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Abstract

We consider multicomponent Smoluchowski's coagulation equation with a bilinear
kernel and mono-dispersed initial conditions. Because of the choice for the kernel, this
equation maps to a partial di�erential equation called the inviscid Burgers' equation.
We show in one-dimension, and claim it also holds in higher dimensions, that con-
nected components in coloured Erdös-Renyi random graph asymptotically describe
the solution to the Smoluchowski's equations for monodispersed intial conditions
and the nonlinear PDE associated to it. Using Joyal's formalism of combinatorial
species, we obtain a closed-form solution for these equations by counting connected
components in the random graph. We also derive a simple equation for the blow up
time of the Burgers' inviscid equation with the chosen bilinear form.

Using the insights obtained from our method, and adapting previous algorithms,
we additionally propose a randomized numerical scheme that constructs d-coloured
random graphs withN vertices and expected degree distribution in time O((d+1)N).
Using this algorithm we can inexpensively compute solutions to the multiplicative
multicomponent Smoluchowski's equation (and consequently to Burgers' inviscid
equation) at any time before solution blow up, hence resolving the curse of dimen-
sionality for this problem.
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Chapter 1

Introduction

�Coagulation and fragmentation belong to the most fundamental pro-
cesses occurring in animate and inanimate matter. [...] Thus together
with the Boltzmann equation that describes collision phenomena in rar-
e�ed gasses, and the Navier-Stokes and Euler equations modelling the �ow
of viscous �uids, the Smolushowski's equation is considered to be one of
the most fundamental equations of the classical description of matter.�

� J. Banisiak, W. Lamb, P. Laurençon, Analytic Methods for
Coagulation-Fragmentation Models

Coagulation and fragmentation are fundamental processes present in a plethora
of scenarios that involve an identi�able population of animate or inanimate objects.
These objects can coalesce together forming new entities or separating into smaller
quantities. These are some of the simplest and most natural concepts in the physical
world. It then comes without surprise that mathematicians took an interest in such
processes and developed mathematical models to study them. What may although
come as a surprise, is the fact that the earliest mathematical description of such a
fundamental concept was pioneered by Marian von Smoluchowski only at the start
of the XX century with the two papers [Smo27, Smo18] published in 1916 and 1917
respectively. He introduced an in�nite system of discrete ordinary di�erential equa-
tions describing the evolution in time of clusters of atomic particles that through
Brownian motion would end up close enough to create a connection and coalesce
into a single cluster.

We call wk(t) the density of clusters of size k in the system at time t, and K(x, y)
the aggregation kernel, which describes the rate at which particles of size x aggregate
with particles of size y. Then, the rate of change in time of the density of particles
of size k, ẇk(t) is given by:

ẇk(t) =
1

2

k−1∑
s=1

K(s, k − s)ws(t)wk−s(t)−
∞∑
s=1

K(s, k)ws(t)wk(t) . (1.1)
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Due to the broad applicability in applied physics and engineering, some close
form solutions in very speci�c cases were obtained in the following years as well as
some initial results on uniqueness and existence. However, a systematic and rigorous
study of the subject did not commence until the 1980s. Albeit very intuitive in
concept, it quickly became also clear the inherent di�culty of the subject [Lus73].

1.1 Review of Coalescence-like Processes

Coalescence is a process that acts on a number of small or atomic objects or entities.
Every such object has one or more properties. In the monocomponent (or one-
dimensional) case objects only have one property. In most physical treatments of
the subject, the property of interest is often just the mass or volume of an object,
as those are properties that have a more profound natural intuition in the context in
which this subject evolved. In multicomponent analysis, objects will have multiple
properties. A process on these atomic entities, then, is something that modi�es their
properties, making them evolve following di�erent rules, which de�ne the process
itself.

In our context, coalescence is only a particular process that describes how two
entities merge together to form a new object which has the sum of the properties
of its constituents. But this is not the only possible process in this scenario, for
example, there could be many di�erent types of behaviours, which often arise from
the natural world, but not exclusively:

� Growth: where we see in�nitesimal elements slowly merge into an object,
increasing its properties bit by bit [MB92, GL96].

� Fragmentation: (or Breakage) the separation of an object into two smaller
ones [ILHE01, ADB09].

� Nucleation: the process that describes how in�nitesimal elements in the en-
vironment can precipitate and add new objects to the system, often modelled
as a source of particles [HRM88].

� Coalescence: (or Aggregation) when two objects merge together to form a
bigger object [HRM88, KKPS93, LDG98].

Such processes arise in a plethora of natural phenomena, some of the most prominent
are:

Aerosol Physics: An aerosol is when we have in�nitesimal objects suspended in a
gaseous environment. Such as liquid droplets or very �ne solid particles dispersed in
the atmosphere. The subject of aerosol physics �nds many possible applications, from
sand storm and volcanic dust modelling to cloud formation in the atmosphere or rain
droplet formation, as well as desired industrial products and modelling the e�ects of
undesired industrial by-products released into the atmosphere, a very contemporary
topic [FM77, OKMO+13, VR12, PK10, Dra72, SP16].
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Planet and Star Formation: The primordial stage of stars and planets is a giant
molecular cloud of dust-like particles. After an initial gravitational collapse which
creates the core of a star the remaining dust �attens into a protoplanetary disc.
The inner part of the latter will go on and collapse into the core, creating the star.
The remainder will be the building material of future planets and asteroids. This
model is known as the nebular hypothesis; and in the early 90s the existence of
these protoplanetary discs was con�rmed by direct imaging, thanks to the Hubble
telescope. Clearly, gravity is the main contributor to these processes, but the orbiting
dynamics of the dust discs creates the perfect environment for coagulation events of
small scale objects (relative to the scale of a solar system, that means kilometers-sized
solid objects) [BKB+15, QS90, Lis93, Lee00, SYL99] .

Polymer Chemistry: Polymer chemistry is a clear cut example of application of
a coagulation-fragmentation process. In the formation of a polymer we start from a
solution of monomers, then we add monomers one by one until we obtain a desired
long chain. Similarly, under stress or environmental changes, existing polymers can
degrade and split up into smaller ones, in a process analogous to fragmentation
[MB92].

Animal Groupings The fundamental nature of these processes makes them arise
even in models where we are not dealing with inanimate objects but also in biological
scenarios where we can observe animals forming groups, ranging from ants [Gor88]
to dolphins and bu�alo [OS78]. Coagulation-fragmentation processes attempt to ex-
plain the underlying mechanisms that lead to such groupings, and can be useful to
better understand �sh schooling [Niw98].

The �rst equations (1.1) proposed by Smoluchowski's were initially of discrete
kind, with particles of integer positive mass and they only included aggregation
terms. The model has since then been expanded and modi�ed. Some of the modi�-
cations include the continuous models, with positive real-valued particles, introduced
by Müller [Mül28] through the use of integro-di�erential equations. In addition, more
complex equations have also been introduced to include decay phenomena of frag-
mentation [ILHE01, ADB09], or di�usion in which particles not only can merge but
also break up or evaporate. Similarly, the model has been expanded to cater for
a new type of dynamics such as growth [MB92, GL96], where in�nitesimal objects
adhere to already existing ones increasing their properties (i.e. sedimentation) or nu-
cleation [HRM88] where in�nitesimal objects dispersed in the environmental phase
precipitate into new discrete small objects, e�ectively adding particles in the sys-
tem. Naturally, development arose in an attempt to generalise the model to systems
of multi-component particles. For example, an initial two variables study has been
carried out in [Smi11, Wat06], where one variable is used for the mass and the other
for its shape.



Review of Coalescence-like Processes 7

The seminal work of Smoluchowski was deterministic in nature, but, as already
hinted, it had a stochastic argument at the root of its derivation. The markovian
nature of the process underlying the model was quickly expanded into a probabilistic
approach that developed in parallel to the deterministic model. First attempts at
this approach were from Filippov [Fil61], Lushnikov [Lus78] and Marcus [Mar68],
that introduced what is known as a Marcus-Lushnikov process. Stochastic approx-
imations to the deterministic model are studied in [Bab99, Ber02, CF11, DFT02,
EW01, FG04b, Nor99]. Questions of convergence of the stochastic Markov evolution
of the system towards the deterministic coagulation equations also began to arise.
Aldous [Ald99] actually proposed it as an open problem, solved then in [FG04a] un-
der rather general conditions, extending the work of Norris [Nor99].

Most of the work has been done towards the monocomponent models for coag-
ulation and fragmentation processes, thus, only interested in objects with a single
property. What we have ignored so far, have been the multicomponent counterparts
of these models, where the objects in question are aggregates of di�erent types of
�atoms� or molecules. Therefore, in multicomponent models, we are not only inter-
ested in how �big� an object is, but also in its composition, and we want to know
how that composition evolves in time. This distinction has many useful applications
and can lead to models that better predict subtler aspects of a range of natural and
arti�cial processes. For example, the pharmaceutical powder excipient-active com-
ponent study [MLK06], or the optical behaviour of aerosol in the atmosphere [BH98].
However, together with improving the capabilities of the model, generalising to mul-
ticomponent analysis comes with a signi�cant increase in complexity in an already
deceptively di�cult problem. Nonetheless, a slew of results has been obtained in
recent years, both numerical and analytical in nature. In [FLNV21b, FLNV21a] Fer-
reira et al. investigated the multicomponent Smoluchowski's coagulation equations
under non-equilibrium stationary conditions assuming a source of small particles
constantly being added to the system. In the continuous case, exact solutions for
generic additive and product kernels, depending only on the mass of the aggregating
objects, have been found [FDGG07, FDGG10]. In an attempt to curb the intrinsic
curse of dimensionality of this problem, powerful numerical methods have been pro-
posed [Ahr20, MZTS16].

The strong physical connection of these examples might tempt the reader to
think that such processes are relegated as mere models of the physical world, and
the temptation to only use names such as particles, molecules, and mass is strong.
However, it is important to stress that the concepts treated here are much more
general, and can be applied in much more abstract scenarios, where objects and
entities are not necessarily material. To be consistent with this remark, we will
try to maintain a neutral nomenclature throughout the manuscript. However, the
physical intuition of the process is so natural that, sometimes, the nomenclature will
re�ect that.
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1.2 Research Question

Continuing the work done so far by the scienti�c community, that re�ects the im-
portance of the subject, in this research we propose an analysis of the discrete mul-
ticomponent Smoluchowski's coagulation equations with composition-aware kernels,
opposed to mass-only kernels approaches, found in the literature. The analysis will be
carried out from a stochastic approach, using a conjectured connection with random
graphs. Lastly, we will explore possible connections to the inviscid Burgers' equation,
an example of a non-linear partial di�erential equation of particular interest, since
it represents a very simple form of the notoriously di�cult to analyse Navier-Stokes
equation [LCT49], and is often used as a prototype for non-linear behaviour.

1.3 Main Results

In this manuscript, we will analyse the Smoluchowski's Coagulation Equation (1.1)
and its connections with both PDEs and Random Graphs. The possibilities are
many, and completely generic treatment of the subject would be inadvisable. In this
script, we will only focus on the process of discrete symmetric Coalescence. Even
with this initial simpli�cation, the general subject remains very intractable and gen-
erously outside the capabilities of the author. Therefore we will assume a couple
more simpli�cations that will hold throughout the manuscript. The �rst one will be
related to the frequency and the modes with which the process evolves in time, by
only focusing on the multiplicative kernel K(r, s) = rs. The second one is related
to the starting state of the system. Indeed, most of the results that follow, only
hold for the case of monodisperse initial conditions, that is to say, we always start
from a system in which only atomic objects are present, and there haven't been any
coagulations yet.

