
Master’s Thesis

Community Detection in Historical Data Using
Knowledge Graphs

Author:
Iman Hashemi (5707617)
iman_hashemi@live.nl
ICA-5707617

Daily Supervisor:
J. (Jurian) Baas MSc

j.baas@uu.nl

Primary Supervisor:
Dr. A.J. (Ad) Feelders

a.j.feelders@uu.nl

Second Supervisor:
Prof. dr. M.M. (Mehdi) Dastani

m.m.dastani@uu.nl

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science in Computing Science

Department of Information and Computing Science
May 30, 2022

Abstract

In the field of Digital Humanities, knowledge graphs are used to store and model archival
data. For instance, the ECARTICO dataset describes actors involved in the cultural
industries of the Low Countries and the STCN dataset describes published books and
their authors and printers. This data opens up the possibility of performing community
detection on parts of these (combined) datasets. For instance, a combination of parts
of the STCN and ECARTICO knowledge graphs could reveal networks of people who
worked together through shared acquaintances, such as printers and publishers. The
goal of this research project is to performs static and dynamic community detection on
these (combined) datasets, in order to find interesting clusters and follow their evolution
through time. To do this, community detection algorithms designed for Heterogeneous
Information Networks are analysed, the historical data is converted and the algorithms
are applied to the data. Internal evaluation measures indicate that our method finds
structure in the data and that, according to domain experts’ evaluation, the results are
valid.

Contents

1 Introduction 5
1.1 Research Questions . 6

2 Preliminaries 8
2.1 Knowledge Graphs . 8
2.2 Heterogeneous Information Networks 8
2.3 Dynamic Graphs . 10
2.4 Communities . 10

3 Community Detection Methods 11
3.1 Community Detection on HINs . 11

3.1.1 PathSelClus . 11
3.1.2 Multiple clusterings . 12
3.1.3 Spectral clustering . 12
3.1.4 Joint graph embedding and nonnegative matrix factorization . . 12
3.1.5 Attributed HINs . 13
3.1.6 Transforming to homogeneous graphs 13

3.2 Community Detection on Homogeneous Graphs 13
3.2.1 Modularity-based community detection 14
3.2.2 Overlapping community detection 15
3.2.3 Hierarchical clustering . 16

3.3 Dynamic Community Detection Methods 16
3.3.1 Community instability . 17
3.3.2 Instant-Optimal CD . 18
3.3.3 Temporal Trade-Off CD . 19
3.3.4 Cross-Time CD . 20

4 Methods 22
4.1 KG to HIN . 22

4.1.1 Network schema . 23
4.2 Meta-paths . 23
4.3 HIN to HG . 24
4.4 Static Community Detection on HG . 26

4.4.1 Static CD algorithms . 26
4.5 Transforming a Static Graph to a Dynamic Graph 28

4.5.1 Creating snapshot graphs . 30
4.6 Community Detection on Dynamic Graphs 32

2

Utrecht University

4.6.1 Algorithm overview . 32
4.6.2 Community events . 33
4.6.3 Matching rules . 33
4.6.4 DC timeline . 35
4.6.5 Choosing the right static CD algorithm 36
4.6.6 Determining interval size and shift 40
4.6.7 Determining θ . 44

4.7 Generating Descriptions . 46
4.7.1 Missing data . 46
4.7.2 Method . 47

4.8 Formatting results . 47
4.8.1 Static CD . 47
4.8.2 Dynamic CD . 48

5 Evaluation 50
5.1 Internal Evaluation . 50

5.1.1 Static CD . 50
5.1.2 Dynamic CD . 51

5.2 External Evaluation . 51
5.2.1 Community structure . 52
5.2.2 Community evolution . 53
5.2.3 Community descriptions . 53
5.2.4 General remarks . 53
5.2.5 Suggested improvements . 54

6 Conclusion 56
6.1 Future Work . 57

6.1.1 Refining community descriptions 57
6.1.2 Adding community metadata 57
6.1.3 Timeline characteristics . 57

A Questionnaire 62
A.1 Search by dynamic community ID . 62

A.1.1 Community structure . 62
A.1.2 Evolution of communities . 63
A.1.3 Description . 63

A.2 Search by name . 63
A.2.1 Centrality . 63
A.2.2 Evolution of community membership 63

A.3 General . 64

3 Iman Hashemi

Acknowledgements

I would like to express my gratitude to my daily supervisor, Jurian Baas, and my
primary supervisor, Ad Feelders, who have helped and guided me throughout this
research project. I would also like to thank the Golden Agents project and the Processes
of Creativity group for the the insightful input and productive discussions we had, which
helped form this research. Special thanks to Leon van Wissen, Harm Nijboer and Judith
Brouwer, who helped with the evaluation and were available for any questions I had.

4

Chapter 1

Introduction

To understand state building, we have argued, one needs to penetrate
beneath the veneer of formal institutions and apparently clear goals, down
to the relational substratum of people’s actual lives. Studying "social
embeddedness," we claim, means not the denial of agency, or even groups,
but rather an appreciation for the localized, ambiguous, and contradictory
character of these lives. Heterogeneity of localized actions, networks, and
identities explains both why aggregation is predictable only in hindsight
and how political power is born.

John F. Padgett
Christopher K. Ansell

Robust Action and the Rise of the Medici, 1400-1434

As social networks have emerged and grown substantially in the past few decades,
think of networks such as the Facebook network, the need for methods that extract
meaningful information from these networks has been growing. One of these methods
is community detection, which is the pursuit of finding clusters of nodes in networks. In
the field of Digital Humanities, this emerging research field is used to analyse digitized
historical data. In [Padgett and Ansell, 1993], the rise of the Medici family was studied
by analysing clusters and applying blockmodeling techniques [Lee and Wilkinson, 2019].
In this research, the authors used these techniques to understand the ascent of the
political dynasty under Cosimo de’ Medici, with which they found that the network
around Cosimo and the heterogeneity of it played an important role in this process.

The Golden Agents project studies the rise of the creative industries in the Dutch
golden age, by “developing a sustainable research infrastructure to study relations and
interactions between producers and consumers of creative goods across the long Golden
Age of the Dutch Republic (ca. 1580 – ca. 1750)” [Gol, 2021]. Processes of Creativity,
a case study of the project, focuses on measuring innovation in book culture in the
Dutch golden ages, based on an observation of a ’rise’ of the illustrated book in the
second half of the 17th century and the beginning of the 18th century. The goal of this
research is to assist the Processes of Creativity case study in this pursuit, by analysing
the available data concerning this industry in this time period and applying community
detection to the data.

5

Utrecht University

The data that is to be analysed is archival data stored as Knowledge Graphs (KGs).
More precisely, it is a conglomeration of multiple KGs, namely the following:

• Short Title Catalogue of the Netherlands (STCN): The STCN contains
bibliographic information on books produced in the Netherlands up to the year
1800.

• Rijksmuseum Library (RM): The Rijksmuseum Library contains similar in-
formation as the STCN, but it contains more information about the entities that
were involved in the creation of a book.

• ECARTICO: ECARTICO also contains bibliographic data on many kinds of
actors involved in the cultural industries in the Netherlands, such as engravers
and book sellers.

There are links between these KGs, which means that they can be combined to perform
a more interesting analysis. For example, The Rijksmuseum Library contains extra
information about the authors of a certain book, information that may not be present
in STCN. As some books in the Rijksmuseum Library can be also be found in the
STCN dataset, and these can be identified through their Universal Resource Identifiers
(URIs), this extra information can be queried and added to a new KG. The KG is
then a combination of the STCN and Rijksmuseum Library datasets, containing all the
books in the Rijksmuseum Library that are also present in the STCN KG, as well as
the extra information the Rijksmuseum Library has to offer on the actors involved in
the creation of these books.

Finding communities in this data can produce relevant information for domain ex-
perts, such as historians. For example, it may be interesting to find communities of
authors that worked together closely. One could also find communities of authors based
on shared acquaintances, such as publishers. This could produce insights that are not
immediately obvious from a cursory look at the data. Furthermore, it might also be
beneficial to analyse these communities. For instance, one can question why a group of
authors is part of a community. Is it based on the genre of the books they authored? Or
is it mainly based on the time period they worked in? Finally, one could track the evo-
lution of these communities through time, which may help the analysis of developments
in the industry.

1.1 Research Questions
The main goal of this research project is to develop a method of applying community
detection to the the historical data, which is represented by a collection of KGs. The
communities that are found have to be useful to domain experts, mainly historians in
this case, in analysing the data and finding new interesting patterns in it. Therefore,
we formulate the following research question:

Research Question 1. Is it possible to find interesting clusters in historical data by
performing community detection on KGs?

6 Iman Hashemi

Utrecht University

To address this issue, we must make choices on how to represent the data in order
to apply community detection to it, and determine what algorithms perform best on
the data.

Furthermore, we are interested in the evolution of communities through time, due
to the important temporal aspect of the data. Thus, the second question this research
attempts to answer is:

Research Question 2. Is it possible to track the evolution of communities in the
network through time?

These questions quickly produce the following questions: what is an ’interesting’
cluster? How can this be validated? Validating results is a well-known issue in the
field of unsupervised learning. Of course, certain measures, like modularity (see 3.2.1),
can be used to indicate that the data does contain different clusters. This, however,
is not enough. Validation using domain experts’ opinion is very much needed in this
case. More specifics about the validation of the results are given in chapter 5, but in
the pursuit of helping domain experts as much as possible with their evaluation, the
following question arises:

Research Question 3. Is it possible to find descriptions of clusters based on node
attributes to support the interpretation and validation of the clusters?

A description could say, for example, that most of the people in a community worked
in Amsterdam, or that there is a certain common religion in a community.

7 Iman Hashemi

Chapter 2

Preliminaries

2.1 Knowledge Graphs
A Knowledge Graph (KG) is, in its core, a graph based model used to represent in-
formation. Although the term knowledge graph was first coined in [Schneider, 1973],
one of the first widely used KGs was WordNet [Miller, 1995], which is an open source
topic-specific KG that represents the semantic relationships between words. Google’s
Knowledge Graph [Goo, 2012], which was announced in 2012, was one of the first
widely used commercial KGs. The Google KG was and is still used to provide users
with structured information about their queries.

There is no real consensus on a definition of KGs. In [Hogan et al., 2021], KGs
are defined as follows: “a graph of data intended to accumulate and convey knowl-
edge of the real world, whose nodes represent entities of interest and whose edges
represent potentially different relations between these entities.”. In the Recource De-
scription Framework [RDF, 2014], knowledge is represented using triples in the form
(subject, predicate, object). These triples are also sometimes denoted as facts. A set
of these triples, linked together, can be seen as a KG. KGs can more formally be defined
as follows:

Definition 2.1.1 (KG). A knowledge graph is a multi-relational graph G = {E ,R},
where E is a set of entities, regarded as nodes, and R is a set of relations, regarded as
directed edges.

2.2 Heterogeneous Information Networks
A Heterogeneous Information Network (HIN) is a form of network that is structurally
very similar to a KG. HINs have a clear and concise definition and there is much research
on data mining in HINs, including on the problem of community detection. Because of
this, this research will use the HIN data structure as a basis, as it is possible to convert
a KG such that it adheres to the definition of a HIN. HINs, first introduced in [Sun
et al., 2009], are networks that consist of multiple types of nodes and multiple types of
edges, more formally defined as follows:

8

Utrecht University

Figure 2.1: A simple network schema.

Definition 2.2.1 (Heterogeneous Information Network). A Heterogeneous Information
Network is a directed graph G = (V,E) for which there exist two mapping functions
φ : V → A and ψ : E → R, which map nodes to object types and edges to link types
respectively. A is the set of object types and R is the set of link types, where |A| > 1
and |R| > 1. In other words, there are multiple types of nodes and multiple types of
edges. Each node v ∈ V belongs to one object type and each edge e ∈ E belongs to
one link type. Furthermore, any link type R ∈ R has one starting object type and one
ending object type.

In addition to that, for any relation R between starting object type S and ending
object type T , the inverse of R, R−1, holds for starting object type T and ending object
type S. R is equal to R−1 if S and T are equal, or in other words, if R is symmetric.
A HIN can now be described by a network schema, which is a meta template of the
network.

Definition 2.2.2 (Network Schema). A network schema, TG = (A, Ru) , is an undi-
rected graph where the nodes are object types from A and the edges represent the
combined relationship R∪R−1.

A network schema can quickly give an idea of the structure of the network. In figure
2.1, a simple network schema is shown for a network with object types Term, Venue,
Paper and Author. The link types are mentioned/mentionedBy by between Term and
Paper, write/writtenBy between Paper and Author, publish/publishedBy between Venue
and Paper and cite/citedBy between Paper and Paper.

According to the network schema, you can draw paths between two object types.
Such a path is called a meta-path.

Definition 2.2.3 (Meta-path). A meta-path P is a sequence of relations R ∈ R be-
tween objects A ∈ A.

In this case, a possible meta-path could be: Term
mentionedBy−−−−−−−→ Paper

writtenBy−−−−−−→
Author. If there exists only one relation type between any pair of objects in the HIN,
it suffices to only write the object types in a meta path. The same meta-path can then
be written as: Term→ Paper → Author.

9 Iman Hashemi

Utrecht University

2.3 Dynamic Graphs
As we are working with historical data, there is a temporal dimension in the data.
Dynamic graphs are used to model graphs with temporal dimensions. In [Michail,
2016], dynamic graphs are informally described as "graphs that change over time". A
dynamic graph can be modelled as a temporal graph, which is defined as follows:

Definition 2.3.1 (Temporal Graph). A temporal graph is a graph G = (V,E, T),
where V is a set of triplets in the form (v, ts, te), where v is a vertex and ts and te are
the birth and death timestamps of the corresponding vertex.

From this definition, it follows that any edge e ∈ E also has a birth and death
timestamp, namely the latest birth timestamp and the earliest death timestamp of the
two nodes it connects. A dynamic graph can also be modeled as a snapshot graph (SG),
which is defined as follows in [Rossetti and Cazabet, 2018]:

Definition 2.3.2 (Snapshot Graph). A snapshot graphGτ is an ordered set<G1, G2...Gt>,
where each snapshot Gi = (Vi, Ei) is identified by the sets of nodes Vi and edges Ei .

2.4 Communities
As our aim is to find communities in the networks, we must define the concept of a
’community’. In [Barabási, 2016], a community is defined as follows:

Definition 2.4.1 (Community). A community is a locally dense connected subgraph
in a network.

