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PlasmidEC: An ensemble of classifiers that improves plasmidome recall from 
short-read sequencing data in Escherichia coli 

Abstract 
Over the past decades, pathogenic lineages of Escherichia coli have rapidly acquired antibiotic 
resistance. Currently, multidrug resistant E. coli is the most frequent cause of lethal infections 
among resistant bacteria in a hospital setting.1 Antibiotic resistance genes (ARGs) are commonly 
spread via plasmids. From a clinical and epidemiological standpoint, it is very relevant to analyse the 
plasmid content in E. coli. The rise of Illumina whole genome sequencing (WGS) has enabled fast 
large-scale analysis of the genomic content of bacteria. However, it is usually not possible to 
reconstruct plasmids by genome assembly of short-read sequencing data. Therefore, several 
bioinformatic tools have been developed to uncover the total plasmid content in a sample, also 
referred to as the plasmidome, by classifying genomic sequences as either chromosome- or plasmid-
derived. We benchmarked four of these binary classifiers (mlplasmids, PlaScope, Platon and 
RFPlasmids). They are at the basis of plasmidEC, an ensemble classifier that combines the output of 
three plasmid classifiers using a majority voting system. The combination of 
Platon/PlaScope/RFPlasmid presented the best plasmidome predictions (F1-score = 0.904). 
Compared to individual classifiers, plasmidEC achieved increased recall (0.885), especially for contigs 
derived from ARG-plasmids (recall = 0.941). Moreover, a plasmidome study of E. coli ST131 using 
plasmidEC was used to identify differences between this lineage and other E. coli. Finally, we show 
that plasmidEC removes chromosomal contamination in plasmid reconstructions obtained by MOB-
suite. 

Plain language summary 
Bacteria often carry plasmids, which are small genetic elements that can be exchanged via horizontal 
gene transfer. In this way they can spread quickly between bacteria of the same or different species. 
Plasmids usually contain genes that allow their host to adapt to a specific environment. In 
pathogens, these include genes that provide resistance to antibiotics. Infections by antibiotic 
resistant bacteria are more difficult to treat, especially when they are resistant to multiple 
antibiotics. Multidrug resistance is becoming increasingly common in pathogenic lineages of 
Eschericia coli. For studying resistance in this species, accurate prediction of plasmid sequences is 
very important. Here, we use an E. coli dataset to compare four softwares which predict the total of 
sequences that originate from plasmids in a sample, i.e. the plasmidome. We developed plasmidEC, 
a tool that combines the predictions of three input softwares and outputs the prediction given by 
the majority of the tools. PlasmidEC improves the recall of plasmidome predictions, especially for 
plasmids that carry antibiotic resistance genes. We show two applications of this tool; plasmidome 
analysis of E. coli ST131, and removal of chromosomal contamination in reconstructions of individual 
plasmids. 
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Introduction 

Antibiotic resistance is a major global health threat. The rapid emergence and spread of multidrug 
resistance is especially alarming, leading to infections that are complicated or even impossible to 
treat.2 Escherichia coli, a commensal gut bacterium, has recently established successful clinical 
lineages due to the accumulation of antibiotic resistance genes (ARGs).3,4 In 2019, 57.1% of E. coli 
clinical isolates from the European Union displayed resistance to at least one major antibiotic 
class, and 39.1% of these strains were resistant to multiple classes.5 Third-generation cephalosporin-
resistant E. coli has been estimated to account for 47.4% of total infections and 32.1% of attributable 
deaths caused by resistant bacteria in 2015. The number of attributable deaths by this resistance 
group, which commonly produces extended-spectrum β-lactamases (ESBLs), was estimated to have 
increased at least four-fold since 2007. 1 

Plasmids play a critical role in the dissemination of antibiotic resistance.6 These independent genetic 
elements usually contain genes that contribute to the adaptation of bacteria to specific 
environments, and they can spread within and between species by diverse horizontal transfer 
mechanisms.7,8 ARGs to all major antibiotic classes have been found on plasmids, including those 
encoding ESBLs, carbapenemases and quinolone resistance. 9 Therefore, it is very relevant to study 
the plasmid content of E. coli and its impact on the spread of resistance.  

Traditionally, plasmid sequences were determined by purifying plasmid DNA in the laboratory, 
followed by shotgun sequencing. However, this method is labour intensive and not applicable for 
recovering large plasmids.10,11 Recently, Illumina short-read sequencing has become the most 
popular technology to determine the genomic content of bacteria. This method is accessible, fast 
and allows the processing of many samples at once. However, due to the frequent occurrence of 
repeated elements, it is usually not possible to assemble complete plasmids using short-read 
sequencing data alone. Instead, genome assemblies result in hundreds of contigs of unclear origin 
(plasmid or chromosome).12 A hybrid approach, which uses both long-read and short-read 
sequencing information, is able to resolve this issue but is also costly. 13 Several bioinformatic tools 
have been developed to predict the plasmid content of bacteria from short-read sequencing data. 
According to their function, these softwares can be broadly categorised into two classes: binary 
classifiers, which classify assembled contigs as either chromosome- or plasmid-derived, and plasmid 
reconstruction softwares, which aim at reconstructing individual plasmids. 

