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Abstract 
The twenty-first century has seen an increase in conflict-induced refugees (UNHCR, 2021). 

Understanding the refugee movements that result from these conflicts could aid policy makers and 

humanitarian organizations in providing aid to and hosting these forcibly displaced peoples 

(Suleimenova et al., 2017). To this end, Flee was developed (Groen, 2016). Flee is an agent-based 

social simulation framework for forecasting population displacements in an armed conflict setting 

(Anastasiadis et al., 2021; Suleimenova & Groen, 2020). Currently the flee-model does not take into 

account the possibility of refugees taking off-road routes. The goal of this study is therefore to implement 

into Flee the possibility for off-road driving routes, and test the effectiveness of these routes.  

The off-road routes are determined by selecting features of the physical environment relevant to refugee 

movement, and representing these in raster data per season. Values are assigned to the selected 

features, to represent the degree of resistance that these features offer. The modelled resistance is 

changed to a cost raster, which allows for the plotting of routes of least cumulative resistance between 

two points. The resulting routes are used as input for Flee, in a Mali case study.  

Overall, the model’s refugee allocation error has decreased by 16.5% as a result of the changes in 

routes. However, most of this change is caused by an improvement of allocation in one camp, that 

influences the total through its relatively large size. When comparing the impact of the routes on the 

difference in error per location, while weighting the camps equally, the error increases by roughly 7%. 

Moreover, on a temporal level, the first and last season’s error are lower due to border closure and 

camp capacity mechanics in Flee. The error in season two and three (April – Oct 2012) are thus the 

most reliable for testing the differences in model accuracy. These seasons show overall a negligible 

difference in error.  

The study shows that the addition of routes based on the physical environment does improve the overall 

accuracy of Flee’s refugee allocation in the Mali case study, but the results are too inconsistent to 

determine whether this will be the case in other case studies as well. Other factors are the root cause 

of current differences between the model and reality. These root causes include for example political 

factors, such as border restriction policies, and decision-making based on emotional factors, such as 

the attractiveness of cities over refugee camps.   
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1. Introduction 
The twenty-first century has seen an increase in refugee numbers (UNHCR, 2021). The previous years 

were no exception to this. Due to crises in Venezuela, Syria, Afghanistan, South Sudan, Myanmar and 

many other locations, this number increased to roughly 82.4 million forcibly displaced people (FDP) in 

2020 (Figure 1). This amounts to some 1 in 95 in terms of world population, according to the United 

Nations High Commissioner for Refugees (UNHCR, 2021). Furthermore, although empirical evidence 

is lacking, a changing climate might further increase the risk of conflict, especially in developing 

countries (Abel et al., 2019; Mach et al., 2019). Understanding the refugee movements that result from 

these conflicts could aid policy makers and humanitarian organizations in providing aid to and hosting 

these FDPs (Suleimenova et al., 2017).  

 

Figure 1: UNHCR Forcibly Displaced Peoples statistics. Source: UNHCR, 2020. 

Several studies were performed on simulating refugee movements on a city or community wide scale 

(Anderson et al., 2007; Sokolowski et al., 2014, 2015). Furthermore, several frameworks for aiding the 

creation of computational refugee models have been developed (De Kock, 2019; Searle & Van Vuuren, 

2021). On large-scale migration modelling, mainly international migration, many papers have been 

written (Stillwell, 2005). However, in terms of computational studies on the movements of refugees in 

an armed conflict setting on a national scale, little has been done. To this end, Flee was developed 

(Groen, 2016). Flee is an agent-based model used for simulating population displacements in an armed 

conflict setting (Anastasiadis et al., 2021; Suleimenova & Groen, 2020). In agent-based modelling, a 

system is simulated as a collection of autonomous decision-making entities, known as agents 

(Bonabeau, 2002). In the Flee model, these agents represent refugees. The agents in Flee are tied to 

a network: starting from a node, which represent for example a town or a refugee camp, and travelling 

across connections to other nodes. In Flee, connections between nodes are determined by the 

presence of a road connection. Which node the agents decide to travel to is decided by their simulated 

level of knowledge of the area and a ‘move chance’, which is decided by several factors (Anastasiadis 

et al., 2021; Groen, 2016).  

Flee has already been tested on a number of case studies (Suleimenova et al., 2017). One of these 

case studies is the conflict in Mali. In 2012, a civil war erupted in Mali in which several separatist and 

Islamist groups fought for the independence of Azawad, the northern part of the country (Bencherif et 

al., 2020; Shaw, 2013). To counteract the destabilization of the already vulnerable region, the French 

responded with military intervention, after which the United Nations followed suit (Lounnas, 2013). In 

its nine year duration, the conflict has led to hundreds of thousands of displaced people and to some 
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fifty thousand currently (R4Sahel, 2021; UNHCR, 2021). This conflict was reproduced in Flee in 2016 

by D. Groen, as part of the development of Flee (Groen, 2016). The model has shown promising results 

in terms of accuracy. For example, Flee has managed to reproduce the key refugee movement patterns 

in several case-study conflicts, including Mali, and has correctly simulated at least 75% of refugee 

destinations for these case studies after the first 12 days of the conflict simulation (Suleimenova et al., 

2017). 

However, many aspects that might determine refugee flight behaviour and destinations are still not 

taken into account in Flee (Suleimenova & Groen, 2020). Among these are aspects of the physical 

environment. Mapping and classifying the physical environment allows for simulating the paths that 

people most likely take towards their destination when clearly discernible roads are absent, or when 

existing roads have become inaccessible. Currently, Flee does not take into account the possibility of 

refugees taking off-road routes. However, experience from the Ministry of Defence has shown that a 

significant amount of travel in Mali occurs via such routes (B. Ooink, personal communication, 

September 2021). Furthermore, testing with the Flee model has shown that the addition of off-road 

walking routes can significantly decrease the validation error (Suleimenova & Groen, 2020). Therefore, 

it could be essential for the accuracy of the model and the eventual allocation of humanitarian resources 

to represent these routes in the simulation. 

1.1 Research Objectives and Questions 
The problem that this study seeks to address can be formulated as follows: ‘Current refugee simulation 

through the Flee model does not include aspects of the physical environment or off-road flight routes.’ 

The general aim of this study is therefore identifying to what extent aspects of the physical environment 

affect refugee flight behaviour, and would therefore improve the Flee model’s simulation of refugee 

behaviour. The secondary aim to this study is to improve the accuracy of the Flee model.  

The main research question related to these objectives is: 

‘To what extent does the physical environment determine flight routes for refugees?’ 

The sub-questions that aid in answering this question are: 

1. To what extent does a representation of the physical environment approach accurate refugee 
travel times and distances? 

2. What is the effect of the integration of the cost raster data on the spatial aspect of the projected 
refugee destinations of the Flee model’s simulations? 

3. What is the effect of the integration of the cost raster data on the temporal aspect of the 
projected refugee destinations of the Flee model’s simulations? 
 

The first of these questions addresses effect of the route implementation on the spatial aspects of the 
Flee simulations. The physical environment in this question pertains to features of the environment 
relevant to refugee mobility. The goal of this question is to find out if a spatial pattern exists in the model 
output, and how these patterns differ before and after the implementation of the new routes. The second 
question addresses the same issue, but related to the time factor of Flee, instead of the geographical 
factor. The goal for this question is to discover patterns in differences between seasons, and what effect 
the seasons might have on the refugee simulation results of Flee.  
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2. Background 
2.1 Agent-based Modelling 
In understanding complex geographical and social problems such as sprawl, migration, congestion, 

segregation and many others, researchers have traditionally turned to relatively static and aggregate 

explanations for these systems. However, as geography became a science with a more heterogeneous 

approach, so did its methods of research (Crooks & Heppenstall, 2011). One of these methods is called 

agent-based modelling. Agent-based modelling, or ABM, is a simulation method with the goal of 

simulating a system or network in a bottom-up manner. However, many different approaches to, and 

definitions of ABM exist, so it might be more of a mindset than a technology (Bonabeau, 2002). 

In recent years, ABM has become a popular simulation approach for scientists studying social 

interactive systems and networks (Suleimenova et al., 2017). It allows for a decentralized approach to 

explaining these systems using agents. Agents are individual, active objects that behave 

heterogeneously within the simulated system. Bonabeau (2002) describes them as ‘autonomous 

decision-making entities’. Agents act according to a basic set of rules, but all in a slightly different 

manner (Crooks & Heppenstall, 2011; Macal, 2016). An agent assesses its unique situation on these 

basic rules and executes various behaviours accordingly (Bonabeau, 2002). This heterogeneous 

behaviour allows for arguably the most valuable aspect of ABM, which is simulating and describing 

emergent properties and situations. Other benefits of ABM are that it provides a natural description of 

a system and that it is a flexible method (Bianchi et al., 2007; Bonabeau, 2002). 

Roughly speaking, ABM knows two categories of use: explanation and projection. Explanation serves 

to understand past observations of a system or parts of a system (Crooks & Heppenstall, 2011). 

Projection on the other hand is used for ‘extrapolation of trends, evaluation of scenarios, and the 

prediction of future states’, according to Castle & Crooks (2006). In this category, ABM are useful for 

example for simulating scenario development and the effects of policy or behavioural changes. This 

use of ABM should not be interpreted as a way of predicting  a situation perfectly, but as a way of 

projecting what a situation might entail, always with a margin of error. Therefore, the term projection 

instead of prediction is used in this study.  

2.2 The Flee Model 
The Flee model is an example of an agent-based model. More specifically, it has been called ‘an agent-

based social simulation framework for forecasting population displacements in an armed conflict setting’ 

(Anastasiadis et al., 2021). Groen (2016), the initial developer of Flee, mentions three reasons for the 

creation of Flee. First, the usage of refugee simulations allows for estimating the effects of changes in 

border and migration policies, which helps in informing governments and the general public about the 

consequences of such changes. Second, simulations help project where refugees are most likely to go 

under certain circumstances, when a conflict erupts. This could allow humanitarian and support 

organizations to prepare for these situations. Third, current empirical data on refugees is incomplete. 

The nature of refugees makes it difficult to accurately and consistently collect data on them 

(Suleimenova et al., 2017). Simulations could help fill the gaps in these data, and make projections 

when no data is available. Furthermore, running simulations is not restrained by ethical considerations 

that are requisite in social empirical studies and experiments.  

As in any agent-based model, the setting in which Flee simulates refugee movements is defined by 

inputs, parameters and agents. In Flee, agents represent refugees. The amount and location of 

refugees that are used in the model is dependent on real-world data. These data are taken from the 

UNHCR database, which consists of empirical data that are collected at refugee camps in the region 

(UNHCR, 2021). The simulated setting represents the outbreak of an armed conflict, which leads to 

refugees flowing out of the location of the conflict, and towards refugee camps. This setting is created 

by other input data, such as routes, locations of towns, cities and camps, conflict locations and conflict 

outbreak dates and finally border closure dates and locations. In Flee, the assumption is made that 

refugees stick to major roads in their flight. The routes are therefore derived from Bing maps, which is 

used to estimate the travel distance using the shortest routes planned for vehicles. The assumption is 

made as well that refugees travel by car (Groen, 2016).   
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3. Methodology 
3.1 General methodology 
In this section, a general overview of the used methods and the order in which they are applied is given, 

and visualized in Figure 2.  

 

Figure 2: Schematic overview of the cost raster creation methodology.  
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The first step in creating the cost raster is to select the relevant physical features and representative 

data (section 3.7). The second step is to define speed multiplier values, determining the relative 

resistance for each of the geographic features. The values are determined through literature research 

(section 3.8). After the selection of features, data and speed multiplier values, the values are applied to 

the datasets, which are in turn combined into the cost raster (section 3.3) (Figure 2).  

After the cost raster has been completed, the next step is to create new routes using the Least-Cost 

Path algorithm (section 3.4). These routes are used in the Flee model. After the completion of model 

runs including the new routes, the outcomes, consisting of refugee numbers per destination, are 

compared to earlier model results. The results are validated and discusses using descriptive methods 

and several methods of error analysis (section 4). Finally, a conclusion is drawn (section 5).  

3.2 Flee initialization 
The core parameters of Flee specify the environment of the conflict, the population of agents and their 

properties, which form the basis of their behaviour (Anastasiadis et al., 2021). Population is defined by 

the initial number of agents and the number of new agents added to the population per time step, which 

is derived from UNHCR input data (2021). The numbers of refugees that are added in the model are 

based on the data from the UNHCR (2021).  

