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Abstract 
 

Palm swamps in the Amazon are regarded as important carbon-dense ecosystems, with palms 
regarded as important non-timber forest products for local communities. Knowing the abundance 
and biomass of palms in these areas allows for better sustainable forest planning, but data collecting 
in the field is difficult and expensive. However, commercial UAV’s present opportunities for mapping 
palm abundance and biomass in a cost-effective way.  The main objective of this study is to 
understand how effectively commercial RGB UAV can be used in dense tropical palm forests to 
detect palms and estimate the biomass. Palm biomass is estimated using allometric models that 
require palm height as input. The UAV imagery is used to create canopy height maps and is 
compared with other remote sensing derived height maps to determine which height dataset is best 
suitable for estimating palm biomass. The UAV derived palm locations from the Tagle Casapia et al. 
(2020) study are used to extract the palm crown height values from each height map. A total of six 
height maps were used to estimate palm biomass. 

The results showed that the detection rate of the UAV was in important factor when estimating palm 
biomass in plots. The palm heights mapped by the UAV has large errors and underestimated the 
palm heights. These UAV errors were mostly caused by the dense and complex canopies of tropical 
palm forests, where the ground is also not visible or covered by water, making palm crown 
identification and heights estimations difficult. The palm height maps by Potapov et al. (2021) and 
Asner (2021) had much lower errors, however all of the height maps underestimated the heights of 
palms taller than 34m. A linear model was also created to estimate the palm heights by using the 
UAV, Potapov and Asner maps as input. The Potapov and linear model height data had the lowest 
errors when estimating biomass. 

UAV provides a cost-effective solution for mapping palms and their biomass, but has varying results 
based on the local forest structure. The RGB UAV palm detection method used for this study could 
however still be used for forest management and planning purposes, as the UAV is able to give an 
estimation of the number of palms and their biomass in an area. Remote sensing derived heights can 
also supplement field data collection, offering an alternative to labor intensive palm height 
measurements in the field.  
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1 Introduction 
1.1 Research context 
1.1.1 Importance of palms in Northern Peru 
Peatland palm swamps in the Amazon are regarded as an important carbon-dense ecosystem 
(Coronado et al., 2021), and palms such as the Mauritia flexuosa, which is a “hyper dominant” 
species in Amazon palm swamps (ter Steege et al., 2013), have also been regarded as important non-
timber forest products for local communities (Horn et al., 2018). These palm dominated areas also 
store large amounts of carbon in vegetation and the soil, making them important carbon sinks 
(Draper et al., 2014). However, palm forests are often included as an integrated part of the forest, 
and studies mostly do not focus specifically on palms in forests.  

Peru is a country in South America where one of the largest M. flexuosa palm dominated peatlands in 
the tropics is found. These swamps can also host other palm (such as Oenocarpus bataua and 
Euterpe precatoria) and tree species, in which case they are called mixed palm swamps (Hergoualc’h 
et al., 2017). The M. flexuosa dominated palm swamp forests are locally known as aguajales. These 
areas are often permanently flooded or seasonally flooded due to exposure to nearby rivers 
(Lähteenoja & Page, 2011; Tagle Casapia et al., 2020).  

These M. flexuosa dominated palm swamps have been subject to increasing forest degradation in the 
last years due to the demand for the commercially valuable M. flexuosa fruit and because of 
expansion of human activities such as mining and infrastructure construction (Roucoux et al., 2017). 
These fruits can be harvested sustainably, but practices often still involve unsustainable methods 
such as cutting and killing of the whole palm. These unsustainable practices result in degradation of 
local palm populations and changes in sex-ratios of the palms, since female trees are harvested for 
the fruit (Horn et al., 2018; Penn, 2008). Knowing where M. flexuosa palms are found creates 
opportunities for land use and forest resource management (Tagle Casapia et al., 2020), and 
quantifying the biomass of these forests can also give insights into the status of the forest, such as 
how dense the palm forest is, how big the palm trees are, and if forest degradation is taking place 
(Reichstein & Carvalhais, 2019).  

1.1.2 Remote sensing for palm mapping in Peru 
Several studies (Coronado et al., 2021; Draper et al., 2014; Lähteenoja & Page, 2011; IIAP, 2004) have 
attempted to map the palm swamps of the Northern Peruvian Amazon using remote sensing and 
forest field data. The IIAP (2004) created one of the first ecosystem maps that mapped palm swamps 
with a resolution of 30m, based on Landsat TM Mosaics. Lähteenoja & Page (2011) created a 
peatland ecosystem map for this area using Landsat TM satellite images and field measurements, 
which included more wetland types. Later Draper et al. (2014) created an improved ecosystem map, 
based on 24 forest plots and by combining optical and radar remote sensing (Landsat, ALOS PALSAR 
and SRTM). Very recently, Coronado et al., (2021) created an updated map that included six 
ecosystem types in the northern Peruvian Amazon (open peatland, pole forest, palm swamp, 
seasonally flooded, terra firme and white-sand forest) using Sentinel 2, SRTM and L-band SAR 
mosaics from the ALOS-PALSAR and ALOS-PALSAR 2 sensors, in combination with field data from 102 
forest plots and 53 transects. 
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Various studies have attempted to map forest biomass using remote sensing imagery in various 
forest types around the world (Emilien et al., 2021; Puletti et al., 2020; Shimizu et al., 2020). Draper 
et al. (2014) attempted to map the total biomass of the peatland ecosystems in Northern Peru, by 
combining field data with optical and radar remote sensing imagery. Palm swamps showed to have 
high above ground biomass due to the dominant M. flexuosa palm species, which can grow higher 
than 30m. This, combined with the high stem densities of more than 150 individuals per ha in some 
areas resulted in high biomass per hectare. More recently a very high resolution 1ha map of above 
ground biomass for Peru was created (Asner et al., 2014; Asner, Gregory P. et al., 2021). This was 
done by combining airborne LIDAR canopy height measurements with a large number of Planet Dove 
images using a machine learning approach. This produced a map with an R2 of 0.70.  These maps are 
good estimators of global or forest type level forest biomass, but do not map biomass of individual 
palms or a specific genus/family, as these maps include both trees and palms in their biomass 
estimation. 

When mapping palm forests in the context of conservation, then mapping and detecting forest 
degradation is often useful. Forest degradation occurs when there is a human-induced decrease of 
forest biomass in an area. Monitoring forest degradation is much more difficult compared to 
monitoring of deforestation, even though forest degradation can be a substantial source of carbon 
emissions (Pearson et al., 2014). Degradation often happens on a small scale, and satellites have to 
notice very subtle differences in reflectance between natural and degraded forest to detect 
degradation. This often makes measuring changes of biomass of palms in these palm swamps 
difficult through satellite remote sensing (Pearson et al., 2017). Hergoualc’h et al. (2017) was able to 
classify various levels of degraded palm swamp forests and map the related biomass by combining 
field data, ALOS/PALSAR and Landsat TM imagery on a large scale in the Peruvian Amazon with good 
accuracy, but included both tree and palm biomass in their estimations. They concluded that “Future 
research should consider developing additional criteria for identifying degradation, refining biomass 
loss estimates, measuring peat GHG emissions associated with degradation and evaluating the spatial 
extent of degradation in the M. flexuosa dominated forests of the Amazon.” Understanding where 
these palm are found and determining how their biomass can be mapped using remote sensing, is a 
first step to reaching these goals.  

1.1.3 Palm biomass allometry and tree height measurement 
Allometric models have been developed to estimate biomass of individual trees and palms based on 
metrics such as wood density, stem diameter at breast height (DBH) and tree height (Chave et al., 
2014; Goodman et al., 2013). In the case of palms, allometric equations require the palm height as 
main estimators of biomass, because palms mostly grow in height and have very limited DBH growth 
associated with increase in biomass (Goodman et al., 2013). Therefore, it is important to accurately 
measure palm heights when calculating biomass. Palm swamps average palm heights in Peru are 
characterized as being higher than 20m, due to the presence of the abundant and tall M. flexuosa 
palms (Draper et al., 2018).  

Traditionally, palm dimension (height and diameter) data collection is done through field data 
collection in forest plots, where individual tree measurements are done. These measurements 
include species identification and tree dimension measurements that are required for the allometric 
biomass models (Chave et al., 2014; Goodman et al., 2013). The biomass measured in these plots can 
be used to extrapolate the biomass of all surrounding forests or similar forest types.  

 

https://www-sciencedirect-com.proxy.library.uu.nl/topics/earth-and-planetary-sciences/peat
https://www-sciencedirect-com.proxy.library.uu.nl/topics/earth-and-planetary-sciences/greenhouse-gas-emission
https://www-sciencedirect-com.proxy.library.uu.nl/topics/agricultural-and-biological-sciences/mauritia-flexuosa
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Forest plot field measurements that collect data on the ground produce relatively high quality tree 
measurement data such as tree height, DBH and species, but only cover a small area and are often 
very costly. However, even these tree height measurements in the field prove challenging at times, 
especially in tropical forests where the tree canopies are often closed due to high tree/palm 
abundance and large crowns. This makes the difficult and time consuming vegetation height 
measurements even more difficult (Larjavaara & Muller-Landau, 2013; Sullivan et al., 2018). In the 
last years, remote sensing technology has become more accessible, opening up new possibilities for 
remotely monitoring large forest areas and estimating forest height. Remote sensing techniques 
potentially allow for faster and more accurate measurements of height and related biomass 
(Larjavaara & Muller-Landau, 2013; Vaglio Laurin et al., 2019). Canopy heights are easier to measure 
than DBH when using remote sensing. Most remote sensing sensors are not able to directly estimate 
tree heights, but RBG UAV photogrammetry, LIDAR and RADAR have been shown to be effective in 
measuring forest characteristics related to biomass such as tree height (Larjavaara & Muller-Landau, 
2013; Liang et al., 2016; Roşca et al., 2018; Vaglio Laurin et al., 2019). Tree height measurements 
using remote sensing can effectively be done using airborne LIDAR (on drones or airplanes), but can 
be costly. Modern RGB unmanned aerial vehicles (UAV’s) offer a low cost alternative to collect very 
high spatial resolution imagery for small areas, as open source high resolution satellite data is usually 
not freely available and is often not cloud-free. UAV’s are also compact and easy to transport, 
allowing frequent data collection, providing images to complement the lower resolution, large scale 
satellite imagery (Alvarez-Vanhard et al., 2020; Cruzan et al., 2016; Kuenzer et al., 2015). UAV 
photogrammetry can be used to create Digital Terrain Models (DTM’s) and Digital Surface Models 
(DSM’s) by applying a Structure from Motion (SfM) algorithm. In this way, UAV photogrammetry can 
also be used to estimate high resolution canopy heights from UAV RGB imagery (Tagle Casapia et al., 
2020). UAV imagery also allows identification of specific palm crowns, as has been proven in Peru 
(Tagle Casapia et al., 2020). Various canopy height maps have been created, but not all map heights 
may be suitable for use in allometric equations due to the low spatial resolution of some maps and 
other limiting factors (Csillik et al., 2019; Potapov et al., 2021; Simard et al., 2011; Wang et al., 2016).  

1.2 Objectives and research questions 
1.2.1 Problem statement 
In the context of supporting palm conservation efforts, it is important to have a cost effective way of 
quantifying palm abundance and biomass. This is especially important now, as species such as M. 
flexuosa are subject to increased forest degradation due to human activities. Various ecosystem 
maps have been created, but these do not map locations of economically important palms at a 
resolution high enough to allow for detailed planning and management. Field data collection through 
forest inventory plots produce high quality data on palm locations and their biomass, but these only 
cover a small area and are often very costly and time consuming. UAV imagery plays a key role, as 
this can be used to map palm locations, while also mapping the canopy heights required for biomass 
estimations. Several other canopy height models have been developed which can also be used as 
input for the allometric models. However, it is not yet clear if remote sensing forest height data in 
combination with RGB UAV can accurately estimate palm biomass in Peru. Understanding this can 
contribute to the long-term forest conservation efforts in Peru. 
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1.2.2 Research objectives 
 

Research questions 

In the previous section the overall context and problem have been described. Based on this, the 
following research question is presented: 

“Can RGB UAV in combination with satellite remote sensing be used to estimate the biomass of palms 
in forests?” 

The following sub-questions will support in answering the main research question. 

• How accurate is UAV measured palm height compared to field based measurements and 
what are the effects on biomass estimations? 

• Which forest height maps are available for the estimation of palm height in Peru?  
• How accurate are forest height map derived palm heights compared to the field based 

measurements and what are the effects on biomass estimations? 
• How much of the palm biomass can be detected and measured using UAV RGB remote 

sensing compared to ground measurements? 
• Which allometric models are best suited for palm biomass estimation based on the available 

remote sensing data and how do these compare to those from field based measurements 
 
Research Objectives 

The objective of this study is to get estimations of the biomass of important palm species such as M. 
flexuosa using RGB UAV and remote sensing derived palm height, and to determine the accuracy of 
each method by comparing results to those of the field plot reference datasets. This will result in 
better insights into how biomass of individual palms can be determined without the time-consuming 
and costly fieldwork that is traditionally required. 
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2 Theoretical framework 
2.1 Mapping palm biomass 
Several studies have described methods to estimate forest biomass and distinguish forest types by 
using various sources of remote sensing (Csillik et al., 2019; Draper et al., 2014; Hergoualc’h et al., 
2017). At the moment there is no single remote sensing system available that is a good direct 
predictor of AGB, especially at individual palm level.  Studies now use statistical models and input 
from various sources, including data collected in field plots, to predict biomass for areas with similar 
forest types (Réjou-Méchain et al., 2019). Spectral data from remote sensing imagery is used to 
classify forests with various characteristics, such as low and high biomass or based on forest types 
and land cover. Hergoualc’h et al. (2017) was able to use remote sensing to discriminate between 
dense palm swamps in Peru that had various levels of forest degradation, with higher levels of 
degradation being related to lower biomass. This map was made by combining Landsat and 
ALOS/PALSAR imagery. Draper et al. (2014) used a combination of SRTM, Landsat and ALOS/PALSAR 
to map biomass of peat land forests in Amazonia. Both these studies used forest plot data as 
reference data. Radar imagery such as ALOS/PALSAR has also been proven to provide 
complementary information to the spectral data from multispectral satellites such as Landsat when 
distinguishing forest characteristics using remote sensing (Saatchi et al., 2011). These studies all 
mapped forest biomass at resolutions higher than 30m. More detailed mapping of individual palm 
biomass through use of high resolution UAV imagery would allow for more opportunities for palm 
conservation and management (Tagle Casapia et al., 2020).   

