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Abstract

In this thesis we show that simulated annealing is a very viable heuristic method for approximating rank-width
[38, 47] and other branch-decomposition based width parameters. We present the various aspects of the algo-
rithm in detail and discuss the design choices that were made with the help of practical experiments. Finally,
extensive benchmarks were performed to assess the performance of the algorithm. We improved many of
the currently best known rank-width upper bounds [6, 7] and show the first practical results for F4-rank-width
[34, 33] and maximum matching-width [54].
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Chapter 1

Introduction

Finding faster algorithms for NP-hard problems has always been a widely researched topic in computing science.
After all, many real-life problems such as the planning of public transport, vehicle routing and other scheduling
problems are NP-hard, and being able to solve them, or at least approximate them in increasingly better ways,
can save companies a lot of money. When it comes to NP-hard problems on graphs, width parameters such as
tree-width, branch-width and clique-width have been particularly useful. These parameters quantify the struc-
ture of a graph and come with a decomposition that makes it possible to design faster algorithms for NP-hard
problems with a running time depending on the parameter (and the number of vertices). This is often done
using dynamic programming techniques, making use of properties of the decomposition. A major problem with
those width parameters, however, is that computing them exactly is usually NP-hard in itself. A lot of research
was therefore devoted to finding faster exact and approximation algorithms for them. At the same time, instead
of just trying to improve algorithms for existing width parameters, new parameters were also proposed which
promised to give a low value for a different or larger variety of graphs and/or being relatively easier to compute,
compared to existing parameters. One such parameter is rank-width [38, 47], which was chosen as the main
topic for this thesis.

Rank-width is a width parameter for undirected graphs by Oumand Seymour [38, 47]. A rank-decomposition
is a subcubic (degree at most 3) tree that has exactly one leaf for each vertex of the input graph. Each edge of
the decomposition naturally represents a partition between the leaves on each side of it. The width of an edge is
the rank of the binary field adjacency matrix of this partition in the input graph. The width of the decomposition
is the maximum over all edges. The rank-width of a graph is then the smallest possible decomposition width.
Note that for algorithms that use a (rank-)decomposition as part of the input it is not required to have an optimal
decomposition. As long as the width of the given decomposition is low enough, they can still work efficiently.
This makes it interesting to create faster approximation algorithms that produce low width (but not guaranteed
to be optimal) decompositions. Computing the exact rank-width of a graph was proven to be NP-hard [43, 46].

Most of the research that has been done for rank-width so far has been focused on properties, applications
and approximations with guarantees on the running time and the quality of the solution. Unfortunately those
approximation algorithms are oftentimes not very usable in practice. The only currently existing practical result
that approximates rank-width without guarantees appears to be a heuristic algorithm by Beyß [6, 7]. In this
thesis we will show that by approximating rank-width using local search variant simulated annealing we can get
better and faster results.

This thesis is structured as follows: First some preliminary topics will be explained in Chapter 2, and then
Chapter 3 will give an introduction to rank-width, its properties, applications and directed variants. Chapters
4, 5 and 6 explain the various aspects of the algorithm in detail, combined with discussion about the results of
experiments that show the effect of various design choices that had to be made. Based on the results of those
experiments the best configuration was chosen to perform the final benchmarks in Chapter 7, which eventually
leads to a conclusion and a discussion about possible future research directions in Chapter 8. The appendices
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contain a description of how to use the program that was written for this thesis (Appendix A) and a complete
overview of the benchmarking results (Appendix B). Note that all experiments in Chapters 4, 5 and 6 were per-
formed for rank-width. In the final benchmarks, the directed rank-width variant F4-rank-width [34, 33] and
undirected width parameter maximummatching-width [54] were additionally tested, to show that the algorithm
can support other width parameters that are based on branch-decompositions.
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Chapter 2

Preliminaries

In this chapter some concepts are introduced that are important for understanding the rest of the thesis.

2.1 Branch-decomposition

Width parameters are usually defined through a decomposition for which a width can be computed in some
way. A branch-decomposition [22, 47, 8, 54, 14] is a generalized type of decomposition that can be used as
a framework to define various width parameters such as rank-width [38, 47], maximum matching-width (mm-
width) [54], maximum induced matching-width (mim-width) [54], boolean-width [8, 54] and branch-width [50].
Note that the decomposition belonging to the width parameter “branch-width” is also referred to as a branch-
decomposition, but this should not be confused with the generalized branch-decomposition framework. The
branch-width width parameter by Robertson and Seymour [50] was the first to use this type of decomposition.
The concept of that decomposition was later generalized without changing the name.

Definition 2.1.1 (Branch-decomposition) Let M be a finite set, which is the ground-set of the decomposition. A
branch-decomposition is a pair (T, L), consisting of a subcubic (degree at most 3) tree T and a bijection L fromM
to the leaves of T [22, 47, 8, 54, 14].

For each element of the ground-set M there is thus exactly one corresponding leaf in T , and each leaf of T
has exactly one corresponding element ofM . Since branch-decompositions are usually used with graphs, the
ground-set will usually be either the set of vertices or the set of edges of the graph. An example can be seen in
Figure 2.1.

e

b c

f

d a

a

b c d e

f

Figure 2.1 A graph and a possible branch-decomposition with the vertices of the graph as ground-set.

Definition 2.1.2 (Cut-function) LetM be a finite set. A cut-function f : 2M → R computes a width value for any
subset ofM [47, 54]. The function f is symmetric in the sense that f(X) = f(M \X) for allX ⊆M .

Note that in some places [22, 47] cut-functions are defined to not only be symmetric, but also submodular such
that

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) for allX,Y ⊆M.

3



However, this appears not to be strictly necessary for branch-decompositions and their corresponding width
values in general.

Using these definitions it becomes possible to define various width parameters, based on the choice of
ground-set and cut-function. A branch-decomposition that uses a specified cut-function f is referred to as a
branch-decomposition of f [22, 47]. Because the decomposition uses a tree, each decomposition edge e naturally
represents a partition of the leaves (Ae, Be), and thus a partition of the elements of the ground-set M . By
using the cut-function f , a width can be computed for every edge: f(L−1(Ae)) = f(L−1(Be)). Note that
the equality holds because of the symmetric property of f . The width of the decomposition itself is defined to
be the maximum over all its edges. An optimal branch-decomposition of f is a decomposition that realizes the
minimumwidth over all possible decompositions for the ground-set [50, 47, 54]. Thisminimumwidth is called the
branch-width of f [22, 47] (not to be confused with the width parameter branch-width). A branch-decomposition
is usually assumed to not have any degree 2 vertices, as each of the two edges incident to such a vertex will
have the same width (equal partition), and thus one of those edges could be contracted without influencing the
decomposition width [54]. As such, a branch-decomposition for a ground set of size m has m leaves, m − 2
internal nodes and 2m− 3 edges [49]. In Figure 2.1 can be seen that this is indeed the case.

2.2 Maximummatching-width

One of the width parameters that is based on a branch-decomposition is the maximummatching-width (abbre-
viated asmm-width). It was introduced in 2012 by Vatshelle [54], together with the boolean-width andmaximum
induced matching-width (mim-width). As ground-set it uses the vertices of the undirected graph, and the cut-
function computes the size of a maximum bipartite matching in the graph, where the two sides of the partition
form the two sides of the matching. An example of this is shown in Figure 2.2. For a graph with n vertices andm

e

b c

f

d a

a

b

c

d

e

f

Figure 2.2 A graph and a maximum bipartite matching corresponding to the partition ({a, b}, {c, d, e, f}). As
there are 2 edges in the matching, the cut-function would result in the value 2 for this partition.

edges, a maximum bipartite matching can be computed in O(m
√
n) time using the Hopcroft–Karp algorithm

[29]. As the size of a maximum bipartite matching is at most the size of the smallest partition side, for a n vertex
graph a maximum matching-width upper bound of ⌈n/3⌉ can be proven with a similar argument as for rank-
width (Theorem 3.2.1). Ahn and Jeong [2] showed that computing the maximum matching-width of a graph is
NP-hard.

Vatshelle [54] proved the following bounds for an undirected graphGwith tree-width tw(G), branch-width
brw(G), maximum matching-widthmmw(G), rank-width rw(G) and boolean-width boolw(G):

1

3
(tw(G) + 1) ≤ mmw(G) ≤ max(brw(G), 1) ≤ tw(G) + 1,

rw(G) ≤ mmw(G),

boolw(G) ≤ mmw(G).
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2.3 Matrix rank

Width parameter rank-width [38, 47], which is also based on a branch-decomposition, uses the rank of a binary
field adjacency matrix for its cut-function. In this section we will briefly describe what the rank of a matrix is and
which algorithms exist to compute it, to help in understanding Chapter 3 where rank-width will be discussed in
detail.

To define the rank of a matrix, we first need to define the notion of independence of a set of vectors.

Definition 2.3.1 (Independence) A set V of n vectors {v1, v2, . . . , vn} is independent if there exist no non-trivial
coefficients λ1, λ2, . . . , λn (at least one non-zero) such that λ1v1 + λ2v2 + · · ·+ λnvn = 0.

In practice this means that none of the vectors in the set should be able to be expressed as a linear combination
of the others. As such the sets {(

1
3

)}
and

{(
2
0

)
,

(
0
1

)}
are independent, and the sets{(

2
0

)
,

(
4
0

)
,

(
0
1

)}
and

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
are dependent for example.

Definition 2.3.2 (Rank) The rank of a set of vectors V is the size of the largest independent subset of V .

As a matrix is a set of column or row vectors, it also has a rank. It holds that the column rank of a matrix is
always equal to its row rank. Rank can also be computed for vectors and matrices in a finite field, as is done for
rank-width.

The classic method of computing matrix rank is by using Gaussian elimination to reduce the input matrix to
row echelon form (see Figure 2.3). This is a matrix where all-zero rows are at the bottom and the pivot (first non-
zero element) of each row is strictly to the right of the pivot of the row above it. In such a matrix, the rank equals
the number of non-zero rows. In the worst case, all rows and all columns of the matrix have to be visited, and it −2 −3 7

0 1 6
0 0 3


rank = 3

 1 2 0 5
0 1 −2 −4
0 0 1 3


rank = 3

 1 0 2 3 0
0 1 1 2 0
0 0 0 0 0


rank = 2

Figure 2.3 Examples of matrices in row Echelon form and their rank. The pivot element of each row is shown in bold.

might be needed to add a multiple of a row to many other rows. For am× nmatrix this results in aO(mn2)
time algorithm. Note that especially for large matrices data locality andmemory caching plays an important role
in the practical performance. When matrices are stored in row-major order, SIMD instructions can be used to
perform operations on rows. This is particularly efficient for fields such asF2 where each element can be stored
as a single bit.

Better, but usually more complicated, algorithms do exist. For F2 this was shown for example by Albrecht
et al. [3], eventually obtaining an average running time of O(n3/ log(n)) for square n × n matrices. Their
algorithm is supposed to be quite optimized for practical performance and is implemented as part of the M4RI
library1 for fast arithmetic on dense F2 matrices. They also show a simpler algorithm, which is a variant of
Gaussian elimination and runs inO(mnr) time for am×nmatrix with rank r. Another algorithmwas proposed
by Bertolazzi and Rimoldi [5]. Although no asymptotic running time is mentioned, they show with experimental
results that their algorithm performs generally better than the M4RI algorithm. An implementation of their

1https://bitbucket.org/malb/m4ri
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algorithm can be found on GitHub2. Cheung et al. [9] showed a fast randomized algorithm that works on any
field and, for a given m × n matrix M and a parameter k ≤ min(m,n), computes min(rank(M), k) in
O(|M |+min(kω, k · |M |)) field operations. |M | is here the number of non-zero elements inM , and ω is the
matrix multiplication exponent which depends on the used matrix multiplication algorithm. Since the running
time depends on the number of non-zero entries in the matrix, this algorithm is especially interesting for sparse
matrices. However, because of the randomization it is not entirely clear how usable this algorithm is in practice
when an exact result is required.

2https://github.com/ebertolazzi/GF2toolkit
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Chapter 3

Rank-width

Width parameter rank-width was introduced in 2003 by Oum and Seymour [38, 47] as a replacement for clique-
width [39]. Similarly to clique-width it measures the difficulty of decomposing a graph into a tree-like structure.
By having a much more mathematical definition, it aims to be easier to compute and design algorithms for [39].
Unlike clique-width, rank-width is based on a branch-decomposition. Another difference is that clique-width
works for both directed and undirected graphs, while rank-width only applies to simple undirected graphs. Some
effort has however been done on extending rank-width to work with directed and edge-colored graphs as well
[34, 33, 32, 35]. Directed rank-width will be further elaborated upon in Section 3.7. A large part of the information
in this chapter was inspired by the summary paper “Rank-width: Algorithmic and Structural Results” by Oum [46].

3.1 Definition

To measure the complexity of cuts, rank-width uses the cut-rank function (ρG) which is based on matrix rank.
An example of computing cut-rank is shown in Figure 3.1. Note that the vertices on each side of the partition do
not need to be connected.