The movement of the agents is calculated on a daily basis, and is parameterized by a movechance, 

which equals 1 in source locations, or where the conflict takes place, indicating a 100% chance that the 

agent moves away from that location (Groen, 2016). The movement is limited by the total number of 

simulation days (simulation_days), the maximum movement speed of the agents per day 

(max_move_speed), and the level of awareness (AwarenessLevel), which marks the distance an agent 

takes into account when deciding on a destination to move to. The agents are inserted in the simulation 

in locations, or nodes, which represent for example towns. The movement behaviour of the models’ 

agents is defined by a set of behavioural rules. The agent moves with 100% chance if the agent is 

located on a conflict node (conflict_move_chance). If the agent is in a camp (camp_move_chance) or 

another location (default_move_chance), the move chance is 0.1% or 30% respectively (Suleimenova 

et al., 2017). Destinations are picked by agents according to location weights (camp_weight, 

conflict_weight). Each timestep agents make their choices based on the chances mentioned above, 

and move with a maximum of 200km/day (max_move_speed). Of these parameters, all default values 

are mentioned in Table 1. If all agents have made their choices, the timestep is increased and the 

agents move a certain distance towards their location, and the process repeats. The flow of this process 

is visualized in Figure 3. 

Table 1: Description and default values of input parameters. Source: Suleimenova et al., 2017. 

Parameters Description Default value 

max_move_speed Agents’ maximum movement speed in the simulation while 
traversing between locations. 

200 km/day 

simulation_days The amount of days that the simulation runs for. 300 

AwarenessLevel 0 represents current route only, not knowing the destination;  
1 represents knowing the destination as well;  
2 represents knowing the surrounding routes and locations;  
3 represents awareness of the region, which includes several 
locations and routes. 

1 

camp_move_chance Probability of an agent moving from camp location where an 
agent resides to another location (on a scale of 0 to 1). 

0.001 

conflict_move_chance Probability of an agent moving from conflict location where an 
agent resides to another location (on a scale of 0 to 1). 

1.0 

default_move_chance Probability of an agent moving from other (default) location 
where an agent resides to another location (on a scale of 0 to 
1). 

0.3 

camp_weight The attractiveness value for camp locations making them twice 
as likely to be chosen as destination (relative to 1). 

2.0 

conflict_weight The attractiveness value for conflict locations making them four 
times less likely to be chosen as destination (relative to 1). 

0.25 
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Figure 3: Flee model agent behaviour flowchart. Source: Suleimenova & Groen, 2020. 

The possible routes an agent might take are decided by the input of routes files (routes.csv), and the 

destinations are formed by nodes, which represent refugee camps, cities, conflict zones, forwarding 

hubs, etc. The routes and destinations combined form the ‘location graph’ or ‘network graph’ 

(Anastasiadis et al., 2021). Camps are assigned a maximum capacity of refugees. When the camps 

approach reaching this capacity, the weight of the attractiveness of these camps is reduced. Capacity 

can briefly be exceeded, but is eventually avoided as a destination (D. Groen, personal communication, 

February 2022). Flee also has access to applying border closures into the model. The border closure 

starts at a set time, and prevents any agents from travelling to locations in the closed-off region. An 

example of the location graph for the original Mali case study can be found in Figure 4.  
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Figure 4: Overview of the simulation model. Source: Groen, 2016.  

 

Figure 5: Visualization of the general workings of the Flee model. Source: Suleimenova & Groen, 2020. 

In chronological order, Flee is set-up as follows. The first step is the setting of inputs, which consists of 
conflict, refugee and route data. Next, the setting of parameters and the running of the model leads to 
results. These result are verified to determine if the model works as expected, and validated to 
determine the accuracy of the results (Figure 4).  

The changes that are made to Flee in this study pertain mainly to a single element of the model, which 
is the route construction (Figure 5). Currently in Flee, all routes are based on the availability of 
connections in Bing Maps. In this study, the physical environment is represented in the form of a cost 
raster, from which routes can be determined using Least-Cost Path analysis, based on the Dijkstra 
algorithm (Choi et al., 2013; Murekatete & Shirabe, 2020) (section 3.3). The routes that are derived 
using this method, are used as alternative routes to the Bing Maps routes in Flee. In this way, when 
Flee is run, it uses routes that take into account the physical environment as well, and not just roads 
(section 3.6.2). Figure 5 shows the Flee model in chronological order from left to right.  

The implementation in Flee is done by exporting the routes as a ‘routes.csv’ file. These files are the 
input that determine the connections in the network graph available for agents to traverse. These input 
files are comprised of four columns of data: Name1, Name2, Distance[km] and forced_redirection. 
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Location A and B mark the start and end point of a route respectively. Distance displays the distance 
property of the route, but is also used as a weighting factor. For example, if one would want to simulate 
that travel on a route takes twice as long, due to traffic congestion for instance, this distance value 
would be doubled. The forced_redirection column refers to a redirection from a source location, which 
can be a town or a camp, to a destination location. The source location is then indicated as forwarding 
hub. In this column, the value 0 indicates no redirection, 1 indicates redirection from Name2 to Name1, 
and 2 indicates redirection from Name1 to Name2. The implementation of the new routes, which take 
into account the seasonal changes in weighted route length, require the splitting-up of the Distance 
column into four seasons. D. Groen, the developer of Flee, has updated the Flee code to allow for this. 
With this update, the connection between two locations can differ in length between seasons. A 
schematic overview of this file structure, and the change that is made therein, can be found in Table 2 
and 3.  

Table 2: Routes.csv original file structure. 

Name1 Name2 Distance Forced_redirection 

A B X1 0 

B C X2 1 

 

Table 3: Routes.csv adapted file structure. 

Name1 Name2 DistanceS1 DistanceS2 DistanceS3 DistanceS4 Forced_redirection 

A B X11 X12 X13 X14 0 

B C X21 X22 X22 X24 1 
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3.3 Cost Raster creation 
To create the routes, first a cost surface needs to be created. Such a surface represents the cost of 

travel across a region, represented as raster data. To do this, first a representation of the physical 

environment of Mali is made. This is done by selecting data relevant to refugee travel, and representing 

these data as unique values in a raster dataset. Then, speed multiplier values, which range between 0 

and 1, are assigned to these unique values, creating the multiplier raster. These speed multiplier 

represent inversely the resistance that the selected physical features offer, meaning high values 

indicate low resistance. The complete multiplier raster is then multiplied by a speed value, in km/h. This 

allows for easily testing different speed values and calibration of the raster and eventual routes. The 

output of this multiplication is named the speed raster, representing the maximum driving speed that 

each unique physical feature allows. After the speed raster is finished, the values are recalculated into 

costs, in hours per meter. The main difference of the speed and cost raster is that in a speed raster, 

high values represent faster travel, while in a cost raster, low values represent faster travel. This is 

needed for the least-cost path operation for the creation of routes, where routes are determined based 

on the least cumulative cost. This cumulative cost then represents for each route the time it takes to 

travel that route in hours. This process is schematically visualized in Figure 6.  

 

Figure 6: Conceptual workflow for the creation of the cost raster. 

In representing the physical environment, choices need to be made as to what features are included in 

the representation.  

The features used in this study are selected to represent the features of the physical environment that 

are relevant to a refugee. This selection is based on a classification used by NATO to denote the 

composition of the physical environment as it is relevant to human mobility. The classification is 

compromised of Relief, Drainage, Soil, Vegetation and Infrastructure. These five factors are deemed 

the most influential to human mobility by the Ministry of Defence (B. Ooink, personal communication, 

September 2021). As flight behaviour is treated as a matter of mobility, these factors are used as a 

guideline in determining features that are relevant to refugees as well. Due to time constraints, 

Vegetation is not taken into account for this case study. From different classes, this one is  deemed the 

least relevant in the situation of Mali.  

The Soil data, in this case more accurately represented by the term surface, is split between rocky 

areas, bare and rest areas. The rocky areas class is derived through a random forest supervised 

classification of satellite images. This method is proven to yield accurate results when used for defining 

land cover classification (Gambill et al., 2016; Gislason et al., 2005) The rocky areas class is meant to 

delineate a phenomenon in Mali where patches of sharp, jagged rocks cover the surface. From personal 

communication it is found that these surfaces are virtually impassable for civilian vehicles, as the rocks 

have the ability to destroy tires (B. Ooink, personal communication, September 2021). These dark 

patches are distinguishable from space. Therefore, random forest supervised classification allows for 

sharp demarcation of these areas. The rocky areas are set to NoData, using the Set Null tool, where 

the presence of rocks is set to NoData. This allows for further calculations to take place, without taking 

into account the rocky areas, as these are untraversable. To the bare and rest dataset a speed multiplier 

(ResVal) class is added. These classes are defined through a reclassification of a predefined land.  
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Drainage is represented by the presence of water or wetlands. For the water and wetlands data the 

seasonal presence of water is set to NoData, to represent an impassable surface. The yearly dataset 

denotes the locations of dried up wetlands, or floodplains. The cells of this dataset are set to the 

determined speed multiplier values as well. The water data is derived using the Normalized Difference 

Water Index. In remote sensing, NDWI may refer to several different indexing methods. In this study, 

the method proposed by McFeeters (1996) is used. This method is created specifically to delineate land 

from open water using light in the green and near-infrared (NIR) wavelengths (Eid et al., 2020). 

Moreover, a study by Özelkan (2020) has shown that the NDWI method proposed by McFeeters (1996) 

is the most suitable method for detecting water bodies in comparison to several other methods 

developed for this purpose. The formula for McFeeters’ NDWI posed in Equation 1. 

𝑁𝐷𝑊𝐼 =
(𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅)
 

Equation 1: NDWI calculation. 

The NDWI yields a dataset with values between 1 and -1. As a general rule, positive values depict water 

(Özelkan, 2020; Rokni et al., 2010; Sarp & Ozcelik, 2017). This is caused by the relatively high 

reflectance of NIR light by soil and terrestrial vegetation (McFeeters, 1996).  

While the NDWI is ideal for detecting open water bodies, it is not suitable for measuring moisture levels 

in soil. This means the index cannot be used for measuring wetlands. In general, the remote sensing 

of wetlands provides a difficult challenge to researchers (Mahdavi et al., 2017). This is mainly due to 

the dynamic nature and ambiguous definition of wetlands (Gallant, 2015). Wetlands constantly change, 

as many wetland areas flood periodically and vegetation is quick to change in such areas (Rundquist 

et al., 2001). Furthermore, measuring moisture levels under an obstructing layer of vegetation is 

challenging indeed. However, a relatively new method, published in 2019 by Lefebvre et al. (2019), 

provides a new approach. The Water in Wetlands (WiW) method uses a relatively simple calculation to 

distinguish wet- from dryland (Equation 2). 

𝑊𝑒𝑡𝑙𝑎𝑛𝑑 = 𝑁𝐼𝑅 ≤ 0.1804 & 𝑆𝑊𝐼𝑅 ≤ 0.1131 

Equation 2: Wetlands selection formula. Source: Lefebvre et al., 2019. 

In Equation 2, near-infrared (NIR) and shortwave-infrared (SWIR) are combined. SWIR is used, as it is 

sensitive to moisture both in soils and in vegetation (Lefebvre et al., 2019; Mahdavi et al., 2017). If the 

reflectance value of a pixel is lower than 0.1804 in the NIR band, and it is lower than 0.1131 in the 

SWIR band, the pixel should be classified as wetland. The values in this formula are specified to best 

suit Sentinel 2 data. To apply the NDWI and WiW methods, satellite imagery that includes at least RGB, 

NIR and SWIR bands should be used. 

Infrastructure is split into roads, which is in turn split into five types, and river crossing, of which three 

types are classified. River crossings are buffered by 45 meters, resulting in a diameter of 90 meters 

around the river crossings, or roughly three cells. This is done to prevent connections getting lost in 

future data transformations, mainly from vector to raster data. The roads and river crossing data are 

subsequently assigned their speed multiplier values. The result is eight raster datasets representing the 

infrastructure: five rasters depicting several types of roads, and three rasters depicting river crossings. 

To use these data correctly in the model, some assumptions had to be made: 

1. Due to the periodically low water level, ferries are only usable in high river levels; 

2. Due to the periodically high water levels, fordable areas are only usable in low river levels; 

3. Bridges are always usable. 

The relations between the infrastructure and the seasonally differing environment mentioned above are 

represented as such in the model. 

After the datasets are in their correct state, they are added together using several operations. In the 

initial situation, all cells in the study area are valued at 1. The first step is to subtract all impassable 
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surfaces from the area. This is done by multiplying the ‘Value1’ dataset by rocky areas and seasonal 

water and wetlands.  