2.2 Palm detection with UAV 
2.2.1 Palm detection and identification  
In order to estimate biomass of individual palms, palms need to be identified and located using 
remote sensing. Previous studies have mapped ecosystems where palms are abundant in the Loreto 
area of Peru, such as palm swamps and open peatlands (Coronado et al., 2021; Draper et al., 2018; 
Lähteenoja & Page, 2011), but there are no high resolution maps showing locations of individual 
palms. For these ecosystem maps, often open source imagery such as Landsat and Sentinel 2 (which 
also have high temporal resolutions and large coverage) are used in combination with other remote 
sensing data such as RADAR and LIDAR. Higher resolution images are necessary for individual palm 
identification, as detection of individual palm crowns and identification of the crown shape is 
required. Various high resolution satellites are available, but these are often not open source and are 
limited by cloud cover. Forests in South America have been shown to be affected by a cloud cover 
frequency between 30% and 80%  (Prudente et al., 2020). UAV’s offer low-cost alternatives for 
obtaining high resolution imagery, without being affected by the high cloud cover frequency, and 
have increasingly been used for mapping of vegetation and forests (Cruzan et al., 2016; Z. Liu et al., 
2016). 

Satellite remote sensing techniques for monitoring of forest characteristics such as biomass, volume 
and growing stocks have been improving. Satellite imagery was commonly analyzed and processed 
using standard pixel-based analysis (Dang et al., 2019; Pandey et al., 2020), where the spectral 
properties of each pixel are used individually. This method has been suitable in many cases, such as 
those related to large scale landscape mapping, but is less suitable for precise mapping of palm and 
tree crowns. This is because the spatial characteristics of the pixels are not taken into account during 
the analysis. Several techniques have been developed for object detection in imagery, such as object-
based image analysis (OBIA), valley following, between-tree shadow identification, region grouping, 
edge detection, watershed segmentation and 3D modeling (Jing et al., 2012). However, not all 
methods are effective in deciduous and mixed species forests that have dense canopies.  



10 
 

The object-based image analysis (OBIA) method is an alternative to the pixel-based method in the 
case that high-resolution imagery is available. This method also allows for the use of multiple spectral 
bands in the analysis, while including additional spatial resolution information such as context, scale 
and size. Another benefit of OBIA is that it requires less computational power during the post-
processing step (Blaschke, 2010). Unique palm crown patters have proven to be detectible using an 
object based image analysis methodology (OBIA), as was proven by Tagle Casapia et al. (2020) and 
Iglhaut et al., (2019) in tropical forests. Several other studies have also attempted to map forest 
biomass by combining high resolution satellite imagery with the OBIA method (Gonçalves et al., 
2017; Pham & Brabyn, 2017; Wang et al., 2016). These studies use the relationship between ground 
measurements and delineate canopy projection area (CPA) of individual trees to estimate the forest 
biomass. However, palms do not grow laterally (crown diameter), but grow in height (Goodman et 
al., 2013), making these methods unsuitable for application to palm species. 

2.2.2 Palm detection and species identification in Peru 
Palm species are monocotyledons, meaning that they have no branches, but the leaves are found at 
the top of the tree in a pattern specific for each genus. This makes specific species easier to identify 
from above than trees, where the crowns with branches and leaves are often similar when viewed 
from above. Crown patterns of palms can vary from star shapes to large crowns with rounded leaves 
(Figure 2.1), but are also similar for some species (Henderson et al., 2019).  

 

Figure 2.1: Results of M. flexuosa crown detection and delineation by Tagle Casapia et al. (2020). The left image shows the 
crowns on the orthomosaic and the right image has the detected crowns overlayed over the orthomosaic. 

Tagle Casapia et al. (2020) compared various classifiers for palm species identification that are based 
on the OBIA method. The random forest algorithm had the highest accuracy (85%). Several palm 
species were found in the plots and identified (A. butyracea, E. precatoria, M. flexuosa, M. armata, A. 
murumuru, oenocarpus spp. and S. Exorrhiza), with M. flexuosa being most accurately identified since 
it was the most dominant species and had the largest training data set. Non-canopy dominant 
species and species with small training datasets were more often misclassified than the others. M. 
flexuosa, M. armata, and E. precatoria were most accurately mapped. Classification accuracy 
dropped in the cases when there were many species found in a plot, especially if the species had 
similar crowns and when species only have small amounts of training data.  

The accuracy of palm counts was highest in plots with lower palm stem density and in cases where 
there was a height difference between palms close to each other. The random forest algorithm 
output had an average a recall of 71.6% compared to visible palms on the orthomosaic, and an 
average a recall of 51.4% compared to the rainfor plot geolocated palms. The UAV only captures the 
top of the canopy resulting in an underestimation of the number of palm stems from the forest plots, 
with a detection rate between 58% and 86%. Best detection results were found in plots where the 
palms were not too close to each other, resulting in was better palm visibility.  
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The species M. armata and M. flexuosa have similar crown shapes, making automatic classification 
difficult. However, the tree height characteristics and crown sized varied, which still made it possible 
to distinguish them. These results highlight the challenges when detecting palm species in mixed and 
dense forests, as previous studies using similar methods had only been done in areas with 
plantations or open forests where there was high contrast between the ground and the canopy, 
making crown detection and height estimations more accurate. 

2.2.3 Mapping palm canopy height using UAV photogrammetry 
Optical UAV imagery allows for extraction of 3D image information using the Structure from Motion 
(sfM) methods. This method is often used in the physical geography field to monitor glacier 
movements and landslide displacement (Smith et al., 2016), but can also be used for mapping forests 
(Wallace et al., 2016). The main principle behind this method is that depth and 3D features can be 
perceived from two points if the relative position is known, but that this can also be done using a 
single moving observation point. The SfM algorithm, paired with multi-view stereo (MVS) algorithms 
can be used to create dense point clouds from the images. These dense point clouds can then be 
used for creating other products such as DSM’s and DTM’s (Iglhaut et al., 2019). The resulting DSM 
and DTM can be used to create a canopy height map with a very fine resolution of several 
centimeters. This method has many benefits, as images can have different scales, viewing angles and 
orientations. A dataset with overlapping unordered and heterogeneous images can still be used 
effectively, without the need for camera calibration, ground reference points or camera orientation 
information (Iglhaut et al., 2019; Westoby et al., 2012). This method was used by Tagle Casapia et al. 
(2020) to create DEM and DSM maps in Peru’s palm forests. 

2.3 Forest plot ground reference data 
2.3.1 Availability of forest plot data 
Tropical forests have an important ecological function in the world, and the amount of tree data 
collected in the tropics is increasing each year. Several databases already existed before 2011 to 
collect data on vegetation, but these were not focused on tropical regions. In response to this, the 
ForestPlots.net web portal was developed, which is a repository for tropical forest inventory plots. 
Here individual tree measurements and remeasurements are registered, allowing for secure storage 
and access of standardized forest plot data (Peacock et al., 2007). Data is made available in the 
database and has to be requested formally before use. The final decision regarding the access to the 
plots is decided by those who submitted the plots, and this process is facilitated by the forestplot 
database administrators (ForestPlots.net et al., 2021; Lopez-Gonzalez et al., 2011). 

2.3.2 Data collection and quality control 
The forestplot.net data collected focuses on tree species, DBH, height and the mortality status of the 
trees. This allows for data analysis of changes in stem growth, tree mortality and biomass. 
Forstplots.net data collection is done using the “RAINFOR Field Manual for Plot Establishment and 
Remeasurement”, which is available for the public. This manual was created to ensure that all data is 
collected in a uniform method, allowing for standardization of globally collected data. There is a 
rigorous verification and validation procedure used in order to assure that the data from the various 
countries is standardized. This is especially the case for species and DBH verification, with the online 
tool highlighting inconsistencies when new data is submitted to the database. This data assurance 
process makes these datasets suitable as reference datasets in forest research (Lopez-Gonzalez et al., 
2009, 2011; Malhi et al., 2002). 
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In each plot, every individual tree measured receives a code or tree number which is reused when 
the plot is measured again. The geographic location of each tree is also mapped by GPS. Tree height 
is measured when possible and this can be done using various methods. Methods to measure height 
include estimations by eye, manually with trigonometry (clinometer), laser distance to the tree and 
direct measurements (e.g. through climbing). Of these methods, the estimation by eye is the least 
accurate and the direct or laser measurements are the most accurate. The measurement points also 
vary, and can either be total height or stem height. The data used in this report was always measured 
using a clinometer, except for the PISC-02 plantation, where the heights were measured with ruler 
(Lopez-Gonzalez et al., 2009, 2011; Malhi et al., 2002). 

2.4 Allometric models for estimating palm biomass 
To obtain the above ground biomass (AGB) estimation of palms, allometric models can be used. Field 
data collection in forest plots allows for collection of high quality relevant tree metrics required for 
allometric models, which are much more difficult to accurately determine using remote sensing. 
Palms are monocotyledonous plants, meaning that they have very different growth patterns 
compared to trees. For trees, the allometric equations from (Chave et al., 2014) are applied, which 
use DBH, wood density and tree height (when the height is available) as the main inputs for the 
allometric models. Monocotyledonous plants (palms) however, primarily grow in height and not in 
diameter, resulting in a weak correlation between biomass and diameter. This is especially the case 
for the Mauritia genus, which has a broad range of heights and a small range of DBH measured (Rich 
et al., 1986)..  

Goodman et al. (2013) has developed several allometric models for determining biomass of palms. 
Specific allometric equations were developed for palms on a genus level (Table 2.1), but these 
require the palm stem height as input for the best results. All models proposed by Goodman et al. 
(2013) follow the form y = a + bx1 + cx2. Alternative models (Table 2.2) have been presented that 
make use of other tree metric such as total palm height (Htot) or dry mass fraction (dmf) or both, but 
these all have a higher RSE and a lower R2 than the best fit models that use stem height (Hstem). This 
highlights that accurately measuring palm height and choosing the right height metric to measure are 
important factors for estimating biomass of palms accurately.  

Table 2.1: Genus and family level allometric equations for palms proposed by Goodman et al. (2013) with the best model fit 
which require genus, Hstem and DBH data as input. 

 

Table 2.2: Alternative family level allometric models proposed by Goodman et al. (2013) that only require Htot and dmf 
data as input. 
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The available height metric has an impact on the estimation of the biomass, as different allometric 
models will result in different biomass estimations. Palm height data measured through UAV and 
other remote sensing sources mostly result in top of canopy height values (Htot), while field 
measurements can measure both the Htot and the Hstem. Measuring palm stem height using optical 
remote sensing such as UAV with a RGB camera is difficult, as these sensors do not allow for 
penetration through the canopy. In the case of M. flexuosa, there are large differences between the 
total and stem height of a palm. Goodman et al. (2013) compared the total palm and the stem 
heights of M. flexuosa palms (n=16) harvested in Loreto Peru, and measured stem heights between 
5.1m and 30.5m, and total heights between 9.1m and 38.4m for the same sample of palms. The 
minimum and maximum stem and total heights measured indicate that the difference between these 
two height metrics can be up to at least 7m.  

In the case of the field measurements, the Hstem, Htot and species information are available, making 
it possible to use genus specific best fit models. The remote sensing maps provide top of canopy 
heights, in which case an alternative family level model that uses only total palm height and dmf as 
input will have to be used. The best fit genus level models performed well, with a very high of R2 
(0.90) reported for most species, with a related RSE below 1.0. The Mauritia best fit model has an R2 
of 0.897 and an RSE of 0.273. The alternative family level model (not the best model fit) only require 
total height to be measured, as the dmf is already made available by Goodman et al. (2013), but this 
model had higher errors reported than the genus level models. Using a family level model is 
necessary in this study, as species identification is not always accurate with UAV RGB remote sensing.    

2.5 Forest canopy height resources 
2.5.1 Availability of canopy height maps  
There are several sources of satellite data available, which can be used to estimate canopy heights, 
but most do not directly measure the canopy height. However, the ICEsat-2 and more recently 
launched GEDI space-based altimeters mapped canopy height through direct height measurements 
(Wang et al., 2016). Remote sensing sources such as RADAR, multispectral imagery and LIDAR have 
been combined in various ways to create canopy height maps around the world (Csillik et al., 2020; 
Shimizu et al., 2020; St-Onge & Grandin, 2019), with varying accuracies depending on the forest 
types and geographic locations. In Canada, a 30m resolution height map was created for a boreal 
zone using only LIDAR reference plots and Landsat composite data by using an imputation model 
(Matasci et al., 2018). In Gabon and Switzerland, a 10m resolution canopy height map was created by 
training a deep convolutional neural network (CNN) to extract spectral and spatial features from 
Sentinel 2 imagery (Lang et al., 2019). In Brazil, a combination of Sentinel 2, Landsat 8, ALOS-PALSAR 
SAR (Synthetic Aperture Radar), Sentinel-1 and LIDAR was used and tested with five regression 
algorithms and three forest types. The random forest regression algorithm had the highest canopy 
height prediction accuracy, but uncertainty was still highest in moist forests and rainforests (Fagua et 
al., 2019). In Japan, Multi-Temporal PlanetScope data was used in combination with Landsat 8 and 
Sentinel 2. Here multi-seasonal composites of high resolution planet scope imagery was used in a 
random forest model, which showed that multi-seasonal composites produce higher accuracy 
canopy height maps compared to when single composites are used (Shimizu et al., 2020).  

In Peru, Asner  (Asner, 2021; Asner et al., 2014) mapped the country’s canopy heights, but this is not 
the only source for forest canopy heights for the country, as various global canopy maps have also 
been created (Lefsky, 2010; Potapov et al., 2021; Simard et al., 2011; Wang et al., 2016). These maps 
have various resolutions and accuracies, which is why not all maps may be suitable for extraction of 
individual palm crown heights in Peru. The maps included in this study are described in the following 
chapters below.  
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2.5.2 Global GEDI Level L2A map 
The Global Ecosystem Dynamics Investigation (GEDI) satellite mission, which was launched in April 
2019, is a geodetic-class, light detection and ranging (LIDAR) laser system, that has already shown to 
be useful for estimating forest canopy heights at large scales (Adam et al., 2020; Fayad et al., 2021). 
This multibeam, laser altimeter, is deployed on the International Space Station and provides more 
than 10 billion waveform measurements of the vertical structure of various forest types around the 
world (Dubayah et al., 2020). This satellite provides direct pixel level data on vertical forest structures 
for a wide range of areas, but only maps forests in swats. Because of this, GEDI maps needs to be 
combined with optical or RADAR imagery in order to get wall-to-wall estimates of forest height (Gu 
et al., 2018; Healey et al., 2020; Qi et al., 2019). GEDI data is freely available for download through 
the GEDI Finder web service (https://lpdaacsvc.cr.usgs.gov/services/gedifinder). The GEDI Level 2A 
Geolocated Elevation and Height Metrics product (GEDI02_A) is a processed version of the GEDI01_B 
received waveform, and the Level 2A includes the height metric, meaning that the users do not have 
to process the waveforms themselves (Dubayah et al., 2020). This raster data has a spatial resolution 
of about 1150m per pixel, based on the relative height metric of RH100.The relative height metrics 
corresponded to percentiles of energy return height relative to the ground for each laser footprint. A 
relative height metric of RH75 would then correspond to the 75th percentile of energy returned. In 
Germany, the GEDI was compared to ALS reference data from two sites and MAE values of 3.17m 
and 2.89m were reported for canopy height estimations (Adam et al., 2020). Another study was done 
in North America (A. Liu et al., 2021) used a large number of sample locations, in order to get better 
estimations of the GEDI canopy height accuracy. This showed that GEDI, compared with LIDAR 
canopy height reference data, had an R2 value of 0.82 and %RMSE values of 30.9%. 

