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Abstract

Empirical porosity-permeability and grain size-permeability relationships have long been used and researched.
However, they often under- or overestimate permeability because they simplify complex micro scale porous
medium descriptions, such as tortuosity or pore size distribution, into nondescript parameters or constants.
This paper aims to highlight the large range of possible permeability values that can be obtained from identical
porosity and grain size distributions, but describe different pore scale porous media. To achieve this, numerical
flow simulations were performed on irregular grained and circular grained porous media which contain identical
grains and porosity but vary in spatial distribution of the grains within the domain. Subsequently, the domain
was analyzed in terms of representative elementary volume, pore size distribution, grain size distribution,
quantitative grain morphological parameters, porosity, and permeability. The results were compared to five
well known empirical relationships: Hazen (1892), Slichter (1898), Beyer (1964), Kozeny-Carman (1953), and
Barr (2001). Results showed a linear relationship between permeability on a logarithmic scale and porosity
on an arithmetic scale with uncertainty increasing as porosity increased. Porous media containing equally
sized circular grains as irregular grains in terms of sieve radius showed higher permeability values. Empirical
relationships correctly captured the impact of porosity on permeability, but were unable to yield correct values,
and even deviated by over a factor 10 for some porous media. This study emphasizes the need for more extensive
research into pore scale processes influencing permeability and provides ideas for future research.
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1 Introduction

Determination of the capacity and ability of a soil to transmit fluids has been a long-standing problem of great
practical relevance [Koponen et al., 1997]. This parameter, called the permeability (k), is extensively used
in scientific fields and hydrological engineering for example in estimation of slope stability, water inflow into
construction sites, CO2 storage, movement of contaminants in the subsurface, and construction of hydraulic
barriers in contaminated sites [Nishiyama and Yokoyama, 2017; Živković et al., 2021]. The precision in which
k needs to be determined varies, but may sometimes be required to be very accurate if not exact.

The concept of permeability was first introduced by Darcy through Darcy’s law. It states that in laminar flow
regimes, described by a low Reynolds number, fluid flow through the porous medium, a solid material which is
partially filled by interconnected voids (pores) [Dagan et al., 2008], under an applied pressure gradient can be
described by Darcy’s law as:

q = −k
µ
∇P (1)

where q is the fluid flux in [m/s], k is the permeability in [m2], µ is the dynamic viscosity of the fluid in [Pa · s],
and ∇P is the applied pressure gradient in [Pa] [Matyka et al., 2008]. Permeability is an intrinsic property of
the porous medium and depends on properties such as the porosity (θ), which is a measure of the void space
between grains, pore sizes, tortuosity (τ), which is the deviation of the flow from a straight path, and surface
roughness of the grains [Živković et al., 2021]. Therefore, it does not depend on properties of the fluid. Darcy’s
law was determined empirically in the 19th century and since then many researchers have tried to find a value
for k and its relationship to soil parameters such as θ, grain sizes and shapes, and composition of the medium.

Various methods can be used to obtain k, each having different costs, advantages and disadvantages. The value
can be determined experimentally in the field using the pumping-well method or at the column scale using
for example the falling head method. It can also be obtained from statistical or capillary models or through
empirical relationships [Wang and Tong , 2014; Živković et al., 2021]. Since field and laboratory studies are quite
tedious and time consuming, often porosity-permeability or grain size-permeability relationships are used.

Empirical relationships can be written as a general formula as:

k = cf(θ)d2 (2)

where k is the intrinsic permeability [m2], f(θ) a function of the porosity, c is a dimensionless parameter which
usually describes the porous medium in terms of τ , connectivity of pores, or shapes, and d is the particle
diameter [Shepherd , 1989; Nishiyama and Yokoyama, 2017].

Hazen [1892] was the first to define a relationship between effective grain size and permeability as:

k ∼ d210 (3)

where d10 is the effective grain diameter indicating where 10% of the grains are finer [Cabalar and Akbulut ,
2016].

Further research by Kozeny and later modified by Carman yielded perhaps the most well known empirical
relationship: the Kozeny-Carman equation. It was derived from the Navier-Stokes equation using the capillary
tubes model. The Kozeny-Carman equation predicts that a relationship exists defined as:

k ∼ θ3

(1− θ)2
(4)

where k is the permeability (m2), and θ the porosity [Hommel et al., 2018; Chapuis and Aubertin, 2011].

The influences of shape characteristics on permeability were first studied by Terzaghi [1925] by testing flat-
grained particles. It was later noted by Gilboy [1928] that any analysis which neglected the effect of grain shape
would yield false results [Cabalar and Akbulut , 2016].

The problem with these and other semi-empirical relations is that none yield accurate and exact results. Many
researchers have tried to formulate modified versions or calibration to, for example, the Kozeny-Carman equation
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but these are often designed for a specific case study [Nomura et al., 2018; Krauss and Mays, 2014; Ruan and Fu,
2021; Lala, 2018]. To use these relationships at the field scale, many samples are needed and heterogeneity of the
site is often underrepresented. Experimental analysis done by Rosas et al. [2014] into hydraulic conductivity
of different sediment samples compared to porosity-permeability relationships showed that no relation could
obtain accurate values. After calibration results were more accurate, but some still deviated significantly from
experimental values.

These relationships assume that any system described by a median grain size diameter and a porosity value are
exactly the same, while in reality this is often not the case. Extensive and detailed knowledge of the pore sizes
and spatial arrangement of the pore channels would be required to yield accurate permeability values [Costa,
2006]. Moreover, they often lack descriptions of the domain such as grain morphology [Hommel et al., 2018].
No simple equation can be formulated that describes the complex system known as fluid flow through a porous
medium. While the range of error when using these empirical relationships is quite significant, they are still
being used to predict permeability.

Here, representative elementary volume (REV)-scale domains that are described by the same grain size dis-
tribution and porosity are generated where subsequent numerical fluid simulations allow the calculation of
permeability. Different grain shapes and sizes are used to show that permeability cannot be accurately esti-
mated using two simple soil parameters. Irregular shaped grains are analyzed in terms of sieve radius and
morphological parameters such as sphericity and roundness. Thereafter, REV-scale domains using the same
grain radii but with spherical shapes are generated to determine a link between porosity, grain and pore size
distributions, and grain morphological parameters to better understand the impact of the porous medium on
the permeability.

The aim of this research is to develop an easily adaptable REV scale numerical flow model which can be used to
study the relationship between porosity, grain and pore size distribution, grain morphology and permeability.
The model must be able to generate round and irregularly shaped grains or use grain shapes taken from a x-ray
tomography sample and generate a domain in which numerical flow simulations can be performed. The ability
to calculate empirical relationships, such as the Kozeny-Carman equation, and comparison to numerical results
is also intended.

To show the applicability of the model, this paper set out to answer several research questions:

• What is the impact of spatial arrangement of identical grains on the permeability?

• What is the impact of grain size distribution and porosity on the permeability as calculated from numerical
simulations and empirical relationships?

• What is the impact of grain morphology such as sphericity, and roughness on permeability?

• How is the uncertainty of permeability at the REV-scale related to properties of the porous medium?

2 Methods & Theory

Here, a pore scale flow model was used to simulate flow in different realizations of a porous medium with the
same grain sizes and shapes but different spatial arrangement. Through this Monte Carlo method we identify
the permeability uncertainty that comes from spatial distribution of identical grains. Morphological descriptions
of grains were used to find a correlation between average grain shape and permeability between irregular and
round grains of equal grain size distribution.

Bram van der Hoek created a python-adapted workflow of a pore-scale grain generator built by Enno de Vries.
To achieve our goal, the workflow was updated and adapted. In its original state, the model was able to
generate realizations of porous media within a porosity range containing circular grains, the radius of which
is taken from a grain size distribution. Furthermore, it was able to place those grains inside a domain, and
perform computational fluid dynamics simulations using OpenFOAM and extract and post-process results to
obtain values for local velocities, pressure and porosity. These values were used to solve the Darcy equation for
1D fluid flow, giving the permeability value.

The model was updated from its original state by adding a method of performing Monte Carlo simulations.
This allowed a single porosity to be taken and grain placement to be varied by generating a uniform distribution
of randomized x and y values. Irregular shaped grains were generated using a newly implemented function,
but could also be created from a list of pre-generated shapes. Permeability of the domain was also calculated
using five empirical porosity-permeability relationships to compare to simulation results. To obtain values for
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these relationships, grains radius was analyzed using two methods. To describe the porous media in a more
quantitative way, morphological grain parameters and pore size distributions were calculated.

2.1 Domain Generation

To generate the domain, the following procedure was used (Fig. 1). A random radius was taken from the input
grain size distribution curve, which could be given as either a truncated log-normal distribution or as a grain
sieve analysis data set where sieve holes and percent passing are specified. This radius was used to generate a
shape, of which the area was calculated. The area can be calcualted in two ways: through use of the Shapely
module [Gillies et al., 2007] or through the mathematical formulation of the area of a polygon. For the Shapely
method, the points of the polygon are assigned to a polygon object of which the area can be calculated. The
mathematical formula for calculating the area of a polygon is defined as:

Ag =

∣∣∣∣ (x1y2 − y1x2) + (x2y3 − y2x3)...+ (xnyn+1 − ynxn+1)

2

∣∣∣∣ (5)

where Ag is the area of the current grain, xn is the x coordinate of vertex n, and yn is the y coordinate of the nth
vertex. Though Shapely is less trivial in understanding, computational time is longer than the mathematical
expression given above.

With the calculated area and the specified domain boundaries, the porosity can be calculated as:

θ = 1−
∑
Ag

Atot
(6)

where
∑
Ag is the sum of the area of the grains as calculated from Eq. (5) or shapely, and Atot is the total

area of the domain obtained from:

Atot = (xmax − xmin)(ymax − ymin) (7)

Grain Generation

Calculate Area

Calculate θ θ < desired?