This is a very general definition. It states that a community is a component that is
connected, i.e, every node in the community can be reached from every other node in
the community. Furthermore, it states that a community is locally dense, meaning that
nodes have a higher probability of connecting to a node within the same community,
as opposed to connecting to a node from a different community. There are more strict
definitions of communities, a very strict one being the definition that was posed in [Luce
and Perry, 1949]. Here, a community was defined as a clique, meaning that there must
be an edge between every pair of nodes of the community. As one can imagine, this
definition may be too stringent.

When performing community detection in dynamic graphs, the goal is to find dynamic
communities. Dynamic communities are communities that can change over time, they
can grow, shrink, split and more. A static community can be represented simply by
a list of nodes that are part of the community. A dynamic community can then be
represented by a sequence of ’communities’, where each element of the sequence simply
records the state of the dynamic community at a certain time step.

10 Iman Hashemi

Chapter 3

Community Detection Methods

Community detection can be performed in various ways, using various network types.
There are methods that perform community detection directly on HINs. HINs can also
be converted to homogeneous graphs (HGs), for which there are a plethora of community
detection methods available. Furthermore, there are a multitude of algorithms for
finding dynamic communities. In this section, an overview of these methods will be
given.

3.1 Community Detection on HINs
Many solutions have been proposed to solve the problem of community detection in
HINs, varying from methods using generative statistical models to methods using spec-
tral clustering.

3.1.1 PathSelClus

In [Sun et al., 2013], clustering in HINs is done in a semi-supervised manner, using a
generative probability model. A distinction is made between target types and feature
types, where a target type is the type of the nodes that should be clustered and the
feature type is the type of the node at the end of a meta-path beginning from the target
type. The user provides the target type T , the number of clusters K and an object seed
Lk for each cluster, which can contain zero or more objects per seed. This object seed
will be used as user guidance. Finally, the user can also provide a set of M meta-paths
(starting from the target type T). The algorithm can also select meta-paths by itself,
in case the user does not provide any.

For each meta-path, an adjacency matrix is calculated by multiplying the adjacency
matrices of all neighbors in the meta-path. This means that for meta-path Pm = APA,
the adjacency matrix is calculated as follows: Wm = WAP ×WPA, where WAP denotes
the adjacency matrix for all nodes of type A and P . A set of weights for the meta-
paths is initialized, which will also be part of the output of algorithm, along with the
clustering assignment vectors. Now, a generative probabilistic model is created based
on the observed relationships in the HIN, the user guidance (the object seeds for each
cluster) and the meta-path weights. From this, an objective function is formed, which

11

Utrecht University

is then optimized in a two-step iterative process. In this process, first, the clustering
results are optimized, while fixing the meta-path weights, using an EM-algorithm. In
the second step, the meta-path weights are optimized, while fixing the clustering result,
using gradient descent. The output of the algorithm is a matrix of clustering results
and a set of meta-path weights. These meta-path weights can be interesting, as they
can provide information on what the importance of certain meta-paths is for the results.

3.1.2 Multiple clusterings

In [Wei et al., 2021], a different approach is taken. Here, multiple distinct clusterings are
generated based on multiple meta-paths and multiple values for the number of clusters.
The method employs a skip-gram like method for generating node embeddings and
clustering assignment vectors, simultaneously. The user has to provide a set of meta-
paths, a set of values for the number of clusters, and some additional hyper-parameters.
The algorithm optimizes an objective function that consists of three parts, namely a
node embedding vector for all nodes that are present in the meta-path instances, a
normalization function optimizing the diversity of different embeddings for the different
meta-paths and a soft clustering assignment part that minimizes the cross-entropy of
the assignment vectors for the nodes.

The node embedding is done using an approach similar to node2vec [Grover and
Leskovec, 2016], called metapath2vec [Dong et al., 2017]. Here, a random walk approach
is used to construct the neighbourhood of a node, and using negative sampling, the
probability of that neighbourhood given the node and the parameters of the model is
maximized. Negative sampling is used to improve performance. Instead of using all
other nodes to maximize the probability of the neighbour nodes given the target node,
negative sampling randomly samples a set of nodes for this computation.

3.1.3 Spectral clustering

In [Li et al., 2019], an approach based on spectral clustering is proposed and the SClump
algorithm is introduced. A similarity matrix is constructed using the PathSim similarity
measure introduced in [Sun et al., 2011], after which spectral clustering is applied to
this similarity matrix.

3.1.4 Joint graph embedding and nonnegative matrix factoriza-
tion

In [Zhang et al., 2021], Non-Negative Matrix Factorization (NMF) is used to perform
clustering, using the GEjNMF algorithm. First, the HIN is divided into a set of bipartite
networks, of which one type is the center type, which connects to other types in the
network. It is assumed that there is always a center type present to do this. These
bipartite networks are then embedded and NMF is performed on them, obtaining a
result for each bipartite network. These results are then combined to obtain a clustering
for the full HIN.

12 Iman Hashemi

Utrecht University

3.1.5 Attributed HINs

In [Li et al., 2017], a slightly adjusted format of a HIN is used, namely an Attributed
Heterogeneous Information Network (AHIN). In AHINs, every object has an attribute
vector. The SCHAIN algorithm is introduced, which uses these attribute vectors as
a measure of similarity between two objects. More precisely, SCHAIN composes a
similarity matrix S, which is derived from attribute vector similarity and meta-path
based connections in the graph. As the algorithm is semi-supervised, a loss function is
composed that takes into account the user input and optimizes clustering assignments,
along with weights for object attributes and meta-paths.

3.1.6 Transforming to homogeneous graphs

In [Liu et al., 2020], the NodeVecClus algorithm is introduced. First, this method
creates homogeneous graphs using meta-paths. Given a meta-path, where the feature
node and the target node have the same type, a homogeneous graph can be created
by creating an edge for all instances of the meta-path in the HIN. All nodes in this
homogeneous graph will have the target type and every edge will represent a meta-path
instance in the initial HIN between the nodes the edge connects. Given a set of meta-
paths, NodeVecClus first creates a homogeneous graph for each meta-path. Then, for
each graph, node2vec is used to create embedding vectors of the target nodes [Grover
and Leskovec, 2016]. A weight vector for each meta-path is initialized and using a loss
function based on the probability of observing structural neighbours given a meta-path,
the node embedding matrix and the weight vector are obtained. These results are then
used to perform spectral clustering.

In [Liu and Li, 2021], a similar approach is taken. The proposed algorithm, HINLP-
Clus, first creates a homogeneous graph for each meta-path. More practically, it creates
an adjacency matrix for each meta-path, in the same way that is done by the PathSel-
Clus algorithm described in section 3.1.1. Then, a weighted adjacency matrix is created
for the set of meta-paths by summing all adjacency matrices. In this manner, nodes
that are connected to each other through multiple meta-paths will have a larger edge
weight. Then, using this adjacency matrix for the weighted homogeneous graph, label
propagation is performed. Label propagation, a method introduced in [Raghavan et al.,
2007], is a community detection method for homogeneous graphs. First, it assigns every
node its own label. Then, each node broadcasts its label to its neighbours. Then, each
node chooses the label that is communicated to it most frequently. This process is then
iterated until the cluster labels in the network do not change anymore. In this case,
the graph is weighted, so the procedure is adjusted slightly to calculate the sum of the
edge weights for each label communicated to a node. The edge weight that is used is
the weight value of the edge through which a label is propagated. The label with the
highest total value is chosen for the next iteration.

3.2 Community Detection on Homogeneous Graphs
The algorithms discussed above can be roughly divided into two categories: methods
that perform community detection on the HIN data structure and methods that convert

13 Iman Hashemi

Utrecht University

the HIN to one or multiple homogeneous graphs, after which they perform a (possibly
slightly adjusted) community detection algorithm designed for homogeneous graphs. In
[Liu et al., 2020] and [Liu and Li, 2021], experiments were performed comparing the
NodeVecClus and HINLPClus algorithms to the SCHAIN and PathSelClus algorithms.
NodeVecClus and HINLPClus both first transform the HIN to one or multiple homoge-
neous graphs before performing community detection. In these experiments, the Rand
Index (RI) and the accuracy of the results were compared. In order to calculate these
measures, a ground truth was inferred from the data. The RI is a measure that mod-
els the similarity between two clusterings. Both NodeVecClus and HINLPClus seem to
outperform SCHAIN significantly. They also both performed comparatively or, in some
cases, better than PathSelClus in the experiments. The runtime of the algorithms was
also compared, from which it was apparent that both NodeVecClus and HINLPClus
perform much better in terms of runtime.

Certainly, more experiments need to be done to be able to draw conclusions. How-
ever, the fact that these experiments did show promising results for these, comparatively
simple, algorithms, is interesting. Converting a HIN to a homogeneous graph makes
it possible to use existing community detection algorithms that work on homogeneous
graphs. There are many existing and diverse possibilities here, including hierarchical
clustering and overlapping community detection. Now, three different forms of commu-
nity detection on homogeneous graphs will be explored: modularity-based community
detection, overlapping community detection and hierarchical community detection

3.2.1 Modularity-based community detection

Modularity has been widely used as an optimisation measure for finding community
structure [Girvan and Newman, 2002]. The modularity measure is based on the hypoth-
esis that a randomly connected graph does not have an inherent community structure.
This means that the distribution of the density of edges in a randomly connected graph
is expected to be uniform, while this distribution in a graph with inherent community
structure is expected to contain fluctuations where communities are present. Given a
network G and a set of communities C, the modularity of a community Cc in G is
defined as follows:

Mc =
1

2L

∑
(i,j)∈Cc

(Aij − pij) (3.1)

Here, L is the number of edges in G, A is the adjacency matrix for G and pij denotes
the expected number edges between i and j, if they were randomly connected. It is
important that the degree sequence, the degrees of all nodes in the network, is preserved
when calculating p. The degree of a node is the number of edges the node has. The
probability that node i connects to node j, given their respective degrees ki and kj, is
determined as follows:

pij =
kikj
2L

(3.2)

Now, the modularity for the whole network and a given set of communities can be
defined as follows, where Lc is the number of edges in community c, nc is the total

14 Iman Hashemi

Utrecht University

number of communities and kc is the sum of the degrees of all nodes in community c:

M =
nc∑
c=1

[
Lc

L
−
(
kc
2L

)2
]

(3.3)

This value represents the difference of the fraction of intra-community edges and inter-
community edges of a community partition with the expected number of such edges if
they were distributed randomly. A higher M means that there is a stronger community
structure present in the network. If M = 0, the network edges are randomly connected
and, according to the previously discussed hypothesis on the community structure of a
randomly connected graph, there is no community structure. M can also be negative.
This happens in the case that every node is assigned to its own community. In this
case, there are no intra-community edges in any community, so Lc is always 0, which
means that the equation will produce a negative value.

Modularity-based community detection algorithms are based on the hypothesis that
modularity is a measure of community structure in a network. Hence, they attempt to
maximize this value to find the optimal community structure, if it exists. Many algo-
rithms have been devised to use this measure for discovering communities in networks,
the first being the Greedy Modularity Optimisation algorithm [Clauset et al., 2004].
This algorithm first assigns every node to its own community. Then, it calculates the
difference in modularity, ∆M , for joining a pair of communities for each pair of commu-
nities that have an edge connecting them. The two communities that obtain the highest
∆M are joined. This process is repeated, registering the partitions and corresponding
modularity values along the way, until there is only one community left. The partition
with the highest modularity is returned.

In [Blondel et al., 2008], the Louvain algorithm is introduced. This is one of the
most widely used algorithms for modularity optimisation. Its method is similar to the
Greedy Modularity Optimisation algorithm, with a bigger focus on local changes. The
algorithm starts off similarly, assigning every node to its own community. Then, every
node is added to the the community of one of its neighbours, the one that yields the
highest modularity increase. If there is none, the node stays in its own community. After
all nodes have gone trough this process, all nodes belonging to the same community are
aggregated into one ’node’. The previous steps are then repeated until there is no more
modularity increase. The advantage of this method is that the number of nodes that
need to be processed decreases after each iteration, because all nodes of a community
are merged.

3.2.2 Overlapping community detection

So far, we have assumed that a node only belongs to a single community. However,
this is not a straightforward assumption to make. It is conceivable that a node may
belong to multiple communities. For example, a clustering can be based on the genre of
books that authors wrote. In this case, an author may have written many books in two
genres. This author can then be part of both communities. In the previous solution,
only one of those communities is chosen. Overlapping community detection, however,
finds communities that may or may not overlap.

15 Iman Hashemi

Utrecht University

In [Yang and Leskovec, 2013], the BigClam (Cluster Affiliation Model for Big Net-
works) algorithm is introduced. BigClam uses Maximum Likelihood Estimation (MLE)
to derive soft clustering assignment vectors. A matrix F is initialized, where each row
is a vector containing weight values for every possible community. More formally, for
node u, Fu contains a weight value for each community in the set of communities C.
To do this, the number of communities in the graph, k, has to be predetermined. This
is done using the method described in [Airoldi et al., 2008]. For a given k, the BigClam
model is fitted using 80% of the nodes in the network. Using the remaining 20% of the
network, the likelihood of the model is calculated. The value of k that results in the
highest likelihood is chosen. For very small networks, the Bayes Information Criterion
(BIC) is used to select a value for k. Then, for a pair of nodes (u, v), the probability of
an edge existing between them is modeled as follows:

p(u, v) = 1− exp(−FuF
T
v) (3.4)

Now, the probability of a given graph G(V, E) can modelled as follows:

p(G) =
∏

(u,v)∈E

p(u, v)
∏

(u,v)/∈E

1− p(u, v) (3.5)

From here, the following log-likelihood function can be constructed:

l(F) =
∑

(u,v)∈E

log(1− exp(−FuF
T
v))−

∑
(u,v)/∈E

FuF
T
v (3.6)

This log-likelihood function is maximized using gradient descent. Then, given the
resulting matrix F , a community membership threshold δ is determined. The value
of δ is determined such that the edge probability of two nodes belonging to the same
community is higher than the edge probability in a random graph. For weight vector
Fu of node u, every community that has a weight value that is higher than δ is assigned
to that node.