Binary classifiers can distinguish between chromosomal and plasmid contigs by exploiting 
differences in k-mer content, aligning contigs to reference databases or detecting plasmid-specific 
genes. These tools output the entire plasmid content of a strain, also referred to as the plasmidome. 
Plasmidome analysis has proven very useful to uncover the genomic location of ARGs 14–17, and also 
to determine the role of the plasmidome in niche adaptation18. There exist several binary classifiers, 
using different computational strategies, that can be used to identify the plasmidome of E. coli. 
However, as of to date the performance of these tools has not been evaluated in an independent 
manner. Besides, there is a need to assess their suitability for uncovering contigs of plasmids that 
carry ARGs, which are of specific clinical relevance. Furthermore, a major problem of these classifiers 
is that they suffer from low recall and may be biased towards recovering only a certain type of 
plasmid.19–22 

In this work, we compare the performance of four binary classifiers using a comprehensive and 
diverse dataset of E. coli genomes. We present plasmidEC, an ensemble classifier that implements a 
majority voting system based on the combined output of three individual classifiers. We show that 
plasmidEC provides plasmidome predictions with increased recall, especially for contigs derived from 
ARG-plasmids. Moreover, plasmidEC was used to study the plasmidome and resistome of a 
collection of E. coli strains obtained from patients treated in different ICUs across Europe. Our tool 
allowed us to identify plasmidome specific differences between ST131 and other STs. A common 
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problem of plasmid reconstruction tools is that their predictions contain chromosomal sequences.23 
We show that plasmidEC refines individual plasmid reconstructions obtained with MOB-suite, by 
removing chromosomal contamination. 

Materials & methods 

All scripts used can be found at https://github.com/lisavader/ST131. R version 4.1.0 24 was used for 
all R scripts. 

1. Benchmarking study of binary classifiers and plasmidEC 

Sample selection 
A dataset of 240 E. coli complete genomes carrying 631 plasmids was selected from Paganini et al.23 
Samples were isolated from animals, humans and the environment, resulting in a diverse dataset 
with respect to phylogeny and plasmid content. All genomes were completed by hybrid assembly. 
Short-read sequences and completed genomes were downloaded from NCBI using ncbi-genome-
download v0.2.10 (https://github.com/kblin/ncbi-genome-download/). Samples present in the 
training datasets or reference databases of mlplasmids, PlaScope, Platon and/or RFPlasmid were 
removed (n=26). One sample was removed due to difficulties during genome assembly. The final 
dataset consisted of 213 samples including 542 plasmids. 
 
Selection of contigs for benchmarking 
Short-read sequences of each sample were assembled using bactofidia v1.1. 
(https://gitlab.com/aschuerch/bactofidia). The resulting contigs (n= 18,963) were labeled as 
chromosome- or plasmid-derived by alignment to their respective genomes using QUAST v5.0.2.25 
Only contigs larger than 1000 bp with an alignment of at least 90% the contig length were included 
(n=15,020). Contigs aligning to multiple positions at the genome (ambiguously aligned contigs) were 
included as long as they exclusively aligned to either the chromosome or to plasmids (n=1,236). The 
same applies for contigs that partly align to one position, and partly to another (misassembled 
contigs) (n=1,862). In total, the benchmarking dataset included 14,746 contigs (Figure S1). 

Assessment of binary classifier performance 
Contigs were classified by mlplasmids v2.1.20, PlaScope v.1.3.121, Platon v.1.619 and RFPlasmid 
v.0.0.1722. All tools were run using default parameters. We assessed the performance of the four 
binary classifiers by comparing, for each contig, the binary prediction to their actual class, as 
previously determined by genome alignment. For PlaScope, an ‘unclassified’ prediction was handled 
as a negative prediction (chromosome). Predictions were categorised into True Positives (TP; 
prediction=plasmid, class=plasmid), True Negatives (TN; prediction=chromosome, 
class=chromosome), False Positives (FP, prediction=plasmid, class=chromosome) and False 
Negatives (FN, prediction=chromosome, class=plasmid). Each tool was evaluated with respect to 
recall [TP/(TP+FN)], precision [TP/(TP+FP)] and F1-score [2*(recall*precision)/(recall+precision)].  
 