Definition 3.1.1 (Cut-rank) Given an undirected graph G = (V,E) and a subset of its vertices X ⊆ V , the
cut-rank ρG(X) is the rank of the binary-field F2 adjacency matrixAX betweenX and V \X [47, 46].

Cut-rank was proven to be both symmetric and submodular [47], and is as such a proper cut-function. It is
symmetric, because an adjacency matrix of an undirected graph is symmetric and the row-rank of a matrix is
equal to its column-rank.

v

u c

d

a b

X
X = {u, v} V \X = {a, b, c, d}

AX =

a b c d( )
u 1 0 1 0
v 0 0 1 0

ρG(X) = rank(AX) = 2

Figure 3.1 An example of computing cut-rank for the partition ({u, v}, {a, b, c, d}).

Definition 3.1.2 (Rank-decomposition) Let G = (V,E) be an undirected graph. A rank-decomposition is a
branch-decomposition with the cut-rank ρG as cut-function and the set of vertices V as ground-set [47, 54]. In other
words, a branch-decomposition of ρG.

The rank-width of an undirected graphG, written as rw(G) or rwd(G), is the minimumwidth over all possible
rank-decompositions (the branch-width of ρG). In case a graph has no edges its rank-width is 0. Figure 3.2 shows
an example of a graph and a corresponding optimal rank-decomposition.
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e

b c

f

d a

a

b c d e

f
1

1 1 1 1

12 2 2

Figure 3.2 A graph and an optimal rank-decomposition of width 2. The width of the edges is indicated.

3.2 Bounds

It is not difficult to prove an upper bound for rank-width by using the structure of a rank-decomposition.

Theorem 3.2.1 LetG be an undirected n-vertex graph. It holds that rw(G) ≤ ⌈n/3⌉ [42, 28].

Proof. We can show this by constructing a rank-decomposition as shown in Figure 3.3. As each vertex of the
tree has degree at most 3, the best we can do is to make a center vertex c which connects to 3 branches.
The leaves (gray) are evenly distributed over the three branches, such that each of them has either ⌈n/3⌉
or ⌊n/3⌋ leaves. From the definition of matrix rank, we know that for an m × n matrix M it holds that
rank(M) ≤ min(m,n). As such, we know that at least one of the three edges incident to c has a width
at most ⌈n/3⌉. The other two edges cannot have a greater width by the way the construction was made.
Since the width of a rank-decomposition is the maximum edge-width, the only thing left to prove now is that
there is no other edge that can have a greater width. It should not be hard to see that when we move along
each of the three branches that one dimension of the matrix becomes increasingly smaller, while the other
dimension grows. Since the rank is atmost the smallest of the two, themaximum rank and thus themaximum
width is decreasing. As such, there is no edge which can have a width greater than ⌈n/3⌉ and thus the width
of the decomposition is at most ⌈n/3⌉. Because the rank-width of a graph is determined by the smallest
width decomposition, we can say that it will be no worse than the decomposition we constructed, and thus
rw(G) ≤ ⌈n/3⌉.

c

∼ n/3

∼ n/3

∼ n/3

Figure 3.3 A rank-decomposition used to prove that the rank-width of any n-vertex graph is at most ⌈n/3⌉.

Some other width parameters also provide bounds for rank-width. Oum and Seymour [47] showed that a
class of graphs has bounded rank-width if and only if it has bounded clique-width (cw). For any undirected graph
G:

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.

A similar relation was shown by Bui-Xuan et al. [8] for boolean-width, denoted as boolw(G) for an undirected
graphG:

log2 rw(G) ≤ boolw(G) ≤ rw(G)2

4
+O(rw(G)).

Oum [44] also showed the following two bounds for an undirected graph G with branch-width brw(G) and

8



tree-width tw(G):

rw(G) ≤ max(brw(G), 1),

rw(G) ≤ tw(G) + 1.

It is interesting to note that for planar graphs branch-width can be computed exactly in polynomial time [51, 25,
26]. As shown before, Vatshelle [54] proved a bound for maximum matching-width (mmw). For an undirected
graphG:

rw(G) ≤ mmw(G).

3.3 Computational results

Computing rank-width exactly is not trivial. In [43] and [46] Oum shows that computing rank-width is NP-hard
and that the decision variant, which tests given a graph G and a value k if the rank-width of G is at most k, is
NP-complete. It was shown by Oum [45] that computing rank-width exactly for an arbitrary n-vertex graph can
be done inO(2nn3 log2 n log logn) time and for bipartite circle graphs in polynomial time [46]. The exponential
time algorithm was implemented in SageMath 1. Since the complexity of the algorithm is quite high, it quickly
becomes too slow to be usable when the number of vertices becomes larger than approximately 20.

Because of the high cost to compute rank-width exactly for arbitrary graphs, most research has been focused
on constructing approximation algorithms. The existing fixed-parameter approximations compute, for a given
n-vertex graph, a rank-decomposition of width at most f(k) for some function f , or confirm that the rank-width
is greater than k [46]. The first of such an algorithm was shown by Oum and Seymour [47] in 2006 in the same
paper where rank-width was introduced. This algorithm uses f(k) = 3k+1 and has anO(8kn9 logn) running
time [46]. In 2008 it was further improved by Oum [43] to a running time ofO(8kn4), while keeping the same
approximation quality. In the same paper, another algorithmwhich provides a slightly better approximation was
presented with f(k) = 3k − 1 and a running time ofO(g(k) · n3), where g(k) is some huge function.

Another category of algorithms simply computes a rank-decomposition of width at most k, if it exists [46]. A
generic result by Oum and Seymour [48] in 2007, which applies to functions like cut-rank, implied that this can be
donewith a running time ofO(n8k+12 logn). A better result was shown by Courcelle andOum [12], which takes
O(g(k) ·n3) time with g(k) a huge function. This algorithmwas however not able to compute a decomposition
directly. This issue was later solved by Hliněný and Oum [27], resulting in an algorithm with again a running time
of O(g(k) · n3) with g(k) a huge function. This means that for any fixed k, a rank-decomposition of width at
most k can be computed in cubic time, if it exists. But it still does not scale very well for larger values of k.

One particularly interesting result are the heuristic algorithms by Beyß [6, 7] which attempt to compute an
upper and a lower bound for the rank-width of a given graph. This seems to be the only work that has been
done on rank-width approximation algorithms without guarantees and also the first work that provides practical
rank-width upper and lower bounds for a large number of graphs. The upper bound algorithm is some sort
of local search algorithm (although not explicitly described as such) that attempts to improve subtrees of the
decomposition tree using “a mix of greedy and random decisions” [6] as Beyß describes it. The main loop of the
algorithm only accepts improvements of the decomposition, and the algorithm stops if it cannot find improve-
ment for a given number of iterations, or after a time limit. The lower bound algorithm works by computing the
width of all possible rank-decompositions for an induced subgraph and then growing the subgraph and making
new decompositions based on the previous ones. Although some tricks are used to reduce the size of the search
space, the algorithm scales quite badly and can only compute small lower bounds.

1https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/graph_decompositions/rankwidth.html
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3.4 Exact rank-width of graph classes

Aside from trying to compute rank-width for arbitrary graphs, there are also classes of graphs for which can be
proven that the rank-width is always a certain number. This is interesting, because for graphs that belong in
such a class, it becomes easy to determine the rank-width.

(a) Path graph P3 (b) Complete graphK8 (c) Cycle graphC8 (d) 3× 3 gridG3,3

Figure 3.4 Examples of graphs from classes with bounded rank-width.

Path graphs (also linear graphs), denoted byPn withn the number of vertices, are trees with degree at most
two (see Figure 3.4a). As such, they form a single line of vertices, and it should not be hard to see that this line
can easily be turned into a rank-decomposition where every partition has only a single connection between the
two parts. This implies that the corresponding adjacency matrix contains only a single 1, and this results in a
matrix rank and edge-width of 1. This type of graphs will thus always have a rank-width equal to 1, as long as
they have at least two vertices [42].

Complete graphsKn withn the number of vertices have an edge between every pair of vertices, as shown in
Figure 3.4b. This means that no matter which cut is made, the corresponding adjacency matrix will only consist
of ones. This results in a rank of 1. Any complete graph with at least two vertices thus has a rank-width of 1 [42].

Another class of graphs with a known rank-width is the class of cycle graphs Cn. As shown in Figure 3.4c,
these graphs have a single cycle of n vertices, such that each vertex has degree 2. According to Oum [42] and
Hliněný et al. [28] it holds that

rw(Cn) =

{
1 if n = 3, 4,

2 if n ≥ 5.

No proof for this was shown, however. For the case of n = 3 the rank-width of 1 follows directly from Theorem
3.2.1, and for n = 4 it is not difficult to manually construct a decomposition with a width of 1. For n ≥ 5, the
combination of having 5 or more vertices with every vertex having degree 2 seems to make it impossible for all
of the edges to have a width of 1. Themain reason for this appears to be that there can no longer be two vertices
that connect to exactly the same other two vertices, which is required to reach a rank of 1 instead of 2.

A class of graphs for which it was not as trivial to prove the exact rank-width was the class of square n× n
gridsGn,n (Figure 3.4d). It was an open question for a while, but in 2008 it was proven by Jelínek [31] that the
rank-width ofGn,n equals n− 1.

It also holds that a graph has rank-width at most 1 if and only if it is a distance-hereditary graph [40]. This
means that the shortest path between any two vertices in any induced subgraph is also the shortest path in the
original graph.

3.5 Graph relations

For certain operations that can be performed on graphs it is known which effect they have on the rank-width.
Looking at graphs that relate to each other through a series of such operations can thus be a useful tool in rank-
width research. Oum [41] showed the following relations for a number of simple operations on a graph G, its
vertex v, its edge e and another graphH :

• −1 ≤ rw(G \ v)− rw(G) ≤ 0 removing a vertex decreases rank-width by at most 1,
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• |rw(G \ e)− rw(G)| ≤ 1 removing an edge changes rank-width by at most 1,

• |rw(Ḡ)− rw(G)| ≤ 1 taking the complement changes rank-width by at most 1,

• rw(G⊕H) = max(rw(G), rw(H)) the rank-width of a disjoint union is the max of both graphs.

For two more complex operations the effect is also known [46].

Definition 3.5.1 (Local complement) Given a graphG and its vertex v, the graphG ∗ v is the local complement at
v. This is the same graph asG, but with the subgraph induced by the neighbors of v replaced by its complement [40].

v c

da b

v c

da b

G G ∗ v

Figure 3.5 An example of performing local complementation at v.

Figure 3.5 shows an example of local complementation. Oum [40] showed that performing this operation pre-
serves cut-rank, and thus rank-width. Two graphs that can be transformed into each other by a series of local
complementations are said to be locally equivalent. When a graphH is an induced subgraph of a graph locally
equivalent to a graphG, thenH is a vertex-minor ofG, and it holds that rw(H) ≤ rw(G). This works because
as we have seen, removing vertices (taking an induced subgraph) does not increase rank-width [40].

For every rank-width at most k it can be shown that there exists a set of forbidden vertex-minors (also known
as excluded vertex-minors) [46]. Those are graphs of at most (6k+1 − 1)/5 vertices that cannot be a vertex-
minor of a graph with rank-width at most k, because otherwise the rank-width would have been higher [40].

Definition 3.5.2 (Pivoting) Let G be a graph and uv an edge of G. Additionally, let X be the set of common
neighbors of u and v, Y the set of unique neighbors of u andZ the set of unique neighbors of v (all sets exclude u and
v). Pivoting on uv results in the graphG ∧ uv. This is the same graph asG, but with the adjacencies complemented
betweenX and Y ,X and Z , and Y and Z , and the labels of u and v exchanged [42].

u v

a

b

c

fed X

Y
Z

G

v u

a

b

c

fed

G ∧ uv

Figure 3.6 An example of pivoting on edge uv [13].

Figure 3.6 shows an example of how pivoting works. Just like local complementation, the operation preserves
cut-rank [40]. In fact, it can be written in terms of local complementation: G ∧ uv = G ∗ u ∗ v ∗ u [40]. We
can also say that two graphs are pivot equivalent if they can be changed into each other through a sequence of
pivot operations. When a graphH is an induced subgraph of a graph pivot equivalent to a graphG, thenH is
a pivot-minor ofG, and it holds that rw(H) ≤ rw(G). A pivot-minor is a restricted version of a vertex-minor,
and every pivot-minor is also a vertex-minor (but not the other way around).

