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Abstract

Previous research in graph embedding concentrates mainly on using
embeddings for downstream machine learning tasks such as node clas-
sification, edge prediction and, to a lesser extent, on visualizing these
embeddings for analytical examination. This study aims to determine
whether high dimensional graph embeddings can be used to uncover
structures in graphs, and visualize these in two dimensional matrices.
We propose a framework that embeds a graph in high dimensions; cal-
culates the pairwise distance matrix; reorders rows and columns in this
matrix; and visualizes the original graph in a new matrix exploration
tool. The goal of this framework is to supply individuals with high
level knowledge on relational data. We test the framework by ana-
lyzing visual quality by feeding in basic pre-generated graphs. The
random walk algorithms (e.g. DeepWalk, Walkets and attentionWalk)
are able to accurately visualize 4 out of 6 of the canonical data pat-
terns for a high level understanding of the data. Nevertheless, these
basic graphs do not reflect complex relational data used in many real
world applications, and therefore, we introduce two novel algorithms
for embedding numerical node-attributed graphs (i.e. featPMI and
featWalk). These algorithms are tested on a subset of the attributed
Slovakian social network Pokec, in which both the algorithms show in-
creasing information retention over the naive embedding of DeepWalk.
Furthermore, featWalk is found to be preferred over featPMI with a
clearer separation of patterns, and better feature preservation. Our
findings indicate the potentiality of embeddings to generate valuable
high level matrix visualizations.

keywords: graph embedding, graph visualization, random walk, seri-
ation, matrix reordering, multivariate graphs
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1 Introduction

With the ever increasing need for larger visualizations of relational data,
it becomes difficult for most existing methods to visualize node-link dia-
grams of over 140,000 vertices [1]. Elmqvist et al. [1] explain that a further
increase in the size, density or attributes of graphs will lead to occlusion
and a decreased readability of graphs [2, 3]. One of the suggested solu-
tions for avoiding this large graph visualization problem is to encode graph
structure in matrix form [2], which could additionally encode supplemen-
tary attributes. A recent comparison by Ghoniem, Fekete and Castagliola
[4], and Keller, Eckert and Clarkson [5] found that the readability of graphs
favored a matrix-based representations over node-link diagrams for large
graphs. Nevertheless, these matrices are typically not very informative to
the user if the arrangement of its rows and columns does not show any
structure [6, 7]. When ordered appropriately however, they can show high
level patterns more clearly in much larger graphs than node-link diagrams
[1]. To the best of our knowledge no matrix reordering algorithm exists
for ordering attributed graphs. Therefore, the purpose of this study is to
investigate whether Graph Neural Networks can obtain useful embeddings
for weighted (1), non-symmetric (2) and multivariate networks (3), to be
used in constructing a visually ’useful’ matrix. An example of increasingly
useful matrix re-orderings is given in figure 1, with the first image consist-
ing of no structure and the last image of highly visible structure. Ideally
for comparison of algorithms, this row and column reordered matrix should
be comparable on a quantitative and qualitative level to other matrix rep-
resentations of the same graph.

Figure 1: Matrix series with x-axis increasing interpretive quality

Goyal and Ferrara [8] argue that embedding graph data to the vector
space is a necessity for increased usability and practicality of large graphs.
For that reason, in our work embeddings generated by Graph Embedding
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Algorithms will be used in conjunction with a seriation technique to derive
a good matrix order. In this reordering high-level patterns should manifest
and they should inform the user. But for all that, are graph neural networks
even able to learn useful embeddings for a visually comprehensible matrix
reordering? To answer this question, a resulting matrix reordering that is
interactive (e.g. zoom, pan and move) and steerable would be of great value
in this exploratory analysis.

The most important, evaluation metrics for comparing these matrices
mainly involve the visual quality patterns in Behrisch, Shreck and Pfister
[7]. Quantitatively however, the results will be tested by comparing the
re-orderings on several quality metrics as in [7, 8], with the most important
metric for our research being the Hamiltonian Path Length. An alternative
to this approach is using the common metric minimum Linear Arrangement
(LA) scores [9] to exploit block patterns as in [6, 10].

1.1 Problem Statement & Research Questions

The aim of this research is to explore whether graph embeddings can be
used to visualize recognizable patterns in row and column reordered permu-
tations. These visualizations should contain practical patterns such as the
Wilkinsons [11] canonical data patterns and binary patterns of Behrisch et
al. [6]. These patterns give interpretation of a graphs structure in the matrix
visualization and are explained in more detail in section 4.6.1. Therefore, the
main research question is aimed at fulfilling the visualization need for large
graphs, and it intents to do so by exploring whether graph embeddings can
be used to discover understandable patterns in the data. The main research
question is therefore:

• Research Question: How can we use vector point1 Graph Neural
Networks to derive a latent space for effective visualization(s) of com-
plex graphs in a matrix?

To answer this main research question five supporting sub questions have
been defined:

• Sub Question 1: What are the different types of vector point Graph
Neural Networks?

• Sub Question 2: How to project a high dimensional embedding into
a two dimensional matrix?

• Sub Question 3: What is a visually comprehensible two dimensional
matrix?

1vector point GNNs are neural networks that embed graph nodes in the latent space
[12]

2



• Sub Question 4: What nodal information is retained by embedding
graphs with vector point Graph Neural Networks, and what is lost?

• Sub Question 5: How could a vector point GNN generate useful
projection(s) of a multivariate graph?

To answer sub questions 1,2 and 3 a semi-systematic literature review
will be performed in section 3. In addition, this section will contextualize re-
cent work on graph embeddings, seriation and quality metrics. Sub question
4 will be answered by generating artificial graphs with specific properties, of
which the visualizations will be analyzed. And finally, for sub question 5 ex-
periments will be performed to explore how multivariate graph embeddings
and their matrix visualizations can be interpreted.

1.2 Research Approach

This research uses the methodology by Munzner [13] for visualization design.
The nested approach is used to design and evaluate effective visualizations.

Figure 2: Nested model by Munzner [13]

The first step in this model is defining the domain problem and data
characterization. For this research, the output would be to investigate the
graph domain, the work flow from embedding to visualization, data types
and matrix reordering described in sections 2 and 3. The next step is oper-
ation and data type abstraction, where the output is a rendition of the used
data type(s) and operations to be performed (described in sections 4 and 7).
Afterwards, the visual encoding and interaction design step defines how to
present the data visually in section 4, and what type of user interactions can
be applied in section 5. Finally, the algorithmic design step is used to create
an algorithm for automatic graph embedding and visualization as described
in sections 4 and 6. The aforementioned steps are summarized in figure 2.

1.2.1 Research Method

To obtain a good matrix representation of a complex graph it is often not
enough to encode this graph in two or three dimensional space. Therefore,
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Harel and Koren [14] suggest to embed a graph in high dimensions (e.g.
50) and, thereafter, reduce the dimensions to make visualization of the re-
sults possible. Unfortunately, a high dimensional object cannot be easily
represented in low dimensions due to the simple fact that there is inherent
confinement in the allotted space [14]. As a result, a non-trivial technique
called dimensionality reduction is applied to the data which, if done in-
correctly, can make the entire embedding useless. The practicality of any
embedding rests on the assumption that the divergence between observa-
tions is meaningful for downstream tasks, or that the results are readable,
if the goal is visualization.

In this thesis, the research approach is similar to that of the method
introduced by Harel and Koren [14]. In their work node embeddings were
obtained by creating n pivot nodes in the original graph. By calculating
distances between these pivot nodes and all other nodes in the graph they
essentially represent multiple dimensions for each distinct node. In contrast,
in this thesis graph embeddings are generated by multiple graph embedding
algorithms instead. Unfortunately, embedding in high dimensions as in [14]
can be problematic since data becomes sparse in high dimensional space.
In this high dimensional space concepts of distance and clusters can quickly
become insignificant [15], and unfortunately, problems become worse when-
ever the dimensions increase. Nevertheless, the assumption that dimensions
should be as low as possible (i.e. d � |V |), and choosing a good dimen-
sionality reduction technique (i.e. DRT) should help mitigate this problem.
Aggarwal, Hinneburg and Keim [15] show that distance metrics performance
differs significantly in higher dimensions without applying a DRT before-
hand. Note that the Manhattan distance (i.e. L1 norm) consistently out-
performs the Euclidean distance (i.e. L2 norm) in higher dimensions [15].
The choice of including a DRT before calculating pairwise distances seems
trivial in higher dimensions based on this study. Therefore, DRTs and its
variants are discussed further in section 3.4. One notable DRT that was
used in Harel and Koren [14] is PCA, but this DRT would likely lead to
sub-optimal results in our study since linear PCA would nullify the intrinsic
non-linearity of the embeddings.

1.2.2 Literature Protocol

The protocol of the literature review will be semi-structured since the main
goal of this study is exploration. First, a few key domains and insights will
be researched. Hereafter, a more unstructured study will follow to identify
key themes, research gaps and model solutions in other fields.

For the structured part, a manual search will be performed by searching
for papers on Google Scholar; searching on Github for implementations; and
using R and Python documentations. The research protocol is given by fig-
ure 3 for the structured part. To get an understanding of the preliminaries
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of the domain several articles will be read, whereafter the Research Ques-
tion(s) and Scope of the project will be (re-)defined. To construct a search
vocabulary a pre-search is done, after which the actual search for articles
begins (with inclusion & exclusion conditions). After gathering and reading
the literature, a written report of the natural divided parts will be made.
And finally, key insights from the structured part in combination with thesis
progression will be the guideline for adding unstructured literature.

The time period for the search will be 2000-2021 (with the exception of
references to original papers). Nevertheless, TSP algorithms and heuristics
have been developed far before this period and there are highly influential
and essential papers from the 1950s onward thus these will be included. The
keywords used in this search are enumerated below:

Keywords: graph, embedding, graph embedding, matrix reordering, seriation,
TSP, TSP algorithms, TSP heuristics, Deep Learning Graph Embedding,
Random Walk Graph Embedding, Matrix Factorization Graph Embedding,
Graph Neural Networks, GNN, dimensionality reduction, Dimensionality
Reduction Techniques, High Dimensional Data, weighted graph embeddings,
attributed graph embeddings, multivariate graph embeddings

Figure 3: Research protocol

1.3 Relevance for Business and Society

Visualizing large scale and complex graphs are highly beneficial for under-
standing complex systems in scientific, business, healthcare and chemistry
domains [16, 17]. By visualizing graphs it is possible to gain insights of the
data that is hard to spot or previously unknown. In a business setting you
enable an analyst to quickly identify outliers, trends, group structures and
measure similarity. Some concrete applications could be the visualization of
a social network and group similar societies, or visualize complex molecules
and identify possible interactions, or visualize power grids to pinpoint weak-
nesses in a power grid. Visualizing graph data increases interpretations of
the data in which complex ideas can be communicated in a single image [17].
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Unfortunately, many of these real world graphs are very large and clever
techniques need to be utilized to clearly visualize graph data. An option to
visualize these graphs is to represent this data in matrix form and extract
high level patterns. This option is ultimately scalable in graph size since it
is possible to visualize just a single pixel per node!

Our vision is therefore to supply non-experts with value from relational
data using high quality visualizations. Or in the acronym G.R.A.P.H.:

Great visualizations. value Realization. usable to Anyone.
everyday Problems. High-level insights.

1.4 Contributions

Combinations of the two literature streams named machine learning for
graph embeddings, and matrix reordering led to new insights. These streams
are combined in this research by encoding a simple, weighted or multivariate
graph in the latent space, reducing the dimensions and applying an ordering
to gain potential high level knowledge and discover topological patterns in
graphs. Researchers could increase their understanding of the black box of
Graph Embedding Algorithms by making changes in the algorithms and vi-
sualizing these differences. The contributions of this paper are summarized
below:

• Insight in the black box of graph embeddings

• Insight into existing quality metrics and why they are not applicable
for comparing visualizations

• Two ’new’ metrics for comparing visualization

• Crude debugger to visualize and combine embeddings

• Multivariate algorithms: featureWalk and featurePMI

• High level matrix visualizations of basic, weighted and multivariate
graphs
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2 Background

In this section the imperative preliminaries for this study will be established.
There will be an introduction into the different types of graphs used in this
study; several graph definitions; graph data representations and an insight
into the final framework.

2.1 Graph Definition

In this section the reader will be introduced to several graph theoretic def-
initions which are useful for understanding this study. The definition of a
simple graph follows:

Definition 1 (graph definition): A graph G where G = (V,E) con-
tains a node set V = {v1, v2, ..., vn} and an edge set E = {e1, e2, ..., em}.
Edge eij connects two nodes vi, vj, ∀e ∈ E.

According to definition 1 each edge represents a relationship and con-
nects two nodes [18]. Definition 2 shows that an edge in a graph can be
represented by a node pair:

Definition 2 (edge definition): An edge e can be defined as an ordered
pair of vertices eij = (vi, vj). The weight of an edge w(e) = 1 if the vertices
are connected and 0 otherwise. A graph is symmetric iff eij = (vi, vj) and
edge eji = (vj , vi) where w(eij) = w(eji), ∀e ∈ E.

An historical application of graphs are cities (i.e. nodes) and whether
you can travel between them (i.e. edges). In this example, an edge can also
represent a one-way connection, or more formally it can be ’directed’ if we
do not assume symmetry in the node-node pairs. For non-symmetry, each
edge e ∈ E where eij = (vi, vj) and eji = (vj , vi) the edge weights are not
equivalent or, w(eij) 6= w(eji).

Graphs are not restricted to displaying relationships on a binary level,
they are able to model problems in which weight between nodes is important.
The binary city problem can be extended by introducing proximity between
cities as non-binary weights. For this example, a weight of 0 is infinitely far
apart, and weights larger than zero increase closeness. The weighted graph
WG extends G in definition 3 by assigning non-binary edge weights w for
all edges in E [18].

Definition 3 (weighted graph definition): A weighted graph WG is
defined as WG = (V,E,W). WG is a special case of G where ∀w ∈W lie in
the range [0,∞). The weight of an edge w(e) defines connection strength,
with w(e) = 0 being disconnected nodes, w(e) > 0 connected nodes according
to some weighting scheme.
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Furthermore, certain attributes can be modelled into graphs to introduce
the multivariate graph in definition 4. While it is possible to attribute
both edges and nodes, this study will only consider node attributes. A
multivariate graph is defined as a node attributed graph with a feature
vector F for each node.

Definition 4 (multivariate graph definition): A multivariate graph
M is an extension on G where M = (V,E,F), where ∀v ∈ V there is a vector
f ∈ F which specifies one or more attributes of v [19].

In the running example our cities will gain attributes, think of population
figures, demographics and land area.

2.2 Types of Graphs

First the reader will be introduced to the many types of graphs and their
differences. This master’s thesis main focus is on basic graphs, weighted
graphs and multivariate graphs.

2.2.1 Basic Graph

The basic graph is the simplest type of network in graph analytics. A basic
graph consists of nodes and the edges wherein each edge represents a connec-
tion between nodes. In this simple form, there can only be one edge between
each node pair and none of these edges can have the same source/target node
(i.e. no loops). An example of a simple graph is the well-know social net-
work Facebook. In this network a node is represented by an individual on
the website, and an edge is represented by friendship between two people.
Evidently, a requirement for this graph to be a simple network is that a
friendship is mutual and you cannot be friends with yourself. In figure 4(a)
there is an example of such a network.

2.2.2 Directed Graph

An extension on this basic form is made by allowing the edges to have a
direction, thus introducing directed and undirected graphs. A directed graph
(or digraph) is a graph where the edge between two nodes flows one way,
but does not necessarily flow the other way. A digraph’s edges are usually
represented by arrows pointing from the source to the target vertex. An
example of such a graph is a flow diagram, where processes are vertices and
flows are edges. One can visualize such a graph as in figure 4(b). A simple
graph is undirected.
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Figure 4: (a): Simple graph (b): Directed graph (c): Weighted graph

2.2.3 Weighted Graph

To increase complexity an extra variable could be introduced. By weighing
the edges in a graph, the distinction between weighted and unweighted graphs
is made. A weighted graph is a graph in which the connections between
nodes are of different types of strength. The higher the weight on an edge
the greater the ’cost’ (or benefit, depends on definition of weights) to move
from the source to target node. An example is a public transport network
wherein edge weights imitate the time it takes to get from one city to the
next, as represented in figure 4(c). A simple graph is unweighted.