In Chapter 2 we lay the one-dimensional groundwork and a motivating example
from which we will build upon in later chapters. In the following chapters, we will
provide the three main results of this thesis.

In Chapter 3 we will propose and derive a model for d-dimensional multicompo-
nent coalescence with a generalised non-diagonal product kernel that depends on the
composition of the objects involved.

ẇk =
1

2

∑
x+y=k

wxwyx
TAy −

∑
x∈Nd

0

wxwkx
TAk ∀k ∈ Nd

0 ,

where K(x,y) = xTAy for some symmetric matrix A with non-negative entries, and

wk = wk1,k2,...,kd , ki ∈ N0, ∀i ∈ {1, . . . , d}

denotes a multindex notation for the densities of objects made up of ki elements of
type i for every i.
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In the literature, most multicomponent studies deal with diagonal kernels that
are agnostic to the composition of the objects involved and are only dependent on
their sizes. We will also �nd parallelisms with a multidimensional version of the
inviscid Burgers' equation, (where JU denotes the Jacobian matrix of U)

Ut = −JUA(U −M) ,

which is of scienti�c interest as it is a very simple form of the Navier-Stokes equa-
tion in the Cartesian, time-dependent, compressible, limit [LCT49]. Finally, we will
prove that under our speci�c assumptions, the blow up time for the multicomponent
coalescence process is given by

tc =
1

∥A∥
.

In Chapter 4, we will show how we can map the model just de�ned into a sys-
tem of algebraic equations of generating functions using Joyal formalism, and which
can be solved directly through the Goods' multidimensional generalisation of the
Lagrange Inversion Theorem.

Lastly, in Chapter 5, we will use the insights obtained through the previous
chapters to adapt an algorithm to construct pseudo Chung-Lu random graphs, which
will allow us to generate d-coloured random graphs in O((d + 1)N) time instead of
O(Nd) of the naive case, here N is the number of nodes in the graph. We then can
use this algorithm to generate graphs and read out the solution to the Smoluchowski's
ODE system of coalescence equations.



Chapter 2

Monocomponent Coalescence

In this chapter, we will treat the one-dimensional case. We will initially solve the
one-dimensional Smoluchowski's equation (1.1) through classical analytical means.
We will then prove in one dimension that we can solve the system also through
random graphs and that the two solutions match.

2.1 Deterministic Model with Multiplicative Kernel

As we said in the introduction, the process of coalescence is described by the merging
of two entities, and the summation of their properties. To simplify the notations,
in this case, the value of the property itself will also represent the object. Since we
are in a discreet context, properties will be integer-valued, and for the remainder
of the chapter, they will also be assumed to only be positive. Let r and s be two
objects with property value r and s respectively. Then the coalescence process can
be described by the following diagram:

{r, s} → {r + s} .

The immediate next question is asking if and how properties of the objects involved
in the coagulation in�uence the coagulation process itself. This aspect of the process
is encapsulated in the coalescence kernel K(r, s) (or aggregation kernel). Through
the coalescence kernel we can arbitrarily de�ne how often a speci�c con�guration of
two objects will merge together. We can enforce di�erent types of processes, some
of the most analytically tractable (yet still not trivial) are

� K(r, s) = 1 constant kernel, objects coalesce independent of their properties.

� K(r, s) = r + s additive kernel.

� K(r, s) = rs multiplicative kernel.

But kernels can also take on more complex shapes:

K(r, s) = (r1/3 + s1/3)(r−1/3 + s−1/3) .
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These more complex kernels often arise from empirical observations in experimental
applications. As previously mentioned, the focus will be towards the multiplicative
kernel, which gives rise to non-linear dynamics.

Let us indicate with wk(t) the density of objects with property k at time t. Then,
we model the number of coagulations {r, s} → {r + s} in a given time interval as

1

2
wr(t)ws(t)K(r, s) .

Here we used the general assumption that the process is understood to be commu-
tative. Therefore, the 1/2 term is due to the symmetry of the transformations

{r, s} → {r + s} and {s, r} → {s+ r} ,

which both produce an object of the same cumulative property at the same rate due
to assuming K(r, s) = K(s, r). Of course in our speci�c case K(s, r) = sr, these
considerations are obvious.

Consider all the coalescence events that result in an object with property k,

1

2

k−1∑
s=1

K(s, k − s)wswk−s ,

and all the events that involve objects of property k,

∞∑
s=1

K(s, k)wswk .

If we merge these two quantities together with the correct signs, they describe a set
of di�erential equations describing the rate of change of wk(t) in time, known as the
Smoluchowski's coagulation equations:

ẇk =
1

2

k−1∑
s=1

K(s, k − s)wswk−s −
∞∑
s=1

K(s, k)wswk .

Which can be rewritten, with the knowledge that our kernel is the multiplicative
one, as

ẇk =
1

2

∑
s+r=k

srwswr − kwk

∞∑
s=1

sws ∀k ≥ 1 , (2.1)

with the sum over s, r ∈ N representing a convolution. We de�ne

M(t) :=
∑
s∈N

sws(t)

as total amount of objects in the system.
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2.1.1 Solving the model

The one dimensional multiplicative kernel, with monodisperse initial conditions, is
one of those simple enough cases where we can �nd an explicit analytical solution to
the system in the classical sense. We begin by de�ning the generating function for
the cluster distribution

G(z, t) =
∞∑
k=1

wk(t)e
−kz .

The monodisperse initial condition assumption tells us that we will only have objects
of size 1,

wk(0) = δk,1 .

Remark. For now we are considering the series G(z, t) as a pure algebraic object,
without worries of convergence. However, we will need to treat them as functions.
Therefore, we will assume

∞∑
k=1

k2wk(t) <∞ .

Theorem 2.1.1. Given a system of ODEs such as the one de�ned by (2.1) subjected
to monodisperse initial conditions de�ned as above, then for t ∈ [0, 1),

wk(t) =
kk−3tk−1e−kt

(k − 1)!
∀k ≥ 1

is the unique solution

Proof. The formal partial derivative of G with respect to z gives us

∂

∂z
G(z, t) =

∑
s>0

ws(t)
∂

∂z
e−sz = −

∑
s>0

sws(t)e
−sz , (2.2)

which if evaluated at z = 0 we get Gz(0, t) = −M(t). This will come useful later.
We are interested in the evolution in time of G(z, t) therefore we have

∂

∂t
G(z, t) =

∑
k>0

ẇke
−kz substituting (2.1) (2.3)

=
1

2

∑
k>0

∑
r+s=k

rswrwse
−kz −M(t)

∑
k>0

kwke
−kz (2.4)

=
1

2

∑
k>0

∑
r+s=k

rswrwse
−(r+s)z +M(t)Gz(z, t) from (2.2) (2.5)

=
1

2

(∑
r>0

rwre
−rz

)(∑
s>0

swse
−sz

)
+M(t)Gz(z, t) (2.6)

=
1

2
Gz(z, t)

2 +M(t)Gz(z, t) . (2.7)
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Let now de�ne u(z, t) = −Gz(z, t) and proceed by �nding

∂

∂t
u = − ∂

∂t
Gz =

∑
k>0

kẇke
−kz (2.8)

=
1

2

∑
k>0

∑
r+s=k

krswrwse
−kz −M(t)

∑
k>0

k2wke
−kz (2.9)

=
1

2

∑
k>0

∑
r+s=k

(r + s)rswrwse
−(r+s)z +M(t)uz (2.10)

=
1

2

∑
k>0

∑
r+s=k

[
r2swswr + rs2wswr

]
e−(r+s)z +M(t)uz (2.11)

=
1

2

∑
k>0

∑
r+s=k

[(
r2wre

−rz
) (

swse
−sz
)
+
(
rwre

−rz
) (

s2wse
−sz
)]

+M(t)uz

(2.12)

=
1

2

[(∑
r>0

r2wre
−rz

)(∑
s>0

swse
−sz

)
(2.13)

+

(∑
r>0

rwre
−rz

)(∑
s>0

s2wse
−sz

)]
+M(t)uz (2.14)

=
1

2
[−uzu− uuz] +M(t)uz (2.15)

= −uzu+M(t)uz . (2.16)

which describes an inviscid Burgers' equation that can be solved through the method
of characteristics subjected to the initial conditions u(z, 0) = e−z, which correspond
to the case of monodisperse initial conditions wk(0) = δk,1. The initial value problem

ut + (u−M(t))uz = 0 u(z, 0) = e−z (2.17)

has characteristic curves de�ned by

dz

dt
= u−M and

du

dt
= 0 .

From the �rst ODE we obtain

z(t) = tu−
∫ t

0
M(τ)dτ + ϕ(u) ,

and if we plug the initial conditions for t = 0 we get

z(0) = ϕ(u(z(0), 0)) = ϕ(e−z(0)) ,

therefore giving us the solution with ϕ(u) = − log u

z = tu− log u−
∫ t

0
M(τ)dτ . (2.18)
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Thus, we can �nd uz with

∂

∂z
z =

∂

∂z
[tu− log u−

∫ t

0
M(τ)dτ ] = tuz −

1

u
uz ,

which gives

uz = −
u

1− tu
. (2.19)

From the characteristics system we obtain in particular that du/dt = 0 and
therefore

M(t) = −Gz(0, t) = u(0, t) . (2.20)

In this proof we will focus solely on the time window t < tc, where tc is the critical
time where we develop a singularity in the solution. Here we have that Ṁ = 0 and
u(0, t) = M(t) = M(0) = 1 from the initial conditions. This turns (2.18) into

z = tu− log u− t . (2.21)

In this regime we have that for z = 0 equation (2.19) becomes

uz(0, t) = −
u(0, t)

1− tu(0, t)
=

1

1− t
,

which exhibit a singularity for t↗ 1. Hence

tc = 1 ,

where the system undergoes a phase transition as the second moment of the gener-
ating function −uz(0, t) = Gzz(0, t) becomes unbounded.

We rewrite the expression (2.21) and obtain:

e−z = uet(1−u) ,

and �nally we can extract the coe�cients of u(z, t) =
∑

k kwke
−kz via Lagrange

expansion

u(z, t) =
∑
k>0

1

k!

[
lim
u→0

dk−1

duk−1
(et(u−1))

]
e−kz

=
∑
k>0

1

k!
(kt)k−1e−kte−kz ,

therefore

[e−kz]u(z, t) = kwk(t) =
kk−2tk−1e−kt

(k − 1)!
,

so

wk(t) =
kk−3tk−1e−kt

(k − 1)!
.
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Corollary 2.1.2. The solution to the system (2.1) converges to

wk(t) =
1√
2π

tkek(1−t)

tk5/2
,

for large k

Proof. Apply Stirling's approximation to the solution obtained in the last theorem.

2.2 Random Graphs

In the last Section, we have looked at a model in which we describe how two objects
with properties r and s join together to form a new object with a cumulative property
of r+s, in a random coalescence processes. Up until now, we actively used a neutral
nomenclature for the subjects of this discussion, partly not to spoil too much what
will follow, but also to accentuate the jump. We have been talking, very generically,
about objects with a certain property value. Which are made up of a collection of
small entities which we will call, to make use of the physical nomenclature, atomics.
If we begin to swap names around, and instead of objects we say �clusters� or even
�connected components� and instead of monomers, we say �nodes�, hopefully the
hint is strong enough to introduce what is to come. There is an almost natural
interpretation of a random coalescence process through the lenses of a random graph.
Can the statistics of the connected components in a random graph describe the
evolution of the clusters in a random coalescence process?

