
Query rewriting and visualising for concept evolution

by

Robbert van Erpers Roijaards

A thesis submitted in conformity with the requirements
for the degree of Computing Science

Department of Natural Sciences
University of Utrecht

Project supervisor prof.dr. I. Velegrakis
2nd Examinor dr. A.A.A. Qahtan

Student Number 5739675

© Copyright 2022 by Robbert van Erpers Roijaards

Abstract

Concept evolution in data is the process where a certain concept was applied to a type of records

that evolves to a new concept that is now applied to the same type of record. There are some existing

tools to discover concept evolution and query with this concept evolution in mind. Each approach

does have its limitation. The application of these approaches tends to depend on the structure of

the data. Concept evolution in a data set can cause problems where historical data is missed when

querying because to the concept of the query underwent evolution. For these types of situation

rewriting a query based on the concept evolution in the data would mitigate those problems. We

introduce a system that creates a concept evolution graph based on the evolution in the data and

uses it to rewrite a query to take the evolution into account. Additionally we create visualisations

that help understand the evolution in the data and also specific queries.

2

Contents

1 Introduction 5

2 Related work 7

2.1 Using historical data for call center improvements . 7

2.2 Terminology Evolution for Querying . 9

2.3 Concept evolution in RDF graphs . 10

2.4 Detecting concept evolution . 13

2.5 Capturing evolving structure of data . 15

2.6 Temporal Data Management . 18

3 Motivating example 20

4 Problem Statement 22

5 Solution 25

5.1 Concept Graph Traversing . 25

5.2 Query rewriting . 30

6 Implementation 32

6.1 Architecture of the system . 32

6.2 File Format . 33

6.3 Import Function . 33

6.4 Query Handling . 33

6.4.1 Building the Graph . 33

6.4.2 Structures in memory . 35

6.5 Export function . 35

6.6 Visualisation . 35

6.6.1 Graphviz visualisation . 36

6.6.2 Excel Visualisation . 36

7 Experiments 41

7.1 Import performance . 41

7.2 Query performance . 42

3

CONTENTS 4

8 Conclusion 45

8.1 Future work . 45

Chapter 1

Introduction

When dealing with large amounts of data that is continuously expanded it is possible that the data

or the system that creates the data changes over time. These types of changes can lead to concept

evolution and can result in problems when querying over this data. It can cause information to be

missed due to these changes. An example of this is the case of trying to forecast a trend by using

historical data. Due to the evolution in the data some of the historical data can be missed causing

the forecast to be made without all the available data. Since customer experience is an important

aspect of call centres having a bad service due to a bad forecast is undesired. Nobody wants to

wait in a queue all day due to not enough call center operators being available. On the other hand

having too many operators is bad from a budgetary standpoint. To avoid either scenario there

needs to be a fitting amount of operators available at the call centre to meet the incoming demand.

Therefor being able to make a good forecast is vital. Since the evolution in the data can be caused

by many different factors it might be hard or impossible for users to know this evolution has taken

place. Not knowing the evolution in the data can make it harder for users to effectively do their work.

There are a number of approaches to mitigate the problem of concept evolution. One such

approach is that of detecting terminology evolution in text documents by trying to discover seman-

tically similar concepts by association rule mining[10]. While this approach helps with identifying

the terminology evolution it does require text documents to mine the association rules. If these

semantic links do not exist due to the lack of text documents or simply no links existing for the

data set this approach will not work. The use of this approach is however relatively simple as it just

extends the answer of a user query without any added effort.

Another approach is the utilisation of temporal information in RDFs[4]. Here an evolution graph

is proposed which is build on a temporal RDF. If this graph is build from the concepts in our data

set we are able to query this. However, this approach focuses more on the type of relations between

the different items in the RDF. Also the querying mechanism for these evolution graphs might be

too complicated for everyday use. Ideally, a combination of the two approaches is executed where

easy querying is preserved and the ability to query comprehensive graphs is available. Such a system

would be able to be used by users without changing their current methods yet still allow for concept

evolution to be queried.

5

CHAPTER 1. INTRODUCTION 6

Our work aims to create a system that can rewrite a user query to take the evolution of a data

set into account. This would allow users to query the data without change, yet still take into account

the evolution of the data. Since this might result in oddly looking results for a user. Namely, data

that does not seem directly related to the initial query might be returned to explain this the system

will also have a visualisation part. This visualisations aims to show the evolution of the concepts

in the initial query to better explain the results of the query rewriting. To do this visualisation

part the system utilises two different visualisations one to emphasise the evolution of a concept and

the other to better visualise the timeline of evolution in the data. To rewrite the query the system

utilises a concept evolution graph that the evolution present in the data. Which is traversed in order

to rewrite our queries.

Specifically, the contributions we are making in our work is presenting a concept evolution graph

that can be traversed to rewrite a query. Based on the evolution of this query found in the graph

visualisations are made to better understand the evolution. We define evolution events on which we

construct the concept evolution graph (Chapter 4). We introduce a traversal algorithm to correctly

traverse through the concept evolution graph based on a concept (Chapter 5.1). The result of this

traversal has to be correctly combined in order to take the expanded concepts from a query to a

set of rewritten queries (Chapter 5.2). Also based on the expanded concepts from the traversal we

create a mechanism to create two different visualisations (Chapter 6.6). A GraphViz visualisation

to emphasise the evolution of concepts (Chapter 6.6.1) and an Excel visualisation to emphasise

the timeline of the evolution (Chapter 6.6.2). Finally, we perform some experiments to test the

performance of the creation of the concept evolution graph and the query rewriting based on the

size of the concept evolution graph (Chapter 7).

Chapter 2

Related work

In this chapter we will discuss related work that touches on the topic of this thesis. This ranges from

fields where work discussed in this thesis can be applied such as call centres to different approaches

to model concept evolution. The goal is to show the applications and work done around dealing

with concept evolution.