The next step is to assign speed multiplier values to the remaining cells. First the land cover data is 

taken into account, by multiplying the speed multiplier values with the previously created raster. Now 

all cells have either a NoData or land cover speed multiplier value. After this, the yearly wetlands are 

added by replacing the previous speed multiplier values if the floodplain value is lower. Where no 

floodplains are present, the land cover speed multiplier value is used. Finally, the roads are overlaid, 

ignoring the previous operations when a road is present, and assigning the road speed multiplier value 

to the cell.  

Representing Relief, the final step is to assign the slope speed multiplier values, as these affect roads 

as well. Slope data is derived from a digital elevation model, a DEM, and represents the percentage of 

incline between different elevations. The aspect, or the orientation of the slope, is not taken into account 

when deciding the degree of resistance that the slope offers. The slope data is reclassified into five 

classes, each with their own speed multiplier value. However, as the slopes directly influence speed, 

first the cells have to change from an arbitrary speed multiplier value to km/h. This is done by multiplying 

the entire raster by a maximum speed value. When the cells represent speed, they are adjusted to the 

speed multiplier effect of the slope, in accordance with the assigned speed multiplier classes. The speed 

raster is now finished. 

Finally, the speed raster, representing the maximum speed that might be driven in a cell, is converted 

to a cost raster, representing the time it takes to travel one meter in the cell. This is done using the 

following Equation 3. 

𝐶𝑜𝑠𝑡 = (
1

𝑆𝑝𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒
) ∗ 0.001 

Equation 3: Cost raster formula 

In Equation 3, SpeedValue is the speed value assigned to each cell of the raster. The formula returns 

the cost in hour/meter. The transformation to cost raster is necessary for the Least Cost Path operation.  

To finalize the creation of the cost raster, the raster is resampled from a horizontal resolution of 

~30x30m to 100x100 meters, while using the minimum value of the aggregated cells. This method 

ensures that roads and river crossings remain represented in the raster. The resampling is performed 

to reduce processing time and storage requirements.  

For the creation of the cost raster, the ArcGIS Pro ModelBuilder is used. This tool allows for easy 

adoption of changes and repetition of the model. Furthermore, it provides a visual overview of the 

complete model. A schematic overview of these steps, including the details of the operations, can be 

found in Figure 7. The details are further on described individually.  



 
 

16 
 

  

  

Figure 7: Schematic overview of cost raster creation. 
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3.4 Route creation and implementation 
To create the routes, the data are transformed to a projected coordinate system that uses metric units, 

in this case meters, as map units. In this study all data use the geographic coordinate system WGS 

1984, and the corresponding datum D WGS 1984. To minimize projection-induced distortion, the 

projected coordinate system WGS 1984 Web Mercator (Auxiliary Sphere) is chosen. This system uses 

the same datum as the geographic coordinate system WGS 1984, and therefore does not require a 

datum change. Furthermore, the Mercator projection increasingly distorts land area and distance 

towards the poles, but remains accurate around the equator, which is where the study area is located. 

To create the routes, first, start points and destinations have to be defined. Relevant locations are 

defined using UNHCR data. Which locations are connected by routes are defined using data on existing 

road connections and local knowledge of the region. Which locations and routes are used in this study 

and why is described in section 3.6.5.  

To create least cost path routes across the created cost surfaces, two additional raster have to be 

created per route: a backlink raster and a cost distance raster. Both can be created using the Cost 

Distance tool in ArcGIS Pro. This tool requires two inputs: the cost surface and the source data, or start 

location. The cost distance raster identifies, for each cell, the least accumulative cost distance over a 

cost surface to the identified source location, where the cost is measured in hours per meter. The 

resulting raster therefore contains data for each cell on the least cost, not Euclidean distance, to the 

source location (Figure 8). Examples of both rasters are found in Figure 8 and 9, using Ségou as source 

location. 

 

Figure 8: Cost Distance raster for Ségou, Mali.  

The backlink raster defines the direction or identifies the next neighbouring cell along the least 

accumulative cost path from a cell to reach its least-cost source. It contains values ranging from 0 

through 8, each representing a direction (right, lower-right, down, etc.) (Figure 9). 
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Figure 9: Backlink raster for Ségou, Mali. 

When these rasters are created, the calculation of the least-cost path can begin. The tool used for this 

is the Cost Path as Polyline tool in ArcGIS Pro. This tool takes three datasets as input: the destination 

point data, a cost distance raster and a backlink raster. The tool calculates the least-cost path between 

the source cell used for creating the cost distance and backlink rasters, and a destination, defined here. 

The tool returns a polyline feature, with an attribute representing the accumulative cost of the 

represented route, in this case in hours.  

The final step is to transform the cost of the routes to a weighted distance. This is required to represent 

the route in the Flee model. To do this, the cost in hours needs to be represented as kilometres. The 

route cost is turned into a weighting factor which is multiplied by the Euclidean distance of the route. 

First, the geometry of the route needs to be calculated. This is done using the tool Calculate Geometry 

Attributes. This allows for the creation of a new field and the filling of this field in one tool. The length in 

kilometres is calculated in this way. To get the weighting factor, the speed difference needs to be known: 

the Euclidean length of the route is divided by the maximum speed that is used earlier in the process. 

In this case, this is 80 km/h. The length of the route divided by 80 results in the time it takes to travel 

the route when driving at the maximum speed. Now two time measurements are known for the route. 

The first, the path cost, as derived from the Cost Path tool and the cost surface, is divided by the time 

resulting from the maximum speed calculation. The resulting number should be greater than one, and 

provided the weighting multiplier. This number is multiplied by the Euclidean length of the route, and 

the weighted distance is the result. The resulting formula is posed in Equation 4. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑅𝑜𝑢𝑡𝑒 𝐶𝑜𝑠𝑡

 (
𝑅𝑜𝑢𝑡𝑒 𝐿𝑒𝑛𝑔𝑡ℎ

𝑀𝑎𝑥 𝑆𝑝𝑒𝑒𝑑
)

∗ 𝑅𝑜𝑢𝑡𝑒 𝐿𝑒𝑛𝑔𝑡ℎ  

Equation 4: Weighted distance formula. 

The implementation of the routes in Flee is done by exporting the weighted distances per route, per 

season as a .csv file, called routes.csv. This file is then used to replace the routes.csv file already 
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present in the Flee files. When the model is then run, it uses all the same files as the original Flee 

model, except for the routes.  

3.5 Calibration, verification and validation methods 
After creation of the new routes, and the initial running of the adapted model, it is checked if the model 

works to expectation, and the results are tested. To do this, several steps have to be taken. These steps 

represent an iterative process, which is visualized in Figure 10. 

 

Figure 10: Calibration, verification and validation workflow overview 

The first step is calibration. Calibration involves fine-tuning the model to a particular context (Crooks & 

Heppenstall, 2011). This is done by tuning the parameters of the model so that the model’s output 

matches real-world data, increasing the model’s fit to the real-world system. Calibration is an iterative 

process, changing parameters with until a satisfactory result is obtained (Castle & Crooks, 2006). Once 

again, this step does not pertain to Flee default parameters, only to cost raster values and the creation 

of routes. This is done by changing the maximum speed value and the speed multiplier values. While 

this usually is an iterative process, in this study only one iteration of calibration could be performed due 

to time constraints.  

The next steps are the verification and validation of the model. According to Crooks & Heppenstall 

(2011), these terms are defined as follows: 

“Verification is the process of making sure that an implemented model matches its design. Validation is 

the process of making sure that an implemented model matches the real-world.” 

The first of these, verification, pertains to the inner validity of the model (Castle & Crooks, 2006). 

Verifying the model means checking if the model works as intended. Initially the routes are plotted using 

the cost rasters that are created using certain speed multiplier and speed variables. It is then checked 

if the routes are realistic, and follow expected lines. For example, the routes are expected to follow 

paved routes if available. This check is done by visually inspecting the lines that the routes follow, using 

satellite imagery, and by matching the new or changed routes to knowledge of local travel patterns from 

the Ministry of Defence (B. Ooink, personal communication, January 2022). Furthermore, the routes 

are tested using the Google Maps route planner. The travel times and tracks of several routes are 

compared to routes plotted between the same start and end locations in Google Maps. However, this 

method cannot be applied to all routes, as Google Maps does not allow route planning on off-road 

routes. Therefore, only routes based on road connections can be tested.  

The final step, validation, is performed after Flee is run with the calibrated routes data. The goal of the 

this step is to test if the output is representative of the real-world system. This step requires comparison 

of the model’s results, which are comprised of refugee numbers in camps, to historic refugee data, 

which is collected by the UNHCR (2021). The result of this step is not binary – the model is not valid or 
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not-valid. In the case of this study, the most important factor to be measured is if the model has improved 

by applying the new routes to Flee. This is done using three measures. The first measure is the Root 

Mean Square Error, or RMSE. This is a measure commonly used to quantify model performance (Chai 

& Draxler, 2014). As the name suggests, the RMSE is the square root of the average squared errors 

between the simulated, or projected, values and the observed values. This allows for the comparison 

of average errors, regardless of the errors being negative or positive. The RMSE formula is found in 

Equation 5. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2

𝑛

𝑖=1

 

Equation 5: Root Mean Square Error calculation. Source: Chai & Draxler, 2014. 

In the formula, 𝑒 represents the model error, or the difference between the observed and the simulated 

value, at iteration 𝑖. Lastly, 𝑛 represent the total number of values (Chai & Draxler, 2014) (Equation 5). 

The unit of the RMSE output is dependent on the input data. In this case, that means the error given by 

the RMSE represents refugees. To be more precise: the average squared difference between the 

simulated amount of refugees and the observed amount for one whole model run.  

To allow for comparison between the errors of the camps, the Normalized Root Mean Square Error, or 

NRMSE, is calculated. This normalization is done by dividing the average RMSE values per camp by 

the maximum amount of refugees that stay in the camp during the simulation. The result is a value 

between 0 and 1 for each category.  

The third measure is the Averaged Relative Difference, or ARD. This measure is developed by the Flee-

team to determine the accuracy of their simulations (Suleimenova et al., 2017). This validation method 

can be performed using the FabFlee and FabSim add-ons for Flee. These packages provide an 

environment that facilitates automatic construction, execution and testing of models, as well as 

validation and visualization tools.  

The mean score indicates the averaged relative difference between the camp arrival numbers in the 

simulation versus those observed by UNHCR. The average is performed across several simulations in 

what is called an ensemble. In this study, the ARD is calculated for two ensembles of ten simulations 

each. One ensemble representing Flee runs with the original route files, the other representing the runs 

with the new route files. The ARD is found in Equation 6. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
𝛴𝑥∈𝑠(|𝑛𝑠𝑖𝑚,𝑥,𝑡 − 𝑛𝑑𝑎𝑡𝑎,𝑥,𝑡|)

𝑁𝑑𝑎𝑡𝑎,𝑎𝑙𝑙

 

Equation 6: Formula for the averaged relative difference. Source: Suleimenova et al., 2017. 

The number of refugees found in each camp 𝑥 of the set of all camps 𝑠 at time 𝑡 is given by 𝑛𝑠𝑖𝑚,𝑥,𝑡 based 

on the simulation projections, and by 𝑛𝑑𝑎𝑡𝑎,𝑥,𝑡 based on the observed UNHCR data. The total number 

of refugees reported in the UNHCR-data is given by 𝑁𝑑𝑎𝑡𝑎,𝑎𝑙𝑙 (Suleimenova et al., 2017) (Equation 6). If 

the result of the value is 1.0, this indicates that 50% of the simulation is wrong. An output of 0.0 means 

that the simulation is completely correct. In this method, the total number of refugees in camps from the 

simulation is compared to the total number of refugees in camps as observed by the UNHCR.  

To further analyse the results, more in depth-inspections of the data are performed. This is done by 

comparing the graphs and validation results for not only the whole simulation, but spatially and 

temporally as well. Inspection the results of individual camps and individual seasons provides 

information on the inner working of the Flee model, and the effects of the adapted routes thereon.  
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3.6 Mali case study 

3.6.1 Study area 
The study area for this case study is Mali (Figure 11). Mali is a West-African country with roughly 20 

million inhabitants. The capital of Mali, Bamako, is located in the southern half of the country. The 

northern half of Mali is situated in the Sahara (Bencherif et al., 2020). The southern half is situated in 

the Sahel region. Besides the Sahara and the Sahel, the primary geographic feature of Mali is the Niger 

river. Most of Mali’s population is dependent on and lives near this river. It enters the country in the 

south-east and leaves in the south-west. In the centre of the country, roughly on the border of the 

Sahara and the Sahel, the Niger branches out into an inner delta (Hughes & Hughes J.S., 1992, pp. 

191 - 199; Pavelic et al., 2012).  