3.2.3 Hierarchical clustering

Clusters can also be present in the data on multiple ’levels’, or, in hierarchies. Hierar-
chical clustering attempts to find hierarchies of clusters. This can be done by using a
bottom-up approach, called agglomerative clustering, or in a top-down manner, which is
called divisive clustering. The Louvain algorithm can be regarded as a form of agglom-
erative hierarchical clustering, as it starts with communities of single nodes and then
merges these nodes, at every step returning a clustering result for that ’level’. Louvain
proceeds this process until the modularity value stops increasing, but if you also return
these intermediate steps, the Louvain algorithm can be used as a hierarchical clustering
method.

3.3 Dynamic Community Detection Methods
Dynamic Community Detection (dynamic CD) is the pursuit of finding the set of all
dynamic communities in a dynamic graph. Methods that perform dynamic CD can be

16 Iman Hashemi

Utrecht University

categorized based on the way the dynamic graphs they work on are modeled. A first
distinction can be made between dynamic CD algorithms using temporal graphs and
dynamic CD algorithms using snapshot graphs, as is done in [Rossetti and Cazabet,
2018]. As our data is more suitable for the use of snapshot graphs, we will be focusing
on algorithms using snapshot graphs. Furthermore, algorithms using temporal graphs
can be considered online dynamic CD algorithms, which is not our use-case.

A further distinction can be made between dynamic CD methods, dividing them into
three categories [Rossetti and Cazabet, 2018] [Greene et al., 2010]:

• Instant-Optimal CD : the class of Instant-Optimal CD algorithms encompasses
algorithms that perform community detection on snapshots and attempt to match
communities from these snapshots. The algorithms assume that a partition at
time t is solely dependent on the current state of the network, at time t.

• Temporal Trade-off CD : Temporal Trade-off CD algorithms assume that commu-
nities at time t are not only dependent on the current state of the network, but
also on the state of the network and/or partitions of the network at time steps
earlier than t. A trade-off is then made between the optimal solution at time t
and the influence of the past time steps.

• Cross-Time CD : the class of Cross-Time CD algorithms consider the whole time-
line, i.e. all snapshots, and create a single partition of the network. They do this
by first creating one graph out of all snapshots and them performing community
detection on that graph.

3.3.1 Community instability

When using stochastic static community detection (static CD) algorithms, it is obvious
that the solutions such an algorithm produces may vary significantly when applied
multiple times to the same graph. Furthermore, even when using deterministic static
CD algorithms, a small change in the graph can result in a significant change in the
resulting partition. This phenomenon, called community instability, may also be a
problem when trying to track the evolution of communities in a dynamic network.

Community instability can be explained in various ways. First, many algorithms,
such as the Louvain algorithm, are only guaranteed to find a local maximum for a
predetermined quality measure. The solutions that result from this may be close to the
global maximum in terms of the quality measure, but a small change in the network can
cause the algorithm to find a different local maximum, resulting in an entirely different
partition. Additionally, non-overlapping community detection methods assign every
node to only one community. As previously mentioned, it is reasonable to assume that
a node may belong to more than one community. In this case, if an algorithm does not
make this assumption, there can be many correct solutions in the search space, which
can cause the aforementioned instability.

17 Iman Hashemi

Utrecht University

Bootstrapping is one way to solve this problem. For example, one can perform
community detection multiple times on the same network. If the algorithm is not
stochastic, one can run it on multiple slightly adjusted versions of the network. It is
then possible to look for parts of the partition that are identical in most runs of the
algorithm, these can be seen as the ’stable’ parts.

Another possible way to smooth out the evolution of communities is to incorporate
it into the community detection algorithms. This is often done implicitly in Temporal
Trade-Off CD methods.

3.3.2 Instant-Optimal CD

In [Hopcroft et al., 2004], one of the first Instant-Optimal CD methods was intro-
duced. The authors used a centroid-based agglomorative hierarchical clustering method.
Similar to the Louvain algorithm, this method produces a tree of partitions. The pro-
posed method first performs this clustering algorithm on a set of graphs that have been
slightly modified (a small percentage of nodes have been randomly removed). It does
this in order to find "natural communities", which are communities that are not sus-
ceptible to community instability. Networks from two different intervals are partitioned
and the partition trees are compared, matching communities from the different intervals
with each other.

In [Greene et al., 2010], another Instant-Optimal CD method is proposed. At every
snapshot, a static CD algorithm is used to obtain a partition. Their method is not
dependent on a specific algorithm, but in their experiments, they use the Louvain
algorithm. A matching strategy is used that attempts to match communities in time
step t+1 with communities in time step t, by calculating the Jaccard similarity between
the communities. The Jaccard similarity measure represents the similarity between two
sets by dividing the size of the intersection of the sets by the size of their union. If
this value exceeds a certain threshold, the communities are considered to be part of
the same dynamic community. Matches and splits are also recorded, by looking at the
number of communities that a certain community is matched to.

In [Palla et al., 2007], a very similar approach is taken. They use the Clique Percola-
tion Method (CPM) [Derényi et al., 2005] to perform overlapping community detection
at each time step. Then, Jaccard similarity is used as a measure to match communities
in different time steps. They produce some interesting insights from their analysis, the
first one being that large communities change at a higher rate than small communities.
Furthermore, they asses that, for small communities to ’survive’ (have a long lifespan),
it is optimal to remain static over time. In contrast, for large communities, it seems to
be optimal to be more dynamic over time.

[İlhan and Öğüdücü, 2015] takes a different approach. They start similarly to the
previously discussed methods, by creating a snapshot graph and performing a static CD
method on the snapshots, in this case Louvain. Then, a similarity measure is used to
compare and match communities in different time steps. However, this is only done for a
subset of snapshots. For a given time window, a set of community features is calculated,

18 Iman Hashemi

Utrecht University

such as the number of nodes in the community and the ratio of the sum of the degrees
of the nodes in the community to the total number of nodes in the community. Then,
they build a model to be able to predict these features in subsequent time steps. The
features of this model are the community features and the labels are the community
events that take place. This model is then used to predict the community events of a
partition for subsequent time steps.

A different way to approach the matching process is to identify core nodes for com-
munities and use these for matching communities, instead of using a similarity measure.
These core nodes can be selected based on a centrality measure, for example. This is
done in [Wang et al., 2008], where a centrality measure is used to select core nodes.
Matching rules are defined based on the mutual presence of these core nodes in com-
munities in different time steps.

[Chen et al., 2010] introduces a similar approach, where the core nodes are called
community representatives. A community representative of a community is the node
that has the minimum number of appearances in other communities in the graph. This
definition relies on the assumption that is made that nodes can belong to multiple
communities in a single time step. Again, matching rules are used that are partially
based on the appearance of these community representatives.

3.3.3 Temporal Trade-Off CD

In [Aynaud and Guillaume, 2010], a slightly adapted version of the Louvain algorithm
is used, in order to tackle the community instability problem. Instead of initializing the
algorithm such that each node is its own community, the resulting partition from the
last time step is used as the initial partition for the algorithm. Intuitively, this steers
the algorithm in the direction of the local maximum it found in the previous times step,
increasing the stability of the results.

In [Alvari et al., 2014], the dynamic CD problem is approached from an entirely dif-
ferent perspective. Instead of globally optimizing a performance measure, the problem
is approached from a game theory perspective. Each node is seen as an agent that con-
tinuously tries to maximize its own utility. In each snapshot, agents iteratively have the
opportunity to perform actions, such as becoming a member of a different community.
They do this by using a utility function and choosing the action that maximizes this
utility value. The utility function uses similarity values between pairs of vertices. An
agents community membership from the last snapshot is also taken into account.

In this manner, a Nash equilibrium will be reached at some point in each snapshot.
The actions agents take with regards to their community membership constitute the
results of the dynamic CD.

As was previously stated, dynamic CD can also be done in an online manner. In
[Rossetti et al., 2017], such an online method is introduced, the TILES algorithm.
Starting with an empty graph, network events, such as the addition of nodes or edges,
are streamed to the algorithm. Then, based on a set of rules, the partitioning of the

19 Iman Hashemi

Utrecht University

graph is updated. The algorithm makes a distinction between core nodes and peripheral
nodes. Peripheral nodes are not allowed to propagate their community membership to
nodes they interact with, while core nodes do have that ability. After a predetermined
interval, the algorithm returns a partition. After doing this for the lifetime of the graph,
community events can be observed.

In [Folino and Pizzuti, 2010], the authors attempt to smooth out the evolution of
communities by incorporating the stability of the communities into the quality function.
More precisely, the quality function incorporates Snapshot Costs (SC) and Temporal
Costs (TC) and is defined as follows:

α× SC + (1− α)× TC (3.7)

where α is a weight value, determining the importance of either cost values. SC mea-
sures the presence of community structure at a certain time step, while TC measures
the similarity of the partition to the partition of the previous time step. In this case, a
measure introduced in [Pizzuti, 2008] called community score was used as the SC and
Normalized Mutual Information (NMI) was used as the TC.

In [Wang et al., 2018], the topology potential field is used to find community structure.
The topology potential field is based on the interaction between nodes. Each node has
a potential field around it and the potential fields of all nodes create the topology
potential field. It has previously been used to identify essential proteins in protein
interaction networks [Li et al., 2014].

The authors construct a static overlapping community detection algorithm using
the topology potential field, after which a rule based approach is taken, where rules
are determined based on the topology potential field. Community membership and
community events are then determined by these rules.

The DynaMo algorithm, introduced in [Zhuang et al., 2019], maximizes modularity
in order to find dynamic communities, but does it in an incremental way. In the first
snapshot, the standard Louvain algorithm is performed in order to find a partition.
Then, for all network events, such as node additions and edge deletions, the partition is
updated in order to maximize modularity. After a while, if modularity does not exceed
a certain threshold, the Louvain algorithm is applied again, to prevent the algorithm
from getting stuck in a local maximum.

3.3.4 Cross-Time CD

In [Aynaud and Guillaume, 2011], a sum graph is created from the snapshot graph. This
sum graph is the union of all snapshots, where the weight of each edge is the total time
that edge has existed in the dynamic graph. This results in a weighted static network.
The Louvain algorithm is then applied to this graph and the resulting communities are
regarded as dynamic communities. The downside of this method is that it does not
record community events, such as merges or splits. Additionally, this method assumes
that nodes cannot switch their community membership.

20 Iman Hashemi

Utrecht University

Likewise, in [Jdidia et al., 2007], a static graph is created using the snapshot graph.
However, this is done in a different way. Two types of edges are added between nodes:
identity edges and transversal edges. An identity edge is added between nodes if the
same node is present in subsequent time steps. A transversal edge is added between
node u in time step t and node v in time step t + 1, if there exists a node w that is
connected to v in time step t and is connected to u in time step t + 1. The Walktrap
algorithm is then applied to this static network, resulting in dynamic communities [Pons
and Latapy, 2005].

21 Iman Hashemi

Chapter 4

Methods

In this section, the methods we employ in order tot analyse the data will be described.
First, some data transformations are done. Then, two methods of community detection
are applied, namely static community detection and dynamic community detection.
Finally, some simple descriptions of the resulting communities are generated.

4.1 KG to HIN
As was discussed in section 2.2, KGs are quite similar to HINs. Our method revolves
around converting the HIN into a homogeneous graph, based on meta-paths. Because
of this, the KG does not have to perfectly adhere to the definition of a HIN. The KG
is constructed in a way, such that the meta-path based conversion to a homogeneous
graph can be easily executed.

This is done as follows. First, we have to construct a KG that is a conglomeration
of multiple datasets, including, for example, the STCN and the Rijksmuseum Library
datasets. This is done in a manner as to construct a simple network schema that satisfies
the constraint that an edge type can only exist between two particular object types and
that every object only has one type. In a KG, this means that every predicate only
exists between two particular object types. The network schema of this KG remains
simple, only containing that which will be needed for the conversion to a homogeneous
graph. More precisely, it contains all object types and predicates that may be a part
of the meta-paths that will be used for the conversion. The type predicate will not
be regarded as an edge, but simply as the declaration of the type of the node. Every
object in this simple schema only has one type.

Figure 4.1: Network schema.

22

Utrecht University

4.1.1 Network schema

The KG that is created has a simple schema (see figure 4.1). There are three types of
objects: Person, Book and PublicationEvent. A Person can be an author, a contributor,
an illustrator or a publisher (defined by the publishedBy relation). This is a simple
schema that adheres to the definition of a HIN and contains only the necessary data
to construct the meta-paths we need for community detection. It can also be easily
expanded in the future, if it becomes apparent that more/other information is needed.

Apart from this subset of the data, organized in a KG with a simple schema, there
is much more data available to us. This is stored separately and can be accessed
by querying this dataset using URIs from objects in the constructed KG. This extra
information, such as book titles and author names, can be seen as attributes, which
would make the combination of the datasets similar to an AHIN, such as is used in [Li
et al., 2017].

4.2 Meta-paths
From this simple schema, multiple interesting meta-paths can be defined. In this
schema, the role of a Person regarding a Book is defined in the relation it has with
Book. As there are multiple possible types of edges between Book and Person, it
is necessary to define these relations in the meta-path if we want to distinguish be-
tween them. Furthermore, we assume that there exists an inverse relation for all edge
types (or predicates). In reality, this is not the case and this results in having to
define multiple separate paths in order to define one meta-path. However, by using
this assumption, defining a meta-path based on co-authorship can be done as follows:
Person

author−−−−→ Book
author−−−−→ Person. This notation can be further simplified by writing

the role of Person as if it is a direct subtype of Person. The same meta-path can then
be written as follows: Author −Book − Author.

Now, the following meta-paths can be defined for this network schema:

• Co-author: Author −Book − Author

• Co-contributor: Contributor −Book − Contributor

• Co-illustrator: Illustrator −Book − Illustrator

• Co-publisher:Publisher −Book − Publisher
It is also possible to define a meta-path with which we do not distinguish be-

tween possible relations a Person can have with a Book. This meta-path would be
Person

author/contributor/illustrator/publisher−−−−−−−−−−−−−−−−−−−−−−−→ Book
author/contributor/illustrator/publisher−−−−−−−−−−−−−−−−−−−−−−−→ Person.

We can also write this more simply as:

• Co-acip: Person−Book − Person

Moreover, any combination of roles could be used to construct such a meta-path.
However, using an arbitrary combination of roles could hurt the interpretability of the
results.