2.5.3 Global 30m resolution map based by Potapov et al. (2021) 
Potapov et al. (2021) combined GEDI data with 30m spatial resolution Landsat data to create a global 
30m resolution canopy height map for 2019, which is freely available for the public online 
(https://glad.umd.edu/dataset/gedi/). Studies have shown that LANDSAT data is suitable for this type 
of forest structure based research (Hansen et al., 2016; Potapov et al., 2019). Various relative height 
values were compared using several L2A processing algorithms. The GEDI RH95 metric was most 
similar to the ALS reference dataset, which is why the RH95 metric was selected to calibrate the 
global forest height model instead of the RH100. A regression tree model is used to model forest 
height, as this methods has been successfully used in previous studies (Hansen et al., 2016; Potapov 
et al., 2019). The final canopy height map was compared with the GEDI validation dataset and 
resulted in a MRSE of 6.6m, MAE of 4.45m and an R2 of 0.62. There was an overall underestimation 
of 1m compared to the validation data, with more underestimations occurring for short (<7m) and 
tall (>30m) forests.   

2.5.4 Global 1km resolution map by Simard et al. (2011) 
Before GEDI was available to provide canopy heights, the Geoscience Laser Altimeter System (GLAS) 
aboard ICESat (Ice, Cloud, and land Elevation Satellite) was available. Simard et al. (2011) created one 
of the first global forest canopy height maps with a spatial resolution of 1km. There is only sparse 
forest LIDAR data available by GLAS, and this data was also limited by cloud coverage. This global 
map was modelled by using GLAS data in combination with other ancillary data such as data from the 
Moderate Resolution Imaging Spectroradiometer (MODIS). GLAS RH100 canopy height data was 
acquired from 2003-2009, with the footprints being 65m, and 170m spaced from each other along 
long tracks. Ancillary data used include vegetation cover data from MODIS, elevations from SRTM 
and climate data from the Tropical Rainfall Measuring Mission (TRMM) and Worldclim databases. A 
regression tree method Random Forest (RF) model was used with the ancillary data variables as 
input, in order to model the RH100 canopy height where there was no GLAS coverage.  

https://lpdaacsvc.cr.usgs.gov/services/gedifinder
https://glad.umd.edu/dataset/gedi/
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Field data collected in the tropical ecosystems of Uganda and data from the FLUXNET La Thuille 
canopy height database (Baldocchi et al., 2001) were used for validation of the final canopy height 
map. A comparison with the field datasets in Uganda resulted in an RMSE of 6.6m and an R2 of 0.64. 
The canopy height map underestimated tall forests (>30m). Comparison with the FLUXNET database 
resulted in a RMSE of 4.4m and an R2 of 0.69. The model accuracy was lowest in closed broadleaf 
forests, such as those found in the Amazon. This global canopy height map showed higher accuracy 
than the previously published global canopy height map by Lefsky (2010), which mapped Lorey's 
height, which is a tree-size weighted mean, while the method by Simard et al. (2011) modelled the 
top of canopy height by mapping the tallest crowns.  

2.5.5 Global 500m resolution map by Wang et al. (2016) 
Wang et al. (2016) created another global canopy height map five years after Simard et al. (2011), 
using similar datasets. The map however, was a much higher resolution (500m instead of 1km pixel 
size). Wang et al. (2016) also used 2005-2006 GLAS satellite data as the basis for creating the map 
with ancillary data similar to those used by Simard et al. (2011), but also included MODIS 
Bidirectional Reflectance Distribution Function (BRFD) data, which represents an albedo parameter 
or the differences in measured radiation due to the pixel scattering (Schull et al., 2007). This study 
also focusses on mapping the average canopy height, which is different than the Simard et al. (2011) 
map that focused on mapping the maximum canopy height. This average canopy height is referred to 
as the peak distance or the centroid of the uppermost canopy layer (Harding & Carabajal, 2005). This 
represents the average height measured between the codominant and the dominant trees (Lefsky, 
2010). The application of BRF showed an overall improvement of the height estimation for short and 
tall trees compared to when only the random forest method was used, but this improvement was 
minimal in tropical forests of South America. The validation dataset used was field survey data from 
the Distributed Active Archive Center. A comparison with the field validation dataset produced a 
RMSE of 4.68 and an R2 of 0.63. When comparing regional canopy heights with reference data, the 
tropical forests of South America showed the lowest R2 (0.59), because of small variations in forest 
height or because of poor model fitting.  

2.5.6 Local 1ha resolution map by Asner (Asner, 2021; Asner et al., 2014). 
Recently, a new 1ha resolution forest height map was published for Peru by Asner (Asner, 2021; 
Asner et al., 2014). This map was made using high spatial and temporal resolution Planet Dove 
images from 2018, in combination with SRTM imagery, to map canopy top height (THC). Planet Dove 
has the largest number of small cube satellites and maps the earth daily at a resolution of 3.7m. The 
satellites do not directly measure tree height, but can estimate this through spectral and textural 
analysis. Results were compared with the Lidar data samples from the Global Airborne Observatory 
collected between 2011 and 2013. This was done using a Fourier textural ordination (FOTO) analysis 
of the images, after which a gradient boosted regression model was used. The resulting map had a 
RMSE of 4.36m and a R2 of 0.65, with the model being oversaturated for height values above 25m, 
resulting in underestimation of these heights. For heights between 0-20m, the RMSE was around 
5.5m, while the RMSE for heights between 20-25m was 2.5m (lowest measured error). The most 
errors were measured for areas where the forest height was lower than 10m.  Wetlands also showed 
higher errors compared to other land cover types.   
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3 Methodology 
3.1 Study area 
This study focuses on the Loreto Area in Northeastern Peru, where several RAINFOR (Lopez-Gonzalez 
et al., 2009, 2011; Malhi et al., 2002) permanent plots of 50x100m have been set up in various forest 
ecosystems, including in palm dominated areas such as palm swamps and open peatland forests 
(Figure 3.1). Only plots that were surveyed using a RGB based UAV drone during the Tagle Casapia et 
al. (2020) study in 2017 are selected for this study. Not all plots from the Tagle Casapia et al. (2020) 
study areas are included, but only the 14 plots that are found in palm swamp ecosystems were 
selected. In addition, one plot (referred to as the PISC-2 plot) from the Jenaro Herrrera Research 
Station palm plantation was included in this study (http://www.iiap.org.pe/web/ci-jenaro-
herrera.aspx). This plantation only includes small planted M. flexuosa palms that are genetically 
smaller and allow for easy harvesting.   

 

Figure 3.1: Location of the selected forest plots in the region of Loreto, Peru. Background sourced from google 
“streetmap”. 

3.2 Datasets 
For this study, various sources of data are combined to determine the biomass of palms in the plots 
(Table 3.1). The field reference data was received from the forestplots.net online database 
(ForestPlots.net et al., 2021; Lopez-Gonzalez et al., 2011), where the data has gone through various 
data quality checks, ensuring that the data suitable as reference data. Details on the researchers 
responsible for the reference data per plot can be found in Annex 1. The UAV data is made available 
by Ximena Tagle from Wageningen University, who provides the data from the Tagle Casapia et al. 
(2020) study (UAV mission details per plot are found in Annex 2). This dataset includes an 
orthomosaic, DTM and DSM for each plot with very high resolutions (between 1 and 30cm). This 
study also provides the remotely sensed locations of the palm stems. Not all stems are detected, 
which is why this UAV dataset will include less palms than the reference datasets.  

 

http://www.iiap.org.pe/web/ci-jenaro-herrera.aspx
http://www.iiap.org.pe/web/ci-jenaro-herrera.aspx
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Total palm height values are extracted from the UAV CH mosaics, GEDI L2A (Dubayah et al., 2020), 
Potapov et al. (2021), Simard et al. (2011), Wang et al. (2016) and Asner (Asner et al., 2014; P. et al., 
2021) forest height maps. None of these maps are specifically calibrated for palm swamps in Peru, as 
most are global maps that use various forest types as input data. The Potapov et al. (2021) map is 
expected to give good results as this has the highest resolution. The GEDI L2A data also collected 
data in the same period, but has a very low resolution and includes many locations with missing data 
due to how the image acquisition takes place (swats of forest are sampled). The Simard et al. (2011) 
and Wang et al. (2016) maps both use ICEsat as input data, which creates a temporal discrepancy, as 
the ICEsat data was only available before 2010. This could potentially be a cause of errors when 
comparing these heights with the ground reference datasets. The Wang et al. (2016) map is expected 
to be more suitable for this study than the Simard et al. (2011) map since it does not only map the 
canopy heights based on the highest crowns like in the Simard et al. (2011) study, and because it has 
a higher spatial resolution. The Global Airborne Observatory (Asner et al., 2014; P. et al., 2021) map 
is the only map specific for Peru. It is expected to give a good palm canopy height estimation due to 
being calibrated with national data and because of the similar data collection period (around 2017), 
but the low resolution of 1ha may make it less effective for use in the current study. 

Table 3.1: Overview of data available 

Dataset Data  Comment source 

RAINFOR forest inventory 
plots  

Tabular palm data includes: DHB, 
species and tree height (total and 
stem) 

Contains information on 
palms and trees found in 
each forest plot 

(Lopez-Gonzalez et 
al., 2009, 2011; Malhi 
et al., 2002). 

UAV imagery RGB mosaic, DTM and DEM as 
rasters. 

High spatial resolution  (Tagle Casapia et al., 
2020) 

UAV based palm 
locations 

Point shapefile of UAV detected 
palm locations 

Palms visible on the UAV 
mosaic 

(Tagle Casapia et al., 
2020) 

GEDI level 2A global CH 
map 

1150m spatial resolution raster Does not cover all plots (Dubayah et al., 2020) 

GEDI and Landsat based 
global CH map 

30m spatial resolution raster Highest resolution satellite 
based forest height map 
available 

(Potapov et al., 2021) 

ICEsat based global CH 
map 

1km spatial resolution raster GLAS dataset used is very 
dated 

(Simard et al., 2011) 

ICEsat and MODIS BRFD 
based global CH map  

500m spatial resolution raster Improved version of the 
Simard et al. (2011) map. 
GLAS dataset used is very 
dated 

(Wang et al., 2016) 

Planet Dove Imagery local 
CH map of Peru 

1ha resolution local map Calibrated and created with 
data from Peru 

(Asner, 2021; Asner 
et al., 2014) 
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3.3 Data processing and analysis 
3.3.1 Data processing workflow 
In order to estimate the palm biomass of each palm, information from the “palm location” point 
shapefile, “height map” rasters and the “forestplot.net” spreadsheet datasets are combined into a 
single point shapefile that contained the information from each dataset (Figure 3.2). 

 

Figure 3.2: Workflow for data processing and analysis 

The canopy heights of each forest height raster map had to be added to each palm point by 
extracting the relevant pixel value based on the coordinates of the palm. The raster height values for 
each palm were extracted using the “sample raster values” tool from the QGIS processing toolbox 
and added to the palm shapefile. The UAV derived canopy height is not directly available, so canopy 
height is calculated by subtracting the available terrain height (DTM) from the total surface height 
(DSM). This canopy height (CH) model describes the estimated height of the tree tops above the 
ground in meters. All spatial layers were reprojected to the geocentric and globally consistent 
WGS84 geographic coordinate system using the QGIS “raster warp – reprojection tool” to 
standardize the data. The UAV canopy height raster has a resolution of a few centimeters, which is 
very high resolution. The UAV GPS has an accuracy of about 5m, and downscaling the high resolution 
raster could result in better palm height estimations. To test if this is the case, the high resolution 
canopy height map is downsampled by resampling the UAV canopy height raster to 1m resolution 
using average pixel resampling method, which takes the average of the all the pixels in an area to 
calculate the new pixel values. The heights extracted from the original UAV and resampled canopy 
height maps are compared to determine if there is an improvement of individual palm height 
estimation. 

The palm shapefile that included the extracted heights and the tree dimensions was then exported as 
a csv spreadsheet for further analysis in the R software. Various types of allometric models 
(described in chapter 3.3.2) are then applied using available height data, and then compared. A 
statistical analysis is then done to determine how suitable remote sensing is for individual palm and 
plot level biomass estimation. 
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3.3.2 Application of allometric equations 
By using the palm height and other tree information such as DBH, genus and dmf (dry mass fraction), 
is it possible to estimate biomass of palm trees with various degrees of accuracy based on which 
allometric model proposed by Goodman et al. (2013) is used. In this study, two types of tree height 
data are available for the purpose of estimating biomass. These are: 

1. Stem height (Hstem) 
This information is only available from the field plot reference data. Stem height is the 
preferred tree height metric for palm trees according to Goodman et al. (2013), as this was 
shown to be the best estimator of genus level palm biomass for many models (sometimes in 
combination with DBH). This height is difficult to detect using air- or space borne remote 
sensing. 

2. Total palm height (Htot) 
The total palm height is the most common tree height metric collected through remote 
sensing, and is also the only height metric available from the remote sensing sources 
available for this study. However, even total height is defined differently by various sources, 
as Simard et al. (2011) mapped this by measuring the highest crowns in the forest, while 
Wang et al. (2016) used the average height measured between the codominant and the 
dominant trees as input. The GEDI GEDI02_A canopy height product used the relative height 
metric of RH100, and the GEDI based Potapov et al. (2021) map used the RH95 metric from 
the raw GEDI beam data. These differences and the various spatial resolutions of the maps 
result in various canopy height values reported. 

In an ideal situation, the genus specific best fit allometric models proposed by Goodman et al. (2013) 
that rely on stem height and DBH would always be used, as these are the best estimators of biomass. 
The data available from the UAV and satellites used in this study only provide Htot data, and the UAV 
palm genus identification by RGB UAV is also not always accurate, as was reported by Tagle Casapia 
et al. (2020). Based on this, a family level model has to be used that does not require Hstem, DBH or 
Genus identification. Two types of allometric model have been selected for use in this study (Table 
3.2), which are family level and genus level models. The family level model that relies on Htot is not 
the best fit family level model, and has a RSE of 0.887 and a R2 of 0.545. This R2 is much lower that 
the genus level models with R2 values that are around 0.8 and 0.9 per genus (Goodman et al., 2013). 
Genus level models are used for Mauritia, Mauritiella and Socratea, which are most abundant. Other 
genera which are only found in very small numbers use the general best fit family level model that 
requires DBH and Hstem as input. 

Table 3.2: Genus specific allometric models (Goodman et al., 2013) used to get the most accurate estimation of the palms in 
the reference dataset. 

# Genus or 
group 

Equation RSE R2 

1 Family level Ln(AGB)       = 1.4882 + 2.22432*Ln(Htot) +2.5152*Ln(dmf) 0.89 0.55 
2 Family level AGB^0.25   = 0.55512*((0.37*DBH^2 * Hstem)^0.25) 0.37 0.99 
3 Mauritia Ln(AGB)       = 2.4647 + 1.3777 * Ln(Hstem) 0.24 0.90 
4 Mauritiella AGB              = 2.8662 * Hstem 8.21 0.97 
5 Socratea Ln(AGB)       = 3.7965 + 1.0029 * Ln(DBH2 * Hstem) 0.24 0.80 

 

 



20 
 

3.3.3 Data cleaning and analysis 
Before data analysis was done, several steps were taken to ensure that the data was suitable for 
analysis. These steps include: 

• Ensuring that all the height and tree numbers were valid numerical values. All decimals 
should be noted using “points” and all text values are removed or corrected. 