2.1 Using historical data for call center improvements

Call-centres tend to be the main avenue of communication between companies and their customers.

It being a call centres does not imply that there is only voice communication, chat communication

is also common.Inbound call centres are very labour intensive since it requires customer support

representatives to be present if the call centre wants to avoid large queues. By creating an efficient

routing for the call center combined with appropriate staffing this problem can be mitigated. This

approach can avoid too large queues or the use of an overabundance of customer support represen-

tatives. A common approach is to predict the volume of calls or predict the contents of a call based

on historical data to improve the call center´s efficiency and reduce spending.

Analyzing historic data and applying that analysis to incoming calls can improve the routing

of a call center[2]. Besides having enough representatives to handle the incoming communication

there is also a factor of connecting a customer to the right representative. Customers with certain

questions can sometimes only be handled by a representative trained in the area that question is

about. Connecting the customer to the wrong representative will take up more time due to the

customer having to be transferred to the correct representative. This takes up time from more

representatives which can be avoided by having more accurate routing.

The system seen in figure 2.1 describes such a system that tries to efficiently route calls to the

correct representatives. The goal of the switch layer is to link incoming calls to the best representa-

tives. For this linking three data sets are used: historical data, customer information and Customer

Services Representatives information. These data sets are merged into a single data set and used as

a training set for data modelling purposes. The data model is created by an offline training process

and used to score incoming calls. The model passes its outcome to the optimiser to create a mapping

for routing purposes.

This approach tries to optimise call routing with the help of machine learning. Combining data

7

CHAPTER 2. RELATED WORK 8

Figure 2.1: Call center routing [2]

sets from customers, representatives and historical data to find the best representative to handle

the call. The historic data used here is the raw data of the calls. This system analyses this data

combined with the personal data of the customer and representative to use in the prediction of the

most optimal customer-representative pairing. This is important if the satisfaction of the call is an

important criteria such as in sales.

Figure 2.2: Call center classification [15]

Another way to improve call center communication is to help representatives by classifying calls

and presenting commonly used solutions [15]. This system as seen in figure 2.2 analyses the data of

a call to search and present useful information. Here each call will be transcribed and together with

the call metadata such as time-stamps and channel identification (to distinguish between the caller

and the operator), is sent to an annotator. This annotator compares the transcribed call in the

current corpus, to a general corpus in order to detect significant words in the text. Since detecting

sentence endings in transcribed text is difficult a heuristic approach is used to fragment the text.

Each time the speaker changes or there is prolonged inactivity a fragment ends. When a call is

broken up into fragments each fragment can be annotated with additional knowledge based on the

significant words in the fragment. A fragment can also be without any significant words and will be

labeled as an insignificant fragment.

When a call is annotated it can be analysed. A representative can search through past calls based

on the past call’s annotations and find solutions. The system can also present the representative

with suggestions. This can be done based on the first few significant fragments of an ongoing call.

CHAPTER 2. RELATED WORK 9

Besides detecting significant fragments in a call, insignificant fragments can also be detected and

can provide insight for administrators.

There are many areas of a call center that can be improved. This approach focuses on the calls

itself by improving the ability of the call center to answer questions by providing relevant information

to the representatives. The first work discussed focuses on routing calls in the most efficient ways.

One thing both approaches have in common is their reliance of historic data of communication of

the call center.

The earlier mentioned issue of staffing call-centres correctly is another call-center problem. This

problem can be made more difficult if the call-center deals with multiple types of customers that

need different types of operators. Traditionally this problem is an optimization problem, where the

objective is to minimise salary costs while meeting the quality of service targets [7].

2.2 Terminology Evolution for Querying

Concept evolution is a problem that can express itself in many ways. A popular case of it is that

of search engines trying to find relevant information based on a user query. Directly searching for

the words in the query will not always return a satisfying result. There is work done on taking into

account the terminology evolution of concepts. It is helpful for our problem that we examine the

approaches taken to solve this issue. While the text retrieval is not directly applicable, the overall

structure is of interest for how to effectively model a concept evolution algorithm.

A large amount of time stamped documents exists online in all forms, such as news articles, web

pages or blog-posts. The terminology within these documents can change over time, which causes

a disconnect with the current term and the historical term[10]. This leads to the situation where a

user can pose a query about a current concept. This query needs to be translated to a time aware

query in order to take the historical concepts into account. These changing concepts can be called

Semantically Identical Temporally Altering Concepts (SITAC).

Figure 2.3: SITAC system architecture [10]

To be able to translate a query to a time aware query using these SITAC they first need to be

discovered. The process to discover SITACs can be seen in figure 2.3. The initial step is to extract

CHAPTER 2. RELATED WORK 10

concepts out of text documents with natural language processing. The extracted concepts from the

data set upon which the rules are discovered. The association rules that need to be discovered are

of the form (C1, T1) → (C2, T2), where C1 and C2 are concepts and T1 and T2 are timestamps

from the documents in which these concepts appear. These rules can link concepts in two different

time periods. To get a link between concepts in a text, there has to be an event, such as a verb, that

connects the concepts together. Every time such a rule is discovered a weight is given to the rule.

If the rule is already discovered the weight is lowered of the rule is lowered instead. This results

in the rules that appear the most are more relevant. These rules with small weights are considered

SITACs. These SITACs are then ranked against each other using the Jaccard Coefficient to make

sure we know what the most relevant SITACs are given a concept. When the SITAC database is

built the user queries can be handled as time aware queries. In order to do this every concept of

the user query has to be extracted. Search the SITAC database for every concept of the user query,

if there are any matches, the query is extended with the SITAC and the time. This results in a

query that contains all relevant SITACs and times these are relevant. The query is then executed by

searching the data set for all the concepts in the extended query and only accepting matches that

also match the time of the SITAC. This will return a set of documents that are likely to be relevant

to our initial query.