23 Iman Hashemi

Utrecht University

Co-author Co-illustrator Co-contributor Co-publisher Co-acip
Meta-path instances 0 700 326 20246 28589
Nodes 0 231 286 1163 2876
Edges 0 558 271 15432 21646
LCC (nodes) 0 188 12 881 2519
LCC (edges) 0 512 14 15201 21333

Table 4.1: Properties of the homogeneous graphs. (LCC: Largest Connected Compo-
nent)

Figure 4.2: Co-illustrator network.

4.3 HIN to HG
Using these meta-paths, homogeneous graphs are created. This is done in the manner
as described in section 3.1.6. We create weighted graphs, where the weights of the
edges correspond to the number of instances of a meta-path between two nodes. In this
case, this means that if two Person nodes have cooperated on multiple books, the edge
between them in the homogeneous graph has a higher weight.

Figure 4.2 contains a visualisation of the homogeneous graph constructed with the
Illustrator − Book − Illustrator meta-path. Table 4.1 presents an overview of some
properties of the networks that were created. One of the properties listed here is the
Largest Connected Component (LCC). At first glance, the LCCs for all three networks
seem fairly small. The co-contributor network has a very small LCC, it consists of only

24 Iman Hashemi

Utrecht University

Figure 4.3: Degree histograms for the co-illustrator, co-acip and co-acip networks.

12 nodes, while there are 286 nodes in the co-contributor network. This is a ratio of
4.2%, which indicates that the network is a collection of small components, of which
the size does not exceed 5% of the size of the network. Because of this, we will not
be considering this network further. The co-publisher network is the second largest
network that was constructed. It also has a large LCC, consisting of 881 nodes, which
is 76% of the nodes of the full network. A visualization of the LCC of the co-publisher
network can be seen in figure 4.4. The co-author network does not return any meta-
path instances. This is because, in the dataset that authors are retrieved from, the
STCN, only one author is connected to a book at all times. Because of this, we have
to use a meta-path using combinations of roles to investigate author relations. The
co-acip meta-path will be used for this purpose, which is the largest network that was
constructed.

This leaves us with three HGs that we will be analysing and performing static and
dynamic CD on, namely the co-illustrator HG, the co-publisher HG and the co-acip
HG.

Figure 4.3 displays the degree histograms for the three constructed networks. In
principle, these are social networks. As you would expect from social networks, the
degree sequences of the networks seem to follow a power law, where there are a large
number of nodes with a small degree and a small number of nodes with a very large
degree. These nodes with high degrees are also called hubs.

25 Iman Hashemi

Utrecht University

Figure 4.4: LCC of the co-publisher network.

4.4 Static Community Detection on HG
Now, in the pursuit of answering research question 1, static community detection can be
performed on these resulting HGs. Multiple static community detection algorithms were
tested and some internal evaluation measures were calculated, in order to determine
which one performs best on our dataset.

4.4.1 Static CD algorithms

The following algorithms were used:

• The Louvain algorithm: See section 3.2.1. As the HGs we create are weighted
graphs, a slight variation of modularity is used. When calculating the sum of
edges in a graph or a group of nodes, or when determining the degree of a node,
instead of simply counting the number of edges, the sum of their weights is taken.

• Label Propagation (LP): See section 3.1.6.

• Walktrap: Walktrap is an algorithm that uses random walks to calculate dis-
tances between nodes. The idea behind the approach is that distances between
nodes in the same community are smaller than distances between nodes from
different communities [Pons and Latapy, 2005].

26 Iman Hashemi

Utrecht University

• Infomap: Infomap is also an approach that it based on random walks. Infomap
measures information flow between nodes using random walks and uses this to
partition the network [Rosvall and Bergstrom, 2008].

The algorithms were evaluated using the following internal evaluation measures:

• Modularity: See section 3.2.1.

• Z-Modularity: Z-Modularity is a variation of modularity that takes the statis-
tical rarity of a partition into account by measuring the Z-score of the partition
[Miyauchi and Kawase, 2016]. One of the main advantages of this variant of mod-
ularity is that it attempts to mitigate the resolution limit problem [Fortunato
and Barthelemy, 2007]. The resolution limit is a limitation of modularity that
may cause it to fail to identify small communities, depending on the size of the
network.

• Average Embeddedness: The embeddedness e(n, c) of a node n belonging to
community c is the ratio of the degree of n within community c and the overall
degree of node n. That is:

e(n, c) =
kn,c
kn

(4.1)

where kn,c is the degree of node n in community c and kn is the overall degree of
node n. The average embeddedness is calculated by taking the sum of the em-
beddedness for all communities and all nodes and normalising it by the number
of communities. If this value is 1, then all communities are simply disjoint sets
of nodes and the clustering results will not be interesting, because you would not
need any community detection to find these sets of nodes. The average embed-
dedness tells us something about the structure of the network and by doing that,
it helps with interpreting clustering results.

• Conductance: The conductance of a community within a graph is the ratio of
external edges of the community with regards to the total number of internal
edges of the community. It is defined as follows:

f(c) =
eout,c

2× ec + eout,c
(4.2)

where eout,c is the total number of external edges of community c and ec is the
total number of internal edges of community c. The conductance of a partition
can then be calculated by taking the mean of the conductance for all communities
in the partition.

• Cut Ratio: The cut ratio of a community measures the ratio of the number
of external edges of the community with regards to the total number of possi-
ble external edges. The total number of possible external edges is calculated as
follows:

sumout(G, c) = nc × (nG − nc) (4.3)

27 Iman Hashemi

Utrecht University

where nc is the number of nodes of community c and nG is the number of nodes in
the graph. Then, the cut ratio of a community c in graph G is defined as follows:

cr(G, c) =
eout,c

sumout(G, c)
(4.4)

Again, to calculate the cut ratio of a partition, the mean of the cut ratio for all
communities in the partition is taken.

Tables 4.2, 4.3 and 4.4 display the results of the experiments for the co-illustrator,
co-publisher, and co-acip networks, respectively. The algorithms were applied to the
full networks and to the LCCs of the networks. For the co-illustrator network, the
Louvain algorithm outperforms the other algorithms in terms of modularity, for the full
network and the LCC. This was expected however, because Louvain tries to maximize
modularity. For Z-Modularity, LP performs best for both versions of the network, with
Louvain being a close second. Looking at average embeddedness, conductance, and cut
Ratio, the Infomap algorithm outperforms the other algorithms, performing quite well
in conductance.

When looking at the co-publisher network, the results are similar. However, the
Louvain algorithm outperforms LP in Z-Modularity. The Infomap algorithm performs
significantly worse on this network, both on the full network and the LCC, achieving
modularity scores of 0.048 and 0.018, respectively. The Z-Modularity scores are also
significantly lower, being 0.208 and 0.111 for the full network and the LCC, respectively.
The co-acip network is the largest network of the three. The results for this network
are very similar to the results for the co-publisher network.

As it is difficult to define what makes a partitioning ’correct’, we will choose an
algorithm that performs well for a set of evaluation measures. Considering these results,
the Louvain algorithm seems the right choice for static CD on the HGs. It performs
significantly better regarding modularity, and is a close runner up for almost all other
evaluation measures we looked at.

4.5 Transforming a Static Graph to a Dynamic Graph
To address research question 2, dynamic community detection must be performed. In
order to perform dynamic community detection, we need to transform the static graph
to a dynamic graph. As was explained in section 2.3, there are two ways to model
a DG, namely as a temporal graph or as a snapshot graph. A temporal graph is
created using birth and death timestamps of nodes in a graph. A snapshot graph can
be created using specific timestamps of nodes or edges. Our method is focused on
revealing more information about the collaboration networks in the data. Because of
this, using timestamps of the edges, which represent books that nodes collaborated on,
is a better approach from an analytical standpoint.

28 Iman Hashemi

Utrecht University

Louvain Infomap Walktrap LP

Full Network # of Communities 23 17 31 37
Modularity 0.714 0.549 0.682 0.666
Z-Modularity 2.019 1.103 1.792 2.060
Avg. Embeddedness 0.958 0.988 0.956 0.856
Conductance 0.066 0.003 0.132 0.202
Cut Ratio 0.002 0.000 0.002 0.003

LCC # of Communities 8 2 15 21
Modularity 0.683 0.478 0.646 0.632
Z-Modularity 1.786 0.928 1.579 1.810
Avg. Embeddedness 0.881 0.981 0.829 0.764
Conductance 0.188 0.026 0.242 0.333
Cut Ratio 0.006 0.002 0.004 0.007

Table 4.2: Evaluation measures of static community detection algorithms for the co-
illustrator network.

Louvain Infomap Walktrap LP

Full Network # of Communities 116 103 314 162
Modularity 0.550 0.048 0.486 0.226
Z-Modularity 1.289 0.208 0.9732 0.507
Avg. Embeddedness 0.982 1.000 0.425 0.895
Conductance 0.023 0.000 0.584 0.127
Cut Ratio 0.001 0.000 0.001 0.003

LCC # of Communities 15 3 206 54
Modularity 0.539 0.018 0.477 0.203
Z-Modularity 1.290 0.111 1.002 0.469
Avg. Embeddedness 0.872 0.992 0.157 0.731
Conductance 0.173 0.011 0.849 0.318
Cut Ratio 0.007 0.000 0.003 0.001

Table 4.3: Evaluation measures of static community detection algorithms for the co-
publisher network.

29 Iman Hashemi

Utrecht University

Louvain Infomap Walktrap LP
Full Network # of Communities 152 138 489 395

Modularity 0.633 0.373 0.544 0.548
Z-Modularity 1.537 0.724 1.214 1.117
Avg. Embeddedness 0.982 0.997 0.688 0.767
Conductance 0.024 0.004 0.348 0.271
Cut Ratio 0.000 0.000 0.000 0.000

LCC # of Communities 20 5 345 256
Modularity 0.627 0.347 0.535 0.539
Z-Modularity 1.491 0.673 1.180 1.084
Avg. Embeddedness 0.858 0.919 0.573 0.648
Conductance 0.203 0.119 0.475 0.408
Cut Ratio 0.001 0.000 0.001 0.001

Table 4.4: Evaluation measures of static community detection algorithms for the co-
acip network.

Furthermore, creating a temporal graph using birth and death timestamps of nodes
is unfeasible in this case. The ratio in which the birth and death timestamps of nodes
are present in the data is too low. For the co-illustrator network, 70% of nodes have
birth timestamps. For the co-publisher and the co-acip networks, only 22% and 29%
of nodes have a birth timestamp, respectively. These percentages are much too low to
be used to construct a DG. The edges do have timestamps that can be used to create
a DG. All edges in all three HGs have timestamps. These timestamps represent publi-
cation dates. The timestamps are modeled as follows: each book has a Publication and
each Publication has an EarliestBeginningTimestamp and a LatestEndingTimestamp.
Upon further inspection, most of the books have an EarliestBeginningTimestamp and
LatestEndingTimestamp that are identical, but there are some books for which these
values can differ up to 100 years. This suggests that these publication timestamps are
not exact and that there can be some uncertainty regarding the exact publication dates.
As most of the timestamps of the books give an exact publication date, we do not have
birth and death timestamps for the edges. We can use time intervals, along with the
exact publication dates, to create snapshot graphs.

Apart from the fact that using the timestamps of edges makes more sense analytically,
using time intervals to create a snapshot graph will also make the uncertainty of the
timestamps of the books a smaller issue, because the intervals introduce some margin
of error for the timestamps. Additionally, online CD algorithms, for which temporal
graphs are often used, are not of much use to us, because we are working with historical
data that has a set start and end time. Altogether, we will be converting the HGs to
snapshot graphs.

4.5.1 Creating snapshot graphs

To create the snapshot graphs, the HG is partitioned into multiple smaller HGs, based
on time intervals. Algorithm 1 gives a succinct description of the algorithm used to do
this. First, a set of time intervals for the HG must be initialized.

30 Iman Hashemi

Utrecht University

Algorithm 1: Create snapshot graph
input : HG, intervalsize, shift
output: SG

1 Determine set of intervals based on the HG, intervalsize and shift
2 Initialize SG as list of empty graphs
3 for all intervals do
4 for all edges in HG do
5 if timestamp(edge) falls in interval then
6 add edge (and corresponding nodes) to snapshot

7 Apply a static CD algorithm to snapshot
8 Calculate modularity for resulting partition
9 if modularity == 0 then

10 remove snapshot from SG

In order to do this, two parameters are needed, the interval size and the shift. The
set of intervals is then determined by first determining the birth and death timestamps
of the full HG. This is simply done by taking the earliest EarliestBeginningTimestamp
and the latest LatestEndingTimestamp present in the graph. Then, starting from the
starting timestamp of the graph, we slide a window through the timeline of the graph,
where the window size is the interval size and the step size is the shift. Each step is
recorded and this results in a set of intervals that can be used to generate a snapshot
graph.

For each time interval, a snapshot is initialized as an empty graph. Then, all edges
that have a timestamp that falls in this interval are added to the snapshot, along with
the nodes they are connected to. As was mentioned above, the timestamp of an edge is
determined by two values, EarliestBeginningTimestamp and LatestEndingTimestamp.
These values are often identical, but in the case that they are not, the average of the
values is taken. After a snapshot has been created for an interval, the snapshot is
partitioned using a static CD algorithm.

In figure 4.5, the modularities of the partitions, along with the number of edges in the
snapshots, have been plotted for all intervals of a generated SG. The SG was generated
from the co-illustrator HG, using an interval size of 20 and a shift of 10. The Louvain
algorithm was used to partition each snapshot. Looking at these figures, it looks like
there is some correlation between the number of edges in the graph at a given interval
and the modularity of the partition found in that interval. In the first and last few
intervals of the graph, there are no or very few edges in the snapshot. These empty or
very sparse graphs result in partitions with modularity values of 0.

Because these parts of the SG are not interesting, the intervals for which the partition
has a modularity of 0 are removed from the SG. Doing this simply cuts off the first and
last intervals of the SG, because they are either empty or too sparse.

31 Iman Hashemi

Utrecht University

Figure 4.5: The modularities and the number of edges plotted for every interval, using
the co-illustrator SG.

4.6 Community Detection on Dynamic Graphs
Given the snapshot graph, dynamic community detection is performed. The method we
employ is mainly inspired by [Greene et al., 2010]. The algorithm in [Greene et al., 2010]
is an Instant-Optimal CD method, because it performs static community detection at
different time steps and attempts to match the partitions in consecutive time steps
using a similarity measure, while making the assumption that partitions in different
time steps are not dependent on each other. Our proposed method assumes that the
partitions in different time steps are dependent on each other, making our approach
fall into the category of Temporal Trade-off CD algorithms.