Assessment of ensemble classifier performance 
Majority voting ensemble classifiers were tested using four different combinations of binary 
classifiers: mlplasmids/PlaScope/Platon, mlplasmids/PlaScope/RFPlasmid, 
mlplasmids/Platon/RFPlasmid and PlaScope/Platon/RFPlasmid. Results were calculated in R, based 
on the overlap between the predictions of binary classifiers. The ensemble classifiers were evaluated 
using the same metrics as described for the binary classifiers (recall, precision, F1-score). 
 
Selection of ARG-plasmids 
A subset of ARG-plasmids (n = 112) was selected from Paganini et al.23 This dataset consists of 
plasmids that contain at least one ARG, as determined with ABRicate v1.0.1 
(https://github.com/tseemann/abricate),using the ResFinder database.26 

https://www.zotero.org/google-docs/?thJSrs
https://github.com/lisavader/ST131
https://www.zotero.org/google-docs/?5j8aFr
https://www.zotero.org/google-docs/?0HC04b
https://github.com/kblin/ncbi-genome-download/
https://gitlab.com/aschuerch/bactofidia
https://www.zotero.org/google-docs/?vBaVxd
https://www.zotero.org/google-docs/?GaRiAj
https://www.zotero.org/google-docs/?1Rb8zL
https://www.zotero.org/google-docs/?cPUUd7
https://www.zotero.org/google-docs/?CNkvJg
https://www.zotero.org/google-docs/?dhVeGU
https://github.com/tseemann/abricate
https://www.zotero.org/google-docs/?knTCvG
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2. Plasmidome analysis of E. coli ST131 

Genome assembly and taxonomic classification 
Samples were sequenced by Illumina sequencing using the NexteraXT library preparation kit. Read 
lengths were 150 bp. Genome assembly was performed by bactofidia v1.1. Species and ST were 
determined by multi-locus sequence typing using mlst v.2.16.2 (https://github.com/tseemann/mlst). 
Phylogroups were determined by ClermonTyping v.20.03.27 In total, 363 E. coli samples were 
detected by mlst. One of these samples was excluded because it was recognised as E. marmotae by 
ClermonTyping. The fimH allele of the samples was determined using blastn v.2.12.0+28 against the 
FimH database from FimTyper v1.0 (https://bitbucket.org/genomicepidemiology/fimtyper/src).  
 
Accessory genome and plasmidome analysis 
Gene annotation was done with prokka v.1.14.5.29 Core and accessory genome content were 
determined using Panaroo v.1.2.3 run in sensitive mode.30 The plasmidome was determined using 
plasmidEC. Accessory genome and plasmidome Jaccard distances were calculated in R using proxy 
v.0.4.26.31 

Phylogenetic reconstruction 
A maximum likelihood phylogenetic tree was built using RAxML v.8.2.1232 based on the core gene 
alignment produced by Panaroo. RAxML was run over 20 iterations using the CAT model of rate 
heterogeneity. The tree was rooted using the E. marmotae sample as outgroup. 

Resistome analysis 
We predicted ARGs present in our dataset by running ABRicate v.0.8 against the ResFinder database, 
using a coverage cut-off of 95%. The origin of contigs containing ARGs was predicted using 
plasmidEC. Cooccurence analysis of ARGs was carried out in R using the package cooccur v.1.333, 
visualisation was done by visNetwork v.2.1.034 

3. Removing chromosomal contamination in plasmid predictions 

Reconstruction of plasmids 
The dataset used is equal to the benchmarking dataset used to evaluate the binary classifiers. 
Plasmids were reconstructed by MOB-suite v.3.0.0.35 In case of the ‘reconstruction first’ method, 
plasmidEC was run on the resulting predictions and all contigs predicted to be chromosomal were 
removed. In case of the ‘selection first’ method, contigs were first classified by plasmidEC and MOB-
suite was then run using as input all plasmid-predicted contigs. 
 
Evaluation of performance 
The contigs of the predicted plasmid units (bins) were aligned to their completed reference genomes 
using QUAST v5.0.2. A length cut-off of 1000 bp and coverage cut-off of 90% were used for 
alignment. Ambiguous alignments (alignments of a contig to multiple reference replicons) were 
included, except when  the bin was composed solely of ambiguously aligned contigs. 
Bins were evaluated with respect to recall and precision. The recall per bin-plasmid alignment is 
defined as the fraction of the reference plasmid covered by the bin. The precision is defined as the 
fraction of the bin that aligns to the reference plasmid. The total recall for each reference plasmid 
was calculated by adding all alignments to that reference plasmid together.  
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Results 

