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“Our intelligence is what makes us human, and AI is an extension of that quality.”

Yann LeCun
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Abstract
Adverse drug reactions (ADRs) are a common cause of morbidity and mortality.

Especially elderly people are more susceptible to ADRs due to multiple factors such
as age and polypharmacy. In current clinical practice most data on ADRs is gathered
through spontaneous reports, which leads to under-identification of ADRs. Gather-
ing more post-marketing data on ADRs is valuable for research and can improve
pharmacovigilance.

In this work we address the problem of under-identification of ADRs by ap-
plying natural language processing (NLP) techniques on Dutch electronic health
records (EHRs). Specifically, we analyze the admission and discharge letters of 93
patients aged 70 or older, with at least 5 chronic prescribed drugs, admitted through
the emergency department to the geriatric department. These letters have been an-
notated for the presence of adverse drug events (ADEs) and ADRs. Additionally,
annotations were provided for when recognition of ADRs was explicitly mentioned
in-text by clinicians. The dataset contains 3301 relevant concepts, 337 annotated
ADEs and 129 annotated ADRs. We use this dataset as a golden standard to develop
NLP models in this field.

Our approach consists of two steps. First we apply and tweak MedCAT, a con-
cept extraction and linking tool. We use this tool to recognize drug and event enti-
ties, the components of ADEs, in texts. Next, we perform relation extraction while
incorporating information about the entities. For this, We use two existing BERT-
based approaches. Instead of using BERT, we use the state-of-the-art belabBERT
model that is pre-trained on Dutch corpora. These models are trained to automat-
ically recognize ADRs. We use two relation extraction approaches, one where we
search long-range at document-level and one where we identify ADRs mentioned
by clinicians at sentence-level. We also provide a baseline model that counts every
ADE as ADR.

Our approach for ADE recognition achieves an f1 score of 71.4%. The best model
for long-range relation extraction to identify ADRs yields an f1 score of 60.7%, only
slightly surpassing the baseline (53.1%). The variant where we identify mentions of
ADRs at sentence-level yields an f1 score of 76.9% (for the best model) and manages
to outperform the baseline by 18.0%. We argue that with some additional effort
such as expanding the annotated dataset and gaining more insight in the relation
between ADR mentions and true ADRs, our pipeline could be further optimized to
allow implementation into clinical practice for ADR recognition.
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Chapter 1

Introduction

At the department of Information Technology ("Directie Informatie Technologie")
in UMC Utrecht, the analytics team is working on text mining tools to improve
healthcare. The geriatric department pointed out that there is a lack of structural
documentation of ADRs in EHRs which leads to under-identification of ADRs and
complicates research towards ADRs (Section 1.1.1). Therefore, the goal of this thesis
is to detect adverse drug reactions (ADRs) in Dutch admission and discharge letters
of geriatric patients. Such research can improve post-marketing discoveries of ADRs
through retrospective studies and lead to early detection of ADRs, as described in
Section 1.2.

In this chapter we will formulate the problem and go over key terminology in
this field. In Section 1.1 we will discuss the process of pharmaceutical drug devel-
opment, the difficulty of detecting accessory ADRs and the impact of ADRs on the
elderly population. In Section 1.2 we will elaborate on the application of artificial
intelligence (AI) in healthcare, specifically natural language processing (NLP), and
how some NLP methods such as concept extraction and relation extraction can be
used to detect ADRs. In the final section of this chapter, Section 1.3, we provide an
overview of the research questions we aim to answer in this thesis.

1.1 Pharmaceutical drugs and Adverse Drug Reactions

In Europe, strict rules apply to the introduction of new pharmaceutical drugs. Gen-
erally, pharmaceutical drugs are first extensively tested on animals to test for acute
and long-term toxicity. The next stage is studying the effects on humans in clini-
cal trials. Clinical trials consist of four phases which roughly contain the following
steps:

• Phase I) Testing on a small population of (typically) healthy volunteers and
monitoring how the pharmaceutical drugs are absorbed and whether there are
acute side effects (definition explained below).

• Phase II) Determining the efficacy and dose of the pharmaceutical drugs on
actual patients.

• Phase III) This is the most extensive phase and includes hundreds or thousands
of participants, typically varying in duration from one to four years (USA Food
and Drug Administration (FDA), 2018), this makes it possible to observe rarer
side effects. Information is gathered on safety and efficacy and the pharma-
ceutical drug is compared to the default treatment or a placebo.

• Phase IV) Post-marketing surveillance.
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There are a few key definitions, as defined by the World Health Organization
(WHO), when talking about pharmaceutical drugs (World Health Organization, 2007).
Adverse drug events (ADEs) are "any untoward medical occurrence that may be
present during treatment with a pharmaceutical drug but does not necessarily have a
causal relationship with this treatment". Side effects are known reactions to a phar-
maceutical drug that are related to its pharmacological properties (causal relation).
These are registered on the pharmaceutical drug’s label or elsewhere. Adverse drug
reactions (ADRs) are “any response to a drug which is noxious and unintended,
and which occurs at doses normally used in man for prophylaxis, diagnosis, or ther-
apy of disease, or for the modification of physiological function”. This means that
ADEs also include medical errors such as misdosing, administrative errors whereas
we only speak of ADRs when causality is suspected. ADRs are therefore a subset of
ADEs.

ADRs are the cause of increased morbidity and mortality (Patton and Borshoff,
2018). A meta-analysis that includes 49 studies shows that the mean prevalence of
ADRs leading to death was 0.20% (95% CI:0.13-0.27%) (T. K. Patel and P. B. Patel,
2018). ADRs can directly affect patients but also indirectly, as it can lead to unnec-
essary diagnostics or procedures (Patton and Borshoff, 2018). Among outpatients
(non-hospitalized) 52% (95% CI:42-62%) of ADRs were preventable and among in-
patients this number was 45% (95% CI:33-58%) (Hakkarainen et al., 2012). These ad-
missions bring along huge costs. In the Netherlands a single ADR-related hospital
admission is estimated to cost somewhere between 2132-4915 euros per admission,
the annual costs are estimated to be somewhere between 186-430 million euros per
year (Beijer and De Blaey, 2002). In a more recent systematic review, covering stud-
ies from the US and European countries, costs for ADEs ranged from 702-7318 euros
per patient (Marques et al., 2016). Although ADRs form a subset of ADEs and only
partly the cause of these costs, it still indicates the significant costs associated with
ADRs. Part of these costs are due to prolongation of hospital stay, extra laboratory
tests, procedures and treatments (Gautier et al., 2003). Better recognition and early
detection of ADRs would not only decrease morbidity and mortality, but also costs.

1.1.1 Over- and under-identification of ADRs

The WHO states that the pre-marketing safety evaluations (animal studies and clin-
ical trials) lead to both over- and under-identification of ADRs. Over-identification
takes place because all ADRs that are found during clinical trials are listed as side ef-
fects in the pharmaceutical drug’s label, even though causality has not been proven
(World Health Organization, 2007). Pharmaceutical companies do this to legally
protect themselves. Under-identification is caused by those ADRs that are very rare
and have not been observed during the clinical trials (World Health Organization,
2007).

One way to gather post-marketing data on ADRs is through spontaneous reports,
when patients or health practitioners report the occurrence of ADRs in practice. This
is the most valuable method for early detection of ADRs and is also useful for ob-
taining further information on known ADRs (Härmark, Hunsel, and Grundmark,
2015). This post-marketing surveillance method has a high rate of under-reporting.
In a systemic review by Hazell and Shakir (2006), they found that the median under-
reporting rate of serious ADRs across 37 studies was 94%.

Another post-marketing surveillance strategy is monitoring through clinical stud-
ies. Randomized controlled trials (RCTs) and observational studies are done for this
purpose. RCTs are expensive and rarely lead to the discovery of unknown ADRs,
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therefore pharmaceutical companies often lean on observational studies to assess ef-
ficacy and safety after pharmaceutical drugs have been released on the market and
new issues arise (World Health Organization, 2007). Often these observational stud-
ies have too few participants to prove any statistically significant results on causality
between pharmaceutical drugs and ADRs.

There are many examples of drugs that were released on the market and had
to be recalled due to ADRs (Saluja et al., 2016). It took 20 years after flucloxacillin
entered the market to recognize its hepatotoxic effect, especially in elderly. This is
one of many examples that illustrates how current post-marketing surveillance ap-
proaches under-perform in the identification of ADRs (Routledge, O’Mahony, and
Woodhouse, 2004).

1.1.2 Elderly population

Elderly people are more susceptible to ADRs due to multiple factors such as age and
polypharmacy (use of multiple pharmaceutical drugs). Polypharmacy can lead to
changes in pharmacokinetics (how the body processes the pharmaceutical drug) and
interactions between different pharmaceutical drugs (Patton and Borshoff, 2018).

The rate of elderly patients being hospitalized because of an ADR-related event
is 16.6% as compared to 4.1% in younger patients. 88% of these ADR-related hospi-
tal admissions are potentially preventable in the elderly population (Beijer and De
Blaey, 2002). Another study based on Dutch hospitalizations found that the popula-
tion ≥75 years had a more than 4 time higher risk of being hospitalized by ADRs in
comparison to the population of 55-64 years (Ruiter et al., 2012).

Hospitals keep track of all kinds of data: patient data, hospital-wide statistics
(admissions, length of stay, etc.), financial data. A viable data source for post-marketing
surveillance are electronic health records (EHRs). EHRs are patient-centered records
that can contain information on medical history, diagnoses, medications, treatment
plans, radiology images, laboratory results and more (Office of the National Coor-
dinator for Health Information Technology, 2019). This data is useful for identifying
ADRs and is largely captured in the form of natural language, free text. For exam-
ple, in treatment plans doctors may explicitly mention the presence of ADRs, or the
medical history may mention previous drug-induced events. Artificial intelligence
can be used to automatically process this data.

1.2 Artificial Intelligence

Although the development of Artificial intelligence (AI) started in the 1950s, it was
only in the 1970s that it found its first medical applications: CASNET and MYCIN
were among the first AI systems that gave physicians advice on patient management
and diagnosis (Kaul, Enslin, and Gross, 2020). The period between 1970 and 2000
is often referred to as the "AI winter", because there were fewer developments and
there was less interest in AI development. One development in this period was DX-
plain, a decision support system released in 1986 (Amisha, Pathania, and Rathaur,
2019). DXplain generated a differential diagnosis based on a set of symptoms. Be-
tween 1985 and 2000 interest increased significantly, illustrated by the increased
amount of contributions to the international conference on Artificial Intelligence in
Medicine (AIME, Peek et al., 2015). Interest renewed because of the opportunities of-
fered by new methods such as machine learning, deep learning and computer vision.
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In 1991, Baxt (1991) used an artificial neural network to automatically identify my-
ocardial infarction in patients presenting to an emergency department. In 2007, IBM
had developed Watson, a question-answering system. Watson managed to impress
the public by winning first place in a television show competing against humans. It
used a technology called DeepQA, using natural language processing and statistical
machine learning methods, to find the most probable answer in a large database of
free text.

Natural Language Processing (NLP) is a sub-domain of AI that focuses on the
interpretation of natural language data (both spoken and textual data). It is used
for tasks like translation, chatbots, voice assistants, personalized advertising, spam
email filtering, and has many more use cases. One of the biggest NLP challenges
is that of word sense disambiguation: discover the meaning of a word in its con-
text. NLP also deals with challenges such as spelling mistakes, context, temporal
aspects and lexical variations. Biomedical NLP (BioNLP) is the application of NLP
on biomedical data. Biomedical language is a language on its own, complex with
many acronyms, abbreviations, and domain specific concepts. Therefore, we need
to adapt NLP models specifically to this domain, by training and testing them on
medical texts.

Taking into consideration the challenges named in the previous sections, a prob-
lem that severely affects the elderly population is the under-identification of ADRs.
Therefore, we have to come up with new post-marketing surveillance strategies to
identify ADRs among the elderly. As mentioned before, hospitals keep track of all
kinds of data. In this research, we have access to a dataset of admission and dis-
charge letters from the geriatric department that have been annotated for the pres-
ence of ADEs and ADRs (Section 3.2). We are in need of methods to structure this
data. NLP offers a possible solution to make this data manageable.

In the past, electronic health record data had to be analyzed manually. Now,
there are several NLP techniques that we can use to extract useful information auto-
matically. Methods such as clustering can be used to obtain an overview of the data
and can be applied directly to unstructured corpora to, for example, extract the main
topics. Another technique is to transform unstructured data into structured data.
Structured data can be analyzed more easily. Analysis of this data can lead to post-
marketing discoveries of ADRs through retrospective studies and also to early de-
tection of ADRs. These new techniques can be used to improve pharmacovigilance
and bypass the disadvantages of traditional methods that lead to under-reporting
and bias, as explained in Section 1.1.1 (Alomar et al., 2020).

In this thesis, the main research goal is: To detect adverse drug reactions (ADRs)
in Dutch admission and discharge letters of geriatric patients. A first step is to extract
clinical concepts from text. Clinical concept extraction is already widely used within
the medical domain in similar fields like disease and drug-related studies (Fu et al.,
2020). This is a strategy that matches clinical phrases with concepts from clinical
ontologies. It builds on an NLP technique called named entity recognition to detect
entities in texts such as diseases, symptoms and drug names. Subsequently it uses
entity linking to link medical concepts to these entities (Section 2.1). This way, we
end up with clinical texts that are annotated with the corresponding concepts, easing
data analysis. This leads to our first sub-question: How well can our concept extraction
model identify concepts from Dutch admission and discharge letters of geriatric patients?
Concept extraction is a multifaceted methodology of which the performance de-
pends on many features and design choices. Some examples: 1) Including certain
concept databases to improve concept recognition, or instead excluding databases
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to prevent false positives. 2) Pre-processing choices concerning cleaning, normal-
ization or spelling correction. 3) Methodology used to disambiguate entities. This
leads to the following sub-question: In what ways can we improve concept extraction to
identify concepts from Dutch admission and discharge letters of geriatric patients?

As a second step, relation extraction can be used to automatically extract rela-
tions from texts, for example: patient-drug usage, disease-symptoms, drug-adverse
effects (ADRs). Therefore, our next sub-question is: How well can our relation ex-
traction model identify ADRs from Dutch admission and discharge letters of geriatric pa-
tients? There are several approaches to developing a relation extraction model such
as rule-based models with regular expressions, non-deep machine learning methods
or deep learning methods. Some specific relation extraction methods are described
in sections 2.3 and 2.4. In the past few years there has been a shift to deep learning
methods because these significantly outperform non-deep machine learning meth-
ods (Hahn and Oleynik, 2020). BioBERT (Section 2.4.3) is a well-known example of
a deep pre-trained English biomedical language representation model that achieves
state-of-the-art results on biomedical texts (Lee et al., 2020). BelabBERT is a similar,
although not specific for the biomedical domain, Dutch pre-trained language repre-
sentation model (Wouts et al., 2021). Because these deep learning methods require
a lot of data while annotated data is only scarcely available in the medical domain,
the use of traditional models also remains a viable option. This gives rise to the fol-
lowing sub-question: Can we use a belabBERT-based model for relation extraction or do
we need to use less data intensive methods?. Because we also have annotated entities in
our relation extraction task we also want to incorporate this entity information, this
leads to another sub-question: What is the best way of incorporating entity information
for relation extraction?

In this chapter we talked about the process of introducing new pharmaceutical
drugs and key terminology related to pharmacovigilance. We mention how under-
reporting leads to under-identification of ADRs and how this affects health care for
the elderly population. As a solution, we propose using NLP techniques in elec-
tronic health records. In Section 2.1 we discuss available resources for NLP in the
biomedical domain. As mentioned in this section, there are several NLP techniques
to turn free text into useful data, we chose to use clinical concept extraction followed
by relation extraction. Examples of methods for clinical concept extraction are de-
scribed in Section 2.2 and for relation extraction in Section 2.3. In Section 2.4 we go
over the specific approaches chosen for this thesis to perform clinical concept and
relation extraction. In Chapter 3 the chosen methodology is discussed, this includes
a description of the datasets, pre-processing steps and modelling choices. In Chap-
ter 4, the results for both concept and relation extraction are evaluated for different
models. Lastly, in Chapter 5 we discuss the results and provide opportunities for fu-
ture work. Moreover, we describe the potential of this research for clinical practice.

1.3 Research Goals

The main research goal and its corresponding sub-questions as introduced in the
previous section:

1. Main goal: To detect adverse drug reactions (ADRs) in Dutch admission and
discharge letters of geriatric patients.

(a) How well can our concept extraction model identify concepts from Dutch
admission and discharge letters of geriatric patients?
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i. In what ways can we improve concept extraction?

(b) Can we use these identified concepts to recognize ADEs?

(c) Can we use a belabBERT-based model for relation extraction or do we
need to use less data intensive methods?

(d) What is the best way of incorporating entity information for relation ex-
traction?

(e) What insights are gained about NLP in Dutch clinical practice?

1.4 Code and Data

Code and data available on request:

• Form: https://www.umcutrecht.nl/en/data-request-form-umc-utrecht

• Contact Sander Tan: S.C.Tan-3@umcutrecht.nl

https://www.umcutrecht.nl/en/data-request-form-umc-utrecht
mailto:S.C.Tan-3@umcutrecht.nl
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Chapter 2

Related Work

Natural language processing (NLP) is described as an area of research that explores
computational techniques to analyze and represent natural human language (both
spoken and written) for a range of tasks or applications (Liddy, 2001; Chowdhury,
2003). The challenge is to enable automatic analysis of unstructured data, natural
human language. This enables large scale analysis of the data with the ability to
generate meaningful insights. It can be used for many purposes, some examples
are: translation, spam email filtering, voice assistants, personalized advertising and
text categorization.

2.1 Biomedical NLP

First, we will go over the broad concept of biomedical NLP, as the text data we will
be working with is biomedical data. Biomedical NLP (BioNLP) is the application of
NLP on biomedical data, generally dealing with two types of texts: scientific articles
and clinical documents (Huang and Lu, 2016; Cohen, 2013). Within the biomedi-
cal domain the language is complex (acronyms, abbreviations, etc.) and there is a
large variety of textual data that is also highly heterogeneous, BioNLP is therefore
a challenging problem. However, there are a variety of available resources to make
BioNLP easier. In this section we will go over available resources and explain how
some of these are relevant to our research and how some are not.

2.1.1 Language Corpora for Pre-Training

Language corpora are an essential building block for many NLP tools. As this thesis
is set in Dutch context, we aim for biomedical language corpora in Dutch. However,
most available corpora are not useful for this thesis as they are in English. In this sec-
tion we describe some of these English corpora, in Section 3.4 we give an overview
of the Dutch language corpora used for our unsupervised training step.

Language corpora can be used for supervised learning, such as summarization
tasks: an example is where a model needs to learn how to generate abstracts from
articles (with articles as input and their abstracts as target). More common, is using
language corpora for unsupervised learning, such as the pre-training of models like
BERT (Devlin et al., 2018), where BERT learns contextual word embeddings from
English texts. Bigger corpora do not necessarily lead to better biomedical domain
word embeddings (Chiu et al., 2016). What matters more, is how well a corpus
represents the domain that the NLP tool is applied to (Y. Wang et al., 2018). Here are
some examples:

• The open research corpus contains 81.1M text drawn from English academic
papers across many fields of study of which 12.8M belong to the discipline
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of medicine (Lo et al., 2019). The corpus contains around 25B tokens in full
article texts, and 15B tokens in abstracts. This corpus also contains a collection
of articles drawn from MEDLINE.

• MEDLINE is a database that contains more than 28 million references to biomed-
ical academic papers (National Library of Medicine, 2021a). These references
link to more than 5200 journals in around 40 different languages, of which
more than 80% is in English.

• MIMIC-III is an English dataset that contains around 50k hospital admissions
to critical care units (Johnson et al., 2016). What makes MIMIC unique is the
variety of classes of data it contains on each patient: demographic, laboratory,
medication, notes, billing and more.

2.1.2 Annotated Corpora

When training machine learning models to recognize advanced features in texts it
can be useful to annotate the data, creating opportunities for specific supervised
learning tasks. We will be evaluating the performance of our model at concept
recognition of drugs and events in Dutch clinical texts, so we seek a dataset with
Dutch texts annotated for drugs and events. In Section 3.2 we describe the annotated
dataset that we ended up using in our research. Below we provide some examples of
other datasets annotated for concepts. We cannot use most of these as they contain
English annotated texts. In the few Dutch concept annotated datasets, they either
focus on an entirely different concept category (not drugs and events, but genetic
for e.g.) or the annotated drugs and events make up only a very small part of the
dataset. Examples are:

• The Mantra GSC is a multilingual annotated corpus. The terms in the texts
are annotated with their corresponding UMLS concept unique identifiers from
three vocabularies: MeSH (Lowe and Barnett, 1994), SNOMED-CT (SNOMED,
2021) and MedDRA (Mozzicato, 2009). In total it contains 5530 annotations
across five languages: English, French, German, Spanish and Dutch.

