crossing r5, r6. We first discuss the impact of the first pair of requests.
Introducing r5, r6 first, we find that GRZA accepts one of them, gaining a profit of p − c. Accepting
this request adds location-time interval (1, (w− 2τ, w+ 2τ)) to EZ(r6+). The size of that location-time
interval is 4τ . Since there is no Exclusion Zone at 0, by Corollary 7.8.1, OPT can only accept requests
starting between w − 2τ and w + 2τ at location 1. Since the first two requests are at location 1, while
OPT’s servers are at location 0, all four of those require an empty movement.

After this, we consider the pair r7, r8. Introducing this pair of requests, we find that GRZA accepts
one of them, gaining a profit of p− c, because serving this request requires an empty movement to serve
the requests accepted in Lemma 7.16.1’s Case 1. This shortens the Exclusion Zone at (1, (w−2τ, w+2τ)),
and adds an extra zone to the set at (0, (w− τ, w+ τ)). This zone is of size 2τ . Thus, by Corollary 7.8.1,
OPT can only serve two requests from location 0. These requests do not require an empty movement,
and, in fact, serve as two of the required empty movements to serve the requests accepted at location
1. This means OPT serves six requests for a profit of 6p − 2c. Since OPT’s servers end at location 0,
no additional empty movements are required to serve the requests accepted in starting scenario case 1.
This makes OPT’s total profit 12p− 2c. Meanwhile, GRZA’s combined profit adds up to 4p− 2c. This
that OPT’s performance compared to GRZA over this instance is 12p−2c

4p−2c . That performance Ratio is

lower than the 12p−2c
3p−c shown for case 1 of line-skipping, combined with Lemma 7.16.1’s Case 1. Finally,

we note that the requests causing this Exclusion Zone set moves GRZA’s servers, with one at location
0, and another at location 1, while OPT’s servers are at location 0. We discuss the implications of this
new server formation in a separate Lemma. �

This was a distinction of all possible releases by an adversary line-skipping the scenario described in
Lemma 7.16.1’s Case 1. Throughout the Lemma, we have encountered two new scenarios. One is
Lemma 7.16.3’s Case 1 followed up by Lemma 7.16.1’s Case 1. The other is Lemma 7.16.3’s Case 4,
followed up by Lemma 7.16.1’s Case 1. In these cases, we need to explore what happens when a set of
requests is released either between or before the two cases.

Observation 7.16.3.2 No set of requests released by an adversary line-skipping Lemma 7.16.3’s Case
1 or 3 improves the performance ratio of OPT compared to GRZA.

Proof Recall that Lemma 7.16.3’s Case 1 utilizes the location-based Exclusion Zone. If an adver-
sary were to release any non distant request prior to Lemma 7.16.3’s Case 1, that would remove the
location-based Exclusion Zone, because it causes one of GRZA’s servers to arrive at location 1. If an
adversary were to release any distant request prior to Lemma 7.16.3’s Case 1, that would follow the
structure found in Lemma 7.16.1’s Case 2, which had a performance ratio of 4, which is lower than
Lemma 7.16.3’s Case 1. This proves this Observation. �

Observation 7.16.3.3 No set of requests released by an adversary line-skipping Lemma 7.16.3’s Case
4 improves the performance ratio of OPT compared to GRZA.
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Proof Recall that Lemma 7.16.3’s Case 4 requires an empty movement to be served. By observa-
tion 7.16.3.1, A request line-skipping a scenario in which an empty movement is required causes an
Exclusion Zone in which the performance ratio of GRZA compared to OPT does not exceed 4. Lemma
7.16.3’s Case 1 shows a performance ratio exceeding 4, meaning this performance ratio is worse than
12p−2c
3p−c . �

Observation 7.16.3.4 No set of requests released by an adversary between Lemma 7.16.3’s cases 1, 3
or 4 and 7.16.1’s case 1 improves the performance ratio of OPT compared to GRZA.

Proof In the calculations used for finding Lemma 7.16.3’s performance ratios, we already accounted
for the empty movement(s) required in between the line-skipping and the starting scenario. This leaves
us with servers in follow-up scenario locations, without a requirement where the servers end. Lemma
7.16.2 showed that the performance ratio of OPT compared to GRZA starting from the follow-up sce-
nario does not exceed 4, which is worse than 12p−2c

3p−c . �

We have now finished exploring all possible releases by an adversary from the line-skipping scenario,
reached after Lemma 7.16.1’s Case 1 was released (but served before that case starts). We have found
closing arguments for all possible releases by an adversary, starting from the starting scenario, following-
up on that scenario, or line-skipping that scenario. Having enumerated everything, we provide the
Competitive Ratio of GRZA.

Theorem 7.16 Algorithm GRZA is 12p−2c
3p−c competitive for the 2S2L-V problem with arbitrary c, and

υ − λ > 4τ .