Take Radius From
Distribution

Yes

θ > desired? Remove Last GrainYes

No

Grain Placement No

Figure 1: Workflow of the grain generation and subsequent placement within the domain.

where xmax, xmin, ymax, and ymin are the minimum and maximum coordinates of the domain in [L]. More
random grain radii will be drawn from the distribution and used to calculate θ until the desired θ is reached.
If required, a seed can be set to make grain generation reproducible. The code will then continue with placing
the grains within the domain.
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A specified number of points was used to generate random x and y values from a uniform distribution with the
lower and upper boundary being the length of the domain. Placing of grains was done by translating the vertices
of each grain by this random x and y value. Later, when generating a cell grid of the domain for numerical
flow simulations, a minimum of two cells for the smallest possible pore throat is necessary. If this is not done,
unintentional dead end pores are created which affect permeability calculated from flow simulation results. The
cell size is defined by the minimum distance which is specified at the start of the domain generation. To achieve
this, the grains were enlarged by the minimum distance before placement. After placement, grains were reduced
in size by this same minimum distance. When placing a grain, three checks had to be done in order to make
sure the grain was placed correctly:

1. Is there overlap with inlet or outlet

2. Is there overlap with top or bottom of domain

3. Is there overlap with any previously placed grains

Checking the overlap with either: inlet, outlet, top or bottom was done with use of the Shapely package. Shapely
contains a function where overlap with a line and a polygon can be calculated, if this is the case it returns either
true or false. When the grain overlaps with the inlet or outlet, the original grain was translated to a different
location and checked again.

Grain overlap with the top or bottom of the domain is a unique circumstance. If this occured, another grain
with the same size and shape was placed at the opposite side of the domain (Fig. 2). This was done with two
reasons in mind: the first was to minimise wall effects that occur during flow simulations by introducing this
periodicity, the second to ease calculation of θ. This means that a grain that was partially in the domain, will
be fully in the domain when placed at the other boundary. Therefore, the total area of that shape within the
domain is constant.
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Figure 2: Grain periodic boundary condition where grains overlapping the domain at the top or bottom, indi-
cated by the red box, are placed at the other side of the domain as indicated by the black arrows.

Overlap with another grain was checked in an almost identical way. However, instead of checking overlap with
a line and a polygon, overlap between two polygons was checked. If the grain happened to be a top or bottom
boundary grain, the duplicated grain at the other side of the domain was also checked for overlap against any
other grains. If overlap occurred, the original grain was translated to a new location and the three checks were
done again until no overlap occurred. The grain was then stored and the code moves on to find a suitable
location for the next grain.

Grains were placed from large to small, to ensure that every grain could be placed. However, sometimes a grain
failed to be placed within the domain due to grains being similar or too large in size. That grain was then
skipped and all subsequent grains were tried. A new θ was calculated and saved to compensate for this failure.
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2.2 Generation of Irregular Grain Shapes

The old code was able to take a radius from a truncated log-normal distribution or from sieve analysis data.
A random radius was taken from the distribution and could be used in the generation of a circular grain
without defining the exact location of the boundary of the grain. For example, when checking for overlap,
only a comparison of the center point of two grains and their respective radii was needed. When checking the
overlap of two random shapes, the location of the edges are also needed. Therefore, irregular shaped grains
were generated as polygons with a set number of vertices (Fig. 3). Vertices are coordinate points each with an
x and y value. Vertices were generated based on a radius, and an angle between points which was converted
from Polar to Cartesian coordinates. When the angle between points and radii are kept constant, a circular
grain is created. Therefore, the angle and radii are varied to obtain more irregular shaped grains. The number
of vertices was given as input at the start of the grain shape generation.

The angle between each vertex is defined as:

Θn ∼ U(
2π

N
− I, 2π

N
+ I) (8)

where Θn is the angle between vertex point n and n + 1, N is the total number of desired vertex points, U is
a uniform distribution, and I the irregularity parameter with a value between zero and one. The angles are
normalized as:

Θn = Θn
2π∑
Θn

(9)

This is done to ensure that the total internal angle is equal to 2π, and therefore the first and last point are the
same. To generate a random radius, a Gaussian distribution is defined as:

rn ∼ N (µ, σ2) ∼ N (ri, r
2
v) (10)

where rn is the random radius of the nth vertex, ri is a random radius as taken from the input grain size
distribution, and rv is the radius variance parameter with a value between zero and one. The value of rn was
truncated between zero and 2ri to prevent creation of extremely spiked shapes.

To generate more randomness in the shape, the initial angle used to generate the shape was set to a random
value between 0 and 2π, subsequently the previously generated Θn was added to this for each calculation of x
and y:
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Figure 3: Generation method of a circular and irregular shaped polygon with input radius (ri) of 4mm. (a):
The shape of grain without altering angle between subsequent vertex points and no alteration of the input radius.
(b): Random grain shape generated using radius variance (rv) of 0.1, 20 vertex points and variance between
vertex angles (I) of 0.6.
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φ0 = z (11)

φn = φn−1 + Θn (12)

where z is the starting angle with a random value taken from a uniform distribution between 0 and 2π, φ the
total current angle and Θ the difference in angle (Eq. (9)).

The angle and radius are converted from Polar to Cartesian coordinates as:

x = xc + rn ∗ cos(φn) (13)

y = yc + rn ∗ sin(φn) (14)

where xc, and yc are the center point coordinates, initially: (0,0), rn is the radius taken from a Gaussian
distribution, and φn is the current total angle.

2.3 Flow Simulations

Simulation of fluid flow through the domain was done with use of OpenFoam. OpenFoam is a toolbox that
numerically solves flow and transport equations typically found in computational fluid dynamics making use
of the finite volume method [Muhammad , 2021]. SimpleFoam is an algorithm within OpenFoam that solves
steady-state, incompressible, turbulent flow by solving equations for continuity:

∇ · u = 0 (15)

and momentum:

∇ · (u⊗ u)−∇ ·R = ∇p+ Su (16)

where u is the velocity, p the kinematic pressure, R the Stress tensor, ⊗ the outer product, and Su the momentum
source. These equations were solved numerically by taking the solution of the previous time-step and using this
as input for the calculation of the state variables in the next time-step. The inlet and outlet of the domain were
set to a fixed pressure value of 1.0 ∗ 103 and 0 Pa, respectively.

Turbulent flow settings can be disabled if laminar flow can be assumed, which is the case for Reynolds number
smaller than 160 [Dybbs and Edwards, 1984]. Reynolds number (Re) is calculated as:

Re =
uLc
v

(17)

where u is the flow velocity in [m/s], Lc is the characteristic length in [m], and v is the kinematic viscosity
in [m2/s]. The Reynolds number should represent the flow condition, for example, in a pipe the characteristic
length is taken as the diameter of that pipe. Here the minimum distance of the pore throat, 0.025mm or
2.5 ∗ 10−5m was taken as Lc. For the flow velocity, the average value of preliminary tests using the previous
model were used. Other values used to calculate Reynolds number are: 10−6m2/s, and 5.38 ∗ 10−5m/s for
kinematic viscosity and flow velocity, respectively. This resulted in a Re of 0.00134 which is below 160 and
therefore laminar flow was assumed.

After flow simulations converged, the permeability can be calculated from Darcy’s law:

k = −θvumeanρ
dx

dp
(18)

where θ is the porosity, v is the kinematic viscosity in [m2], ρ the density of the fluid in [kg/m3], umean is
the mean flow velocity in the x-direction in [m/s] and dx

dp is the inverse pressure gradient in the x-direction. It
should be noted that openFoam is configured to use kinematic pressure which is defined as:

p =
Ps
ρ

(19)
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where Ps is the static pressure in [Pa] and ρ the density of the fluid in [kg/m3]. Therefore, to use normal static
pressure in Eq. (18), the pressure was multiplied by the density of the fluid. But since the inverse pressure
gradient is required, a division by density is required, thereby the permeability formula becomes:

k = −θvumean
dx

dPs
(20)

OpenFoam simulation results were written to a VTK file, which was used as input for obtaining the required
parameters. Porosity is re-calculated as:

θ =
Acells
Atot

(21)

where Acells is the total cell volume obtained from the grid created by BlockMesh and SnappyHexMesh, and
Atot is the total size of the domain obtained from Eq. (7).

2.4 Porosity-Permeability Relationships

Various methods of calculating permeability from the grain size distribution and porosity exist and the most
notable ones are summarized in Devlin [2015]. These relationships can be described in a general equation as:

k = cf(θ)de
2 (22)

where c is a case-specific constant which is often described as a shape parameter, f(θ) is a function of porosity,
and de is the effective grain size as taken from the grain size distribution. Here the porosity is taken as the
re-calculated porosity from the VTK file and the effective grain size is taken from the grain size distribution
curve calculated in the next section.

Work done by Lin [2021], which compared laboratory and empirical permeability values for various porosity
and grain size distributions yielded five relationships that showed good correlation: Hazen [1892], Slichter et al.
[1898], Beyer [1964], Kozeny [1953], and Barr [2001]. These relationships (Table. 1) were used for comparative
analysis in this work.

Name c f(θ) de Conditions

Hazen (1892) 6.4× 10−4 1 + 10(θ − 0.26) d10
0.1 mm < d10 < 3.0 mm

U < 5

Slicher (1898) 1× 10−2 θ3.287 d10 0.1 mm < d10 < 5.0 mm

Beyer (1964) 5.2× 10−4 log 500
U 1 d10

0.06 mm < d10 < 0.6 mm
1 < U < 20

Kozeny-Carman (1953) 8.3× 10−3 θ3

(1−θ)2 d10 Coarse sand

Barr (2001)

1
(36)5Cs

2

θ3

(1−θ)2 d10 NoneCs
2 = 1 for spherical grains,

Cs
2 = 1.35 for angular grains

Table 1: Permeability-porosity relationships following Devlin [2015], specifying a case-specific constant c, func-
tion of porosity f(θ), and the effective grain size de for permeability calculation using Eq. (22). U is the
uniformity defined as d10

d60
.