• The GENIA corpus is a collection of 2500 English abstracts (not all available to
the public) from the MEDLINE database, relating to the transcription factors
in human blood cells (Kim et al., 2003). GENIA contains annotations on six
categories: part-of-speech, constituency syntax, terms, events, relations and
co-referential expressions.

• The NCBI disease corpus (Doğan, Leaman, and Lu, 2014) contains 793 English
PubMed abstracts that are annotated for disease mentions and linked to corre-
sponding concepts using the concept databases MeSH and OMIM. It contains
annotations for 6892 disease mentions, linked to 790 unique disease concepts.

2.1.3 Concept Databases

A challenge in natural language is that unique concepts are expressed in various
ways. Take the unified medical language system (UMLS) concept "feeling sick" for
example, this can be expressed as "malaise", "feeling bad", "ill feeling", among many
other terms (Bodenreider, 2004). In a concept database, these terms are linked to
a unique concept. These concepts can therefore serve as a coding terminology for
information in texts. The UMLS Metathesaurus (Bodenreider, 2004) brings together
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many biomedical lexical resources such as MedDRA (Mozzicato, 2009), SNOMED
(SNOMED, 2021), ICD-10 (SNOMED, 1993), LOINC (McDonald et al., 2003) and
more. Since UMLS also contains many Dutch ontologies, we will use this for our
project. UMLS will be further described in Section 2.4.1.

2.1.4 NLP Tools

There are many tools available to process texts for the general NLP domain: sen-
tence boundary detectors, tokenizers, normalizers, named entity recognition sys-
tems (NERs). Many of these show poor performance when applied to a differ-
ent/specific domain (Neumann et al., 2019). Unfortunately, alternatives that are tai-
lored to the biomedical domain have mostly been developed specifically for English
texts, so we will not be using those. Below are some examples:

• SciSpaCy is designed especially for processing biomedical texts and can do
tokenization, part of speech tagging, dependency parsing and named entity
recognition (Neumann et al., 2019). SpaCy, the underlying architecture of SciS-
paCy, also has pipelines trained specifically for Dutch language (spaCy, 2021a).

• BioLemmatizer is a lemmatization tool specifically for the English biomedical
domain (H. Liu et al., 2012). It outperforms several existing lemmatizers.

2.2 Clinical Concept Extraction

Many BioNLP systems have been developed for general clinical concept extrac-
tion. Typically, clinical concept extraction tools consist of a named entity recogni-
tion (NER) and a named entity linking (NEL) component, this combination can be
abbreviated as NER+L. According to Mohit (2014), named entity recognition is the
problem of locating and categorizing important nouns and proper nouns in a text.
An example: "Jim was diagnosed with a post-traumatic brain syndrome", where en-
tities "Jim" and "post-traumatic brain syndrome" can respectively be categorized as
a person and a disease. The next step is NEL, the task at hand is to link the found
entities to the corresponding values in a knowledge base. Assume we are linking
the disease to the UMLS knowledge base (Section 2.4.1) in the above example. Then
we link the entity "post-traumatic brain syndrome" to the corresponding concept
"post-concussion syndrome" in our concept database.

These extraction methods are adaptations from the general NLP domain and can
be roughly divided into four categories: rule-based, non-deep machine learning,
deep learning and hybrid approaches (Fu et al., 2020). Although the majority of
research in clinical concept extraction is rule-based, the amount of deep learning
based approaches found the largest relative increase in the past five years (Fu et al.,
2020).

We will use MedCAT for clinical concept extraction, which we discuss in-depth
in Section 2.4.2 (Kraljevic et al., 2021). Examples of tools similar to MedCAT are
discussed in this section, these are MetaMap (rule-based) (Aronson, 2006), cTAKES
(traditional machine learning) (Savova et al., 2010), Bio-YODIE (Gorrell, Song, and
Roberts, 2018) and SemEHR (H. Wu et al., 2018). The reason that MetaMap and
cTAKES are not appropriate for this thesis, is that they: 1) Can only be applied to
English texts. 2) They are much slower than other tools (like MedCAT and BioYO-
DIE). Bio-YODIE and SemEHR are faster and, similar to MedCAT, they can use any
subset of UMLS which means they can also handle Dutch texts. However, we do not
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use Bio-YODIE or SemEHR as MedCAT significantly outperforms these, which can
be seen in Table 2.3. In the next sections, we will briefly discuss the methodology of
each of these alternative tools.

2.2.1 MetaMap

MetaMap was initially designed to improve the biomedical text search engines such
as MEDLINE/PubMed. It links the input phrase to the corresponding UMLS con-
cept (Section 2.4.1) and identifies candidate phrases that could provide similar re-
sults. It is also applicable on the general use case of mapping biomedical text to
concepts in the UMLS Metathesaurus. Inherent to the methodology, MetaMap can
only be applied to English texts and is also very slow, and therefore not useful for
this study. The methodology is as follows (Aronson, 2006):

First, the text (input query) undergoes tokenization, sentence boundary detec-
tion and acronym/abbreviation identification. This is followed by part-of-speech
tagging and the biomedical terms are detected using the SPECIALIST lexicon (Na-
tional Library of Medicine, 2021b). Then, this is parsed into noun phrases using the
SPECIALIST parser (a non-machine learning parser). For each noun phrase:

• I) Variant generation: generate all variants such as synonyms, acronyms, ab-
breviations, spelling variants, inflectional and derivational variants, and com-
binations of these.

• II) Compile set of candidates containing all UMLS strings that contains one of
the generated variants:

FIGURE 2.1: An example of candidate generation (Aronson and Lang, 2010)

• III) Evaluation function that scores the found candidates on quality of the
match. This evaluation function consists of four components: centrality, vari-
ation, coverage and cohesiveness. Coverage and cohesiveness are assigned
twice the weight in the evaluation function.

– Centrality: a boolean value, whether (part of) the string corresponds with
the head of the phrase.
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– Variation: a custom function to estimate how similar concepts from the
UMLS are to the words in the phrase. Difference in spelling, inflectional
and derivational forms, and a word being a synonym or acronym/abbreviation,
are all taking into account in the function.

– Coverage: a value to indicate the amount of overlap between an UMLS
concept and the phrase. The amount of words overlapping and the length
of these are used to compute this value.

– Cohesiveness: this is about the connected components of the string, the
maximal sequence of adjacent words that are part of the match.

• IV) Final evaluation: compares the top candidates of the several noun phrases
and picks the overall best ones.

A few studies have been carried out to evaluate the performance of MetaMap.
When applied to medical school lecture documents containing 4281 annotated con-
cepts, MetaMap achieved 78% recall and 85% precision (Denny et al., 2003). In a
more recent evaluation, MetaMap was compared to cTAKES (Section 2.2.2) and ap-
plied to the i2b2 Obesity dataset consisting of 1237 discharge summaries of over-
weight and diabetic patients (Reátegui and Ratté, 2018; Uzuner, 2009). MetaMap
reached a 88% recall, 89% precision and 88% F-score.

As MetaMap builds upon English-based syntactic algorithms and on the English
SPECIALIST lexicon, it can only be applied to English text. It is also not applica-
ble for real-time use, as processing phrases that have many potential mappings can
still take several hours (Aronson and Lang, 2010). A more recent adapted version of
MetaMap, is MetaMap Lite: it achieves faster processing and better performance
than MetaMap and cTAKES on several datasets (Demner-Fushman, Rogers, and
Aronson, 2017). However, the lite version comes with fewer features (hence "lite"
in the name), can still only be applied to English text, and does not yield any form
of word-sense disambiguation. Without word-sense disambiguation, a term will be
linked to all corresponding concepts in UMLS.

2.2.2 cTAKES

Clinical Text Analysis and Knowledge Extraction System (cTAKES) is an open-source
NLP tool designed for IE from free text in EHRs (Savova et al., 2010). We will not be
using cTAKES in this thesis as it can only be used for English texts and is too slow for
real-time implementation. It uses both rule-based and machine learning techniques
as follows:

• I) OpenNLP (Apache Software Foundation, 2014) maximum entropy (ME) clas-
sifier sentence boundary detector.

• II) Rule-based tokenizer is used, followed by token normalization based on the
SPECIALIST Lexical Tools (National Library of Medicine, 2021b).

• III) OpenNLP ME part-of-speech (POS) tagger to assign POS tags to the tokens.

• IV) OpenNLP ME shallow parser: shallow parsing combines POS tags into
higher order units such as noun phrases.

• V) Named entity recognition (NER): this component matches the identified
noun phrases to a subset of the UMLS dictionary (terms from SNOMED CT
and RxNORM, further explained in Section 2.4.1). This results in the clinical
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text being annotated with the corresponding UMLS concept unique identifiers
(CUI). Negation and status annotations are also added.

FIGURE 2.2: An example query as processed by cTAKES (Savova et al., 2010)

cTAKES was evaluated on an annotated dataset consisting of 160 clinical notes
from the Mayo Clinic EMR, containing 1566 annotated concepts (Ogren, Savova,
Chute, et al., 2008). For exact matches cTAKES achieved a recall of 64.5%, precision
of 80.1% and a F-score of 71.5% (Savova et al., 2010). In the same evaluation paper as
mentioned in Section 2.2.1, cTakes slightly outperformed MetaMap on the i2b2 Obe-
sity dataset (Reátegui and Ratté, 2018; Uzuner, 2009) with recall 91%, precision 89%
and F-score 89%. Although cTAKES is faster than MetaMap (respectively 35m13s
and 52m15s on the i2b2 dataset in Demner-Fushman, Rogers, and Aronson (2017)),
it is still very slow.

2.2.3 Bio-YODIE

Bio-YODIE takes a similar approach to biomedical NER+L as MetaMap Lite, how-
ever with more focus on disambiguation (Gorrell, Song, and Roberts, 2018). Al-
though Bio-YODIE is fast, can be applied to Dutch texts, and provides disambigua-
tion features, it is outperformed by MedCAT, so we will not be using Bio-YODIE.
Bio-YODIE consists of two steps. First is the resource preparation step, where (a
subset of) UMLS is pre-processed into a form that can be used as efficient as pos-
sible, to speed up the whole process. Then there is the annotation step. Both are
described below:

• I) Resource preparation consists of a set of steps that can turn (a subset of)
UMLS into a gazetteer (a list with all terms of interest) and a database with
concepts linked to terms:

– Synonym acquisition by linking terms to alternative terms for the same
concept in UMLS. Words very similar (based on Levenshtein distance)
were labeled as synonyms, leftover words as well. For example, "gout
rheumatic" and "rheumatoid arthritis" would first match "rheumatic" and
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"arthritis" as synonyms and subsequently match the leftover "gout" to
"rheumatoid".

– A threshold value was set to reject synonyms with too many alternative
terms available for its UMLS concept.

– Manual editing to remove problematic linked synonyms.

• II) Annotation pipeline:

– Locates potential entities by running the gazetteer.

– Remove stop words.

– Generate a list of candidates: these are the concepts from the database
that correspond to the term. If there is only one applicable concept, pick
that one, otherwise pick the most likely candidate based on:

* Prior likelihood of a concept.

* Co-occurrence graph of how related concepts are to each other.

* Calculating vector representation for the term and comparing to word2vec
embeddings of the concepts that are calculated over PubMed.

In an evaluation against MetaMap and MetaMap Lite, Bio-YODIE scores better
than MetaMap at recall, precision and f1 score, but only beats MetaMap Lite at recall
(Table 2.1). An advantage of Bio-YODIE is that, similar to MedCAT, any subset of
UMLS can be used in the resource preparation step which means it can also han-
dle non-English languages. It is also fast, because instead of generating candidates
through typical pre-processing steps (spelling variation, inflectional forms, deriva-
tional forms, abbreviations) it uses the custom synonym acquisition trick to generate
a much smaller list of candidates that is still effective. A speed comparison can also
be seen in Table 2.1.

Secs Prec L Rec L FIL Acc Scott’s Pi
MetaMap 3811 0.574 0.568 0.571 0.857 0.856
MetaMapLite 986 0.654 0.549 0.597 0.877 0.876
Bio-YODIE 573 0.582 0.605 0.593 0.883 0.882

TABLE 2.1: A performance comparison between MetaMap, MetaMap
Lite and Bio-YODIE (Gorrell, Song, and Roberts, 2018)

2.2.4 SemEHR

SemEHR builds upon Bio-YODIE: it generates output by using Bio-YODIE and then
applies manual rules to improve the result (H. Wu et al., 2018). However, in the
evaluation on several clinical concept extraction tools by Kraljevic et al. (2021), Bio-
YODIE still slightly outperforms SemEHR. MedCAT is still the preferred tool, out-
performing both SemEHR and Bio-YODIE. Because SemEHR is very similar to Bio-
YODIE, we will not discuss it in-depth here.

2.3 Relation Extraction

In general, relation extraction is the task of identifying semantic relationships be-
tween two or more entities in a text (Jiang and Zhai, 2007). In this section, we will
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first describe the types of relation extraction and explain that there are many differ-
ent methods for it. In the following in subsection we will go over several relation
extraction approaches. We will not be using these, the methodology that we use will
be described in Section 2.4.5.

First of all, we differentiate between different types of relation extraction:

• Traditional relation extraction methods are based on labeled data. A target rela-
tion (in our case: ’drug causes event’) is defined and fed to a model as input
along with annotated samples (Banko and Etzioni, 2008). A sub-task of rela-
tion extraction here is slot-filling. In our case slot-filling would mean that for
a given ’drug’ and the given relation ’drug causes event’, the model has to
fill in the slot for ’event’. A disadvantage of traditional relation extraction is
that domain-specific labelled datasets are scarce and they need to be annotated
for the desired relation (Lange Di Cesare et al., 2018). Another disadvantage
is that these methods often require several NLP components, such as NER,
before slot-filling can take place. So the performance depends on the whole
pipeline (Adel, Roth, and Schütze, 2016).

• Open relation extraction methods can use any text data. It requires large amounts
of text data and can derive a wide variety of relations (Lange Di Cesare et al.,
2018). This technique organizes semantically similar relations into clusters (R.
Wu et al., 2019). However, this makes acquiring the exact semantics of such a
relation difficult.

We see many general-domain relation extraction approaches in the SemEval-2010
Task 8 challenge by Hendrickx et al. (2010). They created a dataset with 10717 anno-
tated examples choosing from a set of 9 semantic relations. The participating teams
had to overcome two challenges: predict the semantic relation type, as well as the
direction of this relation. The baseline model was a Naïve Bayes classifier, only look-
ing at the local context of 2 words. In an overview of all the models used by the
participants, we see a wide variations of machine learning strategies and textual
features being used (Figure A.1). Classification strategies included Bayesian net-
works, support vector machines (both binary and multi-class), maximum entropy
models, two-step classification, conditional random fields and decision rules/trees.
The models also cover a wide range of textual features: POS, context words, de-
pendencies, paraphrases, capitalization properties, syntactic patterns, and more. A
typical relation extraction pipeline is shown in Figure 2.3.

Similar to the SemEval-2010 Task 8 challenge, we want to perform relation ex-
traction, but now in the medical domain. We want to identify causal relations in
sentences like "in patient X, [Medication] has led to [Event]". In the sections below
we will briefly discuss two relation extraction approaches in the medical domain:
MeTAE and a shortest dependency path method. We will not be using these meth-
ods for our project because they both focus at short-range dependencies whereas we
also want to develop a strategy that is able to capture long-range ADRs in texts.

2.3.1 MeTAE

Abacha and Zweigenbaum (2010) used an approach consisting of two components.
First, they used an adapted version of the biomedical concept extraction tool MetaMap.
Second, they compiled a list of patterns to include all possible relations between the
semantic types of the identified UMLS concepts. An example of such a relation is
"[Pharmacological substance] -> causes -> [Medical problem]", where "causes" is the
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FIGURE 2.3: Typical pipeline for a relation extraction model (Bui et al., 2012).

relation. There are many forms in which a single relation type can appear, "X may
trigger Y", "X can cause Y", etc. A challenge is to identify the linguistic patterns
in which these relations appear. Together, these two components, clinical concept
extraction followed by pattern matching, form MeTAE.

To develop MeTAE, Abacha and Zweigenbaum (2010) extracted articles from
PubMed and applied MetaMap for concept extraction. UMLS contains information
on semantic relation types that can appear between concepts. They used this to
keep only sentences with at least one pair of concepts that has one of the desired
UMLS semantic relations. The remaining text contains many sentences serving as
examples for how relations appear. From this they were able to construct a set of
patterns which were translated to regular expressions for relation extraction. Their
model reached 60.5% recall, 75.7% precision and F-score of 67.2%.
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2.3.2 Shortest Dependency Path

Ningthoujam et al. (2019) focused on only relation extraction. They used a dataset
that was already manually annotated for clinical concepts. Only sentences that con-
tain two entities were selected and put through a POS tagger and subsequently
passed on to a dependency parser. The dependency tree that follows from this is
used to extract the shortest dependency path (SDP) between two medical concepts
in the tree. Next, the words and concept sequence corresponding with the SDP, the
dependency labels sequence and the POS tags are used as input for a long-short
term memory (LSTM) network. The LSTM is trained to predict the probability of
the different possible relations between the two entities.

They used the i2b2b-2010 relation extraction challenge dataset which consists
of patients’ discharge and progress notes (Uzuner et al., 2011). The whole dataset
consists of 394 documents containing 5264 relations for training and 477 documents
containing 9069 relations for testing. Ningthoujam et al. (2019) only had access to a
subset of this, 170 documents for training and 256 documents for testing. Annota-
tions were present for eight relations in three categories:

• Medical problem - Treatment relations:

– Treatment improves medical problem (TrIP)

– Treatment worsens medical problem (TrWP)

– Treatment causes medical problem (TrCP)

– Treatment is administered for medical problem (TrAP)

– Treatment is not administered because of medical problem (TrNAP)

• Medical problem - Test relations:

– Test reveals medical problem (TeRP)

• Medical problem-Medical problem relations:

– Test conducted to investigate medical problem (TeCP)

– Medical problem indicates medical problem (PIP)

The performance was compared to a paper by Sahu et al. (2016), that used the ex-
act same data but based on a domain invariant convolutional neural network (CNN).
In this paper they explain that they excluded categories TrWP, TrIP and TrNAP be-
cause of the lack of training samples present in the dataset. This might explain why
Ningthoujam et al. (2019) only reported performance on the five categories that had
more training samples, as can be seen in Table 2.2.

Relation Type Proposed model Sahu et al. (2016) model
TeCP 59.13 50.56
TrCP 62.13 56.44
PIP 59.38 64.92

TrAP 75.35 69.23
TeRP 83.86 81.25

TABLE 2.2: Comparison of performance in relation extraction
(Ningthoujam et al., 2019).
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2.4 NLP in Electronic Health Records

An Electronic Health Record (EHR) is a collection of medical data on patients that
is stored digitally. It may include any health related data such as medical history,
clinical notes, laboratory data, radiology reports and discharge letters. These data
are mostly in the form of unstructured text (free text). Medical texts are heteroge-
neous in nature as they contain (ambiguous) abbreviations, acronyms and spelling
mistakes. The challenge is to enable automatic large scale analysis on this unstruc-
tured data. An additional challenge is that we target Dutch EHRs. The availability
of lexicons, terminologies and annotated corpora for other languages than English
is limited (Névéol et al., 2018). Tools such as UMLS are finding increased integra-
tion with languages other than English. Another way to avoid the lack of language
specific resources is deviating towards unsupervised methods (Névéol et al., 2018).

To show that NLP in EHRs can yield promising results, we provide some (En-
glish EHR-based) examples:

• Detection of colorectal cancer (CRC) was done in two steps (Xu et al., 2011): 1)
Use of MedLEE for clinical concept extraction of positive CRC concepts (Fried-
man et al., 2004). 2) Performance comparison of a rule-based approach and
four machine learning methods: random forest, ripper, support vector ma-
chine and logistic regression.

• Detection of geriatric syndromes by using a rule-based approach based on lin-
guistic patterns (Kharrazi et al., 2018). Experts manually identified geriatric
syndromes and analyzed the patterns in which these occurred to detect geri-
atric syndromes in free text.

• Detection of suicidality in adolescents with autism spectrum disorder (Downs
et al., 2017): First experts developed a suicidality terminology. Then they de-
veloped a set of rules to classify mentions of suicidality as positive, negated
or unknown. They used a majority based approach (positive vs negated men-
tions) to label a document as positive or negative for suicidality.