3.6 Applications

Rank-width is still a relatively new width parameter, and as such there are only a limited number of applica-
tions of it at the time of writing. Another reason for this is that a rank-decomposition is much more difficult to
use for dynamic programming based algorithms than the decompositions belonging to other parameters [16].
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To this extent, a number of alternative characterizations of rank-decompositions were invented in an attempt
to make developing algorithms easier. For example by Courcelle and Kanté [10] and by Ganian and Hliněný
[15, 16, 21]. Based on their work, Ganian and Hliněný showed that better pseudo-polynomial algorithms are
possible for computing the chromatic number, the chromatic polynomial, deciding if a Hamiltonian path exists
and a few more [17, 20]. A result that does not use those alternative characterizations is an algorithm for graph
isomorphism testing by Grohe and Schweitzer [24]. For every fixed maximum rank-width, their algorithm runs
in polynomial time. Aside from algorithms that are designed to work directly with rank-width, it is also possible
to translate a rank-decomposition of width k into a clique-width decomposition of width at most 2k+1− 1 [47].
This means that any algorithm for bounded clique-width could also be used for bounded rank-width, but the
running time might be worse than a dedicated algorithm. A result that was already shown before rank-width
was even introduced is the meta theorem by Courcelle et al. [11]. It implies that for any fixed k, for every closed
monadic second-order formula of the first kind (MSO1) it can be decided in O(n3) time if a n-vertex input
graph of rank-width at most k satisfies the formula [46].

3.7 Directed rank-width

When it comes to extending rank-width from undirected to directed graphs, not much literature is available. The
most important work has been done by Kanté [34, 33] who introduced two rank-width based width parameters
for directed graphs: bi-rank-width and F4-rank-width. Some later work was also done together with Rao [32].
The first parameter keeps using an F2 adjacency matrix (but no longer symmetric) and changes cut-rank to
include both possible arc directions. The second one changes the adjacency matrix to be in F4 instead, without
changing the actual definition of cut-rank. This is particularly interesting, because undirected graphs can be
converted to directed in such a way that the width stays equal with this parameter. For a directed graphG we
will write birw(G) to denote its bi-rank-width and rwF4(G) to denote its F4-rank-width. It holds that [33]

rwF4(G) ≤ birw(G) ≤ 4 · rwF4(G).

This means that they are equivalent parameters in the sense that one is bounded if and only if the other is
bounded. For both parameters a similar equivalence exists in relation with clique-width. As such they provide
a way to approximate the clique-width of directed graphs [33]. This is an interesting result as various papers
[18, 19] note that clique-width is a quite powerful parameter compared to other width parameters for directed
graphs, but computing clique-width directly is difficult.

3.7.1 Bi-rank-width

Bi-rank-width [34, 33] is a modification of rank-width that changes the definition of the cut-rank function. For a
directed graphG = (V,E) and its F2 adjacency matrixA, it holds thatAxy = 1 if and only if (x, y) ∈ E (the
directed arc fromx to y). The adjacencymatrix is no longer symmetric, sinceAxy ̸= Ayx for unidirectional arcs.
For this reason, the cut-rank is modified to incorporate both directions. We will let A[X,Y ] be the sub-matrix
ofA where the rows correspond to vertices inX and the columns to vertices in Y .

Definition 3.7.1 (Bi-cut-rank) Given a directed graph G = (V,E), a subset of its vertices X ⊆ V and its F2

adjacency matrixA. The bi-cut-rank bicutrk(X) = rank(A[X,V \X]) + rank(A[V \X,X]). [33, 32]

Just like the regular cut-rank, bi-cut-rank is symmetric and submodular. By replacing the cut-rank in the defini-
tion of rank-width by bi-cut-rank, we obtain bi-rank-width. It should not be difficult to see that when an undi-

rected graphG is converted to a directed graph
−→
G by replacing every edge by a bidirectional arc, it holds that

birw(
−→
G) = 2 · rw(G). Kanté and Rao [32] showed that for any fixed k there is anO(n3) time algorithm that

for a n-vertex graph either outputs a decomposition of width at most k or confirms that the F4-rank-width is
greater than k. This is a similar result as for regular rank-width. In relation to clique-width, the following holds
for any directed graphG:

1
2birw(G) ≤ cw(G) ≤ 2birw(G)+1 − 1.
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It was also shown in [4, Lemma 9.9.15] that for a n-vertex graph, a bi-rank decomposition of width k can be
converted to a clique-width expression of width at most 2k+1 − 1 inO(4k · n3) time.

Some results for solving problems on graphs of bounded (bi-)rank-width in XP time are shown by Ganian et
al. [20]. This includes graph coloring, chromatic polynomial, Hamiltonian path and a few more.

3.7.2 F4-rank-width

F4-rank-width (orGF (4)-rank-width) [34, 33] is an extension of rank-width to the four element finite field F4.
This field consists of the elements 0, 1, α and α2, and is a direct extension of the binary field F2. The field has
characteristic 2, and it holds that 1 + α + α2 = 0 and a3 = 1. The four elements are used to represent the
directions of the arcs in the adjacency matrix. For a directed graph G = (V,E), the adjacency matrix A is
constructed as follows [34, 33, 32]:

Axy =


0 if (x, y) /∈ E and (y, x) /∈ E,

1 if (x, y) ∈ E and (y, x) ∈ E,

α if (x, y) ∈ E and (y, x) /∈ E,

α2 if (x, y) /∈ E and (y, x) ∈ E

for all x, y ∈ V.

This matrix is not symmetric like the undirected adjacency matrix, however it is σ-symmetric. This means that
there is a function σ, such that for any elementAxy it holds thatAyx = σ(Axy). In this case we have that

σ(0) = 0,

σ(1) = 1,

σ(α) = α2, and

σ(α2) = α.

The cut-rank function is adapted accordingly to compute the rank on sub-matrices ofA inF4. This preserves
the symmetric and submodular properties. All other aspects are identical to regular rank-width. A nice property
of F4-rank-width is that since F4 is an extension of F2, any computation performed on purely the elements
0 and 1 is exactly the same as in F2. This means that a graph that is converted from undirected to directed
by introducing a bidirectional arc for every edge of the original graph will have an F4-rank-width that equals
the rank-width of the original graph [32, 35]. As computing matrix rank in a different field does not change the
possible range of values, the upper bound for rank-width shown in Theorem 3.2.1 still holds for F4-rank-width.

Kanté and Rao [32] show that for various properties of regular rank-width similar properties also hold for
F4-rank-width. They show for example variants of local complementation, vertexminors and pivot minors. They
also show that, similar to regular rank-width, for any fixed k there is anO(n3) time algorithm that for an-vertex
graph either outputs a decomposition of width at most k or confirms that the F4-rank-width is greater than k.
There is also a similar relation between F4-rank-width and clique-width as for regular rank-width [32]. For any
directed graphG:

rwF4(G) ≤ cw(G) ≤ 2 · 4rwF4 (G) − 1.
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Chapter 4

Simulated annealing

In this chapter an overview will be given of the local search variant simulated annealing and an experiment is
discussed that determines if using adaptive cooling improves the performance of the algorithm.

4.1 Overview

Simulated annealing is a local search variant inspired by the cooling of materials, in particular the annealing
process in metallurgy [52]. The search process uses a temperature (energy) parameter that decreases over
time and influences the probability of accepting a worsening of the current solution. By allowing worsening
of the solution, the algorithm is able to escape from local minima. A higher temperature means more energy
and as suchmore randomness in the search process. By slowly decreasing the temperature the search is guided
towards a stable state. Theway inwhich the temperature is decreased is called the cooling schedule. In Algorithm
4.1 a simplified overview of simulated annealing is shown. For every temperatureQ iterations are performed.

Algorithm 4.1 Simplified overview of simulated annealing

input: T0 = initial temperature
Q = number of iterations for each temperature

1 bestScore← score; // Initialize bestScore with score of initial solution
2 T ← T0; // Initial temperature
3 while not end condition reached do
4 curQ← Q;
5 while curQ > 0 do // Perform Q iterations with the current temperature
6 oldScore← score;
7 randomly select operator; // According to probability distribution
8 perform operation and update score;

9 if score ≤ oldScore ∨ random() < e(oldScore−score)/T then
10 if score < bestScore then
11 bestScore← score;
12 store current solution as best solution;

13 else
14 undo operation and restore score;

15 curQ← curQ− 1;

16 compute a new value for T ; // Depends on cooling schedule

By increasing this value a larger number of permutations is explored before cooling down, which could lead
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to better results, but might also increase the time it takes to find a good solution. The end condition for the
algorithm could be that the temperature becomes smaller than a certain value, but it is also possible to use a
time limit, a maximum number of iterations or a combination of conditions. In the algorithm we chose to use a
minimum temperature of 0.05 in combination with a configurable time limit.

The search process always starts with an initial solution which is permuted during the search process. In
the algorithm we used a random construction as shown in Figure 3.3 on page 8 as initial decomposition. This
ensures the initial width is at most ⌈n/3⌉ with n the number vertices of the input graph. This bound also holds
for F4-rank-width and maximum matching-width.

4.2 Cooling

Over time various cooling schedules for simulated annealing have been proposed, such as [52, 1, 37]

• Linear Ti = Ti−1 − β, with β a constant,

• Exponential Ti = α · Ti−1, with α ∈ [0, 1] a constant, and

• Logarithmic Ti = T0/ log(i+ 10).

In these schedules Ti denotes the temperature after cooling i times, and T0 denotes the initial temperature.
More complex schedules are also used sometimes. Theoretically the logarithmic cooling schedule can be shown
to asymptotically converge to the global optimum [52, 1, 37], but as this schedule converges very slowly it is
usually not practically applicable. In practice the exponential schedule is the most widely used, and therefore
also the one that was chosen to be used for rank-width. With the exponential schedule the cooling rate decreases
over time. For α a value of 0.95 was chosen, which appeared to work well.

4.2.1 Adaptive cooling

Additionally, various variants of adaptive cooling exist. This technique adjusts the cooling based on the progress
of the search process to improve the ability to escape from local minima. The variant that was tried for rank-
width is described in [1] and increases the temperature based on the difference between the score of the best
solution found so far and the score of the current solution. The idea behind this is to allow the algorithm to
make some larger changes to the solution when it has diverged a lot from the best found so far. Let T ′

i be the
temperature after applying adaptive cooling. It holds that Ti ≤ T ′

i ≤ 2 · Ti [1].

T ′
i = Ti ·

(
1 +

score− bestScore

score

)

4.2.1.1 Performance

An experiment was performed to see if adaptive cooling improves the performance of the algorithm. The exper-
iment was performed with a T0 (initial temperature) of 25 and aQ (iterations before cooling) of 25600, without
the thresholding heuristic (Section 5.2), but with caching (Section 5.5), the square sum score function (Section
5.1) and all operators (Chapter 6). The same initial solution was used each time. A laptop was used with an
Intel® Core™ i7-6700HQ processor with a base frequency of 2.60 GHz and 8 GB ram. For each configuration, the
program was run 10 times for 60 seconds. Table 4.1 shows for each configuration the average achieved width.

From the results it appears that using adaptive cooling has little impact on the performance of the algorithm.
For some graphs adaptive seemed to perform a bit better and for others it made the results slightly worse, but
in both cases the differences were rather small. As such on average there does not seem to be much of an
advantage of using adaptive cooling. This can also be seen in Figure 4.1which shows for each graph a comparison
between the best obtained result without (blue) and with adaptive cooling (red).
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average width
graph vertices edges normal adaptive
1kw4 67 672 19.3 19.1
celar08 458 1655 14.5 13.5
fpsol2.i.1 496 11654 8.8 9.7
mulsol.i.1 197 3925 4.8 5.3
myciel7 191 2360 42.7 41.7

Table 4.1 Results of the adaptive cooling experiment showing for each configuration the average achieved width.
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Figure 4.1 Width improvement over time in the adaptive cooling experiment. For each of the graphs the best result
without (blue) and with (red) adaptive cooling is shown.
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Chapter 5

Score

In this chapter we will look at what kind of score (objective) function performs well, which techniques are used
to compute the score and how it can be done in an efficient way. This involves computing the partition of each
edge and the corresponding width and combining that into a score value.

5.1 Score function

As the score function plays an important role in the performance of the algorithm an attempt was made to try
different functions to see what works best. A major issue in the comparison between the different functions is
that when the score values change, the simulated annealing temperature should also be changed, which makes
it difficult to do an objective comparison.

The easiest observation that could bedone is that using just the decompositionwidth as score gives very poor
results, nomatter the choice of temperature. The reason for this is that it causesmany different decompositions
to have the same score. This is also mentioned by Overwijk et al. [49] for their local search algorithm for branch-
width. In practice there are usually various smaller changes that need to be made before the width can actually
be decreased, but since such small changes will not change the score the algorithm will blindly accept any small
change without knowing anything about its quality. In general we could say that decreasing the width of any
edge is likely a good improvement, especially when it is an edge with a high width. Much better results can be
obtained when this heuristic is incorporated into the score function by including edge widths.

5.1.1 Comparison

To see if penalizing high width edges more helps in the performance of the algorithm, an experiment was done
that compares two score functions. LetG = (VG, EG) be an undirected n-vertex graph and let the pair (T, L)
be a rank-decomposition with T = (VT , ET ) a subcubic tree and L a bijection from VG to the leaves of T .
Furthermore let ce be the cut-rank that corresponds to edge e ∈ ET of the decomposition tree T and let
w = max

e∈ET

ce be the width of the decomposition. The following two score functions were compared:

• Linear sum
∑
e∈ET

ce + w · n, • Square sum
∑
e∈ET

ce
2 + w2 · n.