1. Benchmarking study of binary classifiers and plasmidEC 

Selection of binary classifiers 
We compared four binary classifiers that use distinct computational strategies for plasmid 
classification: mlplasmids, Platon, PlaScope and RFPlasmid. Mlplasmids uses support-vector machine 
models to distinguish contigs based on their pentamer frequencies. It has five species specific 
models available.20 Platon classifies contigs based on the distribution of protein-coding genes, which 
is different for chromosomal and plasmid sequences. Furthermore, Platon uses specific sequences 
such as mobilisation genes, incompatibility sequences and oriT, and Blast hits to a plasmid 
database.19 PlaScope performs k-mer searches against custom databases of plasmid and 
chromosome sequences, currently available for E. coli and K. pneumoniae. These searches are 
applied using the metagenomic classifier Centrifuge.36 Contigs that don’t have any hits, have hits to 
both plasmid and chromosome sequences, or don’t have sufficient length or coverage are assigned 
to an ‘unclassified’ category.21 RFPlasmid uses a random forest classifier based on k-mer 
composition, plasmid and chromosomal marker genes, replicons, overall gene content and contig 
length. It has models available for sixteen genera, the Enterobacteriaceae family and a general 
Bacteria model.22 

Binary classifiers show major differences in performance 
After genome assembly using short-reads, we obtained a total of 18,963 contigs, of which 77.8% 
(n=14,746) were included in the final benchmarking dataset . An overview of the included and 
excluded contigs and their alignment type can be found in Figure S1. Of the included contigs, 87.3% 
(n=12,872) were of chromosomal origin, while the remaining 12.7% (n=1,874) were plasmid derived. 
The class of all included contigs was predicted by the four selected binary classifiers. Predictions 
were later compared to the true class of the contigs, which was determined by aligning each contig 
to its corresponding complete genome. The performance of the tools was evaluated using the 
metrics precision, recall and F1-score.  

  

  

  

  

  

  

   

   

  

  

  
    

  

 

  

                

                 

              
 

  

 

 

  

  

     

   

  

  

 
     

  

 

  

                

                 

              
 

  

  

   

  

 

  

  

  

   

  
   

 

  

 

                

                 

               
 

  

  

  

  

 

  

  

  

   

  
    

  

  

  

                

                 

               
 

Figure 1 - Venn diagrams representing the overlap in absolute count of True Positives (a), True Negatives (b), 
False Positives (c) and False Negatives (d) between binary classifiers. 
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We examined the overlap in contig predictions between the tools. A high fraction of chromosomal 
contigs was correctly classified by all of the tools (n=12116, 94.1%) (Figure 1A), but this was only the 
case for approximately half of plasmid contigs (n=971, 51.8%) (Figure 1B). The majority of 
misclassifications, for both plasmid- and chromosome-derived contigs, were made by only one of the 
softwares (FP: 535, 71.4%, FN: 497, 55,0%) (Figures 1C and 1D). In contrast, a low percentage of 
correct predictions was unique to one software (TP: 85, 4.7%, TN: 58, 0.5%) (Figures 1A and 1B).  

The four classifiers showed large differences in recall, precision and F1-score (Figure 2A). The best 

performance was reached by PlaScope, which presented the highest values for all metrics (recall = 

0.869, precision = 0.933, F1-score = 0.900). Platon scored similarly in terms of precision (0.925), but 

achieved a lower recall (0.805). All softwares except RFPlasmid showed a higher precision than 

recall. Table S1 provides an overview of all results per software.  

PlasmidEC improves the recall of contigs derived from ARG plasmids 
We built plasmidEC, an ensemble classifier that combines the predictions of three individual 
classifiers and outputs the prediction given by the majority of the tools (Figure S2). The rationale 
behind this is to discard software-specific misclassifications, while keeping correct classifications, 
which are usually shared between softwares. Additionally, the combination of multiple classification 
methods could broaden the variety of plasmid sequences that can be detected. PlasmidEC is publicly 
available at https://github.com/lisavader/plasmidEC/. 
 
We tested all possible combinations of input classifiers and their effect on recall, precision and F1-
score (Figure 2B). The combination of Platon/PlaScope/RFPlasmid presented the best overall 
performance (recall = 0.885, precision = 0.924, F1-score = 0.904). This ensemble classifier achieved 
an F1-score similar to PlaScope, but recall and precision values were more balanced. Scores for all 
ensemble classifier combinations can be found in Table S2. 

We also evaluated recall values of all individual and ensemble classifiers for a subset of plasmids 
(n=112) encoding antibiotic resistance genes (ARG-plasmids) (Figure 2C and 2D, Table S3). This 
dataset consisted of 860 plasmid contigs, from 91 E. coli genomes. Notably, all tools showed an 
increased recall when detecting contigs derived from these ARG-plasmids. However, for this dataset, 
the combination of Platon/PlaScope/RFPlasmid (recall =0.941) strongly outperformed the best 
individual classifier (Plascope, recall=0.884) . This major improvement indicates that plasmidEC is 
especially suited for identifying contigs from ARG-plasmids. 