2.4.1 Unified Medical Language System (UMLS)

There are a variety of biomedical vocabularies in circulation such as ICD, MeSH,
MedDRA and SNOMED-CT (National Library of Medicine, 2020a). The problem is
that these all operate separately from each other: they use different terminologies.
The unified medical language system (UMLS) is a collection of many biomedical
vocabularies. The purpose is to map these different vocabularies to each other and
provide a unified terminology system (Humphreys et al., 1998). It contains over
16 million names for over 4 million concepts and draws this data from 157 distinct
sources (National Library of Medicine, 2020a). From the most recent 2021 release
70,88% of the names were in English and 1,83% in Dutch, in total 25 languages con-
tribute to the concepts in UMLS. As we will be using UMLS in our research, we will
describe its structure.

Concepts that are part of the UMLS Metathesaurus are assigned a unique identi-
fier and added to the UMLS structure. This structure is specified among four levels
(for an example, see Figure 2.4), listed below from broad to narrow (National Library
of Medicine, 2020b):

• Concept Unique Identifier (CUI): a concept is a meaning, and a meaning can be
expressed with different names (also referred to as "terms" in this thesis). One
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of the main goals of the UMLS is to link all possible names from the different
source vocabularies to the corresponding concept. These are unique codes,
starting with a "C" followed by 7 digits, these codes themselves do not bear
any meaning but stay consistent throughout new releases.

• Lexical Unique Identifier (LUI): are strings that are lexical variants of each
other map to the same LUI. Code notation: "L" followed by 7 digits.

• String Unique Identifier (SUI): for each variation in upper-lower case, punctu-
ation or characters a separate SUI is assigned. Code notation: "S" followed by
7 digits.

• Atom Unique Identifier (AUI): each concept names/terms from each of the
source vocabularies gets a unique atom identifier. So even if two terms are
exactly the same but originate from a different source, they get a different AUI.
Code notation: "A" followed by 7 digits.

FIGURE 2.4: UMLS Metathesaurus structure, the four levels of specification (National Li-
brary of Medicine, 2020b).

2.4.2 MedCAT

MedCAT is the open source Medical Concept Annotation Toolkit (MedCAT, Kralje-
vic et al., 2021) that we will use in this project. It consists of several components.
First, it uses a dictionary approach to match concepts to words in the input text,
along with spell-checking and text cleaning. Sometimes, words are mapped to mul-
tiple concepts. In these cases, MedCAT uses a unsupervised machine learning al-
gorithm to disambiguate concepts. In this section we will first break down these
components, followed by an explanation of why MedCAT may perform well in clin-
ical concept extraction in the medical domain.
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2.4.2.1 Vocabulary and Concept Database

MedCAT needs to compile a vocabulary (VCB) and concept database (CDB) to work.
The VCB contains all the words that can appear in the clinical documents that are to
be annotated. It can be generated from any textual data, Kraljevic et al. (2021) use
Wikipedia and add words from UMLS to it, in Section 3.4 we describe our approach.
The VCB’s main purpose is to serve for spell checking, as will be explained later
in this section. The second component, the CDB, consists of a table with CUIs and
terms, derived from UMLS as will be explained in Section 3.1.

2.4.2.2 Spell-checking and Text Cleaning

Now that we have a VCB and CDB we start by correcting the spelling of input doc-
uments. This is done using a spell corrector tool by Norvig (2007). Words of the
input documents are compared to words in the VCB and corrected based on both
word frequency and edit distance into the most likely option. Longer words allow
a greater edit distance and abbreviations are never corrected. MedCAT uses SpaCy
for tokenization, lemmatization and stop word removal (spaCy, 2021b).

2.4.2.3 Entity Candidates

Finding the entities that can potentially be assigned a concept goes as follows for
each single given input document:

1. Set two variables, window_length = 1 and word_position = 0.

2. Three possible scenarios:

(a) Current window is a concept from our CDB, if this is the case, the text is
highlighted and we skip step 3.

(b) The found string is a substring of a longer concept term, go to step 3.

(c) No match, set window_length = 1 and word_position += 1, repeat step 2.

3. Set window_length += 1, repeat step 2.

Steps 3 and 4 solve the fact that concepts can be substrings of other concepts as
shown in Figure 2.5.

2.4.2.4 Unsupervised Training

MedCAT also contains an unsupervised machine learning algorithm, which learns
to disambiguate concepts by training on an unlabelled dataset. This component only
needs to be applied to those words that can map to multiple concepts. For example
"RA", which can map to the concepts "Rheumatoid Arthritis" and "Right Atrium".

In order to train this component, context similarity is used. After the previous
step, see Section 2.4.2.3, we first select only those terms that unambiguously link to a
concept. For those, we learn the context embeddings, based on the word embedding
method Word2Vec (Mikolov et al., 2013). An example of this can be seen in Figure 2.5
where a context embedding (vector) for "Altered Mental Status" is created using 5
words on either side. Now, when we have an entity candidate that links to multiple
concepts, its context is compared to the existing concept embeddings and it is linked
if the similarity is above a threshold.
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FIGURE 2.5: Example with nested concepts, meta-annotations and context embeddings
(Kraljevic et al., 2021).

2.4.2.5 Performance in the Medical Domain

MedCAT is specifically useful for the digital hospital environment because it inte-
grates in CogStack (Jackson et al., 2018) which is a platform that is developed to
enable searching through any clinical data source.

Kraljevic et al. (2021) write that NER+L tools like MetaMap and cTAKES fail
to handle ambiguous concepts and spelling mistakes. Because these approaches
are based on supervised learning, they need more training data to successfully deal
with these issues. Therefore Kraljevic et al. (2021) developed MedCAT as an effective
solution to deal with spellings mistakes, form variability and disambiguation. The
fact that it is unsupervised eliminates the need for large annotated datasets, which
are generally scarce, especially considering the privacy of patients in the medical
domain.

In a comparison by Kraljevic et al. (2021), performances for several clinical con-
cept extraction tools were evaluated. All tools were implemented with their default
models and an annotation was counted as correct if the exact string was matched
and linked to the correct UMLS concept. MedCAT scored the best results overall
(based on f1 score), as can be seen in Table 2.3. Kraljevic et al. (2021) argue that
all tools perform well on the ShARe/CLEF dataset due to the lack of ambiguity in
that dataset. They calculated that 40% of the concepts in MedMentions require dis-
ambiguation. This also explains why MedCAT significantly outperforms all other
models, especially on the MedMentions dataset.

2.4.3 BERT models

BERT is a pre-trained English language representation model. BERT stands for Bidi-
rectional Encoder Representations from Transformers, a machine learning technique
developed by Google (Devlin et al., 2018). BERT is a state-of-the-art NLP technique
because it is able to capture a deep bi-directional context of words. Transformer
models are non sequential, meaning that the input can be passed into it in paral-
lel, making them effective at memorizing long term relations (Z. Wang et al., 2019).
BERT was pre-trained on BooksCorpus and English Wikipedia. The advantage of
a pre-trained model is that the model has already created contextual embeddings,
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Dataset: MedMentions
MedMentions
(disorders only)

ShARe/CLEF

Model: P R F1 P R F1 P R F1
SemEHR 0.252 0.165 0.200 0.295 0.499 0.371 0.680 0.623 0.650
Bio-YODIE 0.316 0.143 0.197 0.445 0.366 0.402 0.700 0.607 0.650
cTAKES 0.284 0.129 0.178 0.313 0.375 0.342 0.567 0.640 0.601
MetaMap 0.305 0.465 0.368 0.358 0.460 0.403 0.755 0.540 0.630
ScispaCy* 0.451 0.408 0.429 0.487 0.443 0.464 0.711 0.463 0.561
CLAMP* 0.324 0.067 0.110 0.533 0.236 0.327 0.772 0.447 0.566
MedCAT
BERT

0.386 0.475 0.426 0.459 0.513 0.485 0.788 0.678 0.729

MedCAT 0.406 0.500 0.448 0.470 0.523 0.495 0.796 0.688 0.738
+
∆(MedCAT-
Best)

-0.045 0.035 0.019 -0.063 0.024 0.031 0.041 0.048 0.088

TABLE 2.3: Comparison of performance among several clinical concept extraction models
(Kraljevic et al., 2021). *The results for ScispaCy/CLAMP are not directly comparable to

other tools as they are supervised models.

based on large corpora. As a result, the model only needs to be fine-tuned for a
specific task on a relatively small labelled dataset (Delobelle, Winters, and Berendt,
2020).

Because BERT is trained on non-biomedical, non-Dutch texts, we explore other
options that better fit our research. First, we discuss BioBERT and PubMedBERT,
which do focus on the biomedical domain, but only on English texts. Then we will
discuss some BERT models that are trained on non-biomedical Dutch texts. Unfor-
tunately, none of the options meet both criteria: Dutch & biomedical texts. Lastly we
discuss SMITH, a recent alternative to BERT.

2.4.3.1 BioBERT

BioBERT is a BERT-based pre-trained English language representation model specif-
ically for biomedical text mining (Lee et al., 2020). BioBERT was pre-trained addi-
tionally on PubMed abstracts and PMC full-text articles (Table 2.4).

BioBERT can be used for NLP tasks such as NER, question answering and re-
lation extraction. For this thesis, we are interested in NER and relation extraction.
Here an example for both:

• BioBERT-based NER: in Si et al. (2019) multiple English pre-trained models,
among which BioBERT, were applied to the 4 different clinical concept ex-
traction tasks. One of the tasks, the 2010 i2b2b/VA challenge (Uzuner et al.,
2011), consisted of identifying all problem, test and treatment related entities.
BioBERT achieved an f1 score of 84.8% on the task.

• BioBERT-based relation extraction: in Alimova and Tutubalina (2020) vari-
ous English BERT models were applied to two relation annotated corpora: 1)
MADE (Jagannatha et al., 2019): consists of EHRs from 21 cancer patients an-
notated for 7 types of relations (among which adverse drug reaction). 2) n2c2
(Henry et al., 2020): consists of 505 discharge summaries and annotated for
8 types of relations (also includes adverse drug reaction). They limited the



22 Chapter 2. Related Work

number of characters allowed to be between an entity pair to 1000 and entities
allowed to be in between an entity pair to 3. BioBERT’s f1 score was 91% on
the MADE dataset and 75.2% on n2c2.

Corpus Number of words Domain
English Wikipedia 2.5B General
BooksCorpus 0.8B General
PubMed Abstracts 4.5B Biomedical
PMC Full-text articles 13.5B Biomedical

TABLE 2.4: Text corpora used to train BioBERT (Lee et al., 2020).

2.4.3.2 PubMedBERT

Gu et al. (2021) mention the common assumption that domain specific models should
be further pre-trained using general-domain language models as a starting point.
Gu et al. (2021) mention that no prior biomedical BERT model has been pre-trained
purely on English biomedical text. An example of this is BioBERT, which uses BERT
as a base and is then further trained on English biomedical domain texts (Table 2.5).
To use a different approach, Gu et al. (2021) propose training a biomedical model
from scratch, only on an English PubMed dataset (3.1B words/21 GB). Their model
showed state-of-the-art results by outperforming BERT models (Table 2.5) on a vari-
ety of biomedical tasks.

In order to use BioBERT and PubMedBERT for specific use cases, they need to be
fine-tuned. Fine-tuning happens through supervised learning on a labelled dataset.
This can be problematic when little or no labelled data is available, which is often
the case in the medical domain. Another disadvantage of these models is that they
are pre-trained on English corpora, meaning performance will significantly drop
when applied to other languages. As we will be working with Dutch admission
and discharge letters (Section 3.2.2), we require a model that is pre-trained on Dutch
language.

Vocabulary Pretraining Corpus Text Size

BERT Wiki + Books - Wiki + Books
3.3B words/

16 GB
RoBERTa Web crawl - Web crawl 160 GB

BioBERT Wiki + Books
continual

pretraining
PubMed 4.5B words

SciBERT PMC + CS from scratch PMC + CS 3.2B words

ClinicalBERT Wiki + Books
continual

pretraining
MIMIC

0.5B words/
3.7 GB

BlueBERT Wiki + Books
continual

pretraining
PubMed +

MIMIC
4.5B words

PubMedBERT PubMed from scratch PubMed
3.1B words/

21 GB

TABLE 2.5: Overview of pre-training details for several BERT models
(Gu et al., 2021).
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2.4.3.3 Dutch BERT models

Unfortunately, there are no biomedical pre-trained models available in Dutch. There
are a few Dutch options pre-trained for the general domain: BERTje (Vries et al.,
2019), BERT-NL (Brandsen et al., 2019), RobBERT (Delobelle, Winters, and Berendt,
2020) and belabBERT (Wouts et al., 2021). There are also multilingual models such
as multilingual-BERT (Devlin et al., 2018) and XLM-R (Conneau et al., 2019). Mul-
tilingual pre-trained models are trained on large corpora containing many different
languages: multilingual-BERT is trained on corpora containing 104 languages (De-
vlin et al., 2018). Although a model like multilingual-BERT performs well across lan-
guages on a variety of tasks, models trained specifically on a single language seem
to perform better (Pires, Schlinger, and Garrette, 2019; Brandsen et al., 2019; Martin
et al., 2019). Delobelle, Winters, and Berendt (2020) compared several Dutch models
as shown in Table 2.6, RobBERT v2 performed best among these models. BelabBERT
was not included in this comparison, as it was released only quite recently (June
2021). However, in the paper by Wouts et al. (2021), belabBERT is compared to Rob-
BERT v2 (Table 2.7) and the authors conclude that their results show that "belabBERT
outperformed the current best text classification network for Dutch, RobBERT". We
will dive further into these two Dutch models below.

TABLE 2.6: Performance of several Dutch pre-trained transformers (Delobelle, Winters, and
Berendt, 2020). Scores annotated with * are reported as in their original paper.

2.4.3.4 RobBERT v2

RobBERT was pre-trained on Dutch text using the RoBERTa training pipeline, which
in turn is an improved version of BERT (Delobelle, Winters, and Berendt, 2020; Y. Liu
et al., 2019; Devlin et al., 2018). In the RobBERT v2 version, the original pipeline of
RoBERTa was adapted using Dutch versions for both the corpus and the tokenizer.
The model was pre-trained on the Dutch OSCAR corpus which contains 6.6B words
(Ortiz Suárez, Romary, and Sagot, 2020). What is also interesting about RobBERT
is that it can perform well on a relatively small dataset compared to other Dutch
pre-trained models (Figure 2.6).
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FIGURE 2.6: POS tagging accuracy of several Dutch pre-trained transformers relative to the
amount of training data (Delobelle, Winters, and Berendt, 2020).

2.4.3.5 BelabBERT

Similar to RobBERT, belabBERT is based on the RoBERTa architecture (Y. Liu et al.,
2019). BelabBERT was pre-trained on the Dutch OSCAR corpus, on >32GB web
crawled texts (Ortiz Suárez, Romary, and Sagot, 2020). Whereas RobBERT uses the
shuffled and pre-cleaned version of OSCAR, belabBERT uses the non-shuffled ver-
sion in which the sentence order is preserved. This choice was made to enable be-
labBERT to learn long-range dependencies in texts. Wouts et al. (2021) evaluated
their model on a sentiment analysis task and compared their model to other Dutch
BERT models, as can be seen in Table 2.7. They found that their model outperforms
RobBERT on several tasks.

Model name Pre-train corpus Tokenizer type
Acc Sentiment
analysis

belabBERT
Common Crawl Dutch
(non-shuffled)

BytePairEncoding 95.92%

RobBERT
Common Crawl Dutch
(shuffled)

BytePairEncoding 94.42%

BERTje Mixed (Books, Wikipedia, etc) Wordpiece 93.00%

TABLE 2.7: The top 3 performing Dutch BERT models based on their
sentiment analysis accuracy (Wouts et al., 2021).

2.4.4 SMITH

Siamese multi-depth transformer-based hierarchical encoder for long-Form docu-
ment matching, abbreviated as SMITH, is a recently developed model by L. Yang
et al. (2020) that contains adaptations to self-attention models to allow for longer
text input. SMITH was pre-trained on a random English Wikipedia collection that
consists of ±715k documents (±956M words). The max sequence input length of
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BERT is limited to 512, for SMITH this is 2048. Whereas BERT is trained by predict-
ing masked words within sentences, SMITH is additionally trained by predicting
what the next sentences will be within the document context. BERT’s focus is at
word-level within sentences, SMITH’s focus is at sentence-level within documents.

2.4.5 Relation Extraction with entity information

In our use case, we want to input text along with the entity annotations into a rela-
tion extraction model to predict whether a relation exists for the given pair of entities:
{drug, event}. Here, relation extraction relies not just on the information of the input
text, but also on the two target entities. Before BERT was released in 2018, most re-
lation extraction models were based on convolutional or recurrent neural networks
S. Wu and Y. He (2019). However, since the release of BERT, many state-of-the-art
relation extraction models are based on BERT or on one of its relatives. Earlier in Sec-
tion 2.3, we discussed the SemEval-2010 Task 8 dataset, often used as a benchmark
for relation extraction models. Paperswithcode (2021) keeps track of state-of-the-art
performances on this dataset and among the top 20, many make use of BERT.

We will take an in-depth look at two models that are BERT based and incorporate
entity information, as we will be using these for this project. The first one is R-BERT
by S. Wu and Y. He (2019), which is among the top performing models on the task of
relation extraction on SemEval-2010 Task 8. The second model is provided by Sboev,
Selivanov, et al. (2022) and does not report scores on the SemEval-2010 Task 8. This
one is particularly interesting because it has only been released recently (April, 2021)
and was developed to identify adverse drug reactions. The approaches of these two
models are discussed below.

2.4.5.1 R-BERT

In R-BERT, the input text is preceded by a ’[CLS]’ token, the span of the first entity
e1 is marked by ’$’ and the span of the second entity e2 is marked by ’#’ (S. Wu and
Y. He, 2019). By marking the entities, we can use the output vector to implement
information on the entities in the model. The architecture of R-BERT is depicted
in Figure 2.7. The final hidden state vectors from the BERT model for e1 (Hi - Hj)
and e2 (Hk - Hm) are averaged and a tanh activation function is applied. A fully
connected layer is added to both averaged output layers. The final hidden state
for the ’[CLS]’ token (representing the whole sequence) is also followed by a tanh
activation function and a fully connected layer. These 3 output layers (derived from
e1, e2 and ’[CLS]’) are concatenated and then a fully connected layer and a softmax
layer are added.

The f1 score of R-BERT on the SemEval-2010 benchmark dataset is 89.25%. Re-
moving the special separation tokens ’$’ and ’#’, as well as discarding the hidden
output vectors from the two entities drops the f1 performance to 81.09% (S. Wu and
Y. He, 2019).

2.4.5.2 RE on Russian user reviews

In the paper by Sboev, Sboeva, et al. (2021) they collected 2800 reviews from a fo-
rum dedicated to consumer reviews on medications. The corpus was annotated for
4 types of entities: 1) drugs 2) diseases and symptoms 3) ADRs 4) note: deviating
cases such as discontinuous annotations, or annotations with multiple possible en-
tities. This resulted in 33005 medication entities, 17403 for diseases and symptoms,
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FIGURE 2.7: R-BERT model architecture (S. Wu and Y. He, 2019).

1778 for ADRs and 4490 notes. Inter-annotator agreement scored between 61-71%,
depending on how strictly it was judged.

In another paper by Sboev, Selivanov, et al. (2022) they used the above dataset to-
gether with the XLM-RoBERTa-base and XLM-RoBERTa-large model (further trained
on Russian medical texts by Sboev, Sboeva, et al. (2021)) for relation extraction. Be-
cause the model was initially developed for Russian user reviews, we will refer to
the model as RUS. The main purpose of their architecture is to preprocess the text
in such a way that more info is captured in the vector representation that is used for
classification. We will use an example sentence to illustrate the four different pre-
processing strategies that were considered: "A hyponatremia was observed, due to
hydrochlorothiazide".

1. The whole input text, with the entities marked with special start and end
tokens: "[CLS] A <e1> hyponatremia </e1> was observed, due to <e2> hy-
drochlorothiazide </e2>"

2. Only the target entities: "[CLS] hyponatremia [SEP] hydrochlorothiazide"

3. The target entities and the text in between: "[CLS] hyponatremia [SEP] hy-
drochlorothiazide [TXTSEP] was observed, due to"

4. The whole input text and the target entities: "[CLS] hyponatremia [SEP] hy-
drochlorothiazide [TXTSEP] A <e1> hyponatremia </e1> was observed, due
to <e2> hydrochlorothiazide </e2>"

We will use the last strategy that they propose, because it was most effective.
Here they use the whole input text and the target entities. This was then fed into the
XLM-RoBERTa model as shown in Figure 2.8. When looking at the results only for
the ADR-Drugname relations, the RUS model achieved an f1 score of 91.9%.
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FIGURE 2.8: RUS model architecture (Sboev, Selivanov, et al., 2022).