This approach tried to discover semantically similar concepts by association rule mining with the

idea that concepts linked with the same verbs tend to be similar. When these have been discovered

any query is then compared against the database to find all semantically similar concepts, which

are then used to find relevant documents. This does require terms from different time periods to

have a high overlap. The result is that concepts which are deemed semantically similar and linked

through SITACs are then stamped as terminology evolution. This means that this approach does

not directly find evolution, but sees semantically linked concepts as evolution.

2.3 Concept evolution in RDF graphs

Concepts can evolve over time in many different ways. For example research concepts evolve when

we learn more about them. Or the concept of any country goes through many changes during its

lifetime even if simply looking at what land area a country occupies. Capturing and querying this

wide variety of evolution is not a simple task. An approach of modelling this evolution can be done

through a temporal resource description framework (RDF) [8]. An RDF is originally designed as a

standard model and language for data interchange [12]. It has come to be used as a more general

method to describe graph data. RDF is a directed graph and models a set of resources, basically

anything that has a universal resource identifier (URI). A URI can identify the three different parts

an RDF is made up of. These so-called triple statements contain a node for a subject, a node for an

object and an edge from the subject to the object [9]. This simple model is capable of expressing

complex situations. This simple model can be extended to also model the history of the RDF. This

multidemnsional RDF (MRDF) has as extension that certain information in the graph is only present

under certain circumstances [6]. The information in the RDF can have a condition under which it is

present. An example of this is a graph about the work days. Under normal circumstances workdays

are monday through friday, but during the summer holiday this is different. This can be expressed as

[season 6= summer, weekday not in {Saturday,Sunday}], which means that this definition of workday

CHAPTER 2. RELATED WORK 11

is only present under the context of the season not being summer.

Extending the RDF can also be done to specifically capture temporal information. To extend an

RDF with temporal information in order to create a temporal RDF the temporal information needs

to be added to the edges in the model. The temporal information comes from a temporal database.

This database holds the triple statement and an interval also called the lifespan of the resource.

There are two types of temporal dimension that are considered, valid time and transaction time.

Valid time is the time the data is valid in the world, which is the interval stored in the database.

Transaction time is the time when the data is stored in the database. The time that is used to

extend the RDF is valid time. By extending the edges with an interval [a, b] the RDF can now

express when certain relations in the graph are valid, where a ≤ b.

Figure 2.4: Initial RDF graph (left) after some changes (middle) extended to a temporal RDF graph
(right) [8]

If we look at our initial RDF in figure 2.4 on the left, we can see a graph that models a current

situation of a university. When changes occur the graphs gets altered and information gets lost, as

can be seen in the middle figure. Before the change John was an undergraduate and the university

did not have a PhD program. After the changes John has become a master student and the university

offers a PhD program. This structure only captures the current situation and has no way of showing

temporal information. If the RDF gets extended by adding the temporal information to the edge a

more complete picture emerges. By looking at the right graph in the figure we can see that John

was an undergraduate during time interval [0, 10], a master during [11, 20] and a phd during [25,

now]. In essence this extension has created a graph from which other graphs can be inferred. Since

each edge now has an interval on which it is valid, a graph can be constructed for different intervals.

As such, both the left and middle graph are represented in the right graph, but only under certain

time constraints.

Adding temporal information to an RDF allows for more information to be incorporated in the

graph, but it does not model the evolution of concepts over time or the evolutionary relationships.

However, this model can be extended to also include this information [4]. To model evolution

there are two more dimensions introduced besides the temporal dimension, the mereological and

the casual. Mereology is the study of parts and the wholes they form [11]. In the model it will

be used to capture the parthood relationship between concepts in a way that is carried forward as

concepts evolve. This relationship is the special property partof , which is reflexive, anti-symmetric

and transitive. A resource x is a part of resource y if the concept modelled by the resource x is

part of the concept of resource y and x 6= y. To model the casual relationships the notion becomes

is used, to show the interdependency between two resources. The constraint of this relationship for

resources x & y is xend < ybegin. To strengthen this modelling the notion of a liaison is used. A

CHAPTER 2. RELATED WORK 12

liaison is when two concepts are linked through another concept by partof and becomes relations.

For example, if a concept is part of another concept (partof) and has a casual relationship (becomes)

with another. See figure 2.5 for more liaison examples.

Figure 2.5: Liaison examples [4]

Besides defining these dimensions there are also evolution events that may exist, namely a join

〈{c1 . . . cn}, c, t〉, split 〈c, {c1 . . . cn}, t〉, merge 〈c, c′, t〉 or detach 〈c′, c, t〉. The join event means that

from a part of a concept in {c1 . . . cn} becomes a part of a concept c. The concept c is created from

a part of these concepts at time t. The split event is conceptually the opposite of the join event. A

split means that every part of a concept c becomes a part of a concept {c1 . . . cn} at time t. The

merge event is when a concept c ends and becomes part of another concept c′ at time t. The detach

term is when a new concept c is formed from at least one other concept c′ at time t.

With the needed dimension and evolution events defined we can apply this method to a temporal

RDF (figure 2.6). In this figure on the left side (a) we can see our original temporal RDF and on the

right side is the RDF with evolution. As can be seen in the original RDF East & West Germany are

not connected with Germany, while this should be an obvious connection. Applying this method the

concept Germany gets linked with East & West Germany through the split event. Later, another

link is made when East & West Germany reunite and form Reunified Germany, shown by the join

events. The reunification is also unconnected in the original RDF, but in the evolution graph it is

connected in by two join events. With these concepts connected we can see that Germany is related

to Reunified Germany through a liason (East or West Germany).