4.6.1 Algorithm overview

In algorithm 2, the pseudocode for our Dynamic Community Detection algorithm can
be seen. The algorithm can be briefly described as follows: first, a static CD algorithm
is applied to the first snapshot. For each community that was returned, a Dynamic
Community (DC) is initialized. Every DC has a head, which is the last community
that has been added to the DC. The heads of DCs are also updated when the DCs

32 Iman Hashemi

Utrecht University

are updated. Then, at each consecutive snapshot, static CD is performed. For every
community ct in time step t ̸= 0, the Jaccard similarity is calculated between it and the
heads of all DCs. Based on these values, a matching threshold and a set of matching
rules, communities are matched, the set of DCs is updated and the community events
that have taken place are recorded.

Algorithm 2: Dynamic Community Detection
input : SG, θ
output: DC, Events

1 DC ←− {}
2 Events←− {}
3 Apply static CD to first snapshot
4 for snapshot in SG do
5 Apply static CD to first snapshot
6 for community in partition do
7 Calculate Jaccard Similarity for all DCs
8 if JaccardSimilarity ≥ θ then
9 Add community to matching communities

10 Update DC with all matching communities
11 Apply Merge/Split rules, update Events

4.6.2 Community events

In order to compose a set of dynamic communities, we have to record community events.
The following community events are recorded:

• Birth: a community appears for the first time.

• Death: a community appears for the last time.

• Continuation: a community is the continuation of a community from a previous
time step, it remains mostly unchanged.

• Merge: multiple communities merge into a single community.

• Split: a community splits into multiple communities.

4.6.3 Matching rules

The following matching rules are used to detect these events:

• Birth: If community ct matches with no DC, ct is the start of a new DC.

• Death: If a DC has not been updated for more than the maximum community
lifetime, clt time steps, it will not be updated anymore.

33 Iman Hashemi

Utrecht University

• Continuation: If community ct matches with exactly one DC, and the DC
matches only with community ct, ct is a continuation of the DC and becomes
the head of that DC.

• Merge: If community ct matches with more than one DC, ct is a merge of those
DCs. This event is recorded in Events and ct is added to all those DCs, which
means that they will be identical from this point on.

• Split: If multiple communities in time step t match with one DC, that DC has
split into those communities in time step t. For all but one matching community
in time step t, new DCs are created that have the same community history as the
DC that was split.

The matching rules are applied after the Jaccard similarity has been calculated
between a community ct and a subset of the heads of all DCs, namely all the DCs that
have not ’died’ yet. As the death rule states, a DC that has not been updated for more
than clt time steps, will not be updated anymore. Hence, when attempting to match
community ct to existing DCs, only the DCs of which the heads fall within clt time
steps of ct, are considered. During the process of calculating the similarities between ct
and the heads of the DCs, a set of matches is composed. This set of matches consists
of all DCs, which are not dead, of which the heads have a Jaccard similarity with ct
that exceeds θ.

The application of the birth rule is trivial. The assumption is made that a community
always belongs to a DC. Consequently, if a community ct does not belong to any of the
existing DCs, according to the matching rules, a new DC is created, of which ct is the
first community. The application of the continuation rule is straightforward as well. If
community ct matched with only one DC, and the DC matched only with community
ct, it is simply added to that DC. Naturally, as it is the last community that has been
added to that DC, it also becomes the head of the DC.

The merge rule is applied if the list of matches for ct contains more than one DC.
ct is then added to all these DCs, which results in these DCs being identical from time
step t on. The split rule must be applied if multiple communities in time step t match
with one DC. New DCs are created that have an identical history to the DC that has
been split, up until the time step of the split. The event is also recorded in the set of
events, for the purpose of easily being able to produce where splits have occurred in
the timeline. This is also done for all merge events. The criteria for the merge event
are checked first, after which those for the split event are checked. This means that if
both occur simultaneously for the same set of DCs, the merge event has the priority
and gets registered.

After applying the birth, continuation, merge and split rules as described above, the
death rule is implicitly applied as well. This is a result of the usage of the maximum
community lifetime, clt, when matching and applying those rules. A DC is not consid-
ered for the continuation, merge and split rules if it has not been updated for clt time
steps. In this manner, after a DC has not been updated for clt time steps, it is never
updated again.

34 Iman Hashemi

Utrecht University

Figure 4.6: An example of a possible timeline of a set of DCs.

4.6.4 DC timeline

The result of the matching process is a set of DCs and a set of events, which together
form a DC timeline. In figure 4.6, a visualization of a DC timeline can be seen. In this
timeline, there are 5 DCs. Every DC is simply a list of communities. The communities
are written as Cxy, where y denotes the time step of the community and x is a unique
identifier for the community in that time step. The DCs in figure 4.6 can be written in
list-form as follows:

D1 :
[
C11, C13

]
D2 :

[
C21, C12, C23, C14, C15

]
D3 :

[
C22, C23, C14, C15

]
D4 :

[
C31, C32, C33, C24

]
D5 :

[
C31, C32, C43, C34

]
For this DC timeline, the following events were registered:

t=3
{
merge : D2, D3

}
t=3

{
split : D4→ (D4, D5)

}
Looking at the timeline, one can see that D1 consists of two communities, C11 and
C13. This is an example of a DC not being present in a time step, but still continuing

35 Iman Hashemi

Utrecht University

to exist, because it is not yet dead. Here, the continuation event took place at t = 3.
Let us say that the threshold for the death of a DC is set to 2, meaning that if a DC
has not been updated for 2 time steps, it is considered dead. Using this threshold, D1
is considered dead after t = 5, because it has not been updated for 2 time steps after
that point.

At time step t = 3, DCs D2 and D3 merge. In the timeline visualization, they
continue as one DC. In practice, D2 and D3 are identical from this point forward, as
can be seen in the lists of communities the DCs consists of shown above.

At time step t = 3, D4 splits into D4 and D5. In the timeline visualization, the two
DCs start as one, splitting into two at t = 3. In practice, after the construction of the
lists of DCs is completed, D3 and D4 are identical up to and including t = 3, after
which their timelines become distinct. This can also be seen in the lists of communities
the DCs consists of shown above.

4.6.5 Choosing the right static CD algorithm

On the HGs, the Louvain algorithm seemed to perform best. However, for an algorithm
such as Louvain, which finds a local maximum for the modularity measure, community
instability may be an issue. To tackle this problem, we experimented with a slightly
adjusted version of the Louvain algorithm, as introduced in [Aynaud and Guillaume,
2010] (see section 3.3.3). To briefly recap, instead of initializing the algorithm with each
node belonging to its own community, this version of the Louvain algorithm initializes
it with a given partition, the partition from the previous time step. We will call this
variation of the algorithm Louvain Initialize Partition, or LIP in short.

The Louvain algorithm also has a stochastic element. The first step of the algorithm
involves merging nodes based on the increase in modularity resulting from this merge.
This has to be done in a certain order, which is randomized. Another way to attempt to
stabilize the algorithm is to execute it multiple times on the same graph and choose the
partition that achieved the highest modularity. This variation of the algorithm, from
here on called Louvain Randomized (LR), was implemented using 10 rounds, meaning
that the Louvain algorithm is run 10 times before the best preforming partition is
chosen.

In order to choose which variation of the algorithm to use, we looked at the quality
and the stability of the partitions. First, let us look at the modularities of each partition
in the timeline for the different variations of the Louvain algorithm. To do this, the
means of the modularities for each variant of the algorithm were calculated. The SG
that was used was generated using an interval size of 20 and a shift of 10. Table 4.5
displays the results of these experiments. There is no difference between the standard
Louvain algorithm and LIP, regarding the mean modularity values they produce. This
was to be expected, because LIP simply starts its search from a different starting point,
which may lie closer to a local maximum than a random point in the search space,
but there is no reason to believe that the local maximum that is found will be higher

36 Iman Hashemi

Utrecht University

Co-illustrator Co-publisher Co-acip

Louvain 0.541 0.605 0.659
LIP 0.541 0.605 0.659
LR 0.542 0.606 0.661

Table 4.5: Mean modularity values for partitions of an SG, generated by Louvain and
its variations.

than that of the standard Louvain algorithm. LR, however, seems to perform slightly
better than both the standard Louvain algorithm and LIP. It intuitively makes sense
that if you take the maximum of multiple runs of the algorithm, that that can result in
a partition with a higher modularity score. However, the increase here is so small that
it is negligible.

We looked at the stability of the partitions by calculating a number of similarity
measures between every consecutive partition in the timeline. The similarity measures
that were used are:

• Normalized Mutual Information (NMI): Mutual Information (MI) is a mea-
sure used to compare two partitions, based on the amount of information from one
partition that can be inferred from the other partition. NMI is simply a variation
of MI that normalizes its values, so that they fall between 0 and 1.

• Adjusted Mutual Information (AMI): AMI is a variation of MI that accounts
for chance. The MI tends to be higher for partitions with more clusters, because
they tend to share more information. AMI takes this into account. The AMI has
an expected value of 0 for independent partitions and a value of 1 for identical
partitions.

• Adjusted Rand Index (ARI): The Rand Index (RI) measures the similarity
between two partitions by looking at all possible pairs of nodes and how often these
pairs belong to the same cluster across two partitions. The ARI is a variation of
RI that accounts for chance, similarly to the AMI. The ARI also has an expected
value of 0 for independent partitions and a value of 1 for identical partitions.

An SG was generated using the co-illustrator network, with an interval size of 20 and
a shift of 10. However, in order to calculate the similarity measures, the SG had to be
generated slightly differently. To be able to compare two partitions, the partitions must
contain the same set of nodes. Our method only adds nodes to a snapshot if they are
connected to an edge that has a timestamp that falls in the interval of the snapshot.
For the purpose of the upcoming experiments regarding partition stability, all nodes
of the graph are added to all snapshots. If the edges of these nodes do not fall in the
interval of a snapshot, the node becomes a separate component of that snapshot.

All three Louvain variations were used to partition all snapshots and the proposed
similarity measures were calculated between consecutive snapshots. In figure 4.7, the

37 Iman Hashemi

Utrecht University

NMI can be seen for all three variations. The stability curve looks almost identical
for all variations. The value of the NMI also remains fairly high through the timeline,
having a minimum of around 0.95 for all three variations.

Figure 4.7: The stability trends for all Louvain variations, using the co-illustrator SG
(interval size = 20, shift = 10).

To confirm that these values are not this high solely because there is a time-overlap
of 50% between consecutive snapshots, we also calculated the NMI for the same SG,
but generated using an interval size of 20 and a shift of 20, which means that there is
no time-overlap between consecutive snapshots. In figure 4.8, these results can be seen.
Albeit being slightly lower, the NMI still remains fairly high, not dipping under 0.90

In tables 4.6, 4.7 and 4.8, the NMI, AMI and ARI can be seen for the co-illustrator,
co-publisher and co-acip SGs, all generated with an interval size of 20 and a shift of 10.
Here, one can see that the AMI and the ARI are significantly lower than the NMI for
all three networks and for all Louvain variations. This makes sense, as these measures

38 Iman Hashemi

Utrecht University

Louvain LIP LR

NMI 0.973 0.973 0.973
AMI 0.440 0.437 0.442
ARI 0.355 0.356 0.355

Table 4.6: Similarity measures for co-illustrator SG (interval size = 20, shift = 10).

Louvain LIP LR

NMI 0.976 0.976 0.976
AMI 0.484 0.482 0.484
ARI 0.380 0.387 0.387

Table 4.7: Similarity measures for co-publisher SG (interval size = 20, shift = 10).

are adjusted for chance. The values for AMI are still between 0.400 and 0.500 and the
values for ARI are still between 0.300 and 0.400, which indicates that the partitions are
still fairly similar, even when adjusted for chance.

Looking at the difference between the variations of the Louvain algorithms, the results
are very similar. The NMI is identical, up to three decimals, for all three variations, for
all three SGs. Some difference in AMI and ARI can be observed, but these are slight
differences. For example, LR scores higher (or equal to, in one case) than Standard
Louvain and LIP in AMI in all three SGs. LIP scores higher than LR in ARI in
the co-illustrator SG, but lower than LR in the co-acip SG. Altogether, LR seems to
outperform the other two variations slightly in most cases. However, the difference is
too small to base our choice on. On account of this, we will base this choice on other
criteria.

The main consideration when choosing which algorithm to use is maximizing the
probability that the algorithm finds the same local maximum for subsequent snapshots.
We find the LIP variation of the Louvain algorithm best suited for this, because the
algorithm’s starting point in the search space is the last partition. Intuitively, this
should help the algorithm find the same local maximum more easily. The randomized
version of Louvain, LR, could also be a consideration here, but from a different per-
spective. It could be argued that by running the algorithm multiple times and choosing
the partition with the highest modularity score, the algorithm may find the optimal
solution in subsequent snapshots. However, if this would be the case, one would expect

Louvain LIP LR

NMI 0.976 0.976 0.976
AMI 0.457 0.460 0.462
ARI 0.320 0.323 0.328

Table 4.8: Similarity measures for co-acip SG (interval size = 20, shift = 10).

39 Iman Hashemi

Utrecht University

a significant difference between the mean modularity that LR achieves, as opposed to
the other two variants. As was pointed out previously, this is not the case, as can be
seen in table 4.5. There is a difference, but it is very slight. Hence, we will disregard
this perspective, and use the LIP algorithm from this point on.

Figure 4.8: The stability trends for all Louvain variations, using the co-illustrator SG
(interval size = 20, shift = 20).

4.6.6 Determining interval size and shift

To choose an interval size and shift, we make multiple considerations. First, we can
take a look at the stability of the partitions when using different values for interval
size and shift, in the same manner as was done when choosing a static CD method.
Additionally, the number of DCs and the average size of the DCs will be taken into
account. Furthermore, an important consideration is the input of the historians. As
they are familiar with the data and the time period of the data, they can have a certain
preference regarding the interval size and shift that should be used. This preference is
also taken into account.

40 Iman Hashemi

Utrecht University

NMI AMI ARI

10_1 0.996 0.870 0.828
10_5 0.986 0.491 0.414
10_10 0.976 0.117 0.087

20_2 0.992 0.849 0.780
20_10 0.973 0.444 0.354
20_20 0.954 0.059 0.038

40_4 0.983 0.801 0.727
40_20 0.947 0.384 0.277
40_40 0.921 0.045 0.027

Table 4.9: Mean NMI, AMI and ARI for different combinations of interval sizes and
shifts (represented as: intervalsize_shift), for the co-illustrator SG.