One �rst complication with random graphs is that they are discrete objects while
the classical approach follows a continuous-time evolution. The hope is that by taking
big enough graphs with n→∞ we will be able to bridge this gap.

2.2.1 Erdös-Rényi random graphs

In the Erdös-Renyi random graph G(n, p) model there are n vertices and all
(
n
2

)
edges have an independent probability p of being present. In their original work
[ER59] the model was de�ned as G(n, e), describing the state of the graph with n
nodes after e edges had been added uniformly at random. Today, it is preferred
the notation G(n, p), and it can be proven that G(n, e) and G(n, p) with e = p

(
n
2

)
describe the same distribution of graphs. As we add more and more edges, once
we reach and pass e = n/2 edges, the model undergoes a phase transition, where a
giant component emerges [Spe09]. This is one of the most striking facts about the
Erdös-Renyi model, and partly one of the reasons for its success. By parametrising
the probability with p = c/n we obtain that the critical case of e = n/2 happens for
c = n

n−1 . In the large n limit, c will converge towards one. For the sake of simplicity
we will limit ourselves to selecting c = 1 as the critical value. However, it is useful to
keep in mind, especially when performing �nite simulations, that the actual critical
parameter is always an ε more than 1.
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From the initial work of Erdös and Renyi we know that such graphs have 3
di�erent windows of behaviour: (these windows can be re�ned into 5, but this is
outside the scope of this section, for details more informations can be found in
[AS00])

� subcritical: c < 1, all the components are tree like and very small O(lnn).

� critical: c = 1, the critical window of complex behaviour giant component
size is O(n2/3).

� supercritical: c > 1, we have a giant component of increasing complexity as
c increases and of substantial scale, all other components remain small.

In this discussion we will be focusing entirely in the subcritical window.

Assume now, that for each n we get an associated graph G(n, pn) where pn is
de�ned such that it is convergent

lim
n→∞

npn = c (2.22)

for all n. This way we decouple from the number of nodes as a discriminating pa-
rameter and all graphs have the same behaviour independently on the exact amount
of nodes we consider. We can write directly G(n, c) for some c ∈ [0, 1).

The degree distribution for Erdös-Renyi random graphs is binomial, that is

d(k) =

(
n− 1

k

)
pk(1− p)n−1−k . (2.23)

Given that we are choosing pn such that to keep c = npn constant, then we can see
that this binomial distribution converges to a Poisson distribution with parameter c
as n increases

lim
n→∞

dk = lim
n→∞

(
n− 1

k

)
pk(1− p)n−1−k (2.24)

= lim
n→∞

(n− 1)(n− 2) . . . (n− k)

k!
pk(1− p)n−1−k (2.25)

= lim
n→∞

nk

k!
(1− c

n
)n
[
(1− 1

n
) . . . (1− k

n
)

]
(
c

n
)k

1

(1− p)1+k
(2.26)

=
ck

k!
e−c . (2.27)

Fix now a c ∈ [0, 1], de�ne as S(n)(c) the set of connected components of G(n, c),

then we de�ne P
(n)
k (c) as

P
(n)
k (c) =

|{s : |s| = k, s ∈ S(n)(c)}|
|S(n)(c)|

and Pk(c) = lim
n→∞

P
(n)
k (c) . (2.28)
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or in words, the probability of selecting a connected component of size k when choos-
ing uniformly at random from S(n)(c), and the corresponding limiting probability.
We already said that the topology of the graph mainly depends on c, and conse-
quently also its connected components will depend only on it. We can then de�ne
the normalised density w̃k(c) of components of size k in the Erdös-Renyi setting as

w̃k(c) = lim
n→∞

|{s : |s| = k, s ∈ S(n)(c)}|
n

(2.29)

= lim
n→∞

|{s : |s| = k, s ∈ S(n)(c)}|∑
mm|{s : |s| = m, s ∈ S(n)(c)}|

(2.30)

= lim
n→∞

P
(n)
k (c)|S(n)(c)|

|S(n)(c)|
∑

mmP
(n)
m (c)

=
Pk(c)∑
k kPk(c)

. (2.31)

We will now show that these two quantities, so intuitively close together, are
indeed the same.

Theorem 2.2.1. Let c ∈ [0, 1), and P
(n)
k (c) be the density of connected components

of size k in an Erdös-Renyi random graph with n nodes G(n, c/n). Then

w̃k(c) = lim
n→∞

P
(n)
k (c)∑

k kP
(n)
k (c)

= wk(c) ,

where wk(c) is the solution to (2.1) for monodisperse initial conditions wk(0) = δk,1

In other words, for each t, the distribution of sizes of the connected components
of an Erdös-Renyi random graph G(n, t/n) converges to the solution wk(t) to the
Smoluchowski's equations for monodisperse initial conditions. We will prove this
theorem after de�ning some important results that will also be useful in the next
sections.

2.2.2 Lagrange inversion

Lagrange inversion formula is a classical tool for coe�cient extraction from series.
For a thorough treatment of most of the results and de�nitions we refer to [BLL97].

Theorem 2.2.2. Let H(x, y) be a series in x, y in the ring A[x, y] of formal power
series, satisfying

H(0, 0) = 0 and
∂H

∂y
(0, 0) = 0 ,

then the implicit functional equation

A(x) = H(x,A(x))

uniquely characterises the series A(x) for which A(0) = 0
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Corollary 2.2.3. Let A(x) and R(x) be two series in the ring A[x] of formal power
series, then the implicit functional equation

A(x) = xR(A(x))

has an unique solution A(x).

Theorem 2.2.4. Let A(x), R(x) be formal power series in A[x] such that

A(x) = xR [A(x)] ,

then for any formal power series F (x) we have

[xn]F [A(x)] =
1

n
[tn−1]F ′(t)Rn(t) .

Moreover, we know that in the subcritical regime (c < 1) connected components
of an Erdös-Renyi random graph are all simple and locally tree-like [BR15] and a
theorem stated in [AS00] says that

Theorem 2.2.5. given positive real c and positive integer k

lim
n→∞

P(|s| = k in G(n, c)) = P(Tc = k) ,

where Tc is the total size of a Galton-Watson process using Poisson distribution with
mean c. And where s is a connected component of G(n, c).

We can now use these results to prove Theorem 2.2.1.

Proof. Thanks to Theorem 2.2.5, we know that as n increases, the connected com-
ponents of an Erdös-Renyi random graph converges to random trees with Poisson
o�spring distribution. Let W (z) be the formal power series representing the total
progeny distribution of the Poisson trees and U(z) be the generating function for the
degree distribution of G(n, c), which we know to converge to a Poisson distribution
in the big n limit. Following [Kry17], we can setup a system of implicit algebraic
equations {

W (z) = zU(W ′(z))

W ′(z) = zU ′(W ′(z))
, (2.32)

where U ′ and W ′ represent the generating functions for the excess distributions
generated by U and W , respectively.

We know in this case that U(z) is the generating function for the Poisson distri-
bution, and therefore U ′(z) = U(z). Reducing the system to

W (z) = zU(W (z)) . (2.33)

Using 2.2.4 we can extract the coe�cient of W obtaining

[zn]W (z) =
1

n
[sn−1]Un(s) . (2.34)
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Recalling once more that U(s) = ec(1−s) and Un(s) = enc(1−s) we �nally obtain that

[zk]W (z) =
1

k
e−ck[sk−1]

∑
m>0

(kc)m

m!
sm =

1

k

(kc)k−1e−kc

(k − 1)!
. (2.35)

Lastly, since W generates the total progeny of a tree, it represents the number of
nodes that make up components of that size, that is kw̃k(c), so �nally

w̃k(c) =
1

k2
(kc)k−1e−kc

(k − 1)!
=

kk−3ck−2e−kc

(k − 1)!
= wk(c) . (2.36)

Therefore, we can match the solution obtained in the previous sections through
more classical methods. As an added bonus, we also obtain that we can read o� ran-
dom graphs components to �nd particular solutions to a non-linear partial di�erential
equation, such as the Burgers' equation.



Chapter 3

Multicomponent Coalescence

In this chapter, as a �rst step, we aim to generalise the coalescence process when
we have objects with more than one property. Secondly, we will analyse the Smolu-
chowki's system with a generalised multiplicative kernel and, lastly, we will map it
to the multidimensional Burgers' equation.
Throughout this chapter, we will interchangeably use the notations to indicate the
respective partial derivatives.

∂

∂u
G = ∂uG = Gu .

The natural naming scheme that was used in the previous chapter, where the
name of the object is also the value of its property must now be broken. We will
indicate objects as vectors x = (x1, x2, . . . , xd), where each component is the value
for one property. Also in this case we are implicitly assuming that the properties are
non-negative integer values. In particular, for the remainder of the manuscript, we
will de�ne N0 := {0, 1, 2, . . .} and use it as the set of property values. However, a
remark must be made. We need to specify that in this setting the density w0 does
not make sense, as the 0-object is an object with no properties. Di�erently from the
one-dimensional case, however, we need properties of value 0, to allow for objects
which have only some non-zero entries. Therefore, to avoid cumbersome notations,
we will simply work with x ∈ Nd

0, knowing that we are implicitly excluding the zero-
vector 0 from the calculations. Alternatively we can de�ne w0(t) = 0∀t.

The �rst step will consist of generalising the Smoluchowski's equations into
vector-form. Therefore, we will initially show some calculations in two dimensions
for notational ease. We will then consider a coalescence process of the form:

{x,y} → {x+ y} ,

where x = (x1, . . . , xd) and y = (y1, . . . , yd).
We indicate with wx(t) = wx1,...,xd

(t) the density of objects of type x at time t.
By objects of type x we mean objects with d properties valued exactly xi respectively
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for each i ∈ {1, . . . , d}. We are still interested in the multiplicative coalescence and
a �rst attempt at generalising the kernel would be

K(x,y) = x · y .

Like before it is easy to see that this process is commutative as well. And similarly
to the one-dimensional case, we have that the number of coagulations at every instant
is given by

1

2
wx(t)wy(t)K(x,y) ,

where this time the coagulation kernel is between two vectors.

Let us proceed by considering the two-component case, bearing in mind that
derivations for the N-component case are analogous. In the next chapter we will
use a more generic notation, while here we show the single interactions between the
various elements.

We can then obtain the Smoluchowski's equations in the two-dimensional case
by describing the dynamics of the rate of change as

ẇr,s(t) = {all coagulations that generate (r, s)}−{all coagulations involving (r, s)} ,

which translates to

ẇr,s(t) =
1

2

∑
x1+y1=r

∑
x2+y2=s

wx1x2wy1y2K(x,y)−
∑

x1,x2∈N0

K((r, s), (x1, x2))wrswx1x2 .

By using the ansatz that K(x,y) = x · y we then have

ẇr,s(t) =
1

2

∑
x1+y1=r

∑
x2+y2=s

wx1x2wy1y2(x1y1 + x2y2)−
∑

x1,x2∈N0

wrswx1x2(rx1 + sx2) ,

we expand the both terms, and separate the second term into independent sums.