The method proposed to query this evolution graph is a navigational query language to traverse

temporal and evolution edges in the graph. This language is based on nSPARQL, which is an

extension of SPARQL [18]. The nSPARQL query language is designed to navigate through an RDF

graph that uses regular expressions as building blocks. The language is expressive enough to both

query and navigate through an RDF graph. It uses four different axes: self, next, edge and node.

The extension proposed is adding five evolution axes: join, split, merge, detach and becomes. This

will extend the traversing capabilities of the query language so it is able to traverse the evolution

graph. The grammar of this query language can be seen in figure 2.7.

In this grammar a node is represented by a and I is a timer interval. The semantic function is E
and for a E [[exp]] the return is a set of tuples of the form 〈x, y, I〉 such that there is a path from x

to y during interval I. An example of this is the expression E [[self :: Germany/next :: head/next ::

type]], which returns the tuple 〈Germany,Chancellor, [1988, 2005]〉 if applied to graph b in figure

2.6. These expressions can be more complicated too. They can take the form of a nested expression

E [[self[next :: head/self :: Gerhard Schröder]]], which would return two tuples 〈Reunified Germany,

Reunified Germany, [1990, 2005]〉 and 〈West Germany, West Germany, [1988, 1990]〉.

CHAPTER 2. RELATED WORK 13

Figure 2.6: A temporal RDF (a) and an evolution graph (b) [4]

Figure 2.7: Query grammar [4]

This approach shows that it is possible to add evolution to RDF graphs and also query upon this

evolution by extending existing methods. With this approach querying upon the knowledge graph

is possible with the addition of uncovering evolution in the graph. It shows a possible architecture

for graphs that contain evolution and a method to traverse them through querying.

2.4 Detecting concept evolution

Besides querying an already known data set that contains evolution, there is also the problem of the

detection of concept evolution in the first place. Especially in a data stream that can be considered

of infinite length it is a difficult problem to detect when a certain concept evolves. It is impracticable

to constantly train on all historic data in this situation due to the nature of an infinite data stream.

Data streams are high volume and when a new class type appears in the data it can be considered

as concept evolution. This can be in multiple forms such as in network security, where a new type

of attack found in the data stream is concept evolution. But this can also be applied to text based

data streams such as Twitter. When the conversation on Twitter changes there is a change in

text messages in the stream, old topics disappear and new topics emerge. This can also be seen

as concept evolution. An approach to handle this is using an ensemble of classification models[13].

These models M1 . . .ML are each trained on a class c. So if none of the classifiers recognise a

new class c then we can consider it as a novel class. The data stream is split up in k chunks

and train a k-NN based classifier on each of them. The clusters are built using semi-supervised

K-means clustering. For each cluster a summary, or pseudo point, is saved. This summary contains

the centroid, radius and frequencies of data points belonging to each class. The radius is equal to

CHAPTER 2. RELATED WORK 14

the distance between the centroid and the farthest point in the cluster. These pseudo points are

the classification model. Each pseudo point is a hypersphere with center and radius of the pseudo

point. The union of the hyperspheres is the decision boundary for the classifier. For example, if

there is a test instance x which is inside the decision boundary of any model in the ensemble of

classifiers it is classified as an existing class. If this is not the case x will be stored in a buffer and is

considered an F-outlier. If there are enough outliers in this buffer a classification is used to detect

if there is a novel class. If this is the case the F-outliers are tagged as a novel class instance. This

classification measures if the data points are closer to its own class (cohesion) and farther apart from

other classes (separation). This is done by computing the q-Neighborhood Silhouette Coefficient:

q−NSC(x) =
Dcout,q(x)−Dcmin,q(x)

max(Dcmin,q(x),Dcout,q(x))
where Dcout,q(x) is the mean distance from F-outlier x to its

q nearest F-outlier instances, Dcmin,q(x) is the mean distance from x to its q-nearest existing class

instances. This results in a value between [−1, 1]. If the value is positive it means that x is closer

to the F-outlier instances. This q-NSC value is calculated for each of the classifiers in the ensemble.

If there are at least q′(> q) F-outliers that have a positive result for all these classifiers a new class

has been found.

A new instance might be detected as an F-outlier since it is outside of the decision boundary of

a summary. However, it can be that there is concept drift which caused this instance to drift just

outside the boundary. So this new instance is outside but still very close to the boundary. This case

can happen frequently with concept drift or just noise. To combat a lot of false alarms a slack space

is proposed, this slack space has a threshold that can be adjusted (figure 2.8). If a new instance is

a false novel instance, which is an existing class that has been detected as a novel class, then it is

defined as an outlier. However, if this instance is a marginal false novel, it must have been close

so we adjust our OUTTH value so this instance falls within our slack area. This is only done for

marginal cases to avoid having large changes to the slack area.

Figure 2.8: A visualisation of the slack space around a summary (or pseudo point) with the OUTH
(threshold) limit[13]

The case of multiple new classes is also possible. It is not hard to imagine that for a scenario like

Twitter where this can happen constantly. To help detect multiple classes a graph is constructed

from the novel instances and the connected components are identified. The number of connected

components is the amount of novel classes. The idea behind this is that a class clusters together

and thus adheres to the previously mentioned cohesion and separation properties.

This approach proposes a method to detect novel classes in a data stream. Which can be used

as a building block for procedures that use these newly detected classes, such as the work previously

CHAPTER 2. RELATED WORK 15

mentioned that applies evolution to RDFs. With unsupervised detection as proposed here used as

a data source to detect evolution without the need for intervention. In the real world outlier cases

most likely won’t represent themselves neatly. An important aspect to take into account is the time

delay with which these cases present themselves. All these cases won’t represent themselves all at

the same time. Still applying this analysis under time constraints is its own challenge[14].