Community stability

If the shift is equal to the interval size, there is no time-overlap between consecutive
snapshots. However, having some time-overlap between consecutive snapshots can help
tackle the aforementioned community instability problem.

Using a smaller shift, and thus having a higher time-overlap between consecutive
snapshots, increases the expected number of nodes that are present in both snapshots,
thus increasing the expected similarity between the snapshots. Consequently, if two
consecutive snapshots are more similar, there is a smaller chance of a static CD algo-
rithm finding significantly different partitions. Primarily, this is the result of the two
networks themselves being more similar. Secondly, let us take a deterministic static
CD algorithm that finds a local maximum for a certain measure. For two networks, if
the starting points of the algorithm in the search space lie close to each other, there is
a higher probability of the algorithm finding the same local maximum, as opposed to
having starting points that are further apart from each other. Furthermore, if partitions
are less stable, the number of DCs may increase as a result. More unstable communities
can have the effect that there are less matches between time steps. As was explained
in section 4.6.3, if a community in a time step is not matched with any DC, a new DC
is created containing only that community. In this manner, the number of small DCs,
including DCs containing only one community, may increase. It goes without saying
that a large set of very small DCs is not a desirable result.

Three different interval sizes were considered, namely 10, 20 and 40 years. For every
interval size, a set of shift values was used, based on percentages of the interval size.
The following percentages were used: 10%, 25%, 50% and 100%. Table 4.9 displays
the mean NMI, AMI, and ARI, for all combinations of interval sizes and shifts, for
the co-illustrator SG. For all three measures, the values decrease both when the shift
increases, as well as when the interval size increases. Therefore, the smallest interval
size, 10, performs best in terms of these stability measures. Additionally, the smallest
shift, 1, also performs best in terms of these measures.

41 Iman Hashemi

Utrecht University

Co-illustrator Co-publisher Co-acip

10_1 0.578 0.576 0.649
10_5 0.551 0.577 0.648
10_10 0.541 0.600 0.649
20_2 0.569 0.584 0.646
20_10 0.541 0.605 0.659
20_20 0.523 0.596 0.655
40_4 0.557 0.625 0.676
40_20 0.513 0.634 0.686
40_40 0.466 0.657 0.666

Table 4.10: Mean modularity for different combinations of interval sizes and shifts
(represented as: intervalsize_shift), for the all three SGs.

of snapshots

10_1 261
10_5 55
10_10 27

20_2 146
20_10 30
20_20 15

40_4 74
40_20 15
40_40 8

Table 4.11: The number of snapshots in the SGs for different interval sizes and shifts
(represented as: intervalsize_shift).

Mean modularity

Table 4.10 displays the mean modularity values for different interval sizes and shifts,
for all three SGs. Here, for the co-illustrator SG, there are two trends that can be
noticed. The modularity decreases as the shift increases and as the interval size in-
creases. However, these trends are not observed for the co-publisher and co-acip SGs.
The combination of interval size and shift that achieves the highest modularity for the
co-illustrator SG is 10_1. For the co-publisher SG, 40_40 achieves the highest mean
modularity and for the co-acip SG, 40_20 achieves the highest mean modularity.

Interpretability

A different consideration to make when choosing the interval size and shift values is
the interpretability of the results. In table 4.11, the number of snapshots is displayed
for the different interval size and shift combinations. As expected, when using a small
interval size, the number of intervals in the SG increases. This may offer more granular-
ity, but also makes the results less easily interpretable. The same goes for the value of

42 Iman Hashemi

Utrecht University

Co-illustrator Co-publisher Co-acip
DCs avg DCL # DCs avg DCL # DCs avg DCL

10_1 99 20.98 308 13.77 768 15.01
10_5 84 3.10 280 2.66 636 2.31
10_10 87 1.39 270 1.32 574 1.24
20_2 96 15.29 267 11.31 603 9.72
20_10 74 2.46 231 2.25 494 1.96
20_20 74 1.16 217 1.15 429 1.12
40_4 71 12.66 254 9.33 546 8.95
40_20 15 2.02 201 1.90 389 1.71
40_40 8 1.13 285 1.09 297 1.03

Table 4.12: The number of DCs (# DCs) and the average length of the DCs (avg DCL),
for different interval sizes and shifts (represented as: intervalsize_shift), for all three
SGs.

shift, where a smaller shift also results in more snapshots. For example, using the 10_1
combination, the SGs will have 261 snapshots, while the 10_10 combination results in
27 snapshots and the 20_10 combination results in 30 snapshots. A high number of
snapshots means that the information is much more difficult to analyse. This makes
the search for interesting information in the data, which can lead to interesting insights,
more difficult.

The same can be said for the number of DCs and the average length of DCs in an
SG. In table 4.12, the number of DCs and the average length of the DCs, for all three
SGs, for different interval sizes and shifts, is displayed. Increasing the interval size
and increasing the shift both lead to a decrease of the number of DCs in an SG and
the average length of the DCs in the SG. Using the same line of reasoning, it is not
desirable to have a high number of DCs, as this makes analysis more difficult. The
average length of the DCs is higher when the interval size or shift is lower, because
consecutive snapshots are more similar in that case. This can be explained by looking
at the stability measures displayed in table 4.9, in which lower interval sizes and shifts
result in more stable SGs. However, having only very large DCs, as is the case with the
10_1 combination, might also not be preferable. The actual interval a DC spans may
be the same interval it would span when detected with an SG created with the 20_10
interval. This means that the the data is simply more granular, a DC is cut up into
more intervals. The same information would then be displayed in a way that is more
difficult to analyse, which would not be preferable.

Finally, to choose the values for these parameters, we took all the aforementioned
aspects into consideration. Firstly, the domain experts, the historians, voiced that they
prefer a smaller interval size. Their reasoning for this preference was that smaller inter-
vals would give them more granular information in terms of timestamps. Furthermore,
we do not observe a specific value for interval size or shift that consistently achieves the
highest mean modularity value for all three SGs. As was mentioned previously, we also

43 Iman Hashemi

Utrecht University

want to limit the number of snapshots, the number of DCs and the average length of
the DCs, which decrease as the interval size and shift increase. As the preference of the
historians is a smaller interval size, we disregard the interval size of 40. Using shifts of
10% for both the interval sizes of 10 and 20, 10_1 and 20_2, generates many snapshots,
261 and 146, respectively. As a result, these are also disregarded. The shifts of 100%
for both remaining interval sizes, 10_10 and 20_20, do result in a moderate number
of snapshots and number of DCs, but the average length of the DCs remains below 2
for both, which means that many of the DCs only consist of one community. As was
explained before, this could be because the SGs created with these combinations are
less stable. Hence, these are also disregarded.

This leaves two combinations, namely 10_5 and 20_10. 10_5 results in a slightly
higher mean modularity for the co-illustrator SG, but for the co-publisher and the co-
acip SGs, 20_10 achieves a higher mean modularity. 20_10 also results in much less
snapshots than 10_5, 55 vs 30, respectively. The number of DCs and the average length
of the DCs are fairly similar, 10_5 generating 84 DCs vs 20_10 generating 74 DCs for
the co-illustrator SG. For the co-publisher SG, these values are also fairly similar. For
the co-acip SG they do differ significantly, being 636 for 10_5 and 494 for 20_10. The
average lengths of the DCs are 3.10 for 10_5 and 2.46 for 20_10, for the co-illustrator
SG. For the co-publisher and co-acip SGs, the differences are similar. Considering that
for two out of the three SGs, 20_10 achieves a higher mean modularity, and that the
stability of the partitions of both SGs are similar, but 10_5 generates almost double
the number of snapshots as 20_10, we will be using 20_10 for our analysis.

4.6.7 Determining θ

The final parameter that we need to set is θ. As was explained in section 4.6.1, θ is
the similarity threshold for determining whether two communities match. Choosing
a low θ means that communities match very easily, even if they are not that similar.
Intuitively, one would say that this would result in a small number of large DCs. Using
the same intuition, choosing a high θ should result in a large number of small DCs,
as few communities will match with each other, so many new DCs are created that
remain small. Evidently, this also impacts the number of merges and splits that occur.
A smaller θ would increase the number of merges and splits, and a higher θ would
decrease them.

Experiments

In [Greene et al., 2010], various experiments were done to determine the best θ value.
They generated multiple DGs using benchmarks, in which they introduced community
events. In this manner, a ground truth was generated with which the results of their
algorithm could be compared. This comparison was done by calculating the NMI
between the output of their algorithm and the ground truth. Based on the experiments,
a θ of 0.3 was deemed to best capture all community events.

44 Iman Hashemi

Utrecht University

Figure 4.9: The number of DCs and their average length, using various values for θ, in
both figures.

DC properties

In figure 4.9, the number of DCs and the average length of DCs are plotted, after
dynamic CD was performed using various values for θ. The values that were used were
values in the interval

[
0.1, 0.9

]
, using a step size of 0.1. For all SGs, the average DC

length starts off high and decreases quickly. Then, there is a point after which the
average length keeps decreasing, but at a slower pace. This point is around 0.2 and 0.3.
A good argument to make here is to avoid the range that displays a high amount of
volatility, which is the lower range of θ, 0.1 or 0.2.

The number of DCs starts off high with the co-illustrator and the co-publisher SGs,
then decreases quickly, after which it slowly increases again. The high starting point
and quick decrease could be the result of many splits occurring at 0.1, which causes
new DCs to be created. This effect may then die down at 0.2, after which the number
of DCs starts increasing, because communities are less likely to match given a higher θ.
Again, one could argue that it is better to avoid the big fluctuations that occur using

45 Iman Hashemi

Utrecht University

Co-illustrator Co-publisher Co-acip

Birthdate 0.70 0.22 0.29
Birthplace 0.87 0.25 0.33
Religion 0.37 0.13 0.17
Occupations 0.90 0.29 0.36
Occupational adress 0.90 0.29 0.35
Parents 0.69 0.20 0.25
Children 0.35 0.12 0.13
Spouses 0.65 0.25 0.28

Table 4.13: Availability of attributes for all SGs.

the lowest values. However, as was mentioned before, we also want to limit the number
of DCs that are returned, so it is not advisable to use the highest values of θ .

Taking these arguments into consideration, we will be using the same value as [Greene
et al., 2010] did, namely 0.3. It avoids the high fluctuations of the lowest values of θ,
and it has some experimental backing.

4.7 Generating Descriptions
Lastly, in order to increase the interpretability of the returned DCs, we generated de-
scriptions of the DCs using attributes, addressing research question 3. These attributes
were present in an external datastore, which we could query using the URIs of the nodes
in the graph. The attributes were attributes of the nodes, which represent people. The
attributes that were used are:

• Birthdate: date

• Birthplace: categorical

• Religion: categorical

• Occupation: categorical

• Occupational address: categorical

• Family relations: categorical (in practice, the family relation attribute is com-
posed of three attributes: parents, children and spouses. We simply add all these
together to get the family relations attribute)

4.7.1 Missing data

One problem we encountered was the fact that not all attributes were present for all
nodes. Table 4.13 displays the ratio in which the attributes are present in the SGs.
The availability of the attributes varies a lot between the different attributes and even

46 Iman Hashemi

Utrecht University

(a) Full network (b) Largest connected component (LCC)

Figure 4.10: Partitioned co-illustrator network.

between the different SGs. The lowest availability is that of the children attribute
for the co-publisher SG, namely 0.12, and the most frequently available attributes are
occupation and occupational address, which both have an availability of 0.90. For the
co-publisher and the co-acip SGs, there are significantly less attributes available than
for the co-illustrator network. Overall, there is enough data available such that we can
generate descriptions.

4.7.2 Method

To generate a description for a DC, we first take the union of all communities a DC
consists of. This gives us a list of unique nodes. Then, we simply take the most frequent
value for the categorical attributes and we take the median of the year of birth for the
birthdate attribute. We simply ignore the missing values. Moreover, when presenting
the description, for the categorical attributes, we also present the frequency with which
that value is present in the DC.

4.8 Formatting results
The results are analysed by domain experts. The goal of this analysis is to find out
whether domain experts can find interesting information in the results. To facilitate
this process, we summarized the results.

4.8.1 Static CD

First, for the results of the static CD, we generated full lists of communities, containing
all nodes in the communities, and a list of summaries of every community, for every
partitioned HG, accompanied by a visualisation of the partitioned network. In figure

47 Iman Hashemi

Utrecht University

Figure 4.11: Example of DC evolution in the co-illustrator SG.

4.10, such a visualization is displayed for the co-illustrator network. Both for the
full lists of communities and for the summaries, the lists of nodes are ordered based
on degree centrality, which is simply calculated by determining the number of edges
incident to a node and normalizing that by the maximum possible degree a node can
have in the HG. More precisely, the degree centrality of a node v is calculated as follows:

Cdegree(v,G) =
kv

nG − 1
(4.5)

where nG is the number of nodes in graph G and kv is the degree of node v. For
summaries, a top 5 of the nodes in the community is given, which is based on the
degree centrality. Furthermore, the number of people in the community is also shown.

4.8.2 Dynamic CD

Presenting the dynamic CD results is more difficult, as there is much more information
to be presented. For every DC, there is not just a list of nodes in that DC, but also a
community evolution timeline. Furthermore, the list of DCs can be long, containing 74
DCs for the co-illustrator SG up to 494 for the co-acip SG. A first way to reduce the
search space is to remove DCs that only exist in one interval. The goal of dynamic CD
is to follow communities through time and if a DC is only present in one interval, this
is not possible, and the DC is deemed uninteresting. After removing DCs of length 1,
the number of DCs for the co-illustrator SG drops from 74 to 67. For the co-publisher
SG it drops from 231 to 183 and for the co-acip SG, it drops from 494 to 329.

Even though we reduced the number of DCs in the results, it is still too much in-
formation to just present all at once. To solve this problem, we created two search
functions, so that the results can be interactively analysed. The first search function
lets the user enter a name. Then, this person can be followed through time by finding
all DCs that it has been part of. A person can only be part of one DC in every interval,
so this list gives a timeline of DC memberships of the person. For every interval, a small
visualisation of the partition in that interval is given, where only the nodes that belong
to the DC that the person belongs to are coloured. Figure 4.11 gives an example of

48 Iman Hashemi

Utrecht University

this visualization for two intervals of a DC in the co-illustrator SG. Furthermore, a list
of all people that are part of the DC in that interval is given, ordered based on degree
centrality. Lastly, if any community events occurred in that interval, this is presented
to the user, along with the DCs that were part of the community event. So, if a merge
occurred, the DCs that were merged to create the DC that the person is part of, are
presented by listing the unique IDs of the DCs and the names of all people in the DCs.
For a split, the DC that was split from and the other DCs emerging from the split are
presented in a similar manner.