ẇr,s(t) =
1

2

 ∑
x1+y1=r
x2+y2=s

x1y1wx1x2wy1y2 +
∑

x1+y1=r
x2+y2=s

x2y2wx1x2wy1y2

 (3.1)

− wrs

r
∑

x1∈N0

x1wx1· + s
∑

x2∈N0

x2w·x2

 ,

where we introduced the notation wx· (or w·y) to indicate the partial sum over one
parameter wx· =

∑
y wxy ( or w·y =

∑
xwxy).

We still use the generating function approach and we de�ne the two parameters
generating function

G(u, v, t) =
∑

r,s∈N0

wrs(t)e
−ru−sv ,

where wrs(t) are solutions to the system (3.1). We now state a central theorem
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Theorem 3.0.1. De�ne U := −∇G, solutions to the system (3.1) before a time
t < tc are also solutions to

∂

∂t
U(u, v, t) = −JU (U −M) ,

where M(t) := −∇G(0, 0, t) and JU is the Jacobian matrix of U .

Here the massM(t) = (M1(t),M2(t)) represents the mass vector of the whole sys-
tem. M1(t) represents the total mass of the elements of type 1 and M2(t) represents
the whole mass of the elements of type 2.

To prove this theorem we will need some technical lemmas �rst.

Lemma 3.0.2. Let G(u, v, t) =
∑

r,s∈N0
wr,s(t)e

−ru−sv where wrs(t) are solutions to
(3.1). Then

∂

∂t
G(u, v, t) =

1

2
[
∂

∂u
G(u, v, t)2 +

∂

∂v
G(u, v, t)2]−∇G(u, v, t) · ∇G(0, 0, t) .

Proof. We start with

∂

∂t
G(u, v, t) =

∑
r,s∈N0

ẇrs(t)e
−ru−sv .

Equation 3.1 can be split into 3 terms:

I =
1

2

∑
x1+y1=r

x1y1
∑

x2+y2=s

wx1x2wy1y2 (3.2)

II =
1

2

∑
x2+y2=s

x2y2
∑

x1+y1=r

wx1x2wy1y2 (3.3)

III = wrs

r
∑

x1∈N0

x1wx1· + s
∑

x2∈N0

x2w·x2

 (3.4)

therefore,

∂

∂t
G(u, v, t) =

∑
r,s∈N0

(I)e−ru−sv +
∑

r,s∈N0

(II)e−ru−sv −
∑

r,s∈N0

(III)e−ru−sv .

We will then solve the tree terms independently de�ne the auxiliary terms

σv(x) =
∑
s∈N0

wxse
−sv σu(y) =

∑
r∈N0

wrye
−ru ,
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then we can proceed with the �rst term∑
rs

(I)e−ru−sv =
1

2

∑
r∈N0

∑
x1+y1=r

x1y1e
−ru

∑
s∈N0

∑
x2+y2=s

wx1x2wy1y2e
−(x2+y2)v Cauchy product

=
1

2

∑
r∈N0

∑
x1+y1=r

x1y1e
−ruσv(x1)σv(y1) Cauchy product

=
1

2

∑
r∈N0

rσv(x1)e
−ru

∑
r∈N0

rσv(y1)e
−ru


=

1

2

 ∑
r,s∈N0

rwrse
−ru−sv

2

=
1

2
G2

u .

In a completely symmetric way we �nd the second term∑
r,s∈N0

(II)e−ru−sv =
1

2

∑
s∈N0

∑
x2+y2=s

x2y2e
−svσu(x2)σu(y2)

=
1

2

∑
s∈N0

sσu(s)e
−sv

2

=
1

2
G2

v ,

and lastly∑
r,s∈N0

(III)e−ru−sv =
∑

r,s∈N0

rwrse
−ru−sv

∑
x,y∈N0

xwxy +
∑

r,s∈N0

swrse
−ru−sv

∑
x,y∈N0

ywxy

= GuGu(0, 0, t) +GvGv(0, 0, t)

= ∇G · ∇G(0, 0, t) ,

which results in

∂

∂t
G(u, v, t) =

1

2

[
∂

∂u
G2(u, v, t) +

∂

∂v
G2(u, v, t)

]
−∇G(u, v, t) · ∇G(0, 0, t) .

Unlike the one-dimensional case we have two di�erent moments to work with, so
we de�ne

H = − ∂

∂u
G =

∑
r,s∈N0

rwrse
−ru−sv K = − ∂

∂v
G =

∑
r,s∈N0

swrse
−ru−sv .
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We then have

∂uH = −
∑

r,s∈N0

r2wrse
−ru−sv ∂vH = −

∑
r,s∈N0

rswrse
−ru−sv

∂uK = −
∑

r,s∈N0

rswrse
−ru−sv ∂vK = −

∑
r,s∈N0

s2wrse
−ru−sv .

So clearly ∂vH = ∂uK.

Lemma 3.0.3. Under the above assumptions we have

∂

∂t
H = −∇H · (∇G−∇G(0, 0)) ,

∂

∂t
K = −∇K · (∇G−∇G(0, 0)) .

Proof. We will only provide the calculations for ∂tH, as the calculations for ∂tK are
completely symmetric.

∂

∂t
H = − ∂

∂t
(Gu) =

∑
r,s∈N0

rẇrse
−ru−sv .

Similarly to the previous Lemma, we split the equations into tree smaller terms to
work with

∂

∂t
H =

∑
r,s∈N0

r (I)e−ru−sv +
∑

r,s∈N0

r (II)e−ru−sv −
∑

r,s∈N0

r(III)e−ru−sv ,

shortening the calculations a bit (and recycling σs and σr from the previous lemma)

∑
rs

r (I)e−ru−sv =
1

2

∑
r∈N0

r
∑

x1+y+1=r

x1y1e
−ruσs(x1)σs(y1)

=
1

2

∑
r∈N0

∑
x1+y1=r

(x1 + y1)x1y1σs(x1)σs(y1)e
−(x1+y1)u

=
1

2

∑
r∈N0

∑
x1+y1=r

x21σs(x1)e
−x1uy1σs(y1)e

−y1u

+
1

2

∑
r∈N0

∑
x1+y1=r

x1σs(x1)e
−x1uy21σs(y1)e

−y1u

=

 ∑
r,s∈N0

r2wrse
−ru−sv

 ∑
r,s∈N0

rwrse
−ru−sv


= Guu(−Gu) = (−Hu)H .
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and for the second term we will need the auxiliary functions (we will only use σ′
u

since σ′
v will only appear in the calculations for Kt)

σ′
v(x) =

∑
s∈N0

swxse
−sv σ′

u(y) =
∑
r∈N0

rwrye
−ru ,

∑
r,s∈N0

r (II)e−ru−sv =
1

2

∑
s∈N0

∑
x2+y2=s

x2y2e
−sv

∑
r∈N0

r
∑

x1+y1=r

wx1x2wy1y2e
−ru

=
1

2

∑
s∈N0

∑
x2+y2=s

x2y2e
−sv

∑
r∈N0

∑
x1+y1=r

(x1 + y1)wx1x2wy1y2e
−ru

=
1

2

∑
s∈N0

∑
x2+y2=s

x2y2e
−sv
[
σ′
u(x2)σu(y2) + σu(x2)σ

′
u(y2)

]
=

1

2

∑
s∈N0

∑
x2+y2=s

x2σ
′
u(x2)e

−x2v y2σu(y2)e
−y2v

+
1

2

∑
s∈N0

∑
x2+y2=s

x2σu(x2)e
−x2v y2σ

′
u(y2)e

−y2v

=

 ∑
r,s∈N0

rswrse
−ru−sv

 ∑
r,s∈N0

swrse
−ru−sv


= (−Hv)(−Gv) = HvGv ,

and lastly∑
r,s∈N0

r(III)e−ru−sv =
∑

r,s∈N0

r2wrs

∑
x,y∈N0

xwxye
−ru−sv +

∑
r,s∈N0

rswrs

∑
x,y∈N0

ywxye
−ru−sv

= −Hu

∑
x,y∈N0

xwxy −Hv

∑
x,y∈N0

ywxy

= ∇H · ∇G(0, 0, t) .

Therefore,

∂

∂t
H = −HuH +HvGv −∇H · ∇G(0, 0, t) = −∇H · (∇G−∇G(0, 0, t)) .

We can now prove Theorem 3.0.1.

Proof. We de�ned U = −∇G = (H,K)T then we have

Uu = − ∂

∂u
∇G = (−Guu,−Gvu) = (Hu, Hv = Ku) ,
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Uv = − ∂

∂v
∇G = (−Guv,−Gvv) = (Ku = Hv,Kv) .

With this new notation we obtain

Ut = (Ht,Kt)
T

=

(
−∇H · (U −M)
−∇K · (U −M)

)
,

expanding and rearranging the last term we have the result

Ut = −JU (U −M) .

One interesting property to notice is the fact that

M(t) = −∇G(0, 0, t) = U(0, 0, t)

and particularly that

∂

∂t
M(t) =

∂

∂t
U(0, 0, t) = (Ht(0, 0, t),Kt(0, 0, t))

T = (0, 0)T ,

therefore the total mass of the system, is again invariant with time. We will see in
the next sections how to compute the critical time tc. But �rst, let us take a detour
in which we generalise the results obtained in this section to more generic bilinear
kernels and generic dimensions d.
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3.1 Generalising the Multiplicative Kernel

We've seen above a discussion about a multidimensional coalescence process, where
we had a multiplicative kernel of K(x,y) = x · y. The dot product involved there is
a particular bilinear form x · y = xT Iy. When we look at this through the lenses of
our process we see that the dot product induces only symmetric diagonal matchings
between elements of the same type. If we want a more generic pairing process we
can generalise the multiplicative kernel to be

KA(x,y) = xTAy ,

with A being a matrix of the proper dimensions and non-negative entries. In this case
the previous case is simply a particular con�guration of this more general system:

K(x,y) = KI(x,y) .

It is important to notice that if we want to preserve the commutativity of the Kernel,
that is,

KA(x,y) = KA(y,x) ,

we must have that A is a symmetric matrix, this can be seen from

KA(y,x) = yTAx

= (xTATy)T

= xTATy

= KAT (x,y) .

Remark. We can assume symmetry in the matrix without loss of generality. Indeed,
if we have an asymmetric matrix A, then

wxwyKA(x,y) + wywxKA(y,x)

= wxwyK(A+AT )(x,y) .

Therefore, if we de�ne a new kernel A′ = A+AT

2 we will obtain a symmetric kernel
with the same dynamics of the asymmetric one.

As a result of this observation, we will assume symmetric matrices throughout. In
our setting, since the model only allows for two di�erent elements to join in a single
aggregation event, we will have that all the ratio of coalescence will be positive, or
at most zero. That translates to all the entries of the A matrix to be non-negative
since the entries aij represents the rates at which objects of type i join with objects
of type j. Since we are also assuming that the properties of the objects are always
non-negative, it is trivial to show that KA(x,y) is always non-negative.

