
UTRECHT UNIVERSITY

MASTER THESIS

FACULTY OF SCIENCE

Generating Maximal Independent Sets Using
Lotka-Volterra Dynamics

Author
M. N. MOOIJ

Supervisor
Dr. I. KRYVEN

Second Readers
Dr. P. SALANEVICH
Dr. C. GROENLAND

June 2022

Abstract

Systems of ordinary differential equations (ODEs) are rarely thought of as a means of dis-
crete computations. We consider finding the maximum independent set in a graph which
is known to be a computationally demanding (NP-hard) problem. We show that one can
construct an approximate solution to this problem by exploring the stable manifold of a
particular system of ODEs by using the numerical continuation. Interestingly, our system
of ODEs can be regarded as the Lotka-Volterra dynamics for competing biological species
with a binary interaction matrix, which suggests a parallel with natural computing.

1

Contents

Introduction 1

1 Graph Theory 3
1.1 Basic notions . 3
1.2 Different graph types . 4
1.3 Spectrum of graphs . 6
1.4 Gershgorin Circle Theorem . 6
1.5 Rayleigh quotient . 7
1.6 Regular graphs . 8
1.7 Bipartite graphs . 8

2 Random Graphs 9
2.1 Different random graph models . 9

2.1.1 Erdős-Rényi graphs . 9
2.1.2 Random geometric graphs . 10
2.1.3 Random bipartite graphs . 11

2.2 McKay distribution . 12

3 Complexity Theory 14
3.1 Complexity theory . 14
3.2 Optimization problems on graphs . 14

3.2.1 Maximum Clique problem . 14
3.2.2 Maximum Matching problem . 15
3.2.3 Minimum Vertex Cover problem . 15
3.2.4 Maximum Independent Set problem . 16

3.3 Decision problems . 17
3.4 NP-complete problems . 18
3.5 Exact algorithms for MIS problem . 18

3.5.1 MIS problem for bipartite graphs . 19
3.6 Heuristic algorithms for MIS problem . 19

4 Mathematical Ecology 22
4.1 Lotka-Volterra equations in 2 dimensions . 22
4.2 Lotka-Volterra equations in n dimensions . 23
4.3 Limiting behavior of Lotka-Volterra equations. 24

4.3.1 Fixed points . 25
4.3.2 Jacobian matrix . 26

5 Lotka-Volterra equations for solving MIS problem 27
5.1 Ecological heuristic . 27
5.2 Matrix Theory . 27
5.3 Stability of the feasible fixed point . 29
5.4 Stability of fixed points with extinction . 31
5.5 Regular Graphs . 33

5.5.1 Fixed points . 33
5.5.2 Stability . 33

5.6 Complete Graphs . 35
5.6.1 Fixed points . 36
5.6.2 Stability . 36

6 Numerical Continuation Algorithm 38
6.1 Numerical continuation . 38
6.2 Algorithm . 39
6.3 Ecological heuristic . 39
6.4 Bifurcation values . 40

6.4.1 Newton’s method . 41
6.5 Algorithm speed up . 42

6.6 Modified algorithm . 42
6.7 Algorithm with exceptions . 42

6.7.1 Regular graphs . 43
6.7.2 Other graphs . 43

6.8 Exception induced by algorithm . 43
6.9 Final algorithm . 45
6.10 Lower bound bifurcation . 46

7 Numerical results 48
7.1 Erdős-Rényi graphs . 48
7.2 Geometric graphs . 48
7.3 Bipartite graphs . 49
7.4 Computational complexity . 49
7.5 Numerical continuation failure . 49

Discussion 50
D.1 Results . 50
D.2 Future Work . 50
D.3 Acknowledgements . 51

Appendix 52
A.1 Erdős-Rényi graphs data . 52
A.2 Geometric graphs data . 54
A.3 Bipartite graphs data . 56
A.4 Algorithm comparison . 58

References 61

INTRODUCTION

Introduction

In 1763, Leonhard Euler published what is widely regarded as the first paper in graph theory. This paper is about
the well-known Seven Bridges of Königsberg Problem [45]. Since then, a lot of work has been done in this area.
Applications of graph theory have been found in service industry scheduling [1], school bus routing [2], computer
communication [2], wireless network planning [12, 40], error correcting codes [12], image and data processing [43],
and many other areas.

Eventually research gave rise to the notion of NP-hard problems. These are problems which can not be solved in
a "reasonable" amount of time. A list with many of these problems can be found in [17].

A well-known NP-hard problem is the Maximum Independent Set (MIS) Problem [17]. This problem has many
applications, for example in radio network optimization [13]. This problem aims to find for G = (V, E) a simple
graph the largest subset A ⊆ V, such that for every v ∈ A, we have for w ∈ N(v) that w /∈ A, where N(v) denotes
the neighbors of v.

There are many algorithms that solve the MIS problem exactly. For example, one can look at the O(20.276n)-
time algorithm introduced by J. Robson [38] or the 1.1996nnO(1)-time polynomial-space algorithm of M. Xiao and
H. Nagamochi [46].

Since the MIS problem is NP-hard, it is not (yet?) possible to solve it exactly in polynomial time. It is possible
however, to solve it approximately in polynomial time [4, 5, 6, 7, 10, 23, 24, 36]. The aim of this thesis is to find
new approximation algorithms, using Lotka-Volterra (LV) dynamics, given by the LV equations [34].

We propose two algorithms that generate maximal independent sets in a graph. Both of these algorithms are
based on the LV equations, taken from ecology. These equations are a set of ordinary differential equations, used
to model behaviour of species in ecological systems.

• In the first algorithm we investigate the trajectories of the LV equations for a specific choice of parameters.
We see that these trajectories can be used to determine a maximal independent set in a graph.

• In the second algorithm we again use the Lotka-Volterra equations. Instead of looking at the trajectories
of the corresponding dynamical system, we use numerical continuation to investigate the behaviour of the
fixed points under the change of parameters. It turns out that with this approach we are able to find a
maximal independent set in a graph.

The novelty of this approach is that we have biological heuristic to explain the behaviour of both algorithms. This
allows us to solve a discrete problem by means of a discrete system. One of the papers that also uses a continuous
system to solve a discrete problem

Reading Guide

A goal of this thesis is to be self-contained. To reach this goal, we use four sections to introduce material that is
necessary to discuss the proposed algorithms. One can also see these first four sections as an introduction to the
thesis. If one is familiar with this material, it can be skipped.

• In Section 1 of this thesis, we give an introduction into graph theory. We discuss basic notions along with
general information about graphs. We use these notions later in the thesis.

• In Section 2, we discuss random graphs and how to construct them. We observe that the eigenvalue spectrum
of random regular graphs is given by the McKay distribution.

• In Section 3, we give an introduction into complexity theory and NP-complete problems. We show the MIS
problem is NP-complete and we give examples of an exact and an approximation algorithm.

• In Section 4, we discuss the LV dynamics and the ecological implications.

• In Section 5, we show that for appropriate parameters the LV dynamics converge to a maximal independent
set.

• In Section 6, we introduce a new algorithm inspired by ecological heuristics of the LV dynamics and numer-
ical continuation.

1

INTRODUCTION

• In Section 7, we do simulations to determine the performance of the two algorithms. We will see that, for
certain graph types, the second algorithm (Continuation) performs better than the first algorithm (LV).

A star (∗) will be used to mark new results first obtained in this thesis (to the best of the author’s knowledge), in
order to distinguish them from already existing results in the literature.

2

1 GRAPH THEORY

1 Graph Theory

Graph theory is a very active discipline in mathematics. It has applications in service industry scheduling [1],
school bus routing [2], computer communication [2], error correcting codes [12], wireless network planning [12,
40], image and data processing [43], and many other areas. In this section, we first show basic but necessary graph
theoretical notions. For a more detailed discussion of the basics of graph theory, the reader is referred to [22]. Then
we discuss some important graph families. Finally, we look at spectral properties of graphs.

1.1 Basic notions

In this thesis, we denote [n] := {1, 2, . . . , n} to simplify the notation.

Definitions:

• Graph: A graph G = (V, E) consists of a set vertices V = {vi : i ∈ [n]} and a set edges E ⊆ V ×V. With the
size of the graph |G|, we denote the number of vertices |V| in the graph.

• Adjacency matrix: We define the adjacency matrix of a graph as

A0
ij =

{
1 if there is an edge between vertex vi and vertex vj,
0 otherwise.

• (Un)directed: We call a graph undirected if A0
ij = A0

ji for every i, j ∈ [n]. If not, we call the graph directed.

• Neighborhood: Let G = (V, E) be a graph. For any vertex vi ∈ V, we denote the neighborhood of vi by
N(vi) := {vj ∈ V\{vi} : A0

ij = 1}.

• Degree: The degree of a vertex vi ∈ V is the number of neighbors of vi. We denote the degree by di = |N(vi)|.

1
2

3

4

A0 =

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

vertex degree

v1 1
v2 3
v3 1
v4 1

Figure 1.1: Graph example.

• Walk: A walk on a graph is a sequence of vertices, such that every pair of consecutive vertices is connected
by an edge.

• Path: A path in a graph is a walk where every vertex occurs only once.

• Cycle: A walk in which the first vertex is the same as the last vertex and every other vertex occurs at most
ones, we call a cycle.

• Connected: A graph is connected if there exists a path between any two distinct vertices in the graph.

• Diameter: Let G = (V, E) be a connected graph. The diameter m of G is defined as the longest shortest path
between vertices of G. That is, m = max{|P(vi, vj)| : vi, vj ∈ V}, where |P(vi, vj)| denotes the length of the
shortest path between vertex vi and vj.

3

1 GRAPH THEORY

Lemma 1.1.1 (Number of walks). Let vi, vj ∈ V be two vertices. The number of walks of length k from vertex vi to vertex
vj is given by the entry (A0)k

ij.

Proof. By definition of the adjacency matrix, the statement is true for k = 1. Assume the statement is true for some
k ∈N>1. Then (A0)k

il equals the number of walks from vertex vi to vertex vl . Note (A0)k
il A

0
l j is nonzero only when

vertex vl is a neighbor of vertex vj. Hence,

(A0)k+1
ij = ((A0)k A0)ij

= ∑
l∈[n]

(A0)k
il A

0
l j

is exactly the number of walks of length k + 1 from vertex vi to vertex vj.

1.2 Different graph types

We call a graph simple if it is undirected and contains no self-loops or parallel edges. In this thesis, we only
consider simple graphs. Therefore, when we talk about a graph, we implicitly mean a simple graph.

There are a lot of different simple graphs. We give some of the most well-known examples.

Bipartite graph: We call a graph bipartite if we can make
a partition of the vertex set such that there are no edges
between vertices of the same set.

Figure 1.2: Bipartite graph.

Tree graph: We call a graph a tree if every pair of vertices
is connected by exactly one path.

Figure 1.3: Tree graph.

4

1 GRAPH THEORY

Star graph: We call a graph G a star if it is a tree with
one vertex having degree |G| − 1 and the other vertices
having degree 1.

Figure 1.4: Star graph.

Regular graph: We call a graph regular if the degrees of all
vertices are equal.

Figure 1.5: Regular graph.

Complete graph: We call a graph complete if there is an
edge between any two distinct vertices of the graph.

Figure 1.6: Complete graph.

Complement graph: Let G = (V, E) be a graph. With the
complement graph G we denote the graph consisting of
vertex set V and edge set E.

1
2

3

4
5

G

1

2

3

4

5

G

Figure 1.7: Graph G and its complement G.

5

1 GRAPH THEORY

1.3 Spectrum of graphs

By the spectrum of a graph we mean the spectrum of the corresponding adjacency matrix. The spectrum of a graph
is important in many applications. For example in finding communities [42, p.90–91] and finding minimum cuts
in a graph [35]. Also, as we will see in Section 5, the spectrum of a matrix is important in determining the stability
of fixed points in dynamical systems. If the spectrum of a matrix is only real-valued, we number the eigenvalues
in decreasing order, that is λ1 ≥ λ2 ≥ · · · ≥ λn. Note that these eigenvalues are not necessarily unique. In the
rest of this section, we consider a graph with n vertices and m edges. We denote by dmax and dmin the biggest and
smallest degree of the graph.

Definition 1.3.1 (Hermitian matrix). We call a matrix A hermitian if A∗ := AT = A, where AT is the transpose of
matrix A and A is the component-wise complex conjugate of matrix A.

Lemma 1.3.2. For every hermitian matrix, the eigenvalue spectrum is real.

Proof. Let A be a hermitian matrix. Let λ be an eigenvalue of A with corresponding eigenvector v. Then by
definition, we have Av = λv. Hence, we get the equality

λ‖x‖ = λx∗x = x∗λx = x∗Ax = (x∗A∗x)∗ = (x∗Ax)∗ = (λ‖x‖)∗ = λ‖x‖.

So we know λ = λ, and therefore λ is real.

Note that for a simple graph the adjacency matrix is symmetric and consists only of real elements. Hence, the
adjacency matrix is hermitian. We can conclude by Lemma 1.3.2 that the spectrum of a simple graph is real.

Lemma 1.3.3. Let G = (V, E) be a simple graph with |E| 6= 0. Then the spectrum of G contains positive and negative
eigenvalues.

Proof. One way too see this is by looking at the trace of A0. This trace is equal to the sum of eigenvalues and for
a simple graph this equals zero. Therefore, either all eigenvalues are zero or there exist both positive as well as
negative eigenvalues. Since |E| 6= 0, it follows that A0 6= 0 and, thus, it must have a nonzero eigenvalue.

1.4 Gershgorin Circle Theorem

A possible way to bound the eigenvalues of a matrix is given by the Gershgorin circle theorem. It is first introduced
in 1931 by Soviet mathematician S. Gershgorin [18]. To formulate the theorem, we introduce the Gershgorin disc.

Definition 1.4.1 (Gershgorin disc). Let A be a n× n complex matrix. We define ri(A) = ∑
i 6=j
|Aij| as the sum of the

magnitudes of the non-diagonal entries of the ith row. The ith Gershgorin disc is the disc D(Aii, ri(A)), centered at
Aii on the complex plane, with radius ri(A).

Theorem 1.4.2 (Gershgorin Circle Theorem [18]). Every eigenvalue of a matrix lies within at least one of its Gershgorin
discs.

Proof. Let v be an eigenvector of A with corresponding eigenvalue λ. Since v 6= 0, we know max
i∈[n]
|vi| = |vk| > 0

for some k ∈ [n]. The kth equation of Av = λv gives

∑
j 6=i

Akjvj = λvk − Akkvk.

Therefore, we have

|λ− Akk||vk| = |λvk − Akkvk|
= |∑

j 6=i
Akjvj|

≤ ∑
j 6=i
|Akj||vj|

≤ ri(A)|vk|.

6

1 GRAPH THEORY

Since vk 6= 0, we know

|λ− Akk| ≤ rk(A).

So λ belongs to the kth Gershgorin disc.

A =

−5/2 −1/2 3/2
3/2 −1/2 0

1 3/2 5/2

 D1 = D(−5/2, 2)
D2 = D(−1/2, 3/2)
D3 = D(5/2, 5/2)

4 2 0 2 4
Re

3

2

1

0

1

2

3
Im

D1

D2

D3

1
2

3

Figure 1.8: Gershgorin circle theorem example.