Asmentioned in the previous section, when adjusting the score values the initial temperature (T0) also needs
to be changed since together they determine the amount of randomness. For this reason different initial tem-
peratures were also evaluated. The experiment was performed with a Q (iterations before cooling) of 25600,
without adaptive cooling (Section 4.2) and without the thresholding heuristic (Section 5.2), but with caching (Sec-
tion 5.5) and all operators (Chapter 6). The same initial solution was used each time. A laptop was used with an
Intel® Core™ i7-6700HQ processor with a base frequency of 2.60 GHz and 8 GB ram. For each configuration, the
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programwas run 5 times for 120 seconds. Note that at this point, especially with higher initial temperatures, the
algorithm has not always stopped finding improvements yet. From these 5 the best result (smallest width, or if
equal best time) is shown in Table 5.1. Because of the randomness in the search process the results are only an
indication of a possible outcome.

best width and corresponding time
celar08 fpsol2.i.1 mulsol.i.1

458 vertices, 1655 edges 496 vertices, 11654 edges 197 vertices, 3925 edges
T0 linear square linear square linear square

0.25 11 74.8 s 10 77.7 s 4 100.2 s 4 54.2 s 3 2.8 s 3 2.4 s
0.50 10 101.0 s 10 63.2 s 4 77.8 s 4 40.3 s 3 3.2 s 3 2.2 s
1.00 11 63.6 s 11 30.3 s 4 76.0 s 4 34.7 s 3 3.8 s 3 2.1 s
7.00 29 117.9 s 10 104.4 s 18 92.4 s 4 75.1 s 4 91.4 s 3 15.9 s

25.00 35 106.4 s 11 88.8 s 20 119.4 s 6 109.3 s 8 112.5 s 3 98.0 s
100.00 42 115.6 s 19 87.3 s 25 105.3 s 13 114.2 s 10 115.9 s 6 86.7 s
250.00 72 118.7 s 27 110.0 s 39 113.1 s 17 80.4 s 15 116.8 s 7 99.0 s

Table 5.1 Results of the score function experiment showing for each configuration the best achieved width and the
time it took respectively. T0 is the initial temperature.

The results seem to indicate that the square sum function has an advantage over the linear sum function,
even when tuning the initial temperature. It also seems that setting the initial temperature too low makes the
algorithm take more time before the best solution is found, possibly because it becomes harder to escape from
local minima, but setting it too high will make the algorithm take a lot more time to find a good solution. From
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Figure 5.1 Width improvement over time for the best linear result (blue) and the best square result (red) for each of
the three graphs in the score function experiment.

the graphs in Figure 5.1 it appears that using the square sum function makes the algorithm converge quicker to
a lower width than when using the linear sum function.

5.2 Thresholding heuristic

An interesting question, especially for larger graphs, is if we can manage to compute the score without requiring
the cut-rank of every edge. We can make the following observations:

1. When improvements are made to the current decomposition, the width will usually not decrease by more
than a few units at a time.

2. The most important improvements of a decomposition involve the edges with a high width, as this can
eventually lead to a decrease in the width of the decomposition.
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3. An upper bound for the cut-rank is the upper bound of the rank of the adjacency matrix: the minimum
over the number of rows and the number of columns.

Based on this we can create a heuristic. We choose a threshold value t, slightly below the width of the old
decomposition. Whenever the upper bound for the width of an edge is at most t, this upper bound will be used
instead of the actual width. As long as the computed width is lower than the old width, or if the computed width
is equal to t, the computation will be repeated with a lower value for t such that eventually the correct width
is found and the score will have been computed with the threshold value corresponding to that width (for fair
comparison with further changes and partial score updates). Because of point 1, the probability of having to run
the computation multiple times is low, and with the cache as described in Section 5.5 previously computed cut-
rank values can be reused. In the algorithm a threshold delta∆ is used, such that t = max(oldWidth−∆, 1).
Note that even when the heuristic is technically disabled, t = 1 is still used because rank-width of 0 can be
checked before starting the algorithm, and as such it is assumed that the computed width will be at least 1. This
prevents having to compute the width of all edges that connect to a leaf, as we assume those edges will have a
width of 1.

The precision of the heuristic score (compared to without the heuristic) depends on the value of t and the
current width (or in the algorithm on the value of∆). The heuristic score will always be an upper bound for the
actual score. A disadvantage of this heuristic score is that for a part of the edges a change in width (below the
threshold) will not be reflected in the score which might cause more undesired changes.

Note that point 3 still holds for maximum matching-width, as the upper bound of the size of the maximum
matching is the size of the smallest partition side.

5.2.1 Performance

An experiment was performed to see if the heuristic is effective. A number of graphs with both lower and higher
amounts of vertices were used, in combination with four values for∆ and also without the heuristic. The exper-
iment was performed with a T0 (initial temperature) of 1 and aQ (iterations before cooling) of 25600, without
adaptive cooling (Section 4.2), but with caching (Section 5.5), the square sum score function (Section 5.1) and all
operators (Chapter 6). The same initial solution was used each time. A laptop was used with an Intel® Core™
i7-6700HQ processor with a base frequency of 2.60 GHz and 8 GB ram. For each configuration, the program was
run 10 times for 60 seconds. The average achieved width of the results is shown in Table 5.2. Note that because
of the randomness in the search process this is only an indication of a possible outcome.

average width
graph vertices edges ∆ = 2 ∆ = 5 ∆ = 10 ∆ = 20 without
celar08 458 1655 15.3 15.8 13.3 11.5 11.5
d1655.tsp 1655 4890 194.4 194.1 193.3 206.1 379.6
fpsol2.i.1 496 11654 15.8 16.0 11.0 4.4 4.2
myciel7 191 2360 43.6 46.0 45.7 44.2 44.4
queen8_12 96 2736 23.3 24.1 24.1 24.8 23.5
u1817.tsp 1817 5386 223.0 309.1 339.7 328.1 489.1

Table 5.2 Results of the thresholding heuristic experiment showing for each configuration the average achieved width.

From the results it appears that the heuristic is mainly effective for graphs with a larger number of vertices or
higher rank-width. For smaller graphs the heuristic often causes aworsening of the results. Since for large graphs
computing cut-rank takes much more time than for small graphs the amount of time saved by the heuristic is
also larger. This allows the algorithm to get further than it would have gotten without the heuristic. The heuristic
is also more effective for graphs with a high rank-width because the higher the width, the larger the amount
of edges that do not have to be computed. For smaller graphs where the time advantage is smaller and the
rank-width also often lower, the lower precision of the score values most likely makes the algorithm take worse

19



decisions than it would have without the heuristic, leading to degraded results. Figure 5.2 shows a comparison
of the width improvement over time with (red) and without the heuristic (blue).
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Figure5.2 Width improvement over time for the thresholding heuristic experiment. The graphs show the best achieved
result without the heuristic (blue) and with∆ = 2 (red).

5.3 Computing edge partitions

In order to compute the width of a branch-decomposition the leaf partition that belongs to each edge of the
decomposition needs to be computed. For this a depth-first search based algorithm can be used (see Algorithm
5.1). The depth-first order of traversal makes it possible to represent the partitions as a continuous interval in
an array that stores the leaves in the order they were visited. An arbitrary leaf is used as the root of the tree, and
the search is started from there. Each node is visited twice. Once before and once after exploring its children, to
obtain the start and end of the interval respectively. This is done using variable curId, which is initialized with
0 and is used to keep track of the encountered leaves. An example of the algorithm is shown in Figure 5.3.

When a node is visited for the first time (childrenDone = false) the start of its partition interval is set to
curId. Additionally if the node is a leaf, it is added to the leaves array and curId is increased. Then the node
itself is first pushed onto the stack again, but with childrenDone set to true and subsequently the children of
the current node are pushed.

The second time a node is visited (childrenDone = true) the end of its partition interval is set to curId−
1. Then for each of the edges from the node to a child the partition can be reported. The partition interval of a
node always corresponds to the edge that connects to its parent.

For a decomposition tree withn nodes computing the partition intervals takesO(n) time, since each node is
visited exactly twice. If for reporting the partitions all elements of the partition need to be iterated, the complexity
grows toO(n2) time. The algorithm takesO(n) space to store the stack and the leaves array.

Because the ids assigned to the leaves change with changes to the decomposition, in the practical imple-
mentation of the algorithm they are remapped to stable ids and then stored as bits in a bit vector. Incremental
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Algorithm 5.1 Computing edge partitions using depth-first search

input : T = decomposition tree
output: All edge partitions of the decomposition

1 stack ←makeStack(); // Empty stack for (node, parent, childrenDone) tuples
2 push(stack, (leaves(T )[0], null, false)); // Push an arbitrary leaf as root
3 curId← 0;
4 while not empty(stack) do
5 (node, parent, childrenDone)← pop(stack);
6 if childrenDone then
7 node.endId← curId− 1;
8 for neigh ∈ neighbors(node) do // Report partitions of node to child edges
9 if neigh = parent then
10 continue

11 report partition leaves[neigh.startId . . . neigh.endId];

12 else
13 node.startId← curId;
14 if isLeaf(node) then
15 leaves[curId]← node;
16 curId← curId+ 1;

17 push(stack, (node, parent, true)); // Revisit node after children are done
18 for neigh ∈ neighbors(node) do // Push children
19 if neigh = parent then
20 continue

21 push(stack, (neigh, node, false));
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Figure 5.3 Example of computing edge partitions using Algorithm 5.1. The root of the tree is chosen to be v1.
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changes to the vector are made whenever possible to save time. When for example the current vector repre-
sents the partition [5 . . . 8] and the new partition to report is [3 . . . 8] only the bits that correspond to 3 and 4
have to be additionally set. Note that because of the remapping the bits belonging to 3 and 4 do not have to be
adjacent.

5.4 Matrix rank

After obtaining the partition belonging to an edge the cut-rank needs to be calculated, which means computing
the rank of an adjacency matrix. As described in Section 2.3, there exist various algorithms to do this. Because
the size of the matrix depends on the partition, there should either be a good way to decide which algorithm
to use in which case, or an algorithm should be used that on average performs well in most cases. Since the
matrix rank computations are completely independent from each other, the cut-rank of multiple edges can be
computed in parallel.

5.4.1 Gaussian elimination

As described in Section 2.3 Gaussian elimination is the classic way of computing the rank of a matrix. Algorithm
5.2 shows the basic algorithm for F2 matrices and in Algorithm 5.3 the few changes needed for F4 matrices
are shown. This difference is because F2 only has two elements and therefore multiplication of pivot rows is
meaningless. The rest of this section describes the techniques used for the practical implementation of the basic
algorithm.

5.4.1.1 F2 bit vector

Since the only operation performed for Gaussian elimination inF2 is addition, which is identical to xor operations
on the numbers 0 and 1, a natural and efficient way to represent the rows of the matrix is using bit vectors.
Modern processors can perform xor operations on SIMD vectors of up to 256 or even 512 bits, which can make
a large difference in performance. Since we know that all elements to the left of the pivot are zero, this can be
used to speed up the adding process by skipping (almost) all those zeros.

Because operations on columns (such as searching for a 1) aremuch slower than operations on rows (adding
them), the adjacency matrix belonging to a partition is constructed such that the number of rows is minimized.
That way vectorization can be used asmuch as possible. Instead of completely constructing new bit vectors from
scratch that omit columns that are not on that side of the partition, the algorithm instead just ignores those
columns so that the bit vectors from the adjacency matrix of the entire graph can simply be used. As a result
of this the vectors are at most twice as big as they would have been otherwise (when the partition represents
half of the graph on each side), however because of the SIMD math and the fact that the partition is usually not
balanced this does not make a big difference in practice compared to the time saved by not constructing new bit
vectors.

5.4.1.2 F4 bit vector

Bit vectors can also beused forGaussian elimination inF4 by applying some tricks. Twobits are used to represent
each element in the vector (see Table 5.3).

0 → 00
1 → 01
α → 10
α2 → 11

Table 5.3 Representation of F4 elements using bits. The left bit is the most significant bit (MSB).
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Algorithm 5.2 Computing the rank of a F2 matrix using Gaussian elimination

input :M = F2 matrix of sizem× n
output: rank(M)

1 curRow ← 0;
2 curCol← 0;
3 while curRow < m ∧ curCol < n do
4 success← false;
5 for i = curRow . . .m− 1 do // Find a non‐zero in the current column
6 if M [i][curCol] ̸= 0 then
7 swap(M [i],M [curRow]);
8 success← true;
9 break

10 if not success then // All zeros column
11 curCol← curCol + 1;
12 continue

13 for i = curRow + 1 . . .m− 1 do // Clear the rest of the current column
14 if M [i][curCol] ̸= 0 then
15 M [i]←M [i] +M [curRow];

16 curRow ← curRow + 1;
17 curCol← curCol + 1;

18 return curRow; // curRow is now equal to the rank of M

Algorithm 5.3 Changes needed to Algorithm 5.2 for F4 matrices (replaces lines 13-15)

1 pivot←M [curRow][curCol];
2 for i = curRow + 1 . . .m− 1 do // Clear the rest of the current column
3 if M [i][curCol] ̸= 0 then
4 factor ←M [i][curCol]/pivot;

// Multiplying the pivot row by factor turns pivot into M[i][curCol]
// Adding to row i then yields a 0, since x + x = 0 in F4

5 M [i]←M [i] +M [curRow] ∗ factor;
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Because there are more than two elements in F4 addition alone no longer suffices and multiplication and
division operations need to be used as well (see Algorithm 5.3). As can be seen in Table 5.4, F4 addition is still
an xor operation when bit notation is used. Note that subtraction is identical to addition.