• Excluding all measurements with missing data, specifically missing height or tree number.  
• Ensuring that all columns of each plot dataset are standardized, to prevent errors when 

combining the datasets. 
• The values of each raster are checked using a histogram, and all negative values are 

corrected and replaced with zero values. This was also done for the calculated UAV derived 
CH rasters, as negative values can be found where there the DSM and DTM measurements of 
the ground cover were not accurate. This is often the case in palm swamps, where the 
ground is seasonally flooded and difficult to accurately map. 

The main goal of this study is to determine how accurately the biomass of palms can be measured 
using remote sensing. For this, it is necessary to report: 

• Number of palms detected by UAV. 
• Accuracy of remote sensing height estimations. 
• How accurate individual palm biomass can be estimated. 
• How much of the palm biomass in the total area can be estimated. 

Reporting how many of the palms were detected using UAV remote sensing gives an indication of 
how much of the total palm biomass will be measured. UAV has been proven to be useful for 
mapping individual palms, but was not able to map all palms according to Tagle Casapia et al. (2020). 
This is due to several factors such as palm crowns overlapping with other crowns and crowns being 
too close to each other to distinguish the individual palm crowns with UAV. 

The allometric equations by Goodman et al. (2013) are applied, which rely on total or stem height. 
The remote sensing measured palm heights are compared to the ground reference heights, to 
determine which source of palm height is most similar to the reference dataset. The Genus level 
models are used on the ground reference data to get the best reference estimation of the palm 
biomass. The family level model is then used with the remote sensing derived palm heights to 
determine the remote sensing derived biomass. The results from the ground measurements and the 
remote sensing measurement can then be compared and a statistical analysis is done.  

Finally, the total palm biomass will be estimated for each plot, using the family level allometric model 
(Htot) and the reference and remote sensing height data as input. The reference biomass will be 
determined using all palms from the reference data, while the remote sensing heights will only 
include palms that were detected by UAV. 
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3.3.4 Software used 
In this study, open source software are used as much as possible in order to ensure that future 
researchers will be able to replicate this study without the need for specialized paid software.  

Quantum GIS (QGIS) is an open source GIS software and is used for all visualization and processing of 
spatial datasets, which include the rasters and the shapefiles. Extraction of canopy heights, 
reprojections, data clipping and the creation of maps were all done using QGIS tools. 

Forest plot datasets were available as excel spreadsheets, and were cleaned in Microsoft Excel. All 
statistical analysis such as determining the RMSE, were done using the open source “R” statistical 
software. This software was also used for allometric calculations and for creating figures and graphs. 
Statistical methods used to represent errors in this study are the MAE, R2 and RMSE. These methods 
are often used in accuracy assessments of maps (Adam et al., 2020; Csillik et al., 2020; Potapov et al., 
2019; Simard et al., 2011).  
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4 Results  
4.1 Plot characteristics and palm occurrence 
4.1.1 Palm occurrence per species 
A total of 2,218 palms were registered in the reference data for the 13 palm forest and the PISC-02 
palm plantation plots of 0.5ha. In this reference dataset, a total of 7 palm genera were found 
(Distribution of each genera per plot is found in Annex 3). Mauritia was the most dominant palm 
genus found (67%), as expected to be found in the palm swamp ecosystems. This was followed by 
Mauritiella (14%), Socratea (8%) and Euterpe (9%). Other palm species were present in only specific 
plots and together contributed to only about 2% (Elaeis, Attalea, Astrocaryum and Oenocarpus) of 
the total palm count (Figure 4.1).  

 
Figure 4.1: Occurrence of palm genera in the reference dataset, with the genera Elaeis, Attalea, Astrocaryum and 
Oenocarpus classified as “Other” palms. The absolute count of each palm genus is shown, followed by the % of the total 
number of palms the genus represents. 

 

4.1.2 Palm occurrence and detection per plot 
An average of 154 palms were found in each plot (Table 4.1). The plots were found in the forest types 
“Seasonal Flooded”, ”Palm Forest” and “Pole Forest”, based on the forest type categories of the 
region of Loreto classified by Coronado et al. (2021), with the majority of the plots found in the 
“Palm Forest” areas. The number of palms greatly varies per plot (palm density), with only 49 palms 
found in JEN-15, compared to the 267 palms found in VEN-02 (Figure 4.2). Even in the case of the 
VEN plots, which were situated in a line with a distance of only about 500m between each plot order 
to make comparisons between plots possible, the number of palms detected varies between 131 
(VEN-01) and 267 (VEN-02).  
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Figure 4.2: Number of palms counted per 0.5ha plot in the reference dataset. 

Non-palm species are found in large numbers in plots such as ALP-60, JEN-15, SAM-01 and VEN-05 
(Table 4.1). In these plots, the number of non-palm species (trees) with a DBH > 10, outnumber the 
palms present. This is no surprise, as a total of 1,951 non-palm species were found in the 13 plots, 
which is slightly less than the total number of palms (1,999 counted). The plots with the highest palm 
stem density per hectare are VEN-02 (534), VEN-04 (442) and QUI-01 (406). However, when looking 
at the total number of stems per ha based on palms and trees, then plots ALP-60 (926), PIU-02 (806) 
and QUI-01 (794) have the highest stem densities.  

The ability to estimate the individual and the plot level biomass of palms in this study depends on 
how well the palms can be detected though UAV sfm based photogrammetry. The UAV palm 
detection rate for the 13 natural plots was 70% on average, with the lowest being 58% (DMM-01), 
and the highest being 86% (SAM-01). There was no plot where the UAV was able to detect all the 
palms. 

Table 4.1: Abundance and UAV detection rate of palms per plot based on the data from Tagle Casapia et al. (2020) 

Plot Forest Type Palm 
count 

Palm & 
tree 
count 

Palm stem 
density 
(count/ha) 

Palm & tree 
stem density 
(count/ha) 

% palms 
detected by 
UAV 

ALP-60 
Seasonal 
flooded 130 463 260 926 66% 

DMM-01 Palm forest 138 138 276 276 58% 

JEN-14 
Seasonal 
flooded 128 234 256 468 75% 

JEN-15 Pole forest 49 268 98 536 73% 
PIU-02 Palm forest 76 403 152 806 79% 
PRN-01 Palm forest 199 309 398 618 67% 
QUI-01 Palm forest 203 397 406 794 59% 
SAM-01 Palm forest 123 251 246 502 86% 
VEN-01 Pole forest 131 252 262 504 58% 
VEN-02 Palm forest 267 325 534 650 58% 
VEN-03 Palm forest 196 254 392 508 76% 
VEN-04 Palm forest 221 270 442 540 77% 
VEN-05 Palm forest 138 386 276 772 76% 
Total  1,999 3,950 3,998   
Average  154 304 308 608 70% 
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A kernel density estimation function (Figure 4.3) can be used to show the underlying distribution of 
the heights of the palms that were detected and missed with the UAV. The figure shows a clear 
difference between the heights of the detected and missed palms, with the missed palms being 
overall much shorter with a high probability of being around 10m. The detected palms are much 
more likely to be larger palms, with most palms being around 22m.  

 

Figure 4.3: Kernel density functions showing the distributions of the heights of the UAV detected and missed palms based 
on heights from the reference data. 

 

The average height of detected palms was 19.1m and the average height of missed palms was 14.2m 
(Table 4.2). The standard deviation of the detected palm data is larger than that of the missed palm 
data, which indicates that the detected palms have a much wider range of heights compared to the 
missed palms. The missed palms are more likely to be smaller palms with a lower biomass.  

Table 4.2: Height statistics for UAV detected and missed palms. 

Palm 
detection 

Mean 
Height (m) 

S.D. 
(m) Count 

Detected 19.1 7.4 1523 
Missed 14.2 5.6 697 

 

A linear model that used total stem density (non-palms and palms) in the plots as predictor variable 
and the palm detection rate as response variable (Figure 4.4) showed that there was no statistically 
significant relationship between these two variables (P= 0.948 and R2 =-0.09047).  

 

Figure 4.4: Relationship between total stem density (stems/ha) and UAV palm detection rate by per plot. 
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4.2 Palm height analysis 
4.2.1 Palm height distribution 
Even though Mauritia contributed most to the palm counts in each plot, the heights of these palms 
were not the same at each location (Figure 4.5). Mauritiella, the second most abundant palm, was 
not present in all plots and was mostly present in QUI-01, VEN-04 and VEN-05. Other less occurring 
palm genera were only found in some plots, while not being present in most plots (Annex 3). Euterpe 
was present in 11 out of 14 plots, while Socratea and Euterpe were only present in 7 of the 14 plots. 

Total palm heights (Htot) in natural plots ranged from 4.2m to 48.6m.  The palms in the PISC-2 
plantation plot, where only M. flexuosa was planted, had an average tree height of 9.2m, which is 
much smaller than that of the other natural plots. The tallest palm in this plantation was also only 
16m, which is about half of the average height for this species measured in the other natural plots.  
The highest palms were found in PIU-02 and SAM-01, where M. flexuosa palms higher than 40m 
were measured. The average palm height was 18.8m, with the smallest average palm height of 
12.9m found in VEN-04, and the largest average palm height of 27.1m found in PIU-02. Details on the 
palm heights per plots are found in Annex 4. 

 

Figure 4.5: Distribution of palm heights per plot with each genus represented by a color, based on reference ground data. 

 
Comparing the palm heights per forest type (Figure 4.6) shows that the palms in the pole forests 
have the highest average height of 21.1m (S.D. = 5.6m), followed by palm forests with an average 
height of 17.9m (S.D. = 7.1m) and seasonally flooded forest with an average height of 15m (S.D. = 
7.2m). However, comparing the heights between these forest types is difficult due to the large 
differences between the numbers of palms measured in each of these forest types, with only 180 
palms measured in the pole forests compared to the 1560 palms measured in palm forests.  
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Figure 4.6: Distribution of total palm heights per forest type with each genus represented by a color, using reference data as 
input. 

 

4.2.2 Palm height per genus 
When looking at the heights per genus, the Mauritia genus had the largest dataset and overall tallest 
individual palms measured (Table 4.3 and Figure 4.7). The highest palm measured in the reference 
dataset was estimated to be about 48.6, with the average height of this species being 20.3m, which is 
higher than all other species included in this study. Euterpe and Socratea also have a large number of 
palms sampled, and both have similar average heights around 15m. The second most abundant 
genus Mauritiella, has the smallest average height of 13.2m. This genus is abundant in the plots 
“QUI-01”, “VEN-04” and “VEN-05”. This resulted in these plots having relatively small average palm 
heights measured. The average heights of the other genera were between 12.7m and 16.8m. None 
of the genera, except for Mauritia, had palms measured that were higher than 28m. 

Table 4.3: Reference data total palm height statistics per genus. 

Genus Mean (m) S.D. (m) Minimum (m) Maximum (m) Count 
Euterpe 15.6 4.2 7.2 28.0 188 
Mauritia 20.3 7.2 5.1 48.6 1337 
Mauritiella 13.2 4.1 4.2 23.8 288 
Other 12.7 3.7 5.3 22.2 30 
Socratea 16.8 4.6 8.5 27.4 155 

 

Looking at the distribution of the heights for each genera (Figure 4.7), the average height of Mauritia 
is much higher than other genera, but also has a very wide range of heights measured. There are also 
a relative high number of outliers measured for Mauritia, with 6 palms measured larger than 40m. 
About 25% of the Mauritia palms measured were smaller than 15m, 25% were larger than 23m, and 
the majority (50%), were measured between 15m and 23m.  
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Figure 4.7: Reference data distribution of palm heights per genus presented as boxplots. 

 
4.2.3 Comparing stem and total palm height 
Several allometric models are proposed by Goodman et al. (2014) for the estimation of biomass per 
palm genus. When comparing the stem and total height (Figure 4.8), it is clear that the difference 
between stem and total height varies for each palm measured. Some differences in palm and stem 
height are less than a meter, while other differences are larger than 5m. There are also several 
outliers, where the differences between stem and total height are more than 15m. These outliers 
could be attributed to errors when measuring in the field. There are some cases where the total 
height is smaller than the stem height, which is not possible. These cases could be caused by 
mistakes made when measuring heights in the field. 

 

Figure 4.8: Comparison of stem height and total height per observed palm in the reference dataset, sorted from the palms 
with the lowest to the highest stem height. 
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4.3 Remote sensing height 
4.3.1 Height map comparison  
The total palm heights obtained from the ground reference dataset are compared with the heights 
extracted from various remote sensing sources. For this analysis, only palms that are available in all 
datasets are used for comparison. This only includes palms that were detected by UAV and where all 
remote sensing sources were able to provide height data. This analysis only uses data from the 
natural plots, as PISC-02 does not give represent palm height distributions found in a natural plot. 
The Asner map (Asner, 2021; Asner et al., 2014) data was also not available for this area, as this 
location was classified as non-forest flooded area on that map.  

The Simard (Simard et al., 2011) and the Wang (Wang et al., 2016) maps greatly overestimate palm 
height, while having a very small range of heights mapped (Figure 4.9). The Asner and the Potapov 
(Potapov et al., 2019) maps have the largest overlap with the boxplot of the reference data, while the 
UAV datasets (original and 1m downsampled) underestimate the palm height, with the boxplots only 
showing a small overlap with the boxplot of the reference data. The GEDI L2A canopy height map 
was also tested, but only had data for a limited amount of plots, in addition to having a very low 
spatial resolution of 1150m, making it unsuitable for this study.  

 
Figure 4.9: Distribution of palm heights detected per height map for the 13 natural plots using only the palms present in all 
datasets as input. Htot-ref and Hstem-ref refer to the height data from the reference dataset, and all other height values 
represent Htot values from height maps. 

 
When comparing the remote sensing height data to the reference data only for the PISC-02 
plantation plot (Figure 4.10), it can be seen that the Simard and Wang maps still very much 
overestimate the palm height in the area.. The Asner dataset also overestimates the palms heights by 
several meters, with the boxplot not overlapping with that of the reference dataset. The UAV data 
performs much better here, with the UAV and Potapov boxplots having the best resulting overlap 
with the reference data boxplot.  
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Figure 4.10: Distribution of palm heights detected per height map for the PISC-02 plantation. Htot-ref and Hstem-ref refer 
to the height data from the reference dataset, and all other height values represent Htot values from height maps. 