In Figure 1.8 we show the Gershgorin discs of an example matrix A. We also indicate the eigenvalues in the
complex domain. Note all the eigenvalues are within the union of the Gershgorin discs. This is exactly what the
Gershgorin circle theorem tells us. Also note that λ1 and λ3 are complex conjugate, something we can expect as
well, due to the fact that the matrix is real-valued.

Corollary 1.4.3. For every graph, the upper bound λ1 ≤ dmax holds.

Proof. Let A0 be the adjacency matrix of a graph. Note that A0
ii = 0 for all i ∈ [n]. Let vk be a vertex with maximum

degree. Note ri(A0) ≤ rk(A0) for all i ∈ [n]. Therefore, by Gershgorin circle theorem, we know λi ≤ dmax for all
i ∈ [n], and in particular, λ1 ≤ dmax.

1.5 Rayleigh quotient

A characterization of λ1 and λn is given by the Rayleigh quotient. Using the Rayleigh quotient, we prove a lower
bound on the largest eigenvalue λ1.

Definition 1.5.1 (Rayleigh quotient). Let A = A∗ be a hermitian matrix. The Rayleigh quotient is defined by the
function

R(x) =
〈x, Ax〉
‖x‖2 , for x 6= 0. (1)

Theorem 1.5.2. [26, p.203] If A is a self-adjoint matrix, then

max
x 6=0

R(x) = λ1, and

min
x 6=0

R(x) = λn.

Lemma 1.5.3. If the vertices of G have degrees d1, d2, . . . , dn, then λ1 ≥ d := 1
n ∑

i∈[n]
di.

7

1 GRAPH THEORY

Proof. Using Theorem 1.5.2 with x the vector 1 with one at every coordinate, we get

λ1 = max
x 6=0

R(x) ≥ R(1) =
1
n

n

∑
i=1

di = d.

Lemma 1.5.4. [30, p.176] If dmax is the maximal degree of a vertex in G, then λ1 ≥
√

dmax.

Combining Lemma 1.4.3, Lemma 1.5.3 and Lemma 1.5.4, we get the following bound.

Proposition 1.5.5. For every graph G,

max{d,
√

dmax} ≤ λ1 ≤ dmax. (2)

1.6 Regular graphs

In the case of a regular graph, we can make more strict bounds on the eigenvalue spectrum. The largest eigenvalue
of a regular graph can be determined as follows.

Lemma 1.6.1 (Largest eigenvalue of regular graph). For a regular graph with adjacency matrix A0 and constant degree
d, the largest eigenvalue is given by d and corresponds with the vector 1 consisting of one at every coordinate.

Proof. Let 1 be the only ones vector. We can calculate the product with the adjacency matrix

(A01)i = ∑
j∈[n]

A0
ij1i

= d.

So we know λ1 ≥ d. Note every Gershgorin disc of the matrix A0 is given by D(0, d). So by the Gershgorin circle
Theorem 1.4.2, we know λ1 ≤ d. This completes the proof.

1.7 Bipartite graphs

We make an observation about cycles in a bipartite graph.

Lemma 1.7.1. A graph is bipartite if and only if it has no cycles of odd length.

Proof. Assume G is a bipartite graph. Let A ∪ B be the bipartite partition of the graph. Note at every step of a
cycle, we have to jump from A to B or vice versa. So we can never return to the starting point of the cycle in an
odd number of steps.

Assume G is a graph without cycles of odd length. We show how to partition G into two sets A and B such that
there are no edges between vertices in the same set.

Let C be a connected component of G. With d(v, w) we denote the distance between vertex v and vertex w. That
is, the length of the shortest path between v and w. Let v be a vertex in C. For all w ∈ C, we put w in A if d(v, w)
is even and we put w in B if d(v, w) is odd. Continue this procedure for all connected components of G.

Assume there exists an edge between u ∈ A and w ∈ A. Then, by construction, there exists a cycle of odd length
between v and w. This cycle is given by the shortest path between v and w attached to the shortest path between
v and u attached to the edge between u and w. By assumption, this can not happen. Hence, the graph G is
bipartite.

8

2 RANDOM GRAPHS

2 Random Graphs

In Section 1, we discussed graph theory and bounds on the spectrum of different graphs. In this section, we look
at graphs that are generated in a random way. We look at different ways to generate a random graph, which gives
us different random graph types. We discuss critical bounds for connectedness of these graphs. At the end of this
section, we talk about the spectrum of random regular graphs.

2.1 Different random graph models

There are many types of random graphs. We show some of the most well-known examples here.

2.1.1 Erdős-Rényi graphs

The Erdős-Rényi random graphs were introduced by P. Erdős and A. Rényi in 1960 [16].

Erdős-Rényi graph
Let n ∈N and p ∈ [0, 1]. An Erdős-Rényi graph is constructed in the following way:

1. Initialize n vertices (vi)i∈[n].

2. Add each edge independently with probability p.

3. Return the obtained graph.

(a) p = 0. (b) p = 0.5. (c) p = 1.

Figure 2.1: Erdős-Rényi graph realizations constructed on 8 vertices for different connection probabilities.

Note that in a graph with n vertices, we can have at most (n
2) = n(n−1)

2 edges. Since we add every edge with
a fixed probability p and independently of the other edges, the probability of picking a particular graph with n
vertices and m edges from all possible graphs with n vertices is given by

pm(1− p)
n(n−1)

2 −m.

As shown in [16, p.57], there exists a threshold for p for which the Erdős-Rényi graph switches from unconnected
to connected with high probability.

Lemma 2.1.1 (Erdős-Rényi threshold). Let ε > 0. If p <
(1−ε) log n

n , then a G(n, p) graph is almost surely disconnected.

If p >
(1+ε) log n

n , then a G(n, p) graph is almost surely connected.

In Figure 2.2, we have generated Erdős-Rényi graphs with different connection probabilities p. One can see the
connectivity indeed changes when we increase the connection probability.

9

2 RANDOM GRAPHS

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
p

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

siz
e

of
 sm

al
le

st
 c

on
ne

ct
ed

 c
om

po
ne

nt

Figure 2.2: Size of the smallest connected component of a Erdős-Rényi graph of size n = 150. The red line indicates
the critical threshold of log(n)/n. Averaged over 500 runs.

2.1.2 Random geometric graphs

We can generate a random geometric graph of size n with connection parameter r in the following way.

Random geometric graph
Let n ∈N and r ∈ [0, 1]. A random geometric graph is constructed in the following way:

1. Initialize n vertices (vi)i∈[n].

2. Pick n points (xi)i∈[n] uniformly at random from (0, 1)2.

3. Put an edge between vertex vi and vertex vj if d(xi, xj) < r.

4. Return the obtained graph.

(a) r = 0. (b) r = 0.5. (c) r = 1.

Figure 2.3: Geometric graphs constructed on 8 vertices for different connection parameter values.

Just as for Erdős-Rényi graphs, there exists a critical threshold for the parameter r, for which the connectivity of
the geometric graph changes with high probability.

10

2 RANDOM GRAPHS

For r <
√

log n
πn , a geometric graph of size n with connection parameter r is almost surely not connected [32, p.120].

In Figure 2.4 we have generated geometric random graphs with different connection parameters r. One can see
the connectivity indeed changes when we increase the connection probability.

0.10 0.15 0.20 0.25 0.30 0.35
r

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

siz
e

of
 sm

al
le

st
 c

on
ne

ct
ed

 c
om

po
ne

nt

Figure 2.4: Size of the smallest connected component of a geometric(r,n) graph of size n = 50. The red line

indicates the critical threshold of
√

log n
πn . Averaged over 500 runs.

2.1.3 Random bipartite graphs

In order to generate random bipartite graphs, we can do a similar procedure as for a Erdős-Rényi graph. Note
that a bipartite graph consists of two sets A and B.

We can generate a random bipartite graph with components A and B by adding every possible edge from set A
to set B with a probability p.

Random bipartite graph
Let n ∈N and p ∈ [0, 1]. A random bipartite graph is constructed in the following way:

1. Initialize n vertices (vi)i∈[n].

2. Split up the vertices in the required bipartite sizes |A| and |B|.

3. Add each edge between A and B independently with probability p.

4. Return the obtained graph.

11

2 RANDOM GRAPHS

(a) p = 0. (b) p = 0.5. (c) p = 1.

Figure 2.5: Random bipartite graphs constructed on 8 vertices for different connection probabilities.

2.2 McKay distribution

Random regular graphs can be generated uniformly at random in time-complexity O(nd2), where n is the number
of vertices in the graph and d the constant degree of the graph [29]. In the case of random regular graphs, a lot is
known about the distribution of eigenvalues of the adjacency matrix. In 1981, the spectral density of the adjacency
matrix of random regular graphs was determined by B. McKay [33].

Theorem 2.2.1 (McKay distribution). Let X1, X2, . . . be a sequence of regular graphs with degree d ≥ 2 such that |Xi| →
∞ and ck(Xi)/|Xi| → 0 as i→ ∞ for each k ≥ 3, where ck(Xi) is the number of k-cycles in Xi. The spectral density for the
eigenvalues of Xi as i→ ∞ is given by

f (x) =

 d
√

4(d−1)−x2

2π(d2−x2)
for |x| ≤ 2

√
d− 1,

0 otherwise.
(3)

6 4 2 0 2 4 6
x

0.00

0.05

0.10

0.15

0.20

0.25

f(x
)

d = 2
d = 4
d = 6
d = 8

Figure 2.6: McKay distribution for regular graphs with different degrees.

In [33, p.214], it is shown that random regular graphs obey the requirement ck(Xi)/|Xi| → 0 as i → ∞, for each
k ≥ 3. Therefore, we can use Theorem 2.2.1 to determine the spectral density of random regular graphs.

12

2 RANDOM GRAPHS

In Figure 2.6, one can see the McKay probability distribution for random regular graphs with different degrees.
Note that this does not imply that an adjacency matrix can not have an eigenvalue bigger than 2

√
d− 1. What

it does say is that the limiting portion of the eigenvalues larger than 2
√

d− 1 is zero. In fact, we have already
seen one eigenvalue that is larger than 2

√
d− 1. Since we are looking at regular graphs, we know d is always an

eigenvalue.

The McKay distribution gives us a way to make statements about almost all (in a probabilistic sense) eigenvalues
of random regular graphs. We use this distribution in Section 5.5.

13

3 COMPLEXITY THEORY

3 Complexity Theory

We use this section to introduce optimization problems and different kinds of algorithms to solve these. The work
we do in this section is needed to understand the MIS problem and the algorithms we introduce later in this thesis.

3.1 Complexity theory

Arguably, one of the most wide-known mathematical problem in and outside mathematics is the problem P vs. NP.
This problem is subject of much mathematical research and discussion [14, 44]. You can even earn a million dollars
if you solve it. But what makes this problem so difficult? First we try to understand the problem by providing an
example.

What if someone gives us a wallet filled with money. This person wants to know how much money is in the
wallet. In this case, a suitable algorithm to solve this problem is to simply count the money one by one. Let’s say
the wallet contains five dollar bills and we can count one dollar bill in one second. Then this algorithm takes 5
seconds. If the wallet contains 20 bills, the algorithm takes 20 seconds. This is an example of a polynomial (P)
time algorithm. The computation time is a polynomial function of the size n of the wallet (n1 in this case).

Now what if someone gives us a 4-digit lock. Suppose we get a 4-digit code and the question is to check if the
code opens the lock. We can easily try this on the lock. Even if we have a 1000-digit lock, this problem can be
solved in polynomial time (again order n1 here).

But what if the question is how to open the lock. In the case of the 4-digit lock, we would need to check 104

possibilities. If checking a possibility takes 1 second, this takes us 104 seconds, that is 2.8 hours. If this still seems
manageable, think about when the lock has a 1000-digit code. Cracking this code takes 101000 seconds, that is
3.17 · 10989 millennia. Perhaps not possible anymore, assuming you want to be home before dinner. This type of
problem we call a NP-hard problem.

The problem P=NP is the question if these problems are actually the same. Are NP-problems really impossible to
solve in polynomial time or is it just that we have not found the correct polynomial time algorithm yet.

In this section, we first introduce different optimization problems on graphs. Then we give a rigorous definition
of decision problems and how we can relate these to the optimization problems we have discussed. We prove that
these optimization problems are actually NP-hard problems.

3.2 Optimization problems on graphs

Here, we describe some optimization problems on graphs. We use the same definition of graphs we have encoun-
tered in Section 1. The reason we introduce several of these optimization problems is because we need them in
our reasoning in later sections.

3.2.1 Maximum Clique problem

Definition 3.2.1 (Clique). Let G be a graph with vertex set V and edge set E. A clique is a set C ⊆ V such that for
each v, w ∈ C there exists an edge that connects v and w.

Definition 3.2.2 (Maximal/Maximum clique). Let G be a graph with vertex set V and edge set E. Let C be a clique
of G. We call the clique C maximal if there exists no other clique C′ of G such that C ⊂ C′. We call a maximal clique
of G that has the largest cardinality a maximum clique of G.

14

3 COMPLEXITY THEORY

(a) Clique. (b) Maximal clique. (c) Maximum clique.

Figure 3.1: Cliques in a graph.

An example of a clique in a graph is given by social networks formed by friendships. In this case, a maximum
clique in the graph is given by a biggest group of friends.

Solving the Maximum Clique problem means finding a maximum clique in a graph.

3.2.2 Maximum Matching problem

Definition 3.2.3 (Matching). Let G be a graph with vertex set V and edge set E. A matching is a set M ⊆ E such
that no edges in M share the same endpoint.

Definition 3.2.4 (Maximal/Maximum matching). Let G be a graph with vertex set V and edge set E. Let M be a
matching of G. We call the matching M maximal if there exists no other matching M′ such that M ⊂ M′. We call a
maximal matching of G that has the largest cardinality a maximum matching of G.

(a) Matching. (b) Maximal matching. (c) Maximum matching.

Figure 3.2: Matchings in a graph.

Solving the Maximum Matching problem means finding a maximum matching in a graph.

3.2.3 Minimum Vertex Cover problem

Definition 3.2.5 (Vertex cover). Let G be a graph with vertex set V and edge set E. A vertex cover is a set S ⊆ V
such that for all edges (u, v) ∈ E, we have either u ∈ S or v ∈ S.

15

3 COMPLEXITY THEORY

Definition 3.2.6 (Minimal/Minimum vertex cover). Let G be a graph with vertex set V and edge set E. Let S be a
vertex cover of G. We call S minimal if there is no other vertex cover S′ such that S′ ⊆ S. We call a minimal vertex
cover that has smallest cardinality a minimum vertex cover.

(a) Vertex cover. (b) Minimal vertex cover. (c) Minimum vertex cover.

Figure 3.3: Vertex covers in a graph.

Solving the Minimum Vertex Cover problem means finding a minimum vertex cover in a graph.

3.2.4 Maximum Independent Set problem

Definition 3.2.7 (Independent set). Let G be a graph with vertex set V and edge set E. An independent set A ⊆ V
is a set of vertices such that for all v ∈ A we have N(v) ∩ A = ∅.

Definition 3.2.8 (Maximal/Maximum independent set). Let G be a graph with vertex set V and edge set E. We
call an independent set A maximal if for all v ∈ V one of two statements hold.