2.5 Capturing evolving structure of data

There are more ways of adding evolution to an RDF graph or rather dealing with the evolution of

the data in the RDF graph. This can happen in a situation where over time more will be known

about a subject, which is often the case in the medical field. Old information might be discarded

and its place taken by the newly assumed correct information. In cases like this it can be helpful to

have information how the data evolved instead of replacing the old data. In order to accomplish this

the idea of a snap graph combined with an Evo Graph to handle this is proposed[17]. A snap graph

S(V,E) is a directed graph that consists of nodes V, divided into complex and atomic. Atomic nodes

are the leaves of the snap graph. An Evo Graph G is a graph that captures all the instances of an

evolving snap graph across time. An evo graph has two types of nodes. Data nodes VD that contain

two types, complex V c
D and atomic V a

D. The second type are change nodes VC which represent

change events and are also divided in two types, atomic V a
C and complexV c

C . Change nodes carry

a timestamp of the moment the event instance happened. There are three types of edges. Data

edges which depart from all complex data nodes ED ⊆ V C
D × VD. Change edges connect every

complex change node to the (complex or atomic) change nodes it encompasses EC ⊆ V C
C × VC .

Evolution edges connect each change node with two data nodes, the nodes before and after the

change EE ⊆ VD × VC × VD. The idea of the evo graph is that it consists of a data graph and a

tree of changes of this data graph. So different versions of the data graph are all stored in the evo

graph. The different graphs are connected through the evolution edges.

Figure 2.9: Basic snap changes and their effects on an evo graph[17]

CHAPTER 2. RELATED WORK 16

There are five basic snap changes possible on the snap graph: create, add, remove, update

and clone. The create change 〈vp, v, label, value〉 adds a new atomic node v with label&value and

connects it to the parent node vp. If the parent node is an atomic node it will turn into a complex

node since it is no longer a leaf in the graph. The add change 〈vp, v〉 adds and edge from vp to v.

Both edges need to exist prior to this change. The remove change 〈vp, v〉 removes the edge between

vp and v. If v has no other incoming edges v is also removed and if vp has no other outgoing edges

it becomes an atomic node since it has turned into a leaf node. The update change 〈v, newV alue〉
updates the value of node v to newV alue. The clone chage 〈vp, vsource, vclone〉 creates a new data

node vclone that has an identical label, value and subtree as vsource, the new node is added as a

child of vp so that the nodes vsource, vclone become siblings. The effects of these changes can be seen

in figure 2.9.

Figure 2.10: Snap graphs of diabetes classification on the left (before) and right (after) with the evo
graph in the middle[17]

An example of an evo graph is shown in figure 2.10 in the middle. There are two special nodes,

the roots of the graph. The data root at node &1 and the change root at node &21. The figure

represents a revision of the diabetes classification. The left graph in the figure is a revision of the

data graph in the middle. The revision process is denoted by the reorg diab cat at node &21. This

revision has five basic snap changes at nodes clone at node &8, add at node &11, remove at node

&13, create at node &15 and crate at node &18. The timestamp that these changes occurred at

are on the change nodes. The graph on the left is the reduction at T=start, which is before any of

these changes have occurred. This is a complex changed, which is a collection of basic changes. The

change that has taken place here is defined in figure 2.11. The graph on the right is at time T=now

which means it is the data graph after all these changes.

CHAPTER 2. RELATED WORK 17

reorg diab cat(&2) {
clone (&4, &6, &9)

add (&3, &6)

remove (&4, &6)

create (&3, &16, “type”, “insulin dependent”)

create (&4, &19, “type”, “non insulin dependent”) }
Figure 2.11: The reorg diab cat operation expanded for the evo graph in figure 2.10

The changes are applied to the snap graphs, some additional operations need to be added that

can be applied to the evo graph itself. There are four operations: addDataNode, addDataEdge,

applyAtomicChange and applyComplexChange. Some of these operations are mostly similar to the

snap graph changes. The addDataNode 〈vpD, vD, label, value〉 operation adds a new node vD to the

evo graph as a child of vpD. The same logic applies here as to the snap changes where if vpD is an

atomic node it can change into a complex node. The addDataEdge 〈vpD, vD〉 creates a new data edge

between its two arguments. This operation can also turn atomic nodes into complex nodes. The

other two changes evolve nodes as the result of applying a snap change. The applyAtomicChange

〈v1D, v2D, value, vC , v
P
C , label, timestamp〉 first creates a new node v2D that contains the value and

has the same label as v1D. Then a new node vC is created with the label and timestamp from the

operation which is connected as a child node to vpC . The label added to this node denotes a snap

change. As last step in the operation a new evolution edge is added (v1D, vC , v
2
D) so the nodes are all

connected. The applyComplexChange operation 〈v1D, v2D, vC , v
P
C , label, timestamp, {v1C . . . vnC}〉 first

creates a new atomic node v2D, which has the same label as v1D but the value of the new node is a

default value (empty string). This new node is then added as a child to all parents of v1D. Then

a new complex change node vC with the label and timestamp from the operation is created and

added as a child node to vpC . The label of the operation is the name of a complex change and can

be any string. When this is done vC is connected as a parent of the change nodes {v1C . . . vnC}. As

last step an evolution edge is created (v1D, vC , v
2
D) so the created nodes are connected.

With these evo graph operations defined the snap graph operations can also be applied to the

evo graph. See table 2.1 how each snap graph operation uses these evo graph operations to apply

itself to the evo graph.

This approach shows how to use changes as first class citizens and proposes a structure how

to handle this. This way an evo graph can capture how evolution changes the graph structure.

A reduction of this evo graph can then be made to retrieve a state of the graph under a certain

timestamp.

CHAPTER 2. RELATED WORK 18

Table 2.1: Steps to apply the snap graph operations to an evo graph using evo graph operations[17]

2.6 Temporal Data Management

Besides querying or detecting evolving data, there can also be improvements sought in the data

warehouse design. Many applications that generate a lot of data such as finance whose data is

also time dependant benefit from identifying trends by comparing different time states of the data.