 
The average palm Htot from the reference dataset is 19.6m, with a standard deviation of 7.1m (Table 
4.4). The standard deviation of the reference data is much larger compared to those of the remote 
sensing sources, resulting from the large range of heights in the data. The UAV and UAV1m 
(downsampled UAV) data average heights of 10.1m are much smaller than that of the reference 
dataset. There are only slight differences between the outputs of the UAV and UAV downsampled 
maps, with no significant improvement detectable following the downsampling, so only the original 
UAV data will be discussed and used from now on. The UAV dataset has a RMSE, MAE and R2 of 
respectively 12m, 10m and 12%. The errors are much larger than of all the other maps, with a very 
low model fit. The Asner data average height is 18.0m, and is relatively close to that of the reference 
data. It also shows to have the best fit with the reference data compared to the other datasets, with 
a RMSE, MAE and R2 of respectively 6.5m, 5.2m and 25%. This dataset also has a limited range of 
between 13.3m and 21.6m, meaning that most large palm heights are underestimated and small 
palm heights are overestimated. The Potapov data has a much larger range of heights measured, 
between 5m and 28m, resulting in heights of large palms also being underestimated. The Wang and 
Simard datasets have the largest errors and the smallest range of heights mapped. Use of these two 
datasets is not recommended based on the limited height range and the large errors. 

Table 4.4: Total palm height of the reference data compared to that of the remote sensing derived heights, with related 
statistics and errors. 

Source Average 
height 
(m) 

Standard 
deviation 
(m) 

Difference in 
average 
height (m)* 

Minimum 
(m) 

Maximum 
(m) 

RMSE 
(m) 

MAE 
(m) 

R2 

Total 
height 
(field) 

19.6 7.1 - 1.6 48.6 - - - 

Asner 18.0 2.0 5.2 13.3 21.6 6.5 5.2 25% 
Potapov 21.0 4.6 5.2 5.0 28.0 6.6 5.2 20% 
Simard 27.2 3.5 8.2 20.0 34.0 9.8 8.2 24% 
UAV 10.1 5.2 10.0 0.0 27.4 12.0 10.0 12% 
UAV1m 10.1 5.2 9.9 0.0 27.3 11.9 9.9 12% 
Wang 25.6 1.1 7.7 23.0 26.8 9.3 7.7 1% 

*Average absolute difference between the remote sensing derived Htot and the reference Htot. 
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4.3.2 Linear model for total height  
Various remote sensing height datasets are available and it is possible to create a linear regression 
model using these maps to predict the correct (reference) height. Four models are tested, using 
various combinations of the UAV, Asner and Potapov palm heights as independent values. The 
outputs of these models (Table 4.5) show that using all three maps (model 1) as input result in the 
best results with a R2 of 42%. This is followed by model 2, which only relies on the Asner and UAV 
data, with an R2 of 38%. The third model (model 3), uses UAV and Potapov data, and has a R2 of 35%. 
The final model (model 4) uses only the Asner and Potapov data, and has the worst model fit of 27%. 
All models have a p value smaller than 0.01. The models show that the UAV data has an important 
role in the models, as the model that excluded the UAV data as input has the worst model fit.  

Table 4.5: Comparison of linear models using remote sensing data as independent variables and the reference palm height 
as dependent variable. 

Linear model R2 Coefficients P value Std error 

Model 1 
(Asner+UAV+

Potapov) 
0.42 

(Intercept) 5.9E-28 1.34 
Asner 2.7E-33 0.09 
UAV 4.6E-70 0.03 
Potapov 3.9E-21 0.04 

Model 2 
(Asner+UAV) 0.38 

(Intercept) 3.5E-35 1.36 
Asner 5.3E-110 0.07 
UAV 4.0E-60 0.03 

Model 3 
(UAV+Potap

ov) 
0.35 

(Intercept) 1.1E-01 0.78 
UAV 8.7E-70 0.03 
Potapov 6.5E-98 0.03 

Model 4 
(Asner 

+Potapov) 
0.27 

(Intercept) 7.4E-12 1.46 
Asner 5.4E-33 0.11 
Potapov 4.8E-11 0.05 

 

Comparing the best model (model 1), with the reference dataset results in a RMSE and MAE of 
respectively 5.4 and 4.2m (Table 4.6). The model errors of the other three models are slightly higher 
and have RMSE values between 5.6m and 6m, and MAE values between 4.5m and 4.7m. However, 
model 1 has the lowest errors and the best model fit, making it best suited for estimating heights to 
use in the allometric models for biomass estimation. 

Table 4.6: Errors related to linear models using remote sensing data as independent variables and the reference palm 
height as dependent variable. 

Source Average 
height (m) 

Standard 
deviation (m) 

Mean height 
difference (m) 

RMSE 
(m) 

MAE 
(m)  

R2 

Reference 
height (field) 

19.7 7.1 - - - - 

Model1 19.7 4.6 4.2 5.4 4.2 0.42 
Model2 19.7 4.4 4.5 5.6 4.5 0.38 
Model3 19.7 4.2 4.4 5.7 4.4 0.35 
Model4 19.7 3.7 4.7 6.0 4.7 0.27 
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4.3.3 Plot level height accuracy 
Taking the sum of the heights measured in each plot and per height sources gives an indication of 
how much the measured heights differ per dataset (Figure 4.11). Overall, UAV data underestimates 
the palm heights in all plots, even in cases where the palms are present in high numbers, such as in 
plot VEN-02, JEN-14 and PRN-01. The Potapov, Model 1 and Asner total heights are much closer to 
that of the reference dataset.  

 

Figure 4.11: Comparison of all palm heights measured per plot summed for each height source. 

 
The most accurate palm height measurements by UAV were done in the PISC-02 plantation (Table 
4.7), where the palms were similar heights and the soil between the palms was clearly visible on the 
UAV imagery. The best results in a natural plot were found in VEN-04, where the RMSE and MAE 
were respectively 2.2m and 1.9m. The worst results were found in plot VEN-01, where the RMSE and 
MAE were respectively 16.6m and 15.9m.  

Table 4.7: Comparison of reference and UAV total palm height per plot with related errors. 

Plot Mean 
reference 
height (m) 

Mean UAV 
height (m) 

S.D. 
(m) 

Mean 
difference 
(m) 

RMSE (m) MAE (m) R2 

ALP-60 19.2 9.0 5.0 10.3 10.8 10.3 0.44 
DMM-01 20.7 11.9 4.1 8.8 9.7 8.8 0.36 
JEN-14 22.8 8.8 4.8 14.2 15.4 14.2 0.21 
JEN-15 24.2 8.7 4.5 15.4 16.3 15.4 0.04 
PISC-02 9.5 7.9 2.3 1.9 2.2 1.9 0.65 
PIU-02 29.3 15.5 5.2 14.0 16.0 14.0 0.10 
PRN-01 24.2 9.0 4.4 15.3 15.9 15.3 0.31 
QUI-01 19.8 10.6 4.7 9.2 10.2 9.2 0.32 
SAM-01 26.8 14.4 6.1 12.9 14.5 12.9 0.22 
VEN-01 23.1 7.2 3.3 15.9 16.6 15.9 0.03 
VEN-02 19.1 4.5 2.1 14.5 14.9 14.5 0.25 
VEN-03 16.1 9.5 5.4 8.2 9.9 8.2 0.00 
VEN-04 13.7 12.6 4.0 2.0 2.6 2.0 0.71 
VEN-05 17.2 12.8 3.9 5.0 5.5 5.0 0.50 
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The Asner height dataset has the smallest RMSE and MAE of respectively 4.1m and 3.5m in the ALP-
60 plot (Table 4.8), and the largest RMSE and MAE of respectively 12.3 and 10.6m in the PIU-02 plot. 
Only 5 plots had an RMSE of larger than 6m, but the R2 model fit was extremely low in all plots due to 
many palms being assigned the same height value in a plot, as a result of the low spatial resolution.  

Table 4.8: Comparison of reference and Asner total palm height per plot with related errors. 

Plot Mean 
reference 
height 
(m) 

Mean 
Asner 
height (m) 

S.D. (m) Mean 
difference 
(m) 

RMSE (m) MAE (m) R2 

ALP-60 19.2 19.1 0.2 3.5 4.1 3.5 0.02 
DMM-
01 20.7 19.5 0.1 4.1 5.1 4.1 0.00 
JEN-14 22.8 18.1 0.1 7.1 8.3 7.1 0.00 
JEN-15 24.2 19.6 0.2 5.1 5.9 5.1 0.05 
PISC-02 9.5 15.4 0.9 5.9 6.4 5.9 0.09 
PIU-02 29.3 20.1 0.1 10.6 12.3 10.6 0.00 
PRN-01 24.2 21.2 0.3 5.3 6.2 5.3 0.02 
QUI-01 19.8 17.8 0.3 4.0 5.0 4.0 0.00 
SAM-01 26.8 19.9 0.9 9.1 10.7 9.1 0.01 
VEN-01 23.1 20.1 0.1 4.3 5.1 4.3 0.00 
VEN-02 19.1 17.7 0.0 3.6 4.3 3.6 NA 
VEN-03 16.1 16.3 0.3 4.0 5.0 4.0 0.00 
VEN-04 13.7 17.1 0.1 4.8 5.6 4.8 0.00 
VEN-05 17.2 14.1 1.1 4.6 5.9 4.6 0.01 

 

The Potapov map has similar issues with the model fit per plot being extremely low, due to the 
height map pixel size being 30x30m (Table 4.9). The lowest RMSE and MAE of respectively 4.0m and 
3.4m were found in PISC-02. The second lowest RMSE and MAE of respectively 4.3m and 3.3m were 
found in VEN-01, in contrast to the UAV height errors, which were highest in VEN-01. The highest 
RMSE and MAE of respectively 12.4 and 10.8m were found in PIU-02, similar to the Asner data. Only 
5 plots had an RMSE of higher than 6m. 

The model 1 results were better compared to the previous datasets, with the lowest RMSE and MAE 
values of respectively 2.2m and 1.8m found in PISC-02, followed by RMSE and MAE values of 
respectively 3.7m and 2.8m found in QUI-01 (Table 4.10). The highest RMSE and MAE of respectively 
9.1 and 7.8m were found in PIU-02, similar to the Asner and Potapov data. Only 4 plots had an RMSE 
of larger than 6m. The R2 values varies between 0 and 0.67, with only VEN-04 having an R2 value of 
higher than 0.5. 
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Table 4.9: Comparison of reference and Potapov total palm height per plot with related errors. 

Plot Mean 
reference 
height 
(m) 

Mean 
Potapov 
height (m) 

S.D. (m) Mean 
difference 
(m) 

RMSE (m) MAE (m) R2 

ALP-60 19.2 26.1 0.7 7.0 8.1 7.0 0.01 
DMM-
01 20.7 21.0 0.7 3.8 5.0 3.8 0.02 
JEN-14 22.8 27.6 0.7 6.4 8.3 6.4 0.00 
JEN-15 24.2 20.9 0.4 4.3 5.1 4.3 0.01 
PISC-02 9.5 7.4 2.0 3.4 4.0 3.4 0.01 
PIU-02 29.3 19.9 0.9 10.8 12.4 10.8 0.01 
PRN-01 24.2 24.9 0.3 4.2 5.5 4.2 0.02 
QUI-01 19.8 22.3 0.8 4.1 5.2 4.1 0.00 
SAM-01 26.8 23.2 0.8 7.3 8.8 7.3 0.01 
VEN-01 23.1 23.9 0.6 3.3 4.3 3.3 0.00 
VEN-02 19.1 23.0 0.9 4.5 5.6 4.5 0.02 
VEN-03 16.1 17.1 1.0 4.3 5.2 4.3 0.00 
VEN-04 13.7 19.7 1.1 6.6 7.5 6.6 0.00 
VEN-05 17.2 15.9 1.0 4.1 5.1 4.1 0.00 

 

Table 4.10: Comparison of reference and Model 1 total palm height per plot with related errors. 

Plot Mean 
reference 
height 
(m) 

Mean 
model 1 
height (m) 

S.D. (m) Mean 
difference 
(m) 

RMSE (m) MAE (m) R2 

ALP-60 19.2 22.4 2.5 3.5 4.4 3.5 0.48 
DMM-
01 20.7 22.3 2.2 3.3 4.5 3.3 0.33 
JEN-14 22.8 21.7 2.4 5.0 6.1 5.0 0.23 
JEN-15 24.2 20.7 2.4 4.5 5.4 4.5 0.04 
PISC-02 9.5 10.0 2.0 1.8 2.2 1.8 0.35 
PIU-02 29.3 24.4 2.6 7.8 9.1 7.8 0.11 
PRN-01 24.2 24.4 2.3 3.4 4.7 3.4 0.27 
QUI-01 19.8 20.2 2.3 2.8 3.7 2.8 0.36 
SAM-01 26.8 24.9 3.4 6.2 7.6 6.2 0.18 
VEN-01 23.1 21.8 1.6 3.5 4.4 3.5 0.03 
VEN-02 19.1 17.2 1.2 3.4 4.1 3.4 0.24 
VEN-03 16.1 15.7 2.7 4.7 5.8 4.7 0.00 
VEN-04 13.7 19.4 2.2 5.8 6.4 5.8 0.67 
VEN-05 17.2 14.5 2.2 3.9 4.8 3.9 0.35 
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4.4 Biomass estimation 
4.4.1 Allometric model comparison 
The reference dataset includes both Hstem and Htot, meaning that both the genus level model that 
require Hstem and the less accurate family level model that requires Htot can be applied to estimate 
the reference plot biomass. For this comparison, only trees with both Hstem and Htot measured in 
the field are used to calculate biomass. The allometric model that requires Htot has a lower 
estimated total biomass per plot (Figure 4.12), indicating an underestimation of the total biomass in 
most cases. This trend can be seen in all plots, with the exception of PIU-02. The average biomass per 
palm estimated by the family level model is 283kg, and the average of the genus level model is 
352kg, highlighting the underestimation by the family level model.  

 

Figure 4.12: Comparison of genus and family level biomass estimation of palms per plot using data stem and total palm 
height from the reference data. 

 

4.4.2 Biomass estimation accuracy 
Biomass is estimated for all palms that are present in both the field and remote sensing datasets in 
order to make biomass comparisons possible. Because of this, the difference of palms counted per 
height source do not have to be taken into account. The family level model that requires total palm 
height is used, and the biomass of all palms is summed up for each height source (Figure 4.13). The 
Potapov dataset has the closest estimation of the reference biomass, with a relatively small 
overestimation the total reference biomass. Model 1 has the second best results, and 
underestimates the reference biomass.  The Asner dataset also underestimates the biomass, and to a 
much larger degree than the Model 1.  The UAV dataset has the worst result, with less than half of 
the reference biomass estimated. A plot level comparison of biomass per plot and per height data 
source is found in Annex 5. 
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Figure 4.13: Comparison of total biomass of all detected palms per height source based on the family level allometric 
model. 

 
The underestimation by the UAV data is also reflected in the error statistics, with the UAV biomass 
having a RMSE and MAE of respectively 354kg and 262kg, which is much larger than those of the 
other datasets (Table 4.11). Even though the total Potapov biomass of 516,000kg was closest to that 
of the reference data (493,377kg), this dataset did not have the lowest errors reported. The model 1 
dataset had the lowest errors, with and RMSE and MAE of 212kg and 147kg, which are significantly 
lower than that of the other data sources. The model 1 dataset also had the best model fit compared 
to the other datasets (42%). 

Table 4.11: Statistical comparison of reference data biomass with the remote sensing estimated biomass based on the 
family level allometric model. 