Mali is chosen for this case study as it has been home to internal conflict since 2012 (Shaw, 2013). 

January 2012 saw the beginning of the conflict, as Tuareg insurgents in northern Mali proclaimed the 

Republic of Azawad as an independent state from the central Malian government in Bamako. The aim 

was to form a sovereign state out of the provinces of Timbuktu, Kidal and Gao. The insurgency, 

originally led by the Tuareg National Movement for the Liberation of Azawad (MNLA), was quickly taken 

over by Ansar Dine, an Islamist Tuareg group, with the aid of the Maghreb branch of Al-Qaeda (AQIM), 

after a skirmish between the two groups in the battle of Gao (Shaw, 2013). January 2012 saw a coup 

d’état, after weeks of protest. The coup was a result of discontent in the military as they found that 

government support in the fight against the rebels was lacking. In the power struggle, the Tuaregs 

gained control over Gao and Timbuktu. 

One year into the conflict, the French armed forced intervened. Secular Tuareg groups joined forces 

with the French against the jihadist insurgents. The French offensive saw jihadists driven out of most 

of northern Mali, but pockets of resistance remained (Bencherif et al., 2020). The conflict has spread 

towards central and southern Mali as well, where bombings and killings have become the mainstay of 

the conflict. Furthermore, the conflict has spread across the Sahel region, instilling other conflicts and 

displacing people outside of Mali as well (D’errico et al., 2021). To counter this spread, the French 

integrated efforts across the Sahel region into the counter-terror operation Barkhane.  

The conflict has led to large numbers of people being displaced (R4Sahel, n.d.; UNHCR, 2021). In the 

early stages of the conflict, the governments of Niger and Burkina Faso closed their border to the Malian 

refugees. The total closures were lifted, but travel restrictions on the Mali – Niger border remained, and 

meant that refugees could only cross the border on foot (Groen, 2016). Currently, some forty-eight 

thousand refugees have fled Mali, and some four-hundred thousand people are internally displaced 

(The World Bank, 2021; UNHCR, 2021). These numbers are currently at their highest since the 

beginning of the conflict in 2012, and are still increasing. As the conflict is mainly taking place in the 

north and centre of Mali, most refugees are displaced from here as well. Mainly Gao, Timbuktu, Ménaka, 

Mopti and Kayes have seen large numbers of people flee (Migrants Refugees, 2020; UNHCR, n.d.).  

To include all refugee camps relevant to this study, a buffer of three-hundred kilometres is used for the 

collection of data and the creation of the cost raster. This allows for the plotting of routes to refugee 

camps outside of Mali (Figure 11). 
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Figure 11: Mali Study Area. 

3.6.2. Flee Operationalization 
The implementation of Flee for the Mali case study specifically, is explained using six phases defined 

by Suleimenova et al. (2017). 

The first phase marks the selection of a country as study area, and a time period of a specific conflict 

which resulted in large scale forced migration. For this study, the country is Mali, and the conflict is the 

internal conflict which started in 2012. The simulation period is 300 days, from the 29th of February, 

2012, when the first camp registrations are recorded by the UNHCR, until the 25th of December, 2012, 

when most refugees had been registered in camps. This period is also used in the simulation performed 

by Suleimenova et al. (2017), allowing for comparison of results. 

The second phase is the acquisition of relevant data to the conflict. The data needed for this phase are 

conflict, refugee and roads data, which are found on the Armed Conflict Location & Event Data Project 

(ACLED, 2021), UNHCR (2021) and Bing Maps databases respectively. ACLED data are used for the 

locations of battles and armed clashes that have taken place within the duration of the conflict. The 

UNHCR database provides data on refugee numbers during the conflict, as well as camp locations and 

capacities. Bing Maps is used to obtain the locations of major settlements and routing information 

between the various camps, conflict zones and other settlements (Suleimenova et al., 2017). The total 

of settlements, camps, road connections and conflict locations is used to construct the network graph. 

This graph represents the network in which the agents operate. In this step, two sets of route data are 

used: the original data, derived from Bing Maps, and the data derived from the Cost Raster and Least-

Cost Path methods. 

The third phase constitutes the construction of the model with the usage of the aforementioned data. 

This includes the setting of parameters based on made assumptions (section 3.2).  
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The locations used in the location graph for the Mali 2012 simulation. These locations form the start 

points and destinations for agent travel, as well as route nodes. The locations are displayed in Table 4.  

Table 4: Locations used for route plotting. 

Location name Location type Location name Location type 

Abala Refugee camp Léré Conflict zone 

Ansongo Conflict zone Mangaize Refugee camp 

Bamako Conflict zone Ménaka Conflict zone 

Bobo-Dioulasso Refugee camp Mentao Refugee camp 

Bourem Conflict zone Mopti Town 

Diré Conflict zone Niafunké Conflict zone 

Douentza Conflict zone Niamey Refugee camp 

Fassala-Mbera Refugee camp Ségou Town 

Gao Conflict zone Tabareybarey Refugee camp 

Goundam Town Ténenkou Conflict zone 

Kidal Conflict zone Timbuktu Conflict zone 

Konna Town 

 

The locations used in the plotting of the adapted and new routes are the same as the locations in Table 

4. The connections between these locations are determined in two ways. The largest amount of 

connections is already determined for the initial Flee run for Mali 2012. These connections are based 

on the presence of a direct road connection in Bing maps, and are used again in the adapted run. The 

connections are taken from the GitHub Flee files. However, the weighted distances for these routes are 

recalculated through the method described in section 3.4. The second way in which the connections 

are determined applies to the newly created routes. These connections are based on estimations of 

logical routes, that were deemed missing in the original location graph (section 3.2). These estimations 

were done in consultation with an expert from the Dutch Ministry of Defence, who is knowledgeable on 

the local travel patterns of refugees (B. Ooink, personal communication, January 2022). The route 

creation results in four different distances for each route, one distance for each season. The location 

graph consists of 44 routes. These are plotted four times each, one per season. The result is 176 routes, 

which differ in weighted distance per season. The resulting location graph, including new routes, is 

displayed in Figure 12.  
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Figure 12: Adapted location graph.  

From the locations described in Table 4, some areas are set in the Flee model as conflict zones. The 

model allows for assigning conflict location during the model run, at a certain timestep. These emergent 

conflicts change the way the agents behave in the model, and affect the routes and destinations that 

the agents take. The data for these conflicts is sourced from the ACLED Database (Suleimenova et al., 

2017). The conflict zones, and the timesteps at which they emerge or disappear, are displayed in Table 

5. 

Table 5: Conflict zone emergence days. 

Location name Conflict zone 
emergence day 

Location name Conflict zone 
emergence day 

Abala - Léré 273 

Ansongo 30 Mangaize - 

Bamako 163 Ménaka 2 

Bobo-Dioulasso - Mentao - 

Bourem 30 Mopti - 

Diré 13 Niafunké 1 

Douentza 185 Niamey - 

Fassala-Mbera - Ségou - 

Gao 23 Tabareybarey - 

Goundam - Ténenkou 3 

Kidal 1 Timbuktu 1 

Konna - 

 

Once the model setting is constructed and the parameters are set, the fourth phase begins, which 

consists of refining the model. By default, the total number of refugees is found by taken the historic 

total aggregated number of refugees in camps, as measured by the UNHCR. Furthermore, each 

timestep, a number of refugees is inserted into the simulation based on the daily increase in the total 

refugee registration count from the UNHCR data. The refugees are inserted in one of the conflict 
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locations, based on the population of that location (Suleimenova et al., 2017). These UNHCR refugee 

data are visualized in Figure 13.  

 

Figure 13: Observed refugee data, Mali 2012. Source: UNHCR, 2021. 
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Figure 14: Mean observed refugee numbers over the complete time period. UNHCR, 2012. 

The refugee numbers in Mali are not equally distributed, as can be seen from Figure 13. To provide a 

spatial perspective on this division, the mean of these refugee numbers are displayed as proportional 

symbols in Figure 14. The camps Fassala-Mbera and Abala account for some 75% of the Malian 

refugee numbers in 2012. Where the graph lines remain constant towards the end of the time period, 

the camp capacity has been reached. This can be clearly seen for Fassala-Mbera in Figure 13. Where 

the graph-line remain constant at the start of the simulation, border closures are in place. This can be 

seen for the camps Mangaize and Tabareybarey. Another part of phase four consists of adding the 

border closure data to the model. These closures are displayed in Table 6.  

Table 6: Closure data and dates for the Mali case study, 2012.  

Name1 Name2 Closure start Closure start date Closure end Closure end date 

Mali Burkina Faso 0 29th of February, 2012  22 22nd of March, 2012 

Mali Niger 0 29th of February, 2012 33 1st of April, 2012 

 

Phase five involves the simulation run in Flee. This is used to project the distribution of refugees across 

the individual camps. In this study, Flee is run a total of twenty times. The first ten times with the original 

routes data, the second time with the adapted routes data, based on the cost raster. 

The final phase involves analysing and validating the results against the full UNHCR refugee numbers. 

This is described in detail in section 3.7.  

In this study, phases two through four are already finished. The Flee files, available on Github 

(https://github.com/djgroen/flee), include the finished products of these steps. The usage of these files 

allows for a run of Flee with the default settings. The purpose of this study requires only that the routes 

data from these files are adapted.  

  

https://github.com/djgroen/flee
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3.7 Data 
The data used in this study are selected to represent the features of the physical environment that are 

relevant to a refugee. The data that represent these features are described here. The datasets linked 

to the NATO-classes are summarized in Table 7, and explained below.   

Table 7: Summary of data used in the study. 

Type Feature Data 

Relief Slope – percentage of incline – non-seasonal feature JAXA ALOS Global 30m DSM 
(2021) 
 

Drainage Presence of open water and wetlands / floodplains – 
seasonal feature 

Sentinel 2 – Indexed satellite 
images (NDMI / Wetlands in Water 
(WiW))  
 

Soil Surface material – loose sand, rocky surfaces and 
compacted sand/gravel/grassland– partially 
seasonal feature 

Sentinel 2 - Esri Land Cover 2020 
 

Infrastructure Presence of roads, bridges, ferries or fordable river 
sections –partially seasonal feature 

Open Street Map; Esri Land Cover 
(2020) 
 

 

3.7.1 Relief 
The Relief data class is comprised of the slope feature, or the percentage of incline between different 

elevations. This feature is derived from the Japanese space agency’s ALOS global digital surface 

model. The newest version, 3.2, is released in January 2021. This DSM has a horizontal resolution of 

approximately 30 meters, or 1 arcsecond (Google Earth Engine, 2021). From this elevation dataset, the 

slope is derived in Google Earth Engine (GEE). For the purpose of representing the Earth’s terrain, 

usually a digital terrain model (DTM) instead of a digital surface model (DSM) is used, as a DSM 

includes the elevation of all objects present on the Earth’s surface. In this case however, a DSM is 

used, as there is no DTM available for Mali with the same level of resolution. Furthermore, the ALOS 

DSM is the most recent one compared to available DTMs. Inspection of the data has shown that the 

DSM provides no significant negative effect to the accuracy of the terrain representation. The most 

significant elevation differences and slopes are limited to the north of Mali, where the is little to no tall 

vegetation capable of disrupting the data. The slope data were then reclassified into five classes. The 

slope data used in this study is assumed to not change seasonally.  

3.7.2 Drainage 
The datasets that are part of the Drainage data class are ‘open water’ and ‘wetlands’ or ‘floodplains’. 

To create these data, multi-spectral images from ESA Copernicus’ Sentinel 2 1C mission were used. 

As the presence of water in Mali is prone to seasonal change, using a single, predefined dataset that 

delineates water bodies is not suitable for this study (Andersson et al., 2017; Casse et al., 2015). 

Therefore, a different method is used. Sentinel 2 multispectral images are classified using the NDWI, 

yielding a dataset with values between 1 and -1 (Equation 1, section 3.3). 

Copernicus’ Sentinel 2 data are useful for this study due to several reasons. Firstly, the Sentinel 2 

mission retrieves high spatial-resolution images in several different bands. These bands include visible 

light and near-infrared light, which makes the data suitable for NDWI calculations. Secondly, the 

temporal resolution of the data is high. The revisit time of the Sentinel 2 satellites is approximately five 

days. This allows for comparing the signal over time and detecting seasonal change accurately. To do 

this, the data is first classified into four seasons. The start and end dates of these seasons can be found 

in Table 8. 
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Table 8: Dates used for seasonal reclassification. 