2.5 Post-Processing: Grain Analysis

2.5.1 Grain Size

The initial grain size distribution was used to generate irregular random shapes, which will after alteration
no longer follow that distribution. For example when altering a circle with a diameter of 1 mm to an ellipse,
that shape can no longer be described in terms of a radius of 1 mm. Therefore, a method is necessary to
analyze the radii of the grains in a quantitative way. Two methods for analyzing the grain size distribution were
implemented.
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Figure 4: Determining the smallest width and length of a irregular shaped polygon using the minimum bounding
box method. Grain size is taken as the smallest width as this would also pass through a screen size of similar
size. (a): 0.555 mm, (b): 0.341 mm

The first method calculates the equivalent radius, which is the radius of a circle with an equivalent area as that
shape [Lopez-Sanchez and Llana-Fúnez , 2014]. The equivalent radius (req) is calculated from:

req =

√
A

π
(23)

where A is the area of the polygon in [m2] and r is the radius in [m]. The area (A) is calculated from either
the Shapely module or from Eq. (5).

While this method can be very easily used in simulations, determining the area of particles in real life could
prove nearly impossible for large scale or even small scale research. Therefore, we also implemented a second
method which is more comparable to how a sediment sample is analysed in the lab.

The second method places a bounding box around the particle, from which the polygon width and length can be
obtained (Fig. 4). It works by using a Shapely function which finds the smallest area possible that encompasses
all given points, in this case: the vertices. This gave a minimum width that was needed to pass through a
sieve hole when filtering sand particles. Blott and Pye [2008] analyzed different methods of determining length
and width for particles and found that using the smallest bounding box possible yielded the most accurate
description of the size of a gravel particle.

From the radii, the grain size distribution curve (Fig. 5) was constructed. For this, the cumulative frequency
and the desired sieve holes were needed. The frequency was calculated by comparing the current radius and
checking if its smaller than a certain sieve hole diameter. The relative frequency of each bin is then calculated
from:

fi =
f

n
(24)

where f is the absolute frequency, while n is the sum of all frequencies. The cumulative frequency for each data
class was then obtained by adding the relative frequency of the previous data range to the current.

2.5.2 Grain Shape

While it has been shown that particle size is important when it comes to calculating the permeability of a
system, the shape is often disregarded. Grain morphology is of interest in geology since it tells us something
about transportation and depositional enviroment [Tunwal et al., 2018]. Göktepe and Sezer [2010] found that
shape has a strong effect on the permeability. However, they were limited by field data availability which can
be overcome by the use of the model presented in this work.
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Figure 5: Typical grain size distribution curve as obtained from a sieve analysis of a sample

A single grain shape parameter is not always able to characterize the uniqueness of a shape. For example, a
value for sphericity may describe either a rectangle or a random shape which by chance has the same ratio
between circumscribed and inscribed circle radius. To overcome this problem, multiple parameters were used to
describe the generated shapes. In this study, sphericity, circularity, solidity, and roundness were implemented.
The relative importance of each of these in terms of grain description is still unclear [Blott and Pye, 2008;
Tunwal et al., 2018], therefore while choosing the parameters the ease of implementation was weighed more
heavily. All parameters are dimensionless to keep them seperate from the grain size determination.

Angularity may also pose an interesting parameter as it is used as another parameter describing roundness in
literature. However its implementation proved difficult based on current research [Tunwal et al., 2018]. It has
also been found that the length and width obtained from the bounding box method as described in section 2.5.1
can be used to determine parameters such as compactness, elongation and rectangularity but this is a matter
for future research.

2.5.3 Grain Shape: Sphericity

The exact definition of sphericity is unclear, various articles use this shape description interchangeably with that
of roundness or circularity. Here the definition as given by [Riley , 1941] is taken, which states that the sphericity
is a measure of the similarity of a shape to a perfect circle [Tunwal et al., 2018]. Sphericity is calculated as:

φ0 =

√
i

Dc
(25)

where i denotes the diameter of the inscribed circle, and Dc the diameter of the circumscribed circle (Fig. 6).

To find the largest inscribed circle, an algorithm called "the pole of inaccessibility" or PIA was implemented.
This is the point that lies within a polygon that is furthest away from the outlines of that polygon [Garcia-
Castellanos and Lombardo, 2007]. Normally this algorithm is applied to find the point within a country that
is furthest away from its borders. It was done using the polylabel function that is obtained from the Shapely
library. The radius of the inscribed circle is then calculated as the smallest distance from the PIA to the nearest
edge of the polygon.

To find the smallest circumscribed circle, a readily available technique from computational geometry was used.
This method is called randomized incremental construction, where points are added randomly one by one and
checked whether they fall within the initial circle estimate. For the exact working of this algorithm the reader
is referred to Welzl [1991].

2.5.4 Grain Shape: Circularity

Just as sphericity, circularity is a measure of a particles resemblance to a circle. However, circularity takes
into consideration the smoothness of the perimeter. Therefore, it described both the roughness as well as the
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Figure 6: Random particle taken from pre-generated shape list (a), and a randomly generated polygon (b).
Plotted with the shapes are the inscribed and circumscribed circle as well as their respective diameters. Here i,
the inscribed circle diameter, is presented as the blue line and Dc, the circumscribed circle diameter, is given as
the red line. The sphericity values are calculated from Eq. (25) as 0.683 (a) and 0.910 (b).

morphology of the particle [Olson, 2011]. Circularity is effective in describing the roundness of particles, giving
lower values for particles belonging to classes of higher roundness [Dellino and La Volpe, 1996].

Circularity (C) is calculated following Roussillon et al. [2009] as:

C =
Pg

2
√
Aπ

(26)

where Pg is the perimeter of the grain in [L], and A is the area of the grain in [L2]. The area is calculated from
Eq. (5), and the perimeter is calculated as the length function from the Shapely library.

A perfect circle will have a circularity value of one, while values higher than one indicate less circular shapes.
Values around 1.35 usually indicate slightly elongated grains. In literature, one may find the above equation in
different forms but also the inverse is often used due to preference of values below zero indicating less rounded
shapes.
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Figure 7: Random particle taken from pre-generated shape list (a) and a randomly generated polygon (b).
Plotted with the shapes are the circumscribed circle as well as a red line representing its radius. The roundness
values are calculated from Eq. (27) as 0.880 (a) and 0.949 (b).
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2.5.5 Grain Shape: Roundness

Roundness (Fig. 7) describes the curvature of a particle’s corners. Originally, the roundness of a particle was
formulated by Wadell [1932] and was defined as the ratio between the radius of circles fitted in the corners of the
grain divided by the radius of the largest inscribed circle. However it has been found that the original method
is quite difficult to apply [Hayakawa and Oguchi , 2005]. Therefore, an alternative calculation for roundness (R)
as proposed by Roussillon et al. [2009], is used:

R =
Pg
Dc

(27)

where Pg is the perimeter of the grain, and Dc is the perimeter of the smallest enclosing circle or circumscribed
circle. This will yield values between 0 and 1, where 1 indicates a perfect circle and lower values indicate large
particle curvature. When combining roundness formulated above with a compaction factor, which is a ratio
between the length and width of the particle, the perimeter of the best fitted ellipse can be used. However,
since here the compaction factor is not calculated, the perimeter of a circle is used instead.

2.6 Grain Shape: Solidity

Solidity is a measure of the overall concavity of a particle [Olson, 2011]. Solidity (S) is defined as:

S =
A

Aeq
(28)

where A is the area of the grain, and Aeq is the area of the perimeter-equivalent circle [Heilbronner and Barrett ,
2013]. This grain shape factor can also be written as:

S =
4πA

P 2
g

(29)

where Pg is the perimeter of the grain. Notably, this is the same as the cubed value of the inverse of circularity.
Solidity has values ranging from 0 to 1. Rough particle edges are characterized by a low solidity, while smooth
particle edges are characterized by a high solidity [Mgangira et al., 2013].

2.7 Ensemble Settings

Two methods of defining the grain size distribution are available: using a truncated log-normal distribution
or grain sieve analysis data. In a log-normal distribution, the natural logarithm of the data is normally dis-
tributed. The truncated log-normal parameters that have to be defined are rmin, which defines the lower
truncation boundary of the distribution, rmax, which defines the upper truncation boundary of the distribution,
rmean, which defines the first moment of the non-truncated log-normal distribution, and rstd, which defines the
second moment of the non-truncated log-normal distribution. The first and second moment of the log-normal
distribution are converted into the first and second moment of the truncated log-normal distribution, and sub-
sequently into the first and second moment of the truncated normal distribution. Input field data is defined as
the cumulative frequency and associated grain radii in mm obtained from sieve analysis.

Three different types of grain size distributions were generated (Table. 2): "homogeneous", "heterogeneous"
(Fig. 8) and "pre-generated" with grain sizes determined by post-simulation analysis. While the Homogeneous
distribution has a wider range of grain sizes as compared to the heterogeneous, the larger grains of the homoge-
neous grain size distribution will dominate within the domain. Therefore, the porous medium will appear to be
homogeneous and thus be named as such. Examples of realizations of these different domain types can be found
in the Appendix (Fig. A.1:A.6). A list of grain vertices for different shapes was obtained from 2D transformed
x-ray tomography data. These were used in generating the pre-generated domain.