The second search function allows the user to search based on DC IDs. Given an ID
of a DC in the SG, the full timeline of that DC is returned. This is done in a similar
manner as with the other search function. For every interval, a visualization is given,
and a list of nodes is presented. If community events have occurred, these are also
presented in the same manner.

One way of using this system, and the idea that it was based upon, is that domain
experts start with searching names that they are interested in. Then, through analysing
the evolution of the DC memberships of this person, they may come across DCs that
seem interesting. Then, they can look at the DC timeline of those DCs by using the
other search function.

49 Iman Hashemi

Chapter 5

Evaluation

In this chapter, we evaluate the results of the static and dynamic CD in two ways. First,
by using internal evaluation measures. Second, we externally evaluated the dynamic
CD by having domain experts fill in a questionnaire while presenting them with the
results of dynamic CD applied to the co-illustrator network, which were formatted as
was discussed in section 4.8.2. The co-illustrator network was chosen for this purpose,
because the co-illustrator meta-path has a very specific semantic definition, which gives
a clear context to the results, facilitating the domain experts’ analysis.

5.1 Internal Evaluation

5.1.1 Static CD

Tables 4.2, 4.3 and 4.4 were previously used to choose which of the tested static CD
algorithms performed best on the HGs, by presenting a number of evaluation measures
for the resulting partitions (see section 4.6.5). The conclusion of this comparison was
that the Louvain algorithm performed best. Now, we look at these evaluation measures
for the partitions generated by the Louvain algorithm, to determine whether there is
inherent community structure in the data and whether the Louvain algorithm finds it.

All three partitions have a modularity value higher than 0.5, the partition of the
co-illustrator network even reaching a modularity of 0.714 for the full network. All
networks also have a very high value for average embeddedness, the minimum being
0.958. This is the result of the networks containing many small disjoint groups of nodes.
We can look at the evaluation measures for the LCCs to investigate to what extent this
property of the graphs influences the values of the evaluation measures. Looking at
the LCCs, the modularity and average embeddedness remain high, the minimum of
the modularity of the LCCs of all three HGs being 0.539. The average embeddedness
for the LCCs of the HGs stays above 0.858 for all HGs. These values are a bit lower
than those for the full networks, but this was to be expected. The fact that they do
not drop by a large amount indicates that the structure that is found in the HGs is
not a result of the disjoint components in the graph, at least not according to these
evaluation measures. In other words, these components seem to have a small impact
on the modularity and the average embeddedness of the HGs. The same also goes for

50

Utrecht University

Z-modularity, which, likewise, is not much lower for the LCCs of the HGs compared to
the full networks.

The conductance and the cut ratio are both measures that are based on the number
of edges going out of the communities. For the full networks, these values are very
small, the cut ratio often being 0. The highest cut ratio is found for the partition of the
co-illustrator network, only being 0.002. The conductance stays below 0.066. For the
LCCs of the networks, the cut ratio and the conductance also take on slightly worse
values. The difference is bigger than for the other evaluation measures, but the values
for the LCCs still suggest that there is community structure in the partition.

5.1.2 Dynamic CD

Table 4.5 was used to look at the difference in the mean modularities of partitions
generated by the different Louvain variations. Tables 4.6, 4.7 and 4.8 display various
similarity measures for the SGs. The SGs that were used for all these evaluations were
created with an interval size of 20 and a shift of 10. We can look at the mean modularity
values and the similarity measures for the partitions created by the LIP algorithm to
internally evaluate whether the resulting dynamic CD method captures any temporal
community structure in the data.

The mean modularity values for all three SGs are higher than 0.5, the highest one
being for the co-acip network, which is 0.659. Tables 4.2, 4.3 and 4.4 display the
modularity values for partitions of the HGs, partitioned by the Louvain algorithm.
The mean modularity for the co-illustrator SG is 0.541, as opposed to 0.714 for the
partitioned HG. For the co-publisher and the co-acip SGs, the mean modularity is even
higher than that of the partitions of their respective HGs, namely 0.605 vs 0.550 and
0.659 vs 0.633, respectively. These values indicate that the community structure that
was found by partitioning the HG is not lost when transforming the HG to an SG and
performing CD on every snapshot of that SG.

As was discussed in section 4.6.5, the partitions of the SGs seem to be fairly stable,
based on the fairly high values of the stability measures. This, in combination with the
high modularity values, seems to indicate that community structure is found in the SG
and that the selected method is able to track that community structure through time.

5.2 External Evaluation
Appendix A contains the questionnaire that was used. The goal of the questionnaire
was to evaluate four aspects of the results, namely:

• The communities found by the algorithm.

• The evolution of those communities.

• The meaningfulness of the generated descriptions.

51 Iman Hashemi

Utrecht University

• The general usefulness of the system.

The questionnaire was filled in by two historians and one data expert who is deeply
familiar with the dataset. As was previously mentioned, the co-illustrator SG was
used, created using an interval size of 20 and a shift of 10. A θ of 0.3 was used
for the matching process. The questionnaire consists of three main parts. The first
one instructs the respondents to enter three DC IDs and answer questions about the
community structure, the DC timeline, and the descriptions of those DCs. The DC
IDs that they had to use were determined based on the length and the size of the DCs.
We selected DCs that had a higher-than-average length and that contained a sufficient
number of nodes. The second part focuses on the name-based search function. The
respondents are instructed to enter a name of a person they deem interesting and then
answer some questions about the evolution of that person through the DCs it’s part
of and the centrality-based position of the person in those DCs. Finally, some general
questions are asked about the usefulness of the system.

The results of the questionnaires are then analysed by grouping the answers and
selecting the most important and most interesting remarks and then summarizing them.
In some cases, a practical example is discussed by the respondents, which can be very
helpful in understanding the results and the conclusions that the respondents draw from
the results. Hence, these examples are also included.

5.2.1 Community structure

The first question that was asked was whether the combination of names in the com-
munities makes sense. In some cases, the respondents could pinpoint why a community
is composed as it is. For example, one answer we received to the question of why a
community is composed as it is, was that it is a community of engravers/cartographers
that were active in Amsterdam. However, this is a very general description, especially
given that Amsterdam is over-represented in the data. There were also DCs where the
respondents did not know why it was composed as such. In these cases, they voiced
that more information about the DCs might have helped them to figure it out.

Displaying the degree centralities of the nodes in the communities seems to have
merit. However, they do not represent the real world perfectly. In some cases, re-
spondents pointed out that they found that the centralities of certain nodes should
be higher or lower. On the other hand, two respondents pointed out that Romeyn de
Hooghe, which according to them was a central figure, also has high centrality values
in the results, confirming their assumption. In one case, using the search function, the
person Bernard Picard was searched by a respondent. This person was present in four
intervals. In the first interval, he had the lowest centrality in the community. In the
subsequent intervals, he had the highest centrality in the communities he was in. The
respondent explained this: Picard becomes a central figure in the network of illustra-
tors of Amsterdam, when he moves to Amsterdam, which was around 1711, which was
at the start of the second interval (1707-1727). Apart from this, he also moves to a
different DC in interval 2, which, given the respondents explanation, makes sense. This

52 Iman Hashemi

Utrecht University

observation validates the centrality-based positioning and the community evolution of
Bernard Picard.

A remark that was made a few times was that a person in a community had already
died. According to a respondent that pointed this out, this is probably the result of a
work of that person being published after their death.

5.2.2 Community evolution

Regarding the evolution of communities, we asked whether the starting points and
ending points of the DCs made sense and if the respondents knew why the DCs had
these starting and ending points. In most cases, the answer to the first question was
yes. The starting and ending points seem to correspond with the years in which the
people in the community lived.

Expanding on the example of Bernard Picard, according to the same respondent that
entered Picards name in the search function, Picard had a pupil, Frans van Bleyswyck.
As the respondent expected, they can be seen together in Picards third and fourth
interval in the SG. After the second interval, Picard becomes a member of a different
DC, after which he remains in the same DC for the fourth interval. This master-pupil
relation perfectly explains their collective presence in the same DC for Picards third
and fourth interval in the SG. Based on this observation, the respondent posed the idea
that it might be interesting to look at master/pupil relations by looking at how often
they coexist in the same DC.

Another observation that was made, again relating to Picard, was that in the first
DC he exists in, Joseph Mulder and Matthys Pool are present, being first and second in
terms of centrality. According to the respondent, these two people have made drawings
inspired by a drawing of Picard. However, the respondent pointed out that these
drawings were from a later date, so there must be a reason or some shared attributes
that causes them to be (the most central nodes) in the same DC so early. This is an
interesting question that arises from this observation and that needs more investigation,
according to the respondent.

5.2.3 Community descriptions

According to one respondent, the descriptions seem to have merit, only when the
frequency of the values of the attributes are high. Furthermore, Amsterdam is fre-
quently seen in descriptions. However, as a respondent pointed out, Amsterdam is
over-represented in the data. Another respondent mentioned that religion is an impor-
tant attribute. However, there is some missing data for this attribute, which reduces
its usefulness.

5.2.4 General remarks

In general, there is consensus among the domain experts that the method is useful
as a tool for exploration. The results they have seen so far seem valid and some

53 Iman Hashemi

Utrecht University

interesting questions have also risen from them. In essence, the results for people that
are well known seem to be in line with what is expected. The results for people that
are less well known give a first impression about the person’s collaboration network
and can give rise to interesting ideas for further investigation on that person. There are
multiple observations that indicate that the system-generated evolution of communities
is correct, such as the observations made when analysing Bernard Picards evolution in
the network.

5.2.5 Suggested improvements

Betweenness centrality

One respondent suggested that it would be useful to look at nodes that play an im-
portant role in connecting two communities or even perhaps connecting sets of nodes
within a community. This could be analysed using betweenness centrality. Between-
ness centrality is a centrality measure that calculates, for a given node, the number
of shortest paths between pairs of nodes in the graph that go through that node. It
can be used to measure the amount of information that flows through a node. Given
two communities, one can search all nodes that are not part of those communities, to
find the node with the highest betweenness centrality, where only the shortest paths
between pairs of nodes from the two communities are considered. This could reveal, as
the respondent suggested, nodes that are important in connecting two communities.

Descriptions

According to the respondents, the descriptions sometimes seemed to be quite trivial.
One way of improving these descriptions would be to improve the data quality, as
one respondent pointed out. This could be done by reducing the amount of missing
data, for example. As was pointed out by multiple respondents, religion is one of the
most interesting, if not the most interesting attribute in the descriptions. However, the
religion attribute is not available for many nodes in the networks, as can be seen in
table 4.13. Improving the availability of the attribute could increase its semantic value
in the descriptions.

A different way to improve the data quality is to add more attributes or group
attributes in a more sophisticated manner. For example, one respondent mentioned that
the family relation attribute can be improved by not only using first-degree relatives,
but also second-degree (siblings) and fifth-degree (cousins) relatives. He pointed out
that these are more important when analysing cooperative relationships.

Timeline characteristics

There was a desire to analyse the data from a different perspective, a more general
perspective. To do this, the suggestion was made to also look at characteristics of the
DC timeline, instead of focusing on the composition of DCs. The respondents wanted to
be able to see appearances and deaths of DCs in the timeline or see how many DCs are
active at a given time. According to one respondent, the number of DCs that are active
simultaneously can say something about the competitiveness of a market. Elaborating

54 Iman Hashemi

Utrecht University

on this, the respondent remarked that if, at a given time, many DCs are active, this
could mean that there is a competitive market at that time, which would result in a
varied supply and accelerated innovation in the market. Having a more top-down view
of the DC timeline could thus assist domain experts in analysing the data in this way,
considering hypotheses such as this one.

55 Iman Hashemi

Chapter 6

Conclusion

The goal of this research was to develop a method for community detection in knowledge
graphs. This was done in order to help the Golden Agents project gain interesting
insights from the historical data they are analysing. We have achieved this by addressing
a number of research questions, the first one being:

Research Question 1. Is it possible to find interesting clusters in historical data by
performing community detection on KGs?

To address this research question, we first structured the data in a way that fa-
cilitates the application of community detection methods. This was done initially by
structuring the KGs in a way that adheres to a more formal definition of networks,
specifically the HIN data structure. Then, using meta-paths, the HIN was transformed
to multiple homogeneous graphs. This allowed us to use many of the existing static
community detection methods. A number of widely used and promising static commu-
nity detection methods were tested and we concluded that the Louvain algorithm is the
best performing method for this dataset.

The second research question was:

Research Question 2. Is it possible to track the evolution of communities in the
network through time?

To address this, we additionally performed dynamic community detection by first
transforming the HIN to snapshot graphs, after which we performed static community
detection on every snapshot and employed a matching algorithm to create a set of
dynamic communities and detect community events.

Finally, we addressed the following research question:

Research Question 3. Is it possible to find descriptions of clusters based on node
attributes to support the interpretation and validation of the clusters?

We generated the community descriptions by using the most frequently observed
values of the categorical attributes, and the median of the numerical attribute.

56

Utrecht University

We then summarized the results and evaluated them by looking at internal evaluation
measures and by performing external evaluation, using the domain experts’ opinions.
From the internal evaluation, we concluded that there is community structure in the
data and that the selected method is able to find that structure. Concerning the
external evaluation, the consensus among the domain experts was that the results they
have seen are valid, and that they consider the method a useful tool for exploration.

6.1 Future Work
To conclude, we consider a number of research avenues that may be pursued to improve
the methods we propose in this thesis.

6.1.1 Refining community descriptions

Improving the interpretability of the results is a good way to improve their usefulness.
In order to do this, it would be interesting to refine the descriptions of the communities.
One way to do this would be to simply improve the data quality, as was discussed before.
It would also be interesting to employ a different, more advanced, method for generating
these descriptions. One could use a decision tree algorithm, such as CART [Breiman
et al., 2017], where the classes are the community IDs and the features are the attributes
of the nodes. Then, the descriptions of the communities could be generated by taking
a path down the tree to every leaf of the tree and taking the union of all rules that
are encountered in that path. That set of rules could then be used as a description for
the community ID that is classified in the leaf that the path results in. This method
could find distinguishing characteristics of communities, while the method we use in
this research uses the most frequently observed attribute values.