Dates used for seasonal reclassification of Sentinel data 
Seasons Start date End data 

Season 1  1st of January 31st of March 

Season 2  1st of April 30th of June 

Season 3  1st of July 31st of September  

Season 4  1st of October 31st of December 

 

The dry season marks the period where the Niger river is at its largest. This is caused by the water 

upstream arriving with a delay downstream. This period falls generally between October and March, so 

from seasons 1 through 4. The wet season ranges roughly from April through September, in seasons 2 

and 3. In this period, the water volume in the Niger is at its lowest. This reclassification of the Sentinel 

data is applied to all years between 2015 and 2021. The same seasons from each year are combined. 

On this combination, the median is calculated. From this calculation, cloudy images are excluded to 

yield a higher accuracy. For Northern Mali, a 0-percent cloud cover tolerance could be set, removing 

all images with clouds and thus resulting in the highest accuracy. However, the inclusion of the buffer 

around Mali meant that some of the data represent tropical areas, where cloud cover is a much more 

common occurrence. This means that a 0-percent cloud cover tolerance results in data gaps, for areas 

where there are no cloudless images available. Therefore, a 15-percent tolerance is applied to reduce 

the amount of data gaps to an insignificant amount and location. This results in a lower accuracy signal. 

The result is a dataset for each season that depicts the median signal retrieved by Sentinel 2 over the 

span of six years, yielding a cloudless dataset that depicts for each cell the most likely signal. On this 

seasonal, multi-year median, the NDWI is calculated. In this study, the NDWI data are used to classify 

the region into a binary dataset, depicting open water and non-open water. 

Another challenge is the classification of wetland surfaces. These are classified using the Water in 

Wetlands method, published by Lefebvre et al. (2019) (Equation 2, section 3.3). Before applying this 

method, the Sentinel 2 signal does need to be divided by ten-thousand, to transform the raw signal into 

reflectance values (GIS Ag Maps - Sentinel-2 Surface Reflectance Tutorial, n.d.). 

To create a coherent dataset, first the NDWI values are reclassified: positive values indicate the 

presence of open water (value = 1), negative or 0-values indicate land (value = 0). The resulting four 

reclassified datasets of the NDWI method are then merged with the four dataset of the WiW method, 

resulting in one dataset that delineates all areas where water has been for the duration of at least one 

seasonal median. In other words, it delineates the areas that have the possibility of containing water or 

wetlands throughout the year, which would make those areas impassable. In the model, these areas 

are all assigned the value 0.5, which is the speed multiplier value of dry floodplains (see section 3.8.1). 

However, a conditional statement is added that if a cell from this dataset is overlapped by a cell from 

one of the seasonal datasets of either the NDWI or the WiW, the cell becomes impassable, by assigning 

the speed multiplier value 0. The result is a dynamic way to differentiate between water and wetlands, 

which are impassable, on one hand, and dried-up floodplains on the other hand.  

3.7.3 Soil 
The data class Soil, from the NATO classification, pertains in this case study mostly to surface material, 

as most soil specifications, beside moisture level, are not relevant to refugee flight behaviour. The 

surface of Mali is reduced to three classes, besides open water and wetlands, which are explained in 

different sections. These three classes are compacted sand/gravel/grassland, loose sand and rocky 

areas. The first class serves as a ‘rest’ class, which is used to delineate all surfaces besides loose sand 

and rocky areas. This includes for example all vegetated areas. As no distinction is made between 

vegetation presence, type or density, this choice is made. Furthermore, from personal communication 

the rocky areas and loose sand features were deemed the most common in Mali and the most influential 

to vehicular travel (B. Ooink, personal communication, September 2021).  

To delineate these classes in the terrain, two methods are used. The first method is to reclassify the 

Esri Land Cover 2020 dataset. This dataset consists of a raster with a 10-meter resolution, in which 

areas are divided into 10 classes, derived from Sentinel 2 data. This dataset is used for each season, 
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as it is assumed that the used land cover features do not change seasonally. From this dataset, loose 

sand and compacted sand/gravel/grassland are derived. Through visual inspection, loose sand is 

assumed to form the ‘bare areas’ class in the Esri dataset. All other classes in the dataset are 

reclassified to form the compacted sand/gravel/grassland class. The data are then aggregated to a 30-

meter resolution dataset, to match the other datasets used in the study.  

The second method is used to classify rocky areas. The rocky areas class is derived through a random 

forest supervised classification of Sentinel 2 images (section 3.3). The classified Sentinel 2 images 

were reclassified into a binary dataset, delineating ‘rocky areas’ and ‘non-rocky areas’.  

3.7.4 Infrastructure 
The data class Infrastructure consists of several roads features. The roads dataset is derived from Open 

Street Map (OSM), and open-source infrastructure data source that is frequently updated. The OSM 

database is accessed by using the QGIS plug-in QuickOSM. Open Street Map offers several classes 

that represents roads and river crossings, which is ideal for the dynamic situation of Mali’s rivers. The 

roads dataset is split into five classes that are suitable for vehicular traffic: primary roads, secondary 

roads, tertiary roads, residential roads and unclassified roads. The first two classes consist of highways, 

with the highest degree of accessibility, meant as national connections. Tertiary roads are smaller, 

regional roads. Residential roads are roads within urban areas, and unclassified roads are local, 

sometimes unofficial roads.  

Furthermore, in the OSM data several properties in the roads dataset are included that are important 

to simulating the situation in Mali. This is the case due to the significant changes in waterflows that 

occur periodically in Mali. Some routes of travel are not viable in one season, while they are in another 

season, due to the swelling and shrinking of the rivers. These properties include the presence of 

bridges, ferries and fordable areas. It is assumed that vehicles used by refugees do not have the 

capability to traverse open water, and are therefore reliant on these crossings. To select bridges, road 

sections where the property bridges equals T (for ‘True’), are stored in a separate file. The same is 

done for the property ford, which indicates a fordable area. Next, to select ferries, the point dataset 

‘Ferry terminals’ is taken. To include ferries in the road network, vertices were manually drawn between 

the ferry terminals and the nearest road. Some 40 ferry connections exist in Mali according to OSM, 

with an additional 26 in the buffer area. To ensure the connection would transfer correctly to raster data, 

the river crossings were buffered using the Buffer function, with a diameter of 90 meters, or roughly 

three cells. All data are then converted to raster using the ArcGIS Pro tool Feature to Raster to allow 

for the inclusion of the data in the model.  

In the periods when the Niger river is generally at its peak volume, in seasons one and four, fords are 

made inaccessible in the model. The opposite is true for ferries, which are not accessible in seasons 

two and three, when the river is reduced in size and volume. Bridges are available throughout the 

seasons. This results in the need to take different routes in different seasons, as some river crossing 

become inaccessible.  

3.8 Speed multiplier values 

3.8.1 Surface speed multiplier values 
The speed multiplier values for different surface materials are determined using literature sources. As 

no single source is found that described the needed values completely, the values used for this study 

are a combination of several studies The values for roads and open water are not determined from 

literature. It is assumed that maximum speed can be obtained on roads, as these are usually the paths 

of least resistance for vehicles. This maximum speed value is already adapted to the quality of roads in 

the study area. Water is given the value 0, representing an impassable object. In the table, wet and dry 

seasons are given different values, as some terrain surfaces might be affected by this fluctuation.  

The first source is a document that describes a standard method for ground vehicle mobility, used by 

NATO (Baylot et al., 2005). This NATO Reference Mobility Model (NRMM) in itself could not be used, 

as it requires information too specific for this study, such as vehicle details. In this report however, a 

‘roughness’ factor is assigned to several surface materials. The roughness factor in this report is a 

comparative value to several different climate regions. This roughness factor represents resistance and 
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is therefore converted on a 1:1 ratio to a speed multiplier value. The values in Table 9 are not the actual 

values found in Baylot et al. (2005), but are standardized to values between 0 and 1, by dividing the 

values by the maximum value. The values are then inverted to match with the other values, where 0 

represents no movement possible and 1 represents no slowdown. 

Table 9: Speed multiplier values as described in Baylot et al. (2005). 

Feature Original speed multiplier 
value (Baylot et al., 2005) 

Standardized speed 
multiplier value 

Standardized inverted 
speed multiplier value  

Compacted 
sand/gravel/grassland 

0.6 0.3 0.7 

Loose sand 0.3 0.15 0.85 

Rocky surface 1.8 1 0 

Wetlands 1.8 1 0 (described as mangrove) 

Floodplain 0.3 0.15 0.85 (described as wetland) 

 
In Table 9, the speed multiplier values from Baylot et al. (2005) are described. Loose sand is the least 
resistant surface according to the source, along with wetlands. As the source describes wetlands for 
deserts, the speed multiplier value is low (0.3). This is probably due to desert wetlands being 
comparatively trafficable in comparison to wetter climate areas. Therefore, this value is assumed to 
represent closest a floodplain in the dry season. Baylot et al. attribute the lowest speed multiplier value 
to mangroves and rocky surfaces. Mangroves are assumed to represent bogs or swamps in the case 
of Mali. All these surface types can be classified as wetlands, which is the term that is used from here 
on. 

The second source used for the determination of the speed multiplier values is an analysis of historical 
cross-country mobility projection in Germany by F. Malm (2019). Included in this document is a map 
which uses a Likert classification to rank the ‘trafficability’ of different surfaces. Once again, this 
trafficability value is converted on a 1:1 ratio to a speed multiplier value. In this rating a distinction is 
present for wet and dry conditions as well. The values have been made numerical to allow for 
comparison. The rating is described in Table 10.   

Table 10: Speed multiplier values as described in Malm, (2019). 

Feature Speed multiplier value scale (Malm, 2019) 

 Dry season Wet season 

Compacted sand/gravel/grassland 0.8 0.6 

Loose sand 0.6 0.8 

Rocky surface NA NA 

Wetlands 0 0 

Floodplain 0.2 0 

 
The values described in Table 10 are somewhat different to the desert speed multiplier values of Baylot 
et al. (2005), as the values in Malm (2019) describe an area in Belarus. Loose sand for example 
probably does not describe the same material in both sources. However, the hierarchy of the values is 
roughly the same.  

The third and final source is written by M. Rybanský (2003). Rybanský has written multiple paper on 
the effect of geographic features on cross-country movement for the Brno Military Academy in the 
Czech Republic (Hubáček & Rybansky, 2013; Rybanský, 2003; Rybansky et al., 2015). The approach 
to determining the resistance of surfaces in his paper is more simplistic. Features are divided in one of 
three groups: GO, SLOW GO or NO GO. These groups are represented in the raster by the speed 
multiplier values 1, 0.5 and 0 respectively (Rybanský, 2003). These values are assigned to the pertinent 
surfaces in Table 11. 

Table 11: Speed multiplier values as described in Rybanský (2003). 

Feature Speed multiplier value (Rybanský, 2003) 

Compacted sand/gravel/grassland 1 

Loose sand 0.5 

Rocky surface 0 

Wetlands 0 

Floodplain 0.5 
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In their description, several different terms are used. ‘Clayish soil during wet weather’, belonging to the 
SLOW GO group, is interpreted as a floodplain in wet weather. ‘Powdered soil during dry weather’, 
belonging to the same group, is interpreted as loose sand.  

To summarize the values derived from these sources, an overview can be found in Table 12. 

Table 12: Speed multiplier values summarized. 

Feature Baylot et al., 2005 Malm, 2019 Rybanský, 2003 

 Dry season Wet season Dry season Wet season Dry season Wet season 

Compacted 
sand/gravel/grassland 

0.7 0.7 0.8 0.6 1 1 

Loose sand 0.85 0.85 0.6 0.8 0.5 0.5 

Rocky surface 0 0 NA NA 0 0 

Wetlands 0 0 0 0 0 0 

Floodplain 0.85  0.85  0.2 0 0.5 0.5 

 
The mean is calculated on the values listed in Table 12, and the results are displayed in Table 13. The 
value for floodplains in the wet season amounts to 0.45 according to the literature. However, studies 
have shown that wetlands are only accessible for high-end tracked vehicles (Guo & Lu, 2009). 
Therefore, it is assumed in this study that these surfaces are not passable for refugees travelling in 
ordinary, wheeled vehicles. The class floodplains used in literature is merged with the class wetlands, 
as they both represent an impassable surface when wet. The speed multiplier value for these surfaces 
is therefore not bound to the season, but to the measured amount of moisture in or on top of the soil. 
When wet, they are treated as impassable. When dry, they are treated as reducing trafficability to 50%, 
which is derived from the mentioned literature. This is possible due to the dynamic nature of the data 
that represent these surfaces, and is further explained in the Data section (section 3.7.2).  

Table 13: Averaged speed multiplier values. 