Monte Carlo simulations were performed on the placement of the grains to analyze the impact of grain posi-
tioning. A porosity within the specified range is taken, and a grain size distribution and associated irregular
grains are generated and placed at random positions within a domain of 10 by 10 mm. Grain size and shapes
are kept constant, but different realizations of the placement are created. OpenFoam then solves flow equations
and permeability is calculated. Further output of the ensemble includes the actual θ value of the realization,
grain vertex points as well as grains analyzed in terms of mono circle radius and radius determined with the
bounding box method as described in section 2.5.1.
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Name rmin rmax rmean rstd I rv N θ range
Homogeneous 0.01 1.0 0.35 0.25 0.5 0.08 15 0.3 - 0.45

0.35 - 0.4
0.38 - 0.4
0.4 - 0.48

Heterogeneous 0.001 0.5 0.15 0.25 0.5 0.08 15 0.4 - 0.5
Pre-generated - - - - - - - 0.45 - 0.65

Table 2: Ensemble settings for the truncated log-normal distribution (rmin, rmax, rmean, and rstd), irregular
grains (I, rv, and N), and porosity range (θ). Pre-generated shapes do not follow a truncated log-normal
distribution and therefore parameters are not specified for this ensemble. As homogeneous domains were the
initial test of the model and cluster execution, different θ ranges were used.
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Figure 8: Probability density function of the truncated log-normal distribution for the homogeneous and het-
erogeneous domains.

The post-simulation analyzed grain radii were used as input for the circular grain simulations to analyze the
impact of the irregularity of the grains. This means we used the same θ and grain size distribution, placed
at different positions but now with circular grains instead of irregular ones. Since the number of grains in
the "homogeneous" simulation is low, obtaining the same cumulative frequency curve for the radii is difficult.
Therefore, the number of grains of the circular domain had to be increased. To do this, the maximum x value
of the circular domain for these porous media was set to 20 mm instead of the regular 10 mm. This is not done
for the "heterogeneous" or pre-generated domains as this contains smaller and, therefore, more grains.

Different methods for calculating the minimum distance between grains are employed during the placement of
the circular and the irregular particles. When calculating the minimum distance between irregular particles, all
of the particles are enlarged by the specified minimum distance at the start of the placement phase. Overlap
between particles is checked and after placement has finished, grains are reduced in size by this minimum
distance. This means that the actual minimum distance between the grains is double of the specified input.
The minimum distance is only added to the grain placed at that moment during the sequential placement of
circular grains. Meaning that the specified input minimum distance is the actual minimum distance. During
the spherical simulations, the minimum distance was doubled from its value in the irregular grained simulations
to correct for this. Here, the minimum distance for the irregular particles was set to 0.025 mm, for the circular
particles this was set to 0.05 mm. Therefore, the minimum distance between grains for both domains was
identical.

2.8 REV Tests

Physical modelling of flow in porous media is done on multiple length scales: pore- (microscopic), local (macro-
scopic), and field-scales [Zhang et al., 2000]. Processes and equations on one scale might not describe the
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situation or be applicable at the other. We need to determine whether our domain describes a representative
elementary volume (REV) (Fig. 9). That is to say: do differences in permeability reflect changes within pore
throats or do they represent changes of the domain as a whole. Bear [1972] first defined the REV as: "The
smallest possible volume over which a measurement can be made that will yield a value representative of the
whole volume". It is important to determine whether the domain can be described as REV as measurements
made at REV scale are scale in-dependant and accurately represent a larger system [Bear , 1972]. The properties
of the porous medium are related to the sample size and, therefore, determining the appropriate size is crucial
to obtain a representative value of any soil property [Borges et al., 2018].

Figure 9: Conceptual diagram of the representative elementary volume (REV) taken from Bear [1972]

Costanza-Robinson et al. [2011] found that the average grain diameter is usually the best method of obtaining
the REV magnitude, however, other properties of the porous medium such as θ or permeability may also be
used. Here, the θ was used as this method is readily available in PoreSpy [Gostick et al., 2019]. To determine
if our domain could be described as REV scale, the θ of a small volume of the domain was calculated. The
volume was increased and the θ was calculated again, repeating until the desired amount of measurements had
been done. In this case the desired amount of measurements was 2000.
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Figure 10: Representative elementary volume (REV) scale test of the generated domains calculated by PoreSpy.
Both domains have a total area of 100 mm2. The x-axis is displayed in voxel size, the maximum value of which
corresponds to the maximum area of the domain. (a) Analysis of the Homogeneous domain with bigger grains
and θ = 0.343. (b) Analysis of the heterogeneous domain with more and smaller grains and θ = 0.443.

Initially values will oscillate greatly but as the volume of the domain increases, these will dampen out (Fig. 9).
Fluctuations at smaller volumes, or below REV, are related to larger influence of individual pore spaces. If the
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volume is too large, the domain is no longer considered to be at REV scale, but rather at the field scale [Brown
et al., 2000]. Results for REV scale test of the homogeneous and heterogeneous mediums can be found in Fig.
10.

2.9 Pore Size Distribution

The pore size distribution was extracted from the domains to further study characteristic parameters describing
the porous medium. This was done using the PoreSpy module called local thickness filter. This method is based
on research done by Chiang et al. [2009]. It iteratively places the largest spheres possible between grains and
updates the images (Fig. 11). This process is continued until no more spheres can be placed. The resulting
sphere sizes were then stored and plotted as a histogram. Small differences between actual and measured pore
size will occur. This is due to the fact that a high quality image, characterized by a small pixel size, had a
higher computational time when pixel distance between grains was calculated. Since post-processing of the
realizations was not done on the cluster, smaller image sizes were used.
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Figure 11: Example domain containing pre-generated grains from microfluidics model (a) with a θ of 0.465
and the same domain with the applied Porespy filter of local thickness (b).

2.10 Monte Carlo & Convergence Test

The Monte Carlo (MC) method is a computational technique used to determine the uncertainty of a parameter.
Multiple realizations being different versions of the model following the same statistical properties, are produced
and used as input into a deterministic model [Lu and Zhang , 2003]. Output variables of the deterministic model
will therefore yield many different values giving rise to a statistical description [Bear , 2018]. Here, we employed
the MC method by generating a θ value, grain size and shape distribution and placing the grains within a
domain according to a uniform distribution of x and y coordinates. Each MC simulation ensemble will have
one porosity value, and a single distribution of grains but realizations with different coordinates. In this case,
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the OpenFoam environment is the deterministic model which calculates the permeability value of each specific
realization.

The amount of simulation results that are needed were quantitatively analyzed using the method of mean con-
vergence as described in Ballio and Guadagnini [2004]. Here simple statistical analysis of the ensemble run
results were done using the mean. The mean of the permeability was calculated for the first two simulation
results and one by one more permeability values were added (Fig. 12). Initially the mean will oscillate consid-
erably, however as more simulations are performed the oscillation will become smaller. When oscillations have
dampened, it can be assumed that enough MC simulations have been executed.

For smaller porosity values, approximately 300 simulations is enough to reach convergence. However, as porosity
increases the uncertainty of the permeability increases therefore more simulations were needed to reach con-
vergence. The amount of simulation results varied between approximately 300 and 900 depending on θ values
(Fig. 12).
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Figure 12: (a) Histogram of permeability for a porosity of 0.353 using the same grain sizes and shapes, but
different positions. Grain size is obtained from a truncated log-normal distribution with 0.01, 1.0, 0.35, 0.25 for
rmin, rmax, rmean, and rstd, respectively. (b) Mean permeability of number of simulations plotted for θ = 0.336.
Convergence is achieved using approximately 300 simulations.

2.11 Post-processing of Data

After ensemble calculations have finished, the data needed to be processed. This meant removing any porosity
and coupled permeability values from the results file from runs that failed. Failure of a model run could occur
when placement of a grain failed under low θ conditions or due to OpenFoam not initiating on the cluster. In
general it did not occur often, but failed runs present with a θ value of 0.999 which will cause incorrect results
during statistical analysis.

To remove any outliers, the mean of the porosity was calculated. When running MC on placement, the θ value
was the same for every realization. Therefore, any value that was not equal to this mean was removed from the
results file. Empty lines as well as not a number (NaN) data were also removed.

Normality of the data was checked qualitatively using a QQ plot (Fig. 13), and quantitatively using various
normality tests. The QQ plot was constructed using the Probplot function taken from the Scipy library [Virtanen
et al., 2020] on the permeability data of an ensemble run. If the distribution is normally distributed it will follow
a 1:1 ratio between the x and y values. Scipy also enable the use of the Shapiro, Kurtisos, Chisquare, and Jarque-
Bera normality tests which provide a quantitative value to describe the distribution. Data for all the MC runs
were added to a single file to be plotted as a single porosity vs permeability plot. Using panda dataframe
pandas development team [2020], the Q1, Q3, interquartile range (IQR), and mean were calculated for each
unique θ value.
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Figure 13: Example QQ plot for a porosity of 0.353 for the "homogeneous" porous domain.

3 Results

The Monte Carlo method was applied to simulate a domain with a fixed θ and identical grain shapes and sizes
but placed randomly within the domain. This was done for different θ ranges, grain size distributions as well as
shapes. The main goal was to built a code that was able to do these types of REV scale simulations as well as
be modular. The modularity of the code allows future research applications and ideas to be easily performed. A
few scenarios were studied to test the application of the model. The impact of irregularity of shapes compared
to spherical grains on the permeability and its uncertainty was studied. The use of porosity-permeability
relationships was compared to simulation results to test the applicability at REV-scale.

First, a domain with relatively large grains but narrow cumulative grain size distribution called "homogeneous"
was analyzed. Second, a domain with relatively small grains and wide cumulative grain size distribution called
"heterogeneous" was analyzed. And lastly a domain containing pre-generated shapes taken from a microfluidics
model was analyzed.

3.1 Homogeneous: Round vs Irregular

For the homogeneous domains, 52 different porosity values were used along with input parameters of a grain
size distribution as described by a truncated log-normal curve. Varying spatial distribution of identical grains
within the same domain yielded notable permeability uncertainty (Fig. 14).
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(a) Irregular grains
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(b) Circular grains

Figure 14: Porosity plotted against permeability mean, interquartile range (IQR), where 50% of the density
distribution lies, and the outer boundaries, which represent 99.7% of the data, for the homogeneous grain size
distribution. Each dot corresponds to a Monte Carlo simulation where porosity and grains are fixed but grain
placement is varied. Simulation results of the irregular grains (a) are analyzed in terms of sieve radius and used
for circular (b) grains of the same grain size distribution and porosity also varied spatially.
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Permeability as obtained from simulation results and calculated from Darcy’s law, shows a similar trend in
both irregular (Fig. 14a), and spherical (Fig. 14b) grain domains: increasing permeability with increasing
θ. The domains containing spherical grains have in general a higher permeability value as compared to the
irregular grain domains generated from the same grain size distribution and θ. Permeability also increases more
exponential with θ in domains containing spherical grains.