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α
α α α2 0 1
α2 α2 α 1 0

+ 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

Table 5.4 Addition in F4 shown with mathematical and bit notation. With bits the operation is identical to xor.

Multiplication

Multiplication in F4 (see Table 5.5) is not as trivial to perform using bit vectors. When multiplying each element

× 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 1
α2 0 α2 1 α

× 00 01 10 11
00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

Table 5.5 Multiplication in F4 shown with mathematical and bit notation.

of a vector by the same constant a technique based on the Russian peasant multiplication method can be used,
as was implemented in the moepgf finite field arithmetic library1 for example. This method is based on the fact
that it holds that

a · b = 2a · (b/2).

When using integer numbers and bit shifts (denoted by≪ and≫ for logical left and right shift respectively), it
can be written as

a · b =

{
(a≪ 1) · (b≫ 1) if b is even,

(a≪ 1) · (b≫ 1) + a if b is odd.

By applying this equation recursively, the multiplication can be entirely written using bit shifts and addition:

f(a, b) =


0 if a = 0 ∨ b = 0,

f(a≪ 1, b≫ 1) if b is even,

f(a≪ 1, b≫ 1) + a if b is odd.

Sincewe areworking inF4, the numbersa and bweuse can have atmost 2 bits. As such the recursion can be fully
unrolled. To get rid of the odd/even case distinction we can use bit operations and multiply by the appropriate
bit. For the F4 formula y = c · x we get

c2 =

{
(c≪ 1) xor 7 if c ≥ 2, (polynomial reduction)

c≪ 1 otherwise,

y = ((x& 1) · c) xor ((x≫ 1) · c2).

Note that the polynomial of the field F4 isX2 +X + 1, which is equivalent to the bit representation 111= 7.
Since the cases for c = 0 and c = 1 are trivial (all zeros and no change, respectively), these can be handled
separately and the case distinction for c2 can simply be replaced by the case that c ≥ 2. It should not be
difficult to see that this equation can easily be adapted to work on numbers packed into a vector since none of

1https://github.com/moepinet/libmoepgf/blob/master/src/gf4.c
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the operations can cause overflows as long as proper bit masks are applied. For 16 elements of F4 packed into
a 32 bit x the equation becomes for example

y = ((x& 0x55555555) · c) xor (((x≫ 1) & 0x55555555) · c2).

In this equation 0x55555555 is the hexadecimal representation of the bitmask01010101010101010101010101010101.

Division

For Gaussian elimination in F4 division (see Table 5.6) is only performed on scalars and is therefore trivial to
implement, for example using a lookup table.

÷ 1 α α2

0 0 0 0
1 1 α2 α
α α 1 α2

α2 α2 α 1

÷ 01 10 11
00 00 00 00
01 01 11 10
10 10 01 11
11 11 10 01

Table 5.6 Division in F4 shown with mathematical and bit notation. Left is divided by top. Division by 0 is undefined.

5.4.1.3 Disjoint set

For some very sparse F2 matrices it might be advantageous to store the indices of the ones of every row as a
disjoint set instead of a bit vector to prevent storing many zeros. For this specific use case using a sorted array
as data structure suffices. The operations that need to be performed consist of getting the smallest element
(if it exists) and computing the symmetric difference (similar to xor for elements of a set) between two arrays.
The first operation costs O(1) time since the array is sorted such that index 0 is always the smallest element.
The second operation is performed like a merge in the merge sort algorithm, but with the special case that an
element is skipped if it is in both arrays. This costs O(m + n) time with m and n the length of the first and
second array respectively. With this representation it turned out to be beneficial to not clear the rest of a column
(lines 13-15 in Algorithm 5.2) immediately after finding a pivot, but instead storing which row belongs to each
column and only clearing the leading elements (all elements smaller than curCol) of the row when it is actually
going to be used (between line 5 and 6).

5.4.2 GF2 toolkit

As described in Section 2.3 GF2 toolkit2 is a library for fast arithmetic with dense matrices in F2, and it also
supports computing the rank of a matrix. The library supports SIMD, but only 128 bit vectors.

5.4.3 Comparison

An experiment was done to see if it would be profitable to use one algorithm or the other based on the type of
matrix, for example by looking at its size or density. The three algorithms, Gaussian elimination with bit vectors,
Gaussian elimination with disjoint sets and GF2 toolkit, were tested with adjacency matrices that correspond to
random partitions of random graphs with all combinations of the following properties:

• 8 vertex counts: 50, 250, 400, 800, 1500, 4000, 10000, 30000,

• 5 average degrees: 1, 3, 5, 10, 20,

• 5 partition fractions: 0.05, 0.125, 0.25, 0.33, 0.5.

2https://github.com/ebertolazzi/GF2toolkit
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Note that for example a partition fraction of 0.25 means that one side of the partition has a quarter of the
vertices and the other side the rest. The benchmark was performed on a laptop with an Intel® Core™ i7-
6700HQ processor with a base frequency of 2.60 GHz and 8 GB ram. BenchmarkDotNet3 was used to perform
the benchmark, with settings SimpleJob(RunStrategy.Throughput, launchCount: 1, warmupCount:
5, targetCount: 5).
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Figure 5.4 Logarithmic scatter plot showing for the three algorithms the average computation time for the tested
matrices, sorted on non-zero element count.

In Figure 5.4 a logarithmic scatter plot is shown comparing average computation time for all three algorithms
with the number of non-zero elements in the matrix. There is a clear correlation visible between non-zero ele-
ment count and computation time. For lower amounts of non-zero elements GF2 toolkit performs considerably
worse than the two Gaussian elimination algorithms, but for very high numbers it appears to perform better.
This is most likely because GF2 toolkit is targeted at very dense matrices. When it comes to the two Gaussian
elimination algorithms, the bit array variant shows a larger variation in computation time for similar non-zero
element counts than the disjoint set variant, but the latter is slower on average, especially for high non-zero
element counts. Overall there is not a very clear winner for specific ranges of non-zero element counts, and as
such we can conclude that the non-zero element count (at least on its own) is not very usable to decide which
algorithm to use.

Another comparison that could bemade was with the size of the smallest side of the partition. This is shown
in the logarithmic scatter plot in Figure 5.5. Again a clear correlation can be seen. The results are largely similar to
the comparison with non-zero element count. GF2 toolkit has a high start up cost, but has a better performance
for very large sizes. On the other hand, disjoint set Gaussian elimination performs quite poor on average as the
size grows (although for some large, most likely very sparse, graphs it is also the fastest). Bit array Gaussian
elimination appears to perform quite good over the whole range. Overall the size of the smallest partition side
cannot predict very precisely which algorithm should be used, although GF2 toolkit could be a good choice for
the very large sizes.

If one algorithm has to be chosen to be used overall, the bit array Gaussian elimination algorithm seems to
be a good choice. This is also what has been used in the program.

3https://benchmarkdotnet.org/
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Figure 5.5 Logarithmic scatter plot showing for the three algorithms the average computation time for the tested
matrices, sorted on the size of the smallest partition side.

5.5 Cut-rank cache

Since computing the cut-rank of a partition is quite an expensive operation, the number of such computations
should preferably be minimized. As the width of an edge depends solely on the partition, a cache can be used
that stores the cut-rank of the most recently encountered partitions (least recently used replacement policy).
In this way recently computed values can be reused when only small changes are made to the decomposition.
Because the cache uses partitions (represented by bit vectors) as keys, a cache lookup takes O(n) time, with
n the number of vertices in the graph. This is because a hash of the partition has to be calculated in order to
perform the lookup, and when a matching hash is found a comparison is done to ensure the right key is actually
found, and not a hash collision. This is still much faster than the time it would take to compute the cut-rank.

5.5.1 Performance

An experiment were performed to evaluate the performance of the cache for graphs of differing sizes and a num-
ber of cache sizes. The experiment was performed with a T0 (initial temperature) of 1 and aQ (iterations before
cooling) of 25600, without adaptive cooling (Section 4.2), without the thresholding heuristic (Section 5.2), with the
square sum score function (Section 5.1) and all operators (Chapter 6). A laptop was used with an Intel® Core™
i7-6700HQ processor with a base frequency of 2.60 GHz and 8 GB ram. For each configuration, the program
was run once for 60 seconds. The results are shown in Figure 5.6, 5.7 and 5.8 for cache sizes of 512, 16384 and
1048576 respectively. They show, in steps of 5%, in howmany iterations of the algorithm a cache hit percentage
in that range was achieved. A higher percentage means more hits, and thus a faster score computation.

From the results it becomes clear that high hit rates can be achieved, however to get good hit rates the cache
should not be too small. Most likely at least as large as the number of vertices in the graph. Higher cache sizes
do lead to better hit rates, but the advantage quickly becomes smaller.
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Figure 5.6 Histograms showing for a number of graphs the cache hit rate in steps of 5% for a cache size of 512.
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Figure 5.7 Histograms showing for a number of graphs the cache hit rate in steps of 5% for a cache size of 16384.
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Figure 5.8 Histograms showing for a number of graphs the cache hit rate in steps of 5% for a cache size of 1048576.
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Chapter 6

Operators

In this chapter the various operators used in the algorithm will be discussed and their contribution to the per-
formance of the algorithm will be discussed.

6.1 Overview

In total three different operators were implemented: move subtree, leaf swap and local swap. The details of each
of the operators will be explained in the following subsections. The operator probabilities were experimentally
determined and were set to 0.5 for move subtree, 0.1 for leaf swap and 0.4 for local swap. Although partially
updating the score is possible for all three of the operators, it was only implemented for the local swap operator,
because for themove subtree and leaf swap operators the partition andwidth that belong to each decomposition
edge would have to be stored and maintained which makes the program more complex and adds overhead. As
such it was questionable if the effort of implementing it would really result in a practical improvement.

6.1.1 Move subtree

The move subtree operator is based on the operator used by Overwijk et al. [49] in their local search algorithm
for branch-width. In Figure 6.1 an example of applying the operator is shown. Two random nodes a and b are
chosen such that they are not adjacent and have no common neighbor. The path P between a and b is then
computed to find a′ and b′ which are the neighbors of respectively a and b onP . Finally the two neighbors of a′

other than a are connected together and the edge between b and b′ is split in two parts that get connected to a′.
The edges aa′ and bb′ (before applying the operator) correspond respectively to the edges s and t in the paper
of Overwijk et al. [49]. They show that the operator is complete, as for any two branch-decompositions there
exists a sequence of move operations that will transform the one into the other. Since a branch-decomposition
is just a subcubic tree the proof also applies to rank-decompositions.

6.1.2 Leaf swap

The leaf swap operator (see Figure 6.2) takes two unique random leaves of the decomposition and swaps them.
This can then influence the width of all edges on the path between the two leaves, since those have the two
leaves on opposite sides of their partition.

6.1.3 Local swap

The local swap operator starts by taking one random internal (non leaf) node of the decomposition which we will
call c (center). Then two neighbors of c are randomly chosen, but such that at least one of them is an internal
node. Of these a will be any node and b will be the internal node. Finally a neighbor of b (not equal to c) is also
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randomly chosen and let it be d. Now the nodes a and d are swapped such that a becomes a neighbor of b and
d becomes a neighbor of c. An example of this is shown in Figure 6.3. The advantage of this operator is that it
makes only small changes to the decomposition. Only the width of the edge between b and c can change. This
also makes this operator very suited for performing partial score updates.

6.2 Performance

Since the move subtree operator is proven to be complete, an interesting question is if the other two operators
actually contribute something to the search process. For this an experiment was done with disabling the leaf
swap and/or the local swap operator to see how it influences the results for a number of graphs. The operator
probabilities were properly normalized to account for disabling operators. The experiment was performed with
a Q (iterations before cooling) of 25600, without adaptive cooling (Section 4.2) and without the thresholding
heuristic (Section 5.2), but with caching (Section 5.5) and with the square sum score function (Section 5.1). Both
a T0 (initial temperature) of 1 and 25 were tested. The same initial solution was used each time. A laptop was
used with an Intel® Core™ i7-6700HQ processor with a base frequency of 2.60 GHz and 8 GB ram. For each
configuration, the program was run 10 times for 60 seconds. The average achieved width of the results is shown
in Table 6.1.

average width
T0 = 1 T0 = 25

graph vertices edges neither local leaf both neither local leaf both
BN_15 120 637 35.2 35.8 30.0 30.3 30.9 31.1 28.8 28.9
celar08 458 1655 13.9 12.0 15.3 11.9 15.7 13.7 16.8 14.1
d1655.tsp 1655 4890 423.8 379.3 457.5 376.6 438.5 354.9 423.8 375.9
fpsol2.i.1 496 11654 7.4 4.4 7.7 4.4 10.3 8.5 9.7 8.6
mulsol.i.1 197 3925 3.0 3.0 3.0 3.0 5.1 4.9 5.1 4.8
myciel7 191 2360 57.2 57.6 44.1 46.2 53.7 51.5 41.6 43.2

Table 6.1 Results of the operator experiment showing for every configuration the average achieved width (neither =
only move subtree, local = move subtree + local swap, leaf = move subtree + leaf swap and both = all three operators).
T0 is the initial temperature.