Feature Speed multiplier values 

 Dry season Wet season 

Roads see Table 9 see Table 9 

Compacted sand/gravel/grassland 0.8 0.8 

Loose sand 0.7 0.7 

Rocky surface 0 0 

Wetlands 0.5 (when dry) 0 (when wet) 

Water 0 0 

 
However, testing has shown that these values are still high, and might provide a distorted image of 
reality, in comparison to the roads speed multipliers. Besides the physical resistance of surfaces, there 
are several components that play a role in the actual accessibility of surfaces as well. First, off-road 
surfaces are less accessible not only due to the soil structure, but also due to land-cover objects. For 
example, although vegetation is not taken into account directly into this study, it still plays a role in the 
accessibility of surfaces. Roads, especially non-paved roads, are generally defined by their lack of 
obstacles such as vegetation and rocks, which makes them accessible and often the chosen route of 
travel. Areas outside of roads, paths or trails generally have some degree of obstacles, be it vegetation, 
rocks or uneven surfaces. Second, there is a mental factor at play. If provided with a choice, people 
most likely pick a path or trail over an area devoid of visible routes, even it might take more time. 
Furthermore, there is a factor of not knowing how much longer it takes to drive along a road instead of 
going off-road. 

These factors are difficult to quantify. It is assessed that the extra resistance factors amount to a further 
decrease of roughly 50% of the speed multiplier values. The results of this are displayed in Table 14. 
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Table 14: Final speed multiplier values. 

Feature Speed multiplier values 
 Dry season Wet season 

Roads see Table XX see Table 9 

Compacted sand/gravel/grassland 0.4 0.4 

Loose sand 0.3 0.3 

Rocky surface 0 0 

Wetlands 0.5 (when dry) 0 (when wet) 

Water 0 0 

 

The roads data speed multiplier values are split up into several classes (Table 15). This is done to 

represent the different quality of different road types. The values range from 1 to 0.8. The lower value, 

0.8, is set to not go below the least resistant non-road surface, which is compacted 

sand/gravel/grassland. With the exception of river crossings, all road speed multiplier are either equal 

to or higher than 0.8. The first class, primary roads, represents national highways. This class is set to 

1, representing that these roads allow for the maximum speed to be obtained (Ramm, 2021). Secondary 

roads represent regional roads. Visual inspection of the dataset shows that some of these roads are 

paved, but are of lesser quality in comparison to the primary roads. Therefore, the speed multiplier 

value of this layer is slightly increased. Tertiary and residential roads are assigned the same value. 

These local or regional roads are either of lesser quality or reduce maximum speed through traffic 

regulations. The value is therefore 0.9 (Ramm, 2021). Unclassified roads can be any road or path that 

cannot be assigned to a specific class. These roads allow not much faster travel than some roadless 

areas. The difference is therefore only 0.05 to compacted sand/gravel/grassland (Table 15). 

Table 15: Road speed multiplier values.  

Road class Speed multiplier values 

Primary roads 1 

Secondary roads 0.95 

Tertiary roads 0.90 

Residential roads 0.90 

Unclassified roads 0.85 

Bridges 0.50 

Fords 0.20 

Ferries 0.10 

 
The river crossing classes are classified separately. Of the three classes, ‘bridges’ allows for the faster 
travel. Some bridges might be more narrow than the connecting roads, and therefore demand a 
significant slowdown. Fords slow down more, to represent having to drive carefully through an 
inundated area, reducing the speed by 80% in this case. Ferries have the lowest speed multiplier, 
representing waiting time for the ferry to arrive, and slow transport across the waterbody.  

3.8.2 Slope speed multiplier values 
The speed multiplier values for different slope angles are derived from literature as well. The method 
described by Shoop et al., (2005) is a simplified classification derived from the NRMM method (Baylot 
et al., 2005). It defines five classes of slopes, each of which gets assigned a speed multiplier value 
(Shoop et al., 2005; Suvinen, n.d.). The maximum slope in this method is 30%. Slopes above this angle 
are classified as no go terrain. However, the values described by Shoop et al. are meant to represent 
military vehicles, which are often suited for rough terrain and equipped with four-wheel drive capabilities. 
Therefore, the values for this case study are adjusted to represent the wide range of vehicles that might 
be used by refugees. The speed multiplier value is increased to represent this difference in vehicle 
power and capabilities. The classes, values and slowdown factors are listed in Table 16. The values 
that are used in the raster are listed under the adjusted speed multiplier factor.  
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Table 16: Slope speed multiplier values, derived from Shoop et al. (2005). 

Slope class (%) Speed reduction 
percentage  

Speed multiplier 
value 

Adjusted speed multiplier value 

0 – 5 0% 1 1 

5 – 15 10% 0.9 0.8 

15 – 25 20% 0.8 0.6 

25 – 30 30% 0.7 0.4 

>30 NoGo / 100% 0 0 
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4. Results and Discussion 
4.1 Route creation results 
In Figure 15, the plotted routes for season 1 are showcased. The way some of the routes differ per 

season can be seen in Figure 16. Here, the season 1 routes are overlayed by the routes plotted for 

season 3.  

 

Figure 15: Plotted routes with season 1 data. 
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Figure 16: Difference in plotted routes. 

The routes generally follow the major roads, unless large shortcuts are possible, or when road 

connections or river crossings are lacking. Routes in several cases merge on the same path, as there 

are major roads present. This can for example be seen near Bobo-Dioulasso (Figure 16). The route 

from Ségou towards Bobo-Dioulasso includes a detour to meet-up with the highway towards this city. 

This pattern is expected, as the speed multiplier values for the roads are higher than the off-road speed 

multiplier values.  

The differences in route distances can amount into several hundreds of kilometres, and are induced by 

the changes in river crossing accessibility. For example, the connection between Mentao and Ansongo 

is significantly shorter in season one in comparison to season three, due to the accessibility of a ferry 

crossing just south of Ansongo. This ferry is not available in the wet season due to low water levels in 

the river (Figure 16). The full changes between the routes are listed in the Table 17 (Appendix 7.1). On 

the weighted distances of the routes, the percentual differences are calculated between the old and 

new values (Table 17, Appendix 7.1). As the new routes consist of four values, the average of these 

values is used. This comparison can only be applied to the connections that already existed in the 

original location graph. Mainly the weighted distances for the routes between Konna and Niafunké and 

Konna and Timbuktu have increased, by 397% and 153% respectively. This can be explained by the 

proximity of Konna to the Niger river and Inner Niger delta. The routes to Konna increase in season two 

and three, indicating a reliance on ferry crossings for accessibility. The positive relative differences for 

all other routes have remained below 50%. Relatively the largest negative difference in route weighted 

distance happens for the Douentza – Mentao route, where the weighted distance decreased by 44%. 

On average, the routes for season one and four have increased by 17%. In seasons two and three, this 

difference is nearly twice that, at around 30%. This difference is caused by the absence of ferry 

crossings in seasons two and three, and the absence of fordable areas in seasons one and four. The 

amount of ferries exceeds the amount of fordable areas, explaining the larger impact of the absence of 

ferries on the plotted routes (Table 17, Appendix 7.1).  



 
 

36 
 

Several routes are tested for accuracy of travel time, and thus weighted distance, as well as of the 

plotted paths for the routes. The simulated routes follow largely the same track for each of the tests as 

the route planner in Google Maps. This indicates that the speed multipliers for off-road travel compared 

to on-road travel are within proportions, and the hierarchy of resistance is accurate. In other words, it is 

represented correctly that on-road travel is preferred on a route if this option is available.  

The tests for travel time show that on average for the tested routes, the difference in travel time for the 

routes is ~13% (Table 18, Appendix 7.2). A certain percentage of error is expected in the creation of 

routes, and the 13% difference seems and acceptable error for the creation of off-road routes. However, 

this might not represent the actual travel time difference for all simulated routes and the real-world 

routes, as not all routes can be tested in this way. The comparison does show, that the speed multiplier 

for roads in combination with the maximum speed value, are roughly 87% accurate. Furthermore, the 

results in Table 18 (Appendix 7.2) shows that for each of the tested routes, the simulated travel times 

are lower than the observed travel times. This means that the speed multiplier value and the maximum 

speed are more optimistic than reality. Thus, in reality, travel takes longer than simulated. Further 

calibration of these values is required to amend this. The accuracy of off-road routes cannot be validated 

in the same manner however, and requires field testing to validate. Only the accuracy of the new method 

for the routes that follow the same paths as the original routes can be tested.  

To summarize, the routes do follow the same tracks, which indicates an accurate ratio of speed 

multipliers between road and non-road values. However, on-road travel speeds are too optimistic. To 

more accurately represent reality, the maximum speed or the speed multipliers for roads used in the 

simulation should be reduced. For off-road travel, both the accuracy of the plotted routes, as well as the 

accuracy of the multipliers and the maximum travel speed remain unknown.  
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4.2 Flee results 
The results of the Flee simulations are described and discussed here. Figure 17 and 18 show the results 

of both the simulations with the old routes and the simulations with the new routes. 

 

Figure 17: Old routes average refugee numbers per camp. 

 

Figure 18: New routes average refugee numbers per camp. 

Figure 17 and 18 show that the results of both simulations are comparable to the observed data from 

the UNHCR (Figure 13 – section 3.6.2). In all cases, the camp Fassala-Mbera has the largest population 

of refugees. In both simulations, the next largest amount of refugees towards the end of the simulation 
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can be found in Abala. Abala and Fassala-Mbera still account for some 75% of refugees in the 

simulation. This can be explained by these camps’ proximity to early conflict locations and the high 

refugee capacity. For Fassala-Mbera, the locations are Niafunké, Ténenkou and Timbuktu. For Abala, 

these are Timbuktu and Ménaka. After Abala, the next largest camps are Mentao and Tabareybarey. 

This is what the observed data show as well.   

  

Figure 19: Average refugee arrival numbers per location. 
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To analyse the differences between camps in more detail, the average refugee numbers over ten runs 

of the individual camps are plotted in Figure 19. The new routes have caused a difference for all 

locations, with the exception of Tabareybarey. A difference between the simulations and the observed 

data is the underestimation of refugees in Niamey, and the overestimation of refugees in the Niger 

camps of Abala, Mangaize and Tabareybarey (Figure 19). These two trends are most likely related in 

the following way: Niamey is a capital city, undoubtably known to many across the border in Mali as 

well. Being a large city, Niamey might have an attractive value that is not taken into account in the 

model (Suleimenova et al., 2017). A city such as Niamey is often the best supplied in the country, and 

home to most resources and amenities in the country. Compare this to a refugee camp, and a large city 

quickly becomes the more desirable option to flee to. In a study performed using Flee, Campos et al. 

(2019) state that: 

“(..) food security influences the likelihood of travelling refugees to depart (..).” 

(Campos et al., 2019) 

Furthermore, in the beginning of the conflict, the Niger refugee camps were in a poor state. The UNHCR 

states the following:  

“Many of the new arrivals are sleeping in the open and have little access to shelter, clean water, health 

services and food. (…) people were scattered mainly in villages (…) in the north of the country. 

Sinegodar, a village in Tillabery district, is hosting more than 5,500 Malians, with only one water outlet 

for the refugees and the local population.”  

(UNHCR, 2012) 

However, in Flee the opposite of the desire to leave camps in favour of the city is represented. The 

chance that an agent leaves a camp is 0.1%, resulting in most refugees staying in the first camp they 

arrive at after crossing the border, unless the camp capacity is reached. In reality, refugees might not 

be as satisfied in those camps as assumed in the model, especially when food accessibility is low, 

which is the case for the Niger camps during the study period, according to the UNHCR (2021). 

Some refugees in Abala and Mangaize have crossed the border during or before the border closure. 

This can be seen in the simulation results, where the refugee numbers in the camps remain constant 

at around 1000 refugees before the opening of the border (Figure 19).  

After the reopening of the border, the Mali-Niger border remained subject to limited border restrictions 

that were still in place after the border opening on day 33 of the simulation, or the 1st of April, 2012. The 

restrictions meant that refugees could only cross the Mali – Niger border on foot (Groen, 2016). These 

restrictions remained in place for the duration of the conflict. Such restrictions are not taken into account 

in the model either. This might further play a role in the overestimation of refugees in the aforementioned 

Niger camps. Zolberg et al. (1986) state the following:  

“The most problematic type of external effect consists of the policies of potential receivers. (..) People 

cannot leave their country if they have no place to go; and in effect, in a world of generally restrictive 

controls on entry, the availability of such a place is largely determined by the governmental policy of 

receiving [countries].” 

(Zolberg et al., 1986) 

The importance of international policy means that the absence of such international refugee policies in 

the model is potentially damaging to the accuracy of the results. 