2.5 NLP in Adverse Drug Reactions (ADRs)

Research in pharmacovigilance, also known as drug safety, is based on a variety of
data sources. Some of these data sources like biomedical literature, spontaneous
reports and clinical trials are inherently structured and therefore directly viable for
research towards ADRs. With the introduction of NLP, we can now also transform
data from sources such as search logs, social media and electronic health records
(EHRs) into accessible structured data formats, viable for research (Harpaz et al.,
2014). For example, social media can be useful for detecting unknown ADRs that
are not listed on the drug label (Yates, Goharian, and Frieder, 2015). Our focus will
be on EHRs as a data source. In this section we will go over some similar work in
this field of research.

EHRs are a promising source for research towards drug safety (Coloma et al.,
2011; Luo et al., 2017). Sessa et al. (2020) conducted a systemic review on 77 ar-
ticles about AI in pharmaco-epidemiology. They found that random forests (RFs),
artificial neural networks (ANNs) and support vector machines (SVMs) respectively
were the most used techniques. About one fifth of these studies focused on the oc-
currence/severity of adverse drug reactions. Through the monitoring of EHRs, we
can discover new ADRs and discover these sooner, it also enables us to identify pa-
tients at risk.

Perera et al. (2013) and Harpaz et al. (2014) mention linguistic and semantic com-
ponents of sentences that NLP models need to be able to detect in order to under-
stand electronic medical records: 1) Negations, "patient X has no signs of fever". 2)
Conditional statements, "if the pain worsens, use naproxen". 3) Uncertainty, "not
sure if it is caused by renal failure". 4) Temporal properties, "last week, patient X
was suffering from a dry cough". 5) Experiencer, whether the statement is about the
patient or about others (family, nurse etc.). Perera et al. (2013) explain how simple
cases of these statements can be solved with current NLP techniques, but that some
more sophisticated statements require additional attention. They propose to use a
knowledge base to resolve some of these more complex statements, which can lead
to better analysis of clinical content.

There are many studies that use NLP to detect ADEs and ADRs. L. Chen et al.
(2020) used a deep learning, attention-based bidirectional long short-term memory
network (biLSTM), to detect medication related information in clinical notes. Their
model achieved an f1 score of 81% on identifying relations between drugs and corre-
sponding ADRs. Another deep learning model designed for ADR relation extraction
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is the one by Sboev, Selivanov, et al. (2022) described in Section 2.4.5.2.
In the n2c2 shared task, teams needed to extract ADEs in 3 steps: concept ex-

traction, relation classification, and end-to-end systems (Henry et al., 2020). The
best performing systems had a f1 score of 94.2%, 96.3% and 89.1% for the 3 steps
respectively. However, the f1 score of just concept extraction relating to ADEs was
significantly lower, with an f1 score between 25.0% and 60.0% for the top 10 best per-
forming teams. The f1 for the relation classification step for ADE-drug interactions
scored between 40.0% and 95.0% for the top 10 teams. This shows that extracting
concepts and relations that are related to ADEs is one of the most challenging tasks
in the field.

Haerian et al. (2012) used a different approach. They developed a tool that could
detect whether an adverse event was due to disease etiology rather than drug etiol-
ogy. It could identify these cases with a high sensitivity and specificity (respectively
93.8% and 91.8%). When filtering EHRs on adverse events such as rhabdomyolysis,
this tool can then be applied to filter out most of the cases that are not drug-induced.
The documents left over are cases of drug induced adverse events, being ADRs.

Chapman et al. (2019) developed a NLP model that first extracts symptoms and
drugs from clinical notes (NER) and subsequently labels the relations between them.
The NER component had an f1 score of 80.9%, the relation extraction (RE) compo-
nent an f1 score of 88.1%.

Tang et al. (2019) used a rule-based approach that reached ≥90% precision and
recall for the entity recognition of drugs and events. They also performed rule-based
RE to identify adverse drug events, the relation extraction achieved ≥75% precision
and ≥60% recall.

As we described in this section, many studies have been done with NLP to detect
ADRs and many of the mentioned studies used clinical data. A typical approach is
implementation of a NER component, followed by an RE component. In Section 3.5
we describe the methodology that we use for our NER component. For RE, we see
a variety of techniques used in prior research, ranging from simple rule-based ap-
proaches (Tang et al., 2019) to complex deep learning approach such as an attention-
based biLSTM (L. Chen et al., 2020). In Section 3.6 we explain our strategy to create
an RE component. Additionally, we also identified some of the challenges that come
with NLP of clinical notes in this section. We also come across these challenges in our
research, which will be addressed in the error analysis (Section 4.2.3, Section 4.3.2
and Section 4.3.4) and in the discussion (Chapter 5).
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Chapter 3

Methodology

In this chapter, we will go over the methodology used in this research. In figure 3.1
we present a flowchart of our approach towards a solution. First, we have a dataset
that serves as our golden standard and has been annotated for the occurrence of
adverse drug events (ADEs) and adverse drug reactions (ADRs), this is described in
Section 3.2. This dataset consists of admission and discharge letters. The annotations
in our golden standard are only done at document-level, therefore we need to add
annotations at word-level, for this we use MedCAT (sub-question 1a in Section 1.3).
We need to compile a concept database for Dutch terms (Section 3.1) in order to
use MedCAT to annotate Dutch text. From the resulting annotations we keep only
the concepts annotated for in our golden standard: this choice is further discussed
in Section 3.2.1. These annotations compromise a subset of pharmaceutical drugs
(also referred to as triggers in this thesis) and events. These marked entities are
then used to recognize ADEs (sub-question 1b). Next, we use two models based on
belabBERT to perform relation extraction between the annotated triggers and events
(sub-questions 1c and 1d).

FIGURE 3.1: A flowchart with all the components of the project. The grey boxes contain
steps that are not part of this project: Annotated dataset originates from previous research

and UMLS is an existing collection of biomedical vocabularies (Section 2.4.1).
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3.1 Concept Database

To perform clinical concept extraction with MedCAT, we need a concept database
that has terms linked to concepts (Section 2.1.3). In our research, we have Med-
CAT use a subset of the UMLS concept database, using the Dutch versions of sev-
eral biomedical vocabularies: MeSH, MedDRA, ICPC (ICPCDUT, ICPC2ICD10DUT
and ICPC2EDUT), ICD10DUT and LOINC (https://www.nlm.nih.gov/research/
umls/sourcereleasedocs/index.html). An overview is provided in table Section 3.1.

Vocabulary Version Concepts
MeSH 2005 20615
MedDRA 2020 56914
ICPCDUT 1999 722
ICPC2ICD10DUT 2005 35466
ICPC2EDUT 2005 685
ICD10DUT 2005 10697
LOINC 2020 53938

Total: 179037

TABLE 3.1: An overview of the Dutch UMLS vocabularies used in-
cluding their versions and amount of concepts.

With ≈179k concepts, the selected Dutch UMLS vocabularies are relatively small.
The UMLS 2021AA release contains over 4.4M concepts, of which the majority is in
English (National Library of Medicine, 2020a). To solve this, we added the Dutch
version of SNOMED, which contains ≈219k concepts (SNOMED, 2021). UMLS does
support SNOMED US and not the Dutch version, therefore we had to perform some
extra steps to add this:

• The Dutch SNOMED and SNOMED US share the same concept identifier and
SNOMED US is mapped to UMLS concept unique identifiers (CUIs). This al-
lows us to create a mapping from the Dutch SNOMED to UMLS. Sometimes
Dutch SNOMED contains only one term for a concept, while in SNOMED US,
the same concept can have several terms and it is possible that each of these
terms map to different UMLS concepts. Then it is problematic to decide a map-
ping for the Dutch SNOMED term to a UMLS concept. Mapping to both will
cause ambiguity and choosing to which one to map manually is very labor in-
tensive and may require expert knowledge. Therefore we decided to exclude
these from the merge.

• A lot of SNOMED terms already exist in UMLS and are therefore also skipped
during merging.

After these steps, ≈123k (56%) CUIs were removed from the Dutch SNOMED,
meaning the other ≈96k CUIs were added from Dutch SNOMED to our concept
database. The final concept database consists of ≈635k terms mapped to ≈275k
UMLS CUIs.

https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html
https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html
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3.2 Data: Relation Extraction

For this research we will use the same data as used by Noorda et al. (2022). The
dataset consists of admission and discharge letters from geriatric patients. The trig-
ger and event combinations in these letters that form ADEs were manually identi-
fied. Next, each ADE was assessed for being an ADR or not. This results in a dataset
with admission and discharge letters annotated for the presence of ADEs and ADRs.

More specifically, they collected data on a random subset of patients aged ≥70
with polypharmacy (≥5 chronic prescription drugs), admitted through the emer-
gency department to the geriatric department between 01-01-2011 and 01-08-2017
at the UMC Utrecht. This population choice has consequences for the generalisa-
tion of the results. First of all, the presence of polypharmacy makes it difficult to
find a causal relation between triggers and events. On the other hand, presence of
polypharmacy provides us with a dataset that contains a higher density of events
and triggers as compared to other populations. Secondly, in this specific population
age range (≥70) the distribution of triggers and events among different categories (as
seen in Table 3.2) may be skewed compared to populations of different age. This can
cause our model to be less sensitive to categories that are more prevalent in different
age groups. Lastly, these patients are admitted to the geriatric department, meaning
that care is provided by geriatricians. ADRs play an important role in geriatrics and
cause geriatricians to pay more attention to events and triggers while writing clini-
cal notes. As an example, surgeons on the other hand, focus on different aspects of
health care in their writings. Therefore, performance of our model may be different
across different branches of specialized care.

The selected inclusion criteria resulted in a collection of 589 patients. 211 patients
were excluded because of incomplete records (missing admission or discharge let-
ter) and 33 patients were excluded because the admission was not the patient’s first
admission within the study period. From those patients, only those with at least one
drug-event combination in the admission letter were selected. Drug-event combina-
tions are those as described by the ADR trigger tool as defined in the Dutch national
geriatric guideline "Polypharmacy in the elderly" (Federatie Medisch Specialisten
(FMS), 2020). This tool provides an overview of the problems that most often lead
to ADR-related hospital admissions in older patients. In the tool, medication related
events that occur often are linked to the pharmaceutical drugs that cause them. The
trigger tool is compiled from the 10 most prevalent medication related problems
according to HARM-, IPCI- and QUADRAT studies (Warlé-van Herwaarden et al.,
2014; Warlé-van Herwaarden et al., 2015; Hooft et al., 2008), complemented with in-
formation from several other studies as described in Federatie Medisch Specialisten
(FMS) (2020). The tool is not exhaustive and does not cover the set of all possible
triggers and events. This also means that the dataset does not contain annotations
on triggers and events that are not listed in this tool. However, as our model will
learn to recognize how relations between triggers and corresponding events occur
in these documents, it might also be able to generalize well on triggers and events
outside the scope of the tool. In Section 5.3, we discuss generalization for relation
extraction.

Noorda et al. (2022) slightly modified this ADR trigger tool, called "explicated
ADR trigger tool", as can be seen in Table 3.2. They made three types of changes:
1) Events that represent different symptoms that may link to a different drug class
are split up. 2) Events that are used interchangeably and difficult to separate are
merged. 3) Drug categories are specified on ATC-classification.



32 Chapter 3. Methodology

Explicated ADR
Trigger Tool

Events Drug class

1. Fracture A. Systemic corticosteroids

2. Fall(*) / collaps /
(orthostatic) hypotension /
dizziness / syncope

A. Antihypertensive agents: ACE-inhibitors,
ATII-antagonists, calcium antagonists,
beta blockers, thiazide diuretics,
loop diuretics, potassium sparing diuretics,
alpha-1-blockers, long acting nitrates.
Antiarrhythmic agents: digoxin, class I, II
and III antiarrhythmic agents
B. Psychotropic drugs: benzodiazepines,
antipsychotics, antidepressants (i.e. SSRI,
TCA and miscellaneous: duloxetine,
venlafaxine and mirtazapine)

3.1 Gastro-intestinal bleeding
A. Vitamin K antagonists, DOACs,
heparins, other anticoagulants

3.2 Intracranial bleeding B. Thrombocyte aggregation inhibitors
3.3 Other bleedings C. NSAIDs
3.4 Supratherapeutic INR A. Vitamin K antagonists

4.1 Hyponatraemia

A. Thiazide diuretics, loop diuretics,
potassium sparing diuretics
B. ACE-inhibitors, ATII-antagonists
C. Antidepressants (i.e. SSRI, TCA and
miscellaneous: duloxetine, venlafaxine
and mirtazapine)

4.2 Hypokalaemia A. Thiazide diuretics, loop diuretics

4.3 Hyperkalaemia
A. Potassium sparing diuretics
B. ACE-inhibitors, ATII-antagonists

5. Renal insufficiency
and/or dehydration (*)

A. ACE-inhibitors, ATII-antagonists
B. NSAIDs
C. Thiazide diuretics, loop diuretics,
potassium sparing diuretics

6.1 Hypoglycaemia
A. Oral antidiabetics, insulin and
analogues

6.2 Hyperglycaemia B. Systemic corticosteroids
7. Acute heart failure A. NSAIDs
8. Constipation / ileus
(based on constipation)

A. Opioids
B. Calcium channel blockers

9. Vomiting / diarrhea A. Antibiotics

10. Delirium / confusion /
drowsiness

Drugs with anticholinergic and
sedative properties, digoxin,
anti-Parkinson drugs

TABLE 3.2: The explicated version of the ADR trigger tool (Noorda
et al., 2022)
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Application of the explicated ADR trigger tool resulted in identification of 941
drug-event combinations in 253 patients. These drug-event combinations were as-
sessed using the WHO-UMC causality assessment system (World Health Organi-
zation, 2009). In this assessment each ADE is assigned a score of how likely it is
to be an ADR: conditional, unclassifiable, unlikely, possible, probable and certain
(Table 3.3). Noorda et al. (2022) considered the last three categories as ADRs: pos-
sible, probable and certain. This resulted in the identification of 393 (41.8%) ADRs
among 941 ADEs. 88.9% (837) of the 941 ADEs, occurred in just four of the event
categories (see full category specification in Table 3.2): fall (32.4%), delirium (24.0%),
electrolyte disturbances (hyponatraemia, hypokalaemia and hyperkalaemia, in total
16.4%) and renal insufficiency and/or dehydration (16.2%). These 839 ADEs in the
top 4 categories, included 313 (79.6%) of all 393 ADRs. For each event category that
we analyse, we need to compile a specific list of all medications that fall in the cat-
egories mentioned in Table 3.2. This list is compiled by two clinical pharmacologist
and a geriatrician. Because compiling this list is labour intensive and most ADRs
occur in the top 4 categories (79.6%), we focus only on those categories. Imitating
the results of the WHO-UMC causality assessment with a relation extraction model
is difficult, because it requires a deep understanding of all the drugs, events and in-
teractions involved in the patient’s admission, as can be seen in Table 3.3. However,
Noorda et al. (2022) also assessed ADR recognition by usual care. Recognition by
usual care was defined as "an explicit documented drug-event combination by the
treating physician (i.e. geriatric resident, supervised by a geriatrician) in the admis-
sion and/or discharge letter, implying that the drug-event combination was consid-
ered an ADR by usual care". Additionally, when a drug was withdrawn or its dose
adjusted, in combination with explicitly mentioning a corresponding event, this was
also considered recognition by usual care. These labelled ADRs seem a more realis-
tic approach to develop an AI model capable of capturing these relations. Therefore
we also train and test a model using only the usual care instances. The top 4 cate-
gories contain 244 usual care instances that correctly identify ADRs, however these
are annotated at document-level so we cannot deduce to which specific sentence(s)
these annotations correspond. Therefore we generate our own dataset of usual care
instances as described in Section 3.6.1. An important note is that not all usual care
instances are ADRs (68.2% is an ADR) and that not all ADRs are recognized by usual
care (16.5% is missed).

3.2.1 Relevant Concepts

In the above described dataset, each letter is annotated for whether and which drug-
event combination occurs. However, the dataset does not specify where in a letter
the trigger and the event occur (also, these do not necessarily have to be in close
proximity to each other). For that purpose, MedCAT will serve as a tool to dis-
ambiguate and label entities with the proper concept unique identifier (CUI), as
described in Section 2.4.2. As our dataset focuses on specific drug-event combina-
tions, we will only be looking at a subset of all the CUIs recognized by MedCAT.
This means that we will not be recognizing every drug-event combination, but only
those specified by the ADR trigger tool. This means we use a task-specific approach,
it allows us to match exactly those ADEs that we are looking for (present in the
Table 3.2), but not more. The advantage is that this causes less false positives (Sec-
tion 4.2.3) and it makes the manual concept annotation process less labour intensive
(Section 3.3). The downside, is that our methodology is only evaluated for a sub-
set of ADEs, so we do not know how well it performs when generalizing to other
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TABLE 3.3: WHO-UMC causality categories (World Health Organization, 2009)

ADE categories. In Section 5.3, we also discuss how this impacts generalization for
relation extraction.

The next step is to translate the ADR trigger tool as proposed by Noorda et al.
(2022) into a list of CUIs.

3.2.1.1 Events to CUIs

First for the events, we used the UMLS browser to find the CUI corresponding to
each of the event terms in the top 4 categories in the explicated ADR trigger tool
from Noorda et al. (2022). These are listed in table A.1.

3.2.1.2 Triggers to CUIs

Then for the triggers a clinical pharmacologist translated these from the explicated
ADR trigger tool into anatomical therapeutic chemical (ATC) codes (World Health
Organization, 2021). These were then reviewed by a geriatrician. This is necessary
because the drugs listed in Table 3.2 are higher order concepts and we need to trans-
late these to pharmaceutical drug names, the lower order concepts. For example,
we need to translate NSAIDs into generic drug names like naproxen, ibuprofen, di-
clofenac, but also into the branded names such as advil, nurofen and aleve. ATC
codes follow a hierarchical classification system and can consist of up to 7 charac-
ters (Figure 3.2). When more characters are specified, this means a more specific
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category and lower in the hierarchical structure. For example: ’C’ stands for ’car-
diovascular system’, ’C01’ for ’cardiac therapy’ (a child of cardiovascular system),
’C01A’ for ’cardiac glycosides’. Using UMLS, we translate the provided ATC codes
(and all their descendants) into a list of CUIs. The resulting list of CUIs correspond
only to the generic names of the drugs.

FIGURE 3.2: Showing the left most branch for every level in the hierarchical tree structure of
WHO’s ATC system.

In clinical notes, doctors also use brand names of drugs. To solve this, we use
the relation ’tradename_of’ as specified in the RXNORM vocabulary which is also
linked to UMLS CUIs (https://www.nlm.nih.gov/research/umls/rxnorm/index.
html). This relational property links generic names of medication to the branded
names. We use this to expand our list of CUIs with the CUIs of the branded names.
Unfortunately, this will not result in an exhaustive list of all possible mentions of
drugs. For example, "paracetamol" is often abbreviated as "pcm" which is not listed
as a term for the concept. Another example of variation in drug spelling is "Prozac",
which can also be written as "Prozak" or their lowercase versions: "prozac" and
"prozak". We will discuss how MedCAT potentially solves such cases in Section 3.5.
After this step we have 1348 CUIs for drug names (both generic and brand names).

3.2.2 Admission and Discharge Letters

The dataset used in Noorda et al. (2022) contains the admission and discharge letters
of 345 patients. Noorda et al. (2022) had direct access to the letters present in the
EHRs, this means they could use the HiX interface to access each patient individually
and obtain the correct documents. In contrast, we had to obtain the letters directly
from the database using specific queries. Because the letters were spread across the
database, it was very hard to retrieve all letters and replicate the dataset. Due to
these limitations we were only able to achieve the letters for 140 patients. These

https://www.nlm.nih.gov/research/umls/rxnorm/index.html
https://www.nlm.nih.gov/research/umls/rxnorm/index.html
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letters have a mean length of 874 tokens and show great variety in token length
between different letters as can be seen in Table 3.4.

Most letters follow a similar structure. As can be seen in the examples below,
the use of language is summarily and the letters contain a high density of medical
concepts. Examples of sections that are managed in most letters are:

• Reason for admission: short mention of one or more reasons for admission
structured as follows "1) Stomach ache 2) ..."

• Patient history: a list of all medical events listed like "1988 Hysterectomy, 2000
..."

• Medication: a list of all current medication: "acetylsalicylic acid 80 mg 1dd1,
metroprolol 50 mg 1dd1, ..."

• Allergies

• Anamnesis: contains a summary of the story told by the patient. When pa-
tients bring someone with them there can also be a hetero-anamnesis contain-
ing their story.