• v ∈ A , or

• N(v) ∩ A 6= ∅.

We call a maximal independent set of G that has the largest cardinality a maximum independent set of G.

Figure 3.4: Maximal/Maximum independent sets. Note the upper graph indicates a maximal independent set,
while the lower graph indicates a maximum independent set.

16

3 COMPLEXITY THEORY

Figure 3.5: Maximal/Maximum independent sets.

Solving the Maximum Independent Set problem means finding a maximum independent set in a graph.

3.3 Decision problems

We rigorously define different kinds of decision problems and the link to the optimization problems we discussed
in Section 3.2. We use the same notation and reasoning as in [41].

Definition 3.3.1 (Decision problem). A decision problem Π is a set of instances I that can be partitioned into "Yes"
and "No" instances IY, IN , such that

• IY ∪ IN = I .

• IY ∩ IN = ∅.

Example 3.3.2.

1. I = {{1, 4, 6}, {3, 11, 8}, {13, 2, 15}}, IY = {A ∈ I : ∃a ∈ A such that a is prime}, IN = {A ∈ I : ∀a ∈
A, a is not prime}.

2. I = undirected graphs, IY = {graphs with a MIS of size |MIS| > 10}, IN = {graphs with a MIS of size |MIS| ≤
10}.

4

Definition 3.3.3 (Certificate). We call x a certificate if it can be used to determine whether I ∈ IY or I ∈ IN .

Example 3.3.4. Certificates for Example 3.3.2(1) could be the following.

{1, 4, 6} has no certificate ,
{3, 11, 8} with certificate 3,
{13, 2, 15} with certificate 13,
{13, 2, 15} with certificate 2.

4

Definition 3.3.5 (NP). We say decision problem Π is in complexity class NP, if every "Yes" instance I ∈ IY of Π
has a certificate x whose validity can be verified in time polynomial in |I|.

Definition 3.3.6 (co-NP). We say decision problem Π is in complexity class co-NP, if every "No" instance I ∈ IN
of Π has a certificate x whose validity can be verified in time polynomial in |I|.

Definition 3.3.7 (Efficient algorithm). Algorithm ALG for a decision problem Π is efficient if for every instance I
of Π, its computation time is bounded by a polynomial function of the size |I| of I.

Definition 3.3.8 (P). We say decision problem Π is in complexity class P, if there exists an algorithm ALG that
determines efficiently for every instance I ∈ I of Π, whether I ∈ IY or I ∈ IN .

17

3 COMPLEXITY THEORY

Some decision problems are harder than others. We say decision problem A is at least as hard as decision problem
B if there exists a poly-time reduction from problem B to problem A.

Definition 3.3.9 (Poly-time reduction). A poly-time reduction from decision problem Π1 to decision problem Π2 is
a function φ : I1 → I2 that maps an instance I1 ∈ I1 of Π1 to some instance I2 = φ(I1) ∈ I2 of Π2, so that

• I2 = φ(I1) can be computed in time polynomial in |I1|, for all I1 ∈ I1.

• I1 ∈ (I1)Y ⇐⇒ I2 = φ(I1) ∈ (I2)Y.

If such a poly-time reduction exists, we say Π1 can be reduced to Π2, and write Π1 � Π2.

Using poly-time reductions, we can make statements about the hardness of a problem. We have the following
intuitive result.

Lemma 3.3.10. Reductions are transitive. If Π1 � Π2 and Π2 � Π3, then also Π1 � Π3.

A class of problems that are all equally hard to solve, are the NP-complete problems.

Definition 3.3.11 (NP-complete). A decision problem Π is said to be NP-complete if

• Π ∈ NP.

• For all problems Π′ ∈ NP, we have Π′ � Π.

Note that using the transitivity property of Lemma 3.3.10, we can determine if a decision problem Π is NP-
complete by finding a poly-time reduction from a problem that is known to be NP-complete to problem Π. This
transitive property also implies that if we can find an efficient algorithm to solve a NP-complete problem, we are
able to solve all NP-complete problems.

Using all the definitions we have introduced, we can make the main statement of this section.

Theorem 3.3.12. An efficient algorithm to solve only one NP-complete problem Π, yields that all problems Π′ ∈ NP are
efficiently solvable, hence P=NP.

3.4 NP-complete problems

There are many problems for which we know they are NP-complete. A list with some of these problems can be
found in [17]. The notion of NP-complete problems is introduced by R. Karp. He proved for 21 problems that
they are NP-complete. One of these problems is the Maximum Clique problem.

Lemma 3.4.1. Maximum Clique problem is NP-complete. [27]

Using this result, we can prove the MIS problem is NP-complete by showing there exists a poly-time reduction
from the Maximum Clique problem to the MIS problem.

Lemma 3.4.2. MIS problem is NP-complete. [39]

3.5 Exact algorithms for MIS problem

We show how one can determine the maximum independent set of a graph in a naive way.

Example 3.5.1 (Naive algorithm). We can do the following to determine the maximum independent set of a graph
G = (V, E).

Naive algorithm

1. Select a subset V′ ⊆ V.

2. Check if the subset is a maximal independent set of G.

3. Do this for all possible
n
∑

k=0
(n

k) = 2n subsets of V.

4. Select a subset V′ ⊆ V that gave the biggest independent set.

By definition, this algorithm gives back a maximum independent set of the graph G. Note this algorithm runs in
time O(2n · n2). 4

18

3 COMPLEXITY THEORY

The time complexity of the naive algorithm shown is not "good". By considering branch and bound techniques
and good bookkeeping, one can reduce this time complexity to O(1.1996nnO(1)) [46]. This is a big improvement,
but still, it is exponential in the size of the graph. For small graphs, this is no problem, but for large graphs, this
algorithm will never finish.

3.5.1 MIS problem for bipartite graphs

For bipartite graphs, we can solve the MIS problem in polynomial time. We do this by using König’s Theorem,
introduced by D. König in 1931. An example of König’s Theorem is outlined in Figure 3.6.

Theorem 3.5.2 (König’s Theorem [15]). In a bipartite graph, the size of a maximum matching equals the size of a minimum
vertex cover.

Figure 3.6: A bipartite graph with a minimum vertex cover given by the red vertices and a maximum matching
given by the thick edges. Note the cardinality of both sets is the same.

Lemma 3.5.3. If G is a bipartite graph, a maximum matching can be determined in polynomial time.

Proof. This is a straightforward application of the Ford-Fulkerson algorithm for maximum flows [21].

Lemma 3.5.4. Let G = (V, E) be a graph. Then S is a vertex cover of G if and only if V\S is an independent set of the
graph G.

Proof. Let v, w ∈ V\S. Assume (v, w) ∈ E. Then there exists an edge that is not incident to any s ∈ S. Hence, S is
not a vertex cover. Therefore, we must have V\S is an independent set. Proof in the other direction can be done
in the same way.

Since we can find a minimum vertex cover, we know the quantity V\S is maximized. Therefore, we can find a
maximum independent set in polynomial time. Note this does not solve P=NP, since we are only able to determine
a maximum independent set for graphs of a certain type. To solve the MIS problem, one needs to find an algorithm
that does this for all possible graph types.

3.6 Heuristic algorithms for MIS problem

As we observed, some problems may have no polynomial time algorithm for finding the exact solution. How-
ever, in practice, it is often acceptable solve a problem approximately, rather then exactly. This gave rise to the
notion of heuristic algorithms. These are algorithms that solve the problem approximately, but do so in reasonable
time. Heuristic algorithms can be used when approximate solutions are sufficient and exact algorithms can not
determine the solution in a sufficient amount of time. For example, in the case of NP-hard problems, heuristic
algorithms can be a good replacement of exact algorithms.

Definition 3.6.1 (Approximation algorithm). Given a combinatorial optimization problem Π and α ≥ 1, algorithm
Alg is an α-approximation algorithm for Π if

19

3 COMPLEXITY THEORY

1. Alg computes a solution for all instances I ∈ I in time polynomial in |I|.

2. Alg has a performance guarantee α, that is, if OPT(I) is the optimal solution value, then

Alg(I) ≥ 1
α

OPT(I), for all I ∈ I .

Example 3.6.2 (Minimum degree greedy algorithm for MIS problem). One of the simplest heuristic algorithms
known is the greedy algorithm with minimum degree heuristic.

Greedy algorithm

1. Select one of the vertices that has smallest degree uniformly at random.

2. Add this vertex to the independent set.

3. Remove all the neighbours of this vertex.

4. Continue doing this till no edges are left.

The set you end up with is a maximal independent set. 4

We have the following well-known performance guarantee for the Minimum degree greedy algorithm.

Lemma 3.6.3. Let G be a graph with maximum degree dmax. The Greedy algorithm is an approximation algorithm of the
MIS problem with approximation factor dmax + 1.

Proof. Let S be the output of the Greedy algorithm and OPT ⊆ V is a maximum independent set of G.

We know each v ∈ V\S is removed by the algorithm. Removal only happens if you are a neighbour of a vertex
w ∈ S. Therefore, we have

|V| − |S| = |V\S| ≤ dmax|S|.

By rewriting, we get

|S| ≥ 1
dmax + 1

|V| ≥ 1
dmax + 1

|OPT|.

This completes the proof.

In Figure 3.7, we show how the Greedy algorithm works for an example graph.

20

3 COMPLEXITY THEORY

1 2

34

5

6

Iteration 0

1 2

34

5

6

Iteration 1

1 2

34

5

6

Iteration 2

1 2

34

5

6

Iteration 3

Figure 3.7: Greedy algorithm example. Red nodes indicate the vertex is selected, while black nodes indicate the
vertex is removed during the run of the algorithm. The output of the algorithm is the set {v1, v3, v6}.

In Section 5 and Section 6, we introduce two new heuristic algorithms that generate maximal independent sets in
a graph.

21

4 MATHEMATICAL ECOLOGY

4 Mathematical Ecology

This section talks about the generalized Lotka-Volterra equations and properties of the underlying dynamical
system. These equations are considered a cornerstone of modern ecology. Aside from ecology, applications for
these equations are found in [3, 31].

4.1 Lotka-Volterra equations in 2 dimensions

The Lotka-Volterra equations are originally posted for two interacting species. Introduced by A. Lotka in 1910
and later V. Volterra in 1926 independently, initially these equations are used to describe the fish catches in the
Adriatic Sea.

Definition 4.1.1 (Lotka-Volterra equations in 2 dimensions). Let x1 ∈ R be the number of prey and x2 ∈ R the
number of predators. Let α, β, γ, δ be positive real parameters describing the interaction between both species.
The 2-dimensional Lotka-Volterra equations are defined as

dx1

dt
= αx1 − βx1x2,

dx2

dt
= δx1x2 − γx2,

(4)

where dx1/dt and dx2/dt represent the growth of both populations at time t.

Example 4.1.2 (Fox & rabbit). A well-known application of the Lotka-Volterra equations is given by the modeling
of foxes and rabbit populations. Assume we are looking at a nature reserve that is only inhabited by foxes and
rabbits. Let’s say the foxes multiply at a rate δ (by eating rabbits). The rabbits multiply themselves by rate α (by
eating grass). In the absence of rabbits, the foxes die at a rate γ. Rabbits are eaten by foxes at rate β. Using the
Lotka-Volterra equations, one can model this as(

ẋ1
ẋ2

)
=

(
x1
x2

)((
α
−γ

)
+

(
0 −β
δ 0

)(
x1
x2

))
=

(
x1(α− βx2)

x2(−γ + δx1)

)
,

where x1 represents the number of rabbits and x2 represents the number of foxes.

Calculating fixed points, we have

Fixed point 1: (0, 0).
Fixed point 2: (γ/δ, α/β).

We can calculate the stability of the fixed points by looking at the Jacobian of the system. That is

J(x1, x2) =

(
α− βx2 −βx1

δx2 −γ + δx1

)
.

Evaluated at the fixed points, this becomes

J(0, 0) =
(

α 0
0 −γ

)
, J(γ/δ, α/β) =

(
0 −βγ/δ

δα/β 0

)
.

This means (0, 0) is a saddle point and (γ/δ, α/β) is a center. In Figure 4.1 one can see what the trajectories look
like.

22

4 MATHEMATICAL ECOLOGY

0 10 20 30 40 50 60
Foxes

0

10

20

30

40

50

60

70

80

Ra

bb
its

Figure 4.1: Evolution of foxes and rabbit populations under Lotka-Volterra dynamics. Different colors indicate
different initial conditions.

Note that this intuitively agrees with reality. When there are less rabbits, the foxes have nothing to eat and hence
there are less foxes. When there are less foxes, the rabbits survive more often, and therefore there will be more
rabbits. But this results in more foxes, and so on. 4

4.2 Lotka-Volterra equations in n dimensions

The n-dimensional Lotka-Volterra equations are a generalization of the 2-dimensional equations we have already
seen. We assume there are n interacting species, where every species can possibly interact with every other species.

Definition 4.2.1 (Generalized Lotka-Volterra equations). The generalized n-dimensional Lotka-Volterra equations
are given by

dxi
dt

= xi(ri + (Ax)i). (5)

Where A is a n× n matrix and r is a vector of real numbers. The matrix A is called the interaction matrix. In vector
notation, the generalized Lotka-Volterra equations can be written as

dx
dt

= diag(x)(r + Ax). (6)

The generalized Lotka-Volterra equations can be used to model the evolution of multiple interacting species. This
interaction can be either positive (mutualism) or negative (competition or predation). All these interaction terms
can be modeled via the interaction matrix A [11].

Example 4.2.2 (Logistic equation). What if all the interaction terms are zero? If we look at the equations (5), we
see that it simplifies to

dxi
dt

= xi(ri + Aiixi).

This equation is known as the logistic equation. If ri = 1 and Aii = −1, analysis gives the fixed point 0 and 1,
where 0 is unstable and 1 is stable. Shown in Figure 4.2 is a corresponding trajectory and the corresponding phase
portrait.

23

4 MATHEMATICAL ECOLOGY

0 20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

1.0

x i

(a) Trajectory.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
xi

0.2

0.1

0.0

0.1

0.2

dx
i/d

t

(b) Phase portrait.

Figure 4.2: Logistic equation with x0 = 0.1, ri = 1 and Aii = −1.

4

Lemma 4.2.3. If the initial state x0 is inside Rn
≥0, the trajectory x(t), t ∈ R≥0 started at x0 will be in Rn

≥0 for all t ∈ R≥0.

Proof. Note the derivative at the boundary of Rn
≥0 is for every i ∈ [n] given by

dxi
dt

∣∣∣∣
xi=0

= xi(ri + (Ax)i)

∣∣∣∣
xi=0

= 0 · (ri + (Ax)i)

∣∣∣∣
xi=0

= 0.

Therefore, the trajectory can never leave Rn
≥0.

In ecological terms, Lemma 4.2.3 tells us the size of a species population can never be negative. This is something
one would expect in an ecological system.

4.3 Limiting behavior of Lotka-Volterra equations.

The behavior of the Lotka-Volterra equations entirely depends on the parameter r and the interaction matrix A.
M. Hirsch showed that for dimensions bigger or equal than five, all possible limiting behavior can occur [25].

For the 2-dimensional Lotka-Volterra equations, a classification of all possible limiting behavior is given by I. Bomze [8].
This classification is given in terms of the 3-dimensional replicator equations. These equations are equivalent to
the Lotka-Volterra equations.