Besides the discrepancy that is present between both simulated datasets and the observed data, an 

increase in this discrepancy after the implementation of the new routes is seen as well. This is mainly 

notable for Mangaize, where the distance between simulated and observed data has clearly increased. 

The Mangaize graph in Figure 19 shows that the new simulation does not assign more refugees to 

Mangaize, but assigns the same amount of refugees earlier to the camp. This can be explained by 

looking at the distances of the routes towards Mangaize. The distance between Ménaka and Mangaize 

has in the new routes data decreased from 305 to approximately 200 kilometres. From Figure 19 it can 
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be derived that almost all of the increased discrepancy happens within the first 90 days of the conflict. 

This matches with the following statement by the UNHCR (2012): 

“In Niger, most of the new arrivals are from Ménaka in Mali. Some have settled very close to the volatile 

border.” 

(UNHCR, 2012) 

Most of the early refugees in Niger originate from Ménaka, which means that a shorter route between 

these locations, allows for earlier arrival. This is what the graph in Figure 19 shows as well. In reality, 

the current Ménaka-Mangaize route is most likely unavailable or takes longer to travel than simulated 

here, as the distance to the observed data increases in the new run. This could mean that factors other 

than the route length, such as the earlier mentioned border restrictions, play a more important role in 

the correct simulation of refugees in this area.  

This same result is notable for Mentao and Bobo-Dioulasso, the two Burkina-Faso camps. In both 

cases, the overall refugee count has not changed much. The major change is the time of arrival of the 

refugees. For Mentao, the major spike starting around day 23 is caused by the conflicts erupting in 

Ansongo, Bourem and Gao, which start around this time. The earlier arrival of the refugees is caused 

by the decreased distance between Mentao and Douentza. Whereas the route is some 490 kilometres 

in the old model, this route is now some 270 kilometres in each season. The location of Douentza 

compared to Mentao and the conflict zones ensures that many refugees take the route through 

Douentza.  

The reverse of this trend is true for Bobo-Dioulasso, where the refugees arrive a few days later in the 

new model, and the peak occurs some ten days later as well. This can be explained by the routes to 

Bobo-Dioulasso as well, which all have seen a significant increase in weighted distance. The routes 

from Mentao, Mopti and Ségou have increased by roughly one-hundred kilometres each (Table 17, 

Appendix 7.1).  

Another notable trend in the data can be seen in the graphs for Fassala-Mbera and Niamey, where the 

difference in refugee arrivals for the two simulations increases steadily. These increases might be 

related to a combination of changed routes and the outbreak of conflicts. For Fassala-Mbera, the 

difference starts becoming visible around day 170. This matches with the outbreak of conflict in 

Bamako, the capital of Mali. This could result in a surge of refugees going to the nearest camp. In the 

new routes this is Fassala-Mbera, which is linked to Bamako through Ségou. The more direct link with 

the camp results in more arrivals in the camp. As the refugee numbers for Fassala-Mbera are so large 

compared to the others camps, the trend is also visible in the graph for total refugee arrivals.  

The same trend in Niamey cannot be explained through the outbreak of a conflict however, as the dates 

do not match with the increase of numbers in the camp. However, it might be caused by other camps 

reaching capacity. The increase in disparity of refugee arrivals in Niamey starts around day 80 or 90. 

This is when the new route simulation starts to display an increase in arrivals compared to the old run. 

This matches with Mangaize reaching capacity around day 90 in the new run. The old run shows 

Mangaize reaching capacity around day 130, which is roughly when the increase in numbers in Niamey 

starts as well. 

Tabareybarey shows little change between the two runs, which could be explained by the small changes 

in distance for the routes leading to this location. Interesting is that the new connection with Mentao 

seems to show little effect on the refugee numbers for the Niger camps of Tabareybarey and Niamey. 

This can be explained by the fact that refugees in these three locations are already in safety, and 

therefore do not choose to continue travelling. It is not affected by Mentao reaching capacity, as this 

occurs around the same time.   

Changes in the refugee count for Abala might be caused by the new connection between Kidal and 

Ménaka, allowing for more direct travel to Abala from Kidal. This results in the earlier arrival of refugees. 
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4.3 Flee error analysis 

 

Figure 20: Spatial division of percentual differences in RMSE. 

Four camps show a decrease in error as a result of the new routes, and the other three show an increase 

in error (Figure 20). However, the overall error has decreased by on average some 2200 refugees, 

which is a difference of around 16.5 percent. However, the total error reduction of 16.5 percent is mainly 

caused by the differences in the results for Fassala-Mbera. Due to the relative size of the Fassala-

Mbera refugee camp, a difference in refugees here is projected directly to the total simulation results. 

In this case, if just the Fassala-Mbera error decreases due to changed routes, and other locations see 

an increase in error, the total error might still decrease. If the impact of the changed routes on the error 

per location is to be tested, all locations should have the same weight. This can be done by taking the 

average of the ‘%-difference’ column in Table 19 (Appendix 7.3). Including the total difference, the error 

between old and new simulations increases by roughly 7%. Excluding the total difference, this number 

is increased to 10%. This method shows that the relative difference caused by the changes in routes, 

might actually increase the error, and negatively impact the accuracy of the model.   

The normalized errors (NRMSE) for some locations are higher than others (Table 20, Appendix 7.4). 

Mainly the errors for Niamey, Tabareybarey and Bobo-Dioulasso stand out, in both simulations. These 

errors are caused by a discrepancy between the simulated data and the observed data. A difference in 

error indicates an increase or decrease in this discrepancy between the old and new runs. The largest 

differences occur in Mangaize, Mentao, Niamey and over the total simulation. The ways in which the 

results for these and other camps have changed, and why this is the case, is discussed in section 4.2. 

The reasons for the changes in absolute refugee numbers are the same for the changes in RMSE.  

To inspect the influence of the temporal fluctuations in routes, the NRMSE is calculated seasonally per 

location as well  (Table 21, Appendix 7.5; Figure 21).  
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Figure 21: RMSE normalized per season. 

 

Figure 22: Seasonal changes in NRMSE between two simulations, per location. 

On the data in Table 21 (Appendix 7.5), the seasonal average is calculated, and is displayed in the 

lower row. This metric shows that season 2 is overall the season with the highest error, with an average 

of 0.38 between the two runs. Season 4 has the lowest error, with an average of 0.14. Season 1 and 3 

are somewhat similar, around 0.33. The seasonal average shows as well that the error has decreased 

for each season in the new run, except season 2. Figure 21 shows which locations have relatively high 

or low errors. In this, Niamey stands out as the location with the largest error. To inspect these seasonal 

changes between the old and new runs, the differences per location per season are visualized in Figure 

22.  

Figure 21 highlights the differences in NRMSE per season. For Fassala-Mbera, an overall decrease in 

error can be seen, the degree of which increases steadily for the duration of the simulation, with an 

exception of season 2. This means that the new run becomes more accurate in comparison to the old 
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run as the simulation progresses. This same exact pattern, including the season 2 exception, is visible 

for Niamey and the total. Mentao shows a different pattern, with a large decrease in error in the first 

season and a large increase, compared to the old run, in the second season. Table 21 (Appendix 7.5) 

shows that the new simulation is more stable, fluctuating between 0.3 and 0.35 NRMSE in the first two 

seasons, whereas in the old run this fluctuation is larger, between 0.42 and 0.27. For Mangaize, an 

increase in season 2 is visible, while other seasons remain stable. Table 20 (Appendix 7.4) shows an 

increase in NRMSE in Mangaize of some 50%. From Figure 22 it can be derived that this change 

happens almost entirely in season 2. 

Overall, most error is concentrated in season 2 and 3. Error in season 1 is lower, partially due to the 

border closure mechanic in Flee. This results in the error being near zero for some locations, in the 

beginning of the simulation. The same effect is caused by some camps reaching capacity in season 4. 

Season 4 has the lowest average error, as several camps reach capacity for a significant part of this 

season, bringing the error near to zero again. This effect is noteworthy, as more often in agent-based 

modelling, the error increases towards the end of the simulation. Kieu et al. (2020) state that: 

“(..) as the simulation progresses, the prediction rapidly diverges from reality owing to underlying 

uncertainties.” 

(Kieu et al., 2020) 

This is not the case in Flee, due to the capacity variable applied to camps, meaning that all camps drift 

towards a lower error, as they gradually ‘fill’. The result of these effects is that it might not be meaningful 

to take into account the errors of the first and the last season, as they do not reflect the accuracy of the 

models’ methods for assigning refugees to camps. From this point of view it is only meaningful to 

compare the differences between the runs in season 2 and 3. In this case, the change in error due to 

the changing of routes is minimal: the NRMSE increases on average by 0.01 between the old and the 

new routes. 

On the results of both simulation runs, the averaged relative difference is calculated. This measure is 

described in section 3.8. For the simulation runs with the original routes, the ARD is 0.361. For the runs 

with the new routes, this is 0.345. This difference indicates an improvement in accuracy, as can be seen 

in the overall RMSE as well. However, the improvement is relatively small, which underlines the 

conclusion that the effective reduction in error caused by the change in routes is small. These results 

lead to the conclusion that the main issue of Flee does not lie with the routes. Other factors, for example 

political or emotional factors, such as border restrictions and the attractiveness of cities, seem to play 

a larger role than the distance of routes. This hypothesis is supported by the study performed by 

Suleimenova & Groen (2020), whose findings indicate change induced by the implementation of 

additional border restriction mechanics, and the reduction of camp capacity for a case study in South 

Sudan. Looking for example at the graphs of Niamey, Tabareybarey and Abala in Figure 19: despite 

differences between runs caused by the changing of routes, the overarching inaccuracies of the 

simulation remain. These issues, such as the underprojection of refugees in Niamey, cannot be solved 

by changing the routes. To increase the accuracy of Flee, the focus should not lie with changing of 

routes, but with implementing other dynamics that might influence refugee behaviour.  

4.4 Limitations and Recommendations 
The methods in this study are prone to limitations, which might affect the results and the interpretation 
thereof. In this section the most influential of these limitations is addressed.  

First, the representation of the physical environment. To create the cost raster, and subsequently the 
routes, the physical environment of Mali is mapped in raster data, and represented as speed multiplier 
values. In doing this, the environment of Mali is reduced to several physical features: relief, soil, 
drainage and infrastructure. This reduction results in not taking into account many other aspects of the 
environment, for example vegetation, or more broadly surface cover. The presence of trees, brushes, 
rocks or other obstructions certainly influences driving routes and speeds. However, the choice is made 
to not take these into account in this study, due to time restrictions. Furthermore, this feature type is 
chosen to be left out as it was deemed the least influential for travel in Northern Mali.  
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The second limitation is induced by time constraints and pertains to the calibration of the routes. In 
section 4.1 it is shown that the weighted distances of the routes are overall lower than reality. This is 
caused by an underestimation of the duration required to travel a route. The duration, or travel time, is 
based on the cost raster and the least cost path operation. An underestimation of the duration is caused 
by an underestimation of the speed multipliers, representing the resistance of a physical feature, and 
the maximum speed. Adapting these values to make the cost raster and the routes more realistic is part 
of the calibration stage of the study. Usually, calibration is an iterative process, meaning repetition is 
built into the methodology. However, in this study time constraints meant that the calibration of these 
values could only be performed once, limiting the ability to adjust the values. More iterations of the 
calibration phase could have resulted in more accurate results.   

The final limitation pertains to the quality of the observed data used as comparison (UNHCR, 2021). D. 
Groen (personal communication, February 2022) stated that: 

“Keep in mind that the UNHCR data is not exactly of good quality, so it makes little sense to discuss or 
interpret extensively the mismatches on the individual camp level.” 

The lack in data quality can be observed for example in Figure 19, in the Niamey graph. Here, the 
observed data shows steady increases and sudden changes in refugee numbers. This is most likely 
not the result of actual daily measurements, but and extrapolation of a smaller number of 
measurements. This means that comparing the simulated data to the UNHCR data on a day-to-day 
basis, or interpreting the different fluctuations in refugee numbers between the observed and the 
simulated data, might not be completely meaningful. 

Besides these limitations, several assumptions are made throughout the study as well. These are 
described at a relevant section, but are listed here as well: 

1. Refugee travel is exclusively vehicular. 

This assumption is made, as the original Flee model, to which the results of this study are compared, 
applied this as well. Furthermore, due to the great distances and harsh conditions in Mali, non-vehicular 
travel becomes a dangerous and often deadly ordeal. This is confirmed by B. Ooink (personal 
communication, September 2021). 