The interquartile range (IQR) describes permeability values that fall within the 25th and 75th percentile of
the data-set for that porosity. Therefore, if the IQR is larger, permeability values are more spread out and
uncertainty is larger. When comparing the irregular and round flow simulation results, the uncertainty of both
increase with increasing θ. However, the uncertainty of the irregular domains is significantly larger than that of
the spherical domains. Between a θ of 0.36 and 0.38 the mean permeability fluctuates quite significantly, even
more so in the circular grain domains than in the irregular grain domains.
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Figure 15: Two realizations of a homogeneous grain size distribution with a θ of 0.334. Grains in both
realizations are identical in size and shape but vary in spatial placement. Velocity is given in [m/s], length of
the domain is given in m, grains are shown in white and flow paths in range of blue to red. These domains are the
same as given in appendix A.1 where (a) has the lowest (1.764e−11m2), and (b) has the highest (2.884e−11m2)
permeability.
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Figure 16: Two realizations of a homogeneous grain size distribution with a θ of 0.463. Grains in both
realizations are identical in size and shape but vary in spatial placement. Velocity is given in [m/s], length of
the domain is given in m, grains are shown in white and flow paths in range of blue to red. (a) has the lowest
(4.791e−11m2), and (b) has the highest (1.110e−10m2) permeability.

The spatial distribution of the grains has an effect on the flow path of the water moving through the pore-space
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(Fig. 15 & 16). Permeability as calculated from Darcy’s law (Eq. 18) only has one different variable between
these two realizations: umean. That means that a higher permeability between two realizations, where all factors
were kept constant expect grain positioning, causes a higher the mean velocity. Areas of high flow velocity can
be observed. This becomes even more obvious at high porosity (Fig. 16) as can be seen by the much higher
maximum flow velocity. The realization with the highest porosity and highest permeability (Fig. 16b) shows a
dominant flow path which consists of well-connected large pore sizes.

The pore size distributions as obtained from PoreSpy vary between the two example realizations in Fig. 17a &
17b. The realization with the lowest permeability shows a small amount of smaller pores and a higher amount
of larger pores as compared to the realization with the highest permeability. Values seem more closer together
with a significant peak around logarithmic value of -0.81 for a higher permeability. Two pore size distributions
for a higher θ of 0.463 were also analyzed (Fig. 17c & 17d). Here permeability values are even farther apart,
however grain size distributions do not vary significantly. Average pore sizes for the higher θ are larger than
the domains with low θ.

It should be noted that the minimum distance between grains was set to 0.05mm for both irregular and circular
grained domains at the start of the simulation. However, the smallest pore size, as obtained from the Porespy
analysis, shows a value of approximately 10−1.5 = 0,032 mm. This could be caused by the procedure in which
the pore sizes are determined not working properly or due to the resolution of the images being too low.
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Figure 17: Pore size distributions of different realizations for the homogeneous domains containing irregular
grains: (a) θ = 0.334, k = 1.764e−11m2, (b) θ = 0.334, k = 2.884e−11m2, (c) θ = 0.463, k = 4.791e−11m2 ,
and (d) θ = 0.463, k = 1.110e−10m2.

3.1.1 Homogeneous: Simulated vs Calculated Permeability

Radii of the irregular grains were determined using the bounding box method (Fig. 4) and plotted as a sieve
analysis curve (Fig. 18a). Particle sizes for this simulation type varied between 0.06 and 2 mm in diameter
which falls within the specified truncated log-normal distribution input. Differences between distributions were
caused by the relatively large grains as compared to the domain size. Therefore, a simulation curve is not a
straight line through these points but may vary. The exact curve along with its corresponding θ are exported
and used as input for producing a domain containing spherical grains.

d10 is determined from the grain size distribution (Fig. 18b). Diameters ranged between 0.018 and 0.030 mm.
Small differences between irregular and circular d10 values are caused by taking grains from the grain sieve
analysis curve until the exact desired θ is reached. This might cause more or less grains to be placed than the
corresponding irregular domain. Not all simulations were able to reach the exact desired θ. Therefore, they
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Figure 18: Output grain size analysis in terms of sieve diameters using the smallest width method. (a): data
points of all the MC simulations that were executed, a single simulation is a line through these points. (b): d10
values used to calculate the permeability for the different porosity-permeability relationships plotted alongside its
respective θ for the homogeneous porous media.

were omitted from the data.

Permeabilities are calculated form emperical relations (Tab. 1) using the obtained d10 and θ values. They are
plotted along with the mean permeability of the simulation results (Fig. 19). Slichter (1898), Barr (2001),
Hazen (1892), and Beyer (1964) all show relatively good correlation to simulation results for the homogeneous
domain. The general trend of increasing permeability with increasing θ is visible in all relationships with the
exception of the Kozeny-Carmen equation. Small fluctuations in permeability from simulation results can also
be observed in the permeability as obtained from equations. For example a small decrease in permeability at
a θ of 0.38 can be seen in all relations even the Kozeny-Carman. This same variation can also be noted in the
d10 values at that θ (Fig. 18b).
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(a) Irregular grains
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(b) Circular grains

Figure 19: Mean permeability of the simulation results plotted with calculated permeability from porosity-
permeability relationships against θ for the homogeneous domain. Permeability is plotted on a log-scale for
irregular grains (a) and spherical grains (b). Sieve radii obtained using the bounding box method for the irregular
grains are used as input for the spherical grain domains.

When comparing the permeability values of the irregular (Fig. 19a) and circular (Fig. 19b) domains, it can be
seen that while the mean simulation permeability is higher in the circular domains, the porosity-permeability
relationships remain approximately similar. Any variation is related to the small differences that exist in the
d10 value as explained earlier. Since most equations have an exponential relationship between grain size and
permeability, a small variation can cause a significant difference.

However, it should be noted that while Barr (2001) shows excellent correlation in the irregular grained domains,
it underestimates permeability when simulating circular grains of the same size. Moreover, the predicted
permeability of the circular grained domain has a much larger spread of values from the mean.
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3.1.2 Homogeneous: Grain Shape Parameters

The grain shape parameters, sphericity, roundness, circularity and solidity were calculated for each grain inside
a domain. Since every θ value contains one set of identical grains, as described by shape and size, only 52
domains had to be extracted from the cluster. The grain shape parameters were averaged and plotted against
the permeability difference of the spherical and irregular shaped grain domains (Fig. 20). Values varied by
approximately 1%. Average values indicate shapes were relatively well-rounded, smooth, and spherical.
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Figure 20: Calculated average shape factors plotted against permeability difference between round and irregular
particles using the same grain size distribution for the homogeneous porous media. Plotted quantitative grain
shape parameters are: (a) solidity, (b) sphericity, (c) roundness, and (d) circularity.

No clear relationships between the defined morphological grain parameters and the permeability difference for
the homogeneous domains can be observed. Differences between the averaged values will become smaller as the
number of grains increases. This is because these grains are generated with the same irregularity parameters.
Even though irregular grains have a clear impact on permeability, it cannot be correlated to a quantitative grain
shape parameter.

3.2 Heterogeneous: Round vs Irregular

For the heterogeneous domains, 27 different porosity values along with the input parameters of a grain size
distribution as described by a truncated log-normal curve were used. The same trend that was found in the
homogeneous domains can also be seen here: increasing permeability with increasing θ (Fig. 21). Domains con-
taining round grains generated from the same θ and grain size distribution (Fig 21b) as the domains containing
irregular grains (Fig. 21a) have, in general, a higher mean permeability value. Uncertainty as given by the IQR
is increasing with increasing θ. However, uncertainty is smaller when simulating spherical grains. This trend
was also observed in the homogeneous domain.

The grain size distribution is the only changed input parameter in the heterogeneous domains as compared
to the homogeneous domains. The grain shape parameters, I, and rv are unchanged. Mean homogeneous
permeability values are higher than the heterogeneous mean values for the range of overlapping θ. For example,
the mean permeability of the homogeneous domain containing irregular grains is approximately 6.410−11m2 at
a θ of 0.45. The mean permeability of the heterogeneous domain containing irregular grains is approximately
3.410−11m2 at this θ. Uncertainty in the heterogeneous domains is smaller than uncertainty of the homogeneous
domains at the same θ. This can be seen by the width of the IQR which is significantly smaller for this grain
size distribution.
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(a) Irregular grains
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(b) Circular grains

Figure 21: θ plotted against permeability mean, interquartile range (IQR), where 50% of the density distribution
lies, and the outer boundaries, which represent 99.7% of the data, for the heterogeneous grain size distribution.
Each dot corresponds to a Monte Carlo simulation where θ and grains are fixed but grain placement is varied.
Simulation results of (a) the irregular grains are analyzed in terms of sieve radius and used for (b) circular
grains of the same size and θ also varied spatially.