If we start again, now the number of coagulations between two objects x,y
becomes

1

2
wxwyx

TAy .
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Let us introduce the region

Ωk := {x ∈ Nd
0 \ k : xi ≤ ki ∀i} ∀k ∈ Nd

0 .

which gathers the elements that satisfy x+ y = k. In particular, if we take x ∈ Ωk

then (k− x) ∈ Ωk. With this the Smoluchowski's equations become

ẇk =
1

2

∑
x,y∈Ωk
x+y=k

wxwyx
TAy −

∑
x∈Nd

0

wxwkx
TAk

=
1

2

∑
x,y∈Ωk
x+y=k

wxwy⟨x,y⟩A −
∑
x∈Nd

0

wxwk⟨x,k⟩A , (3.5)

where we introduce ⟨x,y⟩A = ⟨x, Ay⟩ = ⟨Ax,y⟩ with a slight abuse of notation, since
A is not necessarily positive-de�nite in Rd. Although we can say that if aii ̸= 0∀ i

0 = xTAx Assume x ̸= 0⇒ ∃j : xj > 0⇒ 0 =
∑
i,j

ai,jxixj ≥ ajjx
2
j > 0 ,

and if aii = 0 for some i then xTAx = 0⇔ xi = 0
Before moving on to the next step, we need to de�ne the generating function

G(z, t) =
∑
k∈Nd

0

wke
−kT z z ∈ Cd ,

where wk(t) are solution to the system (3.5) before the gelation time tc. We state
an evolution of the Theorem 3.0.1

Theorem 3.1.1. Let U := −∇G where G is de�ned as above. Then, solutions to
the system (3.5) with kernel de�ned by a matrix A with non-negative entries and for
t < tc, are also solutions to

Ut = −JUA(U −M) ,

where M(t) := −∇G(0, t) and JU is the Jacobian matrix of U .

Proof. we have that

∇G(z, t) =
∑
k∈Nd

0

wke
−kT z∇(−kT z) = −

∑
k∈Nd

0

wkke
−kT z

and more importantly:

∂

∂t
G(z, t) =

1

2

∑
k∈Nd

0

∑
y∈Ωk

wk−ywy⟨k− y,y⟩Ae−kT z

︸ ︷︷ ︸
I

−
∑
k∈Nd

0

∑
x∈Nd

0

wxwk⟨x,k⟩Ae−kT z

︸ ︷︷ ︸
II
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with

I =
1

2

∑
k∈Nd

0

∑
y∈Ωk

wk−ywy⟨k− y,y⟩Ae−kT z

=
1

2

∑
k∈Nd

0

∑
y∈Ωk

⟨wk−y(k− y)e−(k−y)T z, wyye
−yT z⟩A

=
1

2

∑
y∈Nd

0

∑
k∈Ωc

y

⟨wk−y(k− y)e−(k−y)T z, wyye
−yT z⟩A

=
1

2

∑
y∈Nd

0

∑
x∈Nd

0

⟨wxxe
−xT z, wyye

−yT z⟩A

=
1

2

∑
y∈Nd

0

⟨
∑
x∈Nd

0

wxxe
−xT z, wyye

−yT z⟩A

=
1

2
⟨
∑
x∈Nd

0

wxxe
−xT z,

∑
y∈Nd

0

wyye
−yT z⟩A

=
1

2
⟨∇G(z, t),∇G(z, t)⟩A ,

while

II =
∑
k∈Nd

0

∑
x∈Nd

0

wxwk⟨x,k⟩Ae−kT z

=
∑
k∈Nd

0

wk⟨
∑
x∈Nd

0

wxx,k⟩Ae−kT z

= ⟨
∑
x∈Nd

0

wxx,
∑
k∈Nd

0

wkke
−kT z⟩A .

Recall that we call M = −∇G(0, t) which is the total mass of the system, therefore
we have

II = −⟨M,∇G(z, t)⟩A

and therefore

Gt(z, t) =
1

2
⟨∇G(z, t),∇G(z, t)⟩A + ⟨M,∇G(z, t)⟩A .

We de�ned

U(z, t) = −∇G(z, t) = −(∂1G, ∂2G, . . . ) ,

where

∂iG(z, t) = −
∑
k∈Nd

0

wk(t)kie
−kT z
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are scalar valued functions. We call

Ui(z, t) = −∂iG(z, t)

and de�ne

[DF ] = (∂1F, ∂2F, . . . )
T

as the derivative in the numerator layout convention. We want to �nd

∂

∂t
U = −(∂t∂1G, ∂t∂2G, . . . )T

= −(∂1∂tG, ∂2∂tG, . . . )T = −∇Gt = −[DGt]
T . (3.6)

We then have that

[DGt] =
1

2
[D⟨∇G,∇G⟩A] + [D⟨M,∇G⟩A] =

1

2
[D⟨U,U⟩A]− [D⟨M,U⟩A] .

We have

[D⟨x,x⟩A] = 2xTA and [D⟨M,x⟩A] = MTA .

By means of the chain rule we then obtain that

[DGt] =
1

2
[D⟨U,U⟩A]JU −MTAJU

= UTAJU −MTAJU

= (UT −MT )AJU ,

therefore, by (3.6)

∂

∂t
U = −[DGt]

T = −(AJU )
T (U −M) ,

but JU is the Hessian matrix of G, and therefore symmetric, so

∂

∂t
U = −JUA(U −M) .

Remark. DijG =
∑

kwkkikje
−kT z = DjiG.

We then retain the nice parallelism that solutions to the Smoluchowski's system
of equations with a multiplicative kernel, as we proposed, are also solutions to the
multidimensional inviscid Burgers' equation.

In both Theorems, we specify that the solutions hold only before the critical time
for the coalescence process. We set now to �nd a formula for it.
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3.1.1 Blow up time

In the one-dimensional case we had that for the monodisperse initial conditions the
critical time is tc = 1 and it was obtained through solving the one-dimensional Burg-
ers' equation directly, corresponding to the solution developing a discontinuity. In
another fashion, the blow up time for the monocomponent Smoluchowski's equations
can be computed through the second moment:

m2(t) =
∑
x∈N0

x2wx(t) .

Noticing that when two particles joined together with the process {x, y} → x+y the
increase in the squared mass sum would be just 2xy so

dm2

dt
=
∑

x,y∈N0

xyK(x, y)wx(t)wy(t) =
∑

x,y∈N0

x2y2wx(t)wy(t) = (m2(t))
2 ,

which can be solved by means of separation of variables and obtain

m2(t) =
1

c− t
,

where c = 1/m2(0) which for the monodisperse initial conditions we clearly have
c = 1, giving us the expected tc = 1. In our more general case we will de�ne the
moment-generating function

Mk(z) = E
[
e⟨k,z⟩

]
and we will de�ne the nth moment as M (n) = [Dn

zMk(z)]|z=0 therefore having

[DzMk(z)] = E(kT e⟨k,z⟩)

and therefore

M (2)(t) = [D2
zMk(z)] = [Dz[DzMk(z)]]

= E
([

Dzk
T e⟨k,z⟩

])
= E


k1D1e

⟨k,z⟩ k1D2e
⟨k,z⟩ . . .

k2D1e
⟨k,z⟩ k2D2e

⟨k,z⟩ . . .
...

. . .




= E


k1k

T

k2k
T

...

 e⟨k,z⟩


= E(kkT e⟨k,z⟩) .
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Thus,

M (2)(t) = [D2
zMk(z)]|z=0 = E

(
kkT

)
=
∑
k∈Nd

0

kkTwk(t) .

We can then prove

Theorem 3.1.2. In a multicomponent coalescence process with multiplicative kernel
KA(x,y) for some symmetric matrix with non-negative entries A, given by Equation
(3.5), the gelation time is given by the smallest t such that

det(C −At) = 0 ,

where C−1 = M (2)(0)

Proof. similarly to the one-dimensional case, when we have a coagulation event where
{k,h} → {k+ h}, the change in the second moment will be, given that

(k+ h)(kT + hT ) = kkT + hkT + khT + hhT ,

and recalling that we are assuming A symmetric,

dM (2)(t)

dt
=

1

2

∑
k,h∈Nd

0

(khT + hkT )wk(t)wh(t)K(k,h)

=
1

2

∑
k,h∈Nd

0

(khT + hkT )wk(t)wh(t)(k
TAh)

=
1

2

∑
k,h∈Nd

0

wk(t)wh(t)k(k
TAh)hT +

1

2

∑
k,h∈Nd

0

wk(t)wh(t)h(h
TAk)kT

=
1

2

∑
k,h∈Nd

0

wk(t)kk
TAwh(t)hh

T +
1

2

∑
k,h∈Nd

0

wh(t)hh
TAwk(t)kk

T

=
1

2

∑
k∈Nd

0

wk(t)kk
T

A

∑
h∈Nd

0

wh(t)hh
T


+

1

2

∑
k∈Nd

0

wk(t)kk
T

A

∑
h∈Nd

0

wh(t)hh
T

T

,

but M (2)(t) is symmetric, as well as A, so in the end we obtain

dM (2)(t)

dt
= A

(
M (2)(t)

)2
,

which is a separable di�erential equation with solution

M (2)(t) = (C −At)−1 ,
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where C is such that C−1 = M (2)(0) which is a constant that depends on the initial
distribution.

In this multidimensional scenario the initial conditions change a little. For ex-
ample, the monodisperse initial conditions for a d-coloured system, now asks that
the only types of molecule present in the solution at the beginning are those of the
form ei, i ∈ [d], that is,

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , ed = (0, . . . , 0, 1) .

This means that the only non-zero densities are wei(0) = 1 since we are normalising
them by Mi respectively. This means that the wx(t) represents the distribution of
objects of a certain type in the system, respect to which mass we decide to normalise
by.

Corollary 3.1.3. With monodisperse initial conditions as described above we have
that the blow up time to the process described in Theorem 3.1.2 is

tc =
1

∥A∥
.

Proof. In this setting, applying Theorem 3.1.2, we obtain C = I and therefore the
critical time is given by det(I −At) = 0. If we recognise the characteristic equation
det(λI−A) for the eigenvalues of the matrix A, where in this case λ = 1

t , the smallest
time at which we have a blow up is the one relative to the biggest eigenvalue of A.

It is also worth noting that as it is mentioned in the Aldous [Ald99], in general,
the multiplication kernel, is of course homogeneous and K(cx, cy) = cγK(x, y). But
in particular for the multiplication kernel γ = 2. It can be shown that we are exactly
at the boundary of instant gelation. That is, we have that tc < ∞ if γ > 1 and
tc = 0 for γ > 2.



Chapter 4

Multicoloured Random Graphs

We saw how the Smoluchowski's equations generalise quite well in higher dimen-
sions. We attempt to obtain the same random graph approach we saw in the one-
dimensional case, also for higher dimensions.

As a general setting we will have elements of various types involved in the coagula-
tions that will be represented in the random graph language by multicoloured nodes.
These nodes will then create links between them at di�erent rates as described by
the aggregating kernel.

We will show the approach for the case of a two-dimensional coalescence between
two types of nodes, black and red, for simplicity and not to bog down too much the
argument with notation. For now, the edges joining these two types of node are not
typed themselves but we will see how to give the edges a colour as well.

4.1 Degree Distribution

In our discussion, we do not have a speci�c degree distribution describing a speci�c
process a priori, but instead, we derive it for a given aggregation kernel and its rates.
Indeed, one of the main reasons why we stick to monodisperse initial conditions,
is that the degree distribution is de�ned by a process that starts with an edgeless
graph in which we randomly add edges. It is not clear how starting the process from
a di�erent initial condition would in�uence the evolution of the degree distribution.

The degree distribution is a local property that depends solely on a node and its
immediate neighbours. Given that we depend on the aggregation rates, that act on
speci�c types of nodes, we cannot give a degree distribution for the whole system
directly, but instead, we can construct a degree distribution for each type of node
and afterwards, build a system-wide degree distribution as a weighted mean. For
example, suppose that we pick a black node, and look at its neighbours, the degree
distribution tells us how likely it is to have b black neighbours and r red neighbours,
with the number uB(b, r).