Definition 4.3.1 (Replicator equations). The n-dimensional Replicator equations are given by

dxi
dt

= xi((Bx)i + xBx), (7)

where B is a n× n matrix.

The following result has been proven by I. Bomze [8].

Lemma 4.3.2. The n-dimensional Lotka-Volterra equations are equivalent to the n + 1-dimensional replicator equations.
That is, for every A ∈ Rn×n, there exists a matrix B ∈ R(n+1)×(n+1) and a mapping Rn+1 → Rn such that the mapped
trajectories of the replicator equations with matrix B are the same as those of the Lotka-Volterra equations with matrix A.

24

4 MATHEMATICAL ECOLOGY

Using this lemma, we can determine all the trajectories of the Lotka-Volterra equations by looking at trajectories
of the replicator equations. I. Bomze showed all possible limiting behavior of the replicator equations in [8].
Therefore, also all kinds of the limiting behavior of the Lotka-Volterra equations in three dimensions are known.

Figure 4.3: Possible limiting behavior of trajectories of the replicator equations [8, p.207]. Note that showing the
embedding in 2 dimensions is enough because the replicator equations are normalized as ∑

i∈[n]
xi = 1 − xn+1.

4.3.1 Fixed points

There is exactly one fixed point of the generalized Lotka-Volterra equations such that xi 6= 0 for all i ∈ [n]. This
fixed point x∗ must solve the system of equations

(r + Ax∗) = 0→ Ax∗ = −r → x∗ = −A−1r.

If x∗ > 0 component-wise, we call x∗ feasible.

Aside from this fixed point, there are 2n − 1 other fixed points. For every i ∈ [n], we must have either x∗i = 0 or
x∗i = (−A−1r)i for x∗ to be a fixed point. That is{

x∗i = 0 or
x∗i = (−A−1r)i for all i ∈ {1, 2, . . . , n}.

(8)

Let x∗ be a fixed point of the Lotka-Volterra equations. Let I be the set of indices such that i ∈ I if x∗i = 0. We can
rewrite condition (8) as

xi = (−A′−1r′)i for all i /∈ I,

where A′ is the submatrix of the matrix A, obtained by removing rows and columns i ∈ I, and r′ is the vector
obtained by removing indices i ∈ I from r.

Example 4.3.3. We look at the Lotka-Volterra system with interaction matrix A and parameter r given by

A =

(
1 2
3 4

)
, r =

(
1
1

)
.

25

4 MATHEMATICAL ECOLOGY

One can calculate the fixed points by solving(
dx1
dt

dx2
dt

)
=

(
x1(1 + x1 + 2x2)
x2(1 + 3x1 + 4x2)

)
.

This gives the fixed points

x∗1 = (0, 0), x∗2 = (0,−1/4), x∗3 = (−1, 0), x∗4 = (1,−1).

Note we have 22 = 4 different fixed points. Also, we can see that the unique fixed point given by x∗4 = −A−11 is
not feasible since it lies outside the positive quadrant. 4

4.3.2 Jacobian matrix

Classification of the stability of fixed points can be done by finding the Jacobian of the system.

Lemma 4.3.4 (Jacobian of Lotka-Volterra equations). The Jacobian of the Lotka-Volterra system with interaction matrix
A and parameter r is given by

J(x) = diag(r) + diag(x)A + diag(Ax). (9)

Proof. Assume i = j. We calculate

Jii =
d

dxi

dxi
dt

=
d

dxi
(xi(ri + (Ax)i))

= ri + (Ax)i + xi Aii.

Assume i 6= j. We calculate

Jij =
d

dxj

dxi
dt

=
d

dxj
(xi(ri + (Ax)i))

= xi
d

dxj
(ri + (Ax)i)

= xi Aij.

In clean notation, this becomes

J(x) = diag(r) + diag(x)A + diag(Ax).

We have already seen that there is a fixed point given by x∗ = −A−1r, the Jacobian evaluated at this point has a
special form.

Lemma 4.3.5 (Jacobian of feasible fixed point). Let A be invertible. The Jacobian of the Lotka-Volterra system with
interaction matrix A and parameter r, evaluated at x∗, is given by

J(x∗) = diag(−A−1r)A. (10)

Proof. We can plug in the fixed point x∗ = −A−1r into the equation derived in Lemma 4.3.4.

J(A−1r) = diag(r) + diag(−A−1r)A + diag(−AA−1r)

= diag(r) + diag(−A−1r)A− diag(r)

= diag(−A−1r)A.

This completes the proof.

26

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

5 Lotka-Volterra equations for solving MIS problem

In Section 3 and Section 4, we introduced the MIS problem and the Lotka-Volterra equations. At first sight, these
subjects do not seem to have much in common. It turns out however, that we can use the Lotka-Volterra equations
to find maximal independent sets in a graph. One can do this by choosing appropriate parameters. In this section
we discuss how to do this. We prove the Lotka-Volterra equations indeed converge to a maximal independent set.

The idea of using a set of differential equations to solve a combinatorial optimization problem has been used be-
fore. In 1996, Bomze et al [9] showed one can use the replicator equations we discussed in Section 4.3 to determine
a maximal clique in a graph. As shown in Section 3.4, we can transform a maximal clique to a maximal inde-
pendent set by looking at the complement graph. In this section we show, independently from [9] and based on
different principles, that the Lotka-Volterra equations can be used to directly determine this maximal independent
set.

First, we state the main theorem of this section and we spend time proving it. Finally, we discuss the implications
of this theorem more specifically for regular graphs and complete graphs.

The main theorem of this section states we can use the adjacency matrix of a graph, together with the Lotka-
Volterra equations to determine a maximal independent set in the graph.

Theorem 5.0.1? (Main Theorem). Let G = (V, E) be a simple graph of size n with adjacency matrix A0. Let τ > 1 and
A = −(τA0 + I). Let x(t) be the trajectory of the Lotka-Volterra equations with interaction matrix A, parameter r = 1
and initial condition x0 ∈ (0, 1)n. Then x∗ := lim

t→∞
x(t) exists and the set {vi ∈ V : x∗i = 1} is a maximal independent

set of G.

Note that this statement depends on a parameter τ > 1. We see later there exists other bounds for τ if we only
consider certain types of graphs. To simplify notation, we assume that x0 is not a fixed point in the rest of this
section.

5.1 Ecological heuristic

The Lotka-Volterra equations have ecological meaning, as discussed in Section 4. By taking the interaction matrix
A = −(τA0 + I), we implicitly define an ecological system.

This ecological system consists of n species, associated to the vertices of the graph, that all have the same negative
effect on the neighboring species, given by the interaction strength τ. One can compare this situation to an eco-
logical system consisting of different species fighting for the same resources. Figure 5.1 shows the corresponding
ecological food web.

1 2 3

Figure 5.1: Three species fighting for the same resources with negative interaction strength τ.

The interaction matrix also has values minus one on the diagonal. This represents the negative effect a species
has on itself. If the size of a species grows too much, the maximum food capacity is reached and there will not
be enough food for everyone. Since we only consider undirected graphs, we consider ecological systems where
species X has an effect on species Y when species Y also has an effect on species X.

Theorem 5.0.1? tells us that if we let this ecological system go on for a long time, every species either dies out, or
ends up in a state without any competition.

5.2 Matrix Theory

We first need some definitions and lemmas to help us with the proof.

27

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

Definition 5.2.1 (Positive/Negative definite). A n× n hermitian matrix A is called negative definite if x∗Ax < 0
for all nonzero complex vectors x ∈ Cn. In the case of a real matrix A, this condition simplifies to xT Ax < 0 for
all nonzero real vectors x ∈ Rn. A positive definite matrix is defined as x∗Ax > 0 for all nonzero complex vectors
x ∈ Cn and if A is real xT Ax > 0 for all nonzero real vectors x ∈ Rn.

Lemma 5.2.2. For a real symmetric matrix A and diagonal matrix D with positive diagonal elements, the eigenvalues of
DA are the same as those of D1/2 AD1/2, where D1/2 fulfills the property D1/2D1/2 = D.

Proof. We can rewrite

det(DA− λI) = det(D1/2[D1/2 AD1/2 − λI]D−1/2)

= det(D1/2) · det(D1/2 AD1/2 − λI) · det(D−1/2).

So solving det(DA − λI) = 0 has the same solutions as solving det(D1/2 AD1/2 − λI) = 0. Hence, DA and
D1/2 AD1/2 have the same eigenvalues.

To prove a matrix is not negative definite, we later introduce Sylvester’s criterion. To use this theorem, we need
some prerequisites concerning matrix minors.

Definition 5.2.3 (Minor). Let A be a m× n matrix and k an integer with 0 < k < m, n. A k× k minor of A is the
k× k matrix obtained from A by deleting m− k rows and n− k columns.

Definition 5.2.4 (Principal minor). If rows and columns with the same indices remain unremoved, we call the
minor a principal minor.

Definition 5.2.5 (Leading principal minor). If a principal minor is a square upper-left submatrix of the larger
matrix, the principal minor is called a leading principal minor. For a n × n square matrix, there are n leading
principal minors.

Example 5.2.6. We show all the minors of the matrix A =

1 2 3
4 5 6
7 8 9

.

1× 1 minors 2× 2 minors 3× 3 minors

(
1
)∗ (

5 6
8 9

) 1 2 3
4 5 6
7 8 9

∗
(
2
) (

4 6
7 9

)
(
3
) (

4 5
7 8

)
(
4
) (

2 3
8 9

)
(
5
) (

1 3
7 9

)
(
6
) (

1 2
7 8

)
(
7
) (

2 3
5 6

)
(
8
) (

1 3
4 6

)
(
9
) (

1 2
4 5

)
∗

Figure 5.2: Minors of a matrix. Principal minors are colored red. Leading principal minors are denoted with an
asterisk.

Note the principal minors are a subset of all minors. In the same way, the leading principal minors are a subset of
all principal minors. 4

28

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

Lemma 5.2.7 (Sylvester’s criterion [19]). An n× n Hermitian matrix A is positive definite if and only if all of the leading
principal minors have positive determinant.

Lemma 5.2.8 (Adapted Sylvester’s criterion). An n × n Hermitian matrix A is negative definite if and only if the
determinant of the leading principal minor of size k has sign (−1)k.

Proof. Assume A is negative definite. Then−A is positive definite. For every principal leading minor d−A
k of size k

of the matrix −A, we know det(d−A
k) > 0. Note the leading principal minor of size k of A is given by dA

k = −d−A
k .

Calculating the determinant gives

det(dA
k) = det(−d−A

k) = (−1)kdet(d−A
k).

This expression is positive when k is even and negative when k is odd.

Proof in the other direction can be done in the same way.

5.3 Stability of the feasible fixed point

In this section, we use n to denote the number of Lotka-Volterra equations and the size of a graph. We have
seen in Section 4.3.1 that the n-dimensional Lotka-Volterra equations generally have 2n fixed points. Not all these
points are interesting if we consider the ecological context of the system. The following lemma shows that for
appropriate initial conditions, we can discard a lot of fixed points.

Lemma 5.3.1? (Prison Lemma). Let x(t), t ∈ R≥0 denote the trajectory of the n-dimensional Lotka-Volterra equations
with A = −(τA0 + I) and r = 1. Let x0 denote the initial condition of the system. If x0 ∈ [0, 1]n, then x(t) ∈ [0, 1]n for
all t ∈ R.

Proof. We know by Lemma 4.2.3 the trajectory will never leave Rn
≥0. Let i ∈ [n] and x ∈ [0, 1]n. Then

dxi
dt

∣∣∣∣
xi=1

= xi[1− (Ax)i]

∣∣∣∣
xi=1

= xi − xi Aiixi − xiτ ∑
j 6=i

A0
ijxj

∣∣∣∣
xi=1

= 1− 1− τ ∑
j 6=i

A0
ijxj

= −τ ∑
j 6=i

A0
ijxj ≤ 0.

So, if the trajectory starts inside the unit hypercube, it stays inside the unit hypercube.

Because of Lemma 5.3.1?, we know we can never reach a fixed point x∗ if x∗ /∈ [0, 1]n. Therefore, if we assume
that x0 ∈ (0, 1)n, we can assume without loss of generality that x∗ is inside the unit hypercube. First we assume
that x∗ satisfies Ax∗ = 1 and 0 < x∗ < 1 component-wise. We will determine the Jacobian evaluated at the point
x∗. We show that when τ > 1, this Jacobian has an eigenvalue λ such that Re(λ) is bigger than zero. From this,
we can conclude x∗ is an unstable fixed point [37].

Lemma 5.3.2?. Let τ > 1. If 0 < x∗k < 1 for some k ∈ [n], then there exists some vl ∈ N(vk) such that 0 < x∗l < 1. By
N(vk) we denote the neighborhood of a vertex vk as discussed in Section 1.

Proof. We know x∗k obeys the relation (Ax∗)k = 1. Rewriting it gives

(Ax∗)k = ∑
j∈[n]

Akjx∗j

= x∗k + τ ∑
j 6=k

A0
kjx
∗
j

= x∗k + τ ∑
j:vj∈N(vk)

x∗j .

29

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

Since 0 < x∗k < 1, we know 0 < τ ∑
j:vj∈N(vk)

x∗j < 1. Because τ > 1, we must have 0 < x∗l < 1 for some

l ∈ {i : vi ∈ N(vk)}.

Lemma 5.3.3?. Let x∗ satisfy Ax∗ = 1 and 0 < x∗ < 1 component-wise. For τ > 1, the Jacobian evaluated at x∗ has an
eigenvalue with positive real part. Hence, x∗ is an unstable fixed point.

Proof. By Lemma 4.3.4, we know the Jacobian is given by

J(x∗) = diag(x∗)A.

As shown in Lemma 5.2.2, we know the spectrum of J(x∗) coincides with the spectrum of

M(x∗) = diag(x∗)1/2 Adiag(x∗)1/2.

Since this is a symmetric and real matrix, we know by Lemma 1.3.2 that all eigenvalues of J(x∗) are real.

For i 6= j we can write out the Jacobian elements explicitly as

J(x∗)ii = −x∗i and J(x∗)ij = −τA0
ijx
∗
i .

By assumption, 0 < x∗k < 1 for some k ∈ [n]. Hence, by Lemma 5.3.2? there exists some l ∈ {i : vi ∈ N(vk)},
such that x∗l ∈ (0, 1). We can rewrite the Jacobian so that row/column k becomes the first row/column and
row/column l becomes the second row/column. Without loss of generality we can assume k = 1 and l = 2. This
gives the matrix elements

J(x∗)11 = −x∗1 ,
J(x∗)22 = −x∗2 ,
J(x∗)12 = −τx∗1 ,
J(x∗)21 = −τx∗2 .

We use the Adapted Sylvester’s criterion on the hermitian matrix M = diag(x∗)1/2 Adiag(x∗)1/2. Note

M(x∗)11 = −x∗1 ,
M(x∗)22 = −x∗2 ,

M(x∗)12 = −τx∗1
1/2x∗2

1/2,

M(x∗)21 = −τx∗1
1/2x∗2

1/2.

The determinant of the 2× 2 leading principal minor of M is given by

M11M22 −M12M21 = x∗1 x∗2 − τ2x∗1 x∗2 .