• Examinations: several types of examinations depending on the medical prob-
lem: radiological, neurological and physical examination. An example of phys-
ical examination if the medical problem is stomach related: "Abdomen: swollen
belly, active peristaltis, ..."

• Laboratory research: very dense summation of laboratory values "Na 136 K 4,1
ureum 7,6 hb 6,5..."

• Discussion/Course of events: an interpretation of all the information by the
clinician. Includes the course of events, what actions were taken and whether
these were useful.

For each patient, the admission letter was used to determine the presence of
ADEs. Whenever a drug and event that are related according to the explicated trig-
ger tool (meaning that they are in the same row in Table 3.2) appeared together in an
admission letter, it was marked as an ADE. This ADE was further specified in trigger
and event. The event was annotated as one of the following: fall, delirium, dehydra-
tion or electrolyte disturbance (hyponatraemia, hypokalaemia or hyperkalaemia).
The annotated trigger was provided in ATC format. A single letter can have multi-
ple ADEs, for each ADE it is provided how likely it is to be an ADR (as explained in
Section 3.2) and whether it was explicitly mentioned to be an ADR in text (usual care
instances). Notable was that usual care instances are often located in the discussion
and/or conclusion sections of the letters and the trigger and event mentions appear
close together. In contrast, non-usual care related ADEs and ADRs can have their
trigger and event components spread all throughout the letters.

3.3 Manual Annotation

In the dataset from Noorda et al. (2022), annotations for triggers and events are
provided at document level. This enables us to test performance of MedCAT at
document level. Because we are also interested in MedCAT’s performance at con-
cept level, we manually annotated the admission and discharge data for the relevant
trigger and event concepts. In total, we annotated 280 documents for 140 patients
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Amount:

Letters
Mean length (Characters) 6407 (±3392)
Mean length (Tokens) 874 (±471)

ADEs
(337)

ADRs 129
Fall 130
Delirium 78
Electrolyte Disturbances 71
Renal Insufficiency 58

TABLE 3.4: Descriptive statistics on the admission and discharge let-
ters. "±" denotes the standard deviation.

(one admission and one discharge document for each patient). Our approach is as
follows:

1. We used our custom concept database as described in Section 3.2.1, together
with the patient data, as input for MedCATTrainer (Searle et al., 2019). Med-
CATTrainer is an annotation tool that provides a web interface to easily con-
firm, alter, add or delete MedCAT annotations.

2. Run MedCATTrainer to annotate all the documents (for which it uses Med-
CAT). This saves time as many concepts are now already pre-annotated and
only require review.

3. Manually go over all the 280 documents and annotate for the relevant concepts.
For each document, we followed these guidelines:

(a) Assume a patient is annotated by Noorda et al. (2022) to only have a sin-
gle ADE, for example: "fall" as event and "furosemide" as trigger. Then
we only annotate for all instances of "falling" (all concepts correspond-
ing to trigger tool event category "2" in Table A.1) and all occurrences of
"furosemide" (so also for its brand names, such as "Lasix") in the docu-
ments belonging to that patient.

(b) We go over all MedCAT-provided annotations and review these, marking
them as either correct or incorrect, or altering the assigned CUI.

(c) Next, we read through the document for CUIs missed by MedCAT and
add annotations for these.

(d) When the document is finished, we submit it for training. This way, Med-
CATTrainer will learn from our confirmed, corrected, altered and added
annotations. This means that annotating gets progressively easier when
going through the documents.

Annotation was performed by a single annotator, so no inter-annotator agree-
ment could be calculated. The annotations of events involved only a small set (14
CUIs) of concepts. Therefore it was not difficult to determine which concept each
event should be linked to. For the triggers, the set of concepts was more extensive
(1348 CUIs). However, drug names are unambiguous by nature and are very easy to
map to the correct concept. The "Farmacotherapeutisch Kompas" was used to clas-
sify drugs in case of doubt (Zorginstituut Nederland, 2021). In total, we ended up
with 3301 annotations.
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One of the shortcomings of MedCAT that we point out in Section 4.1.3, is that
MedCAT is unable to capture concepts that consist of non-adjacent words. It is
not possible to annotate for these terms in MedCATTrainer. Because there are only
around 10-20 occurrences of these, we decided not to include annotations for these.

While annotating, some documents turned out to be incomplete or empty. We ex-
cluded 10 patients because all the relevant information was missing from both their
admission and discharge letters, leaving us with 130 patients. For 27 patients, the ad-
mission data was incomplete, but their discharge letters were complete. Because our
dataset is already limited in size, we decided to keep these patients and potentially
use their discharge letters as well to identify ADEs (as described in Section 4.2).

As we are only annotating for 4 categories from the explicated trigger tool (Sec-
tion 3.2), we only annotated the documents that contain one or more ADEs belong-
ing to these categories. 37 patients were exclusively labelled with ADEs not among
the 4 chosen categories. So, from the 130 patients, 37 were excluded. Therefore we
ended up annotating admission and discharge letters for 93 patients (186 letters).

3.4 Data: Unsupervised MedCAT Training

For MedCAT’s unsupervised training procedure we need medical training corpora,
these are used to create contextualized concept embeddings for the concepts in the
concept database (Section 3.1). There is a wide range of multilingual sources avail-
able to obtain medical texts (Section 2.1). However, as discussed in Section 2.4, there
is only a limited availability of open sources for Dutch medical texts. As we will
be using MedCAT for NER+L tasks within admission and discharge letters, the pro-
vided texts should contain many medical terms with context. One corpus that is
publicly available is Wikipedia, which is also available in Dutch (Section 3.4.1). Two
closed sources that we were able to use for this project are the "Nederlands Tijd-
schrift voor Geneeskunde" (NTvG) (Section 3.4.2) and the EMC Dutch Clinical Cor-
pus (Section 3.4.3). Besides these three corpora we also add the terms from our
concept database to compile the VCB (Section 2.4.2.1). In the sections below follow
descriptions for each of these corpora. In Section 3.5 we will describe how these
corpora are further pre-processed and used for MedCAT’s unsupervised learning
step.

3.4.1 Wikipedia

Twice a month, a backup of the Dutch Wikipedia is made available at https://
dumps.wikimedia.org/nlwiki/. From here we downloaded the dump file contain-
ing the text of all the latest versions of Wikipedia articles. The version downloaded
and used for training was released on June 3th, 2021.

We are interested in a subset of all Dutch Wikipedia articles, the medical part.
PetScan (https://petscan.wmflabs.org/) is a tool that can retrieve all Wikipedia
pages within a certain category. The category we are interested in is "Geneeskunde",
Dutch for "Medicine". PetScan requires users to determine the depth of the search, as
Wikipedia categories follow the structure of a directed acyclic graph (DAG). Setting
the depth at 5 would include 1256 categories including more than 200 categories
about the paralympics, not necessarily the type of medicine-related categories we
are looking for, therefore depth 4 seems to be a better cut-off value for the depth.
This results in 873 categories (June 3th, 2021).

https://dumps.wikimedia.org/nlwiki/
https://dumps.wikimedia.org/nlwiki/
https://petscan.wmflabs.org/
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Based on this list of categories, a selection of articles was extracted from the
dump file using WikiExtractor (https://github.com/attardi/wikiextractor). This
resulted in a single text file containing only the text from the articles (no images and
tables) with ≈ 5M tokens.

3.4.2 NTvG

The NTvG is a journal with Dutch articles that focuses on recent developments in
the medical domain. It contains articles of various types: patient case descriptions,
quizzes, guidelines, news, research, technical developments, editorials and more
(https://www.ntvg.nl/). Their articles have been digitized from 1986 onwards.
These documents were provided to us (June, 2021) in a MySQL format. After re-
moving duplicates we were left with a dataset of 42247 articles. Because not all of
the article types contain medical texts, we decided to remove "10 tips" (4 articles)
and "editorial" (616 articles) from the selection, resulting in 41627 articles. We used
BeautifulSoup to clean the html codes from the text and regular expressions to clear
some metadata from the articles (Richardson, 2007). This resulted in a single text file
containing over 30M tokens.

3.4.3 EMC Dutch Clinical Corpus

The EMC Dutch Clinical Corpus is a collection of 7500 anonymized clinical docu-
ments from four sources: general practitioner entries, specialist letters, radiology re-
ports and discharge letters. EMC stands for Erasmus Medical Centre and is a Dutch
university hospital in Rotterdam. The dataset was initially developed to identify
contextual properties of identified concepts (Afzal et al., 2014). The recognized con-
cepts in the dataset contain annotations on three contextual properties: negation,
temporality and experiencer. These are also the domain-specific challenges in EHRs
as pointed out by Harpaz et al. (2014), which we described in Section 2.5.

Every clinical document in the EMC corpus was provided in both json (with the
annotations) and plain text (without annotations) format. We picked the plain text
documents because we are only interested in computation of contextualized concept
embeddings for MedCAT’s unsupervised learning step. Some of the clinical docu-
ments from the general practitioners category seemed to contain non-sensible text
giving a decoding error, this resulted in the removal of 18 documents. All other
documents were merged into a single text file by pasting them after each other, sep-
arated by a newline. The EMC corpus is relatively small compared to Wikipedia and
NTvG and contains a little over 200k tokens. Although it is the smallest of the three,
it does best represent the use of language in clinical documents.

3.5 Concept Extraction and Linking

In order to answer how well we can identify concepts from our clinical letters and in
what ways we can improve this process (Section 1.3), we start by creating our Med-
CAT model (Kraljevic et al., 2021). For the first step we use the text data compiled
by combining (a Dutch subset of) Wikipedia, NTvG and EMC DCC, as described in
Section 3.4. This is used to create our VCB and CDB files (Section 2.4.2.1). Next, we
feed MedCAT our input data, consisting of our admission and discharge letters (Sec-
tion 3.2.2). For each patient in the dataset we combine the admission and discharge
letter into a single document before entering MedCAT.

https://github.com/attardi/wikiextractor
https://www.ntvg.nl/
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When entered into MedCAT, the documents undergo pre-processing as described
in Section 2.4.2.2. The Dutch SpaCy model ’nl_core_news_lg’ was used as we are to-
kenizing and lemmatizing Dutch letters. This model has a list with stopwords that
are removed by default. We also enabled the configuration to check whether a token
is fully uppercased or not, indicating an abbreviation. This helps differentiate be-
tween terms such as "als" ("if" in Dutch) and "ALS" ("amyotrophic lateral sclerosis")
or "is" (same in English) and "IS" ("infantile spasm").

MedCAT offers an additional tool, MetaCAT. This is a bidirectional LSTM that
can be trained to provide meta annotations on contextual features, such as nega-
tions, temporality etc. We considered adding meta annotations on negations as we
do have access to a trained MetaCAT negation model (Es et al., 2022). To decide
whether this is of added value to our model, we evaluated a random sample of 4
letters from the dataset. In these letters we looked at the mentions of ADRs and
considered whether negations play an important role in these. From these 4 letters
only two ADR mentions contain negations, these are as follows: "Na staken losartan
geen collaps meer" (After discontinuing losartan there was no collapse) and "Amio-
daron gestaakt bij hyperthyeroïdie" (Discontinued amiodaron because of hyperthy-
roidism). The presence of negations in these sentences do not change the fact that
they indicate an ADR. Because of this and additionally the low number of negations,
we decided not to implement the MetaCAT negation model.

Although we do not have access to trained models on temporality and experi-
encer contextual properties (Section 3.4.3), we did assess the necessity of such mod-
els. We evaluated a random sample of 4 letters to assess whether these properties
impact our results if not accounted for. When a letter mentioned other persons than
the patient, it was never in context with both a trigger and event, making it unlikely
that the presence of different experiencers influence the results. Temporality in the
sense of whether a trigger-event combination occurred in the past or now is not
relevant, as we want to identify it in both cases: we want to identify each ADE men-
tion in the letters. However, relative temporality (the order of events in sentences)
could be useful. Take this example: "Tijdens opname werd de novomix die patiente
tweemaal daags gebruikte omgezet in eenmaal daags Lantus. Hiermee zien we geen
hypoglycemieën meer en zijn de glucoses goed onder controle." (During admission
the novomix, which the patient used twice a day, was changed to Lantus once a day.
With this change, there were no further hypoglycemias and the glucoses were well
maintained.). In this case, we need our model to understand that the hypoglycemias
disappeared after Novomix was stopped, and that it has nothing to do with Lan-
tus. Using a model to add annotations on temporality would improve performance
(Section 4.2.3) and is something for future work (Section 5.2).

Before we can do any evaluation, we have to convert the found CUIs for the
triggers and events into a different format to be able to compare our results to those
provided by Noorda et al. (2022). The labelled data uses event categories such as in
Table A.1. So we map all CUIs to their corresponding trigger tool event category, as
shown in Figure 3.3.

For the triggers, we want to map the CUIs to their ATC codes, as explained in
Section 3.2.1.2. An example of such a mapping is provided in Figure 3.4. This way,
we arrive at the desired ATC codes.

3.5.1 Evaluation

To check how well our model performs (thereby further answering sub-question
1 as formulated in Section 1.3), we evaluate using two approaches. First, we use a
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FIGURE 3.3: Mapping CUIs recognized by MedCAT to their trigger event category. *Note
that ’fall’ is in the same category as collaps/syncope, hypotension, orthostatic hypotension

and dizziness, as listed in Table A.1.

FIGURE 3.4: Steps to map MedCAT trigger CUIs to ATC codes.
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document-level approach to see how many of the ADEs are recognized at document-
level. So if a relevant trigger-event combination is detected at least once in a letter, it
is counted as correct. We can use the labels assigned to the documents (Section 3.2.2)
as a golden standard for the presence of an ADE at document-level. Secondly, we
use a concept-level approach, this evaluates how many of the individual triggers and
events are correctly identified. To evaluate this we use this the manually annotated
dataset (Section 3.3). We calculate the recall on ADEs, but also on drugs and events
separately. Because collecting precision scores is labour intensive, we only provide
precision scores in some cases.

3.5.2 Error Analysis

We have a fully annotated dataset, this allows us to thoroughly identify mistakes
made by MedCAT. We can then see what mistakes are most common: are concepts
missed because their words are not in the concept database? Are concepts linked to
the wrong CUIs?

Additionally, we pick 10 random letters and evaluate the concept recognition in
these letters. We will attempt to provide an explanation for the errors in labelling,
and define different error-categories. Such an error analysis can prove useful for
improving the model in the future.

3.6 Relation Extraction

We will be analyzing admission and discharge letters from EHRs. In these letters,
relations between drugs and events are not necessarily in the same sentence or even
in the neighbouring sentences. As explained in Section 2.3, methods that are rule-
based and shortest dependency paths might not be able to capture long-range de-
pendencies. Therefore, we need to select models that are able to capture long term
dependencies. Transformer models are non sequential, meaning that the input can
be passed into it in parallel, making them effective at memorizing long term relations
(Section 2.4.3).

Relation extraction relies not just on the information of the whole input text, but
also on the two target entities, the trigger and the event in our case. To incorporate
target entity information in this process we use the architectures from the R-BERT (S.
Wu and Y. He, 2019) and RUS models (Sboev, Selivanov, et al., 2022) and adapt them
for Dutch language by replacing the underlying BERT models with belabBERT.

As we are analyzing Dutch text, we choose to use belabBERT (Section 2.4.3.5).
belabBERT is pre-trained on Dutch text and we can use our dataset (Section 3.2.2)
to fine-tune it on our relation extraction task. BelabBERT has its own tokenizer
for Dutch text, constructed using the same BPE algorithm as RoBERTa but now on
Dutch web crawled texts (Y. Liu et al., 2019).

The default parameters of belabBERT are inherited from RoBERTa. We used the
same hyperparameters that were used to fine-tune RoBERTa on RACE (Table 3.5)
and kept all other parameters at their default values. In Mosbach, Andriushchenko,
and Klakow (2020) they propose some guidelines for fine-tuning BERT on small
datasets. One of these is to increase the number of epochs and train to almost zero
training loss. We started at 3 epochs but ended up training all models for 10 epochs,
which achieves a near zero training loss. According to Mosbach, Andriushchenko,
and Klakow (2020), training for more epochs results in increased stability of the mod-
els.
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Hyperparameter RACE SQuAD GLUE
Learning Rate 1e-5 1.5e-5 {1e-5, 2e-5, 3e-5}
Batch Size 16 48 {16, 32}
Weight Decay 0.1 0.01 0.1
Max Epochs 4 2 10
Learning Rate Decay Linear Linear Linear
Warmup ratio 0.06 0.06 0.06

TABLE 3.5: Hyperparameters used for fine-tuning RoBERTa (Y. Liu
et al., 2019).

We then train and test two relation extraction models, one using the R-BERT
architecture and one using the RUS architecture. We do this twice, once for the usual
care data (Section 3.6.1) and once for the full letter data (Section 3.6.2) using 5-fold
cross-validation. Additionally, we introduce three baseline models, two that fit the
usual care data, and one that fits the full letter data. An overview of all these models
is presented in Figure 3.5 and the sections below.

FIGURE 3.5: An overview of all the models that we will train and evaluate.

3.6.1 Usual Care models

Usual care has a two-fold definition that is explained in Section 3.2. We are mainly
interested in explicit mentions of ADR recognition by usual care. With this, we mean
the subset of usual care entries that follow the definition provided by Noorda et al.
(2022): "an explicit documented drug-event combination by the treating physician
(i.e. geriatric resident, supervised by a geriatrician) in the admission and/or dis-
charge letter, implying that the drug-event combination was considered an ADR by
usual care".

The triggers and events in these samples always appear close together in a single
or two adjacent sentences. This means that for the usual care models we will not be
using full letters as input, but only single or double sentences. We need both positive
and negative samples. To use a less labour intensive approach without the need to
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mark all entities manually, we used the following method to generate our dataset of
usual care instances: we collect every instance where a trigger and event appear in
the same or two adjacent sentences. "Sentences" were obtained by splitting the texts
by line breaks. This means that a sentence can sometimes consists of more than 1
sentence, although we set the sentence length to contain a maximum of 40 words.
We chose splitting by line breaks over splitting by sentence boundaries, because the
latter resulted in many mid-sentence splits, due to the custom writing style used in
clinical notes.

If multiple triggers and events are found, we add each combination to our dataset.
An example, "The patient uses [trigger 1] and [trigger 2], because she suffers from
[event 1]. Patient also suffers from [event 2]." Now we have 4 entries:

1. trigger 1 with event 1

2. trigger 1 with event 2

3. trigger 2 with event 1

4. trigger 2 with event 2

We used the labelled triggers and events as provided by the MedCAT output.
This results in a list of 270 samples, we manually went through the list and anno-
tated whether the samples were positive or negative. Because cases could be quite
ambiguous, this process was done by two annotators: a medical student and a clini-
cal pharmacologist. Both annotators agreed to the following guidelines:

1. Score "0": When there is no relation at all or when it cannot be deducted that
the author suspects a relationship.

2. Score "1": The text fragment clearly shows that the author suspects a causal
relationship between the marked trigger and event. Note; we only look at a
relation between the marked entities, so if the marked entity is "fall" and it ap-
pears twice, we only check whether the marked instance indicates recognition
by usual care.

3. Score "2": Not sure if either of the other definitions fits.

Additionally, both annotators discussed some examples beforehand with the re-
searchers that originally labelled the dataset for usual care instances, to ensure the
same definition was maintained. After both individually annotating the samples,
the inter annotator agreement was 88.8% (240). The other 21 cases were discussed
and 17 of these were assessed as negative (scored 0), 3 as positive (scored 1) and
2 were excluded (scored 2). This resulted in 268 samples among which 95 (35.4%)
positive and 173 (64.6%) negative.

3.6.1.1 Baseline model 1: Close Proximity

For our first baseline model, which we will call the close proximity model, we use
a simple rule-based approach: when a trigger and event appear in the same or two
adjacent sentences, mark it as an ADR.

Because the way we created the usual care dataset is equal to this rule-based
approach, the recall is 100%. In addition, we can evaluate the performance of this
baseline model by checking precision on the annotated usual care instances. From
the precision and recall we calculate the f1 score.
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3.6.1.2 Baseline model 2: Close Proximity with ADE Filter

In our second baseline model, we take the above baseline, but add an additional
step: when a trigger and event appear in the same or two adjacent sentences, check
whether it is an ADE. If the combination exists in the trigger tool, we mark it an
ADE. Now we mark all these identified ADEs as ADRs.

Similar to the model above, the recall is still 100%, however the precision in-
creases. The reason for providing both baselines (and not just the best one) is that
the better option requires a knowledge base with information on which combina-
tions are ADEs. Building such a knowledge base takes time, so it is also interesting
to know how a simpler baseline model, one that is not dependant on something like
the trigger tool, performs.