From the results it appears that not using additional operators at all leads to the worst results. Although for
some graphs the leaf swap operator seems to lead to a slight worsening of the score, for other graphs it causes
a major improvement. The same holds for the local swap operator. On average both operators thus contribute
to better results, but depending on the graph one or the other might be most effective. We conclude that in
general it would be the best to enable both operators.
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Chapter 7

Benchmarking

In this chapter the results of the final benchmarks of the algorithm will be discussed. The configuration for
the benchmarks was chosen based on the results of the various experiments that were discussed in the pre-
vious chapters. To show that the algorithm can not only be used for rank-width but also for other branch-
decomposition based width parameters, F4-rank-width [34, 33] and maximum matching-width [54] were ad-
ditionally tested. Of these F4-rank-width is a width parameter for directed graphs, which is interesting as not
much research seems to have been done for practically computing directedwidth parameters. This however also
means that there are no results to compare to. A table with all benchmarking results can be found in Appendix
B.

For the undirected parameters graphs from TreewidthLIB [53] 1 were used. Those graphs are often used
in benchmarks for width parameters and as such upper bounds for some width parameters are known for a
large part of them. The collection was also used by Beyß [6, 7] for benchmarking his rank-width approxima-
tion algorithm, which means we also have rank-width upper bounds to compare to. From this collection 218
small/medium (fewer than 1000 vertices) graphs were used (Table B.1) and 11 large graphs (Table B.2). Bench-
marking was also done for 10 square grid graphs, which are proven [31] to have an exact rank-width of n − 1
for a grid of size n× n.

For F4-rank-width 18 small/medium graphs from a collection of directed graphs on GitHub2 were used (Ta-
ble B.3). Unfortunately there were not really more sets of directed graphs of reasonable size available to be
used for benchmarking. As there were no bounds available to compare our results to, the graphs were addi-
tionally converted from directed to undirected to approximate their rank-width and maximum matching-width.
This makes it possible to see to some extent what kind of impact the directional information has on the width.
Additionally an experiment was done with tournaments, which are complete graphs in which each edge has one
of the two possible directions (not both).

In all benchmarking experiments the following settings were used: aQ (iterations before cooling) of 25600, a
T0 (initial temperature) of 5, no adaptive cooling (Section 4.2), a cache of size 16384 (Section 5.5), the square sum
score function (Section 5.1) and all operators (Chapter 6). Only for the large graphs with at least 1000 vertices the
thresholding heuristic (Section 5.2) was used, with a threshold delta∆ = 5. Small and medium graphs (fewer
than 1000 vertices) were run with a time limit of 3 minutes, large graphs with a time limit of 5 minutes. The
benchmarks were performed on a Linux PC with an Intel® Core™ i5-9500 processor at 3 GHz and 16 GB of ram
(different from the experiments in the previous chapters). Each graph was run 10 times, and the best achieved
result was reported in Table B.1, B.2 and B.3.

1Note that the database is no longer available. A backup can be found here: https://github.com/emnh/boolwidth‐data.
2https://github.com/alidasdan/graph‐benchmarks
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7.1 Rank-width

The results of the rank-width benchmarks can be found in Table B.1 and B.2. Overall it seems the algorithm
performed quite good for the small/medium graphs, and poorer for the large graphs. The reason for this is
likely the complexity of matrix rank computations and the increasing size of the search space for large graphs.
In Figure 7.1 a comparison is made between the graph vertex count and the best achieved rank-width upper
bound. It can be seen that even for higher vertex counts a low rank-width is possible, but some graphs also
appear to have a rank-width near the upper bound (Theorem 3.2.1).
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Figure 7.1 Comparison between the graph vertex count and the best rank-width upper bound we achieved for the
small/medium graphs in Table B.1 (blue) and large graphs in Table B.2 (red). The red dashed line indicates the upper
bound from Theorem 3.2.1.

7.1.1 Comparison with Beyß

The tested graphs include almost all graphs that were tested by Beyß [6, 7]. For all of those graphs we managed
to find an equal or better rank-width upper bound, as can be seen in Figure 7.2. The more a point is to the right
of the red dashed line, the larger the improvement compared to the result of Beyß.

An interesting result is the value 4 that could be found for graph celar06, for which a decomposition is shown
in Figure 7.9. The results of Beyß [6, 7] show that a lower and an upper bound of 5 were found for this graph,
concluding that the exact rank-widthwould be 5, but this appears to be some sort of error. Semi-manual checking
of one of our obtained decompositions of width 4 did not reveal any inconsistencies, and given the results for
other graphs there is no reason to suspect an issuewith our program. For all other graphs for which an improved
upper bound was found the newly obtained result was never lower than Beyß lower bound. Assuming that the
rest of the lower bounds are correct, this means that for some more graphs the exact rank-width is known now:
celar02 (rw 3), miles250 (rw 5), oesoca+ (rw 6) and pr107.tsp (rw 6). Additionally we found that bcs03 has an exact
width of 1, as a width of 0 is only possible for graphs without edges. This graph was however not tested by Beyß.

Objectively comparing speed is difficult because of the vast difference in hardware used for benchmarking,
however it is interesting to note that Beyß writes: “The best run on fpsol2.i.1 however took over two hours to find
the decomposition and further two hours to finish.” [6], with the best run being the one that achieved a width of 8.
In our case the best of our 10 runs managed to find a decomposition of width 4 in just 31 seconds, and in most
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Figure 7.2 Comparison between the best rank-width upper bound of Beyß [6, 7] and the best rank-width upper bound
we achieved for the small/medium graphs in Table B.1.

other runs at least within 1 minute. It is unlikely that the difference between 2 hours and 31 seconds can only
be explained by faster hardware.

The difference in performance between the two algorithms is likely because of the better search algorithm,
simulated annealing, which helps in escaping from local minima, and better operators. It seems that Beyß algo-
rithm does not have a complete global operator like our move subtree operator, which plays an important role
in the performance of our algorithm.

7.1.2 Comparison with other width parameters

In Figure 7.3 a comparisonwasmadewith the best known tree-width upper boundof graphs. For all small/medium
graphs a rank-width upper bound was found less than or equal to the best known tree-width upper bound. For
the large graphs the algorithm performed considerably worse. A similar thing can be seen when looking at the
graphs with a known branch-width upper bound (Figure 7.4). The best rank-width upper bound we achieved
is however not always less than or equal to the best known branch-width upper bound for the small/medium
graphs. Nevertheless is it interesting to see that on average the small/medium graphs perform according to the
theoretical bounds. Branch-width appears to be closer to rank-width than tree-width. This is not surprising as it
holds [50] that for an undirected graphG with branch-width brw(G) and tree-width tw(G)

max(brw(G), 1) ≤ tw(G) + 1.

7.1.3 Square grids

Some benchmarking was also done for n× n grids. They are useful because their exact rank-width was proven
[31] to be n − 1. The same configuration was used as for the small/medium graphs. The results are shown in
Table 7.1. For the grids of size 3x3, 4x4, 5x5 and 6x6 the exact rank-width was found, and for the grids of size
7x7, 10x10, 15x15, 20x20 and 25x25 the achieved width was one higher than the optimum. The grid of 30x30
performed considerably worse with an achieved width 9 higher than the optimum, presumably because of the
large size. It is interesting that already from a size of 7x7 the optimum is not longer found. A similar thing could
be seen in the results of Beyß [6].
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Rank-width and tree-width

Figure 7.3 Comparison between the best known tree-width upper bound and the best rank-width upper bound we
achieved for the small/medium graphs in Table B.1 (blue) and large graphs in Table B.2 (red).
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Figure 7.4 Comparison between the best known branch-width upper bound and the best rank-width upper bound we
achieved for the small/medium graphs in Table B.1 (blue) and large graphs in Table B.2 (red).
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grid vertices edges rw result time
3x3 9 12 2 2 < 0.1 s
4x4 16 24 3 3 < 0.1 s
5x5 25 40 4 4 < 0.1 s
6x6 36 60 5 5 0.2 s
7x7 49 84 6 7 0.1 s

10x10 100 180 9 10 0.2 s
15x15 225 420 14 15 2.1 s
20x20 400 760 19 20 14.7 s
25x25 625 1200 24 25 60.3 s
30x30 900 1740 29 38 165.2 s

Table 7.1 Benchmarking results for n×n grids showing the best achieved rank-width upper bound and the best time
until a decomposition of that width was found.

7.1.4 Randomness

In Figure B.1 andB.2 an overview can be seen of the achieved rank-width upper bounds during all 10 runs for each
tested graph. The maximum difference between the best and worst obtained result is 21 for the small/medium
graphs and 56 for the large graphs, and the average difference is 2 for the small/medium graphs and 41 for the
large graphs. Especially the average of 2 seems to be a good result. This means that on average it is not needed
to do a lot of runs to get a good result. Since 10 runs is a rather small amount to say something meaningful
about the randomness of the algorithm, the program was additionally run 500 times for 4 different graphs to
see more in detail how much the results vary between runs. The results are shown in Figure 7.5.

For celar08 and the 15x15 grid better results have a higher probability of being found, but for myciel7 and
queen8_12 the results vary much more. For those latter two there was also a better result found than during
the 10 main benchmarking runs. It is interesting to note that Beyß [6] performed a similar experiment which
consisted of 1000 runs for the 15x15 grid. That experiment showed much more variation, with results ranging
from 15 to 28, with 20 being the most common. In our case we found a value of 15 in 499 of the 500 runs.
Interestingly neither Beyß nor our algorithm managed to find the optimal value of 14 for this graph despite the
large number of runs.

When it comes to the time it took before the best width decomposition was found there is a lot of variation
visible. For example the time to find a decomposition of width 10 for graph celar08 ranges all the way from 27 to
179 seconds (note that the time limit was 180 seconds). It is also interesting to see that the few times a value of
40 was found for myciel7 this was accomplished in less than 50 seconds, while some higher values sometimes
took around 150 seconds. Overall it appears that a longer runtime does mean that better results will also be
found, most likely because the decomposition was changed in such ways that it becomes difficult to get to a
much better solution. It would then be better to start from the beginning again. This was something that Beyß
[6] noticed as well.

7.2 F4-rank-width

For F4-rank-width there were no existing results or bounds in relation to other width parameters to compare
to, and therefore a comparison was made to the results for rank-width and maximummatching-width that were
obtained by converting the tested graphs to undirected. All these results are shown in Table B.3. For almost all
of the tested graphs the results for the three width parameters are quite similar. Only mm9a and mm9b have a
somewhat larger value for F4-rank-width compared to the two undirected parameters. Given the low number
and variety of graphs it is difficult to draw conclusions about the relation between the parameters, however given
the good results for rank-width andmaximummatching-width in their own benchmarks and the similarity of the
F4-rank-width results, we can say that the algorithm appears to perform similarly well for this width parameter.
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Figure 7.5 Histograms showing for a number of graphs the achieved rank-width upper bounds during 500 runs and
scatter plots showing the corresponding time for each run in seconds.

7.2.1 Tournaments

An experiment was done with random tournaments to get an idea of their F4-rank-width. Tournaments are
complete graphs where each edge has one of the two possible directions (no bidirectional edges). Because
all the structural information is in the edge directions, using a width parameter for undirected graphs would
make no sense. When using the regular rank-width on such a graph, for example, the width would always be
1, since it is just a complete graph. The experiment was performed by running the algorithm on 1000 random
tournaments with 100 vertices and 1000 random tournaments with 30 vertices. The same settings were used as
for the other F4-rank-width benchmarks, except that the time limit was set to 60 seconds, which was sufficient
for these graphs, and only a single run was done for each instance.

The results showed that for all 100 vertex tournaments a width of 34 (upper bound) was found. For the
30 vertex tournaments a width of 10 (upper bound) was found 44 times and for all other instances a width of
9 was found. From this we can say that it is likely that random tournaments have a high probability of having
an F4-rank-width near the upper bound of Theorem 3.2.1. However, tournaments in general do not need to
have a high F4-rank-width, as some informal tests with transitive tournaments (edge a → b and b → c imply
a → c) showed that these likely have a width of 1. The high width for random tournaments might be because
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the randomness makes it unlikely that for all edges of the decomposition the matrix rows are similar enough to
achieve a low rank. As smaller tournaments are less random, the probability of getting a lower width most likely
becomes higher as the size of the tournament decreases.

7.3 Maximummatching-width

Maximum matching-width was implemented in the program to show that the algorithm not only works for
(F4-)rank-width, but also for other branch-decomposition based width parameters. For computing maximum
bipartite matchings the Hopcroft–Karp algorithm [29] was used.