2.2.4 Heterogeneous Graphs

Then, by allowing a graph to have different types of edges and/or nodes in a
graph several types of Heterogeneous Graphs can be introduced. An example
is given in figure 5(a) wherein nodes represent different life forms. Red nodes
are omnivores, orange nodes are herbivores and green nodes are plants. Not
only do the node types differ, also the relationships between them varies.
In this example there are two types of edges, these are eating and fighting
relationships. Note that many different types of Heterogeneous Graphs (or
Multilevel Graphs) exist [20]. These graphs are out of the scope of this paper
and will not be discussed further. A simple graph is homogeneous.

2.2.5 Multivariate Graph

And finally, the arguably most complex graphs are graphs with attributes
called multivariate graphs or attributed graphs. These graphs can have any
type of additional information next to nodes and edges, think of images,
variables and/or (un)structured text. An example of a multivariate graph is
given in figure 5(b) where nodes are cities and the attributes are represented
by text. In this example, the cities that have more connections are more
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Figure 5: (a): Heterogeneous Graph (b): Multivariate graph

central and have a higher population. A simple graph does not have any
variables.

2.3 Graph Data Representations

In this section an enumeration of possible different graph representations
that are utilized in graph embedding algorithms are discussed. The current
input of choice for this framework is the edge list.

2.3.1 Edge list

Simple graphs can be represented by an |V |× |2| Edge List L(G) where each
entry li in L represents an edge as a node pair between vertex vi and vj .
An example of an edge list is shown in figure 6, wherein among others, an
edge exists between node 0 and 1. For directed graphs, vi is the source of
an edge and vj is the target of the edge. And for weighted graphs, a third
entry w(e) > 0 for all edges is introduced and indicates the weights between
these two vertices. In an edge list it is easy to loop over all edges, but some
operations such as finding the degree of a node is relatively hard.

2.3.2 Adjacency Matrix

An alternative to the edge list is the |V |×|V | Adjacency Matrix A(G) shown
in figure 7. In this matrix A, each entry aij indicates whether node vi, vj are
connected or not. For undirected graphs, the adjacency matrix is symmetric.
For weighted graphs the entries can be any real number, or aij > 0.

10



Figure 6: Edge list Figure 7: Adjacency matrix

2.3.3 Incidence matrix

A relatively similar matrix can be fabricated with the |V | × |E| Incidence
Matrix I(G). Each entry iij in matrix I indicates whether vertex vi is adjacent
to edge ej . An incidence matrix usually exists of three values, -1 for incoming
edges, 0 for no edges and 1 for outgoing edges, see figure 8 for an example.

Figure 8: Incidence matrix

2.3.4 Adjacency list

A hybrid between an edge list and an adjacency matrix is the Adjacency
List visualized in figure 9. An adjacency list is an array of |V | lists with a
space complexity O(V +E). Each linked entry di...n in adjacency list D(G)
is a list of vertices vj to vj...n connected to vi with key vi. For example,
in this figure node 1 is connected to node 0 and 4. This representation
benefits over the adjacency matrix due to the sparsity of most graphs since
O(V +E)� O(V × V ). Another advantage of this representation is that it
allows for more efficient node operations (e.g. inserting and deleting nodes).
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Figure 9: Adjacency list

2.4 Pairwise node preservation principles

In graph embedding algorithms it is paramount to measure nodal similarity
in order to construct an embedding that preserves and optimizes proximity
between nodes. Graph embedding algorithms differ in the way they calculate
these pairwise similarities [21]. Nevertheless, a few of the most well-known
and regularly used measures in graph embedding algorithms are enumerated
below. The following definitions of first and second order proximities are
based on the paper by Cai, Zheng and Chang [21].

The first-order proximity in definition 5 is a measure of closeness between
pairs of nodes. This is essentially equal to the weight of an edge between
two nodes, and values the local structure in a graph.

Definition 5 (first-order proximity): The first-order proximity be-
tween a pair of vertices vi, vj is defined as the weight of the edge between two
vertices w(eij) where eij = (vi, vj). In a basic graph, the first-order proxim-
ity ∀e ∈ E is equal to 1 if an edge exists and 0 otherwise. The first-order
proximity for weighted graphs differs, ∀e ∈ E is equal to w(ek) if an edge
exists and 0 otherwise.

The second-order proximity tries to capture node similarity by comparing
the neighbourhoods of two nodes. The neighbourhood of a node is the set
of adjacent nodes. Nodes are more distant from each other if they do not
share a similar neighbourhood.

Definition 6 (second-order proximity): The second-order proxim-
ity compares the neighbourhoods of two nodes and constructs a similarity
measure between them. ∀v ∈ V there is a neighbourhood n. The neighbour-
hood nx for node x is equal to all edges connecting to x or, ∀v ∈ V where
[w(exv) > 0] ∈ nx. The pairwise second-order proximity sij between two
nodes is a similarity measure (e.g. cosine distance) between the neighbour-
hood of node i and j : ni and nj. The second-order proximity is defined as
sij = cosine(ni, nj).
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Most of the algorithms discussed in this paper will preserve either first,
second order proximities, or both. There are even higher-order proximity
preserving algorithms out there (e.g. Higher-Order Network Embeddings
or HONE [22]). This paper will not go into detail about these algorithms.
Nevertheless, it might be possible to preserve higher order proximities by
increasing the size of the neighbourhood, according to Xu [12]. In addition,
the authors of [8] mention the use of different metrics like Common neigh-
bours, Katz Index, Academic Adar and Rooted PageRank to approximate
higher-order proximities [23].

2.5 Mapping Graph Data

In this section a general outline for retrieving an embedding and mapping
these embeddings to lower dimensions is discussed. The output of a nodal
graph embedding is defined as |V | × d latent vector representation of all
nodes v in a graph G, with dimensions d. Each node in the graph has a
latent vector representation with the same dimensions and preserves one or
more preservation principles. Definition 7 shows the definition of embedding
a graph:

Definition 7 (embedding a graph): All nodes in a graph are rep-
resented with dimensions d (i.e. features), and mapped with a non-linear
function fv : V → Rd. The result is an array EM of size |V | × d and
represents each node in the same latent space.

The latent representation from definition 7 is transformed to a 2-dimensional
vector space by reducing the original embedding to a 2-dimensional embed-
ding. In definition 8 this mapping to lower dimensions is defined.

Definition 8 (mapping to lower dimensions): A 2-dimensional ar-
ray EM2D is derived from the EM in definition 7, where a (non-)linear
transformation Rd → R2 transforms dimensions d to d=2.

As a last step, the newly acquired embedding array is transformed to
a distance matrix by calculating pairwise Euclidean distance for each node
pair.

2.5.1 Visualization

The resulting graph embeddings in definition 7 are transformed to two di-
mensions as defined in definition 8. Each node can be represented in a two
dimensional vector space by transformation with a distance measure or a
dimensionality reduction technique, or both (more on this in section 3.3 and
section 3.4).
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Consequently, a distance matrix is derived and in this matrix the hori-
zontal and vertical axis represent the nodes in a graph. Unfortunately, the
derived matrix is usually of relatively little value for human exploratory
analysis. This is due to the fact that it is extremely difficult spot patterns
in a unordered matrix visualization. Therefore, this matrix is ordered by a
seriation algorithm (more on this in section 3.5.1) to shuffle the rows and
columns and obtain a more comprehensible result.
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3 Related Work

The literature section builds upon the preliminaries specified in section 2. It
introduces the reader to the relevant work in order to construct the frame-
work and follows a similar order as the structure of this framework.

Section 3.1 and section 3.2 discuss a brief history of graph embeddings
and why these embeddings are relevant for science and society. They intro-
duce some of the challenges and solutions that graph embeddings and their
corresponding algorithms face.

After this introduction, an understanding follows for why graph embed-
dings are hard to acquire, and their relative importance is explained. A
discussion on different types of graph embedding algorithms follows in sec-
tion 3.3. In this section, the different families of embedding algorithms are
discussed along with some of their advantages and disadvantages. Further-
more, an enumeration of graph embedding algorithms used in this paper
succeeds.

Additionally, in section 3.4 the reader is introduced to dimensionality
reduction for displaying a high dimensional embedding in a low dimensional
matrix.

Thereafter, to derive a good matrix order, section 3.5.1 will explain some
history on matrix reordering algorithms. This section specifically zooms into
TSP algorithms and their heuristics.

Afterwards, section 3.6 shows some of the quality metrics for determining
the quality of a reordering. In this section the framework for comparing
embedding algorithms to each other quantitatively is introduced.

And finally, a conclusion with the main findings will be given in section
3.7.

3.1 Graph Analytics

Graphs are common structures to represent complex real-world data and
relationships. They model a set of objects and indicate whether these objects
are related in one way or another. Hence, a graph can be used to model
a wide variety of applications, think of social circles (e.g. friendships and
people), web graphs (e.g. hyperlinks from website to website) and road
networks (e.g. cities and roads). As a consequence, these structures can
be exploited to gain insight in the irregular non-linear spaces to analyze
higher level patterns in the data [8, 12]. By structurally employing graphs
to represent real-world networks, it is possible for researchers to gain a lot
of knowledge about the relationships between network entities [24].

Commonly, most problems on graphs are solved by directly applying
a model on a graph, the adjacency matrix or a vector representation of a
graph [8]. But, at first, researchers developed handcrafted rules to extract
useful information from the adjacency matrix of a graph [25]. Unfortu-
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nately, the structure of graphs are rather complex, and when they started
to grow in size, most existing methods quickly became impractical. These
earlier methods had relatively high time and space requirements, and thus
performing computation on larger graphs or adjacency matrices directly is
often undesirable. A solution for this problem was introduced in the early
2000s when graph embedding algorithms gained traction [21]. By assuming
that the data could be mapped to a lower dimensional manifold these graph
embedding methods tried to reduce the high dimensionality of graph data
[21]. This time period saw the introduction of embedding algorithms like
Locally Linear Embeddings [26] in 2000 and Laplacian Eigenmaps [27] in
2003. A decade later in the 2010s, graph embedding algorithms gained a
lot of attention again due to wide applicability of graphs in many different
fields. During this time period there were many advances in embedding algo-
rithms. An example was the possibility of encoding additional information
in an embedding [21]. Another influential example is the introduction of
random walk graph embeddings in 2014 with DeepWalk [28], which marked
a decisive event where embeddings could be approximated even cheaper
than before. Therefore, many successive methods based their design on this
popular approach.

Embedding algorithms aim to effectively preserve graph information for
downstream tasks by mapping a high dimensional graph to a lower dimen-
sional vector [8, 12, 21]. The most common tasks are node classification, link
prediction, visualization, node clustering and graph classification [8, 21].

There exists many different types of graphs in graph analytics, with the
most basic being the basic graph. In section 2.2 there is an enumeration and
explanation of different graph types.

3.2 Representation learning

Traditionally the problem of graph embeddings falls in between two existing
research streams [21]. With on the one hand feature learning, where a system
tries to uncover a more useful representation of the data, by the means of
examination, and uses this information in downstream tasks [29]. And on
the other hand, there is graph analysis where the objective is to analyze
different relationships in graph data to extract useful information [25].

The inherent challenges of graph embeddings can be attributed to the
fact that graph embeddings try to represent a complex network in low di-
mensional vectors, while trying to preserve most information. This raises
several challenges namely, what is the ideal dimensionality of the embed-
ding, which features to preserve and is the method scalable [8]? The choice
of vector dimensionality is directly related to the effectiveness of the algo-
rithm in terms of time and space complexity. In real-world graphs there are
often many millions of nodes and thus scalability is of utmost importance.
Therefore, it is often proposed to encode a graph in a vector dimensionality
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d that is much smaller than the number of nodes in a graph, or d� |V |.
Unfortunately, embedding algorithms will no longer be able to preserve

all graph properties and relationships if a very low dimensionality is chosen.
A reduction in precision is inevitable in this case and thus an embedding
dimensionality has to be chosen with great care.

Furthermore, graphs can be embedded in four different dimensions of
coarseness, which are defined as node, edge, graph and substructure embed-
dings [21]. The application and problem should determine which embedding
granularity to use. Node embedding algorithms try to estimate similarities
between nodes by placing nodes that are more similar closer to each other.
This paper has node embeddings as a focal point.

The algorithm that was used to derive them these embeddings can be
further refined into three different families discussed in section 3.3. Fur-
thermore, algorithms differ by their preservation principles (as explained in
section 2.5) and they have a trade off between precision and time/space
complexity [21]. The next subsections and table 1 describe three families of
graph embedding algorithms.

3.3 Graph Embedding Algorithms

Graph embeddings algorithms can be split into three distinct groups, these
are Matrix Factorization (i.e. MF), Deep Learning (i.e. DL) and Random
Walk (i.e. RW) approaches [8]. The methods in these groups can be ei-
ther deterministic or stochastic in their node to vector mapping. Most MF
methods are deterministic, whereas DL and RW algorithms are stochastic
by design [12]. The algorithms in this paper will all have similar matrix
output(s) as defined in definition 7, where only the dimensions between rep-
resentations differ. This makes the choice of algorithms independent for
downstream Machine Learning tasks, when not considering differences in
time and space performance.

Embedding algorithms can be divided into vector point, Gaussian dis-
tribution and dynamic graph embeddings [12]. In vector point graph em-
beddings, embeddings are transformed to multiple d dimensional vectors,
where the dimensions describe some features for all nodes. Common node
similarities measures for (low dimensional) vector point embeddings are the
dot product, cosine distance, Euclidean distance, Manhattan distance, and
Mahalanobis distance.

Gaussian distribution based embeddings on the other hand, model ev-
ery node as a distribution to capture inherent uncertainties in the data
[30]. Node similarities in these models are usually measured by a divergence
measure such as the Kullback–Leibler divergence between corresponding dis-
tributions.

And finally, there are dynamic graph embeddings which can learn rep-
resentations of continuously adapting graphs and are able to learn temporal
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patterns without retraining. Adaptations to the original graph can include
adding new nodes or removing connections between existing nodes. The
methods in this class are able to predict temporal behavior on graph data
[31]. Examples of such algorithms are in the paper and python library of
Goyal et al. [31].

To stay in the scope of this research all of the algorithms in this frame-
work are vector point based. A list of the implemented algorithms is shown
in table 1. Notice that most graphs have fewer nodes than edges (i.e. total
degree is often larger than 1), and embedding dimensions are usually similar
for the implemented algorithms. Table 1 shows time complexity of Deep-
Walk is O(|V |d) versus Laplacian Eigenmaps time complexity of O(|E|d2).
Therefore, scalability of random walk algorithms (except for struc2vec) is
usually better than factorization and deep learning approaches.

Approach Method Preservation Time complexity

Random
Walk

Deepwalk 1st O(|V |d)2

node2vec 1st and 2nd O(|V |d)2

struc2vec Roles O(|V |3kd)3

attentionWalk 1st and 2nd O(|E|d)4

Walklets Higher-order O(|V |d)5

Deep learning SDNE 1st and 2nd O(|V ||E|)2

Factorization
HOPE Higher-order O(|V |3d)4

Laplacian Eigenmaps 1st O(|E|d2)2
LLE 1st O(|E|d2)2

Table 1: Implemented embedding algortihms

3.3.1 Random Walk Algorithms

One of the key assumptions of Random Walk graph embedding methods is
that it is possible to preserve the structure of graphs by performing ’random
walks’ along the structure [28]. For different algorithms, these random walks
vary in their sampling of walks, and differ in the a priori assumptions made.
The aforementioned walks serve as input for the embedding algorithms to
derive a latent representation of the nodes in the original graph. This brings
about embeddings which preserve nodal proximities, and some can even
preserve certain neighbourhood characteristics. Random Walk algorithms
are very competitive and are able to scale better than most other methods
in this paper.