Analysing these trends can help inform future decisions [20]. If the dimension of time is removed

from this data or not taken into account these decisions can be misinformed[3]. However, the proper

management of this data is no easy task. Having proper management of this data on its own is

difficult due to its potentially evolving nature, but not the sole reason for the difficulties. Since

this data can span many years the organisation that generates and uses this data can also evolve.

This can be simply because of different ideas or regulations. Which means that the system and the

data itself can change over time [16]. These changes need to be handled properly to avoid situations

where changes to the system can result in the loss of historical data. A simple change to the data

warehouse schema can cause such a loss if the previous structures are deleted. The solution to that

is to keep data warehouse versions, so a change to the schema creates a new schema [19].

CHAPTER 2. RELATED WORK 19

Figure 2.12: Data Warehouse Evolution Framework[19]

A framework to handle this process is shown in figure 2.12. In the development layer the adaption

component is the element that processes changes in relations & attributes of the source schemata,

identifies potential changes & new versions of the data warehouse, creates a new schema or adapts

the current schema based on the settings, creates the needed metadata and adapts data extraction,

transformation and loading (ETL) processes. In order to all this the adaption component uses data

from the metadata repository. The metadata management tool contains the GUI that is used by

the administrator or developer to design the schemas or ETL processes. It contains the static part

of the mapping repository, where the metadata of the last data warehouse version and mappings

are stored. The adaption part in the mapping repository stores the dependency information of

data warehouse elements and source elements which are used for the adaption. The rules for the

creation of new data warehouse versions are defined in the version control mechanism. Information

about data warehouse versions is stored in the version metadata in the mapping repository. The data

warehouse change repository, included in the metadata repository, accumulates the potential changes

of a data warehouse schema and version creation options. Agents are added into data sources which

can track changes in the source schemata and accumulate them in the source change repository.

The metadata deployment tool creates ETL processes based on the metadata from the static part

of the mapping repository. These processes get executed by the data warehouse loader. Then the

data transportation procedure transfers the data ware house data into the user environment. The

version metadata is transferred to the reporting metadata repository. The reporting tool can use

the metadata repository to run queries on multiple version of the data.

This shows that it also possible to approach the evolution on a higher level by taking into account

that systems around data can change as well as the data.

Chapter 3

Motivating example

Consider a large bank such as Rabobank with a large customer service department. An important

task of this department is to handle questions from customers, which is mainly done through a

call centre. Since the range of questions customers might have is broad for a big bank, quickly

categorising calls to decrease wait times is important. Every call that is received is tagged with a

tag which describes the subject. A table can be constructed from these tagged calls. However, the

bank is not a static entity and will go through many changes. So the classification of these calls will

also change. A subject Rabobank is interested in is a prediction of the expected traffic of a specific

tag. A manager of the Rabobank wants to know what the prediction of the tag Illegal Activities

looks like for the coming month April. This is particularly interesting since in March the decision

was made to make changes to the tagging system and create the tag Illegal Activities. In order to

make a forecast about the volume of the tag Illegal Activities a bank employee requests the available

data from that tag from their database in table 3.1. By doing so the employee receives all the data

that contains the tag Illegal Activities. These calls are only from the month March onwards since the

tag was created in that month. However, this can potentially be a limited view that does not reflect

the real situation. The tag Illegal Activities can be related to other tags. This can happen when

changes are made to the tagging system and the traffic of certain tags are grouped into a new tag to

improve traffic flow. Thus by only receiving data from the month March might give the employee

just a small part of what could be a large history. A lot of valuable information can be lost which

could have helped the employee make a much more precise prediction.

Forecasting more than only a month is of importance to the manager. They also request a

report of the volume of traffic for the tag Money Laundering to review its performance. When the

employee requests the data for this tag they notice something strange. The traffic suddenly dropped

in March, which most likely won’t be caused by a disapperance of Money laundering happening

anymore. The traffic of this tag was moved to another tag via a change to the tagging system.

A better representation of the performance of the tag Money Laundering would be by an overview

where its traffic went after the changes to get a better picture of the situation. But now the employee

can only work with the limited data.

For an organisation as a big bank many changes happen to their systems for a variety of reasons.

An employee will not always be aware of these changes and has to work with the limited information

that is available to them. These frequent changes can result in a loss of data.

20

CHAPTER 3. MOTIVATING EXAMPLE 21

ID Date Tag Technical Result Result Reason
777000123 20-12-2020 Illegal Actions Completed AnsweredByAgent
777000136 25-12-2020 Illegal Actions Diverted Unspecified
777000149 30-12-2020 Insurance Transferred Unspecified
777000152 4-1-2021 Fraud Completed AnsweredByAgent
777000203 8-1-2021 Insurance Completed AnsweredByAgent
777000222 25-1-2021 Fraud Transferred RoutedTo
777000256 4-2-2021 Mortgage Transferred RoutedTo
777000297 10-2-2021 Money Laundering Completed ReceivedConsult
777000304 24-2-2021 Phishing Completed AnsweredByAgent
777000365 5-3-2021 Illegal Activities Completed AnsweredByAgent
777000444 10-3-2021 Criminal Activities Completed AnsweredByAgent

Table 3.1: Simplified call transaction database

Chapter 4

Problem Statement

We assume the existence of an infinite set of concepts C, a time domain T with the special values

INF and -INF for which any other time is less or greater, respectively. We also assume an infinite set

of attribute names N , an infinite set of values V and an infinite set of identifiers O. A time period

denoted as [t1, t2], is a pair t1,t2∈T with t1≤t2. The set of all the time periods is the set P=T ×T .

An attribute is a pair 〈n, v〉, where n∈N and v∈V. The n is referred to as the attribute name

and the v as the attribute value. The set of all the possible attributes is the set A=N×V.