  

Figure 2 - Performance of binary classifiers and plasmidEC combinations, measured by recall (blue), precision 
(orange) and F1-score (pink) of contigs. (a) Binary classifiers evaluated using full dataset. (b) Binary classifiers 
evaluated using dataset of plasmids containing ARGs. (c) PlasmidEC combinations evaluated using full dataset. 
(d) PlasmidEC combinations evaluated using dataset of plasmids containing ARGs. 
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Computational performance 
Finally, we measured the computational resources used by the individual and ensemble classifiers 
(Figure 3). The binary classifiers showed considerable differences in both CPU time and memory 
used. The average CPU time required per sample was lowest for PlaScope (0.2 mins) and highest for 
Platon (14.9 mins). Platon also used the largest amount of memory per sample (20.6 Mb). The least 
amount of memory was required by mlplasmids (2.7 Mb). Because plasmidEC includes the execution 
of three binary classifiers, time and memory requirements were high, especially when Platon was 
run. The combination of mlplasmids/PlaScope/RFPlasmid required the least amount of resources 
(CPU time = 4.5 mins, memory = 9.0 Mb) and PlaScope/Platon/RFPlasmid the most (CPU time = 21.5 
mins, memory = 21.4 Mb). 

 
 
 
2. Plasmidome analysis of E. coli ST131 
E. coli ST131 is a pandemic pathogen and a frequent cause of urinary tract and bloodstream 
infections.37 This clonal group was first detected in 2003, spreading very rapidly to become the most 
abundant sequence type (ST) among E. coli clinical isolates.38 E. coli ST131 is commonly associated 
with fluoroquinolone resistance and with the production of ESBLs. We applied plasmidEC for 
exploring the plasmidome of a set of  E. coli ST131 isolates, and compared it to other E. coli of 
diverse STs. We also studied and contrasted the entire accessory genome and resistome of this set 
of isolates.  
 
Population structure of highly resistant E. coli in European ICUs 
We analysed a dataset of 362 E. coli isolates that were collected from ICUs of 10 European hospitals 
between 2013 and 2017, as part of the RGNOSIS-ICU study, which examined the effect of 
decontamination strategies on the incidence of bloodstream infections in ICUs.39 Most of the 
samples (330, 91.2%) were selected for ESBL production. Samples were isolated from the rectum 
(331, 91.4%), the respiratory tract (23, 6.4%) or the blood (8, 2.2%). Multi-locus sequence typing 
detected 94 different STs, showing the considerable phylogenetic diversity of our dataset. ST131 was 
the most abundant sequence type (n=98, 27.1%), followed by ST10 (n=20, 5.5%) (Figure S3). 
Phylogenetic diversity was confirmed through the construction of a maximum likelihood tree, based 
on core SNP distances between the samples (Figure 4a).  

Within E. coli ST131, the majority of samples belonged to clade C (n=87, 88.8%), as determined by 
typing of the fimH allele, and only 10 samples corresponded to either clade A (n=7, 7,1%) or clade B 
(n=7, 7.1%).(Figure 4b). Among these isolates, we found 9 different blaCTX-M alleles, of which 
blaCTX-M-15 and blaCTX-M-27 were most frequent, occurring in 49 samples (50.0%) and 30 samples 
(30.6%) respectively. Interestingly, clade C isolates with the same blaCTX-M allele also presented a 
stronger phylogenetic association, as they clustered together in the maximum likelihood tree (Figure 

                         

                           

                             

                          

         

      

        

          

        

                                  

 

        

                              

 

Figure 3 - Average computational resources used per sample: CPU time in minutes (a) and memory in Mb (b). 
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4b). Despite this, we did not find the distinct subclades C1 and C2 associated with blaCTX-M-15 and 
blaCTX-M14/27 that have been reported previously.40,41 

  

Figure 4 - (a) Maximum likelihood phylogeny of E. coli samples, tips are coloured by sequence type (ST, only 
STs present in at least 10 samples). Rings are coloured by phylogroup, selection for ESBL and isolation source. 
b) Maximum likelihood phylogeny of E. coli ST131 samples, tips are coloured by clade. Rings are coloured by 
fimH allele and blaCTX-M type. 
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E. coli ST131 presents a distinct accessory genome and plasmidome 
We examined differences in the accessory genome and in the predicted plasmidome of the E. coli 
samples. Every sample in our dataset contained contigs predicted to originate from plasmids. On 
average, the accessory genome consisted of 2200 genes, and the plasmidome  of 294 genes. We 
found a positive correlation between plasmidome and accessory genome size (Figure S4). Notably, 
we discovered significant differences in accessory genome and plasmidome size between E. coli 
ST131 and other STs. Compared to other lineages, E. coli ST131 carried a more expansive accessory 
genome (mean = 2310), but a more limited plasmidome (mean = 233) (Figure 5). 