2. Seasonal changes of Niger river water level and the effect on infrastructure. 

It is assumed that the seasonal changes in water level in the Niger river affect the accessibility of river 
crossings in a binary way. Fordable areas are not accessible in seasons one and four, due to high river 
levels. Ferries are not accessible in seasons two and three, when the water level is at its lowest. This 
classification is an oversimplified version of reality. In some cases, the accessibility classification might 
not be an accurate representation of reality, leading to a decrease in accuracy of results.  

3. Seasonal continuity of speed multiplier values. 

It is assumed that the speed multiplier values for land cover, infrastructure and slope remain the same 
throughout the seasons. In reality, these might change due to changes in moisture content for example. 
However, such detailed information on the resistance of physical features would be specific for the 
study area, and is not available for Mali.  

For follow-up studies it is recommended to perform several calibrations of the routes data, before 

applying it into Flee. Furthermore, a more detailed look into the resistance values, by for example a field 

test, is recommended as well. 
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5. Conclusion 
The general aim of this study is identifying to what extent aspects of the physical environment affect 
refugee flight behaviour, and if the implementation thereof in Flee would improve its simulation of 
refugee behaviour. The secondary aim is the improvement of the accuracy of the Flee model.  

This is approached by creating a representation of the physical environment in the form of a raster. 
Four different representations are made to represent seasonal changes in the environment. Physical 
features relevant to refugee travel are selected and assigned speed multiplier values, based on the 
resistance these features offer to vehicles. This value represents a limitation to maximum speed. The 
resulting raster values are multiplied by a maximum speed, creating a speed raster. This raster is 
converted into a cost raster, which allows for the plotting of least-cost paths through the raster. The 
resulting routes are implemented into the Flee model to test for improvements. The case study for this 
study is the 2012 conflict in Mali.  

The main research question for the study is posed as follows: ‘To what extent does the physical 

environment determine flight routes for refugees?’. This question is answered through three sub 

questions: 

To what extent does a representation of the physical environment approach accurate refugee travel 

times and distances? 

The results show that the plotted routes quite accurately follow expected patterns and major roads 

where possible, indicating that the hierarchy in speed multiplier values is fairly accurate. The travel time 

of the routes and subsequently the weighted distances, are lower than reality, indicating that the speed 

multiplier values and the maximum speed are more optimistic than real-world travel. 

What is the effect of the integration of the cost raster data on the spatial aspect of the projected refugee 
destinations of the Flee model’s simulations? 

Overall, the error for the model is reduced through the implementation of the new routes. However, this 
is caused mainly by the relative size of the Fassala-Mbera camp. The error adjusted for the size of the 
camps, allowing for equal comparison of the effect of routes, even shows an increase in error of 7% – 
10%. 

What is the effect of the integration of the cost raster data on the temporal aspect of the projected 
refugee destinations of the Flee model’s simulations? 

Temporally, most error is concentrated in seasons two and three. The error for seasons one and four 
is not representative of the model’s capacity for simulation, as the results are distorted by the border 
closure and camp capacity mechanics in Flee. The difference in normalized error for seasons two and 
three is negligible.  

These answers result in the answering of the main research question: the physical environment does 
not have a major impact on refugee flight behaviour, as it is represented in the Flee model. Although 
the adjusted routes do induce change, this change is not unambiguously positive or negative. 
Furthermore, the main issue of Flee’s inaccuracies does not lie with the routes. Other factors, for 
example political or emotional factors, such as border restrictions and the attractiveness of cities, seem 
to play a larger role in the model’s error than the distance of routes. It is therefore concluded that the 
secondary aim of this study, the improvement of the Flee model, is not achieved. To reduce the errors 
in Flee, the focus should not lie with the changing of routes, but with implementing other dynamics that 
might influence refugee behaviour. 
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7. Appendix 

7.1 Route distances 
Table 17: Route weighted distance changes. Average Difference column is calculated over the seasonal mean.  

  

Location A Location B New distance, season 1 New distance, season 2 New distance, season 3 New distance, season 3 Old distance Average Difference (%)

Abala Menaka 216,21 216,21 216,21 216,21 172 25,7%

Abala Niamey 275,27 275,27 275,27 275,27 253 8,8%

Ansongo Gao 124,41 120,33 120,33 124,41 100 22,4%

Ansongo Menaka 271,07 271,07 271,07 271,07 191 41,9%

Bobo Dioulasso Bamako 628,28 628,28 628,28 628,29 -

Bobo Dioulasso Mentao 535,99 535,99 535,99 535,99 475 12,8%

Bobo Dioulasso Mopti 534,76 534,65 534,76 535,28 462 15,8%

Bobo Dioulasso Segou 479,59 470,33 483,49 479,6 376 27,2%

Bourem Gao 104,46 104,46 104,46 104,46 97 7,7%

Bourem Timbuktu 455,05 455,05 455,05 455,05 314 44,9%

Douentza Gao 458,69 458,69 458,69 458,69 397 15,5%

Douentza Konna 129,17 129,17 129,17 129,17 121 6,8%

Douentza Mentao 271,64 271,64 271,64 271,64 487 -44,2%

Douentza Timbuktu 274,18 993,6 1017,87 288,13 -

Goundam Diré 40,34 40,28 40,28 40,34 42 -4,0%

Goundam Niafunké 96,24 96,24 96,24 96,24 78 23,4%

Goundam Timbuktu 99,3 99,3 99,3 99,3 85 16,8%

Kidal Ansongo 527,64 523,57 523,57 527,64 -

Kidal Bourem 329,59 329,59 329,59 329,59 308 7,0%

Kidal Gao 410 410 410 410 -

Kidal Menaka 420,6 420,6 420,6 420,6 -

Konna Mopti 75,48 75,48 75,48 79,98 70 9,4%

Konna Niafunké 573,86 929,43 945,46 589,68 153 396,5%

Konna Timbuktu 392,15 1122,52 1140,15 406,1 303 152,6%

Léré Fassala-Mbera 155,67 155,67 155,67 155,67 98 58,8%

Léré Niafunké 153,06 139,62 139,63 139,63 140 2,1%

Léré Ténenkou 232,57 232,57 232,57 232,57 295 -21,2%

Mangaize Abala 259,78 259,78 259,78 259,78 256 1,5%

Mangaize Menaka 200,57 200,57 200,57 200,57 305 -34,2%

Mangaize Niamey 171,97 171,97 171,97 171,97 159 8,2%

Mangaize Tabareybarey 174,23 174,06 174,06 174,23 217 -19,7%

Mentao Ansongo 445,25 563,68 564,57 448,09 -

Mentao Mopti 386,67 386,67 386,67 391,18 360 7,7%

Mentao Niamey 512,6 512 510,45 512,6 -

Mentao Tabareybarey 580,7 418,16 554,17 583,54 -

Niafunké Ténenkou 380,14 354,52 354,27 369,66 308 18,4%

Segou Bamako 269,04 269,04 269,04 269,04 240 12,1%

Segou Fassala-Mbera 387,66 387,66 387,66 387,72 -

Segou Mopti 342,47 365,09 385,74 373,5 401 -8,6%

Segou Ténenkou 255,24 255,85 256,59 255,87 228 12,2%

Tabareybarey Abala 415,11 415,11 415,11 415,11 412 0,8%

Tabareybarey Ansongo 161,63 161,63 161,63 161,63 148 9,2%

Tabareybarey Menaka 346,66 346,66 346,66 346,66 361 -4,0%

Tabareybarey Niamey 224,69 224,69 224,69 224,69 205 9,6%
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7.2 Route travel times 
Table 18: Average simulated and observed travel times for a selection of locations connected by roads. 

Name1 Name2 Average simulated travel 
time (all seasons) 

Observed travel time 
(Google Maps) 

%-
difference 
(absolute) 

Bamako Ségou ~3.4 hours ~3.5 hours 2.9% 

Bamako Bobo-Dioulasso ~7.8 hours ~9.3 hours 16.1% 

Ségou Bobo-Dioulasso ~6 hours ~6.5 hours 7.7% 

Ségou Mopti ~4.8 hours ~5.5 hours 12.7% 

Mopti Bobo-Dioulasso ~6.7 hours ~7.5 hours 10.7% 

Douentza Gao ~5.7 hours ~7.75 hours 26.5% 

 

7.3 Root Mean Square Error 
Table 19: RMSE average values over ten runs. In the ‘Difference’ and ‘%-difference’ columns, a negative value 
indicates an improvement in the average RMSE of the camp. 

Location Old route mean RMSE New route mean RMSE Difference %-difference 

Fassala-Mbera 14211 13215 -996 
 

-7,0% 
 

Mentao 1268 1517 249 
 

+19,7% 
 

Bobo-Dioulasso 632 613 -19 
 

-3,0% 
 

Abala 1491 1749 258 
 

 +17,3% 
 

Mangaize 477 745 268 
 

 +56,1% 
 

Niamey 4026 3721 -305 
 

-7,6% 
 

Tabareybarey 2696 2640 -57 
 

-2,1% 
 

Total 13518 11292 -2226 
 

-16,5% 

 

7.4 Normalized Root Mean Square Error 
Table 20: NRMSE average values over ten runs. 

Location Old route mean normalized 
RMSE 

New route mean normalized 
RMSE 

Difference 

Fassala-Mbera 0.26 
 

0.24 
 

-0.023 

Mentao 0.18 
 

0.22 
 

0.035 
 

Bobo-Dioulasso 0.31 
 

0.30 
 

-0.006 
 

Abala 0.13 
 

0.15 
 

0.021 
 

Mangaize 0.14 
 

0.22 
 

0.080 
 

Niamey 0.62 
 

0.57 
  

-0.047 
 

Tabareybarey 0.43 
 

0.42 
 

-0.008 
 

Total 0.15 
 

0.13 
 

-0.025 
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7.5 NRMSE seasonal analysis 
Table 21: RMSE normalized per season.  

Location Normalized Root Mean Square Error 

Season 1 Season 2 Season 3 Season 4 

Old  New Old New Old New Old New 

Fassala-Mbera 0.34 
 

0.33 0.40 0.40 0.34 0.31 0.11 0.06 

Mentao 0.42 
 

0.30 0.27 0.35 0.15 0.16 0.09 0.09 

Bobo-Dioulasso 0.36 
 

0.42 0.41 0.38 0.33 0.33 0.21 0.21 

Abala 0.18 
 

0.17 0.26 0.25 0.19 0.24 0.04 0.04 

Mangaize 0.01 
 

0.01 0.17 0.33 0.20 0.21 0.02 0.02 

Niamey 0.55 
 

0.52 0.54 0.52 0.86 0.81 0.72 0.64 

Tabareybarey 0.55 
 

0.44 0.72 0.70 0.33 0.34 0.02 0.02 

Total 0.32 
 

0.30 0.20 0.18 0.22 0.18 0.10 0.06 

 
Seasonal average 

 
0.34 

 
0.31 

 
0.37 

 
0.39 

 
0.33 

 
0.32 

 
0.16 

 
0.14 
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7.6 File structure of added file  
Along with this thesis, a .zip file is provided that includes several files used in the study. These files 

include datasets, Google Earth Engine scripts and ArcGIS Pro ModelBuilder tools. The raw data could 

not be added in this way, as the file size is several hundreds of gigabytes. The file structure: 

A – GEE scripts includes the code used for the creation of several datasets in Google Earth Engine 

 NDWIcreation.docx; 

 ROCKYAREAScreation.docx; 

 SLOPEcreation.docx; 

 WiWcreation.docx 

B – Routes includes the results from the route creation, in weighted distances, and a change 

comparison 

 RoutesTables 

  RoutesFinal.xlsx; 

  RoutesTableS1.csv; 

  RoutesTableS2.csv; 

  RoutesTableS3.csv; 

  RoutesTableS4.csv 

DistanceChangeAnalysis.xlsx 

C – FleeOld includes Flee results from ten runs with the old routes 

 Out1.csv; 

 (…) 

 Out10.csv 

D – FleeNew includes Flee results from ten runs with the new routes 

 Out1_new.csv; 

 (…) 

 Out10_new.csv 

E – FleeAnalysis includes the main files used for the analysis of the Flee results and the creation of 

graphs and tables. 

 RefugeeAverageComparison.xlsx 

 RMSEanalysis.xlsx 

Z – ArcGIS Modelbuilders includes a toolbox of the main ModelBuilder models used in the study. 

The toolbox file, .atbx, can only be opened in ArcGIS Pro. The ModelBuilder tools are also converted 

to .py files, for alternative interpretation. The ModelBuilders include the Cost Raster creation, the Cost 

Distance and Backlink creation, and the Least-Cost Path creation. 

 ArcGISModelBuilderPython 

Thesis – ArcGIS ModelBuilder.atbx 

  