Note that for both baselines, performance will decrease when the target cate-
gories are expanded. Currently, the baselines are applied only on the triggers and
events relating to 4 selected trigger tool categories (Section 3.2). When more ADEs
are included, more entities will be marked as triggers and events. The amount of
non-relevant trigger-event combinations will increase relatively more (compared to
relevant combinations). In these baseline models, by design, this leads to an in-
creased amount of false positives.

3.6.1.3 RUS and R-BERT

In order to train and test R-BERT and RUS on usual care instances, we pass the
dataset (Section 3.6.1) with marked triggers and events as input. We use 5-folds
cross-validation with a 4:1 (train:test) split and the models are trained on a GPU.

We then evaluate the performances of both models on all different folds and re-
port the precision, recall and f1 score. We evaluate performance with and without
the ADE filter, to be able to compare with both baseline 1 and baseline 2. To provide
a fair comparison with baseline 1 and 2, their performances are also provided sep-
arately for each fold. Additionally, we check how well the models perform within
each trigger tool category (only possible for the models with ADE filter).

3.6.2 Full Letter models

In our dataset, we were able to extract 266 ADEs among which 96 ADRs in the cate-
gories we focus on (and based on the manual annotated dataset, Section 3.3). These
are within-letter ADEs and ADRs, meaning that these matches cannot occur cross-
document, a cross-document case would be: event in the admission letter, trigger in
the discharge letter. This is based on the assumption that combining cross-document
text fragments results in incoherent texts. While the usual care models focus on find-
ing ADRs in a span of one or two sentences, the full letter model approach is meant
to identify triggers and events while providing more context. Here we give as much
context as possible within the 512 tokens that are allowed by BERT models.

We use the following steps to pre-process the existing data into training and test
sets that are appropriate for BERT models, Figure 3.6 shows a schematic representa-
tion of this process. For each letter we do the following:

1. Identify all mentions of triggers and events.

2. For every mention we keep the text in a span of 700 characters (350 to the left,
and 350 to the right).
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3. For every trigger and event that are ADEs according to the trigger tool, we
generate a text fragment that consists of both texts concatenated in the order
of appearance (and overlapping characters are corrected).

4. If for this patient the ADE has been marked as an ADR (Section 3.2), the gen-
erated sample is labelled as positive and otherwise negative.

FIGURE 3.6: Example of concatenating text fragments containing fall (event) with
furosemide (trigger). Left is the (sample) letter, right is the concatenated text, that will be
labelled and used as input for the full letter model. The trigger and event are marked in

grey.

This way, we generated a dataset of 3712 samples, of which 1385 (37.3%) positive
and 2327 (62.7%) negative. To illustrate the large number of samples in the dataset:
if "fall" and "metoprolol" (these form an ADE) respectively occur 5 and 4 times in a
single letter, this will result in 20 (5 · 4) samples. Whether this ADE was originally
marked as an ADR determines whether all these 20 samples are labelled positive or
negative. We are aware that not all these 20 samples contain the relevant information
to deduct whether we can speak of an ADR. It would be better to annotate all 3712
samples independently, but due to time constraints we did not perform this step.
For evaluation, we do not report performance on how well the model predicts each
individual instance in the test set. We first map the individual instances back to their
original annotations (the 266 ADEs and 96 ADRs). If one of the instances is positive,
the ADE is marked as an ADR. So for the example: all the 20 samples lead back to
a single annotation for "fall" and "metoprolol" for the corresponding patient, if ≥1
samples is positive, "fall" and "metoprolol" is marked as an ADR in that patient. This
makes sense, because no matter how many negative mentions there are in a letter; if
an ADR is mentioned only once in a letter, it exists for that patient.
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3.6.2.1 Baseline model 3: Trigger Tool

Our third baseline model is based on the explicated trigger tool (Table 3.2). When
a trigger and event of the same category appear in a letter, it is marked as an ADR.
This will always result in a recall of 100%. This baseline actually relies on the a
priori probability that an ADE is an ADR in our dataset. We further evaluate the
performance by calculating precision and the resulting f1 score.

3.6.2.2 RUS and R-BERT

We use 5-folds cross-validation with a 4:1 (train:test) split to train and evaluate RUS
and R-BERT. Both models are evaluated in terms of precision, recall and f1 score. The
models are compared to each other and the baseline. We also provide an overview
of the performances on the different ADE categories.

3.6.3 Error Analysis

We will analyse the errors for the usual care models and the full letter models sep-
arately. For the usual care models we will pick one of the folds and go through all
the samples in the test set. We will then try and identify patterns in what is correctly
labelled and what is not. Some examples will be more thoroughly examined: we
generate variations on a sample to see how much changes are necessary to make the
model correctly label the sample.

For the full letter model, we also pick the test results of a specific fold. However,
because each fold consists of ±742 samples (mapped to ±40 ADEs/ADRs), we are
not able to discuss all these and will highlight a subset of these.
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Chapter 4

Results

In this chapter, we will evaluate the performance of the models as described in Chap-
ter 3. First, we evaluate the performance of step 1: concept extraction and linking
using MedCAT (Section 3.5). We were able to achieve an f1 score of 91.4% on con-
cept recognition. Using these concepts for ADE recognition led to an f1 score of
71.4% and proved very useful in identifying additional ADEs that were missed dur-
ing manual annotation. In this chapter, these results will be further analyzed and
we will provide an error analysis with examples from the admission and discharge
letters. Secondly, we evaluate the performance of step 2: relation extraction in sev-
eral models as described in Section 3.6.1 and Section 3.6.2. The full letter models
only outperformed the baseline by a little bit. However, the usual care models are
promising as RUS (f1: 76.9%) and R-BERT (f1: 74.0%) perform much better than
baseline (f1: 58.9%). These results, including an error analysis, will be discussed in
more detail in this chapter.

4.1 Triggers and Event Recognition: Sample

Now, we will start the concept extraction and linking using MedCAT (Section 3.5).
This is where we apply MedCAT to the admission and discharge letters to identify
which words in the texts should be marked as triggers and events. MedCAT’s role
here is to match words to the concepts in our concept database, whilst also checking
for spelling mistakes and applying disambiguation if necessary. We want MedCAT
to recognize as many relevant triggers and events as possible. As we already no-
ticed some shortcomings of MedCAT while exploring the data, we provide some
explorational improvements in Section 4.1.1. These vary from simple adjustments
to implementations into the MedCAT source code itself. Subsequently, we evaluate
MedCAT’s performance on a smaller sample and go through an error analysis (Sec-
tion 4.1.3). The results of this error analysis can then be used to tweak MedCAT to
improve its performance on the full dataset. For this smaller sample, we randomly
selected 5 letters from patients that we were unable to retrieve both letters of. So for
those patients we have either an admission or discharge letter, but not both. Our
dataset is already limited in size, this way we do not have to exclude additional
letters from the process.

4.1.1 Explorational Improvements

While setting up the pipeline to run the letters through MedCAT, we already came
across some errors. We addressed two of these before moving to the next step: 1)
Unrecognized drugnames. 2) MedCAT’s inability to handle diacritics.

The first problem is caused by the lack of drug names present in the Dutch con-
cept databases that we used to compile our own concept database as described
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Recall Precision
Count Diacritics No Diacritics Diacritics No Diacritics

Terms All 63 0.81 0.76 0.98 0.98
Triggers 23 0.91 0.91 1.00 1.00
Events 40 0.74 0.67 0.97 0.96

Concepts All 37 0.83 0.78 0.97 0.97
Triggers 15 0.87 0.87 1.00 1.00
Events 22 0.81 0.71 0.94 0.94

TABLE 4.1: An overview of MedCAT’s performance on the sample letters.

in Section 3.1. We described in Section 3.2.1.2 that we used RXNORM to retrieve
the CUIs of the brand names, we did however not include the concept database of
RXNORM itself because it is not specifically for Dutch language. To solve the prob-
lem of unrecognized drug names, we reason that drug names are less language-
bound and that we can add international drug databases without decreasing our
model’s performance on Dutch language. So we decided to add the concepts of
ATC (12k terms), DRUGBANK (59k) and RXNORM (196k) to our concept database.

The second problem occurs because MedCAT is originally made for English lan-
guage. In English, diacritics do not occur, only in words borrowed from other lan-
guages. In Dutch, diacritics are very common and while setting up the pipeline we
found that trivial words (for our use-case) like "hyponatriëmie", "hyperkaliëmie"
and "hypokaliëmie" were not recognized. To solve this, we added an extra fea-
ture to MedCAT so that during pre-processing of the concept database and dur-
ing spell-checking of input-text, diacritics can also be taken into account (https:
//github.com/CogStack/MedCAT/pull/125).

4.1.2 Concept Extraction on Sample: Performance

In Table 4.1 the results of MedCAT on these 5 letters are presented, we see a de-
cent performance: MedCAT is able to annotate most of the relevant concepts. For
each letter we only took into account the terms that are relevant for the triggers and
events it was annotated for in the dataset provided by Noorda et al. (2022). Take for
example a letter which is annotated to contain the events "Fall" and "Delirium" and
the triggers "Furosemide" and "Loperamide". Then we only have MedCAT consider
a subset of CUIs relevant to these triggers and events. Otherwise, we would end
up with a very large amount of CUIs that we need to check manually, and now we
use the annotations by Noorda et al. (2022) to only focus on the CUIs relevant to this
research. This may also explain the low number of false positives (illustrated by the
high precision in Table 4.1), as MedCAT has a relatively small set of CUIs to choose
from.

4.1.3 Concept Extraction on Sample: Error Analysis

In Table 4.2 we provide an overview of the errors in the 5 letters. First we look at the
errors made overall: MedCAT performs slightly better in recognition of triggers as
compared to events. Triggers are medicines and often carry many (brand)names. On
the other hand, events are subject to more ambiguity ("To fall" versus "To fall asleep")
and different verb tenses. These aspects are more difficult to solve for MedCAT,
which may explain its better performance on triggers.

https://github.com/CogStack/MedCAT/pull/125
https://github.com/CogStack/MedCAT/pull/125
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The errors can be divided into several categories:

1. Disambiguation: "To fall asleep", here "fall" is recognized as "to fall". There
is no UMLS concept that links to "fall asleep", so MedCAT will never learn to
disambiguate this case.

2. Inherent to MedCAT: in the case that a concept consists of non-adjacent words
("raakte ... weg"), MedCAT is incapable of capturing the concept.

3. Lemmatization error: "Valt" should be lemmatized to "Val", which would be
recognized.

4. Terms that are not in the concept database: "Wegrakingen", "Emselex", "Tem-
gesic" and "Delier".

This disambiguation error is not something we can easily solve: as UMLS con-
tinues to expand, this problem (and similar problems) may eventually solve itself.

For the lemmatization error with "Valt", the problem is that MedCAT uses a min-
imal normalization length of 5 by default. We use SpaCy models specifically for
Dutch language (spaCy, 2021a), these are able to correctly lemmatize "Valt". Lower-
ing this value may proof useful for our use case, as "valt" is a common term in our
ADEs, in Section 4.2 we evaluate the results with different normalization lengths.

MedCAT currently only looks at adjacent words to link these to concepts. To
capture dependencies of non-adjacent words, MedCAT would need to rely on extra
information such as dependency trees and POS tags.

The last error, where concepts are missing from the database, can be solved eas-
ily by adding those terms to our concept database. This is not the most appealing
solution as this requires manual adjustments every time a new dataset is introduced.
On the other hand, it does help to identify trivial concepts that are missing from the
concept database. In our case "Wegrakingen" and "Delier" are important terms that
we want to add to our database.
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TABLE 4.2: Error Analysis of 5 random discharge letters. Lists all recognized and missed
relevant terms in each letter and whether these are mapped correctly. Only unique terms are
listed for each document. In case of an error we provide the explanation that we deem most

likely.
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4.2 Triggers and Event Recognition: Full Dataset

Now we have MedCAT annotate the rest of the data, 186 letters from 93 patients.
Performance is evaluated in two different ways: at concept-level and at document-
level. The concept-level approach evaluates how well MedCAT recalls individual
trigger and event concepts (can be multiple per document). This is evaluated by
comparing against our manually annotated dataset (Section 3.3). Document-level is
a similar approach to the one used in Noorda et al. (2022), as they labelled for each
admission letter whether and what ADE occurred in the document (Section 3.5.1).

First we will go over performance of the concept-level approach, followed by
an evaluation of how well these concepts can be translated into ADE recognition at
document-level. Both approaches are based on the same annotation strategy, it is
just the evaluation methodology that is different. Therefore, the error-analysis that
follows, covers both.

4.2.1 Concept-Level Performance

For the concept-level approach, we compare the output of MedCAT with the manual
annotations that we created (Section 3.3). Because we have annotations for all ad-
mission and discharge letters, we run MedCAT once on the full dataset, containing
186 letters from 93 patients.

In Table 4.3 the performance of MedCAT is presented and compared to our man-
ually created golden standard, which contains 3301 annotations. In our best model,
86% of all concepts are recognized. Within these concepts, triggers (93% recall) are
significantly better recognized than events (79% recall). When lowering the minimal
normalization length we see a performance increase from 84.3% to 86.1%. With min-
imal normalization value at 5, the strings "valt" and "Valt" (lower and uppercase)
were missed respectively 35 and 19 times. Lowering the minimal normalization
value to 3 allows MedCAT to lemmatize "valt". Consequently, "valt" and "Valt" are
missed 0 times, which increases the concept-level performance. The reason that this
performance increase does not show up in the document-level approach (Table 4.5)
is because there are multiple event mentions in each letter, therefore missing a case
of "valt" is compensated for by detecting another similar instance. Because the re-
call with minimum normalization length "3" and diacritics "on" is much higher, we
choose to further evaluate using that model in Section 4.2.3.

Recall (%)
min_len_normalize: 5 3

Diacritics: on off on off
All concepts (3301) 84.3 80.2 86.1 82.0
Events (1660) 75.2 67.5 78.7 71.0
Triggers (1641) 93.3 93.0 93.3 93.0

TABLE 4.3: Concept-level performance: An overview of MedCAT’s performance on detect-
ing concepts. We used the letters of 93 patients which included 3301 annotated concepts
for triggers and events. We also included scores on the diacritics feature that we added to

MedCAT (Section 4.1.1).

We only report the precision score for the run with diacritics on and minimum
normalization length at 3. There are 147 cases marked as false positives, this results
in a precision score for of at least 95.1%. The reason why we say "at least" is because
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many of these false positives turn out to be true positives. This is the case for all 65
triggers that are marked as false positives. If we were to correct for this, precision
score raises even higher to 97.3%. This is however not completely explainable as
we initially used MedCAT as a starting point for our manual annotation process.
It may be explained by the fact that MedCATTrainer was quite buggy at time of
use. We will further elaborate on the false positives (that really are false positives)
in Section 4.2.3. For evaluation, we only evaluated the triggers and events that we
knew to be ADEs in each letter (Section 3.3). An example: a letter is marked to
have only one ADE, "fall" and "metoprolol". It may be that the word "delirium" also
appears in the document, but we only added annotations in our "golden standard"
for "fall" and "metoprolol", as these are the concepts corresponding to the labelled
ADE. Concepts irrelevant to the ADEs in each letter were disregarded and not taken
into evaluation.

R P f1
All concepts (3301) 86.1 97.3 91.4
Events (1660) 78.7 95.2 86.2
Triggers (1641) 93.3 100.0 96.5

TABLE 4.4: Concept-level performance with precision and f1 score for the run with diacritics
on and minimum normalization length at 3.

In Figure 4.1 the most frequently identified strings and concepts are depicted.
The strings are the literal strings before they are mapped to their concept and are
case-sensitive. So in this example, "delier" and "Delier" are two different instances.
The figure shows that some words appear relatively frequent, for example "delier"
makes up 7.5% (249) of all the concepts in our dataset. Our concept database consists
of 1362 CUIs, but in practice our model detected only 108 correct different concepts.
This means that only a relatively small part of these CUIs are used in practice. The
top 20 concepts (Figure 4.1) make up 1945 (68.5%) of 2840 correctly identified cases.
This shows that a small number of concepts appear very frequently while a large
number of concepts only appear in a few cases.

4.2.2 Document-Level Performance

For the document-level approach, we ran MedCAT multiple times on slightly differ-
ent datasets. As described in Section 3.2, we can only use the admission letters to
detect ADEs, following the methodology of Noorda et al. (2022). However, during
annotation it became clear that the admission letters in our dataset were not always
complete. In Noorda et al. (2022), the researchers had direct access to the EHRs and
could therefore manually find, for example, the medication list of a patient when
this was missing in a letter. We do not have such access. This means that if we
have MedCAT detect ADEs in only the admission letters, it is impossible to achieve
a 100% recall score, as some of the letters we have do not contain the ADEs they
are labelled for. Although we still provide the recall when we run MedCAT exclu-
sively on the admission letters, we also decided to run it with additional data. So, to
compensate for the lack of data in the admission letters, we decided to introduce 2
more versions of the dataset that we offer to MedCAT. In the first additional run, we
use the admission letters, but also the discharge letters for those patients that have
incomplete admission letters (Section 3.3. This is a fairer approach, as the ADEs are
often named in the discharge letters (although not always, so achieving 100% recall
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FIGURE 4.1: On the left: top 20 correctly identified strings (case-sensitive). On the right: top
20 correctly recognized CUIs, expressed using their preferred Dutch name.

is still impossible). In the second additional run, we provide the admission and dis-
charge letters for all the patients. To see if we can improve the recall even further by
using all letters to detect ADEs.

In Table 4.5 the results of MedCAT on the letters of 93 patients are presented.
In the best model, the ADE recall rises significantly from 65.0% to 83.7% when we
add just the 37 discharge letters for the patients with incomplete admission records.
The highest recall is naturally obtained when we input the most data, when run-
ning annotation on all admission and all discharge letters, 87.8% of all the ADEs are
recognized at document-level.

We also see a great increase in performance when we enable our self-implemented
diacritics feature (Section 4.1.1). This makes sense in the context of our research as
we specifically focus on ADEs relating to "hyponatriëmie", "hypokaliëmie" and "hy-
perkaliëmie", which all contain diacritics. In the trigger category the diacritics fea-
ture only causes a minor performance increase, because diacritics are rarely present
in drug names. We do not see any increase in performance when we lower the min-
imal normalization length, this will be further explained in Section 4.2.1.

An important metric that is missing in Table 4.5, is precision. The reason is that
we noticed that some false positives were actually true positives. This means that
they were originally missed in the annotations provided by Noorda et al. (2022). To
report a fair precision score, it is therefore required to go through all documents and
screen the legitimacy of the false positive label. This is labour intensive and there-
fore we decided to do this for only the smallest run, the one that relies just on the
admission letters. In the original run (with diacritics on and minimum normaliza-
tion length at 3) recall was 65.0%, because 219 out of 337 ADEs were recognized. In
our case, MedCAT labelled 512 ADEs, meaning we have 293 false positives. This
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Recall in %
(total n=337)

ADEs Events Triggers
min_len_normalize:* 3 & 5 3 & 5 3 & 5

Diacritics: On Off On Off On Off
Admission letters 65.0 48.7 89.9 70.0 68.2 68.0
Admission & selected
discharge letters

83.7 64.7 95.8 76.0 86.9 86.6

Admission & all
discharge letters

87.8 68.0 95.8 76.0 91.4 90.8

TABLE 4.5: Document-level performance: An overview of MedCAT’s performance on de-
tecting triggers, events and ADEs. We used the letters of 93 patients which included 337
annotated trigger-event combinations (ADEs). The ’ADEs’ column shows how often the full
trigger-event combination was recognized. We also included scores on different minimal
normalization lengths and the diacritics feature that we added to MedCAT (Section 4.1.1).

*Scores for min_len_normalize "3" and "5" were equal in all cases.

results in very low precision scores (Table 4.6). However, after screening, we found
that out of those 293 false positives, 131 ADEs were actually true positives. This
means that we now recall 350 (219+131) out of 468 (337+131) ADEs and precision
also increases. We refer to this as the "corrected" version in Table 4.6. It is impossible
to achieve a 100% recall score for because the admission letters are incomplete.

ADEs
Dataset: R P f1

Admission letters 65.0 42.8 51.6
Admission letters
(corrected)

74.8 68.4 71.4

TABLE 4.6: MedCAT scores on document-level recognition of ADEs in the admission letters
with precision scores.

To further evaluate the document-level performance we pick the best performing
model and further examine it. So, for the next tables and statistics we use the model
that is based on all admission and discharge letters with diacritics on. In Table 4.7
the recall of ADEs, triggers and events within each category is provided. There is
a significant difference in performance between the categories, "Renal Insufficiency"
for example, is among the worst-scoring categories in both events and triggers (and
consequently also in ADEs). On the other hand, "Fall" seems to be an easier cate-
gory in terms of both events and triggers that correspond to it, as scores within this
category are very high (>95%).