 

 

To evaluate the differences in accessory genome and plasmidome composition, we first obtained a 
gene presence-absence matrix and used this to calculate Jaccard distances between all samples. 
These distances were later given as an input for a hierarchical clustering algorithm (Figure 6). The 
accessory genome composition appears to have a strong association with the phylogeny of the 
isolates, especially at the phylogroup level. Figure 6 shows two main clusters, one composed of 
isolates that belong to phylogroup B2, and another containing a mix of phylogroups A, B1 and C,  
three phylogroups that share a common phylogenetic origin (Figure 4a). Within phylogroup D, the 
accessory genome seems to be related to ST but not to the overall phylogroup. All ST131 strains are 
part of a highly conserved cluster which is very distinct from other strains. 

The plasmidome shows more variation than the accessory genome, and is not clearly associated with 
the phylogroup of the isolates. However, many of the E. coli ST131 strains still cluster together, 
indicating that there are shared plasmid sequences between them. 

  

          =  .               =  .     
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Figure 5 - Number of genes present in the accessory genome and plasmidome of E. coli ST131 (red) compared 
to other STs (blue). Significance determined by Welch t-test. 
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Figure 6 - Heatmaps showing the Jaccard distances between the accessory genome (a) and plasmidome (b) of 
samples, clustered using hierarchical clustering (linkage = complete). Samples are coloured by phylogroup and 
ST (only STs present in at least 10 samples). 
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E. coli ST131 carries a limited but specific resistome 
E. coli plasmids encode most of its resistome, since the majority of ARGs (n=579, 82.4%) were found 
on plasmid predicted contigs (Figure S5). Notably, E. coli ST131 carries a significantly smaller number 
of ARGs (mean=7.2) than other STs (mean=8.4) (Figure S6). Additionally, ST131 samples showed 
limited variety in the resistome (Figure 7), encoding a total of 39 distinct ARGs and frequently 
displaying specific ARG combinations. In contrast, other E. coli displayed a more diverse resistome, 
encoding 110 distinct ARGs. This variety is also present for individual STs, for example ST10, which is 
represented by only 20 samples compared to 98 ST131 samples, encodes a total of 52 distinct ARGs. 

 

 

We analysed the cooccurrence of ARGs within samples to unravel clusters of resistance 
determinants. In E. coli ST131, we found four distinct clusters, which are annotated in Figure 8. 
Clusters 1 and 2 were previously described in plasmids associated with clade C1 and clade C2 
respectively.34 There is a negative correlation between the presence of cluster 1 and 2, and notably, 
both clusters contain different alleles of a blaCTX-M gene. Interestingly, tet(A) appears to be the 
main resistance determinant against tetracycline in ST131. This ARG is associated with both cluster 3 
and 4, two clusters composed of genes that are not significantly associated with each other, and that 
show redundant functions. Within other E. coli, significant relationships between ARGs are more 
abundant and more complex. Nevertheless, we also observe mutual exclusivity between genes that 
encode a common resistance type. This mutual exclusivity is present for the different blaCTX-M 
genes, as well as for sul and tet genes, which encode sulfonamide and tetracycline resistance 
respectively. 

 

Figure 7 - Antibiotic resistance gene (ARG) profiles per sample. ARGs are coloured by their predicted location; 
plasmid (green), chromosome (orange) or both (yellow). Samples are clustered by phylogeny and coloured by 

phylogroup and ST (only STs present in at least 10 samples). Showing only ARGs present in at least 8 samples.  
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Figure 8 - Cooccurrence networks of ARGs found in E. coli ST131 (a) and in other STs (b). Showing only 
significant positive (green) and negative (red) interactions. Thicker edges correlate with lower p-values. Node 
size corresponds to abundance and node colour corresponds to the average predicted presence on plasmid vs. 
chromosome. ARG clusters are annotated by hand. 
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3. Removing chromosomal contamination in plasmid predictions 
In a recent work, MOB-suite presented the best performance for reconstructing individual E. coli 
plasmids from short-read data (50.2% correct reconstructions). 23 A major flaw of this software, 
however, was the inclusion of chromosomal chromosomal contigs in a significant fraction of the 
plasmid predictions (40%). We evaluated the performance of plasmidEC as a tool for removing 
chromosomal contamination from MOB-suite predictions.  

Tools were applied to the same dataset that was used for the benchmarking of binary classifiers.  To 
test the influence of the assembly step, short-reads were assembled using two different pipelines: 
Unicycler13 and bactofidia42. The resulting contigs were used as input for MOB-suite and plasmidEC.  
We tested two different methods for integrating the tools. According to the ‘reconstruction first’ 
method, plasmids are reconstructed by MOB-suite, after which chromosomal contigs predicted by 
plasmidEC are removed from the predictions. In the ‘selection first’ method, plasmid contigs are 
selected by plasmidEC and only these putative plasmid contigs are used as input for MOB-suite. 

Plasmid predictions (bins) were aligned to their completed genome and analysed with regards to bin 
composition, recall and precision. 
 