By the Adapted Sylvester’s criterion we know M is not negative definite if x∗1 x∗2 − τ2x∗1 x∗2 < 0. Solving gives
τ > 1.

Therefore, we know J(x∗) must have a positive eigenvalue. Hence, x∗ is unstable.

Lemma 5.3.4. The point x∗ = lim
t→∞

x(t) exists for every initial condition x0 ∈ (0, 1)n and lies on a corner of the unit

hypercube.

Proof. In the proof of Theorem 5.3.3?, we showed that all eigenvalues of J(x∗) are real if x∗ obeys Ax∗ = 1. Since
all eigenvalues are real and there exists an eigenvalue with positive real part, we know x∗ must be hyperbolic and
unstable. Therefore, x∗ must be on the corner of the unit hypercube. Since we can never leave the unit hypercube
if we start inside it, we know oscillatory behavior around x∗ can not occur. Therefore, we know x∗ = lim

t→∞
x(t)

exists and is a point on the corner of the unit hypercube.

30

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

5.4 Stability of fixed points with extinction

Before we have seen that for τ large enough, the fixed point x∗ given by Ax∗ = 1 is unstable if it is not on a
corner of the unit hypercube. We have seen in Section 4.3.1 that the Lotka-Volterra equations have 2n different
fixed points, because for every i ∈ [n], we have either

x∗i = 0 or (Ax∗)i = 1.

Recall that we have shown in Lemma 4.3.4 that the Jacobian of the system is given by

J(x) = I− diag(x)A− diag(Ax).

Let x ∈ [0, 1]n be a point inside the unit hypercube. Define I = {i ∈ [n] : xi = 0}. We can write the Jacobian
evaluated at x in a special way.

• For i ∈ I, j /∈ I;

J(x)ij = 0.

• For i ∈ I, j ∈ I;

J(x)ij = 1{i=j} − 1{i=j}
n

∑
k=1

Aikxk

= 1{i=j}(1−
n

∑
k=1

Aikxk).

• For i /∈ I, j /∈ I;

J(x)ij = 1{i=j} − xi Aij − 1{i=j}
n

∑
k=1

Aikxk

= 1{i=j} − xi Aij − 1{i=j} ∑
k/∈I

Aikxk

= J′(x).

We denote by A′ the matrix A where we remove all rows and columns corresponding to indices in I. In the
same way, J′ corresponds to the resulting Jacobian.

• For i /∈ I, j ∈ I;

J(x) = 1{i=j} − xi Aij − 1{i=j}
n

∑
k=1

Aikxk

= −xi Aij.

We can reorder our terms so that xi = 0 for i ∈ {l + 1, . . . , n}, where l = n− |I|. We can thus rewrite the Jacobian
as

J(x) =

J′ [−xi Aij]i,j/∈I

0 diag(1−
n
∑

k=1
Aikxk)

 . (11)

Lemma 5.4.1?. Let x∗ := lim
t→∞

x(t) be a fixed point of the system described in Theorem 5.0.1?. If x∗ is on a corner of the

unit hypercube, then for every i ∈ [n] such that x∗i = 0, there exists a index k ∈ {j : vj ∈ N(vi)} such that x∗k = 1.

31

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

Proof. Let I = {i ∈ [n] : x∗i = 0}. We know the Jacobian is given by Equation 11.

To determine stability of the fixed point, we want to determine the eigenvalues of the Jacobian evaluated at the
fixed point.

det(Jij(x∗)− λI) = det

J′ − λI −x∗i Aij

0 diag(1−
n
∑

k=1
Aikx∗k − λ)

= det(J′ − λI)det(diag(1−

n

∑
k=1

Aikx∗k − λ))

= det(J′ − λI)
n

∏
i=l+1

(1−
n

∑
k=1

Aikx∗k − λ).

Therefore, we know eigenvalues λi, i ∈ {l + 1, dots, n} = I, are given by

λi = 1−
n

∑
k=1

Aikx∗k

= 1− x∗i − τ ∑
k 6=i

A0
ikx∗k

= 1− τ ∑
k 6=i

A0
ikx∗k

= 1− τ ∑
k:vk∈N(vi)

x∗k .

For every i ∈ I, we see there exists an eigenvalue given by

λi = 1− τ ∑
k:vk∈N(vi)

x∗k .

Assume that for some vi ∈ V, we have {k : vk ∈ N(vi)} ⊆ I. This gives

λi = 1− 0 = 1.

So in this case x∗ can never be a stable fixed point. Therefore, we must have {k : vk ∈ N(vi)} 6⊂ I. Hence, there
exists some vk ∈ N(vi) such that x∗k > 0. Since x∗ lies on a corner of the unit hypercube, we know that x∗k = 1.

Lemma 5.4.2?. If x∗ := lim
t→∞

x(t) is on the corner of the unit hypercube, then the support of x∗ corresponds to an indepen-

dent set in the underlying graph.

Proof. We know that for every i ∈ [n], x∗i is either equal to zero or has to obey the equation (Ax∗)i = 1. Let k ∈ [n]
be such that x∗k = 1. Rewriting gives

(Ax∗)k = ∑
j∈[n]

Akjx∗j

= x∗k + τ ∑
j 6=k

A0
kjx
∗
j

= 1 + τ ∑
j:vj∈N(vk)

x∗j .

Since this has to equal one, we know x∗j = 0 for all j ∈ {i : vi ∈ N(vk)}. Hence, {vi : x∗i = 1} is an independent
set in the underlying graph.

32

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

For τ > 1, it follows from Lemma 5.3.3? that lim
t→∞

x(t) is a point on a corner of the unit hypercube. Therefore,

Lemma 5.4.2? gives the corresponding set in the graph is an independent set. Using Lemma 5.4.1?, we know this
set is also a maximal independent set. This completes the proof of Main Theorem 5.0.1?.

In Figure 5.3, we have plotted trajectories of the Lotka-Volterra equations. For τ equal to 0.7, we see the trajectories
do not converge to a corner of the unit hypercube. For τ equal to 1.1 we see that the trajectories do converge to a
corner of the unit hypercube. We have just proven that the set of variables that converge to one correspond to a
maximal independent set in the underlying graph.

0 20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

1.0

x i

(a) Interaction parameter τ = 0.7.

0 20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

1.0

x i

(b) Interaction parameter τ = 1.1.

Figure 5.3: Trajectories of the Lotka-Volterra equations with A = −(τA0 + I), r = 1 and random initial condition
x0 ∈ (0, 1)n. The matrix A0 is the adjacency matrix of a connected graph of size n = 40.

5.5 Regular Graphs

In the proof of Main Theorem 5.0.1?, we showed that τ > 1 is a lower bound for convergence of the system to a
maximal independent set. In the case of regular graphs, we are able to specify this bound more clearly.

5.5.1 Fixed points

In Lemma 1.6.1, we have already seen that for regular graphs, the vector 1 is an eigenvector of the adjacency
matrix. Using this, we can specify the interior fixed point x∗ = −A−11.

Lemma 5.5.1?. Let G be a regular graph with constant degree d and adjacency matrix A0. The feasible fixed point of the
Lotka-Volterra equations with A = −(τA0 + I) and r = 1 is given by

x∗i =
1

τd + 1
for all i ∈ [n]. (12)

Proof. We know from Lemma 1.6.1 that A0 has eigenvalue d corresponding to eigenvector 1.

Note if λ is an eigenvalue of A, then λ−1 is an eigenvalue of A−1. Since A = −(τA0 + I), we know −(τd + 1) is
an eigenvalue of A. Therefore, −1

τd+1 is an eigenvalue of A−1 with eigenvector 1. So we have

−A−11 =
1

τd + 1
1.

This completes the proof.

5.5.2 Stability

We have already shown in Lemma 4.3.5 that the Jacobian of the Lotka-Volterra equations, evaluated at x∗ =
−A−11, is given by

J(x∗) = diag(x∗)A.

33

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

In the case of a regular graph, we know by Lemma 5.5.1? that x∗ is a constant vector. This gives rise to the
following lemma.

Lemma 5.5.2? (Jacobian of regular graph). Let G be a regular graph with constant degree d. Let λ be an eigenvalue in
the spectrum of G. Then the value

T(λ) = −τλ + 1
τd + 1

(13)

is an eigenvalue of J(x∗). Where J(x∗) is the Jacobian of the Lotka-Volterra equations evaluated at x∗ = A−11.

Proof. Let λ be an eigenvalue of A0 with eigenvector v. Note

J(x∗)v = diag(x∗)Av

= diag
(

1
τd + 1

)
Av

= −diag
(

1
τd + 1

)
(τλ + 1)v

= −τλ + 1
τd + 1

v.

34

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

3 2 1 0 1 2 3
0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

Figure 5.4: Density plot of the spectrum of a 3-regular graph of size 5000. The black line is a plot of the McKay
distribution for degree 3.

1.00 0.75 0.50 0.25 0.00 0.25 0.50
0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y

Figure 5.5: Density plot of the spectrum of the Jacobian evaluated at the feasible fixed point x∗ given by Ax∗ = 1.
The black line is a plot of the transformed McKay distribution for degree 3.

It follows from the McKay distribution properties (Section 2.2) that almost surely every eigenvalue λ of a d-regular
graph obeys the bound

−2
√

d− 1 ≤ λ ≤ d.

Using the transformation above, we know the eigenvalues of J(x∗) almost surely obey the bound

T(d) ≤ λ ≤ T(−2
√

d− 1)

−1 ≤ λ ≤ −−2τ
√

d− 1 + 1
τd + 1

.

So, for τ < 1
2
√

d−1
, the interior fixed point is almost always stable. For 1

2
√

d−1
< τ < 1, one can use this expression

to calculate the probability that the interior fixed point is stable.

5.6 Complete Graphs

For complete graphs we can show the lower bound τ > 1 is necessary for convergence to a maximal independent
set. That is, for every τ ≤ 1, this convergence will not occur.

35

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

5.6.1 Fixed points

Note that every complete graph is also a regular graph. Hence, the interior fixed point is given by

x∗ =
1

τd + 1
=

1
τ(n− 1) + 1

. (14)

5.6.2 Stability

To determine stability of the interior fixed point, we again use the Adapted Sylvester’s criterion (Lemma 5.2.8).
We also use the following lemma.

Lemma 5.6.1 (Determinant complete graph). Let the matrix A ∈ Rn×n be given by

Aij =

{
a if i = j.
b if i 6= j.

Then det(A) = (a + (n− 1)b)(a− b)n−1.

Proof. Note the determinant of a matrix is invariant under row manipulation. Using the column operation C1 ←
∑n

j=1 Cj, we get a matrix with a− (n− 1)b on the first column. Note
a + (n− 1)b b . . . b
a + (n− 1)b a . . . b
a + (n− 1)b b . . . b

...
...

. . .
...

a + (n− 1)b b . . . a

 =

1 b b . . . b
1 a b . . . b

1 b a
...

...
...

. . .
...

1 b a

a + (n− 1)b 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

So we have ∣∣∣∣∣∣∣∣∣∣∣

a + (n− 1)b b . . . b
a + (n− 1)b a . . . b
a + (n− 1)b b . . . b

...
...

...
a + (n− 1)b b . . . a

∣∣∣∣∣∣∣∣∣∣∣
= (a + (n− 1)b)

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0
1 a− b 0 . . . 0
... 0 a− b

...
...

...
. . .

...
1 0 a− b

∣∣∣∣∣∣∣∣∣∣∣∣
= (a + (n− 1)b)(a− b)n−1.

This completes the proof.

Just as in the proof of Main Theorem 5.0.1?, we can use the Adapted Sylvester’s criterion to determine stability of
the feasible fixed point. Note for a complete graph we have

J(x∗) =

−x −τx . . . −τx

−τx −x
...

...
. . .

...
−τx −x

 ,

where x is given in Equation 14.

So using Lemma 5.6.1, we can calculate the determinant

det(J(x∗)) = (−x + (n− 1) · −τx)(−x + τx)n−1

= xn(−1)n(1 + τ(n− 1))(1− τ)n−1

=

(
1

τ(n− 1) + 1

)n
(−1)n(1 + τ(n− 1))(1− τ)n−1.

36

5 LOTKA-VOLTERRA EQUATIONS FOR SOLVING MIS PROBLEM

We can distinguish between the following cases.

• τ = 1. In this case we know the determinant is always zero. Hence, we can not make conclusions on the
stability of the fixed point.

• n odd, τ 6= 0. In this case, the determinant is always smaller than zero if τ > 0.

• n even, τ < 1. In this case, the determinant is bigger than zero.

• n even, τ > 1. In this case, the determinant is smaller than zero.

We see that τ = 1 is a bifurcation point of the system. So for complete graphs, we know τ = 1 is a strict lower
bound for the Lotka-Volterra equations to converge to a maximal independent set.

37

6 NUMERICAL CONTINUATION ALGORITHM

6 Numerical Continuation Algorithm

In Section 5, we showed that for τ larger than one, the LV equations can be used to find maximal independent
sets in a graph. To solve the MIS problem, we need to find a maximal independent set with maximum cardinality.
Since there can be many different fixed points of the LV equations, we can use these equations to find multiple
maximal independent sets in a graph. To find the maximum independent set in a graph, it is key to find the basin
of attraction of all the fixed points that correspond to a maximum independent set.

One possible way of finding this basin of attraction is by trying many different initial states. Doing this could
possibly result in a maximum independent set, but we can never be sure if this is indeed the largest possible
maximal independent set. Trying many initial states is also computationally expensive for large graphs. This is
because for a graph of size n ∈ N, the initial state is in the domain (0, 1)n. This domain grows exponentially in
the size of the graph.

In this section, we discuss a modification to the algorithm introduced in Section 5. This modification avoids
the initial value problem we just encountered. This happens at the cost of computation time. The algorithm
we introduce here still does not solve the MIS problem, but numerically it performs better than the algorithm
introduced in Section 5.

6.1 Numerical continuation

The algorithm we propose is inspired by the concept of numerical continuation. We discuss this concept here.

Numerical continuation describes the behavior of fixed points under the change of parameters in the underlying
dynamical system. The easiest way to illustrate this is by an example.

Example 6.1.1 (Pitchfork bifurcation). We look at the dynamical system given by the ordinary differential equation

dx
dt

= rx− x3,

where r, x ∈ R. Determining fixed points gives

x∗ = 0 if r < 0, and

x∗ = 0, x∗ = ±
√

r if r ≥ 0.

The bifurcation diagram is drawn in Figure 6.1.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
r

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x

Unstable
Stable

Figure 6.1: Bifurcation diagram of the function dx
dt = rx− x3.

We see it depends on the parameter r whether we have one or three fixed points. For r > 0, we conclude from this
analysis that if x0 > 0, x(t) converges to

√
r. But if x0 < 0, x(t) converges to −

√
r.

38

6 NUMERICAL CONTINUATION ALGORITHM

We see that when we follow the fixed points from r = −1 till r = 1, we have two possible end states. Thus we
know how the fixed point(s) change under perturbation of the parameter space.

4

6.2 Algorithm

Note that for τ equal to zero we have A−11 = 1. Inspired by the numerical continuation, we propose the following
algorithm.

Numerical continuation algorithm

1. Input: graph G = (V, E) with V = (vi)i∈[n] and parameter τstep ∈ R>0.

2. Let τ = 0 and x∗ = (1, 1, . . . , 1).

3. Increase τ by τstep and run the Lotka-Volterra system for long time with A = −(τA0 + I), r = 1 and x0 = x∗.
Denote the fixed point obtained by x∗.