4.2.3 Triggers and Event Recognition: Error Analysis

In the error analysis we will also continue to analyze the results of the model applied
to the full dataset. From the 3301 annotated concepts, 2841 were correctly recognized
and 460 concepts were missed. Figure 4.2 shows the most common mistakes of our
model. There are a variety of reasons why the different strings are missed.
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Recall
Event Category* Total ADEs Events Triggers
Fall 130 95.4 (124) 100.0 (130) 95.4 (124)
Delirium 78 82.1 (64) 100.0 (78) 82.1 (64)
Electrolyte Disturbances 71 88.7 (63) 91.5 (65) 95.8 (68)
Renal Insufficiency 58 77.6 (45) 86.2 (50) 89.7 (52)

TABLE 4.7: MedCAT scores on document-level recognition of ADEs, events and triggers
within different event categories. *We only give one term corresponding to the event cat-
egory here ("Fall" also covers "collaps", "hypotension" etc.), the other terms belonging the

event categories can be found in Table A.1.

We will first look at the most frequently missed trigger strings. "Oxynorm",
"monocedocard" and "natriumvalproaat" are all drug brand names that are missed
because they do not occur in our concept database (their generic variants are in-
cluded though). Similarly "levodopa/carbidopa" and "levodopa/benserazide" are
not in the concept database but are also missed because MedCAT splits words sep-
arated by "/" and will never be assigned to a single concept: within "levodopa/...",
"levodopa" is recognized. "Tiotropium" is missed because the ATC code (R03BB04)
for "Tiotropium" is linked to "Tiotropium bromide". So in our concept database we
have "Tiotropium bromide" but not "Tiotropium". When looking at the WHO ATC
description for tiotropium bromide, it says "expressed as tiotropium". So although
the term in our concept database is correct, "tiotropium" is a more common expres-
sion in practice and it would be beneficial to add such terms to the concept database.
"Amitryptiline" is not identified because the spelling is too far off, the correct word is
"amitriptyline", the "i" and "y" are swapped. Lastly, "amlodipine" is not annotated in
4 cases. This may be due to the context of its appearance, because the term is mapped
correctly in our concept database, illustrated by the fact that it is recognized correctly
46 times in the dataset.

Now for the event strings, "orthostase", "sufheid", "in de war", "suf", "Sufheid",
"bewustzijnsverlies" and "buiten bewustzijn" lack annotations because the terms are
not in the concept database. The missed event strings appear a lot more frequent
than the trigger strings, so adding those to create a more complete concept database
would be very beneficial. The reason that "nierinsufficientie" and "nierinsufficiëntie"
are missed will be explained later this section when elaborating on false positives.
Lastly, "val" is not recognized in 13 cases, similar to "amlodipine" this may be due to
the context of its appearance.

Another frequent cause of errors is when a single word contains a drug name fol-
lowed by "gebruik" (usage) such as "metoprololgebruik", "citalopramgebruik" and
"diureticagebruik". These are not recognized as concepts, causing several drug-
names to be missed. A quick solution for our use case would be to identify strings
ending with "gebruik" and seperate all preceding characters with a space. Another
option would be to add a concept for each of these cases, this is however much more
labour intensive.

In Table 4.8 and Table 4.9 we do an error analysis of 10 random letters. For each of
these letters we show which concepts are assigned by our model and whether these
are correct. We also provide an overview of the concepts that should have been
recognized but were missed, in 5 of the letters, no concepts were missed (although
this can still mean there are incorrect mappings). The mistakes made can be divided
into a few categories:
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FIGURE 4.2: The top 10 most frequently missed strings for events (left) and triggers (right).

1. Terms not in our concept database: Dutch concept databases are still a work
in progress and continue to improve. For example, SNOMED CT Netherlands
edition is updated twice a year, and in the last update (30 September 2021)
around 1000 new concepts and 5000 new translations were added. For now,
we will have to manually add missing terms for specific use cases.

2. Wrong mapping of concepts: This will be explained further down in this sec-
tion, when we elaborate on false positives.

3. Ambiguous language: A difficult case is "NF" (letter 9 in Table 4.9). Health
practitioners normally use "NF" to express "nierfunctie" (renal function), but
in this context the doctor used it to express "nierfunctiestoornis" (renal dys-
function).

Another step that could potentially lead to errors is where the CUIs are linked to
the ADE categories. For the event CUIs this step is not sensitive to errors because
there are only 18 possible event CUIs (Table A.1). However, there are 1348 trigger
CUIs in our concept database of which 94 were detected in the dataset (Table 4.10).
These are mapped to corresponding ATC codes using the methodology described
in Section 3.5. This mapping step successfully linked all trigger terms to the correct
ATC code.

In the predictions by our model, there were also false positives. Here it is im-
portant to distinguish between the document- and concept-level approach. In the
concept level approach, we look at how many concepts are correctly labelled, de-
spite presence of negations or other contextual properties. For example: marking
"drowsiness" in the sentence "patient did not suffer from drowsiness" is correct and
not a false positive here. In contrast, for the document-level approach where we are
actually labelling for ADEs, this is very relevant because it indicates that drowsiness
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TABLE 4.8: Error Analysis of random documents 1-5.
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TABLE 4.9: Error Analysis of random documents 6-10.
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Events Triggers
CUIs in concept database 18 1348
CUIs that occur atleast once 14 94

TABLE 4.10: Total number of unique CUIs that are included in our concept database and the
amount of unique CUIs actually detected in our letters.

cannot be part of an ADE. Below, we will first discuss false positives at concept-level,
then at document-level.

In the predictions by our concept-level model, there were 147 false positives. 65
of these false positives are actually true positives, these were corrected for, so 82 re-
main. In 56 of these cases, the correct word span is recognized, but the wrong CUI
is assigned. This is the case for 56 (38.1%) of the false positives. One of these cases
is "Temazepam" which is actually assigned the right CUI, but we falsely annotated
it during the annotation process, so it is actually a true positive (this has been taken
into account in the "corrected" version in Table 4.4). The other 55 cases are all string
variations of "nierinsufficiëntie", and are all mapped to the "C0035078" CUI for kid-
ney failure, instead of the true CUI "C1565489" for renal insufficiency. This mistake is
made because our concept database (Section 3.1) contains the word "nierinsufficiën-
tie" only for the concept of kidney failure and not for renal insufficiency. This exam-
ple shows that concept databases are not always complete and do not always contain
perfect mappings. However, this mismapping of "nierinsufficiëntie" does not pose
a problem in our use case as renal insufficiency and kidney failure both map to the
same event category (Table A.1). The remaining 26 cases were ambiguity-related.
The majority of these were caused by "viel" being interpreted as the past tense of
"fall" in cases where it related to either "opvallen" (stands out) or "fell asleep".

For the document-level approach, we manually went over all the false positives
in the admission letter run (Table 4.6). We performed a manual correction on the
false positives, as some concepts were missed during the annotation process. After
manual correction, there are still a 162 false positives. For each of these, we marked
the error cause(s) (Table 4.11). Negations most often lead to false positives. In Sec-
tion 3.5 we decided not to use a negation model, even though we had access to
the negation model by Es et al. (2022). Now that we see that negations are the most
common cause for false positives, we do run the model once more with this negation
model. As a result, the amount of false positive ADEs was reduced by 12, but it also
causes 1 of the true positives to be missed. The letters may contain medical history
and prescribed medication for future use, which often leads to errors. Additionally,
ambiguous use of words such as "fall" (this one in particular) and the presence of
conditional statements result in false positives.

4.3 Identification of Relations

We will now evaluate the results for the relation extraction part. We will start by
analyzing the performance of the usual care models RUS and R-BERT (Section 3.6.1)
on the 268 samples using 5-fold cross-validation and compare them to each other
and the baseline. This is followed by an error analysis, to see if we can identify
common causes of errors. Next, we evaluate performance for the full letter models
RUS and R-BERT (Section 3.6.2) against baseline and each other. Similarly, this is
followed by an error analysis, with the aim to identify structural mistakes.
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Error Category Total Examples

Negations 72
"stopped using sotalol"
"never falls"

Medical History 40
"patient fell in may"
"2007 delirium"

Prescribed Medication 20 "start using haloperidol"
Disambiguation 20 "falls asleep"

Conditional Statements 17
"if sleep problems persist,
we may consider oxazepam"

TABLE 4.11: An overview of the reasons for false positive identifications of ADEs.

4.3.1 Usual Care models: Performance

First, we evaluate the performance of baseline model 1, the close proximity model
(Section 3.6.1.1). We are aiming to identify cases of ADR recognition by usual care
of which the definition is explained in Section 3.2. In our dataset there are 268 usual
care instances of which 95 (35.4%) are positive, the other 173 (64.6%) are negative.
In table Table 4.12, the precision score concerns the percentage of entries that are
positive usual care instances. The recall is 100% as explained in Section 3.6.1.1.

The performance of baseline model 2 (Section 3.6.1.2) is also shown in Table 4.12.
Here we apply an additional ADE filter; all samples that are not ADEs (as defined by
the chosen trigger tool categories), are removed from evaluation. Now the dataset
consists of 196 usual care instances of which 84 (42.9%) positive and 112 (57.1%)
negative samples. The proportion of positive samples has now increased from 35.4%
to 42.9%. Because the baseline depends on the a priori probability that the marked
instance is a positive usual care instance, baseline 2 scores higher than baseline 1.

Samples Recall Precision f1 Score
Baseline 1
(without ADE filter)

268 100.0 35.4 (95) 52.3

Baseline 2
(with ADE filter)

196 100.0 48.5 (95) 65.3

TABLE 4.12: Performance of our close proximity baseline models on identification of usual
care instances.

Table 4.13 shows the performance of all models on the unfiltered usual care
dataset (268 samples) over 5 different folds. Both BERT models outperform the base-
line model by >20% (based on average f1 scores). The standard deviations for RUS
and R-BERT are 7.5% and 10.3% respectively so the difference of 3.2% in f1 score
is not significant. However, because RUS has both a higher f1 score and a smaller
standard deviation, this seems to be the preferred model.

Table 4.14 shows the performance of all models on the filtered usual care dataset
(196 samples) over 5 different folds. All models perform better with the ADE filter
in terms of average f1 scores. However, performance of RUS and R-BERT increases
only slightly by 0.3% and 0.6% respectively, whereas the baseline improves by 6.6%.
Although both BERT models still outperform the baseline model, the difference is
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Samples
in test set

RUS R-BERT Baseline 1

Fold Pos Neg R P f1 R P f1 R* P f1
1 17 36 76.5 56.5 65.0 47.1 66.7 55.2 100.0 32.1 48.6
2 16 37 81.3 76.5 78.8 87.5 87.5 87.5 " 30.2 46.4
3 15 38 66.7 76.9 71.4 66.7 66.7 66.7 " 28.3 44.1
4 28 25 85.7 85.7 85.7 89.3 71.4 79.4 " 52.8 69.1
5 19 37 84.2 80.0 82.0 84.2 72.7 78.0 " 33.9 50.6

Average: 78.9 75.1 76.6 75.0 73.0 73.4 " 35.4 52.3
Std of average: ±6.9 ±9.9 ±7.5 ±16.1 ±7.6 ±10.3 ±0 ±8.9 ±8.9

TABLE 4.13: A comparison between the usual care models: RUS, R-BERT and the baseline
model. *As explained in Section 3.6.1.1, the baseline recall is always 100%.

smaller: RUS by 17.3%, R-BERT by 15.1%. For the BERT models, standard deviations
also increase significantly, making R-BERT’s superiority over the baseline disputable
with a standard deviation of ±15.7%. Because RUS significantly outperforms the
baseline, and has a higher f1 score and lower standard deviation than R-BERT, this
is the preferred model.

ADE samples
in test set:

RUS R-BERT Baseline 2

Fold Pos Neg R P f1 R P f1 R* P f1
1 14 25 71.4 58.8 64.5 50.0 70.0 58.3 100.0 35.9 52.8
2 14 24 92.9 86.7 89.7 92.9 92.9 92.9 " 36.8 53.8
3 9 22 55.6 62.5 58.8 55.6 50.0 52.6 " 29.0 50.0
4 28 18 85.7 88.9 87.3 89.3 75.8 82.0 " 60.9 75.7
5 19 23 84.2 84.2 84.2 84.2 84.2 84.2 " 45.2 62.3

Average: 80.0 76.2 76.9 74.4 74.6 74.0 " 41.6 58.9
Std of average: ±13.2 ±12.9 ±12.7 ±17.9 ±14.5 ±15.7 ±0 ±11.0 ±9.3

TABLE 4.14: A comparison between the usual care models, but now with ADE filter applied.
Positive means those recognized by usual care. *As explained in Section 3.6.1.1, the baseline

recall is always 100%.

We combined all 5 test sets from the different folds and accumulated these to re-
port the performance of RUS and R-BERT per event category, as shown in Table 4.15.
Performance is quite similar among the different categories and between the RUS
and R-BERT models. The only odd result is that of R-BERT in the "fall" category.
Here, the f1 score is only 50.0%, which is 26.2% lower than RUS’ f1 and also much
lower than R-BERT’s performance on other categories.

4.3.2 Usual Care models: Error Analysis

In this error analysis we will analyze a subset of the results of RUS and R-BERT on
the ADE filtered results. We analyze the errors in the test set of the first fold. The
test set of the first fold contains 39 examples, of which 14 positive and 25 negative
(Table 4.14). An overview of the mistakes is provided in Table 4.16. RUS made more
mistakes than R-BERT (11 vs 10). The errors by RUS in this fold are mostly false
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Samples: RUS R-BERT Baseline 2
Event Category: Pos Neg R P f1 R P f1 R* P f1
Fall 10 36 80.0 72.7 76.2 50.0 50.0 50.0 100.0 21.7 35.7
Electrolyte
Disturbances

50 21 86.0 78.2 81.9 88.0 81.5 84.6 " 70.4 82.6

Renal
Insufficiency

12 8 83.3 83.3 83.3 83.3 71.4 76.9 " 60.0 75.0

Delirium 12 47 58.3 87.5 70.0 58.3 87.5 70.0 " 20.3 33.7

TABLE 4.15: A comparison between the usual care models for each of the event categories.

positives, whereas R-BERT produces false negatives more often. 7 errors are shared
by both models (examples 1-7 in Table 4.16).

For the first example, both models falsely label it as a positive instance. By de-
sign, RUS and R-BERT are not able to distinguish which instance of (in this case)
"Hydrochloorthiazide" is targeted, the models simply incorporate extra information
on the entity "Hydrochloorthiazide" in the vectors (and do so in different ways).
During annotation, we agreed that only the marked entities should be relevant in
deciding whether it is a true usual care instance (Section 3.6.1), that is why example
1 was annotated as negative by the annotators. We will provide two examples from
the dataset to illustrate this:

1. Example 1 from Table 4.16: "Milde <e1> hyponatriëmie </e1>, geduid bij Hy-
drochloorthiazide; deze werd gestaakt en het natrium herstelde. Hypocal-
ciëmie: bij <e2> Hydrochloorthiazide </e2> en nierfunctiestoornissen"

(a) Mild <e1> hyponatremia </e1>, interpreted as caused by hydrochloroth-
iazide; which was stopped and lead to recovery of sodium levels. Hypocal-
cemia: caused by <e2> Hydrochloorthiazide </e2> and renal dysfunction

2. A subsentence of above example that also exists in our dataset with a different
marked entity for "Hydrochloorthiazide": "Milde <e1> hyponatriëmie </e1>,
geduid bij <e2> Hydrochloorthiazide </e2>; deze werd gestaakt en het na-
trium herstelde"

(a) Mild <e1> hyponatremia </e1>, interpreted as caused by <e2> hydrochloroth-
iazide </e2>; which was stopped and lead to recovery of sodium levels

The first one is annotated by the annotators as negative and the second one
as positive. Both cases are marked as positive by RUS and R-BERT. Inherent to
their methodology, these models do not take into account which instance of "Hy-
drochloorthiazide" is relevant in the first case. A different evaluation methodology
on our side could bypass the problem as follows: for each sample, keep track of the
document it corresponds to. If just one instance that contains both "Hydrochloorti-
azide" and "hyponatriëmie" is marked as positive, the document is labelled as posi-
tive for the ADR.

Inherent to deep learning is that it is difficult to track down the origins of mis-
takes. Take example 6, the fragment "<e1> hyponatriemie </e1> bij <e2> HCT
</e2>" (Hyponatremia caused by HCT) clearly denotes a positive instance but is
missed by both. However, when asking the models to label just the fragment, they
label it correctly. This shows that too much irrelevant context, noise, disrupts per-
formance.
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TABLE 4.16: An overview of the errors made by both BERT models in the test set of fold 1.
"1" stand for a positive label, and "0" for negative.
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Example 14 is something we also came across during annotation; inferences. In
this example "fall" is caused by "low blood pressure" which is caused by "propanolol",
and so the fall is caused by propanolol. R-BERT is unable to recognize that it is a
positive instance. Further experimenting with the following inputs (shortened vari-
ations of example 14):

1. <e1> Val </e1> DD bij sepsis (UWI en pneumonie bij vieze urine en verdicht-
ing li basaal op X-thorax), orthostatisch (bij <e2> propanolol </e2>)

(a) <e1> Fall </e1> DD sepsis (UTI and pneumonia with dirty urine and den-
sification left basal on X-thorax), orthostatic (caused by <e2> propanolol
</e2>)

2. <e1> Val </e1> DD bij sepsis (UWI en pneumonie bij vieze urine en verdicht-
ing li basaal op X-thorax), <e2> propanolol </e2>

(a) <e1> Fall </e1> DD sepsis (UTI and pneumonia with dirty urine and
densification left basal on X-thorax), <e2> propanolol </e2>

3. <e1> Val </e1> DD bij sepsis, orthostatisch (bij <e2> propanolol </e2>)

(a) <e1> Fall </e1> DD sepsis, orthostatic (caused by <e2> propanolol </e2>)

To empirically experiment whether inference is the cause of failure, we presented
R-BERT with 3 variations of example 14. In the first one we took just the relevant
part of the sentence, in the second one we removed the inference and in the third
part we removed the noise in between the relevant entities but kept the inference.
Only the prediction for the third variation was successful.

Although it is difficult to deduct the cause of errors, the presence of irrelevant
context seems to play a role here. Experimenting with different pre-processing steps
could help reduce the noise in the input samples,such as picking only the span from
first entity - second entity (and maybe a range of tokens around these) or removing
text between parenthesis that does not contain relevant entities.

4.3.3 Full Letter models: Performance

In the third baseline model, we match all cases that are ADEs according to the trigger
tool (Table 3.2) in both the admission and discharge letters and mark them as ADRs.
In our dataset, there are 96 ADRs among the 266 ADEs. Logically, marking all of
these as ADRs results in a 100% recall score (Table 4.17). As a result, the precision
score is much lower, at 36.1%. The precision score is in line with expectations, as the
ADE trigger tool has a precision of 41.8%, as shown by Noorda et al. (2022).

Samples Recall Precision f1 Score
Baseline 3 266 100.0 36.1 (96) 53.6

TABLE 4.17: Performance of our trigger tool baseline model on identification of ADRs.

Table 4.18 shows the performance of all full letter models on the 266 samples
over 5 folds. RUS and R-BERT outperform the baseline by respectively 7.6% and
6.9% in terms of f1 score. RUS has a very low standard deviation (±3.7%), whereas
R-BERT has a high standard deviation (±14.0%) making its improved f1 score over
the baseline insignificant.
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ADEs in
test set:

RUS R-BERT Baseline 3

Fold Pos Neg R P f1 R P f1 R* P f1
1 23 41 91.3 46.7 61.8 69.6 51.6 59.3 100.0 35.9 52.8
2 26 40 73.1 44.2 55.1 84.6 51.2 63.8 " 39.4 56.5
3 19 39 78.9 48.4 60.0 63.2 40.0 49.0 " 32.8 49.4
4 7 14 57.1 80.0 66.7 71.4 100.0 83.3 " 33.3 50.0
5 21 32 95.2 43.5 59.7 47.6 38.5 42.6 " 39.6 56.7

Average: 79.1 52.6 60.7 67.3 56.3 60.0 " 36.2 53.1
Std of average: ±13.6 ±13.8 ±3.7 ±12.1 ±22.5 ±14.0 ±0 ±2.9 ±3.1

TABLE 4.18: A comparison between the full letter models. *Recall is always 100% for the
baseline (Section 3.6.2.1)

In Table 4.19 the results for the 5 test sets from the folds are combined and
split in the performance per event category. For every event category, performance
among the models is quite similar. However, performance between different event
categories show fluctuations in performance: categories "fall" and "delirium" have
lower f1 scores than "electrolyte disturbances" and "renal insufficiency". This might
be linked to the distribution of positive and negative samples present within the
classes, as the lower scoring categories contain relatively few positive examples. In
the evaluation method for the full letter models, if a single instance that corresponds
to an ADE is marked positive, the ADE is marked positive (Section 3.6.2. On aver-
age, there are ∼14 instances per ADE, there is a reasonable chance that (in a negative
sample) one of these 14 results in a false positive, thereby marking the ADE as an
ADR, despite the other 13 instances being correctly labelled as negative. This is also
visible in Table 4.18 where the recall scores are much higher than the precision scores.