6.1.2 Adding community metadata

In the external evaluation, we received the request for more information to go along with
the communities, more than once. It would be interesting to explore what information
we could further extract from the partitions as they are generated, in order to facilitate
the process of interpreting the communities. An example of such metadata would
be the idea of finding nodes that act as bridges between communities, using their
betweenness centrality. Betweenness centrality is a centrality measure that can be used
to measure the amount of information that flows through a node. For any pair of
communities, one can find the node that lies between these communities that has the
highest betweenness centrality. This method could reveal nodes that are important in
connecting communities.

6.1.3 Timeline characteristics

Lastly, an interesting, and very natural, follow-up research avenue would be to look at
the results of the dynamic community detection from a more general perspective. One
can look at the number of DCs that are active simultaneously, for example. According
to the historians, this could say something about the competitiveness of the market, or
the rate of innovation in the market.

57 Iman Hashemi

Bibliography

[Goo, 2012] (2012). Knowledge graphs. https://blog.google/products/search/introducing-
knowledge-graph-things-not/. Accessed: 2022-04-25.

[RDF, 2014] (2014). RDF specification. https://www.w3.org/TR/rdf11-concepts/. Ac-
cessed: 2021-11-03.

[Gol, 2021] (2021). Golden agents. https://www.goldenagents.org. Accessed: 2021-12-
15.

[Airoldi et al., 2008] Airoldi, E. M., Blei, D., Fienberg, S., and Xing, E. (2008). Mixed
membership stochastic blockmodels. Advances in neural information processing sys-
tems, 21.

[Alvari et al., 2014] Alvari, H., Hajibagheri, A., and Sukthankar, G. (2014). Commu-
nity detection in dynamic social networks: A game-theoretic approach. In 2014
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2014), pages 101–107. IEEE.

[Aynaud and Guillaume, 2010] Aynaud, T. and Guillaume, J.-L. (2010). Static commu-
nity detection algorithms for evolving networks. In 8th International symposium on
modeling and optimization in mobile, Ad Hoc, and wireless networks, pages 513–519.
IEEE.

[Aynaud and Guillaume, 2011] Aynaud, T. and Guillaume, J.-L. (2011). Multi-step
community detection and hierarchical time segmentation in evolving networks. In
Proceedings of the 5th SNA-KDD workshop, volume 11.

[Barabási, 2016] Barabási, A.-L. (2016). Network Science. Cambridge University Press,
1 edition.

[Blondel et al., 2008] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre,
E. (2008). Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment, 2008(10):P10008.

[Breiman et al., 2017] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.
(2017). Classification and regression trees. Routledge.

[Chen et al., 2010] Chen, Z., Wilson, K. A., Jin, Y., Hendrix, W., and Samatova, N. F.
(2010). Detecting and tracking community dynamics in evolutionary networks. In
2010 IEEE International Conference on Data Mining Workshops, pages 318–327.
IEEE.

58

Utrecht University

[Clauset et al., 2004] Clauset, A., Newman, M. E., and Moore, C. (2004). Finding
community structure in very large networks. Physical review E, 70(6):066111.

[Derényi et al., 2005] Derényi, I., Palla, G., and Vicsek, T. (2005). Clique percolation
in random networks. Physical review letters, 94(16):160202.

[Dong et al., 2017] Dong, Y., Chawla, N. V., and Swami, A. (2017). metapath2vec:
Scalable representation learning for heterogeneous networks. In Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and data min-
ing, pages 135–144.

[Folino and Pizzuti, 2010] Folino, F. and Pizzuti, C. (2010). Multiobjective evolution-
ary community detection for dynamic networks. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pages 535–536.

[Fortunato and Barthelemy, 2007] Fortunato, S. and Barthelemy, M. (2007). Resolu-
tion limit in community detection. Proceedings of the national academy of sciences,
104(1):36–41.

[Girvan and Newman, 2002] Girvan, M. and Newman, M. E. (2002). Community struc-
ture in social and biological networks. Proceedings of the national academy of sci-
ences, 99(12):7821–7826.

[Greene et al., 2010] Greene, D., Doyle, D., and Cunningham, P. (2010). Tracking
the evolution of communities in dynamic social networks. In 2010 international
conference on advances in social networks analysis and mining, pages 176–183. IEEE.

[Grover and Leskovec, 2016] Grover, A. and Leskovec, J. (2016). node2vec: Scalable
feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864.

[Hogan et al., 2021] Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D.,
Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021).
Knowledge graphs. ACM Computing Surveys (CSUR), 54(4):1–37.

[Hopcroft et al., 2004] Hopcroft, J., Khan, O., Kulis, B., and Selman, B. (2004). Track-
ing evolving communities in large linked networks. Proceedings of the National
Academy of Sciences, 101(suppl 1):5249–5253.

[İlhan and Öğüdücü, 2015] İlhan, N. and Öğüdücü, Ş. G. (2015). Predicting commu-
nity evolution based on time series modeling. In 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages
1509–1516. IEEE.

[Jdidia et al., 2007] Jdidia, M. B., Robardet, C., and Fleury, E. (2007). Communities
detection and analysis of their dynamics in collaborative networks. In 2007 2nd
International Conference on Digital Information Management, volume 2, pages 744–
749. IEEE.

[Lee and Wilkinson, 2019] Lee, C. and Wilkinson, D. J. (2019). A review of stochastic
block models and extensions for graph clustering. Applied Network Science, 4(1):1–
50.

59 Iman Hashemi

Utrecht University

[Li et al., 2014] Li, M., Lu, Y., Wang, J., Wu, F.-X., and Pan, Y. (2014). A topol-
ogy potential-based method for identifying essential proteins from ppi networks.
IEEE/ACM transactions on computational biology and bioinformatics, 12(2):372–
383.

[Li et al., 2019] Li, X., Kao, B., Ren, Z., and Yin, D. (2019). Spectral clustering in
heterogeneous information networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 4221–4228.

[Li et al., 2017] Li, X., Wu, Y., Ester, M., Kao, B., Wang, X., and Zheng, Y. (2017).
Semi-supervised clustering in attributed heterogeneous information networks. In
Proceedings of the 26th International Conference on World Wide Web, pages 1621–
1629.

[Liu and Li, 2021] Liu, D. and Li, L. (2021). A label propagation based node clustering
algorithm in heterogeneous information networks. IEEE Access, 9:132631–132640.

[Liu et al., 2020] Liu, D., Li, L., and Ma, Z. (2020). A community detection algorithm
for heterogeneous information networks. IEEE Access, 8:195655–195663.

[Luce and Perry, 1949] Luce, R. D. and Perry, A. D. (1949). A method of matrix
analysis of group structure. Psychometrika, 14(2):95–116.

[Michail, 2016] Michail, O. (2016). An introduction to temporal graphs: An algorithmic
perspective. Internet Mathematics, 12(4):239–280.

[Miller, 1995] Miller, G. A. (1995). Wordnet: a lexical database for english. Commu-
nications of the ACM, 38(11):39–41.

[Miyauchi and Kawase, 2016] Miyauchi, A. and Kawase, Y. (2016). Z-score-based mod-
ularity for community detection in networks. PloS one, 11(1):e0147805.

[Padgett and Ansell, 1993] Padgett, J. F. and Ansell, C. K. (1993). Robust action and
the rise of the medici, 1400-1434. American journal of sociology, 98(6):1259–1319.

[Palla et al., 2007] Palla, G., Barabási, A.-L., and Vicsek, T. (2007). Quantifying social
group evolution. Nature, 446(7136):664–667.

[Pizzuti, 2008] Pizzuti, C. (2008). Ga-net: A genetic algorithm for community detec-
tion in social networks. In International conference on parallel problem solving from
nature, pages 1081–1090. Springer.

[Pons and Latapy, 2005] Pons, P. and Latapy, M. (2005). Computing communities in
large networks using random walks. In International symposium on computer and
information sciences, pages 284–293. Springer.

[Raghavan et al., 2007] Raghavan, U. N., Albert, R., and Kumara, S. (2007). Near
linear time algorithm to detect community structures in large-scale networks. Physical
review E, 76(3):036106.

[Rossetti and Cazabet, 2018] Rossetti, G. and Cazabet, R. (2018). Community discov-
ery in dynamic networks: a survey. ACM computing surveys (CSUR), 51(2):1–37.

60 Iman Hashemi

Utrecht University

[Rossetti et al., 2017] Rossetti, G., Pappalardo, L., Pedreschi, D., and Giannotti, F.
(2017). Tiles: an online algorithm for community discovery in dynamic social net-
works. Machine Learning, 106(8):1213–1241.

[Rosvall and Bergstrom, 2008] Rosvall, M. and Bergstrom, C. T. (2008). Maps of ran-
dom walks on complex networks reveal community structure. Proceedings of the
national academy of sciences, 105(4):1118–1123.

[Schneider, 1973] Schneider, E. W. (1973). Course modularization applied: The inter-
face system and its implications for sequence control and data analysis.

[Sun et al., 2011] Sun, Y., Han, J., Yan, X., Yu, P. S., and Wu, T. (2011). Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks. Pro-
ceedings of the VLDB Endowment, 4(11):992–1003.

[Sun et al., 2009] Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., and Wu, T. (2009).
Rankclus: integrating clustering with ranking for heterogeneous information network
analysis. In Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, pages 565–576.

[Sun et al., 2013] Sun, Y., Norick, B., Han, J., Yan, X., Yu, P. S., and Yu, X. (2013).
Pathselclus: Integrating meta-path selection with user-guided object clustering in
heterogeneous information networks. ACM Transactions on Knowledge Discovery
from Data (TKDD), 7(3):1–23.

[Wang et al., 2008] Wang, Y., Wu, B., and Pei, X. (2008). Commtracker: A core-based
algorithm of tracking community evolution. In International Conference on Advanced
Data Mining and Applications, pages 229–240. Springer.

[Wang et al., 2018] Wang, Z., Li, Z., Yuan, G., Sun, Y., Rui, X., and Xiang, X.
(2018). Tracking the evolution of overlapping communities in dynamic social net-
works. Knowledge-Based Systems, 157:81–97.

[Wei et al., 2021] Wei, S., Yu, G., Wang, J., Domeniconi, C., and Zhang, X. (2021).
Multiple clusterings of heterogeneous information networks. Machine Learning, pages
1–22.

[Yang and Leskovec, 2013] Yang, J. and Leskovec, J. (2013). Overlapping community
detection at scale: a nonnegative matrix factorization approach. In Proceedings of the
sixth ACM international conference on Web search and data mining, pages 587–596.

[Zhang et al., 2021] Zhang, B., Gong, M., Huang, J., and Ma, X. (2021). Clustering
heterogeneous information network by joint graph embedding and nonnegative ma-
trix factorization. ACM Transactions on Knowledge Discovery from Data (TKDD),
15(4):1–25.

[Zhuang et al., 2019] Zhuang, D., Chang, J. M., and Li, M. (2019). Dynamo: Dynamic
community detection by incrementally maximizing modularity. IEEE Transactions
on Knowledge and Data Engineering, 33(5):1934–1945.

61 Iman Hashemi

Appendix A

Questionnaire

The purpose of this questionnaire is to evaluate the results that the dynamic community
detection produces. Three aspects are discussed, namely the presence of community
structure in the results, the evolution of the communities and the correctness of the
generated descriptions.

A.1 Search by dynamic community ID
In cell 5, under the heading: “RESULTS: follow a dynamic community based on the
dynamic community id, edit "dyn_com_id", it is possible to look up a specific dynamic
community and see information about it. A dynamic community is presented as a list
of communities that are connected to each other over time. Each community in this
list describes the composition of the dynamic community in that period. A dynamic
community has a start year and an end year. Multiple dynamic communities can be
merged into one dynamic community and a dynamic community can also split into
multiple dynamic communities.

You can look up a dynamic community by changing the variable “dynamic_com_id”.
In the output of the cell you can see how long the community has existed, a small
visualization of it and the people in the dynamic community in each period in which it
exists. If any merges or splits have occurred, that will also be displayed.

Answer the following question for the following three dynamic communities: c1, c2,
c3. Enter these numbers into “dynamic_com_id” and run the cell to see the results for
that dynamic community.

A.1.1 Community structure

• The people shown for each interval of the dynamic community are sorted by
centrality. This is based on the number of connections a person has with other
people in the network. Does this ranking correspond to the importance attributed
to this person by historians?

• Do you have an idea about why the dynamic community is composed in this way?

62

Utrecht University

• Could you give a description of the dynamic community based on characteristics
of the dynamic community?

A.1.2 Evolution of communities

• The dynamic community has a starting point and an ending point. These years
give indications and are not exact starting points or ending points. Can you
explain why the community has this starting point and ending point, considering
the makeup of the dynamic community?

• Have communities been merged? If so, could you describe why you think this
happened?

A.1.3 Description

If you run the last cell, under the heading: “RESULTS: produce a description of a
dynamic community, edit "dyn_com_id" “, you will see a description of the dynamic
community based on some characteristics that are common in the community. The
percentage of community members who have this attribute is also included.

• Do you think the description is a characteristic description for the community, or
could the given description just as well refer to another community?

A.2 Search by name
With the search function you can enter a name and follow that person through time.
You can see which dynamic communities that person belonged to and in what time
interval that was. You’ll also see a list of names of all the other people who belonged
to that dynamic community. This list of names is also sorted by centrality, with the
most central person (the person with the most connections to other people) at the top.

Enter in cell 6, under the heading: “RESULTS: follow a person through time” , for
“name”, a name of an important person, a person who had a central role. Also write
down what name this is below. Then answer the following questions.

A.2.1 Centrality

• What position does the person have in the list of people in the community? Does
this match what you expected?

A.2.2 Evolution of community membership

• Can the changes taking place in the person’s membership of the dynamic com-
munities be substantiated? If so, could you provide this justification?

• Did seeing this development lead to interesting insights about this person?

63 Iman Hashemi

Utrecht University

A.3 General
These questions are about the results in a general sense.

• Did you gain certain insights about the data by using the system? If so, can you
name them?

• Do you think this system can be useful for historical research? If so, in answering
what type of research questions could the system be helpful? Please provide a
concrete example, if possible.

64 Iman Hashemi