A record is a tuple 〈id, A, t〉, where id∈O is a unique record id, t∈T a timestamp, and A⊂A. A

database is a finite collection of tuples. A query q is a tuple 〈c1 . . . cn, [t1, t2]〉 where c1 . . . cn∈A are

the conditions of our query. The answer to the query q is the set of all the records that satisfy the

conditions and have a timestamp within the time period, i.e., Ans(q) = {〈id, 〈n’, v’〉, t 〉 — ∀〈n,

v〉 ∈q: ∃ n=n’ ∧ v=v’ ∧ t1 ≤ t ≤ t2}.

Example 1 Using a query q : 〈〈tag, Criminal Activities〉, [1/12/2020−1/12/2021]〉 on the database

in table 3.1. The expected return of running this query on the database is the record: 〈id=777000444,

〈tag,Criminal Activities〉, [10/3/2021]〉.

Concepts are not static, they can change through events. These events are used to model evolu-

tion. There are three distinct types of events that exist, a creation, an end and a mutation.

Creation is a tuple 〈t, c〉, where t is the timestamp and c is the concept.

Ending is a tuple 〈t, c〉, where t is the timestamp and c is the concept.

Mutation is a tuple 〈t, o, d, wo, wd〉, where t is the timestamp of the event, o is the originating

concept, d is the destination concept, wo is the weight of the origin and wd is the weight of the

destination. The weight of the origin wo is the ratio of records that were classified as o that are now

classified as d. The weight of the destination wd is the ratio of records that are classified as d which

were previously classified as o. Conceptually a mutation event is a situation in which parts of one

or more concepts become part of one or more other concepts.

A transformation is a set of events that all happen at the same time, but for components only.

Intuitively a creation event correspond with the moment a concept becomes active and the ending

event corresponds with the moment that concept stops being active. Mutation events are the links

between concepts.

22

CHAPTER 4. PROBLEM STATEMENT 23

o

d

(t, wo, wd)

Figure 4.1: Creation, Mutation and Ending

o

d1 d2

(t, wo, wd2
)(t, wo, wd1

)

Figure 4.2: Transformation Event

We define a notion of evolution 〈C,E〉, where C is a set of concepts and E is a set of events.

The evolution is well defined if for each c ∈ C there is one and only one creation event ebegin ∈ E

and ending event eend ∈ E. And for each mutation event emutation〈t, o, d, wo, wd〉 ∈ E, where

otbegin ≤ t ≤ otend
∧dtbegin ≤ t ≤ dtend

. If the evolution is well defined it can easily be represented as

a graph. To model the evolution we introduce a concept evolution graph. A concept evolution graph

G = (V,E) is a directed graph. Nodes V are concepts and have two attributes t1 & t2, where t1 the

timestamp of the corresponding creation and t2 the timestamp of the corresponding ending. Edges

are mutations, so each edge has a mutation tuple. The situation in table 3.1 is shown in graph 4.3.

If the evolution is well defined a concept c ∈ C can be valid for any time t if ebegin ≤ t ≤ eend.

Example 2 An example of a concept graph illustrating the situation seen in table 3.1 can be seen

in figure 4.3. The values on the edges correspond to the values of the mutations. The names in the

nodes are the names of the concepts.

Figure 4.3: Concept Graph
Example

ID Date Tag Weight

777000123 20-12-2020 Illegal Actions 0.28

777000136 25-12-2020 Illegal Actions 0.28

777000152 4-1-2021 Fraud 0.28

777000222 25-1-2021 Fraud 0.28

777000297 10-2-2021 Money Laundering 0.7

777000444 10-3-2021 Criminal Activities 1

Table 4.1: Extended Query Result

If we have a query with a concept attribute pair n = v for a period [a, b]. If within this period

v has evolved to v′ or has evolved from v′ we want to replace the query with n = v′. We replace

the period [a, b] with the period [a′, b′], in which is inside [a, b] and v is v′. When v evolves into v′

it does not directly match the v so we want to include a likely hood factor (or weight) w to the

set of conditions. So we would like to take the original query n = v, w[a − b] and replace it with

n = v′, w′[a′ − b′], where w is the weight or likely hood factor of v in relation to the original query

and w′ the likely hood factor of v′ in relation the original query. Each of these new statements will

be valid for a period of time, which is the time when the concept and the query is valid. The query

CHAPTER 4. PROBLEM STATEMENT 24

is valid within the time period [a, b]. In other words we want to consider every query from a set

of conditions. For every evolution of v to v′ of our original query we want to have this condition

added to our set of queries. Doing this will turn the original query into an evolution aware query

by creating a union of queries. A more intuitive example can be seen in example 3.

Example 3 Our original query in example 1 is q : 〈〈tag, Criminal Activities〉, [1/12/2020−1/12/2021]〉.
In this case v is Criminal Activities and the time period [a, b] is [1/12/2020 − 1/12/2021]. If we

have the situation where our v evolves into v′ we want to replace the query. If we look at the concept

evolution graph in figure 4.3 we can see that our v has indeed evolved. So we replace our original

query with n = v′, w′[a′ − b′]. By looking at the graph we can see that v′ is Money Laundering

and the w′ is 0.7. The time period [a′, b′] is that where both the query and the concept are valid,

which means that the time period is [1/12/2020 − 1/2/2021]. So the new query is tag =Criminal

Activities, 0.7 [1/12/2020 − 1/2/2021]. However, we can continue this process as we can see that

Criminal Activities has also evolved from another concept. The difference in result this will cause

is that when our original query q would be applied to the data in table 3.1 there would only be one

record. However, by using the concept evolution graph in figure 4.3 and rewriting our query the result

should be that of in table 4.1. Which is a much larger result than our original query.