2Complexity of the implementation by Goyal and Ferrara [8]
3Complexity of the implementation by Ribeiro, Saverese and Figueiredo [32]
4Complexity of the implementation by Abu-El-Haija et al. [33]
5Complexity in paper by Rozemberczki, Allen and Sarkar [34]
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A description of the implemented RW algorithms in the framework will
follow:

DeepWalk: DeepWalk [28] is the original random walk algo-
rithm, where most if not all other algorithms in this family are based upon.
The aforementioned Graph Neural Network focuses on optimizing first-order
proximity (i.e. local similarity) between nodes, whereupon more locally sim-
ilar nodes are embedded closer in the embedding space. The algorithm gen-
erates random walks, which are constructed randomly by moving from the
origin node to one of its neighbours, and stacking these nodes to the existing
path for a specific length. The algorithm ’walks’ through a graph several
times to get a local representation and reveal latent patterns in the data [28].
After constructing all of these random walks, the authors of Perozzi et al.
[28] consider the graph and its nodes as words, and utilized the word2vec
[35] algorithm within the graph domain. Consequently, random walks in
DeepWalk are considered as a sequence of nodes in a path (or, a sequence of
words in a sentence) and a fixed context window (e.g. CBOW or SkipGram
[35]) is applied. Nodes that appear together in this context window are more
likely to be similar [28].

node2vec: The node2vec [36] algorithm is similar to DeepWalk
but it introduced the concept of biased walks. The objective function to
optimise is directly reliant on the concept of a what constitutes a neigh-
bourhood. In node2vec this neighbourhood definition is explicitly defined
by two parameters. The return parameter p and in-out parameter q differ-
entiate between local and global neighbourhood characterstics [36], which
is also known as the exploration-exploitation tradeoff. A high (> 1) value
for p indicates that the walks are more biased towards exploration, and on
the other hand, a high value for q indicates a more locally biased search. A
special case exists where node2vec is essentially the same as DeepWalk and
that is when p = 1, q = 1 [36].

struc2vec: Struc2vec [32] is a graph embedding method that
learns node representations from the global network structure, and from
node to node relationships in a graph. This method utilizes the same frame-
work as methods like node2vec and DeepWalk, but it differs fundamentally
in its execution. In contrast to DeepWalk, struc2vec does not capture the
proximity of nodes by distance, it rather expresses similarity by grouping
nodes based on their role in a graph. This concept is called structural iden-
tity, where nodes can be equivalent to each other independent of their posi-
tion in the graph. In order to generate embeddings, struc2vec establishes a
progressive hierarchy of similarity in which the definition of being pairwise
structurally equivalent differs. To create this hierarchy the algorithm uses
the degree of nodes as one of the important features for calculating this
similarity. As a final step, weighted random walks along a constructed hi-
erarchical multi-layer graph are performed, where the contexts for all nodes
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are constructed. If two nodes share a similar context they must be similar
to each other [32].

attentionWalk: The RL method attentionWalk [33] is different
from the other algorithms because of the usage of the attention mechanism.
The attention mechanism steers the random walk in a certain direction by
using distance to the original node as a metric [33]. Furthermore, atten-
tionWalk also introduces trainable instead of fixed model parameters that
can be automatically learned via backpropagation [33]. This method shows
good preliminary results and the authors of Abu-El-Haija et al. [33] report
a reduced link prediction error by 20-40% compared to other state of the
art algorithms.

Walklets: In contrast to DeepWalk, which learns one representa-
tion of relationships between vertices, a new method was proposed by Perozzi
et al. [37]. In the Walklets [37] algorithm a sequence of latent relationships
between nodes is constructed where each successive representation expresses
higher-order proximity. By skipping over steps in each sampled random walk
(i.e. hop distance) a higher power adjacency matrix is formulated, which
leads to higher-order walklets and thus higher-order relationships between
nodes [37]. The authors of Walklets report a 10% increase in performance
when compared to DeepWalk.

3.3.2 Deep Learning Algorithms

Deep Learning methods aim to capture the inherent non-linearity in graphs
by creating a robust architecture that is able to find effective solutions in
low-dimensional space. Most algorithms in this family use multiple layers
in a deep neural network to embed an adjacency matrix directly [8]. Un-
fortunately, methods in this family usually have high computational cost
compared to random walk methods.

Structural Deep Network Embedding: Wang, Cui and Zhu
[38] argue that complex relationships in the structure of a graph cannot be
effectively modelled with shallow models. They propose SDNE [38] a semi-
supervised deep learning solution for embedding complex graph data in the
non-linear latent space. The first part of SDNE consists of an unsupervised
auto encoder which tries to embed nodes by many non-linear functions.
The second part of SDNE is supervised and applies a penalty for nodes
that are similar but embedded far from each other (similar to Laplacian
Eigenmaps discussed in the next section). In this method there is explicit
use of an objective function and the first order proximity (i.e. local network
structure), and second order proximity (i.e. global network structure) are
optimised in unison [38].
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3.3.3 Matrix Factorization Algorithms

Matrix factorization was the first school of algorithms to pioneer in solving
the graph representation problem. The idea behind these methods is to
represent a graph in the form of a matrix, which can be of many forms
(e.g. adjacency matrix, graph Laplacian). The next step is to derive an
embedding by choosing an appropriate factorization method which will be
applied to this generated matrix [8]. Unfortunately, due to the usage of large
matrices, these methods are often unable to scale well to larger graphs, with
time complexities that are often quadratic for the number of dimensions
[21].

High-Order Proximity preserved Embedding: The HOPE
[23] algorithm was developed to solve the asymmetric transitivity problem
in directed graphs with the purpose of capturing structures of graphs more
accurately. This method tries to approximate higher-order proximities by
embedding the similarity matrix with Singular Value Decomposition. The
similarity matrix is constructed by multiplying two polynomial matrices
derived using different measurements. These matrices are fabricated by the
usage of one of the several different similarity measures (e.g. Katz Index,
Common Neighbours, Personalized Pagerank or Acadamic-Adar) [23].

Locally Linear Embedding: Locally Linear Embedding [26]
is an unsupervised method which tries to preserve high dimensional non-
linearities in a lower dimension. In contrast to other methods at the time,
LLE modelled complex data to a lower dimension while preserving global
geometry and neighbourhood similarity [26]. In the intermediate data, each
node is a vector represented by a weighted linear combination of their k-
nearest neighbours. Hereupon, a minimization of the loss function (i.e. op-
timizing the weights of the linear combination) maps all nodes to a lower
dimension [26]. The input is different from Laplacian Eigenmaps method
discussed next, where the Graph Laplacian is used instead of the adjacency
matrix.

Laplacian Eigenmaps: Laplacian Eigenmaps [27] is a non-
linear algorihm inspired by Locally Linear Embedding. The algorithm as-
sumes that a set of high dimensional data points in Euclidean space lie
among a lower dimensional manifold. It utilizes the graph Laplacian to esti-
mate the low dimensional topological space of the data. First, the Laplacian
matrix from the intial graph data is constructed, wherein edges represent
geometrical similarity and the weights for this geometrical similarity can be
represented by a simple binary scheme (e.g. 0 if there is no edge, 1 if there
is) or any other scheme (e.g. Gaussian weights). To derive an optimal em-
bedding, the Laplacian Eigenmaps algorithm computes the eigenvectors of
the previously acquired Graph Laplacian matrix and assumes that the data,
lies on a non-linear manifold. The Laplacian Eigenmaps algorithm only fo-
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cuses on preserving first-order proximities by placing two similar nodes in
the original data close together in lower dimensions, and is heavily penalised
if two similar nodes are embedded far apart [27]. This algorithm is trans-
ductive and it is not able to map new points of data without retraining the
model.

3.3.4 Multivariate Graph Embedding

All of the previously mentioned algorithms are basic graph embedding tech-
niques. For weighted graphs embeddings the random walk algorithms can
be easily adapted by adjusting their random walk sampling technique. For
other techniques the implementations of Goyal and Ferrara [8] include a
weighted version.

Unfortunately, embedding multivariate graphs is much harder since there
exists many different types of multivariate data. Text-associated DeepWalk
(i.e. TADW) [39] learns a vector representation for each node by jointly
factorizing a combination of both the graph structure and the text feature
matrix. Another method called Attributed Social Network Embedding (i.e.
ASNE) [40], simply concatenates the aforementioned matrices and performs
matrix factorization to retrieve graph embeddings. Then there are the At-
tributed Node Embedding (i.e. AE) and Multi-Scale Attributed Node Em-
bedding algorithms (i.e. MUSAE) which use random walks and skip-gram
to retrieve node embeddings from an attributed graph [34]. MUSAE differs
from AE, wherein AE combines attribute embeddings into a single represen-
tation and MUSAE represents each node attribute embedding separately in
a multi-scale approach similar to Walklets.

Observe that the discussed techniques above use either matrix factoriza-
tion or random walk sampling strategies which is consistent with our basic
graph embedding strategy.

3.4 Dimensionality Reduction

Unfortunately, most of the previously mentioned algorithms have an optimal
dimensionality that is greater than 2, it is therefore impossible to visualize
the embeddings directly. To be able to visualize these embeddings, the
dimensionality needs to be reduced to 2 dimensions. In this section several
approaches for dimensionality reduction are discussed.

One possibility for reducing the dimensionality of embeddings is simply
using similarity measures as discussed in section 2.5. Nevertheless, these
measures behave imperfectly in higher dimensions [15, 41, 42]. It is thus
preferred to use a Dimensionality Reduction Technique (or DRT) before
applying the L1 (i.e. Manhattan distance) or L2 (i.e. euclidean distance)
norm. Applying a DRT constitutes a transformation of high dimensional
vectors to low dimensional vectors in which classic norm distances between
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nodes can be interpreted as a pairwise distance matrix. There exist different
types of dimensionality reduction techniques that offer an effective method
to reduce dimensionality.

In addition to the visualization difficulties discussed above, many down-
stream machine learning tasks suffer from high dimensionality in data [43].
DRTs can help solve these problems by making visualizations feasible, by
compression of the data, by multicollinearity reduction and by the removal
of outliers, all while preserving original data structures [44]. Methods in
DRT can be broadly identified as methods that extract or transform fea-
tures from the original data and methods that remove redundant features
[45]. In this paper it is imperative that the multi-dimensional embeddings
have to be transformed to a fixed two dimensional environment for visual-
ization. This has to be achieved without a loss of observations, and that
dictates we focus on the former feature transformation DRTs.

The chosen dimensionality of the embeddings is relevant for DRTs, in
many of these techniques a small sample size in combination with high di-
mensions is highly detrimental for their performance. A general rule of
thumb is that the dimensionality should be much smaller than number of
observations [45], which is in accordance with the requirement in section 3.2.

The choice of a suitable DRT is no trivial task and depends heavily on
the data and assumptions made [45]. The requirements and preferentials for
DRT selection in our framework are as follows, the DRT has to unsupervised
(labels are unknown), it should optimize a manifold (i.e. local and global
optimization), it should preserve neighbourhood relations and a bonus would
be optimized for visualization. Furthermore, the dimensionality reduction
technique should be Non-Parametric since the distribution of the data is
unknown a priori. Additionally, to achieve sub question 5, it is required to
extract multivariate information from these higher dimensions, some DRTs
are explicitly optimized to extract this information [45].

One of the primary candidates for a good DRT is the classic Principal
Component Analysis (i.e. PCA) [46, 47]. PCA first constructs a covari-
ance matrix of the original standardized data and computes eigenvectors
and eigenvalues on this matrix. Afterwards, this technique uses Principal
Components, which are linear combinations of the original variables, as new
variables. A subset of the top-k PCs (new variables) is made, which account
for as much of the variation as possible. When k = 2 the data is transformed
to two dimensional data with minimal loss of quality. Kernel-PCA [48] on
the other hand, is a kernel method and an extension to the original PCA
where non-linearity in the data manifold is assumed. Another version of
PCA is introduced by Raunak, Gupta and Metze [49], they implement an
algorithm for PCA with several simple preprocessing steps to significantly
improve the quality of the results. Even today, due to its relative simplic-
ity and efficiency, PCA-based methods are a reasonable option for reducing
dimensionality [49]. Nevertheless, since PCA tries to maximize variance
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it usually has large pairwise distances between observations, which is not
necessarily ideal for visualization.

Another candidate is the unsupervised DRT t-Distributed Stochastic
Neighbor Embedding (i.e. t-SNE) [50, 51], which tries to measure similar-
ities in high and low dimensions concurrently by measuring the Kullback-
Leibler divergence between two probability distributions. In high and low
dimensions, a Gaussian distribution, respectively a Cauchy distribution is
plotted over each instance of the data to derive similarities between all pairs
of nodes. Finally, these two probability distributions are mapped to be sim-
ilar by optimizing the KL cost function. One of the applications of t-SNE is
creating visualizations of high dimensional non-linear data structures [51].

Some other candidates that are worth mentioning are the Locality Pre-
serving Projection (i.e. LPP) [52] and Multi Dimensional Scaling (i.e. MDS)
[53] . LPP is an unsupervised method based on Laplacian Eigenmaps men-
tioned in section 3.3.3, whereas the non-linear MDS tries to map points in
low dimensions by preserving distances globally [53].

Table 2 lists some of the properties of these techniques, this table has
been constructed with information in Ayesha et al. [45]. According to
the previously defined requirements, t-SNE and KPCA are candidates for
our framework. In addition to these DRTs, PCA will be added since it is
easily interpretable, calculation time is small O(|N |) and usually serves as
a benchmark [54].

DRT V-Opt1 Linearity Supervised Parametric Span

PCA No Linear No Parametric Local

KPCA No Non-Linear No Parametric2 Manifold

t-SNE Yes Non-Linear No Not-Parametric Manifold

LPP No Linear No Undef. Local

MDS Yes Non-Linear No Not-Parametric Global

Table 2: Dimensionality reduction techniques 1Optimized for visualization
2User defined

3.5 Matrix Reordering Approaches

The next step in this research is to find and display a ’good’ matrix order.
A ’good’ permutation is found by applying a matrix reordering method to
the dimensionality reduced embedding (i.e. distance matrix) and compare
the resulting figures with various quality metrics. This section first explains
what type of matrix reordering algorithms exist and goes into detail in a
specific school of reordering algorithms next.
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3.5.1 Seriation

Seriation algorithms are classified into three distinctive families: structure
based, distance based and convolution based methods [55]. Structure based
methods focus mainly on interchanging rows and columns to bring out a par-
ticular pre-determined pattern [6, 56]. In contrast, distance based methods
rely on node to node distances in a dissimilarity matrix, and aim to max-
imize (or minimize) the merit (or loss) of the used function. And finally,
there are convolution based methods which optimize an objective function
defined by a kernel. These methods, blur the original image and compare
this reordering to the original ordering [57]. The idea behind these meth-
ods (e.g. ConvoMap [57]) are that by minimizing variation in the resulting
permutation, they remove noisy patterns.

An extensive comparison of different families of seriation techniques is
tested in Hashler [58] and Liiv [59], while Hahsler, Hornik and Buchta [60]
introduce a R package which implements many of these techniques for direct
comparison. In this work, the focus is on one special case of distance-based
seriation algorithms, which are Travelling Salesman Problem solvers. These
directly optimize the Hamiltonian path length.

3.5.2 TSP & Heuristics

The Travelling Salesman Problem (i.e. TSP) is a prominent NP-hard prob-
lem in combinatorial optimization. This prominency stems from the many
(indirect) applications for TSP, think of vehicle routing and machine se-
quencing [61]. The Classical TSP problem statement by Menger [62] suggest
that there is at least one optimal solution, and it can be defined as follows:
given a finite amount of places to visit and their corresponding distances,
what is the shortest route visiting all places exactly once? Needless to say,
the optimal solution can be identified by considering all possible routes.
Unfortunately, modern machines are in practice almost unable to solve even
medium city problems due to the brute-force approach’s factorial time com-
plexity, or O(n!). Two additional options arise for retrieving optimal or
near-optimal TSP solutions, either using faster exact algorithms, or using
heuristics, with the latter trading accuracy for large temporal gains.

A breakthrough for optimally solving TSP came in 1954 when the cut-
ting plane method using linear programming [63] solved an impressive 49
city problem. Thereafter, several other influential methods have been pro-
posed to solve TSP, the branch and bound method [64] in 1960; dynamic
programming [65] in 1962 and; branch and cut for TSP [66] in 1991. The
symmetric TSP solver Concorde as described in Applegate et al. [67] of
which development started in 1990, remains one of the best exact solvers for
TSP today [68, 69, 70]. Concorde implements the branch and cut scheme,
where unfortunately, running time is highly correlated with the ability to
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find a good initial solution [67, 70, 71]. Therefore to speed up Concorde, a
number of techniques exist that try to find a sub-optimal initial solution.