We work in a time dependent setting where the longer we wait the more our
system will create new connections, and with it, the degree distribution will change.
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In particular, the dynamics in time of the distribution uB(b, r) are in�uenced by all
the new connections, that is

duB(b, r)

dt
= aBBuB(b− 1, r) + aBRuB(b, r − 1)− (aBB + aBR)uB(b, r) . (4.1)

This equation represents reaching the state uB(b, r) by having already, either b − 1
black connections and adding a new one, or r − 1 red connections and add a new
one, or departing from that particular state by creating a new connection to any
new node. These dynamics are directed by the rates aij , which are the entries of the
aggregation kernel. (i.e. aij indicates the rate at which we create a connection from
a node of type i to a node of type j).

We de�ne now the multivariate Generating Function for the degree distribution
of a black node

UB(x, y) =
∑

b,r∈N0

uB(b, r)x
byr .

Knowing that [xbyr]xUB(x, y) = uB(b− 1, r), and [xbyr]yUB(x, y) = uB(b, r− 1) we
have that

dUB(b, r)

dt
= aBBxUB(x, y) + aBRyUB(x, y)− (aBB + aBR)UB(x, y) (4.2)

= UB(x, y)(−aBB − aBR + aBBx+ aBRy) . (4.3)

If we proceed similarly for red nodes and solve the corresponding ODEs, we obtain
the degree distribution generating functions at a time t for both types of nodes

UB(x, y, t) = eaBB(x−1)teaBR(y−1)t (4.4)

UR(x, y, t) = eaRB(x−1)teaRR(y−1)t . (4.5)

Following the reasoning, the nodes in the random graph are selected uniformly
at random, the generic degree distribution generating function is given by

U(x, y) = ηBUB(x, y) + ηRUR(x, y) , (4.6)

where ηB, ηR are the distribution of types of nodes in the system. That is,
∑

i ηi = 1.

4.2 Connected Component Size

Another key component and ultimately, the focus of this discussion, is how big is a
connected component. Recall the quantities of interest in this discussion wk, in our
multidimensional case these are the distribution in time of k-objects, that is multi
component objects (k1, k2, . . . , kd) that have k1 atoms of type 1, k2 atoms of type 2
and so on, or alternatively that are the sum of kiei = (0, . . . , ki, . . . , 0) multi-objects
for all i. For example, in the two-dimensional case the trees in Figure 3.1, represent
a particular (3, 3) particle. Now, if we select a node, chosen uniformly at random
among all our nodes, depending on the distribution of types in the system (i.e. ηB
and ηR in our two-dimensional example) it will be of a speci�c type.
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Claim We have seen that the degree distribution for the nodes is Poisson in nature.
We claim now that, similarly to the one-dimensional case, in the subcritical regime,
the components of the graph with our Poisson distribution are locally tree-like with
multicomponent Poisson o�spring distribution.

Following the claim then, each node that we select will be part of a tree that
can be viewed as a multi-typed branching process, with multidimensional Poisson
o�spring distribution, given by the degree distribution. Depending on the type of the
selected node, if we interpret it as the root of the tree, the total progeny distribution
of the branching process will vary. Therefore, it is natural to de�ne two Generating
Functions that generate the total progeny distribution of the branching processes
that either start with a Black or Red node:

WB(x, y) =
∑

b,r∈N0

wB(b, r)x
byr WR(x, y) =

∑
b,r∈N0

wR(b, r)x
byr .

Similarly to how we did with the degree distribution, the total progeny distribution
will be just a weighted mean

W (x, y) = ηBWB(x, y) + ηRWR(x, y) . (4.7)

4.2.1 Weakly-connected components

In this discussion, we are mainly interested in the study of weakly connected com-
ponents of a graph. In this scenario, weakly connected components tell us the total
amount of atomic objects that make up a single entity, independent of its actual
composition. For example, when studying weakly connected components, we don't
distinguish a (10, 0)-object (i.e. a component with only black nodes) from a (5, 5)-
object (i.e. half black and half red nodes in a component, in any con�guration),
since they both fall under the umbrella of a 10-object. Thus, e�ectively, studying
weakly connected components projects a system that follows multidimensional dy-
namics onto a single dimension. We will use Generating Functions (specialised for
the type of initial node i) de�ned as

Wi(z) =
∑
n∈N0

wi(n)z
n ,

where
wi(n) =

∑
b+r=n

wi(b, r) b, r ∈ N0 ,

so e�ectively a convolution. If we notice that xbyr|x=y = zb+r, this is equivalent to
saying

Wi(z) = Wi(z, z) .
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4.3 Excess Distributions

The notion of excess distribution will be useful in the following sections. In Bergeron
[BLL97], through the theory of combinatorial species of structure, we can �nd a
handy generalisation to the concept of excess distribution.
In short, If we have a distribution (gn)n∈N0 generated by a Generating Function

G(z) =
∑
n∈N0

gnz
n ,

the excess distribution (intuitively, what we refer to when speaking of �follow an edge
and look at the resulting distribution of the neighbour reached�) is associated with
the formal derivative

DzG(z) =
∑
n∈N0

g′nz
n =

∑
n∈N0

(n+ 1)gn+1z
n .

This concept can be extended into multiple dimensions using formal partial deriva-
tives. But it is still not enough. Indeed, carrying on the one-dimensional example,
the generating function G′(z) requires to be normalised to be generating a distribu-
tion. One of the de�ning characteristics of a distribution is indeed that∑

n∈N0

gn = 1 ,

but this translates on the generating function as

G(1) = 1 .

As of now, the quantity

DzG(1) =
∑
n∈N0

ngn

represents the expectation (or �rst moment) of the distribution (gn)n.

We de�ne the moments of a bivariate Generating function G(x, y) as

µij(G) =
∑

b,r∈N0

birjg(b, r) =

[
(x

∂

∂x
)i(y

∂

∂y
)jG(x, y)

]
|x=y=1

. (4.8)

Then we de�ne the excess distributions of the bivariate generating function G(x, y)
as

∂xG(x, y) =
1

µ10(G)

∂G

∂x
(x, y) ∂yG(x, y) =

1

µ01(G)

∂G

∂y
(x, y) . (4.9)
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G(z)

G′(z)

Figure 4.1: We schematically represent the degree distribution as a full circle around
a node and the excess distribution as an half circle.

4.3.1 Excess degree

In the previous sections, we saw that we have a degree distribution dependent on the
type of node we select. Assume we select a black node, its degree distribution will
be generated by

UB(x, y) =
∑

b,r∈N0

uB(b, r)x
byr .

The intuitive idea for the excess degree distribution in one dimension is selecting
a random node and following one of its edges, and then look at the degree of the
resulting neighbour. In the multidimensional case, we must be careful not only where
we end up when we follow an edge, but also where we arrive from.

Propagating the edge colour A small parenthesis must be made on how we
assign an edge its colour. We select a node, of a certain colour, as the root, then
we looking at its neighbours. We propagate through all the undirected edges and
turn them into a directed edge of the colour of the neighbour it reaches as shown in
Figure 4.3. The colour and direction of an edge are only dependent on the chosen
root node, if we select a di�erent root node the direction and colour of an edge might
change (see Figure 4.4). This is merely a way to get closer to the original meaning
of degree distribution, which tells us that a node will have b black edges and r red
edges, while in reality in this case it is telling us that a node is connected to b black
nodes and r red nodes. Therefore, the con�icts of this relativistic interpretation do
not a�ect the underlying system in any way.

Going back to our example, we already assumed that we chose initially a black
node, which will have a certain distribution of black and red edges stemming from it.
We choose an edge to follow and we land on another node, the degree distribution
of the node we land on will in�uence the excess degree distribution of the node we
started from. When we only have one type of node this di�erence gets �attened, but
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Figure 4.2: Base Graph
Figure 4.3: Select a node (square) and
propagate the edge colour

Figure 4.4: Follow an edge, the prop-
agated colours change

in this case, our black node will have two di�erent excess degree distributions.

uBB(b, r) =
b+ 1

µ10(UB)
uB(b+ 1, r) uBR(b, r) =

b+ 1

µ10(UR)
uR(b+ 1, r) , (4.10)

generated by UB
B (x, y) and UB

R (x, y) respectively. We use the uIJ notation to indicate
the direction I → J . We divide by the respective moments to make sure the dis-
tributions sum up to 1, as discussed in Section 4.3. Using the generating functional
notation we just introduced, then

UB
B (x, y) = ∂xUB(x, y) UB

R (x, y) = ∂xUR(x, y) .

4.3.2 Excess size distribution

Albeit not as immediate as the excess degree distribution, the excess total progeny
distribution is still rather intuitive. Copying the intuitive formulation for the excess
degree, say we select a black node, and follow one of its edges to a red node. If we
momentarily forget the initial black node, the red node we reached will be the root of
a tree with a certain progeny distribution, therefore the excess progeny distribution
is equivalent to the question �what is the total progeny distribution given that we
have at least one black node in it?�. In formulas, this results in de�ning the following
distributions:

WB
B (x, y) = ∂xWB(x, y) WB

R (x, y) = ∂xWR(x, y)

WR
B (x, y) = ∂yWB(x, y) WR

R (x, y) = ∂yWR(x, y) .
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4.4 Deriving the System

Let us return to the bi-dimensional case. We will now use an example to showcase
the reasoning behind the derivations of the implicit algebraic equations that make
up a system similar to the one used in the introduction. The formal justi�cation
behind this reasoning is very complex, and outside the scope of this manuscript,
as it involves the whole theory of combinatorial species of structures [BLL97]. We
will present some of the concepts of the theory digested and adapted to the context
of interest, along with some pictures, that, hopefully, will provide enough intuitive
justi�cations to the reader.

Before we begin, we shall give a brief overview of the very abstract concept of
structure. In the most general sense, a structure S = (γ,D) is a construction γ
performed on a set of data D. A construction, in the broader sense, is a rule that is
used to describe relations between the objects from the data set D. For example, an
oriented cycle structure on the data D = {1, 2, 3, 4} is de�ned by the construction
γ = {(1, 2), (2, 3), (3, 4), (4, 1)} of the edges.

12

3 4

To bring this idea back in a more practical scenario, closer to our needs, then,
on a set of nodes, a structure can be represented by a generating function U . For
example, we can apply a "degree distribution U" construction to obtain a U -structure
that describes a graph with a degree distribution de�ned by U . Given the incredibly
general de�nitions, it shouldn't come as a surprise when we start to create structures
of structures, or otherwise compose di�erent structures through a set of operations,
to create new ones.

F ◦G =

F

G

G

G

=

F

G

G

G
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X · F (G) =

F

G

G

G

Let us choose a node uniformly at random, and for the sake of exposition, let us
assume that we picked a black node. This node, will be part of a connected com-
ponent with a certain composition of other black and red nodes, with distribution
generated by WB(x, y). Select the node as the root of the tree-like component (as
we assume from the claim), and propagate through all the edges of the component,
as described in Section 4.3.1. The amount of edges and their type distribution is
described by the degree distribution UB(x, y). The nodes at the end of each edge
stemming from the initial black node, if we momentarily forget about the latter, can
be seen as roots of other tree-like structures that they themselves will have a speci�c
composition distribution generated by Wi(x, y) depending on the type of the root
we reached.

However, since they are connected to the initial black root, they will instead
be the roots of rooted trees with the excess progeny distribution generated by
∂xWi(x, y).