Two realizations of the lowest θ, with the lowest and highest k were extracted from the cluster (Fig. 22).
The realization with the higher k (Fig. 22b) shows areas with higher flow velocity than the realization with
the lowest k (Fig. 22a). The area of higher flow velocities, located at approximately x = 0.008, y = 0, 0035,
shows a preferential flow path unobstructed by grains. Two realizations of the highest θ, with the lowest and
highest k were also extracted from the cluster (Fig. 23). Areas of higher flow velocities can also be observed
here. Local flow velocities in the realization with the highest permeability (Fig. 23b) are higher as compared
to the realization with the lowest permeability (Fig. 23a). The maximum flow velocities in the domains with
high porosity are more than double that of the domains with the lower porosity. However, these domains are
described by the same grain size distribution and shape parameters.
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Figure 22: Two realizations of a porous medium containing irregular grains for a heterogeneous grain size
distribution with θ = 0.424. Grains in both realizations are identical in size and shape but vary in spatial
placement. Velocity is given in [m/s], length of the domain is given in [m], grains are shown in white and local
flow velocities in range of blue to red. (a) has the lowest (1.595e−11m2), and (b) has the highest (1.794e−11m2)
permeability.
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Figure 23: Two realizations of a porous medium containing irregular grains for a heterogeneous grain size
distribution with θ = 0.528. Grains in both realizations are identical in size and shape but vary in spatial
placement. Velocity is given in [m/s], length of the domain is given in [m], grains are shown in white and local
flow velocities in range of blue to red. These domains are the same as given in Appendix A.3 where (a) has the
lowest (3.766e−11m2), and (b) has the highest (5.290e−11m2) permeability.

Pore size distributions were extracted for the four realizations in fig. 22 & 23 (Fig. 24). The smallest pore
size is approximately 0.03 mm, which is smaller than the specified minimum distance between grains. Pore
size distributions at low porosity are relatively similar. The peak of the realization with low porosity, high
permeability (Fig. 24b) is somewhat higher but at a lower value. The realization with low porosity, low
permeability (Fig. 24a) shows a small amount of large pores which cannot be seen for the high permeability
realization.
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Figure 24: Pore size distributions of different realizations for the heterogeneous domains containing irregular
grains: (a) θ = 0.424, k = 1.595e−11m2, (b) θ = 0.424, k = 1.764e−11m2, (c) θ = 0.528, k = 3.766e−11m2,
and (d) θ = 0.528, k = 5.290e−11m2.
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The pore size distributions for the high porosity realizations are also quite similar. However, the normalized
volume fraction of the realization with the highest permeability (Fig. 24d) is higher at a pore size of approxi-
mately −0.75 or 0.18 mm. The large pore sizes present in the realization with the lowest permeability for high
porosity (Fig. 24c) are not present in the high permeability realization.

The realizations of the high porosity (θ = 0.528) show much larger pore sizes then the realizations of the lower
porosity (θ = 0424). This can be seen by the maximum value increasing to approximately −0.5 or 0.32 mm.
Also the mean of the pore sizes is higher.

3.2.1 Heterogeneous: Simulated vs Calculated Permeability

The radii were analyzed using the smallest width method and plotted as a grain size distribution curve in
terms of percent passing (Fig. 25a). The distribution curve has a wider range as compared to the homogeneous
diameters with values between 0.007 and 1.0 mm. The output grain radii follow the input grain size distribution
described by a truncated log-normal distribution with a minimum and maximum radius of 0.001 and 0.5 mm,
respectively. The analyzed output radii were used as input for the circular domain generation. This was done
to make sure the distribution of the circular domain is the same as that of the irregular domains. The spread
of the points in the cumulative grain size distribution is much smaller for the heterogeneous domain than the
homogeneous domain (Fig. 18a). This means that populating the domain with more grains minimizes the
deviation from the mean that is caused by placing large grains relative to the domain size.
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Figure 25: (Output grain size analysis in terms of sieve diameters using the smallest width method for the
heterogeneous porous media. (a) Data points of all the MC simulations that were executed. A single grain size
distribution is composed of points taken from this cumulative frequency plot. (b) d10 values used to calculate the
permeability for the different porosity-permeability relationships plotted alongside its respective θ.

The d10 values along with its corresponding θ value were exported and plotted for both the irregular and circular
grains for the heterogeneous domain (Fig. 25b). Values ranged between 0.026 and 0.040 mm diameter. Small
differences between irregular and circular grains are still present, however deviation is low.

The porosity-permeability equations were solved using the θ and d10 values and plotted alongside the mean of
the simulation results (Fig. 26). Increasing permeability with θ can be observed for both irregular and circular
domains for all equations. The trend is, however, less pronounced than that of the homogeneous domain, which
has a d10 value that is approximately 10 times smaller. Most notable is the fact that the mean simulation results
differ by approximately a factor 10 from the calculated values. The uncertainty for the heterogeneous domain
is quite small, so the porosity-permeability relationship values do not capture the simulated value well. When
looking at the conditions for which these empirical relations can be used, only Barr (2001) can be applied for
these d10 values.

The porosity-permeability relations all predict the same smaller fluctuations which also capture smaller internal
variations in the mean permeability. For example between a θ range of 0.42 and 0.44, it can be observed that
if permeability increases in the mean simulation value, so do the predicted values. For θ higher than 0.52,
the predicted value seems to decrease while the simulated permeability still increases. While mean simulation
permeability increases, the calculated permeability values do not increase significantly.
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(a) Irregular grains
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(b) Circular grains

Figure 26: Mean permeability of the simulation results plotted with calculated permeability from porosity-
permeability relationships against θ for the heterogeneous domain: for (a) irregular grains and (b) spherical
grains. Sieve radii obtained using the bounding box method for the irregular grains are used as input for the
spherical grain domains.

3.2.2 Heterogeneous: Grain Shape Parameters

The grain shape factors, sphericity, roundness, circularity and solidity were calculated for each grain inside a
domain. Since every porosity value contains one set of identical grains, as described by shape and size, only
27 domains had to be extracted from the cluster. The shape factors were averaged and plotted against the
difference in permeability of the spherical and irregular shaped grain domains (Fig. 27). Variations of the mean
grain shape parameters were smaller as compared to the homogeneous domains.
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Figure 27: Calculated average shape factors plotted against permeability difference between round and irregular
particles using the same grain size distribution for the heterogeneous domains. Plotted quantitative grain shape
parameters are: (a) solidity, (b) sphericity, (c) roundness, and (d) circularity.

No clear relationships between the defined morphological grain parameters and the permeability difference
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for the heterogeneous domains can be observed. Since these grains are generated with the same irregularity
parameters, differences between the averaged values will become smaller as the number of grains increases.

3.3 Pre-generated Grains: Round vs Irregular

For the pre-generated domains, 20 different θ and grain size distributions were used. These grains were not
generated but taken from a file containing grain vertices. These grain vertices were obtained from 2D transformed
x-ray tomography data. The simulated θ range is higher (0.45-0.65) than the other domains. This was done
because at lower θ grains would fail to place causing theta variation from the desired input value. However,
lower values can be achieved if the minimum distance is reduced. Increasing permeability and uncertainty
can be observed with increasing θ (Fig. 28). Uncertainty is significantly smaller than for the other simulated
grain domains. Domains containing circular grains identical in size to the irregular domains according to the
sieve radius method (Fig. 28b) showed notably less uncertainty. Permeability shows less fluctuations in mean
permeability, but this could be related to the amount of different porosity values simulated.
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(b) Circular grains

Figure 28: Porosity plotted against permeability mean, interquartile range (IQR), where 50% of the density
distribution lies, and the outer boundaries, which represent 99.7% of the data, for the pre-generated grain size
distribution. Each dot corresponds to a Monte Carlo simulation where porosity and grains are fixed but grain
placement is varied. Simulation results of (a) the irregular grains are analyzed in terms of sieve radius and used
for (b) circular grains of the same size and porosity also varied spatially.

Two realizations of a porous medium of θ = 0.465 with internal flow velocities are shown (Fig. 29). While both
realizations are identical in grain sizes, shapes and θ, the permeability of (b) is higher than that of (a). Areas
of higher flow velocity can be observed within the matrix indicating better connectivity of the pores. Visual
inspection of tortuosity yields no significant deviations, further analysis using other methods is required.
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Figure 29: Two realizations of a porous medium containing pre-generated grains with θ = 0.465. Grains in
both realizations are identical in size and shape but vary in spatial placement. Velocity is given in m/s, length
of the domain is given in m, grains are shown in white and flow velocities in range of blue to red. (a) has the
lowest (3.613e−11m2), and (b) has the highest (4.429e−11m2) permeability.

Two realizations of a porous medium of θ = 0.651 with internal flow velocities were also extracted (Fig. 23).
Maximum flow velocities are almost 10 times higher than in the low porosity domains. The realization with
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the highest permeability (Fig. 23b) shows much better connectiveness of areas with high flow velocities. The
realization with the lowest permeability (Fig. 23a) has a significant amount of areas where flow velocities are
approximately zero.
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Figure 30: Two realizations of a porous medium containing pre-generated grains with θ = 0.651. Grains in
both realizations are identical in size and shape but vary in spatial placement. Velocity is given in m/s, length
of the domain is given in m, grains are shown in white and flow velocities in range of blue to red. (a) has the
lowest (2.165e−10m2), and (b) has the highest (3.273e−10m2) permeability.

Two realizations for the lowest θ (0.465) were used to extract the pore size distributions (Fig. 31). This was
done for the realization with the lowest, and the realization with the highest k. The same method was applied to
two realizations for the highest θ (0.651). At θ = 0.465, k uncertainty is small and pore size distributions seem
relatively similar. The realization with the highest k has overall larger pores as compared to the lower k value.
At high θ, uncertainty is significantly larger and grain size distributions differ. The realization with the highest
k value has significantly larger pores overall, but relatively the same amount of smaller pores. Comparing the
pore size distributions of the low and high θ domains, it can be observed a higher θ is correlated to larger pore
sizes.
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Figure 31: Pore size distribution of different realizations for pre-generated irregular grained domains: (a) θ =
0.4652, k = 3.6133e−11m2, (b) θ = 0.4652, k = 4.4294e−11m2, (c) θ = 0.6507, k = 2.16516e−10m2, and (d) θ
= 0.6507, k = 3.2734e−10m2.
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3.3.1 Pre-generated: Simulated vs Calculated Permeability

Radii of the grains were analyzed in terms of sieve size and plotted as a grain size distribution (Fig. 32).
The curve is significantly smaller than those found in the homogeneous and heterogeneous domains. Particle
diameters range between 0.1 and 0.8 mm with the d10 being around 0.25 mm, which is almost identical to that
of the homogeneous domain. The d10 values of the irregular and circular grains are plotted against porosity
(Fig. 32b). Small variations between irregular and round d10 values can be observed. This is caused by the
code trying to obtain the exact porosity value that was set and thus placing the last grain of the size that would
yield the same grain size distribution curve. No clear trend can be observed. For some porosity values d10 of
irregular grain domains is higher while in others the d10 of the spherical grain domains.
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Figure 32: Output grain size analysis in terms of sieve diameters using the smallest width method for the
pre-generated grained domains. (a) data points of all the MC simulations that were executed. A single grain
size distribution is composed of points taken from this cumulative frequency plot. (b) d10 values used to calculate
the permeability for the different porosity-permeability relationships plotted alongside its respective porosity.