Source Sum (kg) % of reference 
biomass Mean (kg) RMSE (kg) MAE (kg) R2 

Reference    493,377  -             343  - - - 
UAV    128,565  26%               89              354              262            0.16  

Asner    350,144  71%             243              266              180            0.23  
Model1    448,729  91%             312              212              147            0.40  
Potapov    516,100  105%             358              259              184            0.12  

 

The total biomass per plot (Figure 4.14) shows that the biomass overestimation and underestimation 
by each dataset varies per plot. Some trends can be seen such as that the UAV dataset severely 
underestimates the total biomass in most plots. All datasets underestimated the biomass in plot 
SAM-01 and PIU-02. The model 1 results are relatively close to the reference values, with some 
exceptions such as in plot SAM-01 and PIU-02. The Asner dataset almost always underestimates the 
biomass, except in cases where there are mostly small palms present, such as in plot PISC-02. The 
Potapov dataset shows relatively similar results compared to the reference data, but shows some 
large overestimations in plots such as JEN-14, ALP-60 and VEN-02. 
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Figure 4.14: Total biomass estimated per plot using family level allometric model compared for each height source. 

 
The UAV dataset estimated between 5% and 82% of the reference biomass (Annex 5), and performed 
worst in plot VEN-02 and VEN-01, with less than 10% of the reference biomass estimated in those 
plots. The best results were in PISC-02 and VEN-04, where respectively 67% and 82% of the biomass 
was estimated. The Asner dataset performed much better per plot, estimating between 39% and 
269% of the reference biomass. The worst results were found in plot PIU-02 and PISC-02, where 
respectively 39% and 269% of the reference biomass was estimated. The best estimations were done 
for plots VEN-02, DMM-01, VEN-03 and ALP-60, where between 80% and 93% of the reference 
biomass was estimated. The Potapov dataset estimated between 38% and 197% of the reference 
biomass, with the best results in plots DMM-01, PRN-01, VEN-03, and VEN-01, with respectively 96%, 
100%, 102% and 103% of the reference biomass estimated. The Potapov dataset performed worst in 
plots PIU-02 and PISC-02, with respectively 38% and 56% of the biomass estimated. The model 1 
dataset estimated between 61% and 192% of the reference biomass, which is the most accurate 
range compared to the previous datasets. The best results were found in the plots PRN-01, QUI-01 
and PISC-02, with respectively 96% 99% and 107% of the reference biomass predicted. The model 
performed worst for plots PIU-02, VEN-05 and VEN-04, with respectively 61%, 63% and 192% of the 
biomass estimated.                 

4.4.3 Biomass and palm detection rate 
The previous paragraph estimated how well biomass is estimated in case the exact same number of 
palms is found in the remote sensing and the reference dataset. In practice this is not the case, as 
results in chapter 5.5.2 showed that only 70% of palms are detected. The biomass of the detected 
and missed are compared (Figure 4.15), and shows that only between 64% and 93% biomass is 
detected when comparing plots. This comparison is done using the reference height data and the 
family level allometric model that uses total palm height as input. 
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Figure 4.15: Proportion of missed and detected biomass per plot based on the UAV palm detection rate, and using 
reference data total height and the family level allometric model. 

 
Plots DMM-01 and PISC-02 showed the largest % of biomass missed (Table 4.12), with only 
respectively 64% and 67% detected. The best results were found in plots PIU-02, VEN-05 and SAM-
01, where respectively 90%, 92% and 93% of the biomass was detected. Taking into account all the 
plots, 81% of the biomass was detected. 

Table 4.12: Biomass comparison of the palms detected and missed by UAV for each plot. 

Plot Biomass 
detected 

(kg) 

Count of 
detected 

palms 

Biomass 
missed (kg) 

Count of 
missed 
palms 

Biomass 
total 
(kg) * 

% Palms 
detected 

% of 
reference 
biomass 
detected 

ALP-60 24,865 85 8,540 45 33,405 66% 74% 
DMM-01 25,552 73 14,651 65 40,202 58% 64% 
JEN-14 43,599 96 9,578 32 53,177 75% 82% 
JEN-15 16,180 34 6,237 15 22,417 73% 72% 
PISC-02 8,868 155 4,325 64 13,192 79% 67% 
PIU-02 47,138 60 5,334 16 52,472 67% 90% 
PRN-01 65,999 134 15,797 65 81,795 59% 81% 
QUI-01 36,272 115 10,753 89 47,026 86% 77% 
SAM-01 69,084 106 5,550 17 74,634 58% 93% 
VEN-01 32,928 76 11,532 55 44,460 58% 74% 
VEN-02 44,200 154 15,358 113 59,558 76% 74% 
VEN-03 30,866 148 6,203 48 37,069 77% 83% 
VEN-04 25,343 171 3,533 50 28,876 76% 88% 
VEN-05 27,344 116 2,477 23 29,821 66% 92% 

Total 498,237 1,523 119,868 697 618,104 70% 81% 
*Total biomass is the sum of the missed and detected biomass  
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4.4.4 Reference and UAV detected biomass compared 
The total biomass of all palms is estimated using the complete reference dataset and is compared 
with the biomass estimated using the remote sensing height data and only the UAV detected palms. 
The reference dataset has the highest biomass, followed by the Potapov, Asner, Model 1 and UAV 
datasets (Figure 4.16). All remote sensing datasets underestimate the total biomass, with the UAV 
data having the lowest estimation of the total biomass.  

 

Figure 4.16: Comparison of the total reference data biomass with the biomass of the palms detected by UAV using various 
height sources as input. 

 
One of the main factors influencing the total biomass is the availability of data. The reference dataset 
contains 1,999 palms, while the remote sensing datasets only contain 1,371 palms. In this analysis, 
the PISC-02 data is excluded, as this is not a natural plot and does not represent palm forest biomass. 
The PISC-02 plot was also not classified as forest by the Asner forest height raster, resulting in 
missing data for that area. This would result in an even lower biomass for the Asner and Model 1 
datasets, as the model 1 datasets uses Asner data as input.  

The UAV, Asner, Potapov and Model 1 height datasets estimated respectively 21%, 56%, 86% and 
74% of the total reference biomass (Annex 6). The best and worst UAV results are respectively 72% 
(VEN-04) and 4% (VEN-02) of the reference biomass detected. In only four plots was UAV able to 
estimate more than 30% of the reference biomass. The Asner dataset results were between 35% and 
126% of the total reference biomass, with overestimations of the biomass found in PISC-02 and VEN-
04. The Potapov dataset had the closest estimation of the total biomass, predicting between 34% 
and 173% of the reference biomass. The biomass was overestimated in plot VEN-02, JEN-14, ALP-60 
and VEN-04 (figure 4.17).  
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Figure 4.17: Plot comparison of the reference biomass with the biomass of the palms detected by UAV using various remote 
sensing height sources as input. 
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5 Discussion 
5.1 Palm occurrence and detection rate 
The number of palms found per 0.5ha plot was between 49 palms (JEN-15) and 267 (VEN-02), with 
most of the palms detected being Mauritia (67%), followed by Mauritiella (14%). The abundance of 
these species per plot is an important factor when estimating the biomass per plot, as Mauritia was 
by far the tallest palm genus on average (20.3m), followed by Socratea (16.8m). In contrast to this, 
Mauritiella had one of the lowest average palm heights (13.2m). The abundance of these short palms 
per plot is reflected in the average palm height per plot, with QUI-01, VEN-04 and VEN-05, where the 
abundance of Mauritiella is the highest, having the lowest average plot palm height compared to 
other plots. Mauritia was the tallest palm genus on average, with a relative high number of outliers 
measured for Mauritia, with 6 palms measured larger than 40m. The presence of these palms can 
have a relatively big impact on the biomass measured in a plot, as these palms have a relatively high 
biomass compared to smaller palms. These outliers were found in the PIU-01 and the SAM-01 plots. 
The maximum heights measured for other genera are much lower, with Euterpe being the highest 
after Mauritia. These results imply that an area with Mauritia palms is likely to have a higher biomass 
compared to an area with the same number of palms from another genera. These results indicate 
that only having information about species abundance in a plot can give an indication of relative 
biomass when comparing plots.  

Palm detection was done using commercial RGB UAV, and results show that there was no natural 
plot where the UAV was able to detect all the palms, indicating that remote sensing based biomass 
estimation that relies on detecting individual palms using this type of UAV in dense tropical forests 
will likely underestimate the plot biomass based on the palm detection rate. Only in the PISC-02 
Mauritia plantation the UAV was able to detect all palms, but this area was not comparable to a 
natural forest due to the palms being planted in a grid with a set distance to each other, making the 
palm crowns and the soil between palm crowns very visible for UAV detection. The average detection 
rate per plot was 70%, varying between 58% and 86%. One of the reasons the palm detection rate 
was low is because the crowns could be overlapping in some cases, resulting in some crowns not 
being visible from above. The results show that detected palms are much more likely to be larger 
palms, with most palms being around 22m, while missed palms are mostly around 10m. This 
indicates that shorter palms are much less likely to be detected. This analysis supports the theory 
that missed palms are most likely hidden by the canopy, which is also suggested by Tagle Casapia et 
al. (2020). This suggests that even if the fraction of palms missed is relatively high, the impact on the 
biomass does not always have to be the same order of magnitude, due to these palms having low 
biomass (Goodman et al., 2014). 

The stem abundance per hectare could give an indication of how many crowns overlap, and here not 
only palms are taken into account, but also non-palm species (trees), since these can also have 
crowns that overlap with those of palms. The stem abundance per hectare was plotted against the 
palm detection rate, but no relationship between the two values was found. More research should 
be done to determine what other factors influence the palm detection rate, such as clustering of 
palms. The UAV palm detection method implemented by Tagle Casapia et al. (2020) is one of the first 
studies to attempt palm detection in a complex Amazonian forest such as this and already identified 
factors that affect the detection rate such as palm crown visibility. It is beyond the scope of this study 
to determine how this palm detection methodology could be improved. But it is clear that more 
research to improve the detection rate will result in better estimations of the palm abundance and 
the related biomass in these complex forests. 
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5.2 Palm height estimation with remote sensing 
Better estimation of palm height results in more accurate biomass estimations. Detecting palm 
heights with remote sensing is challenging and depends on factors such as the resolution of the 
height maps and the limitations of these maps. Various canopy height maps are available, with UAV 
having the highest spatial resolution (2-30cm), which is much higher than the other height maps with 
resolutions of 30m and lower. The results showed that the lower resolution maps such as the global 
30m resolution Potapov (Potapov et al., 2021) and the national 100m resolution Asner (Asner, 2021) 
maps more accurately estimated the palm heights than the high resolution UAV height maps. The 
UAV derived average height of all palms is was estimated to be about 10m smaller than the actual 
average height, indicating a significant underestimation of palm heights. One possible reason for the 
height errors was that the point locations of the palms crowns was not always accurate. This is likely 
caused by factors such as the location error of the GPS in the UAV, which is about 5m. In this case, 
there were also no geometrical corrections done, and no ground control points were used. Future 
studies could incorporate these steps to improve the accuracy and determine if this has a significant 
effect on the palm detection rate and palm height estimations. The UAV height map raster was also 
downsampled from a few centimeters to 1m. Heights extracted from this lower resolution UAV 
height map showed that there was no significant improvement of the heights estimations, making 
this downsampling unnecessary.  

In addition to the overall underestimation of palm height by UAV, some palms were also estimated 
to have a height of zero or a negative value. This was due to the errors in the DSM and DTM, 
resulting in the DTM being larger than the DSM at some locations. The result of this is that some 
palms are not counted in the total plot biomass, and this means that even if palms are detected by 
the UAV, there is a chance the no biomass is calculated because the height is zero. However, when 
only taking into account the results of PISC-02 plantation, the UAV has much better results, with the 
palm height underestimation being only about 3m on average compared the 10m underestimation in 
the natural plots. The generalizability of these results is however limited by the limited amount of 
palms found in the single plantation plot, and the fact that these plantation Mauritia palms were 
genetically small and had similar heights. These results support the literature which describes that it 
is difficult to get a good DTM from RGB UAV in dense tropical forests, because it is difficult for the 
UAV to reconstruct the canopies and the forest height when palm crowns overlap and when the 
ground is not visible on the UAV images (Jiménez-Jiménez et al., 2021). This is especially difficult in 
areas where the ground is covered by water bodies, as is often the case in swampy forests, since 
water is homogenous and makes it difficult to detect common points on the images. The spacing 
between the palms in the PISC-02 plantation and the visibility of the soil between the palms seemed 
to improve the quality of the DSM and DTM plots. These initial results indicate that UAV is best 
suited for palm detection and heights estimations in these types of plantation forests, or in forests 
where there is a lot of visible ground and where the crowns do not overlap.  

In natural forest plots, the Potapov height map has an average palm height of 21m, which is closest 
to that of the reference data (19.6m). Potapov et al. (2021) also reported that the Potapov height 
map has difficulties mapping small (<7m) and tall trees (>30m), which may influence height accuracy 
in plots where palms with these heights dominate. The Asner map has an average palm height of 
18m. Both maps have similar RMSE (6.5m – 6.6.m) and MAE (5.2m) values, which are much lower 
compared to that of the UAV data (RMSE of 12m and MAE of 10m). The errors reported for the Asner 
map in the plots are higher than those reported in the Asner et al. (2014) paper, which describes that 
height errors are higher in areas with canopies lower than 10m and in tropical forests (such as is the 
case in the plots).  
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The Simard (Simard et al., 2011) and Wang (Wang et al., 2016) maps showed to be unsuitable for 
use, as they severely overestimated the palm heights by about 6m. Another important factor when 
choosing the height maps was the range of heights these maps could measure, with the Wang map 
having the smallest range (23m – 26.8), followed by the Simard map (20m – 34m). Even though the 
UAV map has large errors, it is the map with the tallest range of heights measured (0m – 27.4m), 
which is an important factor seeing how the palms have heights between 1.6m and 48.6m. None of 
the useful maps however, were able to detect palms heights above 28m. This would implicate that in 
a plot where palms are larger than 28m, biomass would certainly be underestimated by these amps 
(UAV, Simard and Asner maps). These maximum heights limits were expected, as they had been 
reported before (Asner, 2021; Potapov et al., 2019). The minimum height measurement limits of 
these maps also affects the biomass estimation, as the Asner map estimated the lowest palm height 
to be 13.3m, which is much larger than that of the reference dataset (smallest palm being 1.6m). The 
effects of this limitation are clear when looking at results from height mapping in plots with small 
palms such as PISC-02, where palms have an average height of around 10m. Here all the palm heights 
are overestimated by the Asner map, with a reported average palm height of 16m. A limitation of 
this study is that only the palm heights are available as reference height data, while the remote 
sensing height maps have heights estimated based on all vegetation in that area, which includes 
trees and palms. The plots in the dataset all include a large amount of trees, making it difficult to 
determine how much the remote sensing derived canopy heights were influenced by tree heights in 
the plots. However, it is expected that the height of the trees in the plot will have an impact on the 
remote sensing detected forest height maps, especially in cases where the tree and the palm heights 
vary. These results suggest to use a combination of these various heights maps in order that the 
maps can compensate for the shortcomings of other maps.  