From the results it seems that the algorithm performs similarly good for maximum matching-width as it
does for rank-width. In Figure 7.6 a comparison between the best achieved maximum matching-width upper
bound and the graph vertex count is shown. It can be seen that just like for rank-width even graphs with a large
number of vertices can have a small maximum matching-width, and there are also graphs that have a width
near the upper bound of Theorem 3.2.1. It can also be seen that compared to rank-width (Figure 7.1) maximum
matching-width seems to be a bit more sensitive to the vertex count.
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Figure 7.6 Comparison between the graph vertex count and the best maximum matching-width upper bound we
achieved for the small/medium graphs in Table B.1 (blue) and large graphs in Table B.2 (red). The red dashed line
indicates the upper bound from Theorem 3.2.1.

7.3.1 Comparison with other width parameters

In Figure 7.7 and 7.8 the best achieved maximum matching-width upper bound is compared to the best known
tree-width upper bound and the best achieved rank-width upper bound respectively. Especially the comparison
with tree-width is interesting as there is both an upper and a lower bound for this relation. Note that because
we are comparing upper bounds the theoretical bounds are only an indication, and some results do indeed lay
outside the expected area. It is interesting to see however that for most of the graphs the achieved width is
somewhere in the middle between the upper and lower bound lines.

In the comparison with rank-width it can be seen that for many graphs rank-width and maximummatching-
width are quite close, however for some graphs the difference is much bigger. It is likely that compared to
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rank-width, maximum matching-width is more sensitive to dense graphs. After all, the more edges there are in
a graph, the more edges there will be between the two sides of a bipartition, and the less likely it becomes that a
maximum bipartite matching has a low value. For example, rank-width has a width of 1 for complete graphs of
size n, while for maximummatching-width this is ⌈n/3⌉ (upper bound) because there is an edge between every
pair of vertices in any bipartition.

7.3.2 Square grids

Unlike for rank-width, there is no exact maximummatching-width proven for square grid graphs, however based
on the relations with other width parameters such as rank-width and branch-width it can be shown [54] that for
a n× n grid graphG

n− 1 ≤ mmw(G) ≤ n.

For the benchmarking the same configuration was used as for the small/medium graphs, and the results are
shown in Table 7.2. From the results it seems likely that the maximum matching-width of a n× n grid is n.

grid vertices edges result time
3x3 9 12 3 < 0.1 s
4x4 16 24 4 < 0.1 s
5x5 25 4 5 < 0.1 s
6x6 36 60 6 < 0.1 s
7x7 49 84 7 0.1 s

10x10 100 180 10 0.3 s
15x15 225 420 15 2.9 s
20x20 400 760 20 20.6 s
25x25 625 1200 25 78.3 s
30x30 900 1740 30 144.0 s

Table 7.2 Benchmarking results for n× n grids showing the best achieved maximum matching-width upper bound
and the best time until a decomposition of that width was found.
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Figure 7.7 Comparison between the best known tree-width upper bound and the best maximum matching-width
upper bound we achieved for the small/medium graphs in Table B.1 (blue) and the large graphs in Table B.2 (red). The
red dashed lines indicate theoretical upper and lower bounds, but as both the tree-width andmaximummatching-width
are upper bounds this is only an indication.
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Figure 7.8 Comparison between the best rank-width and maximum matching-width upper bound we achieved for
the small/medium graphs in Table B.1 (blue) and the large graphs in Table B.2 (red).
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Figure 7.9 Rank-decomposition for graph celar06 of width 4. The width of each edge is indicated.
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Chapter 8

Conclusion and future work

8.1 Conclusion

From the obtained results we can conclude that simulated annealing works very well for approximating rank-
width and other branch-decomposition based width parameters, as long as the size of the graphs is not too
large. Heuristics that guide the operator choices may be needed to improve the results on larger graphs. We
saw that for some graphs the results can vary quite a bit between different runs, but that for all graphs we tested
that were also tested by Beyß [6, 7] we were able to find an equal or better rank-width upper bound with just 10
runs, and for most graphs our best upper bound had already been found during the first 5 runs. This shows that
there is no need to do a large number of runs to find a good result using our algorithm. For the graph fpsol2.i.1
we even saw that our algorithm could find a width of 4 in 31 seconds, while it took Beyß over two hours to find a
width of 8. It is also interesting to note that although our algorithm performed better on n× n graphs, it could
still not find the exact rank-width value for n ≥ 7.

When it comes to the F4-rank-width results, we saw that the difference with rank-width and maximum
matching-width is rather small, but it is not clear if this is often the case, or just a result of the small number
of directed graphs we tried. More research would be needed in that regard. From the experiments on random
tournaments it seems likely that these often have a highF4-rank-width, presumably because of the randomness.

For maximum matching-width we saw that the results are often close to those of rank-width, but that for
some graphs the maximum matching-width is much larger. It is likely that maximum matching-width is more
sensitive to the density of a graph than rank-width. From the results on square grids it appears likely that the
maximummatching-width of a n×n graph is exactly n. It would be interesting if this could be formally proven.

8.2 Future work

During the work on this thesis some ideas and questions were raised that could not be incorporated, but that
might be interesting for further research. They are presented here in no particular order.

Faster matrix rank computations

It became clear that the most important bottleneck of the algorithm is computing the rank of matrices. It might
be interesting to see if it can be done faster in this specific context. An interesting observation is that thematrices
the rank has to be computed for are all submatrices of the complete adjacency matrix of the graph. Perhaps this
could be exploited in some way, for example with a form of preprocessing. It might also be interesting to see if
it would be possible to efficiently compute the cut-rank of a partition that is very similar to a partition of which
the cut-rank was already computed. For example by storing additional information and performing some sort
of row/column updates.
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More partial score updates

In the algorithm partial score updates were considered, but were eventually only implemented for the local
swap operator because for the other two operators it would require to store extra information that needs to be
updated with any changes to the decomposition. The extra complexity this would add to the algorithm made
it seem not very beneficial to implement partial updates for these operators, especially with the cut-rank cache
(Section 5.5). Regardless it might still be interesting to investigate in future work.

Smarter construction of the initial solution

It would be interesting to see if better initial solutions could be constructed using some heuristics. Using previ-
ously generated decompositions as initial solution (possibly with some random permutations) is also something
that could be interesting to investigate.

Smarter operators

It might be interesting to see if heuristics could be used to let operators make better decisions. This might help
to make the algorithm perform better on larger graphs.

Applying the algorithm tomore parameters

We already showed that the algorithm works well for rank-width, F4-rank-width and maximummatching-width.
It is likely that the algorithm, or a variant, could be applied to more different width parameters that are based
on branch-decompositions.

Tuning the algorithm for its application

When the output of our algorithm is to be used as an input for a specific other algorithm it may be possible to
tune the score function such that the generated decompositions are specifically efficient for that algorithm. This
could be interesting in a case where it would not matter if the decomposition has just a few edges of high width,
as long as the rest of the edges have a low width for example. It would then be possible to change the score
function to emphasize the widths of the individual edges instead of the maximum edge-width.

Broader search using parallelism

For some graphs the results of the algorithm vary a lot between different runs. It appears that those graphs
may have local minima that are difficult to escape from once certain changes are made to the decomposition.
The current algorithm uses parallelism to compute the width of multiple edges at the same time to make the
algorithm faster. A different application of parallelismwould be to branch the algorithm so that it runs in parallel
onmultiple threads, starting from the same decomposition, but eachmaking different decisions. After a number
of iterations the best of the decompositions is selected and all threads would then continue again starting from
that decomposition. In this way, a larger part of the search space is explored and it makes it easier to escape
from local minima when they only appear on some of the threads. To some extend such an approach would
take into account the observation that restarting is usually more likely to find a better solution than to run for a
longer time. A downside would be that the algorithm would be slower, because multiple decomposition edges
would no longer be computed in parallel (as this would not make much sense when there are already multiple
threads running).

Exact maximummatching-width of square grids

From the maximum matching-width benchmarks for square grids it appears that n × n grids most likely have
an exact width of n. It would be interesting if this could be formally proven.

Exact rank-width for planar graphs

For planar graphs there exists an algorithm [51, 25, 26] to compute branch-width exactly in polynomial time.
Perhaps there is also a way to compute rank-width exactly in polynomial time for planar graphs.
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Appendix A

The program

The program that implements the algorithm was written in C# with .NET 5.0 and was tested on both Windows
and Linux. It can approximate rank-width, F4-rank-width and maximum matching-width and outputs the cor-
responding decomposition in dot graph format. The program can make use of SIMD instructions (AVX2 recom-
mended) and multiple cores. The source of the program can be found on GitHub 1. It comes with a number of
unit tests that verify some parts of the program.

A.1 Usage

RankWidthApproximate.exe [options] graph.dgf

The following options are available:

-ac Enables adaptive cooling (Section 4.2).

-d Approximate the F4-rank-width of a directed input graph (can not be used in combination with -mm).

-d2u Approximate the rank-width or maximum matching-width of a directed input graph by first converting it
to undirected (each arc becomes an undirected edge).

-is seed Sets the seed for the random generator for the initial solution (by default the same random generator
is used as for the search process).

-mm Approximate the maximum matching-width of an undirected input graph (or directed converted to undi-
rected with -d2u).

-s seed Sets the seed for the random generator (random by default).

-t temperature Sets the initial temperature (default is 5.0).

-td delta Enables the thresholding heuristic (Section 5.2) with the given threshold delta.

-tl seconds Stops the search process if it is still running after the given number of seconds (the search process
also stops when the temperature drops below 0.05).

-v Output more information during the search process.

1https://github.com/Gericom/RankWidthApproximate
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A.2 Input graph format

The program supports a number of variations of the text based DIMACS graph format, for both undirected and
directed graphs.

Undirected

For undirected graphs the following rules apply. Figure A.1 shows some examples of valid inputs.

• Lines starting with c, n or x are ignored.

• Before any edges are defined, a header is expected in the following format:

p format vtxCount edgeCount

The format field is ignored by the program, but usually contains the word edge. A file should only have
a single header line.

• Edges can be defined as either

vtxId1 vtxId2

or

e vtxId1 vtxId2

for an edge between vtxId1 and vtxId2. There are expected to be asmany edge definitions as specified
in the header. In case of the e format, any other input after vtxId2 is ignored.

• Vertex ids can be anything without spaces. As such it does not matter if vertices are numbered from 0,
from 1 or identified with any other number, letter or label.

p edge 4 4
1 2
2 3
3 4
4 1

c 5 vertex cycle
p edge 5 5
e 0 1
e 1 2
e 2 3
e 3 4
e 0 4

x low 19.00
p edge 3 3
n 92 1.00
n 26 1.00
n 93 1.00
e 26 93
e 26 92
e 92 93

p edge 7 11
e A B
e A C
e B D
e B E
e C D
e D F
e D E
e D G
e C G
e E F
e F G

Figure A.1 Examples of supported undirected graph inputs.

Directed

For directed graphs the format is mostly similar to the undirected format, except that the header now contains
the number of arcs instead of the number of edges, and the way the arcs are defined differs slightly from the
way edges were defined. They are defined as either

vtxId1 vtxId2

or

a vtxId1 vtxId2

for an arc from vtxId1 to vtxId2. In case of the a format, any other input after vtxId2 (such as weights) is
ignored.

49



Appendix B

Benchmarking results

This appendix contains tables with all benchmarking results. The results are discussed in Chapter 7.

B.1 Undirected graphs

In the tables the columns mean the following:

rw result Best rank-width upper bound from 10 tries with the algorithm from this thesis.

Beyß Best rank-width upper bound achieved in the thesis of Beyß [6].

boolw ub Best boolean-width upper bound from the paper of Hvidevold et al. [30]. For an undirected graphG
the following relations hold:

log2 rw(G) ≤ boolw(G) ≤ 1
4rw(G)2 +O(rw(G)) [8],

boolw(G) ≤ mmw(G) [54].

tw ub Best tree-width upper bound [36, 23, 6, 53]. For an undirected graphG the following relations hold:

rw(G) ≤ tw(G) + 1 [44],
1
3(tw(G) + 1) ≤ mmw(G) ≤ tw(G) + 1 [54].

brw ub Best branch-width upper bound [49, 25, 26, 53]. For an undirected graphG the following relations hold:

rw(G) ≤ max(brw(G), 1) [44],

mmw(G) ≤ max(brw(G), 1) [54].

Note that for planar graphs branch-width can be computed exactly [51, 25, 26].

mmw result Best maximummatching-width upper bound from 10 tries with the algorithm from this thesis. For
an undirected graphG it holds that

rw(G) ≤ mmw(G) [54].