Theorem 4.4.1. Let WB(x, y) and WR(x, y) be the generating functions generating
the total progeny distribution of rooted trees of a bivariate Poisson process, starting
with a black or red node respectively. And let UB(x, y), UR(x, y) be the degree distri-
butions of vertices of the respective type. Then, WB and WR are implicitly de�ned
through the systems

WB(x, y) = x · UB [∂xWB(x, y), ∂xWR(x, y)] (4.11)

∂xWB(x, y) = x · ∂xUB [∂xWB(x, y), ∂xWR(x, y)] (4.12)

∂xWR(x, y) = y · ∂xUR [∂yWB(x, y), ∂yWR(x, y)] (4.13)

and

WR(x, y) = y · UR [∂yWB(x, y), ∂yWR(x, y)] (4.14)

∂yWB(x, y) = x · ∂yUB [∂xWB(x, y), ∂xWR(x, y)]

∂yWR(x, y) = y · ∂yUR [∂yWB(x, y), ∂yWR(x, y)]

Proof. Equation (4.11) is derived through the discussion in the above paragraph
(refer to Figure 4.5 for a visual example), and Equations (4.12) to (4.13) through a
self-similarity argument. System (4.14) is completely symmetric.
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Figure 4.5: Schematic representations of a particular realisation for the system of
implicit algebraic equations. On the left we have a visual justi�cation to the formula
(3.10), on the right we show examples for the excess distributions formulas.

4.5 Solving

We show two fundamental theorems that are needed to solve the system.

Theorem 4.5.1. Every system of equations

Y1 = H1(X1, . . . , Xn, Y1, . . . , Yk)

Y2 = H2(X1, . . . , Xn, Y1, . . . , Yk)

...

Yk = Hk(X1, . . . , Xn, Y1, . . . , YK)

admits a solution Y1(X1, . . . , Xn), . . . , Yk(X1, . . . , Xn) unique up to isomorphism,
whenever the following conditions for the species H1, . . . ,Hk are satis�ed:

1. for any m, 1 ≤ m ≤ k Hm(0, . . . , 0) = 0,

2. the Jacobian matrix ∂Hi
∂Yj

(0, . . . , 0), 1 ≤ i, j ≤ k is nilpotent.
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An important special case is given by the system

Y1 = X1R1(Y1, . . . , Yk)

Y2 = X2R2(Y1, . . . , Yk)

...

Yk = XkRk(Y1, . . . , Yk)

which satis�es the conditions of Theorem 3.4.1. Therefore, for series Ri(x1, . . . , xk)
i = 1, . . . , k in the ring A[x1, . . . , xk] of formal power series there exists a unique
formal power series Ai(x1, . . . , xk) that satis�es the system of equation

Ai(x1, . . . , xk) = xiRi(x1, . . . , xk) i = 1, . . . , k . (4.15)

We can now state the Good-Lagrange Inversion Formulas Theorem (G-LIF)

Theorem 4.5.2. Let R(x) = (R1(x), . . . , Rk(x)) be a vector of formal power series
in the variables x = (x1, . . . , xk). Let A(x) be a vector of formal power series in the
variables x satisfying (4.15). Then, for any formal power series F (x) and all n ∈ Nk

0

we have:
[xn]F [A(x)] = [tn]F (t) detK(t)Rn(t) ,

where K(t) has the entries de�ned as

[K(t1, . . . , tk)]i,j = δij −
ti

Ri(t1, . . . , tk)

∂Ri

∂tj
(t1, . . . , tk) .

Before moving on, we need to de�ne the convolutional power

g(k)∗n = g(k)∗n−1 ∗ g(k) g(k)∗0 = δ(k) ,

where we de�ne the convolution as

c(k) = (f ∗ g)(k) c(k) =
∑

r+m=k

f(r)g(m) = [xk]F (x)G(x) .

We can now state the main theorem of the section. We will state the following
theorem only for black nodes, with a reminder that every other system is completely
symmetric and solves in exactly the same way. Indeed the �nal solution obtained
from a system is the same for all other systems, one just needs to swap the correct
elements.
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Theorem 4.5.3. Let WB(x, y) be the generating function as de�ned in Section 4.2.
Then

[xbyr]WB(x, y) = wB(b, r)

= ub(k, l) ∗ u′b(k, l)∗(i−1) ∗ u′r(k, l)∗(j−1) ∗ d(k, l) |k=b−1,l=r ,

where

d(k, l) =
[
u′b(k, l)− ku′b(k, l)

]
∗
[
u′r(k, l)− lu′r(k, l)

]
− lu′b(k, l) ∗ ku′r(k, l) ,

with u′b and u′r generated by ∂xUB and ∂xUR respectively.

Proof. Since we don't need to di�erentiate between di�erent excess distributions, we
will lighten the notation by rede�ning

∂xUB(x, y) = U ′
B(x, y) and ∂xUR(x, y) = U ′

R(x, y)

∂xWB(x, y) = W ′
B(x, y) and ∂xWR(x, y) = W ′

R(x, y) .

Then, following Good's formalism we de�ne

R(x, y) = [R1(x, y), R2(x, y)] =
[
U ′
B(x, y), U

′
R(x, y)

]
,

A(x, y) = [A1(x, y), A2(x, y)] =
[
W ′

B(x, y),W
′
R(x, y)

]
.

One can easily see that these formal series, given the system (4.11), satisfy the
condition (4.15). Lastly, if we de�ne

FB(x, y) = UB(x, y) .

By applying Theorem (4.5.2) we obtain

[xbyr]
WB

x
= [xbyr]UB(W

′
B,W

′
R) by 4.11

= [xbyr]FB[A(x, y)]

= [tbsr]FB(t, s) detK(t, s)(R1(t, s))
b(R2(t, s))

r by the G-LIF

= [tbsr]UB(t, s)
[
detK(t, s)U ′

BU
′
R

]
(U ′

B)
b−1(U ′

R)
r−1 .

Moreover we will have that

K(t, s) =

1− t
U ′
B

∂U ′
B

∂t − t
U ′
B

∂U ′
B

∂s

− s
U ′
R

∂U ′
R

∂t 1− s
U ′
R

∂U ′
R

∂s ,

 (4.16)

and therefore[
detKU ′

BU
′
R

]
= (U ′

B − t
∂U ′

B

∂t
)(U ′

R − s
∂U ′

R

∂s
)− s

∂U ′
B

∂s
t
∂U ′

R

∂t
,
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given that

t
∂U ′

B

∂t
(t, s) =

∑
k,l∈N0

u′b(k, l)t
∂

∂t
(tksl) =

∑
k,l∈N0

u′b(k, l)kt
ksl ,

s
∂U ′

R

∂s
(t, s) =

∑
k,l∈N0

u′r(k, l)s
∂

∂s
(tksl) =

∑
k,l∈N0

u′r(k, l)lt
ksl ,

s
∂U ′

B

∂s
(t, s) =

∑
k,l∈N0

u′b(k, l)s
∂

∂s
(tksl) =

∑
k,l∈N0

u′b(k, l)lt
ksl ,

t
∂U ′

R

∂t
(t, s) =

∑
k,l∈N0

u′r(k, l)t
∂

∂t
(tksl) =

∑
k,l∈N0

u′r(k, l)kt
ksl .

We then have that [detK(t, s)U ′
B(t, s)U

′
R(t, s)] generates the sequence

d(k, l) =
[
u′b(k, l)− ku′b(k, l)

]
∗
[
u′r(k, l)− lu′r(k, l)

]
− lu′b(k, l) ∗ ku′r(k, l) , (4.17)

therefore

wB(b+ 1, r) = [xbyr]
WB(x, y)

x
(4.18)

= ub(k, l) ∗ u′b(k, l)∗(i−1) ∗ u′r(k, l)∗(j−1) ∗ d(k, l) |k=b,l=r . (4.19)

As a corollary we can state

Corollary 4.5.4. Let wB(n) be the size distribution of weakly connected components
for a bigraph with degree distributions generated by Equation (4.4). Then

wB(n) =
∑

b+r=n−1

wB(b, r) ,

where wB(b, r) is generated by WB(x, y) as de�ned in Section 4.2.

For the proof we refer to Section 4.2.1.



Chapter 5

Numerical Analysis and Algorithm

Following the main idea, generating random graphs and reading out the connected
components provides an approximate numerical solution to Smoluchowski's in�nite
system of equations. Numerically solving the system of ODEs directly falls victim to
the curse of dimensionality, especially for systems with many di�erent components,
and it requires a cuto�. Since the original theoretical system is composed of an
in�nite number of equations, this also leads to inaccurate solutions, given the mean-
�eld nature of the system where every component interacts with the others.

5.1 The Algorithm

Let us introduce the Chung-Lu random graph model. It is a generalised Erdös-Renyi
random graph in which every node u is assigned a weight wu. We de�ne the mean
weight w̄ =

∑
uwu/N , and two nodes u and v with weights wu and wv are joined

together with probability pu,v = wuwv/w̄N . The expected degree of the node u is
then

∑
v ̸=uwuwv/w̄N = wu−w2

u/w̄N , which for very large graphs converges to wu.
Therefore the weight wu represents the expected degree of the node u in an in�nite
graph. Also in a Chung-Lu model, the expected amount of edges is then M = Nw̄/2.
From this we can quickly see that Erdös-Renyi random graphs are particular Chung-
Lu random graphs with pu,v = p = c/N .

In our model, we de�ne a matrix A that has as entries the rates aij which describe
how likely two nodes of type i and j are to form a link. The same rates also appear
(properly renamed) in the degree distributions (4.4) used in our model

UB(x, y) = ea11t(x−1)ea12t(y−1) ,

UR(x, y) = ea21t(x−1)ea22t(y−1) .

But in particular, the quantities taij de�ne the expected ij-degrees (that is, the ex-
pected number of edges from nodes of type i to nodes of type j.) Taking a step back,
if we have a multicoloured graph, we can reconstruct it by bundling di�erent types
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of edges together. That is, �rst we remove all edges, and then, for every pair i, j
we go through the nodes of type i and place back all edges that go from nodes of
type i to nodes of type j. We can then leverage the Chung-Lu model and see each
iteration as constructing a graph between two sets of nodes with weights cij := taij
and cji := taji respectively.

Let G be a multicoloured graph, withN total nodes. Since we have more than one
colour we will have a set of positive integers {n1, . . . , nd} such that

∑
i ni = N that

describes the frequency of i-coloured nodes in the graphs. Without loss of generality
we can relabel nodes of type i with numbers from

∑
k<i nk to

∑
k≤i nk. Therefore

we partition the set [N ] = {1, 2, . . . , N} into d subsets of length ni respectively.

[N ] = ( [n1] | [n2] | . . . | [nd] ) .