PlasmidEC successfully removes chromosomal contamination and doesn’t affect recall of 
predictions 
Standard MOB-suite output contained chromosomal contamination in 22.1% of bins, when using 
bactofidia as assembler, and in 24.5% of bins when assembly was performed with Unicycler. When 
applying plasmidEC with the ‘reconstruction first’ method, chromosomal contamination was 
reduced to 11.5% for both bactofidia and Unicycler assemblies. The ‘selection first’ method reduced 
contamination to 10.5% for bactofidia and 11.6% for Unicycler. However, this method produced 
fewer bins containing contigs derived from a unique plasmid (bactofidia: 418, Unicycler: 436) 
compared to the ‘reconstruction first’ method (bactofidia: 437, Unicycler: 464). Notably, the amount 
of bins composed of contigs that did not align to the reference genome was consistently higher in 
bactofidia assemblies, suggesting a higher rate of errors during assembly with this tool. 
Using PlasmidEC to clean chromosomal contamination has no influence on the recall of bins and 
reference plasmids (Figure 10a and 10c). This result indicates that, in the majority of the cases, true 
plasmid contigs are not wrongfully removed from MOB-suite predictions. Additionally, by removing 
chromosomal contamination, plasmidEC increases precision of plasmid predictions (Figure 10b). 

 

  

Figure 9 - Bin composition with respect to plasmid and chromosomal contigs for all bins predicted by MOB-suite. 
Showing results for standard MOB-suite and two methods that combine MOB-suite with plasmidEC 

 ‘               f    ’     ‘          f    ’ . I         igs were assembled by bactofidia and by Unicycler. 

https://www.zotero.org/google-docs/?0HC04b
https://www.zotero.org/google-docs/?Htaovb
https://www.zotero.org/google-docs/?p9MABP
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Figure 10 - Boxplots showing recall (a) and precision (b) for each bin. Also showing total recall per reference 
plasmid (c). 
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Discussion 

In this work, we show that plasmidome identification from short-read sequencing data can be 
improved by combining the output of multiple binary classification tools. We developed plasmidEC, 
an ensemble classifier based on the majority vote between three input classifiers. The best software 
combination for E. coli was Platon/PlaScope/RFPlasmid, which presented an F1-score of 0.904 and 
outperformed all individual classifiers. We also demonstrated that plasmidEC identified a very large 
fraction of contigs derived from ARG-plasmids, scoring a recall of 0.941. In contrast, the recall of 
PlaScope, the best individual tool, was 0.884 for these plasmids. This means that ARG plasmid 
contigs that are missed by PlaScope can usually be recalled by Platon and RFPlasmid. Thus, 
plasmidEC is especially useful for plasmidome research that focuses on antibiotic resistance. 
The differences in performance between PlaScope and plasmidEC for the entire benchmarking 
dataset are minor. Nevertheless, PlasmidEC shows a better balance between recall and precision. 
However, because multiple tools need to be run, plasmidEC requires more computational time and 
resources. All binary classifiers show improved recall for classifying contigs from ARG plasmids. It 
could be that these sequences are overrepresented in reference databases, which all tools use 
directly or indirectly. 
 
There are many possibilities for further improvement of plasmidEC. Firstly, running predictions for 
multiple samples simultaneously should improve the speed of plasmidEC. Secondly, plasmidEC could 
be used to predict the plasmidome of species other than E. coli, as long as these are supported by 
the binary classifiers used as input. At the moment, PlaScope provides databases for E. coli and 
Klebsiella, but custom databases for other species can be created by the user.21 Mlplasmids has 
models available for E. coli, Enterococcus faecium, Enterococcus faecalis, Klebsiella pneumoniae and 
Acinetobacter baumannii. Platon and RFPlasmid can already be used with any species. Of course, the 
performance of plasmidEC for species other than E. coli remains to be tested. It should be noted that 
the performance of the binary classifiers could decrease when making plasmidome predictions in 
species that are less frequently represented in reference databases.  
Additional binary classifiers, whether novel or already existing, can be integrated into plasmidEC, 
which will allow to find better combinations between tools. Moreover, accuracy of plasmidEC could 
be improved by using weighted votes, where a prediction with higher confidence will count more 
heavily towards the final result than a low confidence prediction. A prerequisite is that input 
classifiers output a plasmid probability per contig instead of just a binary classification. Currently, 
such a probability score is only given by mlplasmids and RFPlasmid, but this could expand once new 
classifiers are added. 
 