4. Keep returning to step 3 until τ > 1.

5. Return all vertices vi such that xi = 1.

Note this algorithm is following the behavior of the fixed point obtained for x0 = (1, 1, . . . , 1). So instead of only
increasing the time parameter in the system, we also slowly increase the interaction parameter τ in the system.

One of the difficulties with this algorithm is the step size τstep. We do not know when the stability of A−11 will
change in advance. Therefore, for this algorithm to perform properly, we need to use a very small step size. But a
small step size results in a computationally expensive algorithm.

Numerically, the behavior of the fixed point is shown in Figure 6.2.

6.3 Ecological heuristic

This modified algorithm has ecological meaning. Instead of letting the system run for some τ > 1, as we have
done in Section 5, we now add extra information by taking into account all τ < 1.

Just as in Section 5, we are looking at an ecological system with negative interaction strength τ and self-limiting
rate one. The difference is we are now looking at τ for which a species goes extinct. So instead of giving species
an unfair chance of survival by choosing certain initial coordinates, we now give every species a fair chance of
survival.

39

6 NUMERICAL CONTINUATION ALGORITHM

0.0 0.2 0.4 0.6 0.8 1.0
10 5

10 4

10 3

10 2

10 1

100

m
in

x i

0.0 0.2 0.4 0.6 0.8 1.0
10

11

12

13

14

15

16

17

|{
i

[n
]

:
x i

>
10

8 }
|

Figure 6.2: The minimum fixed point coordinate plotted against the interaction parameter τ. Only coordinates
that are bigger than 10−8 are taken into account. We have used a connected graph of size n = 17. We see that for
some values of τ, at least one of the coordinates of x∗ converges to zero. One can interpret this as a species going
extinct. On the lower plot, we have plotted the number of variables that are bigger than 10−8. We see that we
end up with a maximal independent set of size 10. We used a step size of τstep = 0.005.Note that for τ > 1, all
coordinates of the fixed point are either zero or one. This is also what we have shown in Section 5.

It remains to determine the values of τ for which variables are converging to zero.

6.4 Bifurcation values

The algorithm depends on the nearest value τ∗ such that the stability of the Jacobian evaluated at −A−11 flips
from stable to unstable. The hard part of the algorithm is finding these bifurcation values.

The Jacobian satisfies

J(x∗) = diag(x∗)A.

The bifurcation happens exactly when λmax(J(x∗)) = 0. This happens when det(J(x∗)) = 0. Rewriting gives
det(diag(x∗)A) = det(diag(x∗))det(A). This expression can be zero only in two cases.

1. det(A) = 0, or

2. −A−11 /∈ (0, 1)n.

40

6 NUMERICAL CONTINUATION ALGORITHM

Case 1 happens when det(τA0 + I) = 0. This happens exactly when either

• τ = −1
λ for λ > 0 in the spectrum of A0, or

• τ = 1
|λ| for λ < 0 in the spectrum of A0.

Note that A0 always has positive and negative eigenvalues (Lemma 1.3.3).

Since we only consider positive values of τ, the minimum τ for which det(A) = 0 is given by

τ∗ =
1

|λmin(A0)| . (15)

6.4.1 Newton’s method

For the second case where x∗ = A−11 has a coordinate that equals zero, we implement Newton’s method. We use
Newton’s method with the functional

F : Rn → R

x∗ 7→ ∏
i∈[n]

x∗i .

Note that F equals zero exactly when one of the coordinates of x∗ equals zero. We can calculate the derivative of
this function as follows.

dF
dτ

= ∑
j∈[n]

∂x∗j
∂τ

∂

∂x∗j
∏

i∈[n]
x∗i

= ∑
j∈[n]

∂x∗j
∂τ ∏

i 6=j
x∗i .

We can calculate ∂
∂τ x∗ as follows.

∂

∂τ
x∗ =

∂

∂τ
A−11.

Note that for a matrix B(t), we have

0 =
∂

∂t
B(t)B(t)−1 =

(
∂

∂t
B(t)

)
B(t)−1 + B(t)

(
∂

∂t
B(t)−1

)
.

Therefore,

∂

∂t
B(t)−1 = −B(t)−1

(
∂

∂t
B(t)

)
B(t)−1.

For the matrix A(τ), this implies

∂

∂τ
A−1 = −A−1 A0 A−1.

So we know

∂

∂τ
x∗ =

∂

∂τ
A−11 = −A−1 A0 A−11.

41

6 NUMERICAL CONTINUATION ALGORITHM

Combining everything, we have

dF
dτ

= ∑
j∈[n]

(−A−1 A0 A−11)j ∏
i 6=j

x∗i .

With this derivative, we can use the Newton iteration procedure

τn+1 = τn −
F(τn)

d
dτ F(τn)

.

We know the fixed point of this recursive equation satisfies F(τn) = 0.

Conjecture 6.4.1. The sequence (τn)n∈N converges monotonically to τ∗ such that F(τ∗) = 0.

6.5 Algorithm speed up

We are going to reduce the computation time of the algorithm by skipping over the domain of τ where no bifur-
cation occurs. The following theorem tells us we can do this.

Theorem 6.5.1 ([20, p.138]). If the nontrivial equilibrium x∗ = A−11 of the Lotka-Volterra equations is feasible and there
exists a constant positive diagonal matrix C such that CA + ATC is negative definite, then the Lotka-Volterra model is
globally stable in the feasible region.

We know that on the domain D where no bifurcation has occurred, we have for τ ∈ D both:

• τ < 1
|λmin(A0)| (by Equation 15).

• x∗ = A−11 is feasible, that is x∗ ∈ (0, 1)n.

By the first condition, we know λmax(A) < 0, so A is negative definite and therefore also A + AT is negative
definite. The second condition tells us that we are in the feasible region. By Theorem 6.5.1, we know A−11 is
globally stable. Therefore, we can skip the integration steps where no bifurcation occurs.

6.6 Modified algorithm

We are only able to determine τ∗ for the first bifurcation. The way to do this for the next bifurcation is by looking
at the graph with the bifurcated vertices removed.

Algorithm 1 NumericalContinuationAlgorithm(G, εforward, εbackward)

Input: Graph G with vertex set V = (vi)i∈{1,2,...,n}, edge set E and adjacency matrix A0. Displacement parameters
εforward, εbackward > 0.

Output: Maximal independent set of G
1: xend ← (1, 1, . . . , 1).
2: while |E| > 0 do
3: τ∗ ← inf{τ > 0 : λmax(J((τA0 + I)−11)) = 0}.
4: xstart ← lim

t→∞
x(t), where x(t) is the trajectory of the LV equations with parameter τstart = τ∗ − εbackward,

A = −(τstart A0 + I), r = 1 and initial condition xend.
5: xend ← lim

t→∞
x(t), where x(t) is the trajectory of the LV equations with parameters τend = τ∗ + εforward,

A = −(τend A0 + I), r = 1 and initial condition xstart.
6: Remove all vertices vi such that (xend)i = 0 from the graph G.
7: end while
8: return All vertices of G that have not converged to zero.

6.7 Algorithm with exceptions

There are some boundary cases for which Algorithm 1 does not perform correctly. We will discuss them here.

42

6 NUMERICAL CONTINUATION ALGORITHM

6.7.1 Regular graphs

In the case the graph is d-regular and we run the algorithm, no bifurcation will occur. We have already seen that
the feasible fixed point of a regular graph is given by

x∗ =
1

τd + 1
1. (16)

If the initial state consists of a vector with all the same coordinates c ∈ (0, 1), then the dynamics are given by

dx
dt

= diag(c)(1− (τd + 1)c).

Hence, the trajectories will converge to constant x∗i = 1
τd+1 1 and no bifurcation will occur.

6.7.2 Other graphs

There also exists other graphs for which the fixed point remains feasible for all τ < 1. An example is the graph
given in Figure 6.3

1 2 3 4

Figure 6.3: Line graph with four vertices.

These exceptions occur when the bifurcation happens due to det(A) becoming zero. If we have a symmetry in our
graph, the algorithm can not choose which variable has to become zero. Therefore, we introduce a perturbation
to the system when this happens. That is, we check if τ∗ = 1

|λmin(A0)| , and if so, we add a normally distributed
number to xstart such that we do not leave the unit hypercube. Based on the many simulations we have done, we
formulate the following conjecture.

Conjecture 6.7.1. These exceptions only occur when det(A) = 0.

6.8 Exception induced by algorithm

The Continuation algorithm has an exception for which it does not work directly. An example of such an exception
is given by the graph in Figure 6.4.

43

6 NUMERICAL CONTINUATION ALGORITHM

1

2

3 4

5

6

7

Figure 6.4: Example of exception graph.

The variable corresponding to vertex v7 will be the first one that will reach zero. Note that once a variable reaches
zero, it never leaves zero. Therefore, we end up with the graph in Figure 6.5.

1

2

3 4

5

6

7

Figure 6.5: Example of exception graph after the first time a variable reaches zero.

In this case we have three disconnected regular graphs. To determine which variables will converge to zero, we
need to introduce a small perturbation. It could theoretically be that this results in the variables v2, v3 and v5
converging to zero. In this case we end up with the graph in Figure 6.6.

44

6 NUMERICAL CONTINUATION ALGORITHM

1

2

3 4

5

6

7

Figure 6.6: Example of exception graph after the algorithm is finished.

Note the algorithm does not return a maximal independent set since we can still add vertex v1 to the output. We
can solve this problem easily in the following way.

• Let I be the set of vertices that the algorithm gives as output.

• For every vertex v ∈ I, remove v from the graph as well as all the neighbors of v.

• Run the algorithm again on the resulting graph if it is not empty.

• Keep doing this until we get a maximal independent set as output.

Theorem 6.8.1. The continuation algorithm returns a maximal independent set.

Proof. Note the algorithm is removing vertices from the graph G. Since we keep on removing vertices until the
graph is disconnected, we know the algorithm returns an independent set.

If the graph is not empty, we know the algorithm will remove at least one vertex. Therefore, if the exception above
does occur, we can run the algorithm again to get a graph with less vertices than before. At some point we end up
with an empty graph and we are done.

6.9 Final algorithm

Here we give a final description of the algorithm. Note that we have taken into account all the discussed excep-
tions.

45

6 NUMERICAL CONTINUATION ALGORITHM

Algorithm 2 NumericalContinuationAlgorithm_Iteration(G, εforward, εbackward)

Input: Graph G with vertex set V = (vi)i∈{1,2,...,n}, edge set E and adjacency matrix A0. Displacement parameters
εforward, εbackward > 0.

Output: Maximal independent set of G
1: xend ← (1, 1, . . . , 1).
2: while |E| > 0 do
3: τ∗ ← inf{τ > 0 : λmax(J((τA0 + I)−11)) = 0}.
4: xstart ← lim

t→∞
x(t), where x(t) is the trajectory of the LV equations with parameter τstart = τ∗ − εbackward,

A = −(τstart A0 + I), r = 1 and initial condition xend.
5: if τ∗ = 1

|λmin(A0)| then

6: xstart = xstart + e, where ei ∼ N(0, 10−8).
7: end if
8: xend ← lim

t→∞
x(t), where x(t) is the trajectory of the LV equations with parameters τend = τ∗ + εforward,

A = −(τend A0 + I), r = 1 and initial condition xstart.
9: Remove all vertices vi such that (xend)i = 0 from the graph G.

10: end while
11: J ← vertices of G that have not converged to zero.
12: return J

Algorithm 3 NumericalContinuationAlgorithm(G, εforward, εbackward)

Input: Graph G with vertex set V = (vi)i∈{1,2,...,n} and edge set E. Displacement parameters εforward, εbackward >
0.

Output: Maximal independent set of G
1: output = {}.
2: while output is not a MIS do
3: G’← G.
4: for v in output do
5: Remove N(v) from G′.
6: Remove v from G′.
7: end for
8: output’← NumericalContinuationAlgorithm_Iteration(G’, εforward, εbackward).
9: Add all v in output’ to output.

10: end while
11: return output.

6.10 Lower bound bifurcation

We show a lower bound for τ until a new bifurcation happens. We will use this bound in the algorithm to improve
the computation time of Newton’s method. We have the following definitions.

Definition 6.10.1 (Diagonal stability). A real matrix B is diagonally stable if there exists a positive diagonal matrix
D such that DB + BT D has only negative eigenvalues.

Definition 6.10.2 (D-stability). A real matrix B is D-stable if DB has only negative eigenvalues for any diagonal
matrix D with strictly positive diagonal entries.

Lemma 6.10.3. Negative definiteness of a symmetric matrix implies diagonal stability.

Proof. If B is negative definite, we know it has only negative eigenvalues. By taking D equal to the identity matrix,
we conclude DB + BT D has only negative eigenvalues.

Lemma 6.10.4 ([28, p.32]). Diagonal stability implies D-stability.

Therefore, we know if A is negative definite, then J(x∗) = diag(x∗)A has only negative eigenvalues.

46

6 NUMERICAL CONTINUATION ALGORITHM

Definition 6.10.5 (Diagonal dominance). A matrix B is strictly diagonal dominant if for every row i of the matrix
B we have

∑
j 6=i

Bij < Bii.

Lemma 6.10.6. If a symmetric and real matrix B is diagonally dominant, it is positive definite.

Proof. Since B is symmetric and real, we know all the eigenvalues are real. Application of Gershgorin Circle
Theorem (1.4.2) tells us every eigenvalue is bigger than zero. Therefore, B is positive definite.

Taking τ < 1/dmax gives A strictly diagonally dominant. Therefore, A is positive definite. Hence, −A is negative
definite and J(x∗) has only negative eigenvalues. So after every bifurcation we know the next bifurcation will not
happen before τ = 1/dmax.

47

7 NUMERICAL RESULTS

7 Numerical results

We have done numerical simulations of both algorithms to determine the performance. We do these simulations
for the LV algorithm from Section 5, for the Continuation algorithm from Section 6 and for the Minimal degree
greedy algorithm we discussed in Section 3.6. We use the last algorithm as a baseline to compare our results. We
have run the simulations with εforward = 0.05. Let 1/dmax be the lower bound discussed in Section 6.10 and τ−1
the last bifurcation value. We have taken εbackward equal to εbackward = τ∗ −max{1/dmax, τ−1}/10.

Source code is available on Github (https://github.com/NiekMooij) or upon request.

We compare the following measures.

Average performance
The average performance is determined by averaging the performance over all simulations. The performance of
a simulation is determined by dividing the output of the algorithm by the output of the exact algorithm.

Percentage correct
The percentage correct is determined by dividing the number of times a simulation results in a maximum inde-
pendent set by the total number of simulations.

Worstcase performance
The worstcase performance is determined by taking the lowest performance from all simulations.

7.1 Erdős-Rényi graphs

For Erdős-Rényi graphs, determining the maximum independent set is an NP-complete problem. We want to
compare performance of the algorithms and therefore we need to determine the exact solution. We do this by
implementing an algorithm that returns a maximum independent set of the graph. Since this is computationally
expensive, we can only do this for small graphs.

We showed in Section 2.1.1, there exists a critical threshold for which the Erdős-Rényi graphs become almost
surely connected. This critical threshold is given by

pcritical =
log n

n
.