Another challenge is the low resolution of the height maps, resulting in the palms in these plots being 
assigned only one or two height values in the whole plot. This is especially challenging for the Asner 
map, which has a resolution of 1ha, which is larger than the plot size of 0.5ha. Plot level height error 
estimations are difficult to calculate due to the low spatial resolution of the raster maps (except 
UAV). Only the UAV dataset has a high enough resolution to distinguish palm heights of individual 
palms, even though there were relatively big RMSE and MAE errors. The resolutions of the other 
maps make them more suitable for height error analysis of larger areas that cover multiple pixels, or 
when taking data from multiple plots into account such as in this study. 

As the comparison of the individual heights maps with the reference data show that the UAV, Asner 
and Potapov maps have the best results. Linear models were also tested to predict the reference 
data using these height maps as input. Four linear models were tested using combinations of these 
three maps, with results showing that a linear model that uses all three maps as independent 
variables provided the best results with an R2 of 0.42 (model 1). The worst model (model 4) had a R2 
of 0.27 and only used the Asner and Potapov maps as input. These results demonstrate that UAV had 
a significant role in improving the model, most likely due to this map having the largest range of 
heights mapped, and because the high spatial resolution allowed for each palm to be assigned a 
separate height value. One benefit of this large height range is that is it possible to map relative 
differences between individual palm heights, something which is not possible in a small area when 
using the lower resolution height maps. The model fit of 0.42 is not high, but still an improvement 
compared to best data fit when using a single map, of which the Asner map had the best R2 model fit 
of 25%.  However, the limitation of this model is that it is dependent on all three height maps, which 
are not always available for all areas. An example of this is the PISC-02 plot, which had missing data 
on the Asner map, resulting in it not being possible to use the model for all palms. 
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5.3 Biomass comparison  
Several allometric models are proposed by Goodman et al. (2013), that can be used based on which 
data is available. Palms require palm height for biomass estimation, and the most accurate models 
are genus specific and require stem height as input. However, stem height is very difficult to detect 
using remote sensing and that data was not available from remote sensing in this study. The height 
maps provide only total palm height, which can be used for family level allometric models. Even 
though genus specific models are available that require total height, the use of family level models is 
recommended, as using the palm genus identified through remote sensing would introduce another 
level of uncertainty. The difficulty of accurately detecting the genus using RGB UAV varies per plot, 
and depends on factors such as the canopy density and the species present, since some species had 
similar crown types (Tagle Casapia et al., 2020). The palm biomass was determined for the palms in 
the reference data which contained both stem and total height data, and results showed that the 
family level model estimated about 20% biomass less than the genus level model. This difference can 
be partially attributed to the errors in measurements in the field, either overestimating the stem 
height or underestimating the total height. This is supported by various studies (Larjavaara & Muller-
Landau, 2013; Sullivan et al., 2018), which report that height measurements in the field are difficult 
and time consuming in forests where the top of the crowns are not clearly visible due to the dense 
canopy. This is especially difficult in palm dominated forests, which are often flooded and difficult to 
traverse. Even though there are differences, other studies have also used family level biomass 
models that require total height (Coronado et al., 2021) to estimate palm biomass in Peru. However, 
in the case that more accurate palm genus and stem height data become available, it is 
recommended to use the genus level mode that has a lower error than the family level model.  In 
case palm height data will be used to estimate biomass changes though palm measurements at 
various points in time, consistent use of the same allometric model will be necessary to make these 
comparisons possible.  

Total palm biomass is estimated using the total height data obtained from each remote sensing 
source and compared with the reference data using only the palms available in both the reference 
data and the remote sensing datasets. This is done in order to compare the biomass without taking 
into account palms not detected by UAV or that had missing data. The biomass comparisons showed 
that using the Potapov data resulted in the closest estimation of the reference biomass, 
overestimating total biomass by only 5%. It was expected that the Potapov map data would give 
good results, as the Potapov map had a large range of heights measures and had a relatively low 
height RMSE and MAE. All other maps underestimated the total biomass. The UAV and model 1 
datasets estimated respectively 26% and 91% of the reference biomass. The model 1 output was 
relatively good, but performed slightly worse than the Potapov data. The data indicates that this is 
likely due to the fact that the UAV data that severely underestimates the palms heights was used as 
input for the model, in addition the Asner data which also underestimates heights of larger palms. 
The Asner (Asner, 2021; Asner et al., 2014) height data estimated about 71% of the reference 
biomass, with the underestimation likely being due to the maximum palm height limitation of 22m, 
causing it to underestimate biomass of all larger palms.  

There are no other studies that estimated the biomass of only palms in this area using remote 
sensing, but the Peru biomass map (Asner et al., 2014; Asner, Gregory P. et al., 2021)  showed similar 
trends biomass errors as this study, with the largest errors found in plots SAM-01, PRN-01 and PIU-
02. These errors are similar to the results in this study, where these plots had relatively high errors. 
This indicates that some areas are more difficult to map accurately than others. This is likely caused 
by the relatively large number of outliers in these plots, with several palms measured above 40m 
high.   
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The plot level biomass estimations give more insights into the limitations of each height map. Here 
only the palms available in both the reference data and the remote sensing datasets are used for the 
comparison. The highest reference biomass was measured in plots SAM-01, PRN-01 and PIU-2. A 
forest carbon map was published by Anser (Asner et al., 2014; Asner, Gregory P. et al., 2021) and also 
reported relatively high biomass for these locations compared to the other plots. These results 
indicate a high palm biomass in a plot can result in an overall high forest biomass (includes both 
palms and trees). This is also supported by the results from Hergoualc’h et al. (2017), who reported 
that palms represent a significant part of the forest biomass in palm forests. 

Plots with very low average palm heights, such as VEN04, had the highest biomass overestimations. 
Here the Potapov, model 1 and Asner data overestimated the biomass by 43% to 92%. This is likely 
due to the maps overestimating the heights of small palms. Another possible explanation for this is 
the presence of trees, which influence the heights reported on these maps. Plots where trees are 
overall taller will result in the height maps reporting a taller canopy on average. In plots with a very 
high average palm height, such as PIU-02, the biomass was often underestimated the most. In this 
plot, the Potapov, model 1 and Asner data only estimated between 39% and 61% of the reference 
biomass. This is also due to the height mapping limitations of these maps, as big palm heights are 
always underestimated.  However these height limitations of the maps are not the only factors 
influencing the heights and related biomass, as seen in plot ALP-60, which has an average height of 
about 19m and no extreme outliers in the height data. In this plot the Potapov, model 1 and Asner 
had some of the highest biomass values estimated compared to other plots. One possible 
explanation for this is the high abundance of Euterpe and Socratea palms, which are rarely abundant 
in other plots. The data on these palm genera is very limited in this study, but these initial results 
show that it may be useful to do more studies in areas where they are more abundant, in order to 
understand how they affect height and related biomass estimations.  

The proportion of the palms detected determines how much of the actual plot biomass will be 
estimated. However, the results show that the fraction of palms detected is not the same as the 
fraction of biomass detected, with on average 69% of palms being detected and 81% of biomass 
being estimated. This is supported by the previous results which showed that missed palms were 
mostly smaller palms that contributes less to the total plot biomass. The SAM-01 plot had the highest 
palm detection rate of 86% which contributed to 93% of the total biomass. In other words, the 14% 
of palms not detected contributed to only 7% of the plot biomass. This indicates that the UAV does 
not have to detect all palms in order to still get good estimations of the plot biomass. With the 
current commercial RGB UAV remote sensing technology used, it has not been proven possible yet to 
detect all palms in complex tropical forests. Other methods such as those involving LIDAR (airborne 
or ground), could give much better results, while being more expensive and complex.  

When comparing the total palm biomass of the reference data with that of the biomass from the 
detected palms using the remote sensing derived heights, results show that all remote sensing 
methods underestimate the total palm height. This was expected, as with current UAV detection 
methods, about 30% of palms are not detected. The Potapov data has the closest estimation of the 
reference biomass, detecting about 85%. The lowest estimation is that from the UAV data, which 
estimated only 21% of the reference biomass.  
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However, the Potapov estimation being closest to the reference biomass does not directly indicate 
the best results, as these results are a combination of various factors such as the palm detection rate, 
average height of detected palms, limitations of the height maps and the height variations between 
the plots. The Potapov map most likely had the highest biomass estimation, due to it overestimating 
the biomass for many palms. The UAV total biomass has a similar problem, with the palms detected 
by UAV mostly being tall palms, which often have the height underestimated UAV. As discussed 
before, factors such as average palm height and species abundance in a plot determines how 
accurate biomass will be detected. The most important factor however is the palm detection rate, as 
this determines how much biomass will be underestimated. 

5.4 Applications and sustainable forest management 
Results show that commercial RGB UAV detection of palms is not ideal for accurate biomass 
estimations, as about 30% of palms on average are not even detected. Determining total palm 
biomass of plots is difficult with commercial RGB UAV, as the palm detection rate results in biomass 
missed. Better technology such as LIDAR mounted UAV is available but more expensive, making it a 
tradeoff between less accurate commercial RGB UAV and the more expensive and complex UAV 
options. In some cases, this makes the RGB UAV a more cost effective solution, especially when only 
rough estimations of palm abundance and height the goal.  Other studies (Coronado et al., 2021; 
Hergoualc’h et al., 2017) have attempted to map biomass of palm forests, but these studies also had 
to include woody trees in the biomass estimations, while the RGB UAV method used in this study 
provides palm specific information.  

In the context of sustainable forest management, detecting all palm biomass might not always be 
necessary. About 70% of palms can be located and identified remotely by UAV, which already 
provides valuable information on palm abundance and species presence. This information is useful in 
the case of forest management planning that is focused on identifying areas with palms or when 
areas with an abundance of a specific species of palm needs to be identified. One possibility for 
getting relatively good biomass estimations with less time invested in field data collection, would be 
to do field data collection only focused on mapping palm locations and then later extracting the 
height data using remote sensing.  According to Sullivan et al. (2018), only about 20-50 palms in a 
plot should be sampled for height model calibration and validation. In this case the genus 
identification could be done in the field for all mapped palms in order to make use of low error genus 
level allometric models possible. Palm heights can be identified relatively accurately using palm 
locations and biomass can be estimated using the model 1 or Potapov height datasets, which showed 
to have the best results. Some more research would have to be done to determine the biomass 
estimation accuracy using this method, as palms that have overlapping canopy crowns would also be 
included in the dataset. The heights and related biomass of these palms would likely be 
overestimated as only the canopy of the highest canopy layer would be detected by UAV.  

Another use for the UAV detected palm data would be in the context of carbon emissions, where 
changes of the carbon stocks could be monitored. Hergoualc’h et al. (2017) reported that palm 
dominated forests, the loss of palms and the following increase in woody trees, resulted in a 
significant loss of biomass in the forest, highlighting the need to understand where loss of palm 
biomass takes place. Repeating flights over plots could result in information on palm fatalities due to 
natural causes or harvesting. This would give some indications of the amount of biomass lost over 
certain periods of time. This data could then be used for further forest management, as areas with 
high losses of palms could be identified.  
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This forest monitoring with commercial RGB UAV could be done by local communities, as it has been 
shown that forest monitoring by local communities can contribute to forest management and forest 
carbon programs such as REDD+ (Paneque-Gálvez et al., 2014). Other studies have already shown 
that forest degradation mapping with UAV has potential in tropical forests (Berveglieri et al., 2018; 
Zahawi et al., 2015), and more research can be done on how these methods can be applied in palm 
dominated forests. The method tested by (Singh & Kushwaha, 2021), which combined UAV 
photogrammetry with Sentinel-1 and Sentinel-2 in India to monitor forest degradation can also be 
tested in Peru since photogrammetry information is already available. However this would not give 
palm specific degradation information, but rather related to the total forest biomass. 

Looking at all the results, there is potential for good biomass estimation by using commercial RGB 
UAV in combination with other available forest height datasets. This is highly dependent on the palm 
detection rate, and improving the palm detection rate with better technology or image analysis 
algorithms would contribute to making better biomass estimations possible. However, with the 
methods available, there are already some options for integrating these methods for forest 
management.  
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Conclusions 
 

This research aimed to determine how accurately individual palm and plot level palm biomass could 
be estimated by detecting palms using RGB UAV in combination with remote sensing derived palm 
heights. The RGB UAV derived palm heights and palm heights from other remote sensing sources 
were used to estimate biomass and results were compared. Biomass was estimated by using 
allometric models which require palm height as input. The remote sensing derived biomass was then 
compared to the reference data palm biomass, using the data made available by forestplot.net 
(ForestPlots.net et al., 2021; Lopez-Gonzalez et al., 2011). The overall results showed that it was 
possible to estimate palm biomass using only RGB UAV in combination with other remote sensing 
sources of palm height, with various levels of errors. 

The RGB UAV was used to map the locations of the palms in the plots and a canopy height model 
map was made for each plot using the sfm algoritm. The results of the palm detection rate were 
mixed, with an average detection rate per plot of 70%. This is an important factor, as palm detection 
is one of the main factors that influences the amount of palm biomass estimated per plot. The 
detection rate was the highest in the plantation plot, where the ground between the palms was 
clearly visible and the palm crowns did not overlap. This situation makes it possible for the UAV to 
detect all palms, but this is usually not the case in dense tropical forests, resulting in the palm 
detection rate being influenced by the forest structure. Results could be improved by using other 
types of sensors on the UAV, such as LIDAR, but these are often more expensive and complex, which 
can make them less cost-effective and accessible. 

The UAV canopy height model was made by using the DTM and DSM as input. The resulting canopy 
height map had a very high spatial resolution, making it possible to map the relative heights of 
individual palms in a plot. However, the results showed that the palm heights were underestimated 
in the natural plots by about 10m on average. Results were much better in the plantation plot, where 
the canopy was not dense and the ground was clearly visible on the UAV. The other canopy height 
maps had much better results overall. The Asner (Asner, 2021; Asner et al., 2014) and the Potapov et 
al. (2021) maps had relatively low errors when compared to the reference dataset, and a linear 
model that was made by using the UAV, Asner and Potapov data as input performed even better. The 
model had the best model fit when compared to the reference palm height (42%). The maps by 
Simard et al. (2011), GEDI L2A and Wang et al. (2016) were also tested and results showed that these 
maps overestimated the palms heights for medium and small sized palms. The range of heights 
mapped was also too small to be useful for palm height estimations. The GEDI L2A (Fayad et al., 
2021) also had only a limited part of the forest mapped. Based on this it was concluded that only the 
UAV, Potapov and Asner map data were suitable for biomass estimations. 

Several allometric models are available for estimating palm biomass (Goodman et al., 2013), and 
require mainly Htot or Hstem. The models that require Hstem and genus information are the most 
accurate and recommended to use when Hstem data is available. However data from remote sensing 
in this study only included Htot information, with the genus of palms also difficult to detect in some 
cases when using RGB UAV. Based on an analysis of the available remote sensing data, it can be 
concluded that the allometric model that does not require genus information and only requires Htot 
has to be applied for best results.  
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Palm biomass per plot was then estimated with the family level allometric model using the Htot from 
the reference height data, the remote sensing height map datasets and the linear model. Here the 
only the palms detected by UAV were used for the comparison, and it could be concluded from the 
results that the Potapov and the linear model data resulted in very close estimations of total palm 
biomass of the reference dataset. The UAV data had the worst results and the largest 
underestimation, making the Potapov and linear model estimation much more suitable for use.  