We can then adapt an algorithm from [MH11] and de�ne a procedure that connects
two types of nodes, presented below:

Algorithm 1 Chung-Lu Graph

Ensure: 0 ≤ c1 ≤ n2 − 1, 0 ≤ c2 ≤ n1 − 1 ▷ no more edges than nodes
procedure CHUNG-LU-EDGES(cij , cji, ni, nj)

Eij ← ∅
Si ← cijni

Sj ← cjinj

for u = 1 to ni − 1 do

v ← u+ 1
p← min(cijcji/Si, 1)
while v ≤ nj and p > 0 do

if p ̸= 1 then
choose r ∈ (0, 1) uniformly at random

v ← v +
⌊

log(r)
log(1−p)

⌋
end if

if v ≤ nj then

q ← min(cijcji/Sj , 1)
choose r ∈ (0, 1) uniformly at random
if r < q/p then

Eij ← Eij ∪ (u, v) ▷ edges are ordered pairs
end if

p← q
v ← v + 1

end if

end while

end for

return Eij ▷ The edges will have relative numbering
end procedure
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This procedure returns a set of pseudo-edges that stem from the ni nodes of type
i and arrive in one of the nj nodes of type j. The order of the elements in a pseudo-
edge is important since we will need to place them back into the graph in the proper
manner, for the moment a pseudo-edge (u, v) ∈ Eij represents the edge from the u-th
node of type i to the v-th node of type j. The algorithm to generate a multicoloured
graph with d colours will then consists in generating d2 sets of pseudo-edges Eij , one
for each pair (i, j), from nodes of type i to nodes of type j and then correctly map
them back to the main graph.

Algorithm 2 d-coloured graph with N nodes

Eij ← ∅ for every pair (i, j)
for all (i, j) pairs, i, j ≤ d do

Ei,j ← CHUNG-LU-EDGES(cij , cji, ni, nj)
end for

for all Eij do

for all (u, v) ∈ Eij do

E ← E ∪ {
∑

k<i nk + u,
∑

k<j nk + v}
end for

end for

Theorem 5.1.1. Let N be the total number of nodes, d the number of colours. When
run for weights cij = taij before the gelation time t ≤ tc, the Algorithm 2 runs in
O ((d+ 1)N) expected time

Proof. The average number of nodes of a certain colour is n̄ = N/d. We know that
the maximum amount of edges in the �nished graph is M = O(N/2) since it is when
we encounter the giant component, each pair (i, j) will be on average responsible
for adding m̄ := O(M/d2) edges to the �nal graph. The procedure CHUNG-LU-
EDGES runs through the �rst loop on average n̄− 1 times, and the inner loop only
runs for m̄ iterations on average [MH11]. We run the procedure d2 times, one for
each pair (i, j). Lastly, we cycle through all the pseudo-edges to map them to the
corresponding edge. Therefore adding all together

d2(n̄+ m̄) +M ≤ d2(
N

d
+

N

2d2
) +

N

2
= dN +N .

Remark. Each of the d2 runs is independent from the others. That means that we
can easily generate the d2 pseudo-edgeset concurrently, furthering reducing the time
needed.



Numerical Results 49

5.2 Numerical Results

We implemented the algorithm discussed above using the Julia language version
1.7.0. The code used in this section can be found in the GitHub repository https:

//github.com/ghyatzo/random-graph-smoluchowski-thesis.

The matrix A in the kernel allows us to specify very di�erent behaviours of our
graphs. For example, we could wish for a uniform chance of linkage between all types
of nodes, or only allow speci�c connections to be made, of which we can also decide
the intensity. These are some of the examples

(a) Homogeneous (b) Alternating (c) Separate

which corresponds to the matrices at time t = 1[
0.5 0.5
0.5 0.5

] [
0 1
1 0

] [
1 0
0 1

]
And indeed we see giant components, each one with characteristics described by the
respective matrix. And the possibilities only grow with more components.

(a) Homogeneous
(b) Blue on Blue and Alter-
nating Orange-Cyan

(c) Orange on Orange and
Alternating Blue-Cyan

which corresponds to the matrices at time t = 11
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 1 0 0
0 0 1
0 1 0

 0 0 1
0 1 0
1 0 0
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5.2.1 Methodology and parameters

All the various possible con�gurations are plentiful, and visualising a speci�c con�g-
uration and its evolution in its entirety for every parameter variation would require
a harrowing amount of plots or more dimensions than our brain can comprehend.
We will therefore need some default parameters to work with. The simulations were
performed with N = 106 nodes with N/2 black nodes and N/2 red nodes. The kernel
used is

A(2) =

[
1 0.9
0.9 1

]
,

which according to Theorem 3.1.2 will generate a giant component at tc = 1
||A|| ≈

0.526. To smooth out the inherent variability of the algorithm, we will generate 50
graphs with the same parameters, read out the necessary information and average
them.

To generate a baseline close to the ground truth to test our algorithm, we nu-
merically integrate Smoluchowski's system of ODEs with a cuto� at component size
of 100, using the Tsitouras 5/4 Runge-Kutta method. The system was solved with
normalized monodispersed initial conditions wei(0) = 1.

An arbitrarily chosen �xed time of t = 0.39 was chosen to run simulations shown
in Figures 5.3 to 5.7. In the time complexity analysis section, we also generate 3-
coloured graphs for comparison, we use N = 106 with an even partitioning n1 =
n2 = n3 =

1
3N . The kernel used is

A(3) =

 1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

 .

Which has a critical time of tc ≈ 0.357. Since the time complexity depends on the
amount of edges created, and the amount of edges depends on the critical time, we
normalise the kernel A(3) such that it has the same critical time as A(2), therefore

Ã(3) = A(3)

||A(2)||
||A(3)||

.

5.2.2 Weakly-connected component study

At the start, the number of connected components is very low, and all the mass is
concentrated in w1. As we let the system evolve, we see a shift towards the tail of the
distribution, and �nally, at the critical time, the plot shows a signi�cantly di�erent
shape than the previous two. We indeed reach a heavy tail phase, encountering a
run away growth, or the so-called gelation.
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Figure 5.3: The weak components density at 3 di�erent points in time during the
evolution of the system. where we compare the connected components of a bigraph
(orange triangles) and the solution to the ODE system (red solid line).

One might notice, especially in the middle �gure, that in the tail, the distribution
shows high variability. This is due to a lack of resolution of the bigraph. Indeed,
we are approximating an in�nite graph with a �nite amount of nodes, therefore the
maximum component size we can obtain is directly dependent on the total amount
of nodes. If we re�ne the subcritical window with p = (1 − ε)/N and ε = λN−1/3

for λ→ N1/3 the expected maximum component size follows O(N2/3λ−2 ln(λ)).
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Figure 5.4: The weak components density for 3 di�erently sized bigraphs at a �xed
time t = 39. (orange triangles) connected components, (solid line) ODE solution
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5.2.3 Error convergence and time complexity

Increasing the total number of nodes, not only helps with the maximum components
we can see but also increases the accuracy of our approximations.
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Figure 5.5: The convergence towards 0 of the absolute cumulative error for increasing
values of N

The cumulative absolute error is the sum of the absolute di�erences between the
connected components distribution and the ODE solution across all densities. We
can see a quick drop in the error at the initial steps but, as expected, adding more
nodes is less e�ective each subsequent time. The log-log plot suggests an O(Nα) error
scaling. Fitting a power law model y = βxα through simple log-linear regression we
obtain

α ≈ −0.502 β ≈ 0.214

which supports an O(N−1/2) error scaling. In the plot, we add a red line representing
the function y = 1

5
√
N

as a visual comparison.

Of course, increasing the total number of nodes comes with the tradeo� of in-
creased computation time. We know from Theorem 5.1.1 that time grows linearly
with the number of nodes for a given dimension d. In the classic time vs. memory
tradeo�, to generate very big graphs available memory is the limiting factor. In-
deed, in Figure 5.6a we plot the runtime needed (in seconds) to generate each graph,
together with the time spent by the machine managing its own memory. These
simulations were run on a machine with only 16Gb of RAM, which showed to be
insu�cient for N ≥ 106. A more solid approach, shown in Figure 5.6b, consists on
counting the number of iterations needed by the Algorithm 2 to generate a graph.
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Figure 5.6: Linear time evolution for increasing N, and the memory bottleneck rep-
resented by the activity of the machine's garbage collection routines.
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Figure 5.7: The Coe�cient for the algorithmic complexity for t = 0.39 and tc = 0.526

Knowing we have an algorithmic complexity of O ((d+ 1)N) it is interesting to
check what is the coe�cient. We do this by plotting the iterations for each N against
(d + 1)N . In this speci�c case, since we normalised to the same critical time (see

section 5.2.1), we re�ne the algorithmic complexity estimate to O
(
(d+ t

tc
)N
)
.
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5.2.4 Components composition and Burgers' equation
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Figure 5.8: Log distribution wk of the speci�c compositions of objects k = (k1, k2)
at t = 0.52 with kernel A(2)

Although much rougher, due to the discrete approximation, the random graph
data correctly approximates the data obtained through more classical approaches.
Both dimensional distributions of the components show a clear propagation along
the diagonal. A natural question is asking what parameters a�ect the shape of the
distribution. Unfortunately, we still can't answer this question in detail but we can
argue through some experiments that both the kernel and the node distribution play
a role.
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Figure 5.9: Log distribution wk of the speci�c compositions of objects k = (k1, k2)
for some di�erent kernels and distributions at t = 0.52
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In Figure 5.9 we tested three di�erent scenarios: in the leftmost picture, we used
the usual A(2) kernel but with a skewed distribution of nodes such that we had 70% of
type 1 nodes and 30% of type 2 nodes. In the middle picture, a balanced population
with a kernel with very low o�-diagonal entries was used,[

1.0 0.1
0.1 1.0

]
.

Lastly in the rightmost picture we used a balanced node population and a kernel
with very skewed diagonal entries [

0.2 0.5
0.5 1.0

]
.

All kernels were normalised to retain the critical time at tc = 0.526 as A(2). We
clearly see some e�ects, on the angle of growth, when we tweak either the population
balance or the diagonal entry symmetry, and on the spread of the distribution, when
we tweak the o�-diagonal entries magnitude.

Burgers' equation for weakly-connected components

From Section 2.1.1 we map Smoluchowski's problem into a Burgers' inviscid equation.
Following this idea into the simulations, we can compose the weak components data
obtained either from the system of ODEs or the random graphs approaches into the
solution of the initial value problem{

ut + (u− 1)uz = 0

u(0) = e−z z ≥ 0
.

In Figure 5.10 we can see that both approaches correctly predict the discontinuity
or shock in the solution, represented by the blow up of the derivative at 0 the closer
we get to the critical time tc.
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Further Research

In many parts of this manuscript, we had to restrict the focus to speci�c conditions
to ease the treatment. Even with this very narrow focus, there are still many ques-
tions to answer or parts to expand.

Probably one of the most important questions that will need further work is �g-
uring out what happens when we start from di�erent initial conditions that are not
monodisperse. It is unclear how di�erent initial degree con�gurations would a�ect
the evolution of the distribution as a whole, and consequently the rest of the system.
But, perhaps more importantly, it could allow us to extend such results to di�erent
initial conditions for the inviscid Burgers' equation.

More research will also be needed towards extending the model and introducing
extra terms, for example, a di�usion term, and the analysis that follows.

Central to the whole derivation is the quantity e−x that seems to play a central
role. Indeed, the generating functions that we use in the �rst part of the manuscript
include this transformation G(e−x). Better understanding the overarching implica-
tions of this transformation in this setting could bring useful insights.

Properly analyse the close form solution obtained in Chapter 4 could give exact
solutions to the multicomponent multiplicative coalescence problem, which is useful
to test the accuracy of various numerical schemes.

One other venue of further exploration is asking how well we could approximate
other more complicated kernels through a linear decomposition of bilinear forms, and
see if that translates well with the Smoluchowski's system.

Lastly, from the brief numerical experiments, we noticed that we can manipulate
the shape of the distribution through the parameters of the system. A promising
venue, that was not explored due to time constraints, could be some form of cor-
relation parameter to describe the angle and spread of the �beam� of the distribution.

In short, too much to do, too little time.
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