Empirical and mean simulation k are plotted against θ, with k on a logarithmic and θ on an arithmetic scale (Fig.
33). A linear relationship between θ and log(k) for the empirical relationships and the simulation results can
be observed. However, only Kozeny-Carman and Barr seem to correctly capture the effect θ has on k. Slichter
shows good correlation between a θ-range of 0.52-0.55, while overestimating k below, and underestimating above
this range. Values deviate by a factor 10 for the Kozeny-Carman empirical relationship. Comparison of irregular
and round grain domains show that empirical relationships do not capture that mean simulation results increase.
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Figure 33: Mean permeability of the simulation results plotted with calculated permeability from porosity-
permeability relationships against porosity for the pre-generated grained domain: (a) irregular grains, and (b)
spherical grains. Sieve radii obtained using the bounding box method for the irregular grains are used as input
for the spherical grain domains.
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3.3.2 Pre-generated: Grain Shape Parameters

Shape factors were calculated for each grain and the average was plotted against the difference between irreg-
ular and round mean permeability result (Fig. 34). Average shape factors varied more than as compared to
the heterogeneous and homogeneous domains but were still relatively similar. No clear trend for sphericity,
roundness or circularity could be observed.
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Figure 34: Calculated average shape factors plotted against permeability difference between round and irregular
particles using the same grain size distribution for the pre-generated grained domains. Plotted quantitative grain
shapes are: (a) shape factor 1, (b) sphericity, (c) roundness, and (d) circularity.

3.4 Comparison of the Domains

Regression lines are plotted through the mean simulation k for the different domains and grain shapes (Fig.
35). This was done to compare the effect of different grain size distributions on k. It can be observed that
the increase of k with θ is slightly lower for the heterogeneous domains. Mean k results overlap for the θ
range of approximately 0.46-0.47. Here, the lowest permeability can be observed in the order: heterogeneous,
pre-generated, and homogeneous domains. The main difference between the heterogeneous and homogeneous
domain is the grain size distribution. Their grains are both generated using the same irregularity parameters,
but the homogeneous domain contains considerably more smaller grains. It should be noted that we assume
the trend line continues in the same matter above and below simulation results. Comparison of the domains
over this rather small θ range might not be representative for other porosity values. Overall circular grained
domain simulations yield higher results when compared to grain size distributions of identical size but irregularly
shaped. Average d10 values were approximately 0.24, 0.033, 0.25 mm for the homogeneous, heterogeneous and
pre-generated domains respectively.

Pore sizes for the heterogeneous realizations were relatively small as compared to the homogeneous and pre-
generated realizations. The largest pore size for low porosity being approximately 10−0.75 mm and high porosity
approximately 10−0.5 mm. For the homogeneous and pre-generated realizations this was 10−0.5 mm for low
porosity and 10−0.25 mm for high porosity.

In general, pore size distributions for low porosity were relatively similar with small variations between the
realizations of high and low permeability. At high porosity, where the permeability difference between realiza-
tions is larger, pore sizes were also relatively similar. However, pore sizes at high porosity were much larger.
The heterogeneous domains showed much smaller pore sizes as compared to the homogeneous domain. The
distribution of the pore sizes was also much narrower for the heterogeneous domain.
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Figure 35: Mean simulation permeability values plotted for the irregular and circular grained domains. Re-
gression lines are plotted for each of the different grain size distributions: homogeneous, heterogeneous and
pre-generated.

While the pre-generated domain and the homogeneous domain have approximately identical d10 values, their
respective k values differ. From these simulation results, it can clearly be observed that the grain size distribution
and grain shapes have an impact on the permeability which is underrepresented in the empirical relationships.

4 Discussion

4.1 Porosity vs Permeability

Permeability is a measure of the ability of a medium to transport water and is directly related to the connective-
ness and size of the pores. The size of pore bodies and throats becomes larger as porosity increases. Therefore,
increasing permeability with porosity was expected. An exponential relation between porosity and permeability
has already been shown by experimental research [Chilingar , 1964; Chierici , 2013]. This exponential relation
has also been shown here in the mean permeability of the simulation results for all grain size distributions.
Differences in permeability caused by the grain size distribution could be observed. However, realizations of
porous media described by the same porosity and grain size distribution showed different permeability values
as well.

Pore size distributions were relatively similar at low and high porosity. However, permeability uncertainty at
low porosity was small as compared to high porosity. According to the law of Hagen–Poiseuille, the permeability
is related to the square of the effective radius of the pore size [Nimmo, 2013]. Marshall [1957] showed that
larger pores have an even bigger impact than the squared value of the radius. Thus, having larger pores results
in higher permeability. Here, we showed that the larger pore sizes could be found with higher porosity. Small
differences in pore size distributions between realizations were found but not significant. This means that the
pore size distribution is not the controlling factor causing the large permeability uncertainty at high porosity.
We suggest that the connectiveness of the pores is not taken into account. It could be observed that large pores
connected with each other caused the highest permeability. Due to the specified distance between the grains,
all pores are connected but flow in the x-direction might not be favorable in vertical pore throats. This was
observed for the pre-generated realizations at high porosity. A large amount of areas with almost no flow could
be observed at low permeability.

It could also be observed that realizations of high porosity showed more straight flow paths. Previous research
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has shown that a tortuosity decrease is correlated to a porosity increase [Matyka et al., 2008]. However,
our results indicate some other factor controlling the tortuosity of the system: spatial distribution. Higher
permeability uncertainty at high porosity can also be explained by tortuosity and grain placement. Since the
pore size distributions are almost identical, the variation of values cannot be caused by this. Tortuosity at high
porosity is low, which allows water flow in the x-direction to move more freely and have thus higher velocities.
Any obstacle placed on that flow path would have a high impact on the distance travelled and cause lower
permeability values.

This also explains the smaller uncertainty for circular grains as compared to irregular grains: because water
moving around an irregular shape, which has a rough surface, would have to deviate from the flow path
significantly more than when moving around a circular grain of the same size. As grains become smaller in the
heterogeneous domain, this effect also becomes smaller. Further research on the tortuosity of the domains is
necessary to confirm this hypothesis. A method stated by Graczyk and Matyka [2020] allows the calculation of
the tortuosity from the velocity vector field which can be extracted from the generated VTK file. It uses the
average magnitude of the fluid velocity and the average of its component along the macroscopic direction of the
flow.

The impact of θ on permeability has been validated based on only three grain size distributions. Future
research could focus on fixing porosity and altering the grain size distribution to observe whether the behaviour
is correctly captured by the porosity-permeability relationships.

4.2 Porosity-Permeability Relationships

Porosity-permeability relations show the same exponential trend as the simulation results. However, the values
between the different relations varied and generally were not able to exactly capture the mean of the simulations.
The estimated permeability values varied by more than a factor 10 for the heterogeneous domain. While most
of the conditions for the empirical relations were not met, Barr (2001) should have been applicable. A similar
trend of underestimating the permeability for smaller grain sizes was found by Živković et al. [2021] through
experimental analysis of different samples. They also state that as grain sizes increase, and the fraction of
smaller sized grains decreases, the permeability increases. This was also observed in this research, however a
more extensive analysis of different grain size distributions could improve this view. Experimental research into
the relation between grain size, grain shape, grain sorting, porosity and its relative impact on permeability done
by Beard and Weyl [1973] found a similar relationship. They found a decrease in permeability when grains
became finer and sorting became poorer.

We used the relationships defined by Devlin [2015] based on the effective grain size value of d10. There has
been some debate about whether usage of the d10 in porosity-permeability relationships was originally intended
by the authors [Urumović and Urumović, 2017, 2018]. The problem is that no clear definition of the "effective
grain size" exists, and different interpretations have been given. For example some use the harmonic mean while
other calculate the median of the grain sizes. Further correlation could be done in future research to find the
grain size parameters which best suit the data.

Another aspect to consider is the uncertainty shown here. Realizations of the same porosity and grain size
distribution showed a range of different permeability values. However, the empirical relations only estimate a
single value. This can be attributed to the fact that empirical relationships such as the Kozeny-Carman or Barr
ignore microscopic porous medium properties such as pore size distribution, connectivity of pores and spatial
distribution and therefore cannot accurately describe the permeability [Chen et al., 2020].

4.3 Grain Shapes

No correlation between the proposed quantitative grain shape parameters and permeability difference between
irregular grained domains and circular grained domains was found. However, a clear permeability difference
caused by irregular grains was observed. Safari et al. [2021] modelled porous media using the discrete element
method. They found that as grains deviated from a spherical shape, the permeability increased due to the
formation of large pore spaces in the domain. A similar study as done here was done by Liu and Jeng [2019].
They analysed the relation between morphological parameters, such as roundness and sphericity, to the per-
meability as calculated from the Kozeny-Carman equation. Results showed increasing permeability as shapes
became more spherical and round.

The lack of correlation between permeability difference of irregular and circular grained domains could be related
to multiple causes. The irregular shaped grains are generated using the radius variance, and irregularity input
parameters. To obtain a relationship between porosity and permeability, these parameters were not varied.
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Therefore, the difference in quantitative grain shape parameters between grains were small. Differences will
become even smaller when averaging these parameters for a given domain. Especially if the number of grains
is very large. Thus, a better method would be to either vary the input parameters for irregular grain shape
generation, or use multiple moments to describe the distribution of grain shape parameters. A recommendation
for future research is to fix porosity and the grain size distribution, but vary the irregularity, radius variance,
and number of vertex points parameters for the generation of irregular grains similar to the work of Liu and
Jeng [2019].