Note that the original TreewidthLIB database is no longer available. A backup can be found here:
https://github.com/emnh/boolwidth‐data.
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B.1.1 TreewidthLIB small/medium

graph vertices edges rw result Beyß boolw ub tw ub brw ub mmw result
1a62 122 1516 27 29 13.62 37 28
1a8o 64 536 17 18 9.11 25 18
1aac 104 1316 28 33 12.29 41 29
1aba 85 886 22 24 10.13 29 23
1ail 69 631 16 16 8.07 24 17
1awd 89 1080 25 28 10.08 38 25
1b0n-006 98 981 20 21 10.58 32 21
1b67 68 559 11 12 6.61 16 12
1bbz 57 543 16 18 8.30 25 16
1bf4 63 658 17 19 7.90 26 18
1bkb 131 1485 21 23 14.53 30 22
1bkf 106 1264 25 28 11.69 36 27
1bkr 107 1340 29 35 14.40 44 30
1brf 49 412 14 14 7.01 22 15
1bx7 41 195 8 8 4.91 11 8
1c4q 67 756 19 22 9.45 31 20
1c5e 95 1148 26 28 11.06 36 26
1c75 69 683 19 21 9.88 30 20
1c9o 66 720 18 20 8.75 29 19
1cc8 70 813 21 23 9.35 32 21
1cka 57 605 16 18 8.55 27 18
1ctj 87 935 23 27 10.74 33 25
1cuk 189 2404 29 38 44 30
1czp 94 1195 26 29 11.47 38 27
1d3b 69 682 18 19 8.44 25 19
1d4t 102 1145 26 29 12.87 35 27
1dd3 128 1356 20 22 11.68 31 20
1dj7 73 743 17 18 9.66 27 18
1dp7 76 769 18 19 9.01 27 20
1e0b 60 518 15 17 8.13 24 15
1en2 69 463 12 12 7.24 17 14
1erv 101 1267 28 32 12.26 41 29
1ezg 66 541 16 18 8.83 23 18
1f9m 109 1349 29 35 14.27 45 30
1fjl 65 600 16 17 7.90 26 17
1fk5 85 823 21 22 10.76 31 22
1fpo 170 1840 22 25 31 24
1fr3 67 618 16 17 7.29 21 17
1fs1 114 1351 26 29 13.79 34 28
1fse 67 730 19 19 8.58 27 20
1g2b 62 649 18 19 8.72 28 18
1g2r 94 1109 24 28 12.17 37 25
1g3p 185 2221 30 36 45 30
1g6x 52 405 13 14 6.89 19 14
1gcq 68 742 19 21 9.36 30 20
1gef 119 1492 29 36 13.60 43 30
1gut 67 621 16 17 7.47 22 17
1hg7 66 705 18 20 8.81 29 19
1i07 59 397 11 12 5.52 15 12
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graph vertices edges rw result Beyß boolw ub tw ub brw ub mmw result
1i0v 100 1207 27 30 12.21 41 27
1i27 73 747 18 19 8.78 27 19
1i2t 61 644 17 19 10.45 27 17
1ig5 75 816 21 23 7.75 33 22
1igd 61 630 16 18 6.89 25 17
1igq 54 503 14 16 6.89 23 15
1iib 103 1384 29 33 12.62 40 29
1iqz 77 839 21 23 10.00 33 21
1j75 56 558 16 18 8.51 27 17
1jhg 101 841 16 19 8.87 25 17
1jo8 58 608 17 19 8.46 27 18
1k61 60 581 17 18 8.32 26 17
1kq1 60 607 17 19 8.79 27 18
1kth 52 426 13 14 7.04 20 14
1ku3 61 585 16 17 7.53 23 17
1kw4 67 672 19 22 9.39 28 20
1l9l 70 697 18 20 9.26 29 19
1ldd 74 835 19 22 9.60 32 21
1ljo 74 789 19 21 8.88 30 20
1lkk 103 1162 24 28 11.89 34 25
1mgq 74 798 19 21 8.91 28 20
1oai 58 524 16 17 7.87 22 16
1on2 135 1527 24 25 36 24
1or7 180 1875 25 33 37 26
1plc 98 1167 25 28 11.28 35 26
1ptf 87 1137 24 27 11.21 38 28
1pwt 61 657 18 19 8.81 29 18
1qtn 87 788 18 18 9.15 24 19
1r69 63 692 19 21 9.12 30 19
1rb9 48 412 13 14 6.77 22 14
1rro 107 1300 30 33 15.36 43 30
1sem 57 570 16 18 8.32 26 17
1ubq 74 211 9 10 6.51 12 9
a280.tsp 280 788 13 14 13 13
alarm 37 65 3 3 2.58 4 4 3
barley 48 126 5 5 4.00 7 6 5
bier127.tsp 127 368 14 16 15 14 14
bcs01 48 176 8 13 12 12
bcs03 112 264 1 3 3 2
bcs04 132 1758 17 30 44
bcs05 153 1135 12 20 18 12
bcs06 420 3720 18 36
BN_0 100 300 17 20 19
BN_1 100 394 19 22 20
BN_2 100 494 22 26 17.24 24
BN_3 100 451 23 24 17.09 24
BN_4 100 574 24 28 26
BN_5 125 678 30 33 31
BN_6 125 948 34 36 35
BN_7 95 535 24 26 26
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graph vertices edges rw result Beyß boolw ub tw ub brw ub mmw result
BN_8 100 420 21 23 23
BN_9 105 382 20 22 19.05 23
BN_10 85 304 16 17 12.72 18
BN_11 105 631 27 32 29
BN_12 90 481 22 24 24
BN_13 125 550 25 29 27
BN_14 115 456 22 26 24
BN_15 120 673 29 33 31
celar02 100 311 3 5 3.32 10 7
celar03 200 721 9 10 14 11
celar04 340 1009 10 16 13
celar05 200 681 10 12 15 12
celar06 100 350 4 5 3.81 11 7
celar07 200 817 10 12 16 13
celar08 458 1655 10 22 16 13
ch130.tsp 130 377 10 12 12 10 10
ch150.tsp 150 432 12 15 15 12 12
d198.tsp 198 571 12 15 14 12 12
david 87 812 9 10 5.32 13 9
eil51.tsp 51 140 7 7 5.78 9 8 7
eil76.tsp 76 215 10 10 7.17 10 10
eil101.tsp 101 290 10 12 10 10
fpsol2.i.1 496 11654 4 8 66 75
fpsol2.i.2 451 8691 4 31 32
fpsol2.i.3 425 8688 4 31 33
games120 120 1276 25 30 33 27
graph01 100 358 17 19 14.61 24 19
graph02 200 709 34 40 48 37
graph03 100 340 17 18 13.29 20 19
graph04 200 734 37 45 51 41
graph05 100 416 16 19 13.70 24 19
graph06 200 843 36 44 52 41
graph07 200 843 37 44 52 40
huck 74 602 4 4 2.81 10 6
inithx.i.1 864 18707 7 56 51
inithx.i.2 645 13979 4 31 33
inithx.i.3 621 13969 4 31 46
jean 80 508 5 6 3.91 9 6
knights8_8 64 168 14 15 11.06 16 14
kroA100.tsp 100 285 8 11 10 9 8
kroA150.tsp 150 432 10 12 12 11 10
kroA200.tsp 200 586 11 22 14 11 11
kroB100.tsp 100 284 9 11 11 9 9
kroB150.tsp 150 436 10 15 12 10 10
kroB200.tsp 200 580 12 18 14 12 12
kroC100.tsp 100 286 9 10 10 9 9
kroE100.tsp 100 283 8 9 9 8 8
le450_5a 450 5714 150 307 150
le450_5b 450 5734 150 309 150
le450_5c 450 9803 150 315 150
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graph vertices edges rw result Beyß boolw ub tw ub brw ub mmw result
le450_5d 450 9757 150 303 150
le450_15a 450 8168 142 296 144
le450_15b 450 8169 143 289 145
le450_15c 450 16680 150 372 150
le450_15d 450 16750 150 371 150
le450_25a 450 8260 120 255 134
le450_25b 450 8263 109 251 137
le450_25c 450 17343 149 349 150
le450_25d 450 17425 150 349 150
lin105.tsp 105 292 8 10 8 8
mainuk 48 84 5 5 3.58 7 6
mildew 35 80 3 3 3.00 4 4 4
miles250 128 774 5 7 4.95 9 7
miles500 128 2340 14 15 9.42 22 17
miles750 128 4226 21 24 36 28
miles1000 128 6432 24 28 49 33
miles1500 128 10396 14 15 4.86 77 43
mulsol.i.1 197 3925 3 3 4.00 50 46
mulsol.i.2 188 3885 3 6 4.81 32 23
mulsol.i.3 184 3916 3 5 4.95 32 23
mulsol.i.4 185 3946 3 4 4.81 32 23
mulsol.i.5 186 3973 3 5 4.95 31 23
munin1 189 366 7 12 11 10
myciel5 47 236 11 11 8.12 19 19 13
myciel6 95 755 21 24 13.40 35 36 25
myciel7 191 2360 41 54 54 49
oesoca 39 67 3 3 2.32 3 3
oesoca+ 67 208 6 7 4.81 11 9 8
oesoca42 42 72 3 3 2.32 3 3
p654.tsp 654 1806 10 10 10
pathfinder 109 211 5 5 3.32 6 6
pcb442.tsp 442 1286 17 17 17
pr76.tsp 76 218 9 9 7.84 10 9
pr107.tsp 107 283 6 8 6 6
pr124.tsp 124 318 8 11 8 8
pr136.tsp 136 377 10 11 6.70 10 10
pr144.tsp 144 393 9 10 9 9
pr152.tsp 152 428 8 12 6.70 8 8
pr226.tsp 226 586 7 12 7 7
pr299.tsp 299 864 11 11 11
pr439.tsp 439 1297 16 16 16
queen5_5 25 320 5 5 5.29 18 16 9
queen6_6 36 580 9 9 7.65 25 24 12
queen7_7 49 952 11 12 10.36 35 17
queen8_8 64 1456 13 14 13.16 45 22
queen8_12 96 2736 20 21 16.70 65 32
queen9_9 81 2112 16 18 17.07 58 27
queen10_10 100 2940 20 23 72 34
queen11_11 121 3960 23 27 88 41
queen12_12 144 5192 26 30 104 48
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graph vertices edges rw result Beyß boolw ub tw ub brw ub mmw result
queen13_13 169 6656 29 34 122 57
queen14_14 196 8372 33 46 141 66
queen15_15 225 10360 33 51 163 75
queen16_16 256 12640 37 42 186 86
rat99.tsp 99 279 8 9 6.94 9 8
rat195.tsp 195 562 12 15 12 12
rd100.tsp 100 286 10 11 9 10
rd400.tsp 400 1183 18 17 18
school1 385 19095 116 188 121
sodoku 81 810 9 14 9.00 45 27
sodoku-elim1 80 898 9 13 9.47 45 27
tsp225.tsp 225 622 12 16 15 12 12
u159.tsp 159 431 10 14 12 10 10
u574.tsp 574 1708 18 24 17 18
u724.tsp 724 2117 23 26 18 22
water 32 123 6 6 4.39 9 9 7
zeroin.i.1 211 4100 4 6 3.70 50 42
zeroin.i.2 211 3541 3 5 5.39 32 29
zeroin.i.3 206 3540 3 7 5.39 32 28

Table B.1 Benchmarking results for small and medium graphs from TreewithLIB.
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Figure B.1 Overview of all achieved rank-width upper bounds during the 10 runs for the graphs of Table B.1.
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B.1.2 TreewidthLIB large

graph vertices edges rw result tw ub brw ub mmw result
d1291.tsp 1291 3845 53 37 29 48
d1655.tsp 1655 4890 85 29 86
d2103.tsp 2103 6290 143 36 29 114
pcb1173.tsp 1173 3501 58 25 46
pr1002.tsp 1002 2972 32 21 27
rl1323.tsp 1323 3950 72 22 69
u1432.tsp 1432 4204 74 32 63
u1817.tsp 1817 5386 104 28 83
u2319.tsp 2319 6869 151 56 44 140
vm1084.tsp 1084 2869 57 23 15 51
vm1748.tsp 1748 4784 106 33 22 91

Table B.2 Benchmarking results for large graphs from TreewithLIB.
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Figure B.2 Overview of all achieved rank-width upper bounds during the 10 runs for the graphs of Table B.2.
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B.2 Directed graphs

Benchmarking results for a number of directed graphs found on GitHub 1. For the rank-width upper bound
(rw ub) and maximum matching-width upper bound (mmw ub) the graphs were converted from directed to
undirected.

graph vertices arcs F4-rw ub rw ub mmw ub
mm4a 170 454 16 16 17
mm9a 631 1182 41 33 37
mm9b 777 1452 62 56 57
mult16a 293 582 6 6 6
mult16b 333 545 5 5 5
mult32a 565 1142 7 6 6
s27 55 87 6 6 6
s208 83 119 5 5 7
s344 274 388 8 8 8
s349 278 395 8 8 8
s382 273 438 14 14 14
s400 287 462 14 14 14
s420 104 178 7 7 8
s444 315 503 14 14 14
s526 318 576 15 15 15
s526n 292 560 13 13 15
s641 477 612 12 12 14
s713 515 688 12 12 14

Table B.3 Benchmarking results for directed graphs.

1https://github.com/alidasdan/graph‐benchmarks
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