Samples: RUS R-BERT Baseline 3
Event Category: Pos Neg R P f1 R P f1 R* P f1
Fall 26 78 73.1 29.2 41.8 17.6 23.1 20.0 100.0 25.0 40.0
Electrolyte
Disturbances

26 24 88.5 57.5 70.0 96.2 56.8 71.4 " 52.0 68.4

Renal
Insufficiency

34 14 88.2 71.4 79.0 82.3 66.7 73.7 " 70.8 82.9

Delirium 10 50 70.0 30.4 42.4 40.0 60.0 48.0 " 16.7 28.6

TABLE 4.19: A comparison between the full letter models for each of the event categories.
*Recall is always 100% for the baseline (Section 3.6.2.1)

4.3.4 Full Letter models: Error Analysis

In total, the full letter models used 3712 text fragments (of up to 512 tokens) for train-
ing and testing. Because of this large amount of inputs that also contain long texts
per input, it is difficult to go through all of these manually and come to unequivocal
answers to as of why certain errors occur. We start by comparing the labelling of
RUS and R-BERT, then we will take a closer look at the specific inputs.

We will take a look at the first fold, which contains 742 samples of which 363 are
positive and 379 are negative. These samples correspond to 64 ADEs, of which 23
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positive and 41 negative (Table 4.18). One thing that stands out is that RUS manages
a more aggressive positive labelling strategy. RUS assigns 434 positive labels while
R-BERT assigns 311 positive labels. There is a lot of overlap between both models,
they agree on 536 (72.2%) labels.

Both models incorporate entity information on the trigger and event. In some
cases the entity seems to largely influence the outcome. For example, "hydrochloroth-
iazide" is the marked trigger in 84 samples (in the test set of fold 1) and is positive in
32 of these cases. However, RUS and R-BERT both mark these as positive in 83 out
of 84 cases. This is not always the case though, "temazepam" occurs in 51 samples
and these are all negative, still, RUS assigns a positive label to 11 of these (R-BERT
labels them all negative).

Example Fragment of input

1

... Analyse geriatrie valpoli: evenwichtsstoornis wv balanscursus en
medicatie optimalisatie. <e1>Collaps </e1>... simvastatine 1dd 40
mg, <e2>nortrilen </e2>25 mg 2dd1, atenolol 25 mg 1dd1,
Calci-Chew 500 mg 1dd1 ...

2

... <e1>Duizeligheid </e1>. Afgelopen dagen geen klachten gehad.
Hoest meer slijm op sinds enkele maanden. Pijn is begonnen na val ...
Thuismedicatie Datum overzicht: 5-4- (Medicatie; Toedieningsweg;
Schema; Zo nodig; Opmerking) <e2>Lisinopril </e2>tablet 20mg ;
oraal; 1 x per dag 20 milligram. Metoprolol tablet mga 25mg
(succinaat) (retard) ...

TABLE 4.20: Examples from the full letter model test sets in fold 1.

If we look at example 1 from Table 4.20, the input is marked negative by R-BERT,
whereas the same input with "atenolol" marked instead of "nortrilen", results in a
positive label. The same happens in example 2, when we change the marked trigger
from "lisinopril" to "metoprolol", both models change their annotation from positive
to negative. Here the two inputs are almost similar, except for the marked entities,
which must therefore be the cause of the different label assignment.

While doing a manual exploration of the results in fold 1, it seems that entity
information has a disproportionate weight on the outcomes of both models. Because
the input texts are long, it is hard to detect what textual differences between inputs
causes the models to assign different labels. It seems that the long texts contain too
much noise, causing the models to rely too much on the entity information.
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Chapter 5

Discussion and Future Work

The main goal of this thesis was to detect adverse drug reactions (ADRs) in Dutch
admission and discharge letters of geriatric patients. To accomplish this goal, we for-
mulated several sub-questions in Section 1.3. In this section we provide the answers
to those sub-questions. First, we will go over concept extraction, followed by how
this translates to adverse drug events (ADE) recognition. Then, we discuss relation
extraction, ultimately followed by the relevance of this research to clinical practice.

5.1 Concept Extraction

In Section 1.3, our first formulated sub-question was: How well can our concept ex-
traction model identify concepts from Dutch admission and discharge letters of geriatric
patients?

Our model is able to achieve an f1 score of 91.4% on recognition of all the con-
cepts. In previous research, where MedCAT, MetaMap, cTAKES, Bio-YODIE and
SemEHR were applied on several UMLS concept extraction datasets, f1 scores var-
ied between 17.8% and 73.8%, with the highest scores being achieved by MedCAT
(Kraljevic et al., 2021). Our f1 score is significantly higher, mainly caused by the high
f1 score in the recognition of pharmaceutical drugs (triggers).

We explored several options to achieve high recall scores. This answers the next
question: In what ways can we improve concept extraction? First, the exploration of sev-
eral admission and discharge letters (that were excluded thereafter) led to early iden-
tification of terms that are missing in the filtered concept database. The second step
was to adapt parameters specifically to our use case. In our dataset "val" was a very
common word and therefore setting minimum normalization length to "3" was nec-
essary. Additionally, we introduced our own parameter "diacritics", to enable recog-
nition of terms with diacritical marks, which are common in Dutch language and
in our dataset. Our self-developed diacritics parameter increased recall on events
by ≈20%, as words like "hyponatriëmie", "hypokaliëmie" and "hyperkaliëmie" are
common in our dataset. Our "diacritics" parameter has now also been implemented
into the official MedCAT tool.

It is also noticeable that triggers are significantly better recognized than events
(93.3% vs 78.7%). We argue that the cause of this is twofold. First, ambiguity is
rarely a problem in triggers because drug names are designed to be unambiguous.
Secondly, triggers are nouns hence linguistically more simplistic. To improve our
model, primary focus should be on boosting event recognition performance, as here
is most to gain. There are several options that could improve clinical concept ex-
traction on events even further. One is the expansion of concept databases with
re-occurring ambiguous non-medical words. For example the Dutch term "valt op"
(stands out) was often labelled as "valt" (falls) in our use case. Adding ambiguous



70 Chapter 5. Discussion and Future Work

words to the concept database before training MedCAT, allows MedCAT to distin-
guish such cases. Preferably such expansions would be implemented UMLS-wide,
but for smaller use cases (such as ours) it is also achievable to do this manually. Fi-
nally, during error analysis we manually corrected concepts that were missed during
the annotation process. This shows that the annotations can contain errors, reducing
the number of annotation mistakes would be beneficial to our model.

5.2 ADE Extraction

Subsequently, the concepts can be used to extract ADEs from medical texts. The
question that follows from this: Can we use these identified concepts to recognize ADEs?

In Noorda et al. (2022) admission letters were manually annotated for presence
of ADEs. They did not annotate for all possible ADEs, but only for ADEs relating to
10 categories. We used MedCAT to automatically detect ADEs in the same admis-
sion letters and used their annotated dataset as golden standard. We focus on 4 of
these ADE categories: fall, delirium, electrolyte disturbances and renal insufficiency
and/or dehydration. At first, our model achieved a precision score of only 42.8%
(and f1: 51.6%) in extraction of ADEs from admission letters. However, it turned out
that many false positives were actually true positives. This means that our model
recognizes cases that were missed during manual annotation. These cases show the
added value of our model on top of manual annotation. After correcting for this, the
precision score improved to 68.4% (and f1 to 71.4%). This is an excellent score, espe-
cially considering that a 100% f1 score was not achievable; some admission letters in
our dataset missed crucial segments that contained mentions of the relevant triggers
and events required for ADE recognition. We estimate the maximum achievable f1
score to be ∼85%.

Manually identifying ADEs is labour intensive and also causes missed ADEs as
mentioned in the previous paragraph. We show that using a concept extraction tool
for ADE recognition could be used complementary to human work. The first step to
identify ADEs (both manually and automatically) is to compile a list of trigger-event
combinations that form ADEs. In Noorda et al. (2022) they annotate for 10 ADE cat-
egories. Even though there are only 10 categories, already several ADEs are missed
during manual annotation. This is because the annotators have to keep track of
many concepts that potentially form ADEs, making the process prone to errors. This
will be even more so when the dimensionality of the problem increases (when more
ADE categories are included in the assessment). Because the mapping between ATC
codes (drugs) and events need to be established only once, this methodology can be
translated into an algorithm that detects ADEs automatically, thereby speeding up
the process.

Our methodology means that detecting ADEs in texts can be automatized, re-
moving the necessity to read through all texts carefully. However, not all steps can
be automatized. First, defining ADEs by providing a mapping between ATC codes
and events remains a manual task. Next, it is still necessary to define which words
in texts correspond to ATC codes and events. Although instead of creating a list
of words ourselves, we take a more generic approach by using existing ontologies,
these are not exhaustive. This means that some of the former problems remain. One
example is that in the original compilation of our ATC codes, an instance was miss-
ing. Additionally, the concepts that were derived from the events and ATC codes
were not always well-represented in UMLS. Again, expansion of medical ontologies
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for Dutch language or access to existing databases (such as Farmacotherapeutisch
Kompas, Zorginstituut Nederland, 2021) could prove useful for future work.

Our methodology also brings new problems as becomes apparent when we look
at the false positive results. 72 (42.6%) of all 169 false positive errors were caused
by negations (table 4.11), a few of these were solved by using the model provided
by Es et al. (2022), but there is still room for improvement in our use case. The pre-
scribed medication false positives (20 errors) can be subdivided into two problems
with different solutions: 1) There is a section at the bottom of the letter with new pre-
scriptions, the solution here would be to remove this part entirely. 2) It is mentioned
in running text, at an arbitrary position in the letter. For this last one, using a model
to detect temporality could be useful. ContextD is an algorithm that can do this
in Dutch clinical texts (Afzal et al., 2014). Another option to reduce false positives
is to remove the medical history sections (40 errors) while pre-processing, because
these contain mentions of triggers and events that do not refer to present state. The
disambiguation problem (20 errors) is also a common cause of false positives and a
solution was already mentioned in previous section (Section 5.1). Lastly, conditional
statements (17 errors) are a cause of mistakes. To our knowledge, there is no model
that is capable of capturing this contextual property in Dutch clinical text.

5.3 Relation Extraction

The final step in our research is to determine whether an ADE is an ADR. In our
dataset, all ADEs were labelled for their probability of being an ADR (table 3.3).
We translated this into a binary problem, causality categories "unclassifiable" and
"unlikely" as non-ADRs, "possible", "probable" and "certain" as ADRs. This raised
the following question: Can we use a belabBERT-based model for relation extraction or do
we need to use less data intensive methods?

We took two approaches to relation extraction. Our first approach was trained
and tested on large input texts (up to 512 tokens). The advantage of this approach is
that it may capture ADRs over long-range in text, as for each ADE we are combining
every corresponding trigger-event combination within a letter, the trigger and event
are combined including a context-span around each of them. So each input entry
consists of a text fragment along with the marked trigger and event and is assigned
a label (ADR or ADE). The label is based on whether the ADE is annotated as an
ADR in the letter where the text fragment originates from. This may mean that
a text fragment is annotated as an ADR, whereas this is not deducible from that
specific fragment. Therefore, during evaluation we accumulate all results per ADE
per letter and mark it as ADR if ≥1 of the text fragments is marked as ADR. We
trained and tested two belabBERT-based models with this input, RUS and R-BERT.
These models incorporate information on the entities themselves along with context
to determine a relationship. These models are compared to a baseline model that
marks all detected ADEs as ADRs. This resulted in a slight improvement of RUS
over the baseline, 60.7% vs 53.1%, and R-BERT not being significantly better than
baseline. Although the models seem to have learned something, these results are
not very promising. One reason may be the way that labels are assigned and how
output is evaluated. It would be better to determine the label for each of the input
text fragments individually. For the output, an ADR label is assigned when just
one ADE instance in the letter is marked as ADR. Alternatively, changing this to
10%, 20% or a majority vote may produce more solid outcomes. On top of that,
by generating inputs up to 512 tokens, the models have to deal with a lot of noisy
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texts. A different and more effective strategy to capture long-range ADRs might be
to reduce the input size. This can still be used to detect long-range dependencies,
however the context-span of each trigger and event will contain less text.

In the second approach we use short text fragments, which explicitly show recog-
nition of ADRs by clinicians in the clinical letters. These usual care models, use
short input texts, consisting of only one or two sentences. With this approach, it
is not possible to catch all ADRs in a letter, because these may rely on long-range
dependencies. In the research by Noorda et al. (2022) they note that 16.5% of the
ADRs are missed through recognition by usual care, and that only 68.2% of usual
care instances translate to ADRs. The advantage of this approach is that we feed the
model with only short texts which contain relatively much useful information. As
a consequence, the results are much better than in the full letter models. Here, RUS
significantly outperforms the baseline model with an f1 score of 76.9% (table 4.14).
R-BERT also achieved decent performance, with an f1 score of 74.0%, although it did
not significantly outperform baseline due to large performance fluctuations across
folds. This points out a shortcoming in our research: a lack of train and test in-
stances. We believe that most performance can be gained by increasing the amount
of training samples. Now, we are only relying on 268 samples, but in other similar
research these numbers are often several orders of magnitude larger. Text data aug-
mentation could prove useful in this case. By switching terms for their synonyms
and abbreviations (and vice versa) we can generate variants that increase the size of
our dataset. Moreover, the models could also benefit from further cleaning the input
texts as irrelevant text in the input is causing errors.

A rule-based method could be used to compete against the proposed usual care
models. The samples in our usual care dataset contain patterns. Examples such as
"Hyponatriëmie DD HCT" or "Milde hyponatriëmie geduid bij HCT" are common
and could easily be matched using rules. A hybrid method, where entities are rec-
ognized using our methodology and then consequently the words in between the
entities are tested against rules, could also prove useful. An advantage of rule-based
is that it is less data intensive and that it does not have to rely on a knowledge base.
Oppositely, if there is enough data at hand, a deep learning strategy may be the pre-
ferred option. Whereas a rule-based model certainly misses a never-seen pattern, a
well-trained version of our usual care approach may well do it correct.

We were not able to evaluate how well the models generalize to other cases. Gen-
eralization here has two aspects: 1) Generalization on different texts, for example on
letters from the surgery department. 2) Generalization on different ADE categories.
The second one would require additional changes to our work: adding the relevant
concepts to the concept database. Our relation extraction models are trained to in-
corporate entity information for determining ADRs. Therefore, generalization to
new ADE categories without having samples to retrain on, may not be successful.
However, retraining our relation extraction models and replacing all triggers and
events by placeholders ("[trigger]" and "[event]" for e.g.) may result in a version that
achieves decent performance when applied to unseen ADEs.

The next question we seek to answer is: What is the best way of incorporating entity
information for relation extraction? In all our results, RUS outperforms R-BERT. In
short, R-BERT generates three vectors: one for the whole input, one for the trigger
and one for the event. These three are concatenated and used for the final prediction.
This assigns a lot of weight to the marked entities. RUS changes the input by adding
the marked entities in front of the input text separated by separator tokens. These
separator tokens help BERT understand that these are different sentences and adds a
learned embedding to every token that indicates to which sentence it belongs. In this
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case, the marked entities make up a smaller part of the vector. We argue, that in the
R-BERT models, the vectors of the marked entities are too influential. As a result, the
outcome is largely based on the marked entities. So when the same combination of
triggers and events occur repetitively, R-BERT almost always assigns the same label.
We have no hard evidence to support this claim, but our results may be indicative
for this.

5.4 Clinical Practice

Finally, our last question: What insights are gained about NLP in Dutch clinical practice?
First of all, our research shows that available Dutch medical ontologies (UMLS and
SNOMED NL) are sufficiently developed to perform well at recognition of (a subset
of) drugs and events in Dutch medical texts. We came across well-established issues
such as negations and conditional statements, of which we emphasize the impor-
tance, but we also identified other pitfalls that are especially important when con-
sidering Dutch language, such as the usage of diacritics. Furthermore, we achieve
promising results on ADR relation extraction while only having the availability of
a small dataset. This shows the potential of these BERT-architectures together with
the Dutch belabBERT model for ADR relation extraction in Dutch clinical texts. The
main insight we gain here, is that future work in the medical NLP domain should
first focus on providing larger annotated datasets, as this is the main bottleneck.
Thereafter comes eliminating the false positives (negations, conditional statements,
etc.) by tracking multiple contextual properties. Lastly, comes expanding the con-
cept database or fine-tuning it to specific use cases.

Now we will discuss the relevance of this work towards clinical practice. We
are able to reach f1 scores of 91.4% and 71.4% on concept and ADE recognition re-
spectively. Therefore, we believe that MedCAT combined with our methodology is
capable of capturing ADEs in clinical texts. For relation extraction, we believe our
full letter models fall short. Performance improvement over baseline is minimal. In
spite of that, our usual care models are promising. Picking the best usual care model,
RUS, gives us an f1 score of 76.9% on determining recognition by usual care of two
marked entities. There are however three downsides to our implementation of the
usual care model. The first one is that the definition used by Noorda et al. (2022) for
recognition by usual care is two-fold: 1) Explicit mentions in text 2) Drug withdrawal
or adjustment in response to an event. We only acquired a subset of all possible usual
care instances because we only keep track of the first part of the definition. Secondly,
recognition by usual care does not necessarily imply an ADR. In the dataset by No-
orda et al. (2022), 68.2% of all usual care instances are ADRs and 16.5% of all ADRs
go undetected by usual care. Finally, we do not know if these numbers apply to our
usual care dataset, as we gathered our own usual care instances. So although these
numbers are presumably in the same range, we cannot know for sure. This means
that, although our usual care models are promising, there remains uncertainty as to
what extent this can be translated into ADR detection. Therefore, it would be useful
to further investigate the relationship between recognition by usual care and ADRs.

In practice, a pipeline that uses concept extraction, followed by relation extrac-
tion, could be used to detect ADRs in previous medical records. Deploying such a
pipeline could help against under-identification of ADRs and can consequently lead
to more data for ADR research. Under-reporting rates are currently so high (Hazell
and Shakir, 2006), that arguably every recognized and reported ADR is a bonus. So
even though our best model (RUS, usual care model) will not retrieve all ADRs, and
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not all predicted ADRs are correct, it can still be used to increase reporting rates for
ADRs. It could also be implemented as an additional safeguard when prescribing
medicines, that whenever a patient has had an ADR to the drug being prescribed, it
triggers a warning. Such an implementation would require more evaluation, as this
may directly influence patient treatment (for e.g. withdrawal of a drug).

In conclusion, to bring our best model (RUS, usual care model) into practice, a
few steps have to be taken. First, we need to increase the size of our usual care
dataset (currently 268 samples). This requires a larger extract of clinical letters/notes
from the hospital database and additional manual annotation efforts by clinical phar-
macologists. Secondly, recognition by usual care is not always a correct ADR, and
also not every ADR is recognized by usual care. Therefore we need to further in-
vestigate the relationship between recognition by usual care and ADRs, to be able
to further evaluate the performance. With these steps, this project can be further
developed for clinical implementation.
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Appendix A

A.1 SemEval-2010 Task 8 Models
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FIGURE A.1: Overview of different participants and the used tools for their models (Hen-
drickx et al., 2010). WN: WordNet data; WP: Wikipedia data; S: syntax; LC: Levin classes;
G: Google n-grams, RT: Roget’s Thesaurus, PB/NB: PropBank/NomBank). Class: Classifi-
cation style (ME: Maximum Entropy; BN: Bayes Net; DR: Decision Rules/Trees; CRF: Con-

ditional Random Fields; 2S: two-step classification.
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A.2 Event CUIs

Trigger Tool event categories Events CUI
2 Fall C0085639

Collaps / Syncope C0039070
Hypotension C0020649
Orthostatic Hypotension C0020651
Dizziness C0012833

4 Hyponatraemia C0020625
Hypokalaemia C0020621
Hyperkalaemia C0020461

5 Renal Insufficiency C1565489
Kidney Failure C0035078
Dehydration C0011175

10 (Still) Delirium C0011206
Confusion C0009676
Drowsiness C0013144

TABLE A.1: Overview of the UMLS CUIs linked to each of the 4
most prevalent event categories specified in the explicated ADR trig-

ger tool.
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