Whenever these optimal methods are no longer feasible, the implemen-
tations of approximate algorithms and heuristics have been proposed. Some
examples include the Nearest Neighbour, Genetic and Greedy algorithms
[72]. The Nearest Neighbor algorithm [73] is a simple algorithm that se-
lects the city with the smallest distance to the current location and stops
when all cities are added to the tour (i.e. path). In a different approach,
Genetic Algorithms [74] simulate evolution by selecting the fittest individ-
ual tours, whereafter these individuals are able to reproduce and pass on
genetic traits to their children. The idea behind this method is that af-
ter many generations, tours will iteratively become better. Furthermore,
heuristics can speed up algorithms by making certain assumptions, some
important insertion heuristics are described by Rosenkrantz, Stearns and
Lewis [73]. Insertion heuristics construct smaller sub-tours, where nodes
not in this initial sub-tour are added one after another. Insertion heuristics
differ in the way they construct the intial sub-tour, which node to add next
and where to add this next node. Likewise, with the k-Opt heuristic, which
is an expansion on the 2-opt heuristic by Croes [75], there is a possibility to
iteratively improve an existing tour by deleting k edges. The tour is split
in k sub-tours and these sub-tours are reconnected by generating new con-
nections between each sub-tour. The algorithm stops when no additional
improvements can be found [68]. The quality of the k-Opt heuristic increases
with an increase in k but so does the complexity, thus it would make sense
to make k dynamic during execution instead of static. This expansion of the
k-Opt heuristic is exactly what the the Lin-Kernighan heuristic [76] does,
and it is considered one of the most effective heuristics for TSP [70], solving
an 85.9k city problem optimally [71].

The Lin Kernighan heuristic (i.e. LKH) is continuously updated with
new features and optimizations [70] which caused the heuristic to stay highly
competitive and it ”currently holds the record for all instances with un-
known optima” [77]. A recent comparison between different configurations
of the LKH heuristic and plain Concorde was made by Sanches, Whitley
and Tinós [70]. One other notable expansion to Concorde is the Chained
LK algorithm [78] which tries to find a good initial solution to speed up
Concorde. This algorithm finds sub optimal tours, which are subsequently
optimized locally with iterative search. It achieves this by reapplying the
Lin Kernighan heuristic after making slight modifications on the current
tour (i.e. kick), in order to find a set of locally optimal starting points [78].
This offered great advantages over the original Lin Kernighan heuristic [79].
Recently, Sanches et al. [70] extended the CLK algorithm by proposing to
use partition crossover. The main idea of partition crossover is that by using
recombination of two locally optimal parent tours, a high quality offspring
will be produced with high probability [70]. The most recent version that
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has been implemented for TSP is the GPX2 partition crossover by Sanches
et al. [70]. Combining GPX2 with the Lin Kernighan 2.0 heuristic [80] and
generating initial solutions led to an average run time decrease of Concorde
for all of the 13 tested problems, with 7 of them being significantly different
[70].

3.6 Matrix Visualization Quality metrics

To be able to compare different visualizations there is a need to estab-
lish a good comparison metric. This metric should be distinguishable for
comparison between different algorithms, and the metric should distinguish
between interpretable and non-interpretable visualizations. A good visu-
alization should be able to show distinct nodes and edges; information on
clusters and connected components in the data; how the data is distributed
and high-level topology [81]. Consequently, Behrisch et al. [6] argue that
matrix visualizations are especially well suited to fulfill these requirements.
In the next sections visual patterns in the data and usage of visual quality
metrics are discussed.

3.6.1 Visual Patterns

Visual patterns in matrix re-orderings are highly dependent on the seriation
algortihm used [6]. Some algorithms, such as TSP, are more inclined to show
block patterns, while others show off-diagonal patterns more often. Never-
theless, in this work TSP will be used to discover patterns in the data, since
TSP is a highly researched problem and can produce (semi-)deterministic
results (when using an exact solver). In the delineation section of this paper
there will be more information on this choice.

The visual patterns to check for in the final visualizations are the binary
data patterns defined in Behrisch et al. [6], which are based upon the canon-
ical data patterns by Wilkonson [11]. These patterns describe connection
within and between cliques; hub nodes; cycles and paths; potential bipartite
relationships in the data; randomness and failure(s) within algorithms [6].
The visual patterns are discussed into more detail in section 4.6.1

3.6.2 Visual Quality Metrics

To compare matrix re-orderings Hashler [58] suggest the use of seriation
criteria. Seriation criteria try to optimize visualizations by grouping similar
objects close and pushing larger dissimilar values further from the diagonal.
These types of measures fall into three classes namely gradient conditions,
rank/dissimilarity agreement and path length [58]. Note that the visual
quality metrics used in this paper are from the R package seriation [60] and,
therefore the upcoming definitions are taken from the comprehensive paper
by Hashler [58].
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Gradient conditions compare closeness of the visualization in a dissim-
ilarity matrix D with values dij , to an Anti-Robinson Matrix [58]. An
Anti-Robinson Matrix is a matrix that has the property of only sustain-
ing increased or decreased values when moving away from the diagonal [82].
An example of such a method is the Anti-Robinson events [83], which count
the number of times this property is violated. Dissimilarity values in the
visualization are compared within subsequent rows and within subsequent
columns according to the gradient conditions formulated by Hubert, Arabie
and Meulman [84]. Anti-Robinson events score with the following definition:∑

i<k<j f(dik, dij) + f(dkj , dij) and is bounded by 1 ≤ i < k < j ≤ n, and
f which represents a function with value 0 when dik < dij and 1 otherwise
[58]. Several measures edit the previously mentioned function by including
the weight of the violation (i.e. AR deviations [83]), by calculating the di-
vergence amidst violations and agreements (i.e. gradient measure [84]), and
by weighting these divergences (i.e. weighted gradient measure [84]) [58].
In addition there are rank/dissimilarity agreement measures, which com-
pare matrix visualizations by calculating pairwise dissimilarities and check
whether their ranking in the ordering matches [58]. The Inertia criteria
for instance, calculates −1 ×

∑n
i,j=1 dij(i − j)2 [58] as a score and imposes

large penalties for objects that are placed far from the diagonal and have a
high similar value [85]. The linear seriation criterion (i.e. LS) [86] does not
square the final terms as in the Inertia criterion and thus penalizes less for
distances to the diagonal. Furthermore, the least squares criterion [85] pe-
nalizes similar to Inertia by taking the complete squared difference between
ranks and dissimilarities, it also excludes the negative transformation [58].
And finally, there is the path length measure in which the objective is to
minimize the total Hamiltonian path length [85, 87]. This measure visits
each node in the graph once and only once and adds the dissimilarity values
to derive a final score, or by definition

∑n−1
i=1 di,i+1 [58]. For a full distinction

of the seriation criteria the reader is suggested to read the paper by Hashler
[58].

In this paper, the distinction between measures that are more attentive
towards local structure (e.g. Least squares criterion, Relative generalized
Anti-Robinson events and Hamiltonian path length) and global structure
(e.g. Anti-Robinson events, 2-SUM and Gradient measure) is made and
could influence the choice for a subset of seriation criteria. In addition to
that, there exists reordering algorithms which optimize certain criteria such
as TSP, which will always score better or equal to other seriation algorithms
on the Hamiltonian path length measure.

To compare the matrix reorderings of different seriation visualizations a
selection of quality metrics could be made. The relevance of this selection is
directly reliant on the implementation and what should be optimized [58].
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3.7 Main Findings

This paper aims to address several questions which remain unanswered in
the literature review. Most studies visualize graphs as node-link diagrams,
and while these visualizations are useful, there is a general lack of studies
on matrix visualizations. The question of what visual patterns resemble in
embeddings generated by graph embedding algorithms remains unanswered.

Furthermore, literature on attributed graph embeddings focus mainly on
generating embeddings for node classification, edge prediction, community
detecting and graph clustering. There appears to be a gap in visualizing
multivariate data in a single representation. In addition to that, most of
these algorithms embedd only textual, binary and categorical data, while in
this paper numerical data will be included.

And finally, there seem to be many different scores and visual patterns to
assess the quality of a good matrix visualization. To the best of our knowl-
edge, a single comparable score amongst different latent space visualizations
does not yet exist.
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4 Deep Learning Based Matrix Reordering

This chapter introduces the framework for visualising graphs in two dimen-
sion matrices. A barbell graph is used as an example throughout this section.
An example of this graph is shown in figure 10 and consists of two fully con-
nected groups (i.e. cliques), two hub nodes (node 11 and 9) and a single
bridge node (node 10). The aim of this section is to provide an extensive
step by step overview of the framework.

Figure 10: Barbell Graph

4.1 Overview of Pipeline

As a first step, a graph is represented in a data structure, thereafter this
graph is embedded into N-dimensions for representing nodes as vectors. To
visualize a large N-dimensional embedding we apply dimensionality reduc-
tion techniques. In the second step we calculate a distance matrix after
projecting the graph in 2D. This distance matrix is uninformative since
there is no structure [6]. To allow for structure in the data we apply a seri-
ation technique and expect that patterns arise in the data. We qualitatively
judge the visualization by identifying patterns and quantitatively judge the
visualization by quality metrics. In appendix A a overview of the embed-
ding and visualization phase is given in image form. In this image different
colored nodes represent different roles of nodes in the embedded graph. The
images do not show the quality assessment phase. An implementation of
the architecture described in the next sections is available on gitlab6.

6https://git.science.uu.nl/vig/mscprojects/gnn-framework-for-multivariate-matrix-
reordering
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4.2 Graph Representation

The first step in the framework is converting graph data to a NetworkX
graph. The main reason for this conversion is that a NetworkX graph can
be fed into most graph embedding algorithms implementations directly and
the package makes visualizations for small graphs is rather convenient (see
figure 10). To store a graph on the disk it can be represented with different
data structures, the four most common structures are discussed in more
detail in section 2.3. The choice of a representative structure is not critical
for our framework and new structures can easily be added with little change
of code. Nevertheless, since the loaded graph is directly transformed into a
NetworkX graph, only space complexity is of interest. An edge list stores all
edges and is often most economical with a space complexity of justO(E), this
compared to the hefty O(V 2) for an adjacency matrix where a node by node
matrix is stored. An additional small advantage for the framework would be
the possibility for a single file representation for multivariate graphs, while
for other structures a two file representation is more appropriate.

4.3 Embedding a Graph

The second step in the framework is acquiring embeddings for all nodes in
the graph. To obtain node embeddings we can apply several different strate-
gies, which include random walk, matrix factorization, and deep learning
algorithms, which are explained in further detail in section 3.3.

The focus of this study is mainly on random walk algorithms and, in the
following section a detailed application of the algorithm DeepWalk will be
given.

4.3.1 Why generate embeddings

A computer is not able to understand the concept of a graph without trans-
forming this graph to a computer understandable syntax. These could be
edge lists, or any of the other representations explained in section 2.3. Nev-
ertheless, these representations often suffer from the curse of high dimen-
sionality and thus one of the techniques for representing nodes in lower
dimensions is constructing simple summary features such as the degree and
centrality of nodes [88]. Unfortunately, this solution proved rather time con-
suming with expert analysis and less effective than the automatic methods
of today.

By constructing new vector spaces and embedding graph data in this
space, much of the existing frameworks in machine learning can be applied
faster and more accurately [89]. And a final reason, Harel and Koren [14]
show a great increase in graph visualization quality by embedding graphs in
a high dimensional space.
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4.3.2 Obtaining Embeddings with Word2Vec

The random walk strategy is based upon a well known model used in natu-
ral language processing (NLP), namely word2vec. The goal of word2vec is
to map all unique words in the corpus to a numerical N-dimensional vector
space [35]. Each point in this vector space is a contextual aware vector rep-
resentation of a word. Word2vec extracts certain features from the input
text segments and captures syntactic and semantic similarity between words
with proximity in the vector space. This allows for simple similarity extrac-
tion of words, and even more complex operations. For instance, researchers
found that a combination of vector representations could lead to correct
analogies, the arguably most famous example is: king is to man, as woman
is to queen [35]. Note that a recent study by Nissim, van Noord and van
Der Groot [90] show that in most of these examples a trick (e.g. reporting
second answer as first answer) was used to get satisfactory results [90]. The
idea of DeepWalk is based upon this embedding of words. DeepWalk tries
to embed nodes in a vector space while preserving proximity of nodes.

To obtain embeddings, word2vec uses an architecture called Skip-Gram
(or CBOW). The objective of Skip-Gram is to predict the context of the
target word in a predefined range or context window [35]. In Skip-Gram we
feed training pairs of words into the model and retrieve contextual aware
embeddings. Figure 11 shows the Skip-Gram architecture where word w(t)
is fed as an input to a shallow feed-forward neural network. Generation of
these training pairs occurs by sliding a window of size n along the training
documents or text segments. For DeepWalk the idea is again rather similar,
where instead of documents and word pairs, a random walk and node pairs
are fed as an input.

Word2vec applies back-propagation and gradient descent on the inter-
mediary weights to optimize these weights. Finally, a softmax function is
applied and, with a cost function, the most probable words around the target
word are maximized. The intermediary (hidden) weight layer can actually
be considered the vector representations of the words trained in the network.
For further details I suggest the reader to read the paper by Mikolov et al.
[35].

4.3.3 Obtain Embeddings with DeepWalk

The embedding generation in DeepWalk does only differ with word2vec by
acquiring training samples. When comparing word2vec to DeepWalk, Deep-
walk considers nodes as words and a sequence of nodes as possible sentences.
To generate actual sequences of words (i.e. nodes) the algorithm performs
multiple random walks along the to be embedded graph. For every node
in the graph a certain number of random walks will be performed where-
after these walks are considered as sentences and fed as an input to the
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Figure 11: Skip-Gram architecture taken from Mikolov et al. [35]

Skip-Gram architecture (e.g. the target node is used to predict the context
nodes). Figure 12 shows an example of such a random walk on a barbell
graph.

In the barbell graph in figure 12 the walk starts at node 0, moves to node
2 and ends in node 8. A single training sequence in this case would be:

[0 2 3 4 5 8]

and is analogous to a list of words in word2vec:

[’I’, ’like’,’to’,’have’,’apples’,’and’,’pears’]

Similar to word2vec a sliding window can be applied of any size on this
training sequence. As an example in figure 13 a window of size two is
applied to the random walk in figure 12. In figure 13 the highlighted yellow
node is the target node and the nodes in the square box are the context
nodes. In this example node 0 and node 2 are considered more similar than
node 0 and node 5 since they appear in more training samples. Finally,
Skip-Gram generates the real valued embeddings that maps graph distances
in N-dimensional space [91]. All training samples are used and proximity
preserving node embeddings will be the result.

In table 3 a typical result for an embedding is given. There is a clear
separation in the embedding between nodes 0,1,2,3 and 5,6,7,8 where they
differ in all of the dimensions. Furthermore, we see a clear separation of node
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Figure 12: Random Walk

Figure 13: Sliding Window and training pair generation

3 and 5 from their respective cliques and this corresponds to the barbell
graph structure, i.e. these nodes behave like hubs. Node 4 seems to be
completely different from all the other nodes. In this simple example it is
apparent that there are probably too many dimensions since this structure
can easily be represented with fewer dimensions as shown in section 4.4.

4.4 Reducing Dimensions

According to research, calculating a distance matrix directly from high di-
mensional embeddings specified in section 4.3 will result in inaccurate dis-
tances between points in high dimensional space [15, 41]. Therefore, and in
accordance with the method of Harel and Koren [14] a dimensionality reduc-
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node dim1 dim2 dim3 dimn

0 0.86 0.9 0.87 ..
1 0.89 0.91 0.88 ..
2 0.89 0.89 0.88 ..
3 0.65 0.84 0.81 ..
4 -0.98 0.32 0.001 ..
5 -0.87 -0.75 -0.79 ..
6 -0.87 -0.89 -0.87 ..
7 -0.83 -0.88 -0.89 ..
8 -0.82 -0.88 -0.88 ..

Table 3: Fictional embedding example

tion technique will be applied to reduce the dimensionality of the embedding
to two.

A choice was made to include three different dimensionality reduction
techniques. The first being the linear Principal Component Analysis (i.e.
PCA) which is also used in the paper by Harel and Koren [14]. The more
modern and influential t-distributed Stochastic Neighbor Embedding (i.e t-
SNE) which is optimized for visualizing high dimensional data [51] is also
implemented. And finally, Uniform Manifold Approximation and Projec-
tion (i.e. UMAP) which claims to be faster, be able to better preserve the
structure of the data for larger datasets [92].

Figure 14: Projection of embeddings in 2D vector space

An example of the embedding obtained in table 3 reduced to 2 dimensions
with PCA is given in table 4. These embeddings can be visualized in a 2D
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vector space as in figure 14. For this easy example there is ample visual
separation in the previously determined different nodes.

node dim1 dim2

0 -2.86 -0.46
1 -2.86 -0.42
2 -2.87 -0.47
3 -2.39 1.83
4 0.37 5.61
5 2.65 1.69
6 2.79 -0.57
7 2.79 -0.51
8 2.79 -0.59

Table 4: 2D embeddings

node 0 1 2 3 4 ..