Proof We proof this Theorem by enumerating all possible releases of an adversary that do not vio-
late Lemma 7.13. We have done this in Lemmas 7.16.1, 7.16.2 and 7.16.3. We know that these Lemma’s
enumerate all cases by Corollaries 7.16.1.2, 7.16.1.4, 7.16.2.3, 7.16.3.2, 7.16.3.3 and 7.16.3.4. In those
numerous cases, we found that the releases leading to Lemma 7.16.3’s case 1 provided the highest per-
formance ratio. Therefore, the competitive ratio of GRZA is 12p−2c

3p−c . �

Having proven this upper bound of GRZA, we have found algorithm that come close to the lower
bounds found in chapter 5 for each possible setting. This is a great achievement, especially since none
of the Lower Bounds ever get higher than 5, making the correct combination of these algorithms very
competitive on paired instances over 2S2L-V.
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8 Conclusion and Future Work

In this thesis, we have expanded the results on the Online Car Sharing Problem with two servers and two
locations, variable booking times, and with a focus on the special instance that all requests are released
alongside an identical paired request. We have proven the Lower Bounds on this instance, and shown
that no existing algorithm achieves an optimal competitive ratio for all settings of this problem. We have
also shown that simply translating existing online car sharing algorithms to this setting would result in
relatively poor results. Finally, we have provided three new algorithms that - when combined - are able
to achieve good results on any paired 2S2L-V instance. We proved the bounds of these algorithms with
a novel approach, limiting where an optimal scheduler could accept requests by the requests accepted by
our algorithms.

There are various avenues for future research on the online car sharing problem. Because we focused
on the 2S2L-V case with paired instances, there is much yet to be discovered about 2S2L-V in the general
case. We conjecture that the Lower Bound proofs provided here work on the general case, and that the
algorithms we provided achieve a tight performance even on the general case. To prove this, we see two
possibilities. One could prove that paired instances provide the lowest possible Lower Bounds on the
2S2L-V Problem. This is far from trivial, but proving it would confirm our conjecture. Alternatively, one
could prove Lemma 8.8 on the general case. Limiting the requests OPT can accept - without an algorithm
making further profit - to specific location-times can be of great benefit to car sharing. Furthermore, one
could prove the Upper Bound of the Greedy Algorithm or investigate Arrogant Greedy with a 2τ end of
the line Exclusion Zone. We have a hypothesis that these algorithms are the final pieces to achieve truly
tight upper bounds.

2S2L-V is not the only online car sharing variant that warrants further investigation. Increasing the
scope, we see many different avenues of research for this young field. In our proposal for this thesis, we
provided many examples, settings and variations of online car sharing problems that could still be re-
searched. We provide some of these ideas here, to serve as inspiration for continued work on the subject.

Server Cleaning
The server cleaning variation is an extension of the car-sharing problem, in which a server goes into a
certain cooldown after serving one or multiple requests. There are many practical reasons for not being
able to serve requests back to back. Such reasons include cleaning the server or refueling the server. The
amount of cooldown can either be a constant, or solely reliant on the length of the trip preceding it.

Late Rejection
In some situations, a company could stand to benefit from cancelling a request it already accepted. In
this variation, one would allow already accepted requests to be rejected before their starting time, still,
for a certain cost. Realistically, a company cancelling on a request it already accepted is extremely poor
form, and would lead to major losses due to bad reviews and lower overall usage. Modelling such long
term effects could also be very interesting.

Delayed Booking
Another way to increase the complexity of this problem is if we allow Delayed Booking. With delayed
booking, requests do not need to be handled as soon as they arrive. Instead, the decision to serve a
request or not should be made before a certain deadline. Note that the general case is a subcase of the
Delayed Booking case, with a deadline of b+ 0 per request.

Different Networks
Without requiring additional problems, there are still many special networks for which the bounds found
by K. Luo et al in [11] might be improved upon. There are multiple networks that are of particular
interest. One such a network would be a two location network with a storage in the middle, that would
not receive requests, but would allow unprompted moves to and fro. Another interesting network would
be a tree. Other interesting networks could be a double star network - that is, two stars connected by a
single edge - or a line network.
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Multi-Capacitated Car Pooling
One of the assumptions that has implicitly been made in the car-sharing literature is that every request
is served for one client. Most cars - or servers - have more than one seat, however. That means the full
capacity of servers is seldomly used. To alleviate this shortcoming, some clients may be willing to share
their ride with a different client if the trip is the same for both of them. This would probably cut in on
the price of a trip, and requires some sort of delayed booking.

Prize Collection
The concept of prize collection was used by E. Balas in an analysis of the travelling salesperson problem,
allowing the server to skip serving requests that are too far off course for a certain cost [3]. Applying this
theory to car-sharing could be interesting, for it would penalize rejecting requests. This could change
the competitive ratios of some problems or algorithms such as those developed for 2S2L-F. One of the
bigger problems with a direct application of this line of thinking would be that rejecting requests is an
integral part of the car-sharing problem and removing them could lead to very harsh competitive ratios.
A way to reduce the harshness might be to only apply the rejection penalty if the rejected request was
acceptable to any server.

Car-Sharing with Advice
For some online problems, authors decide to give online algorithms a helping hand in trying to find a
good competitive ratio. They do this by giving the online algorithm access to an oracle: a separate
entity that is familiar with the offline variant of the problem instance given to the online algorithm [6].
The algorithm can consult the oracle on different matters, such as when the next request is going to
arrive, whether the optimum algorithm served this current request or the amount of requests. To our
knowledge, no literature for car-sharing with advice has been released.

Probabilistic Car-Sharing
Using real life traffic information, one could model a less adversarial input. Providing an online algorithm
that is likely to perform well on real life data could be a fascinating line of research all on its own.

Uncertainty Caused by Randomized Travel Times One of the assumptions made in the car-
sharing problem is that the same distance takes the same amount of time to travel each and every time.
This is an oversimplification of reality, because traffic lights, weather conditions or accidents could all
drastically impact the travel time of each and every trip. Replacing the static travel time of requests
with a randomized one might lend itself to a realistic simulation. This would impact the analysis of
algorithms in an unexpected way and would probably lead to questions of robustness and dealing with
the uncertainty, rather than competitiveness.
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