However, when also taking into account the palm detection rate, the remote sensing detected 
biomass was much lower than the reference biomass. This was expected, as the less palms are 
detected by UAV, the less biomass is detected. The results did however show that the palms that 
were not detected by UAV had a high chance of being short palms, making their impact on the total 
plot biomass relatively small in many cases. Large palms were easier to detect and also had a 
relatively much higher biomass than the missed palms. 

The information from the RGB UAV and the other palm height sources cannot predict the total 
biomass in a dense tropical palm forest due to the limited palm detection rate. But the method can 
still be very useful for forest management and planning, as UAV data gives an idea of the abundance 
of palms in an area, with the related biomass. The remote sensing height detection could also make 
field data collection less expensive and time consuming, by estimating heights of palms mapped in 
the field instead of doing manual height measurement in the field. The field teams could then only 
measure the heights of a small portion of the palms in the plot for validation and model calibration 
purposes. Based on all of the above, it can be concluded that there are still challenges when mapping 
palm biomass using the discussed method, but that these results can still be useful depending on the 
context they are used. 
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Annex 1: Principle investigators that provided reference data 
 

Plot Code Plot Name 
Census 
Date First Name Last Name Institution Name 

ALP-60 Allpahuayo F 2018-09-15 Timothy Baker 
School of Geography, 
University of Leeds 

ALP-60 Allpahuayo F 2018-09-15 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

ALP-60 Allpahuayo F 2018-09-15 Eurídice 
Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

ALP-60 Allpahuayo F 2018-09-15 Hugo Vásquez Vásquez Jenaro Herrera 

DMM-01 Dos de Mayo 1 2019-05-27 Timothy Baker 
School of Geography, 
University of Leeds 

DMM-01 Dos de Mayo 1 2019-05-27 José 
Reyna 
Huaymacari 

Universidad Nacional de la 
Amazonía Peruana (UNAP) 

JEN-14 
Jenaro Hererra 14, 
Cocha Iricahua 2017-10-13 Timothy Baker 

School of Geography, 
University of Leeds 

JEN-14 
Jenaro Hererra 14, 
Cocha Iricahua 2017-10-13 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

JEN-14 
Jenaro Hererra 14, 
Cocha Iricahua 2017-10-13 Eurídice 

Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

JEN-15 
Jenaro Herrera 15, 
Quebrada Sapuena 2017-11-01 Timothy Baker 

School of Geography, 
University of Leeds 

JEN-15 
Jenaro Herrera 15, 
Quebrada Sapuena 2017-11-01 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

JEN-15 
Jenaro Herrera 15, 
Quebrada Sapuena 2017-11-01 Eurídice 

Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

PIU-02 Piura 2 2017-11-28 Timothy Baker 
School of Geography, 
University of Leeds 

PIU-02 Piura 2 2017-11-28 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

PIU-02 Piura 2 2017-11-28 Eurídice 
Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

PRN-01 Parinari 2017-09-11 Timothy Baker 
School of Geography, 
University of Leeds 

PRN-01 Parinari 2017-09-11 
Jimmy 
Cesar Cordova Oroche 

Universidad Nacional de la 
Amazonia Peruana (UNAP) 

PRN-01 Parinari 2017-09-11 Eurídice 
Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

QUI-01 Quistococha 2017-02-20 Timothy Baker 
School of Geography, 
University of Leeds 

QUI-01 Quistococha 2017-02-20 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

QUI-01 Quistococha 2017-02-20 Eurídice 
Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

SAM-01 Samiria 1 2017-11-18 Timothy Baker 
School of Geography, 
University of Leeds 
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SAM-01 Samiria 1 2017-11-18 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

SAM-01 Samiria 1 2017-11-18 Eurídice 
Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

VEN-01 
Veinte de Enero 
(20Ene-1) 2017-10-06 Timothy Baker 

School of Geography, 
University of Leeds 

VEN-01 
Veinte de Enero 
(20Ene-1) 2017-10-06 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

VEN-01 
Veinte de Enero 
(20Ene-1) 2017-10-06 Eurídice 

Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

VEN-02 
Veinte de Enero 
(20Ene-2) 2017-10-03 Timothy Baker 

School of Geography, 
University of Leeds 

VEN-02 
Veinte de Enero 
(20Ene-2) 2017-10-03 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

VEN-02 
Veinte de Enero 
(20Ene-2) 2017-10-03 Eurídice 

Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

VEN-03 
Veinte de Enero 
(20ene-3) 2017-09-29 Timothy Baker 

School of Geography, 
University of Leeds 

VEN-03 
Veinte de Enero 
(20ene-3) 2017-09-29 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

VEN-03 
Veinte de Enero 
(20ene-3) 2017-09-29 Eurídice 

Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

VEN-04 
Veinte de Enero 4 
(20ene-4) 2017-09-27 Timothy Baker 

School of Geography, 
University of Leeds 

VEN-04 
Veinte de Enero 4 
(20ene-4) 2017-09-27 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

VEN-04 
Veinte de Enero 4 
(20ene-4) 2017-09-27 Eurídice 

Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 

VEN-05 
Veinte de Enero 
(20ene-5) 2017-09-25 Timothy Baker 

School of Geography, 
University of Leeds 

VEN-05 
Veinte de Enero 
(20ene-5) 2017-09-25 Gerardo Flores Llampazo 

Universidad Nacional Jorge 
Basadre de Grohmann 
(UNJBG) 

VEN-05 
Veinte de Enero 
(20ene-5) 2017-09-25 Eurídice 

Honorio 
Coronado 

Instituto de Investigaciones 
de la Amazonía Peruana 
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Annex 2: UAV mission details 
 

Start- landing position Date Aircraft Height above angle 
  dd/mm/yyyy name/ID ground station (m) (°) 

ALP-02_1 18-7-2018 Phantom 4 Pro 90 90 
JEN-14_3 15-12-2017 Phantom 4 Pro 90 90 
JEN-15_1 1-11-2017 Phantom 4 Pro 90 90 
PISC-02_5 21-7-2018 Phantom 4 Pro 65 90 
PISC-02_6 21-7-2018 Phantom 4 Pro 40 80 
PIU-02_1 26-11-2017 Phantom 4 Pro 90 90 
PIU-02_2 26-11-2017 Phantom 4 Pro 65 90 
PRN-01_1 20-11-2017 Phantom 4 Pro 90 90 
QUI-01_1 9-12-2017 Phantom 4 Pro 90 90 
SAM-01_1 18-11-2017 Phantom 4 Pro 90 90 
SAM-01_2 18-11-2017 Phantom 4 Pro 90 90 
SAM-01_3 18-11-2017 Phantom 4 Pro 60 90 
VEN-01_1 6-10-2017 Phantom 4 Pro 90 90 
VEN-01_2 6-10-2017 Phantom 4 Pro 65 90 
VEN-02_1 5-10-2017 Phantom 4 Pro 90 90 
VEN-02_2 5-10-2017 Phantom 4 Pro 60 90 
VEN-02_3 6-10-2017 Phantom 4 Pro 90 90 
VEN-02_4 6-10-2017 Phantom 4 Pro 65 90 
VEN-03_2 6-10-2017 Phantom 4 Pro 90 90 
VEN-03_3 6-10-2017 Phantom 4 Pro 65 90 
VEN-04_2 6-10-2017 Phantom 4 Pro 65 90 
VEN-05_1 5-10-2017 Phantom 4 Pro 90 90 

DMM-01_10 27-5-2019 Phantom 4 Pro RTK 170 90 
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Annex 3: Number of palms detected per plot for each Genus 
 

Plot Genus Count of Height 
ALP-60   130 
  Euterpe 61 
  Mauritia 59 
  Socratea 10 
DMM-01   138 
  Euterpe 2 
  Mauritia 87 
  Mauritiella 4 
  Socratea 45 
JEN-14   128 
  Euterpe 3 
  Mauritia 124 
  Socratea 1 
JEN-15   49 
  Astrocaryum 1 
  Euterpe 1 
  Mauritia 47 
PISC-02   218 
  Mauritia 218 
PIU-02   76 
  Elaeis 1 
  Euterpe 6 
  Mauritia 69 
PRN-01   199 
  Astrocaryum 3 
  Euterpe 33 
  Mauritia 109 
  Mauritiella 14 
  Oenocarpus 6 
  Socratea 34 
QUI-01   203 
  Euterpe 1 
  Mauritia 89 
  Mauritiella 113 
SAM-01   123 
  Attalea 16 
  Euterpe 1 
  Mauritia 103 
  Socratea 3 
VEN-01   131 
  Euterpe 38 
  Mauritia 71 
  Oenocarpus 1 
  Socratea 21 
VEN-02   267 
  Euterpe 37 
  Mauritia 184 
  Mauritiella 3 
  Oenocarpus 2 
  Socratea 41 
VEN-03   196 
  Euterpe 5 
  Mauritia 180 
  Mauritiella 11 
VEN-04   221 
  Mauritia 129 
  Mauritiella 92 
VEN-05   138 
  Mauritia 86 
  Mauritiella 52 
Grand Total   2217 
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Annex 4: Reference palm height measured per plot  
 

Plot Mean S.D. Minimum Maximum 
ALP-60 18.0 4.2 8.2 27.1 
DMM-01 18.7 5.5 8.5 32.5 
JEN-14 21.7 7.1 5.6 39.1 
JEN-15 23.5 4.8 7.2 30.0 
PISC-02 9.2 2.9 1.6 16.0 
PIU-02 27.1 9.4 5.4 47.7 
PRN-01 21.8 6.6 4.2 37.9 
QUI-01 16.5 5.9 4.8 29.1 
SAM-01 25.7 8.4 6.9 48.6 
VEN-01 20.2 5.6 8.8 30.1 
VEN-02 16.7 4.7 5.6 30.1 
VEN-03 15.2 5.3 5.6 30.1 
VEN-04 12.9 4.5 5.1 32.4 
VEN-05 16.3 5.1 5.9 28.1 
Total 18.8 5.7 1.6 48.6 
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Annex 5: Total biomass per source and plot  
 

Comparison of estimated biomass per plot using only palm detected by UAV and the family level 
allometric model. 

plot Reference 
Biomass (kg) 

UAV 
biomass (kg) 

% of 
reference 
biomass 

Asner 
biomass (kg) 

% of 
reference 
biomass 

ALP-60 24,865 6,114 25% 23,082 93% 
DMM-01 25,552 8,001 31% 20,856 82% 
JEN-14 43,599 6,394 15% 22,996 53% 
JEN-15 16,180 2,179 13% 9,787 60% 
PISC-02 4,706 3,152 67% 12,651 269% 
PIU-02 47,138 11,742 25% 18,258 39% 
PRN-01 65,604 8,762 13% 45,754 70% 
QUI-01 36,086 10,571 29% 26,516 73% 
SAM-01 69,084 19,012 28% 31,487 46% 
VEN-01 32,928 2,980 9% 23,265 71% 
VEN-02 44,200 2,168 5% 35,158 80% 
VEN-03 30,866 12,174 39% 28,093 91% 
VEN-04 25,343 20,889 82% 36,301 143% 
VEN-05 27,227 14,427 53% 15,940 59% 

 

plot Reference 
Biomass (kg) 

Potapov 
biomass (kg) 

% of 
reference 
biomass 

Model 1 
biomass (kg) 

% of 
reference 
biomass 

ALP-60 24,865 46,485 187% 33,598 135% 
DMM-01 25,552 24,486 96% 28,551 112% 
JEN-14 43,599 59,666 137% 35,233 81% 
JEN-15 16,180 11,285 70% 11,288 70% 
PISC-02 4,706 2,658 56% 5,036 107% 
PIU-02 47,138 17,843 38% 28,604 61% 
PRN-01 65,604 65,673 100% 63,109 96% 
QUI-01 36,086 43,775 121% 35,750 99% 
SAM-01 69,084 44,596 65% 53,329 77% 
VEN-01 32,928 34,011 103% 27,904 85% 
VEN-02 44,200 63,383 143% 33,228 75% 
VEN-03 30,866 31,401 102% 27,150 88% 
VEN-04 25,343 49,903 197% 48,671 192% 
VEN-05 27,227 20,935 77% 17,279 63% 
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Annex 6: Field and RS biomass compared for sum per plot 
 

Comparison of the biomass in the reference dataset with the biomass detected by UAV and heights 
extracted from the various height maps, using the family level allometric model for all palms. 

plot Reference 
biomass (kg) 

UAV palm 
detection rate 

UAV height 
estimated 
biomass (kg) 

% of reference 
biomass detected 

Asner height 
estimated 
biomass (kg) 

% of reference 
biomass detected 

ALP-60 33,405 66% 6,114 18% 23,350 70% 

DMM-01 40,202 58% 8,868 22% 22,846 57% 

JEN-14 53,177 75% 6,394 12% 22,996 43% 

JEN-15 22,417 73% 2,331 10% 10,359 46% 

PISC-02 13,165 - 6,362 48% 13,669 104% 

PIU-02 52,472 79% 11,742 22% 18,258 35% 

PRN-01 81,795 67% 8,795 11% 46,112 56% 

QUI-01 46,840 59% 10,901 23% 27,697 59% 

SAM-01 74,634 86% 19,012 25% 31,487 42% 

VEN-01 44,460 58% 2,980 7% 23,265 52% 

VEN-02 59,558 58% 2,168 4% 35,158 59% 

VEN-03 37,069 76% 12,174 33% 28,093 76% 

VEN-04 28,876 77% 20,889 72% 36,301 126% 

VEN-05 29,704 76% 13,226 45% 14,778 50% 

Total 617,774 79% 131,957 21% 354,371 57% 

 

plot Reference 
biomass (kg) 

UAV palm 
detection rate 

Potapov height 
estimated 
biomass (kg) 

% of reference 
biomass detected 

Model 1 height 
estimated 
biomass (kg) 

% of reference 
biomass detected 

ALP-60 33,405 66% 47,075 141% 18,082 54% 

DMM-01 40,202 58% 26,920 67% 19,757 49% 

JEN-14 53,177 75% 59,666 112% 19,584 37% 

JEN-15 22,417 73% 11,957 53% 5,648 25% 

PISC-02 13,165 - 4,827 37% 1,584 12% 

PIU-02 52,472 79% 17,843 34% 23,264 44% 

PRN-01 81,795 67% 66,170 81% 29,362 36% 

QUI-01 46,840 59% 45,642 97% 23,511 50% 

SAM-01 74,634 86% 44,596 60% 42,545 57% 

VEN-01 44,460 58% 34,011 76% 10,357 23% 

VEN-02 59,558 58% 63,383 106% 8,014 13% 

VEN-03 37,069 76% 31,401 85% 17,772 48% 

VEN-04 28,876 77% 49,903 173% 37,011 128% 

VEN-05 29,704 76% 19,356 65% 15,645 53% 

Total 617,774 79% 522,749 85% 272,137 44% 
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