0 0.0
1 0.04 0.0
2 0.0 0.06 0.0
3 0.35 0.34 0.35 0.0
4 1.0 1.0 1.0 0.7 0.0
.. .. .. .. .. .. ..

Table 5: Distance matrix (diagonal in blue)

Evidently this 2D embedding could be easily transformed into a distance
matrix by calculating pairwise euclidean distances. It is apparent that the
upper triangle of this matrix is exactly the lower triangle of the matrix
because pairwise distances are not relative in our example. Therefore, we
could save almost half on memory by just representing either triangle of the
matrix as in table 5, a feat not possible for directed graphs. This table could
be interpreted as a reversed heatmap, where larger values are worse than
smaller values (i.e. distance).

4.5 Permuting a 2D matrix

In this section the reader will be introduced to the permutation process
in the pipeline. In this section an example and the interpretive value of
ordering this example will be shown.

4.5.1 Random Permutation

The output of table 5 can directly be represented by a data matrix where
distances are visualized by color intensity. In the upcoming figures more
similar nodes (i.e. lower distances) are represented by darker colors and
completely distant nodes are represented by the color white. The more
saturated a cell is, the more similar two nodes are.

Figure 15 shows a randomly permuted data matrix, which is based on the
previous example. This matrix has been randomly permuted to highlight
what a typical result for a more complex graph would look like. In this
matrix node 6 is highly similar to node 7 and 8 (indicated by dark values),
while being completely dissimilar from node 4. This figure seems to show
the salt and pepper anti-pattern defined in Behrisch et al. [6] and is hard
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Figure 15: Unordered matrix visualization of example graph

to interpret even for this example with a small number of nodes. From now
on such a matrix will be called an ’unordered’ matrix.

4.5.2 Obtaining a useful permutation

To obtain an interpretable reordering a seriation algorithm for matrix re-
ordering could be used. Hashler et al. [60] introduced an R seriation pack-
age7 which includes many different types of seriation algorithms and a frame-
work for showing matrices. The different types of seriation algorithms are
further discussed in section 3.5. A choice was made to use a TSP algorithm
for ordering a matrix because this is one of the most well-researched prob-
lems in optimization. The algorithm of choice is Concorde8 for obtaining
the optimal solution and a Lin-Kernighan heuristic for increased ordering
speed. In section 8 there will be a discussion on whether there a better
alternatives.

The exact TSP algorithm finds one of the smallest Hamiltonian paths
in a graph, and for this use case we define a Hamiltonian path as a path
that visits all nodes one and only one time. These Hamiltonian paths help
proliferate the structure in the final visualization by placing points similar
in high dimensional space close in the visualization. Furthermore, TSP
clusters similar nodes close to the diagonal in the matrix for more distinct
and informative clusters. By applying TSP to the example embedding in
figure 14 the resulting path shown in figure 16 is retrieved. This path starts
in node 2 and ends in node 8, and thus the following ordering is retrieved:

7An implementation of the R seriation package can be found here https://cran.r-
project.org/web/packages/seriation/index.html

8Concorde is available here: https://www.math.uwaterloo.ca/tsp/concorde.html

37



Figure 16: Hamiltonian Path on embedding (center of node in red)

[2 0 1 3 4 5 7 6 8]

The ordering is applied to figure 15 and the results are shown in figure
17. The ordered matrix is more interpretable than the random permutation
and shows some clear structure in the data. In the next section there is a
more formal justification of why this ordering is better than random.

Figure 17: Ordered matrix visualization of example graph
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4.6 Assessing Quality

To assess whether a reordering is qualitatively better than another reorder-
ing it is possible to compare two matrices visually with visual patterns high-
lighted in the next section. For a more quantitative approach several metrics
could be used. Research suggest using Visual Quality metrics (i.e. VQM)
introduced in section 3.6.2, unfortunately these metrics are doubtfully ap-
plicable for our study. Thus, an introduction to the self-defined scores will
be given in section 4.6.3.

4.6.1 Visual patterns

To quantify the goodness of an embedding we can use visual patterns in
the resulting matrix reordering. These patterns are able to show underlying
structure in the graph data and can give the user high level knowledge on his
or her data. Figure 18 shows the six patterns to abide to and anti-patterns
to avoid [6].

Figure 18: Visual Patterns taken from Behrisch et al. [6]. From left to
right: (1) Block Pattern, (2) Off-diagonal Pattern, (3) Noise Anti-Pattern,
(4) Line/Star Pattern, (5) Bands Pattern, (6) Bandwidth Anti-Pattern

In the figure above the top left block contains four patterns (i.e. Block,
Off-diagonal, Line, Bands) that describe cliques, bi-graph structure, hub
nodes and cycles respectively. In the top right column there are two anti-
patterns which describe randomness in the data (top), and algorithmic pe-
culiarities (bottom). To continue with our running example, figure 19 shows
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a clear identification of the Block Pattern in the yellow and red boxes. These
identified cliques do indeed align with the original graph structure. Further-
more, the visualization correctly identifies partial clique membership where
node 3 belongs to the larger clique (i.e. 2,0,1) only partly. The green box
in this figure shows the Off-Diagonal pattern which represents closeness of
the two larger cliques in the graph data.

Figure 19: Block pattern Figure 20: Star/Line pattern

Figure 20 shows the Line/Star Pattern in the red and green boxes. In the
original graph node 3, node 5 are hub nodes for their corresponding cliques
and node 4 is a hub node for node 4 and 5. These findings correspond with
the original graph data.

4.6.2 Visual Quality Metrics

It is also possible to check the goodness of a visualization with the visual
quality metrics described in section 4.6.2. In figure 21 a table with these
metrics is shown on the running example. Unexpectedly, in this example
there appear to be four Anti-Robinson Deviations, which after visual in-
spection of figure 17, should not exists. This is easily explained with data
inspection though, there appear to be minor differences in distances between
points and thus color in the matrix representation. One of the strengths of
these quality metrics are therefore that they can discover inconsistencies in
the data that are hard to spot on a visual level.

Unfortunately, visual quality metrics have been found to be applicable
for intra comparison per algorithm, but being overly biased on the under-
lying data. This makes these metrics almost useless for inter-algorithmic
comparison. The findings for these statements and a proposed solution are
further explained in section 8.
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Figure 21: Example problem and seriation scores

4.6.3 Reconstruction Metrics

In this section there will be a brief introduction to the reconstruction metrics
used in section 7.2. These metrics were introduced to check for their appli-
cability in selecting good visualizations. These metrics are fundamentally
different from the other metrics used in this paper and do not directly cal-
culate whether the visualization shows any patterns. Instead these methods
give an idea of how good the original graph is represented in the visualiza-
tion. Some of the original graph node similarity measures can be defined
as measuring the first and second order proximity; k-hop distance between
neighbours; probability in a random walk and adjacency matrix factorization
[12]. In this work we define two separate reconstruction metrics inspired by
the work of Xu [12]. The metrics are explained by introducing score calcula-
tion on basis of divergence between original graph and visualization vectors:

Khop Similarity score, which is a metric that calculates the pairwise dis-
tance for all nodes within three hops. First in the original graph, a triplet
is generated with source nodes, target nodes and their distance. Thereafter,
for all node pairs in the triplets the distance is calculated in the visualization
(indicated by the darkness of the hue) and saved as a vector. The original
triplets are transformed to a distance vector, and the cosine similarity be-
tween both vectors is calculated.

The Degree Adjusted ARI on the other hand clusters nodes with the
exact same degree in the original graph as a ground truth, and this leads to n
clusters (i.e. each distinct degree number is a cluster). For the visualization,
each row is summed and represents the degree of the visualization. These
are clustered with kmeans into the known a priori n clusters and compared
to the original graph clusters by calculating the Jensen-Shannon Divergence
(i.e. JSD) between the distributions. Some nice properties of the JSD in
comparison to the Kullback-Leibler divergence is that it is symmetric and a
metric [93].
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5 Visual Debugger for Quality Assessment

Analysing high-level complex relations in 2D matrices works well for the
problem highlighted in section 4. But, when introducing graphs with multi-
ple variables, even more dimensions are introduced to the original problem,
and it becomes increasingly difficult to truthfully visualize all of this infor-
mation in 2D. Therefore, we propose a multi-scale approach where the user
can compare, combine, adapt and subset multiple visualizations on the same
graph.

Figure 22: Features of Barbell Graph

5.1 Descriptive Analytics

The developed tool for analysis of graph visualizations aims to describe
graph data, and takes a data analytics approach. The tool named Matrix
Reordering Explorer can be used for amateur and expert analysis of basic,
weighted and multivariate graphs. It has been explicitly designed to cater
to the needs of scholars and network analysts as defined in Behrisch et al.
[7]. Requirements for scholars are: (a) compare visualizations of different
algorithms; (b) possibility to compare different embeddings; and (c) define
practicality of the embeddings [7]. Furthermore, for network analysts they
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are: detect local & global patterns (d); possibility for adaptation of visual-
ization(s) (e); and visualization of nested patterns (f )[7].

To give an example, the barbell graph was loaded into the tool in con-
junction with the feature vectors as shown in figure 22. The graph was
embedded with the featureWalk algorithm discussed in the next section and
this resulted in figure 23. In the figure the barbell structure embedding is
shown on the left, while the combined representation of the features is shown
on the right. This figure shows the compare function of the tool, in which
two plots can be laid side to side, from different algorithms or embeddings,
or both. This satisfies requirement a and b of being able to compare.

Figure 23: Matrix Reordering Explorer: Compare function

Thereafter, figure 24 shows the adaptive nature of this visualization tool.
It is possible to directly view bond strength by hovering the mouse over each
cell; the bond strength threshold for visualization can be adjusted; and it
is possible to zoom; pan; and match zoom levels of distinct visualizations.
With these interactions the tool aims to satisfy requirement e.

In figure 25 the focus is on visualizing two reorderings, based solely on the
feature embeddings. These features have been embedded without including
any graph structure. Feature 1 for instance, shows a dense clique in the
bottom right with nodes 17,20 and 19. If we compare the feature values (in
figure 22) of these nodes this clique is justified, with feature values of 1, 2
and 1 respectively. The embedding seems to correctly classify nodes into
similar groups of values, thus for this image satisfying requirement c.

Furthermore, in this figure feature 2 is displayed, with the reordering
of feature 1, highlighting patterns that are present in feature 1 and feature
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Figure 24: Matrix Reordering Explorer: Adaptive nature (e.g. zoom)

2. A prime example is the dense block pattern in the upper right corner
consisting of nodes 10,12 and 11. Again, these match with the similarity
between feature tuples namely: (50,5),(40,5) and (41,5). Note that even
more information can be gained from this figure, node 4,2,1,3 and 17 belongs
to the same block as nodes 10, 12 and 11 in feature 2. This is indicated by
the dark stripes in the right figure. Nevertheless, they do not belong to this
clique in feature 1 (indicated by the ordering in the right figure). With this
ability we can combine, detect and subset patterns and we hope requirement
d is satisfied.

And finally, figure 26 shows the ability of combining different embeddings
with mid fusion (i.e. fusion after embedding, but before seriation). In this
figure the early fusion combined embedding (i.e. embed both features at
the same time) and the structure embedding are merged, indicated by the
numbers they represent in the drop-down list (i.e. 1 and 2). In this figure,
there is a clear high level separation from the structure, and the figure also
shows multi-scale smaller block patterns within these larger blocks. The
high level separation is indicated by hub node 10 in the middle, and groups
of nodes 11-20 and nodes 0-9. Furthermore, there are two smaller cliques
(10,1,2,4 and 8,6,9,7) in the lower right box, which correspond to the values
in figure 22. With these examples the hope is that the nested requirement
f is satisfied.
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Figure 25: Matrix Reordering Explorer: Feature comparison

Figure 26: Matrix Reordering Explorer: Combine embeddings
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6 Novel Algorithms for Visualizing Multi-Graphs

In this section, the problem of visualizing multivariate graphs will be solved
by introducing two novel algorithms. The reader will be introduced to the
inspiration for these algorithms, their pseudo-code and time complexities.

6.1 Need for Multivariate Visualizations

Unfortunately, most multivariate graph embedding algorithms either embed
structure and features combined or calculate a separate structure embedding
and a complete attributes embedding. For visualization purposes, and to
satisfy the goals specified in section 5, there is a need for:

1. a structure embedding for the graph structure,

2. combined embeddings for a high level overview,

3. separate attribute embeddings for a local view, and

4. possibility to combine distinct embeddings for analysis.

To the best of our knowledge there exists no graph embedding algorithm
that is able to embed a multivariate graph in which each feature is embedded
separately. Thus, we introduce featurePMI and featureWalk, leveraging
existing techniques in the graph embedding domain to generate combined
and separate visualization(s) of multivariate graphs.

6.2 featurePMI

FeaturePMI is a graph embedding algorithm designed on the notion of ma-
trix factorization. The strength of this algorithm is that it incorporates the
structure of the graph into each separate attribute and combined attribute
embedding.

This algorithm takes as input the random walks from an embedding
algorithm (e.g. Walklets). These random walks are split into origin nodes,
and a pre-specified window of target nodes (e.g.

√
n). Thereafter, these node

vectors serve as an input into a count matrix P , and this matrix counts how
many times each origin-target pair is present in the pre-calculated random
walks. When dividing this matrix by the maximum value in P a transition
probability matrix is returned. Note that this algorithm is highly efficient
when matrix P is sparse, due to the sampling phase. We can assume that
for any graph, apart from fully connected graphs, that the number of edges
is smaller than the number of nodes squared, and for these graphs this
algorithm offers temporal gains.
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Algorithm 1 FeaturePMI: Get weighted feature matrix

input Origin node vector O, Target node vector T and,
Attribute dictionary A, window size w

1: Initialize empty PMI matrix P .
2: Initialize empty feature matrix F
3: Initialize empty weighted PMI matrix W
4: for each o ∈ O do // Find transition probability with node occurrence
5: t← T [i]
6: P [o, t]← P [o, t] + 1 // Count matrix
7: i← i+ 1

8: P ← P/(max(P ) + 1) // Transition probability matrix
9: for each o ∈ O do // Use origin nodes to sample features

10: t← T [i]
11: for all f ∈ features do
12: distance← (A[f, o]−A[f, t])2 // Distance between features
13: F [f, o, t]← distance

14: F ← F/max(F )
15: W ← P ∗ F // Derive feature weighted transition probability
return W

In the next step, calculation of an entire matrix with pairwise differ-
ences of each feature is possible, but rather time consuming. Therefore,
the random walks are used to sample a very sparse feature matrix F . F
is constructed with only the available samples in the random walks and it
represents all feature distances between nodes. Finally, we multiply matrix
P and F to get a weighted representation of the distances in matrix W . By
combining matrix P with matrix F we implicitly model the graph structure
in each feature embedding.

Transition Probability
High Low

Distance
High High Medium
Low Medium Low

Table 6: Resulting scores from multiplication show that similar values for
transition probability and distance show polarized values, and are arguably
the most interesting observations.

Another interesting aspect we found for the algorithm featPMI is that
the distance and transition probability multiplied, implicitly model highly
divergent observations (instead of similar ones). For this part of the algo-
rithm we assume that, the most interesting nodes are the nodes that have
a high distance (i.e. low similarity) and a high transition probability, or
the other way around. A question that could be asked is, why does node
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a have a high transition probability to node b when their similarity is low?
This is also true for the opposite case: why does a node with low distance
(i.e. high similarity) have a high transition probability? Table 6 shows the
interactions between both metrics and the ones we focus on in blue. This
table, also shows an interaction in orange, which is of lesser importance due
to the intrinsic proximity preserving property (i.e. high transition probabil-
ity to close nodes) of using random walks. The cell in white contains high
distance (i.e low similarity) and low transition probability and is likely to be
of less importance due to the inherent random occurrence of this node-pair
in the sampling. The resulting scores are fed into an matrix factorization
algorithm, in which higher divergences appear to have a greater predictive
value.

Complexity analysis: The featurePMI time complexity differs greatly
based on the sampling strategy. In the brute force approach, it is necessary
to calculate all pairwise node distances making this a complex operation of
the number of features times n squared. It is possible to estimate a more
fair complexity analysis by making an assumption about how n is influenced
by this strategy. With random walks the complexity can be reduced to:
window size × the number of walks. We set window size to

√
n and, thus

can approximate that
√
n × walk number calculations have to be made, for

simplicity we set the walk number to 20 for each experiment. Since this value
is a constant, the walk number can be ignored in the rest of the analysis.