We show that plasmidEC can be used for plasmidome analysis of E. coli samples sequenced by short-
read technology. We identified differences in the accessory genome, plasmidome and resistome 
between E. coli ST131 and other resistant E. coli isolates.  
The pandemic pathogen E. coli ST131 shows a limited plasmidome and a conserved resistome. This 
suggests that limiting the size of the plasmidome and the diversity of ARGs could be beneficial for 
the overall success of this lineage. In fact, plasmids are known to inflict a substantial metabolic 
burden on their hosts, thereby reducing their fitness.43 Furthermore, we found specific plasmidome-
located ARG clusters in ST131,  which are not commonly found in other E. coli. This appears to 
support the hypothesis that ST131 has developed stable relationships with specific ARG plasmids 
which are not easily disturbed and whose metabolic burden is alleviated by compensatory 
mutations.44 In both ST131 and other STs we find mutually exclusive genes which encode a common 
resistance type. This mutual exclusion suggests that redundancy of function in resistance 
determinants is avoided by E. coli. 
Additionally, ST131 shows an expansive accessory genome, which could be an indicator that this 
lineage possesses a larger repertoire of metabolic capabilities. Notably, the diversity in anaerobic 
metabolism pathways has been suggested as one of the keys for the success of E. coli ST131, 

https://www.zotero.org/google-docs/?L8dRDR
https://www.zotero.org/google-docs/?W2TjRq
https://www.zotero.org/google-docs/?W2TjRq
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through enhancing host colonisation.44–46 Functional analysis of the genes is necessary to validate 
this hypothesis. 
 
Finally, we show that plasmidEC can be used to refine plasmid predictions of MOB-suite by removing 
chromosomal contamination. We tested this approach for contigs assembled by Unicycler and 
bactofidia, and evaluated whether the best results were achieved by running plasmidEC before 
MOB-suite (selection first) or running plasmidEC after MOB-suite (reconstruction first). Both 
methods were able to reduce chromosomal contamination to at least half the original value. The 
lowest amount of chromosomal contamination (10.5 %) was found using the ‘selection first’ method 
with bactofidia assembly. However, contigs assembled by bactofidia were more often unaligned to 
the reference genome than contigs assembled by Unicycler, indicating that bactofidia causes 
misassemblies more frequently. Unicycler is also the assembler recommended by the authors of 
MOB-suite.35 We observe that the integration of plasmidEC with MOB-suite does not affect the recall 
of predictions, and improves precision. Thus, this is a valuable method to reduce chromosomal 
contamination in MOB-suite predictions. 
Binary classifiers have been used in combination with plasmid reconstruction tools before. For 
example, in the initial step of gplas, plasmid contigs are detected using mlplasmids or PlasFlow. The 
choice of binary classifier has a major impact on the performance of gplas. Both recall and precision 
improve when using mlplasmids instead of PlasFlow. 49 We hypothesize that advancement in binary 
plasmid classification will consequently lead to improvements in plasmid reconstruction. 
 
In conclusion, we show that our ensemble classifier plasmidEC successfully classifies E. coli contigs 
from short-read sequencing data as either plasmid- or chromosome-derived. Compared to existing 
binary classifiers, plasmidEC achieves increased recall, especially for contigs that derive from ARG 
plasmids. Plasmidome analysis using plasmidEC uncovered valuable differences between E. coli 
ST131 and other E. coli. We also show that plasmidEC refines individual plasmid reconstructions 
obtained with MOB-suite, by removing chromosomal contamination.  

https://www.zotero.org/google-docs/?bfsq54
https://www.zotero.org/google-docs/?b8jgBZ
https://www.zotero.org/google-docs/?BQMKp4
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Supplementary figures 
 
  

Figure S1 - Alignment types of all contigs in the dataset by contig length. Included contigs are shown in colour, 
excluded contigs in greyscale. 

Figure S2 - Overview of the majority voting system method applied by plasmidEC. 

Figure S3 - Prevalence of sequence types (STs) in the dataset. Only counting STs present in at least 10 
samples. 
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  Figure S4 - Correlation between plasmidome size and accessory genome size for E. coli ST131 (red) and other 
STs (blue). Showing formula of linear regression and r squared value. 
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Figure S5 - Prevalence of ARGs in E. coli ST131 and other STs, ordered by their prevalence in the full dataset. 
ARGs are coloured by their predicted location; plasmid (green) or chromosome (orange). Only showing ARGs 

present in at least 10 samples. 
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Figure S6 - Number of genes present in the resistome of E. coli ST131 (red) compared to other STs (blue). 
Significance determined by Welch t-test. 
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Supplementary tables 
 

Table S1 - True positives (TP), true negatives (TN), false positives (FP), false negatives (FN), precision, recall 
and F1-score for the evaluated binary classifiers 

Table S2 - True positives (TP), true negatives (TN), false positives (FP), false negatives (FN), precision, recall 
and F1-score for all combinations of plasmidEC 

Table S3 - True positives (TP), false negatives (FN) and recall of binary classifiers and plasmidEC combinations 
evaluated for ARG-plasmids (antibiotic resistance gene containing plasmids). 