4.4 Recommendations & Future research

While a number of different possibilities of our model were demonstrated here, a large number of questions
and ideas can still be formulated and computational improvements made. For example while the relationship
between porosity and permeability has clearly been shown here, the impact of grain size distribution is somewhat
underrepresented. It is possible to fix the porosity, but generate different grain size distributions which would
allow a more detailed analysis. This could also be done for the analysis of the impact of grain shapes: fix the
porosity and grain size distribution but alter the irregularity parameters. In this study, a number of experimental
data sets have been referenced, each with porosity, permeability and grain size data. Uncertainty analysis of
permeability and subsequent comparison to lab measurements could provide valuable insight into the use of our
model to predict permeability instead of using the empirical relations.

Due to the modularity of the code, other empirical relationships, different methods of grain generation, grain
placement, and grain analysis can be added easily. Other parameters which exist in the original Kozeny-Carman
relation, such as the specific surface area of the grains, can be extracted from the domain with relative ease.
Often this is done experimentally through porosimetry or gas absorption methods Sibiryakov et al. [2021].

Methods of grain placement can be implemented to reduce computational time and possibly improve compu-
tations. For instance a watershed type method could be implemented. Currently, grains are placed randomly
within the domain and overlap with other grains is checked until no overlap occurs. A better method is extract-
ing the distance between the currently placed grain and fitting a grain of desired size in that available space.
This would yield lower porosity values allowing further analysis of porosity-permeability relationships. Also the
use of field data to represent grain size distributions could prove useful. This would yield a more asymmetric
cumulative grain size curve, representative of an actual grain sieve analysis. The pre-generated domains can be
validated by microfluidics experiment by simulating fluid and colloid transport within a realization.

A number of different pore size distributions were shown here. However, these only showed the distributions at
low and high porosity for the lowest and highest permeability. To show the relation between permeability and
the pore size distributions more clearly, the moments of distribution could be extracted.

5 Summary and Conclusions

The main goal of the research was to develop a modular python workflow for the generation and analysis
of different porous media. A few scenarios were investigated to test the applicability of our model. The
permeability uncertainty that comes from placement of identical grains within a medium was analyzed and
compared to permeability-porosity equations. The permeability difference between porous media containing
circular and irregular shaped grains was analysed. This was done for domains with the same porosity and grain
size distribution but different grain shapes. Properties of the porous media, such as pore size distribution and
local flow velocities, were extracted.

The results showed that permeability increased with porosity. This was attributed to increasing pore sizes.
Uncertainty between realizations of the identical porosity and grains was caused by connectivity of areas of high
flow velocity, but this was most likely not the only cause. The size of the grains also had a clear impact on
permeability. Grain size distributions containing smaller grains caused smaller uncertainty. No relationship was
found between grain morphology parameters and permeability difference. However, circular grained domains
showed significantly higher permeability than irregular grained domains with the same grain size distribution
and porosity. This is most likely caused by smaller tortuosity for the circular grains of the same size, but
more research is necessary to confirm this hypothesis. The uncertainty at the same porosity was smaller for
the different domains. In order of largest to smallest uncertainty at the same porosity: irregular homogeneous,
round homogeneous, irregular heterogeneous, and round heterogeneous domains. Comparing the results to
known permeability-porosity values showed good capture of the impact of porosity for Kozeny-Carman, Barr,
and Slichter, but underestimation of the impact of grain size distributions. While most empirical relations
captured the impact of porosity on permeability, correlation between values of numerical simulations was poor,
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with variations over a factor of 10. Empirical permeability relationships often oversimplify the fluid transport in
porous media. While porosity and grain size distribution have an impact on permeability, pore scale properties
such as pore size distribution, tortuosity, and grain morphology are not always considered.

Our results lead us to the major conclusions:

• A grain size distribution which contains more smaller grains has a lower permeability caused by smaller
pore sizes.

• Spatial arrangement of grains can cause areas of low flow velocity to form and affects the connectivity of
the larger pores thus influencing permeability.

• While grain irregularity decreases the permeability, a relationship between defined morphological param-
eters could not be found. Further research where porosity is fixed, but grain shape parameters are varied
is necessary. This can easily be achieved due to the modularity of this porous medium generator.

• Permeability uncertainty increases as pore sizes increase, grain sizes become larger, and sorting poorer.
More grain size distributions are necessary for further study.

• Porosity and effective grain size are not enough to describe the complexity of the porous medium structures.
Using these variables in empirical permeability relations will yield a single value while numerous structures
can be described by them.
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Appendix

A Realizations of grain size distributions

This section contains different realizations of porous media containing identical grains but with different spatial
arrangement. The realization with the highest and lowest permeability value are displayed. Porous media
containing irregular grains as well as porous media containing circular grains obtained from the sieve analysis
method are shown. Some images are generated using truncated log-normal distributions, described by param-
eters: rmin, rmax, rmean, and rstd, while others are generated using grains from a pre-generated list. Irregular
grained settings are kept constant at 0.5, 0.08, 15 for angular spacing, radius variance, and number of shape
points, respectively.

• Fig. A.1: Homogeneous, irregular, 0.01, 1.0, 0.35, 0.25 for rmin, rmax, rmean, and rstd, respectively. Both
figures have a θ of 0.334. Fig. A.1a has the lowest permeability value (1.764e−11m2) of this Monte Carlo
simulation, while Fig. A.1b has the highest permeability value (2.884e−11m2).

• Fig. A.2: Homogeneous, round, radii obtained from sieve radius analysis. Both images have a θ of 0.334.
Fig. A.2a has the lowest permeability value (2.379e−11m2), while Fig. A.2b has the highest permeability
value (3.036e−11m2).

• Fig. A.3: Heterogeneous, irregular, 0.01, 0.6, 0.45, 0.005 for rmin, rmax, rmean, and rstd, respectively. Both
figures have a θ of 0.424. Fig. A.3a has the lowest permeability value (1.595−11m2) of this Monte Carlo
simulation, while Fig. A.3b has the highest permeability value (1.794e−11m2).

• Fig. A.4: Heterogeneous, round, radii obtained from sieve radius analysis. Both images have a θ of 0.424.
Fig. A.4a has the lowest permeability value (2.655e−11m2), while Fig. A.4b has the highest permeability
value (3.052e−11m2).

• Fig. A.5: Pre-generated, irregular, porosity and permeability values are: θ = 0.651 (A.5a),(A.5b) and
k = 2.165e−10m2 (A.5a), 3.273e−10m2 (A.5b) θ = 0.4664 (A.5c), (A.5d) and k = 3.613e−11m2 (A.5c),
4.429e−11m2 (A.5d).

• Fig. A.6: Pre-generated, irregular, porosity and permeability values are: θ = 0.650 (A.6a),(A.5b) and
k = 2.644e−10m2 (A.6a), 3.380e−10m2 (A.6b) θ = 0.4652 (A.6c), (A.6d) and k = 4.304e−11m2 (A.6c),
5.005e−11m2 (A.6d).
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Figure A.1: Two pore-scale domains containing randomly generated irregularly shaped grains but placed at dif-
ferent positions. The grain size distribution is generated using a truncated log-normal grain size distribution with
values: 0.01, 1.0, 0.35, 0.25 for rmin, rmax, rmean, and rstd, respectively. Settings for irregular grain parameters
are set to: 0.5, 0.08, 15 for angular spacing, radius variance, and number of shape points, respectively. θ of
these images is 0.334, with (a) has the lowest permeability value (1.764e−11m2) of this Monte Carlo simulation,
while (b) has the lowest permeability value (2.884e−11m2). Cyclicity of the grains can be seen. Domain length
and height are given in mm
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Figure A.2: Two pore-scale domains containing randomly generated circular grains but placed at different
positions. The grain size distribution is obtained from a sieve radius analysis of the grains with the same θ. θ
of these images is 0.334, length of the axis are in mm. (b) has the highest permeability (3.036e−11m2), while
(a) has the lowest permeability (2.379e−11m2) of this particular MC run.
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Figure A.3: Two pore-scale domains containing randomly generated irregularly shaped grains but placed at
different positions. The grain size distribution is generated using a truncated log-normal grain size distribution
with values: 0.01, 0.6, 0.45, 0.005 for rmin, rmax, rmean, and rstd, respectively. Settings for irregular grain
parameters are set to: 0.5, 0.08, 15 for angular spacing, radius variance, and number of shape points, respec-
tively. θ of these images is 0.424, with (a) has the lowest permeability value (1.595−11m2) of this Monte Carlo
simulation, while (b) has the highest permeability value (1.794e−11m2). Cyclicity of the grains can be seen.
Domain length and height are given in mm
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Figure A.4: Two pore-scale domains containing randomly generated circular grains but placed at different
positions. The grain size distribution is obtained from a sieve radius analysis of the grains with the same θ. θ
of these images is 0.424, length of the axis are in mm. (a) has the highest permeability (2.655e−11m2), while
(b) has the lowest permeability (3.052e−11m2) of this particular MC run.
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Figure A.5: Pre-generated grained domains. Two realizations with identical grains and porosity, but spatially
varied can be observed. Porosity and permeability values are: θ = 0.651 (a),(b) and k = 2.165e-10 (a), 3.273e-10
(b) θ = 0.466 (c), (d) and k = 3.613e-11 (c), 4.429e-11 (d)
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Figure A.6: Pre-generated grained domains. Two realizations with identical grains and porosity, but spatially
varied can be observed. Porosity and permeability values are: θ = 0.650 (a),(b) and k = 2.644e-10 (a), 3.380e-10
(b) θ = 0.465 (c), (d) and k = 4.304e-11 (c), 5.005e-11 (d)
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