The complexity of the loop in algorithm 1 in lines 4:7 is T (n) → O(o).
This can be transformed to to O(w∗n) when considering that o is essentially
a larger vector of n with multiple of size w. Each origin node is represented
by the window size, or o = w ∗ n. As mentioned in the section above, w is
set to

√
n, and thus o is reduced to n1.5.

Next, for the loops in lines 9:13 the complexity is T (n) → O(o ∗ f), in
which o can be substituted with n1.5. This finally results into the following
time complexity: O(n1.5 ∗ f).

The combined complexity of both steps are O(n1.5 ∗ f +n1.5). Note that
algorithm 1 has separated both loops for clarification, but it is actually pos-
sible to combine both loops by assigning the values needed more efficiently.
Removing one of the required loops directly removes the least time consum-
ing loop from the complexity analysis, and results in a time complexity of:
O(n1.5 ∗ f). In this specification, graphs with over 100,000 nodes can be
embedded within 24 hours, and graphs with over 1 million nodes within 23
days (see section 7.4.3 for more details on runtime). Note that these exam-
ple calculations are made with a single core, no parallelization and no usage
of GPU, therefore optimization of these elements could decrease runtime
significantly.

In step 8 the resulting complexity of dividing a matrix n ∗ w is equal
to O(n1.5). In step 14 however, the complexity is equal to O(n1.5 ∗ f) due
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to the 3 dimensional matrix of n ∗ w ∗ f . Furthermore, In the last step the
complexity is again equal to O(n1.5 ∗ f) due to elementwise multiplication
of matrix P and F .

Combining all complexities of this algorithm results in a total of O(3 ∗
f ∗ n1.5 + n1.5), which simplifies to O(f ∗ n1.5 + n1.5) when not considering
constant variables.

Algorithm 2 FeaturePMI: Get embeddings

input Embedding dimension d, Number of features n, α
Weighted PMI matrix W

1: Initialize empty embeddings array E.
2: Initialize empty matrix M
3: for all f in range(0, n) do
4: M ←W [i] // Current feature matrix
5: xemb, yemb ← ALS(M ∗ α, d) // Alternating Least Squares
6: E[i]← xemb // Current feature embedding

return E

The next step is to derive embeddings from matrix W . For each feature,
the Alternating Least Squares algorithm [94] is used to derive the final node
embeddings. This is a method from recommender systems and can be used
on incomplete matrices to obtain missing node embeddings.

The complexity of ALS is O(2n ∗ d2 + (n + w) ∗ d) per iteration [94],
where d is the number of dimensions. Iterations are kept constant in this
thesis and, therefore, the loop in 3:6 has a total time complexity of T (n)→
O(2n∗d2∗f+(n+w)∗d∗f). As specified above, n+w is equal to n1.5 reducing
this complexity to O(2n∗d2∗f+n1.5∗d∗f). The total complexity of the entire
algorithm is an addition of the complexity of algorithm 1 and algorithm 2.
This results into T (n)→ O(f ∗n1.5+n1.5+2n∗d2∗f+n1.5∗d∗f). If f and d
are set to be equal in experiments, the runtime compared to the number of
nodes is expected to increase with the following complexity O(3n1.5 + 2n),
or without constants O(n1.5 + n).

One final note for this algorithm is that there is a clear tradeoff between
speed and accuracy. By changing the sampling strategy from n0.5 to n0.25

should reduce time complexities massively, and it makes this algorithm more
scalable albeit less precise.

6.3 FeatureWalk

The next algorithm to discuss is the featureWalk algorithm which is com-
pared to featurePMI in order to test their different strategies and discover
different patterns in embedding multivariate graphs. In contrast to featPMI,
FeatureWalk focuses on the concept of random walks on graphs and their
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feature graphs. It differs by leveraging the random walk paradigm to sam-
ple features in the same manner as the graph structure. Furthermore, this
algorithm does not explicitly model the graph structure in the combined
embeddings, rather it introduces this structure after embedding and before
seriation. Algorithm 3 shows the pseudocode of featureWalk in combination
with two existing algorithms.

Algorithm 3 FeatureWalk: Generate Embeddings

input Feature matrix F, Dimension d, number of nodes n, d
walk length wl and walk number wn

1: Initialize empty embedding matrix E.
2: for each f ∈ F do
3: k ← round(

√
n) // k = number of neighbours

4: k graph← k neighbours(F [f ], k)
5: k graph← k graph− 1 // reverse weights and distances
6: G← (k graph)2 // increase negative effect distance
7: model←Walklets(G, d,wl, wn) // Random walks per feature
8: emb← model.get embedding()
9: E[f ]← emb

return E

In this algorithm, the first step is to construct a k-neighbours graph
for each feature in the feature set. This creates several new graphs upon
which the embedding algorithm Walklets will run and derive embeddings.
In step 5 and 6 the weights and distances are switched for usage further in
the pipeline, furthermore, the negative effect of larger distances is increased.
Afterwards, this graph is fed into Walklets with a prespecified dimension,
walk length and walk number. Note, that the algorithm is flexible and graph
embeddings can be derived by any other embedding technique. Also note,
different from featurePMI, that this algorithm does not implicitly model the
structure in the feature embeddings, and thus a structure embedding should
always be included in the final embeddings set.

Complexity Analysis In the featureWalk algorithm a KD tree [95]
is used to construct the k-nearest neighbour graph. This KD tree has a
time complexity of O(n ∗ log(n)) [96], and since our algorithm creates such
a graph for each feature, the total time complexity of tree generation is
O(n ∗ log(n) ∗ f).

For creating the embeddings with Walklets, the total time complexity
is O(n ∗ d ∗ f ∗ p) when combining information from table 1 with the fact
that Walklets has to be run f times. The total complexity is therefore,
O(n ∗ log(n) ∗ f + d ∗ n ∗ f) when p (i.e. number of walklets) is taken
as a constant. According to our experiments and calculations, for over
100,000 nodes this algorithm runs in under 24 hours, for over 1 million
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nodes featWalk is even more scalable than featPMI, running under 10 days
(see section 7.4.3 for more details on runtime).

6.4 Algorithm Variants

As specified in section 6.1 we need structure embeddings, combined em-
beddings, separate embeddings, and subsets of different combinations of
embeddings.

For structure embeddings, the algorithms in section 3.3.1 can be run in
conjunction with featurePMI and featureWalk. Additionally, the separate
embeddings can be obtained as explained in the sections above. Further-
more, in section 5 the possibility of combining embeddings has been ex-
plained and therefore, the only question that remains is the possibility of
generating combined embeddings. For both algorithms there exists an ex-
tended version that includes a full early fusion of every feature. FeaturePMI
for instance, sums all distance matrices F , squares the result and intro-
duces a combined feature matrix to be embedded. For featureWalk, the
k-neighbours graph estimates the nearest neighbours in higher dimensional
space (i.e. all feature values represent a point in space) and this graph is
fed into an embedding algorithm. In addition, it is also possible to gener-
ate medium fusion visualizations by combining several of the independent
embeddings in the visualizer stage. With these additions the combined em-
beddings requirement is satisfied.

Some shortcomings of these algorithms are the inability to deal with
textual, image and audio data. Additionally, the algorithms are not able to
handle missing attributes, disconnected nodes and directed graphs.

Since these algorithms depend on the number of features, they can be
further sped up by pre-processing/removing features to account for multi-
collinearity or non-significance. And secondly, a variant on featureWalk sep-
arates embeddings on binary attributes versus real valued attributes. The
binary attributes will no longer be embedded by Walklets, and this has the
advantage of more speed and accuracy. And finally, the construction of a
Ball Tree in featureWalk before running the KD tree algorithm increases ac-
curacy in higher dimensions (i.e. more features) [97], but is more expensive
[96].
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7 Experiments

In this section, the previously defined framework, and the novel algorithms
are tested. First in section 7.1 the datasets used in the experiments are
introduced with summary statistics. In section 7.2 the ability of graph al-
gorithms to show canonical data patterns is observed with the assistance
of small generated test graphs, and a single real graph. Thereafter, in sec-
tion 7.3 a real world dataset which is weighted and directed is explored,
and differences with respect to the unweighted version are highlighted. Sub-
sequently in section 7.4 multivariate graphs are introduced and embedded
with the novel algorithms in section 6. And finally, in section 8, inferences
will be made on the readability of these visualizations.

All experiments without explicit hyperparameters are performed with
the algorithmic settings in appendix B, or if not explicitly specified, with
standard settings by the author of the algorithm. For temporal compari-
son, all experiments have been run on a single core adaptive 3.8-4.4 GHz
processor, with 16 GB of 3200 MHz of RAM.

7.1 Dataset Collection

The generated graphs included in this section are well known graphs existing
of a predefined structure and properties. These Python Networkx library
[98] generated graphs are small, and specifically designed to uncover patterns
in the data. These graphs essentially served as a proof of concept for pattern
recognition on the patterns introduced in Behrisch et al. [6] and include
the Block Pattern, Off-diagonal Block pattern, Line/Star Pattern, Bands
Pattern and the Noise Anti-Pattern. To achieve this goal, the following
graphs have been generated:

• (1) random, graph where two nodes are randomly connected with an
edge

• (2) star, graph where each node is connected to a single hub node

• (3) barbell, graph with two cliques, two hub nodes and a connecting
node

• (4) bipartite, graph with two disjoint sets of nodes

• (5) line graph, graph where each consecutive node has an edge

The graphs listed above are all basic graphs without directed edges,
edge weights or nodal properties. In the first experiment the random graph
inquires for the Noise Anti-Pattern and tests the inherent randomness (or
non structure) in the graph. Second, the star graph tries to exploit the
Line/Star pattern by having a single highly influential node. Thereafter, the
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barbell graph will be used to highlight block patterns with the occurrence
of cliques in the graph. Afterwards, the bipartite graph showed the ability
of graph embedding algorithms to visualize the Off-diagonal Block pattern,
with the bipartite graphs inherent disjoint sets. Consequently, the line graph
tries to utilize its path property to accommodate for the visualization of a
bands pattern. And finally, the football graph has tested the manifestation
of patterns in a real world setting.

To test the ability of the weighted, and directed version of these em-
bedding algorithms, a visualization of the US airports dataset is shown. In
appendix C we included an extra visualization of another graph, a graph
constructed with the API of the Nederlandse Spoorwegen (or NS) for the
interest of the reader.

name kind directed |V | |E| NP ∗ ∆(G) δ(G) davg(G)

random basic no 20 89 0 13 5 8.9
star basic no 21 20 0 20 1 1.9

barbell basic no 21 92 0 10 2 8.8
bipartite basic no 20 100 0 10 10 10

line basic no 21 20 0 2 1 1.9
football basic no 115 613 0 12 7 10.7

NS weighted yes 247 354 0 17 1 2.9
USair weighted yes 286 4587 0 166 1 16.1

pokec-100 multi no 100 313 6 86 1 6.3
pokec-1000 multi no 995∗∗ 4411 6 230 1 8.9
pokec-5000 multi no 4983∗∗ 41697 6 1030 1 16.7
∗node properties and,
∗∗divergence of original size due to node removal of nodes without profile data

Table 7: Summary statistics datasets

In the final experiment, the multivariate graph embedding algorithms
introduced in section 6 will be compared against visualizations by naive
DeepWalk. For this experiment, the Slovakian Pokec dataset was chosen
since it is a very large online social network with 1.6 million users, 30 mil-
lion friendships and most importantly at least six binary/numerical node
attributes [99]. The novel algorithms will be run on a subset of the Pokec
dataset, sampled with BFS. This allowed for easy visualization and explain-
ing, reduced runtime and still gives a demonstration of the feasibility of
visualizing larger graphs. Table 7 shows the descriptive statistics of the
datasets used in this section.

7.2 Canonical data patterns in Basic Graphs

The experiments in this section highlight patterns that arise for simple ar-
tificially generated graphs with the algorithmic settings for this experiment
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listed in appendix B. The section is structured by first: displaying the to-be
embedded graph, and second showing the resulting reordered matrices of all
graph embedding algorithms. Each experiment has been run five times and
the best result (according to the minimal reconstruction scores) is visualised
in a 3x3 grid.

The first graph to be tested was a random graph shown in figure 27a,
and it was created with a Networkx Erdős-Rényi graph with the number
of nodes equal to 20. Furthermore, the probability of edges between these
nodes was set to 0.5 and there should be little to no patterns visible in the
resulting embedding visualization.

In figure 27b it was found that indeed most algorithms do not have clear
patterns visible in their embeddings, with only some rare ill-defined block
patterns visible. The exception of this was SDNE which visualizes two large
block patterns (in which the upper contains multiple smaller block patterns),
and many halves of a line/star pattern. It was found that SDNE overfits
quickly on these simple problems and achieves subpar results. An inspection
on the quality metrics however (low Khop-score, ARI close to zero) support
our claim that most embeddings have indeed not discovered any pattern in
the data.

In figure 28a a Networkx star graph was generated with a single central
node connected to 19 peripheral nodes. This extreme network was gener-
ated to test for the line/star pattern. The embeddings in figure 28b illustrate
that 6 out of the 9 embeddings are able identify node 0 as the central node.
Furthermore, the algorithms: attentionWalk, HOPE, SDNE and Walklets
have shown clear line patterns for the strongly connected central node and,
note they have categorized all of the other nodes as similar nodes. These
algorithms obtained perfect or near perfect reconstruction scores (i.e. 0.99
to 1). Furthermore, deepwalk and node2vec were less distinctive in recog-
nizing the star/line pattern, obtained a lower Khop distance and a lower
degree adjusted ARI score. On the other hand, the algortihms: Laplacian
Eigenmaps, Locally Linear Embedding and struc2vec have shown to score
the lowest on these metrics and completely fail to show any relevant higher
level pattern.

In figure 29a a Networkx barbell graph has been generated with two
identical complete graphs of 10 nodes (e.g. cliques) and a single connecting
node (node 10). Node 9 and 11 are a special case which have an extra
degree (compared to the clique nodes) and connect to the central node. This
graph was generated to test for the block pattern. The resulting matrices in
29b illustrate that all algorithms display block patterns. Subsequently, the
complete graph structure, the central node and hub node have been correctly
identified for 8 out of 9 graph embedding algorithms. While most algorithms
score high on the ARI score, only SDNE is observed to score low with an
ARI of 0.16. In the visualization it was recognized that only SDNE distinctly
groups node 9 and 11 in the same block as all other nodes. Note that for
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(a) Node Link diagram of a Random Graph

(b) 2D matrix visualization

Figure 27: Random Graph
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(a) Node Link diagram of a Star Graph

(b) 2D matrix visualization

Figure 28: Star Graph
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algorithms HOPE, deepwalk and node2vec this distinction is hard to spot
due to very minor changes in hue. The only highly divergent result is in the
visualization of struc2vec. Evidently, this was known a priori, since struc2vec
explicitly preserves structure and not neighbourhood similarity. Therefore,
the algorithm has placed all nodes in the same category with the exception
of the nodes 9, 10 and 11. This is due to the fact that the peripheral nodes
are structurally equivalent in the barbell graph. Additionally, the algorithm
has recognized that node 9 and 11 are also structurally equivalent and only
node 10 is highly dissimilar to any of the other nodes.

In figure 30a a Networkx complete biparite network with 10 nodes on ei-
ther side was generated to check for the off-diagonal block pattern. In figure
30b the results have shown that 6 out of 9 algorithms are unable to clearly
show any patterns in the data. For the algorithms of HOPE, SDNE and
Walklets however, the results have been found to be similar to the barbell
graph without the central nodes. Additionally, for the aforementioned algo-
rithms, nodes 0-9 are correctly displayed on one side of the bipartite graph
and node 10-19 on the other. Note that the Khop score clearly identifies
algorithms that have better visualizations. As an example, all algorithms
excluding HOPE, SDNE and Walklets have a low Khop score and show no
patterns in the data. An ARI score of 1 however, indicates a good score on
this metric. Unfortunately the ARI score is of no use in this example due
to each algorithm scoring the maximum value. This is due to the definition
of this score, the score will always be 1 for graphs where all nodes have an
equal degree (see section 4.6.3 for more details).