To make sure the graphs we use are almost always connected, we use p = pcritical + 0.1. Results of the simulations
can be found in Appendix A.1 and Appendix A.4.

We see that for Erdős-Rényi graphs, the continuation algorithm on average works better than the LV algorithm and
the Greedy algorithm. Also the percentage of graphs for which we got a maximum independent set is the largest
for the continuation algorithm. Note that this comes at the price of computation time. If one looks at the average
computation time, we see the Continuation algorithm takes much more time than the other two algorithms.

7.2 Geometric graphs

For geometric graphs, determining the maximum independent set is also an NP-complete problem. We want to
compare performance of the algorithms and therefore we need to determine the exact solution. We do this by
implementing the same exact algorithm as we used for the Erdős-Rényi graphs.

We showed in Section 2.1.2 that there exists a critical threshold for which the generated graphs become almost
surely connected. This critical threshold is given by

pcritical =

√
log n
πn

.

To make sure the graphs we use are almost always connected, we use p = pcritical + 0.1. Results of the simulations
can be found in Appendix A.2 and Appendix A.4.

For geometric graphs we see the Greedy algorithm has the best average performance, as well as the best worst
case performance. The Greedy algorithm also takes the least time. Note the Continuation algorithm does perform
better than the LV algorithm.

48

https://github.com/NiekMooij/Generating-Maximal-Independent-Sets-Using-Lotka-Volterra-Dynamics.git

7 NUMERICAL RESULTS

7.3 Bipartite graphs

We also determine the performance of the LV algorithm, the Continuation algorithm and the Greedy algorithm
on random bipartite graphs. The reason we do this on bipartite graphs is because in this case the maximum inde-
pendent set can be determined in polynomial time, as shown in Section 3.5.1. This means we can do simulations
for bigger graphs.

We also encounter the problem that generating random graphs is hard. For our simulations, we want the graph to
be connected, because otherwise, determining a maximal independent set can be done on disconnected subgraphs
separately. There is no smart way to do this for general random bipartite graphs. Therefore, we use exhaustive
search for connected bipartite graphs of the required size. This means we keep on generating bipartite graphs of
the required size until we have generated a graph that is connected.

In the simulations, we use bipartite graphs of size n, where the components of the graph have sizes 0.6n and 0.4n.
We use connection probability p = 0.1. Results of the simulations can be found in Appendix A.3 and Appendix
A.4.

In the case of bipartite graphs, we see the Continuation algorithm works the best. In most cases, it finds a max-
imum independent set. The Continuation algorithm performs best with respect to the worst case measure and
average performance measure.

7.4 Computational complexity

Results on the computational complexity of the simulations is shown in Appendix A.1/A.2/A.3. We see that the
Greedy algorithm performs the fastest for all graph types. The LV algorithm performs the second fastest, while
the Continuation algorithm performs by far the slowest.

7.5 Numerical continuation failure

The results of the numerical simulations on the Continuation algorithm still have some cases where the output
is not a maximal independent set. Numerically, this happens only when the trajectories of the LV equations
do not converge fast enough. We already tried to solve this by changing the integration time and the forward
displacement parameter, but we were not able to solve all of it.

We had the following number of failures for different graph types.

• Erdős-Rényi graphs: Failure on 17 of the 6500 runs.

• Geometric graphs: Failure on 54 of the 6500 runs.

• Bipartite graphs: Failure on 1 of the 900 runs.

49

DISCUSSION

Discussion

D.1 Results

In this thesis, we proved the Lotka-Volterra equations with parameters A = −(τA0 + I) and r = 1 converge to a
maximal independent set. For the Continuation algorithm, we showed that up to some exceptions, the algorithm
will also return a maximal independent set.

Numerical results
We have done numerical experiments to determine the performance of the algorithms. For Erdős-Rényi graphs
and geometric random graphs, the Continuation algorithm has a better performance compared to the LV algo-
rithm. When compared to the Greedy algorithm however, it turned out that the Continuation algorithm does not
perform better in general. On Erdős-Rényi graphs the Continuation algorithm performs slightly better, while on
geometric random graphs the Greedy algorithm performs slightly better. When we consider bipartite graphs, the
Continuation algorithm performs really well compared to the LV algorithm and the Greedy algorithm. This may
indicate that the continuation algorithm can not perform well when there are triangles in the graph. This is also
what we see with performance on the random geometric graphs.

Biological interpretation
We have already shown in this thesis that we can interpret the Lotka-Volterra equations as a competitive ecological
system where species have a negative effect on each other and the size of every species population is bounded. In
the Continuation algorithm, we make use of a root finding algorithm that finds the smallest τ such that a variable
converges to zero. In ecology this corresponds to a species dying out. Therefore, we can use the techniques
implemented in this algorithm to make statements about ecological networks that correspond to the parameters
we use. If one is able to abstract this interaction strength from the system, one can make statements about how
close a species is to dying out.

Another interesting phenomenon for ecologists is that of reversibility. When a species dies out, one wants to know
if it is possible to put this species back from an external source without the species directly dying out. Using the
root-finding technique used in Section 6.4.1, one can determine how much the interaction needs to change before
a species can be put back in the ecological system.

D.2 Future work

One way of improving the LV algorithm is by finding "good" initial conditions. In this thesis, we took the center
of the unit hypercube as the initial condition, to make sure we do not prefer one vertex over the other. In reality
a lot of vertices can already be labeled bad by looking at the vertex degree. In a maximum independent set there
are mostly vertices that have low degree. Therefore, we could penalize vertices with a high degree by choosing
appropriate initial conditions. One possible way of doing this would be choosing

(x0)i = 1− di
dmax − 1

for i ∈ [n].

In this way, the vertices with high degree will have small initial values, while vertices with small degree will have
relatively large initial values.

The results of the numerical work on the continuation algorithm still have some cases where the output is not a
maximal independent set. Numerically, this happens only when the trajectories of the Lotka-Volterra equations
do not converge fast enough. We already tried to solve this by changing the integration time and the forward
displacement parameter, but we were not able to solve all of it. For future work it is a good idea to do research on
the integration time of the algorithm.

To investigate the performance of the Continuation algorithm on graphs with many triangles, one could test the
algorithm on graphs generated by replacing the vertices in a graph with triangles. In this way we end up with a
graph consisting of triangles "glued" together.

Instate of comparing the output of the algorithms with an exact solution, one can also compare the algorithm
to each other directly. In this way we can avoid computing the exact solution, which is the bottleneck in the
execution of the code since it takes a lot more time than the approximation algorithms. If we do this we can
compare algorithm results for bigger graphs.

50

DISCUSSION

A suggestion for future work is to look at random matrices. Instead of taking a matrix with Bernoulli distributed
entries as we have implicitly done when we take an Erdős-Rényi graph, one can also let these entries have a more
general distribution. For example one can take these entries normally distributed. Proving convergence for this
setting would have much broader biological implications.

An other suggestion for future work is to look at graphs that are not as uniform as Erdős-Rényi and geometric
graphs. For example, one can look at graphs generated by the block model.

In this thesis we have formulated the following conjectures which we believe are true, but have not been able to
prove. They are both inspired on numerical experiments.

Conjecture 7.5.1. The Newton method described in Section 6.4.1 converges monotonically to τ∗.

Conjecture 7.5.2. The exceptions described in Section 6.7 occur only when det(A) = 0.

D.3 Acknowledgements

First of all I want to thank my supervisor Ivan Kryven. He has provided excellent guidance while still giving me
the opportunity to keep on failing until I got it right.

I also like to thank the second readers Palina Salanevich and Carla Groenland for taking the time to read this
research report.

Last but not least, I want to thank my family and friends for all their support. I could not have done this without
all your help. It is my research, but it feels like our accomplishment.

51

APPENDIX

Appendix

A.1 Erdős-Rényi graphs data

A
verage

R
unning

Tim
e

(10 −
3

s)
LV

C
ontinuation

G
reedy

Size
M

ean
Std

M
ean

Std
M

ean
Std

n
=

10
66.8

31.4
702.0

368.0
0.496

0.531
n

=
12

65.2
20.6

818.0
275.0

0.596
0.62

n
=

14
58.0

7.84
886.0

221.0
0.642

0.488
n

=
16

57.4
6.65

1050.0
271.0

0.768
0.462

n
=

18
66.7

25.2
1420.0

509.0
1.01

0.598
n

=
20

66.8
22.9

1620.0
582.0

1.16
0.614

n
=

22
68.3

13.0
1790.0

420.0
1.28

0.512
n

=
24

65.9
9.06

1920.0
436.0

1.45
0.602

n
=

26
74.4

13.7
2410.0

584.0
1.69

0.734
n

=
28

76.2
19.0

2850.0
820.0

2.0
0.97

n
=

30
76.1

11.1
3060.0

676.0
2.06

0.691
n

=
32

75.0
8.95

3330.0
645.0

2.27
0.584

n
=

34
83.5

9.44
4050.0

783.0
2.53

0.812

A
verage

Perform
ance

LV
C

ontinuation
G

reedy
Size

M
ean

Std
M

ean
Std

M
ean

Std
n

=
10

0.9831
0.05989

0.9992
0.01264

0.9956
0.02934

n
=

12
0.9864

0.04648
0.9967

0.02304
0.9935

0.0326
n

=
14

0.9876
0.04254

0.9956
0.02497

0.9918
0.03369

n
=

16
0.986

0.04027
0.9942

0.0264
0.9908

0.03421
n

=
18

0.9857
0.0403

0.9927
0.02819

0.9909
0.03346

n
=

20
0.9869

0.03496
0.9947

0.02281
0.9933

0.02615
n

=
22

0.9853
0.0358

0.9926
0.02542

0.9901
0.03081

n
=

24
0.9871

0.03179
0.9935

0.02346
0.9918

0.02742
n

=
26

0.9865
0.0317

0.9911
0.0257

0.9887
0.02977

n
=

28
0.9869

0.02936
0.992

0.02433
0.9882

0.02843
n

=
30

0.9833
0.03045

0.9909
0.02495

0.9878
0.03004

n
=

32
0.9829

0.03149
0.9894

0.02492
0.9885

0.02733
n

=
34

0.9826
0.03021

0.9909
0.02312

0.9843
0.02965

52

APPENDIX

Percentage Correct
Size LV Continuation Greedy

n = 10 0.922 0.996 0.978
n = 12 0.92 0.98 0.962
n = 14 0.918 0.97 0.944
n = 16 0.89 0.954 0.93
n = 18 0.882 0.936 0.928
n = 20 0.874 0.948 0.936
n = 22 0.85 0.922 0.902
n = 24 0.854 0.928 0.91
n = 26 0.84 0.891 0.868
n = 28 0.83 0.898 0.848
n = 30 0.766 0.877 0.844
n = 32 0.758 0.843 0.84
n = 34 0.736 0.86 0.768

Worstcase Performance
Size LV Continuation Greedy

n = 10 0.6 0.8 0.8
n = 12 0.75 0.8333 0.8
n = 14 0.7143 0.8333 0.8333
n = 16 0.75 0.8571 0.75
n = 18 0.75 0.8571 0.7778
n = 20 0.7778 0.875 0.8
n = 22 0.8 0.9 0.8182
n = 24 0.8333 0.8333 0.7273
n = 26 0.8462 0.8462 0.8333
n = 28 0.8571 0.8571 0.8333
n = 30 0.8667 0.8571 0.7857
n = 32 0.8571 0.8667 0.8667
n = 34 0.8571 0.875 0.8667

53

APPENDIX

A.2 Geometric graphs data

A
verage

R
unning

Tim
e

(10 −
3

s)
LV

C
ontinuation

G
reedy

Size
M

ean
Std

M
ean

Std
M

ean
Std

n
=

10
68.3

25.3
774.0

306.0
0.49

0.515
n

=
12

62.1
15.7

873.0
259.0

0.557
0.608

n
=

14
62.7

17.1
1080.0

317.0
0.654

0.659
n

=
16

58.8
8.27

1190.0
291.0

0.704
0.478

n
=

18
72.7

31.6
1760.0

725.0
1.09

0.95
n

=
20

75.2
28.1

2090.0
856.0

1.17
0.816

n
=

22
66.8

13.6
2180.0

578.0
1.11

0.504
n

=
24

67.2
17.0

2500.0
687.0

1.33
0.872

n
=

26
74.4

24.2
3050.0

748.0
1.52

0.883
n

=
28

77.0
22.0

3570.0
1050.0

1.66
0.809

n
=

30
81.4

23.7
4150.0

1130.0
1.77

0.784
n

=
32

75.1
24.5

4420.0
1070.0

1.94
1.53

n
=

34
88.3

29.9
7400.0

40400.0
2.13

0.766

A
verage

Perform
ance

LV
C

ontinuation
G

reedy
Size

M
ean

Std
M

ean
Std

M
ean

Std
n

=
10

0.9349
0.1266

0.9966
0.02861

0.9968
0.02893

n
=

12
0.9294

0.1196
0.9908

0.04304
0.9978

0.02005
n

=
14

0.9362
0.1089

0.9899
0.04309

0.9962
0.02662

n
=

16
0.9135

0.1177
0.9918

0.03588
0.9953

0.02929
n

=
18

0.9079
0.1065

0.9894
0.03988

0.9943
0.02901

n
=

20
0.9177

0.1077
0.984

0.04632
0.9944

0.0274
n

=
22

0.9192
0.1026

0.9854
0.04183

0.9925
0.03115

n
=

24
0.9024

0.102
0.98

0.04801
0.9937

0.0278
n

=
26

0.9032
0.1051

0.9768
0.04937

0.9898
0.03367

n
=

28
0.9008

0.0944
0.9759

0.0479
0.989

0.03373
n

=
30

0.9196
0.09103

0.9755
0.04796

0.9881
0.03554

n
=

32
0.8959

0.09803
0.975

0.04671
0.9908

0.03047
n

=
34

0.8997
0.09353

0.9698
0.04939

0.9893
0.03205

54

APPENDIX

Percentage Correct
Size LV Continuation Greedy

n = 10 0.77 0.986 0.988
n = 12 0.712 0.956 0.988
n = 14 0.714 0.948 0.98
n = 16 0.598 0.95 0.974
n = 18 0.518 0.932 0.962
n = 20 0.562 0.891 0.96
n = 22 0.552 0.891 0.944
n = 24 0.43 0.846 0.95
n = 26 0.438 0.815 0.916
n = 28 0.38 0.794 0.904
n = 30 0.476 0.786 0.896
n = 32 0.36 0.772 0.914
n = 34 0.342 0.719 0.898

Worstcase Performance
Size LV Continuation Greedy

n = 10 0.3333 0.75 0.6667
n = 12 0.3333 0.75 0.8
n = 14 0.4 0.75 0.75
n = 16 0.4 0.8 0.7143
n = 18 0.5 0.75 0.8333
n = 20 0.4 0.8 0.8333
n = 22 0.5714 0.8333 0.8333
n = 24 0.4286 0.7143 0.8571
n = 26 0.5 0.75 0.8571
n = 28 0.625 0.7778 0.875
n = 30 0.5556 0.8 0.7778
n = 32 0.5556 0.7778 0.8
n = 34 0.5 0.7778 0.8