In figure 31a a Networkx line graph (i.e. random lobster graph with
20 nodes and 0 probability of adding edges to the backbone) was visual-
ized to illustrate the occurrence of the off-diagonal bands pattern. In this
experiment we observed that 4 out of the 9 algorithms (HOPE, Laplacian
Eigenmaps, LLE and Walklets) clearly show a band pattern on the diago-
nal instead of the expected off-diagonal pattern. Furthermore, it was found
that 2 out of these 4 algorithms (i.e. HOPE and LLE) show consistent as-
cending/descending ordering of nodes. Moreover, note that Walklets has
a consistent ordering, which, unexpectedly groups even and uneven nodes.
Unfortunately, SDNE, struc2vec and attentionWalk seem to fail on this ex-
ample and do not show a clear picture of the line graph. For the reconstruc-
tion scores it was found that HOPE, LLE and Laplacian Eigenmaps scored
highest on Khop, while ARI has shown to be less consistent in this example.

To conclude, this experiment shows that the embedding algorithms are
at least able to learn some of the patterns in Behrisch et al. [6]. Most notable
are the block and line/star pattern which are clearly visible in the figures
listed above. Nevertheless, in this experiment we observed mixed results for
some of the algorithms when considering frequency of good visualizations
in which some algorithms clearly performed better than others for different
tests. On these experiments the most accurate algorithms are multiscale
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(a) Node Link diagram of a Barbell graph

(b) 2D matrix visualization

Figure 29: Barbell Graph
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(a) Node Link diagram of a Bipartite graph

(b) 2D matrix visualization

Figure 30: Bipartite
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(a) Node Link diagram of a Line graph

(b) 2D matrix visualization

Figure 31: Line

60



Walklets and HOPE, which showed reasonable results for all of the examples
highlighted above. With these examinations we found that the patterns
shown in these figures have given insights into answering research question
4.

Figure 32: 2D matrix visualizations of dataset football

Finally, this section concludes with a simple graph visualization of the
dataset football [100]. The football dataset consists of American football
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Figure 33: Visual quality metrics of algorithms for dataset football

games in the highest college division. The vertices are teams from differ-
ent colleges and the edges between these represent matches played. This
dataset consists of 12 distinct labels placing each of the teams into confer-
ences in which teams are more likely to play against each other. In figure 32
the visualization results are given. We observed that DeepWalk, Laplacian
Eigenmaps, Locally Linear Embedding and Walklets recognize 10 distinct
groups in the data, while the other algorithms had less block patterns in
their visualization. Scores among visualizations differ slightly with Lapla-
cian Eigenmaps scoring worst, and node2vec scoring highest on Khop sim-
ilarity. Additionally, node2vec scored highest and SDNE lowest on degree
adjusted ARI. Thereafter, figure 33 shows the visual quality metrics of the
visualizations in which attentionWalk scores best on 4, Laplacian Eigenmaps
scores best on 1, node2vec scores best on 2, struc2vec scores best on 6 and
Walklets scores best on 3.

7.3 Patterns in Weighted Graphs

In order to explore the changes in matrix visualizations of unweighted graphs
compared to weighted graphs, we analyzed the dataset US air. US air is a
directed dataset with 286 airports in the United States, and includes 4587
directed edges between these airports. In this dataset each edge represents
a unique flight path between two airports, while the weights describe the
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number of flights on the flight paths. The data were embedded with the
embedding algorithms DeepWalk and Walklets and hyperparameters of: 80
dimensions; walk number of 10; walk length of 80; window size of 5; and 10
epochs, for both algorithms.

Figure 34: Distance matrices of unweighted and weighted dataset US air

In figure 34 the embeddings are visualized. When unweighted DeepWalk
and weighted DeepWalk were compared, the most prominent observation
was that the former shows two smaller block patterns on the edges of the
matrix, and a single large block pattern in the center. The weighted ver-
sion however, showed less distinction between blocks, but clearly separated
a small block of outliers in the bottom right. On the other hand, intra-
Walklets comparison showed less variation in these matrix visualizations,
with only small changes in hue.

To explore this phenomenon further, in Walklets we plotted the TSP
paths of both the weighted and unweighted version in figure 35. We opted
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(a) Unweighted path

(b) Weighted path

Figure 35: TSP path of visiting airports for Alaska region

to plot only the Alaska region for explanation purposes. Note that in this
image a circle indicates the start of the path, and a crossed circle represented
the end of the path. It was observed that the unweighted Walklets (i.e.
top image) favoured a proximity preserving approach, visiting mostly close
(connected) airports, while the weighted version (i.e. bottom image) was
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more inclined to adhere to the proximity including number of flights between
airports.

Figure 36: Visual quality metrics of US air

And finally, we compared visual quality metrics between all of the em-
beddings shown in figure 36. It was found that all algorithms preserve some
VQM better than another, with unweighted DeepWalk scoring best in 5 out
of 16 VQMs. In this example, DeepWalk is followed by weighted DeepWalk
and weighted Walklets with both 4, and finally, Walklets with scoring best
on 3.

7.4 Patterns in Multivariate Graphs

In this section a comparison was made between three different graph em-
bedding algorithms. Naive DeepWalk served as a baseline, and is only able
to discover structure in the graph, not taking into account node properties.
Thereafter, featPMI shows the matrix visualizations consisting of: a struc-
ture embedding; a combined feature embedding; and six separated feature
embeddings, respectively. Note that featPMI embedds the structure directly
into each embedding, and thus we assume that this combined feature em-
bedding is actually a combined feature and structure embedding by design.
On the other hand, featWalk shows visualizations of: the structure; com-
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bined features (without structure); six feature embeddings and; a combined
feature and structure embedding. A final comparison is made by comparing
VQM scores and pattern visibility in the visualization(s).

In this experiment the Pokec-1000 dataset is described by short codes in
the following summarization. These codes are also present in the upcoming
visualizations. There are six numerical and boolean attributes available in
this dataset, and unscaled summary statistics are given in table 8. For the
results of the Pokec-100 and Pokec-5000 dataset the reader is referred to
appendix C & D.

Short codes:

− Struct : the structure embedding

− Cfeat : the combined features embedding

− feature 1 (boolean): gender, with male and female

− feature 2 (boolean): public, account is public or not

− feature 3 (numerical): age of the user

− feature 4 (numerical): account completion percentage

− feature 5 (numerical): days since registration

− feature 6 (numerical): days since login

− CStruct : the combined features and structure embedding

bool min max n=0 n=1 σ short code

gender 0 1 565 430 0.5 feature 1
public 0 1 350 645 0.48 feature 2

numeric min max mean median σ short code

age 0 52 20 16.3 9.97 feature 3
completion 12 97 59 49.4 23.55 feature 4

days reg 102 4384 1733 1763 597.34 feature 5
days log 0 844 5 31 65.96 feature 6

Table 8: Summary statistics features Pokec-1000

For this experiment, we need to adjoin that in literature most of the
algorithms are run with variable x in 2x dimensions. The inherent property
of multiscale walks of Walklets caused an increase in dimension of 2x ∗ 5.
Since, we opted for a fair comparison between all algorithms, the dimensions
of DeepWalk follow the same 2x ∗5 dimensionality pattern. The Pokec-1000
dataset for DeepWalk has thus been run with 26 ∗ 5 = 320 dimensions
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Figure 37: Structure Pokec-1000 DeepWalk

and still satisfies the |V | << d requirement set before. The other influential
hyperparameters of DeepWalk are usage of a walk number of 10, walk length
of 80, window size of 5 and epochs of 10.

The structure visualization of DeepWalk is shown in figure 37. This
figure has shown that structure in the DeepWalk embedding is either highly
complicated or is not preserved well by DeepWalk. The figure shows multi-
dimensional block patterns, most notably in the upper right corner. These
patterns are occasionally part of a larger stair pattern in which there is only
increasing or decreasing hue saturation over an axis. And finally, the figure
shows curved line patterns (which resembles a fishbone) with highly similar
nodes along this pattern. Moreover, the dividing line of the upper right block
pattern and the rest of the figure, shows the star/line pattern, indicating
a connection node. Thereafter, DeepWalk has shown white patches further
away from the diagonal, indicating very dissimilar nodes.

7.4.1 featPMI

In this section featPMI will show the visualizations of the final combined
embedding and all individual embeddings consecutively. featPMI has used
similar hyperparameters for the random walk part of the algorithm, with a
walk number of 10, walk length of 80, window size of 5 and epochs of 10.
Furthermore, featPMI was run with 200 iterations and a regularization of
0.1 for the matrix factorization phase.

Figure 38a shows the combined feature and structure embedding of
featPMI. We found that this visualization is similar to DeepWalk, with sim-
ilar uncertainty in the observed patterns. This image has shown fluctuating
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(a) Distance matrix of entire graph in one single image

(b) Visualizations of all features and structure

Figure 38: featPMI Pokec-1000
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hue coloration along both axis, indicating this uncertainty. Nevertheless, we
noted that the second large block pattern is more distinctly defined in the
embedding of featPMI. It contains a large block which seems to be fused
with a line/star pattern near the middle of the image. And finally, there
appears to be a highly distinctive group in the upper left corner, with high
similarities within the group and very low similarities outside this group.

Figure 39b lists all visualized embeddings in a 3x3 grid. First, the struc-
ture visualization retained more distinctive block patterns along the entire
image compared to DeepWalk. Secondly, this structure has a more gradi-
ent like hue change along the axes, which indicates more certainty of the
reordering. Further, we have noticed that there are overlapping block pat-
terns and multiple small and large line/star patterns in the matrix. On a
different note, one should expect that embedding the boolean variables (i.e.
feature 1 and 2) is rather easy in even a single dimension. Nevertheless, the
algorithm appears unable to clearly visualize these variables, and only by
extensive examination shows two larger block patterns. For the numerical
variables, the same observations apply. One unexplained artifact was the
one or two divergent block patterns appearing in either visualization corner.

node f1 f2 f3 f4 f5 f6 connections

164 0 0 25 57 1361 159 [4,165]
157 0 0 22 21 2005 176 [4]
159 0 0 22 60 1422 1 [4,165,162,161]
166 1 0 25 12 2752 16 [4]
168 0 0 21 12 2593 276 [4,165,162,161,167]

σ 0.45 ↓ 0 ↓ 1.87 ↓ 24.13 ↑ 643.44 ↑ 115.99 ↑
Node features for Observations 1 to 5

node f1 f2 f3 f4 f5 f6 connections

917 0 0 18 24 1838 4 [1,132,217,740,755]
914 0 0 21 16 1650 290 [1,22,41,53,78,85,112,

131,691,692,711,713]
915 0 0 18 71 1880 1 [1,805,814]
911 1 1 27 12 1659 1 [1,35,146]
913 1 1 21 47 1702 2 [1,16,23,25,34,3,48,53,63,75

76,103,118,124,129,140,148
372,390,391,393,402,464]
584,612,617,639,720,721]

σ 0.55 ↑ 0.55 ↑ 3.67 ↓ 24.73 ↑ 106.23 ↓ 128.8 ↑
Node features for observations 991 to 995

Table 9: featPMI: feature values and nodal links when maximizing TSP

To analyse the effectiveness of the feature grouping and proximity preser-
vation of graph structure, we took an excerpt of the first 5 observations in

69



the upper left corner, and the last 5 observations in the downward right cor-
ner of the combined feature matrix. The nodes labeled 164 to 168 in table
9 show the input features for the first 5 observations. In this table, a green
arrow indicates that the standard deviation among the samples is smaller
than average, as shown in table 8, and a red arrow indicates the opposite.
We found that the boolean features although imperfect, are similar for all
nodes. Further we have noticed that feature 3 shows reasonable clustering
compared to the data distribution. Feature 4,5 and 6 are less preserved in
this visualization with none of the standard deviations scoring lower than
random. And finally, the connections have shown that most nodes are not
connected to each-other directly, instead they have similar neighbours. The
nodes on the other end of the visualization have shown less consistency in
clustering, with divergent binary features, and divergent values for features
1,2, 4 and 6. Another observation that was made is that these nodes have a
higher degree, with less similar neighbours.

7.4.2 featWalk

In this section featWalk has been applied on the same graph for comparison
with featPMI and DeepWalk. It has therefore been run with exactly the
same hyperparameters.

In figure 39a we observed that block patterns in this visualization are
defined with more clear separation of color between distinct groups (i.e. the
gradient differs more between blocks). In this figure, we noticed the arisal
of shaded blocks, which indicated multi-scale similarities between groups.
Nevertheless, while more clear separation exists, areas with highly similar
(i.e. dark colors) nodes are more uncommon than in the visualization of
featPMI.

In figure 39b we introduced embedding visualizations for structure, com-
bined features, features, and finally the combined features and structure em-
bedding. The observant reader could have noticed that that the structure in
featWalk does not differ from featPMI, and this is due to the fact that both
algorithms utilize identical embeddings for structure visualization since this
step in their architecture does not differ. The boolean features (i.e. feature
1 and 2) displayed more defined borders and indicated the overall distri-
bution of the data accurately. Furthermore, we recognized clearly defined
borders in feature 3 and 6 in which almost all of the borders are character-
ized by an occurrence of the line/star pattern. Additionally, there are clear
off-diagonal shaded block patterns in feature 3, which indicates that some
block patterns are more similar to block patterns further along the diagonal.
Feature 4 and 5 were found to contain more smaller block patterns, with less
clear color differentiation between them. As a final note, feature 5 shows a
more smooth transition between each element in the visualization.

When glanced over table 10, for all observations, featWalk is accurate
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(a) Distance matrix of entire graph in one single image

(b) Visualizations of all features and structure

Figure 39: featWalk Pokec-1000
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node f1 f2 f3 f4 f5 f6 connections

167 0 1 20 28 2562 1 [4,165,168]
160 0 1 23 33 1832 1 [4]
919 0 1 22 41 507 10 [4]
158 0 1 23 45 2531 1 [4]
162 0 1 22 66 1791 139 [4,165,161,168,159]

σ 0 ↓ 0 ↓ 1.22 ↓ 14.67 ↓ 833.37 ↑ 60.83 ↓
Node features for Observations 1 to 5

node f1 f2 f3 f4 f5 f6 connections

598 1 0 23 45 1602 1 [17,452,496,635]
558 1 0 21 34 1705 1 [17,602,511]
577 1 0 21 12 1393 4 [17,591,602]
505 1 0 21 17 1597 2 [17,583,602]
526 1 0 21 12 2183 3 [17,135,476,482,529,532]

σ 0 ↓ 0 ↓ 0.89 ↓ 14.82 ↓ 294.83 ↓ 1.3 ↓
Node features for observations 991 to 995

Table 10: featWalk: feature values and nodal links when maximizing TSP

in embedding boolean and numeric attributes into the visualization(s). It
is observed that all respective boolean attributes are exactly the same, and
features 3,4 and 6 have even smaller variances when compared to featPMI.
Furthermore, we noted that the spread in feature 5 was similar to the spread
in featPMI, and was least preserved by the embedding in this example. In
the table it is again shown that the connections all have a common origin
node, and that the nodes are not directly connected.

7.4.3 Additional experiments

The visual quality metrics in figure 40 suggested that DeepWalk shows the
best visualization of the embedded multivariate graph. DeepWalk scored
best on 11 out of 16 visual quality metrics, while featPMI scored best on 3,
and featWalk on the remaining 2. For details on each separate embedding
in featPMI and featWalk see appendix D.

In order to find divergences between the pokec-1000 dataset and the
other pokec splits, we compared their resulting visualizations. For the pokec-
100 dataset, the structure was well-defined in the algorithm DeepWalk, with
two distinct blocks visible. This observation was not shared for the other
algorithms. For the pokec-5000 dataset and featWalk, we observed even
more clear separations between groups with line/star patterns. Nevertheless,
the complete embedding was less defined for featWalk. FeatPMI on the
other hand, showed consistent results among all pokec dataset sizes, with
the exception of the feature visualizations which were more well defined in
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Figure 40: Visual quality metrics of final visualization Pokec-1000

the other splits.

Figure 41: Quadratic time in (s) for em-
bedding*

Figure 42: Quadratic time in (s)
for seriation

Furthermore, the feasibility of the new algorithms was also tested by
analyzing the temporal differences between Pokec-sizes and algorithms. In
figure 41 the algorithms were plotted along the x-axis while time in quadratic
seconds (e.g. 10 quadratic seconds is 100 seconds) is plotted along the y-axis.
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For convenience, the time in seconds is also plotted in the bar itself. Observe
for instance that the time complexity of featWalk for the Pokec-1000 and
Pokec-5000 increases with factor 7 from 354 seconds to 2467 seconds, while
size increases with factor 5. This indicates a more than linear increase in
time with size (e.g. 7>5), but less than quadratic (e.g. 7< 52, for more
details on time complexities see section 6). Note that this figure gives a
slightly distorted image of time complexities, DeepWalk only embeds one
fifth of the total size (i.e. only structure) and is therefore not a fair compar-
ison. FeatPMI and featWalk on the other hand, embed both structure and
features. We observed from comparing figure 41 and figure 42, that seriation
in this example is less scalable than embedding.
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8 Discussion

In this section we explore whether the visualizations introduced in section
7 can enhance our understanding of the underlying data. We interpret
the results and investigate if graph embedding visualizations are able to
distinguish between noise and signal for effective re-orderings. First we
start with analyzing the results in section 8.1, thereafter we will discuss
the limitations of our study in section 8.2 and finally we will conclude with
directions for future work in section 8.3.

8.1 Findings

The results for basic graphs indicate that graph embedding algorithms are
able to show canonical data patterns in small graphs. We found that the
block, star/line, bands and noise anti pattern are clearly visible in the ex-
amples. Unfortunately, diagonal block patterns are absent in the examples,
and we expect this is due to an artefact of the seriation algorithm TSP.
This algorithm tries to reduce the Hamiltonian path length, and therefore,
always favors placing observations close to the diagonal. Furthermore, in
these examples the reconstruction scores Khop similarity and Degree Ad-
justed ARI appear to have potential to be a good indicator of visual quality.
We proposed that if these scores reflect the data in a accurate manner, the
visualization should be good as well. Nevertheless, Khop Similarity is ex-
pensive to calculate, and Degree Adjusted ARI is less accurate for larger
graphs, so a lot of work remains to be done. As an alternative to exist-
ing metrics Beusekom, Meulemans and Speckmann [101] suggest the use of
Moran’s I which captures all patterns in the data for visual quality, instead
of only block patterns. Unfortunately, as of now this spatial auto-correlation
metric is only applicable for undirected graph. Subsequently, in the football
dataset we observe that the Quality Metrics top 2 algorithms are attention-
Walk and struc2vec, even though their visualizations are arguably worse
than all other algorithms. We expect that this is due to the fact that these
metrics favor large block patterns, which shows similarities with existing
research [6, 101, 9]. Note that the graph embedding algorithms all gen-
erate different embeddings and therefore, we argue that these metrics are
incomparable between visualizations. Consider for instance, in a worst case
scenario, that an embedding completely fails and embeds each node exactly
on the same point in the latent space. In this example the visual quality
metrics would favor this embedding over all others, while it does not deliver
any information to the user. We therefore argue that these metrics cannot
be used for comparison on visualizations which have different data a priori.
And finally, these basic graphs showed us that Walklets and HOPE gener-
ally performed best in creating accurate visualizations. The classic matrix
factorization methods Locally Linear Embedding and Laplacian Eigenmaps
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appeared competitive but fail to discover more complex patterns in the data
(e.g. line/star and off diagonal). In addition to that, Node2vec and Deep-
Walk show good results for all problems (except bipartite), albeit with less
clarity in their visualization. It appears that multiscale Walklets creates
more information and certainty in the visualization. And finally, we are
introduced to the shaded block pattern which indicates multiscale relation-
ships within communities.

The figures in the weighted section appear less clear than the unweighted
counterparts. A possibility could be that the dataset does not define groups
in the data very well, or the structure and weighting scheme work against
eachother. It appears that the US airport example does show a clear group
of outliers suggesting that regularization or polarization of the data will
create a more interpretable figure. After the TSP paths of both weighted
and unweighted graphs were plotted, we found differences in their ordering
and definition of proximity. Unweighted graphs favor proximity to nodes
with whom they have a connection, while weighted graphs appear to take
into account the weight of this connection for traversal. Unfortunately, again
the Visual Quality Metrics do not highlight a clear top algorithm.

The first thing we noted when plotting large graphs in distance matri-
ces is that their interpretation is much harder than in binary matrices such
as those in Behrisch et al. [6]. This is probably due to more variation
and uncertainty in the data, but it does allow for a richer representation
of the underlying data. By allowing each cell in the matrix to be a nu-
meric value, we were able to create multiscale visualizations for multivariate
graphs. DeepWalk showed us the new fishbone-like pattern which we think
represents paths along the edges of unconnected inner communities. We ex-
pect that the nodes inside the fish-bone are related feature wise, but do not
share an edge and in this example could be an artefact of the breadth first
search Pokec sampling. Furthermore, we also have some criticism on the
Pokec dataset since the attributes in this dataset are probably not the most
useful in predicting edges, and thus combining features and structure could
allow for a less interpretable figure. Nevertheless, when inspecting featPMI
and especially featWalk, we observed the viability of splitting embeddings to
explore the underlying data. The visual quality divergences between these
two algorithms is probably explained by the fact that featPMI requires a
more careful selection of hyperparameters. FeatWalk on the other hand
shows much clearer patterns in the data, in which, for instance, we can im-
mediately identify the two boolean variables. In this visualization we noted
what is probably another artefact of BFS Pokec, the heavy occurrence of
the line/star pattern. Furthermore, featWalk combined structure and fea-
ture figure appears less clear cut than the rest, and this is probably due
to the fact that we used medium fusion to construct this image. A good
solution could be to integrate the feature embedding and structure embed-
ding into a single early fusion operation, which as shown by the combined
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feature visualizations (i.e. features without structure), yields a more clear
image. Nonetheless, research shows that higher level fusion has its own ad-
vantages and disadvantages [102, 103]. Next, we argue that interpretation
of these matrices is still hard without domain knowledge, but basic informa-
tion about community structure or important nodes can be often be easily
extracted in these high level images. For the experiments on feature preser-
vations we found that the features appear to be much better preserved in
featWalk and less so in featPMI. A peculiarity we found was that featPMI
scored, on average, lower than random for feature preservation. This could
be due to non optimal parameters, difficulties of preserving all features in a
single image, or the sample we took was a particularly bad one. Unfortu-
nately, contrary to our results, DeepWalk shows best on the quality metrics,
but did not result in a more comprehensible figure.

In general, we found that larger graphs appear less interpretable, but
that this could also be due to using a dataset in which it is hard to discover
patterns. Nevertheless, an image that is less clear can indicate something
useful, a highly divergent group of nodes is in the data (e.g. outliers that re-
duce hue interpretability), or it indicates that all nodes are relatively similar
(i.e. less well defined). In the experimental phase we noted that the choice
of a DRT appeared to be highly influential for the quality of the resulting
images, in which PCA appears more stable (in line with Gisbrecht et al.
[54]) and preferred for the simple problems in section 7.2. In contrast and in
line with McInnes et al. [92], UMAP preserves more of the structure of the
data in the other experiments. Note that the non-linearity in UMAP could
explain the less clear cut borders in easier to solve basic graph visualiza-
tions. Unfortunately, the biggest downside in all experiments is the focus of
the TSP algorithm to show block patterns while many other interpretable
patterns exist. However, we believe this could easily be solved by applying
different seriation algorithms.

To summarize, the research in this paper strengthens the claim of ex-
ploring large (multivariate) relational datasets in 2D matrices. This work
highlights the importance of understanding relational data, and introduces
an highly adaptable framework to create high level images of graphs. First,
we found that graph embedding algorithms are able to learn embeddings for
high quality matrix visualizations with canonical data patterns. Secondly,
matrix factorization methods had more trouble creating a feasible visualiza-
tion with more complex patterns (e.g. star, off diagonal) in the data. In
this experiment, the algortihms HOPE and Walklets had most consistent
results. Thirdly, the visual quality metrics in this paper appeared insuffi-
cient for optimal selection of a good visualization and, among other things,
leads to the block pattern being preferred most among all visualizations.
Fourthly, we noticed an increased difficulty in the readability of graphs when
complexity was increased, which we partially solved by splitting embeddings
and creating separate visualization. Furthermore, visual quality is higher in
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multivariate featWalk, but is reduced in the larger complete visualizations
possibly due to intermediate fusion in featWalk. And finally, node features
appear to be highly preserved in featWalk, indicating the applicability of
this algorithm for visualizing complex relational data.

8.2 Delineation

In this research we did not consider heterogeneous graphs or graphs with
multiple node types, due to these demanding additional research, adaptation
of existing embedding algorithms and increase of scope. For similar reasons,
we opted to exclude Gaussian and dynamic graph embedding algorithms,
and shift our attention to vector point graph embeddings. Note that visual-
izations with the excluded algorithms would probably show fundamentally
different visualizations (e.g. for dynamic, a temporal aspect). In vector
point graph embedding there exists many different algorithms, and thus it
was necessary to create a subset for comparison. When we made this subset
we took into account the importance of the algorithm in history, the number
of citations and novelty of the algorithm. And finally, adaptive embeddings
could be considered in the future, these could be used to retrieve embed-
dings with adaptive focal point attributes. The embeddings would empower
the user to increase and decrease the importance of certain attributes.

Furthermore, for larger graphs we did not visualize node link diagrams
for comparison due to temporal constraints, and possible high cluttering. In
addition, visualization in 2D matrices could be enhanced by adding more in-
formation in a single cell as in the tool Zoomable Adjacency Matrix Explorer
(i.e. ZAME) [1]. ZAME visualizes statistical glyphs on nodal relationships
and increases the understanding of the underlying data. Nevertheless, the
goal of our research is to give a high level overview, and thus this idea
was discarded. In addition, note that including ZAME in our architecture
would reduce the scalability property of our framework. Another way to
add more information in a single image is to use 3D visualizations. Gaining
embeddings in 3 dimensions can be obtained by a single value change in our
framework, however visualizing a 3D matrix and retrieving a good matrix
order is not trivial.

The existing framework can be used with a variety of different embed-
dings, sizes, seriation algorithms and dimensionality reduction techniques.
Nevertheless, in this study we did not consider usage of very large graphs due
to temporal and memory constraints. Likewise, although showing promising
preliminary results, the naive combination of embeddings of different algo-
rithms before seriation were not considered. Once more, due to temporal
constraints and good preliminary results, we opted for the usage of the DRT
UMAP for graphs larger than 40 nodes and DRT PCA for the rest. There
exists plenty more dimensionality reduction techniques that have not been
considered. In addition, it would even be possible to skip the reduction of di-
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mension phase at all and calculate the distance in high dimensions. Research
however, points out that this distance calculation is not optimal in higher di-
mensions [15]. Furthermore, we did not consider other seriation algorithms
that could generate visualizations with different patterns in the data. Ad-
ditionally, the framework could benefit from transfer learning, especially in
the graph embedding phase. Thereafter, adaptations for the visualization
phase exists with methods that reorder in combination with regressive blur-
ring in an iterative manner. This reduces noise and highlights the global
structure [55]. Hybrid sort on the other hand, is a pattern-based method
and utilizes a matrix classifier to select the optimal method from an existing
set of structure based methods, which is able to uncover most [104] if not all
canonical data patterns [56]. Unfortunately, temporal constraints did not
allow us to explore these options.

Finally, since attributed embedding algorithms mainly use text based or
categorical attributes, we opted to explore the novel numerical attribute em-
beddings and visualizations. Again since, edge attributes are fundamentally
different we did not consider embedding these.

8.3 Future Work

The work in this paper suggests many new research directions. These direc-
tions range from adaptation to a more unified platform for the framework
(with usability research) to optimization and discovery of new patterns.
However, we argue the most important new research direction is the devel-
opment of a new metric for assessing the quality of the visualization. In
this research, the largest issue we faced was the inability to quickly deter-
mine what visualization was preferred. Therefore, this metric should take
into consideration all canonical data patterns, and, eventually could even
be integrated into the framework as a determining score to select the best
visualization. Furthermore, we suggest experimentation with larger graphs,
different embedding algorithms and different seriation algorithms. Note that
in the matrices in this paper the top triangle and bottom triangle are iden-
tical, and either the top or bottom triangle could be used to explain node
properties or any other relationship between nodes. And finally, future
research could implement embedding edge properties in the algorithms, an-
alyze new graphs for discovery of new patterns, and suggests comparative
studies against node link diagrams.
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9 Conclusion

This thesis tested the feasibility of using graph neural networks for project-
ing a complex graph in a matrix visualization. The methodology of Harel
& Koren [14] effectively inspired the usage of graph embeddings for graph
visualization. Nevertheless, to the best of our knowledge, this methodology
has not been applied for matrix visualization while they offer benefits in
size, and high level understanding when compared to node-link diagrams.
This thesis introduced an adaptive framework for graph embeddings and
visualization. The graph embedding stage uses existing graph embedding
algorithms, and is fed as an input to the visualization stage. By analyzing
the occurrence of canonical data patterns in generated graphs, this thesis
has shown the viability of pattern-based understanding of graph matrix vi-
sualizations. By allowing the cells of 2D matrix numerical values instead
of binary only, several new multi-scale patterns arose in the experiments.
Included are the shaded block pattern, the fishbone pattern and the stair
pattern. Numeric multivariate graphs can be embedded with two new al-
gorithms named featPMI and featWalk. These algorithms, in combination
with separate visualizations of structure, features and a selective combina-
tion of the two, showed great promise in accurately visualizing a graph in
a 2D matrix. To account for comparison of visualizations, we introduced a
matrix visualization tool for users to edit, compare and combine different
visualizations. Thereafter, experiments showed that the underlying data is
the biggest determinant of retrieving good visualizations, with optimization
as a close second. Additionally, we introduced two new metrics to quan-
tify the goodness of a matrix visualization. These metrics are inoperable
for weighted and multivariate datasets and they perform worse for larger
datasets. Therefore, we stress the need for new metrics to select good visu-
alizations. Future research could additionally focus on including edge prop-
erties in the embedding, and applying the framework to dynamic graphs.
To visualize a complex graph in a matrix, we propose to split the graph into
structure, feature and combined embeddings. On these splits an embedding
algorithm computes embeddings of n dimensions to preserve proximity. Af-
terwards, these dimensions are reduced to 2 with a dimensionality reduction
technique. Subsequently, we apply TSP to generate a good ordering, and
visualize the result for analytical interpretation. As a result we found that
Graph Neural Networks are a viable option for visualizing a multidimen-
sional graph. The latent space preserves proximity and features in the data
that we can visualize, and recognize in a TSP reordered 2D matrix.
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A Overview of Framework

Figure 43: Embedding phase with a barbell graph as input and n dimen-
sional embeddings from GNNs shown afterwards. Note that red, black and
gold nodes represent different roles in the graph. The output is fed as input
to figure 44
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Figure 44: Visualization phase with a vector space representation on top,
and the same data in matrix representation below. An unordered represen-
tation is shown on the left, and after ordering an ordered version on the
right
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B Algorithmic settings

The algorithmic dimensions for Laplacian Eigenmaps, Locally Linear em-
bedding are 2. HOPE was used with a dimension of 4 and a β of 0.01.
SDNE has he following parameters in this experiment: β : 2, α : 0.2, µ1 :
1e− 3, µ2 : 1e− 3,K : 2, n units : [20, 10], n iter : 20, ζ : 1e− 2, n batch : 15.
And finally, the random walk algorithms had the parameters listed in table
11.

DeepWalk node2vec Walklets struc2vec attention
Walk

dim 10 10 10 10 10

walk number 20 20 20 20 80

walk length 80 80 80 80 -

window size 5 5 5 5 5

p 1 2 - - -

q 1 0.25 - - -

epochs - - 10 - 100

learning rate - - 0.05 - 0.01

γ - - - - 0.5

Table 11: Random Walk Algorithmic parameters
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C Extra Visualizations

DeepWalk & Walklets: (Un-)Weighted NS

Figure 45: Structure visualization

DeepWalk: Pokec-100

Figure 46: Structure visualization
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FeatPMI: Pokec-100

Figure 47: All visualizations
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FeatWalk: Pokec-100

Figure 48: All visualizations
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DeepWalk: Pokec-5000

Figure 49: Structure visualization
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FeatPMI: Pokec-5000

Figure 50: All visualizations
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FeatWalk: Pokec-5000

Figure 51: All visualizations
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D VQM tables Pokec

DeepWalk & Walklets: (Un-)Weighted NS

Figure 52: Visual quality metrics
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FeatPMI: Pokec-100

Figure 53: Visual quality metrics
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FeatWalk: Pokec-100

Figure 54: Visual quality metrics
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FeatPMI: Pokec-1000

Figure 55: Visual quality metrics
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FeatWalk: Pokec-1000

Figure 56: Visual quality metrics

105



FeatPMI: Pokec-5000

Figure 57: Visual quality metrics

FeatWalk: Pokec-5000

Figure 58: Visual quality metrics
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