55

APPENDIX

A.3 Bipartite graphs data

A
verage

R
unning

Tim
e

(10 −
3

s)
LV

C
ontinuation

G
reedy

Size
M

ean
Std

M
ean

Std
M

ean
Std

n
=

20
88.0

41.8
1430.0

521.0
1.54

0.684
n

=
30

78.9
17.3

2150.0
372.0

2.45
1.34

n
=

40
125.0

33.5
4670.0

807.0
4.69

1.87
n

=
50

162.0
24.6

7980.0
901.0

6.85
2.47

n
=

60
187.0

34.2
11800.0

1250.0
9.17

3.11
n

=
70

231.0
33.8

18000.0
1780.0

12.1
4.24

n
=

80
272.0

37.8
25800.0

2230.0
14.2

4.44
n

=
90

357.0
48.9

37500.0
3280.0

18.3
4.57

n
=

100
395.0

77.1
52000.0

3690.0
22.2

6.08

A
verage

Perform
ance

LV
C

ontinuation
G

reedy
Size

M
ean

Std
M

ean
Std

M
ean

Std
n

=
20

0.9875
0.02976

0.9983
0.01167

0.985
0.05449

n
=

30
0.9878

0.02301
1.0

0.0
0.9806

0.06353
n

=
40

0.9883
0.02211

1.0
0.0

0.9642
0.08123

n
=

50
0.9887

0.02222
1.0

0.0
0.9723

0.07289
n

=
60

0.9939
0.01448

1.0
0.0

0.9714
0.06217

n
=

70
0.9867

0.01823
1.0

0.0
0.9726

0.06846
n

=
80

0.99
0.01487

1.0
0.0

0.9679
0.06077

n
=

90
0.9924

0.01286
0.9998

0.001843
0.9661

0.05708
n

=
100

0.9905
0.0162

1.0
0.0

0.9697
0.05428

56

APPENDIX

Percentage Correct
Size LV Continuation Greedy

n = 20 0.85 0.98 0.92
n = 30 0.78 1.0 0.89
n = 40 0.76 1.0 0.74
n = 50 0.75 1.0 0.79
n = 60 0.82 1.0 0.69
n = 70 0.58 1.0 0.74
n = 80 0.63 1.0 0.6
n = 90 0.69 0.99 0.53

n = 100 0.63 1.0 0.49

Worstcase Performance
Size LV Continuation Greedy

n = 20 0.9167 0.9167 0.75
n = 30 0.9444 1.0 0.6667
n = 40 0.9167 1.0 0.6667
n = 50 0.9 1.0 0.6667
n = 60 0.9167 1.0 0.6667
n = 70 0.9286 1.0 0.6667
n = 80 0.9375 1.0 0.6667
n = 90 0.9444 0.9815 0.6852

n = 100 0.9167 1.0 0.6667

57

APPENDIX

A.4 Algorithm comparison

10 12 14 16 18 20 22 24 26 28 30 32 34

0.975

0.980

0.985

0.990

0.995

1.000

Av
er

ag
e

pe
rfo

rm
an

ce

Erdos Renyi graphs
LV
Continuation
Greedy

10 12 14 16 18 20 22 24 26 28 30 32 34
0.850

0.875

0.900

0.925

0.950

0.975

1.000

Av
er

ag
e

pe
rfo

rm
an

ce

Random geometric graphs

20 30 40 50 60 70 80 90 100
Size

0.92

0.94

0.96

0.98

1.00

Av
er

ag
e

pe
rfo

rm
an

ce

Random bipartite graphs

Figure A.4.1: Average performance of the LV algorithm, the Continuation algorithm and the Greedy algorithm.

58

APPENDIX

10 12 14 16 18 20 22 24 26 28 30 32 34

0.75

0.80

0.85

0.90

0.95

1.00
Pe

rc
en

ta
ge

 c
or

re
ct

Erdos Renyi graphs
LV
Continuation
Greedy

10 12 14 16 18 20 22 24 26 28 30 32 34

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 c

or
re

ct

Random geometric graphs

20 30 40 50 60 70 80 90 100
Size

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge
 c

or
re

ct

Random bipartite graphs

Figure A.4.2: Percentage correct of the LV algorithm, the Continuation algorithm and the Greedy algorithm.

59

APPENDIX

10 12 14 16 18 20 22 24 26 28 30 32 34
0.6

0.7

0.8

0.9

1.0
W

or
st

-c
as

e
pe

rfo
rm

an
ce

Erdos Renyi graphs
LV
Continuation
Greedy

10 12 14 16 18 20 22 24 26 28 30 32 34

0.4

0.6

0.8

1.0

W
or

st
-c

as
e

pe
rfo

rm
an

ce

Random geometric graphs

20 30 40 50 60 70 80 90 100
Size

0.7

0.8

0.9

1.0

W
or

st
-c

as
e

pe
rfo

rm
an

ce

Random bipartite graphs

Figure A.4.3: Worst-case performance of the LV algorithm, the Continuation algorithm and the Greedy algorithm.

60

REFERENCES

References

[1] S. Ağrali, Z. Caner Taşkin, and A. Tamer Ünal. “Employee scheduling in service industries with flexible
employee availability and demand”. In: Omega 66 (2017), pp. 159–169. ISSN: 0305-0483. DOI: https://doi.
org/10.1016/j.omega.2016.03.001. URL: https://www.sciencedirect.com/science/article/pii/
S0305048316000475.

[2] K. Ameenal Bibi, A. Lakshmi, and R. Jothilakshmi. “Applications of Distance - 2 Dominating Sets of Graph
in Networks”. In: Advances in Computational Sciences and Technology 10.9 (2017), pp. 2801–2810.

[3] P. Ashwin and M. Timme. “When instability makes sense”. In: Nature 436 (July 2005), pp. 36–37.
[4] T. Bäck and S. Khuri. “An evolutionary heuristic for the maximum independent set problem”. 1994.
[5] B. S. Baker. “Approximation Algorithms for NP-Complete Problems on Planar Graphs”. In: Journal of the

Association for Computing Machinery 41.1 (Jan. 1994), pp. 153–180.
[6] S. Balaji, V. Swaminathan, and K. Kannan. “A simple algorithm to optimize maximum independent set”. In:

Advanced Modeling and Optimization 12.1 (2010), pp. 107–118.
[7] J. C. Ballard-Myer. “Deterministic Greedy Algorithm for Maximum Independent Set Problem in Graph

Theory”. Dec. 2019.
[8] I. M. Bomze. “Lotka-Volterra Equation and Replicator Dynamics: A Two-Dimensional Classification”. In:

Biological Cybernetics 48 (1983), pp. 201–211.
[9] I. M. Bomze et al. “The Maximum Clique Problem”. In: Handbook of Combinatorial Optimization. Ed. by D.

Ding-Zhu and P. M. Pardalos. Springer, 1999, pp. 1–74. DOI: 10.1007/978- 1- 4757- 3023- 4_1. URL:
https://doi.org/10.1007/978-1-4757-3023-4%5C_1.

[10] A. Brændeland. A family of greedy algorithms for finding maximum independent sets. 2015. arXiv: 1505.00752
[cs.DS].

[11] G. Bunin. “Ecological communities with Lotka-Volterra dynamics”. In: Physical Review E 95.4 (2017), p. 042414.
[12] S. Butenko. Maximum independent set and related problems, with applications. University of Florida, 2003.
[13] B. Chamaret et al. “Radio network optimization with maximum independent set search”. In: 1997 IEEE 47th

Vehicular Technology Conference. Technology in Motion. Vol. 2. IEEE. 1997, pp. 770–774.
[14] S. Cook. “The importance of the P versus NP question”. In: Journal of the ACM (JACM) 50.1 (2003), pp. 27–29.
[15] W. J. Cook et al. “Combinatorial optimization”. In: Oberwolfach Reports 5.4 (2009), pp. 2875–2942.
[16] P. Erdos, A. Rényi, et al. “On the evolution of random graphs”. In: Publ. Math. Inst. Hung. Acad. Sci 5.1 (1960),

pp. 17–60.
[17] M. R. Garey and D. S. Johnson. Computers and intractability. Vol. 174. freeman San Francisco, 1979.
[18] S. A. Gershgorin. “Uber die abgrenzung der eigenwerte einer matrix”. In: . 6 (1931), pp. 749–754.
[19] G. T. Gilbert. “Positive definite matrices and Sylvester’s criterion”. In: The American Mathematical Monthly

98.1 (1991), pp. 44–46.
[20] B. S. Goh. “Global stability in many-species systems”. In: The American Naturalist 111.977 (1977), pp. 135–143.
[21] A. V. Goldberg, É. Tardos, and R. Tarjan. Network flow algorithm. Tech. rep. Cornell University Operations

Research and Industrial Engineering, 1989.
[22] J. L. Gross, J. Yellen, and M. Anderson. Graph theory and its applications. Chapman and Hall/CRC, 2018.
[23] M. Gupta and S. Khan. “Simple dynamic algorithms for maximal independent set and other problems”. In:

arXiv preprint arXiv:1804.01823 (2018).
[24] S. M. Hedetniemi et al. “Self-stabilizing algorithms for minimal dominating sets and maximal independent

sets”. In: Computers & Mathematics with Applications 46.5-6 (2003), pp. 805–811.
[25] M. W. Hirsch. “Systems of differential equations which are competitive or cooperative: III. Competing

species”. In: Nonlinearity 1.1 (1988), p. 51.
[26] K. Huseyin and R. Plaut. “Application of the Rayleigh quotient to eigenvalue problems of pseudo-conservative

systems”. In: Journal of Sound and Vibration 33.2 (1974), pp. 201–210.
[27] R. Karp. “Reducibility Among Combinatorial Problems”. In: vol. 40. Jan. 1972, pp. 85–103. ISBN: 978-3-540-

68274-5. DOI: 10.1007/978-3-540-68279-0_8.
[28] E. Kaszkurewicz and A. Bhaya. Matrix diagonal stability in systems and computation. Springer Science & Busi-

ness Media, 2012.
[29] J. H. Kim and V. H. Vu. “Generating random regular graphs”. In: Proceedings of the thirty-fifth annual ACM

symposium on Theory of computing. 2003, pp. 213–222.
[30] L. Lovász and J. Pelikán. “On the eigenvalues of trees”. In: Periodica Mathematica Hungarica 3.1-2 (1973),

pp. 175–182.

61

https://doi.org/https://doi.org/10.1016/j.omega.2016.03.001
https://doi.org/https://doi.org/10.1016/j.omega.2016.03.001
https://www.sciencedirect.com/science/article/pii/S0305048316000475
https://www.sciencedirect.com/science/article/pii/S0305048316000475
https://doi.org/10.1007/978-1-4757-3023-4_1
https://doi.org/10.1007/978-1-4757-3023-4%5C_1
https://arxiv.org/abs/1505.00752
https://arxiv.org/abs/1505.00752
https://doi.org/10.1007/978-3-540-68279-0_8

REFERENCES

[31] R. Mac Arthur. “Species Packing, And What Interspecies Competition Minimizes”. In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 64.4 (1969). https://doi.org/10.1073/pnas.64.4.1369,
pp. 1369–1371.

[32] G. Mao. Connectivity of communication networks. Springer, 2017.
[33] B. D. McKay. “The expected eigenvalue distribution of a large regular graph”. In: Linear Algebra and its

Applications 40 (1981), pp. 203–216.
[34] R. Menezes dos Santos. “Exploring ecological interactions using the generalized Lotka-Volterra model -

Coexistence and resilience of populations”. Master thesis. Federal University of Bahia, Jan. 2021.
[35] V. Nikiforov. “The influence of Miroslav Fiedler on spectral graph theory”. In: Linear Algebra and Its Applica-

tions 439.4 (2013), pp. 818–821.
[36] M. Pelillo. “Heuristics for maximum clique and independent set”. In: (1999).
[37] J. Quandt. “On the Hartman-Grobman theorem for maps”. In: Journal of differential equations 64.2 (1986),

pp. 154–164.
[38] J. M. Robson. “Algorithms for maximum independent sets”. In: Journal of Algorithms 7.3 (1986), pp. 425–440.
[39] A. Sharp. Proving a Problem is NP-complete. Accessed: 9-6-2022.
[40] I. Stojmenovic, M. Seddigh, and J. Zunic. “Dominating sets and neighbor elimination-based broadcasting

algorithms in wireless networks”. In: IEEE Transactions on parallel and distributed systems 13.1 (2002), pp. 14–
25.

[41] M. Uetz. Discrete Optimization 2020 - Lecture 9: P, NP, co-NP, and Problem Reductions. Mastermath Discrete
Optimization Course. 2020.

[42] R. Vershynin. High-dimensional probability: An introduction with applications in data science. Vol. 47. Cambridge
university press, 2018.

[43] T. Vinh-Thong, A. Elmoataz, and O. Lézoray. “Nonlocal PDEs-based morphology on weighted graphs for
image and data processing”. In: IEEE transactions on Image Processing 20.6 (2010), pp. 1504–1516.

[44] A. Wigderson. “P, NP and mathematics–a computational complexity perspective”. In: Proceedings of the ICM.
Vol. 6. 2006, pp. 665–712.

[45] R. J. Wilson. “1.3 History of Graph Theory”. In: Handbook of Graph Theory (2003), p. 29.
[46] M. Xiao and H. Nagamochi. “Exact algorithms for maximum independent set”. In: Information and Compu-

tation 255 (2017), pp. 126–146.

62

	Introduction
	Graph Theory
	Basic notions
	Different graph types
	Spectrum of graphs
	Gershgorin Circle Theorem
	Rayleigh quotient
	Regular graphs
	Bipartite graphs

	Random Graphs
	Different random graph models
	Erdos-Rényi graphs
	Random geometric graphs
	Random bipartite graphs

	McKay distribution

	Complexity Theory
	Complexity theory
	Optimization problems on graphs
	Maximum Clique problem
	Maximum Matching problem
	Minimum Vertex Cover problem
	Maximum Independent Set problem

	Decision problems
	NP-complete problems
	Exact algorithms for MIS problem
	MIS problem for bipartite graphs

	Heuristic algorithms for MIS problem

	Mathematical Ecology
	Lotka-Volterra equations in 2 dimensions
	Lotka-Volterra equations in n dimensions
	Limiting behavior of Lotka-Volterra equations.
	Fixed points
	Jacobian matrix

	Lotka-Volterra equations for solving MIS problem
	Ecological heuristic
	Matrix Theory
	Stability of the feasible fixed point
	Stability of fixed points with extinction
	Regular Graphs
	Fixed points
	Stability

	Complete Graphs
	Fixed points
	Stability

	Numerical Continuation Algorithm
	Numerical continuation
	Algorithm
	Ecological heuristic
	Bifurcation values
	Newton's method

	Algorithm speed up
	Modified algorithm
	Algorithm with exceptions
	Regular graphs
	Other graphs

	Exception induced by algorithm
	Final algorithm
	Lower bound bifurcation

	Numerical results
	Erdos-Rényi graphs
	Geometric graphs
	Bipartite graphs
	Computational complexity
	Numerical continuation failure

	Discussion
	D.1 Results
	D.2 Future Work
	D.3 Acknowledgements

	Appendix
	A.1 Erdos-Rényi graphs data
	A.2 Geometric graphs data
	A.3 Bipartite graphs data
	A.4 Algorithm comparison

	References