Chapter 5

Solution

Losing historic data due to the inability to properly access and understand historical data is not an

ideal situation. A query that takes concept evolution into account will help combat this problem.

The system we propose takes our original query and rewrites it to an evolution aware query with

the tools introduced in the previous chapter.

5.1 Concept Graph Traversing

The first step in rewriting a query is to figure out how the concepts in the query evolved. The

evolution of these concepts can be found in the concept evolution graph that was introduced in the

previous chapter. So in order to figure how a certain concept evolves we need to traverse the concept

evolution graph. With this information we can rewrite a query.

To rewrite a query q to take evolution into account it needs to be rewritten to an evolution aware

query e : 〈〈c1, w1〉 . . . 〈cn, wn〉, [t1, t2]〉, where every concept is now a concept-weight tuple indicating

the probability that a record with a matching concept belongs to our original query. We use the

graph to find the evolution of the concepts in our query. For every concept found in the graph

we create an evolution aware query. This results in our original query creating multiple evolution

aware queries, since a single concept can have multiple related concepts. On top of this there is

the possibility that there are multiple concepts in our original query. In this case there will also

be a combination between all related versions of the original concepts. This leads to a single query

creating multiple new queries in order to properly take the evolution into account.

The procedure to rewrite the query to an evolution aware query works as follows. The concept

evolution graph G is used to find all related concepts by traversing. We need to traverse the graph

in both directions, forwards and backwards, since there is a difference in weights used for each

traversal. This procedure is also algorithmically explained in algorithm 1. In particular we start

with traversing the concept evolution graph for every concept c ∈ q, where q is the original query. So

for a concept we start backward and forward traversal, functions for these traversal start on line 1

(Visit predecessors) & 12 (Visit successors) respectively. The traversal method traverses the graph

in a depth first approach. Each of these traversals keeps a list of visited nodes L, which is later used

to construct the evolution aware queries.

25

CHAPTER 5. SOLUTION 26

A

[1/1/20− 26/12/20]

B

[26/12/20− 26/1/21]

C

[26/1/21− 1/3/21]

D

[1/1/20− 1/2/21]

E

[26/1/21− 1/3/21]

F

[1/3/21− 1/1/22]

G

[1/3/21− 1/5/21]

H

[1/2/21− 1/1/22]

I

[1/5/21− 1/2/22]

J

[1/5/21− 1/7/21]

K

[1/7/21− 1/9/21]

L

[1/7/21− 1/1/22]

M

[1/2/22− 1/12/22]

1

26/12/20

0.8

1/2/21

0.6

26/1/21

0.4

26/1/21

1

1/3/21

0.3

1/3/21

0.7

1/3/21

0.2

1/2/21

0.5

1/5/21

1

1/2/22

0.5

1/5/21

0.6

1/7/21

0.4

1/7/21

1

1/9/21

Figure 5.1: Extended Graph Example

Then based on the traversal type we look at all incoming edges for backward traversal or all

outgoing edges for forward traversal (line 3 & 14). For each of these edges we check if the timestamp

associated with this event or edge is within the time range of our current step of the traversal. The

checks for these timestamps are on line 4 & 15. The time range of the traversal starts with the time

range of the query and is updated with every new traversal step. This means that the upper bound

for backwards and lower bound for forwards traversal are updated with the timestamp of the event

for every new step. This is to make sure that no situation can happen where a concept would be

regarded as relevant if the timestamp of the event is later or earlier than the time range we reached

the node during the traversal. If the timestamp does not fall within the time range we do not take

it into account as it does not fall within the scope of the query.

For each of the paths that the algorithm traverses, a weight is kept. This weight can be different

for every path since the weight is in relation to the origin of the traversal. When traversing through

the graph whenever we reach a new node x〈tc, te〉 from our old node c through an edge e〈t, wo, wd〉
a tuple 〈x,wnew, [t1, t2]〉 is added to L, where wnew is the current weight of our path adjusted for

this node and the time range is when the concept x. The algorithm adds these tuples to our list

of expanded concepts on line 2 for backward traversal and 13 for forward traversal. Since this new

node is only handled if the timestamp of the edge connecting the our old node with the new node is

within our time range we know it is at least valid based on our origin. The time range that is added

to L is different as opposed to the time range used for the continued traversal. The time range used

for the traversal is in relation to our initial query, the time range that is added to the tuple in L

should be in relation of our query and the current node. For backwards traversal this time range

should be [max(tc, t1),min(t, t2)], which is the maximum of the time of creation of the concept or

the lower bound of the query till the lowest of the event time and the upper bound of the query time

range. We take the minimum from those two times since a time range can only be valid if the upper

CHAPTER 5. SOLUTION 27

bound is within the query time range and concept lifetime time range. This is the other way around

for forward traversal which means that the time range is [max(t, t1),min(te, t2)]. Which is the time

range from the maximum of the event time and the lower bound of the query till the minimum of

the moment the concept ceases to exist or the upper bound of the query. See example 4 for a visual

explanation of this process.

Figure 5.2: Time range visualisation

Example 4 Take the situation in figure 5.2 where we have two concepts, green and blue, whose

lifetime time ranges are visualised as bars. In a situation of backwards traversal for a query that has

a time range [t1 − t2] and we reach the green concept from the blue concept at time t. To get the

correct time range for the green concept in relation to our query is important. If the time range would

be that of the query itself it would encompass the entire lifetime of the green concept. However, we

only reached the green concept halfway through its lifetime at time t. Any time above time t should

not be taken into account, this part is marked with a red outline. This is the upper bound of the

time range of the green concept in our query. The lower bound of the time range is going to be the

maximum of the lower bound of the query and the creation of the concept, in this case this will be

tc. Thus the time range of this concept is [tc − t].

The time range for the traversal also changes each step as was mentioned before. For backwards

traversal we adjust the time range downwards since we are looking in the past. This means that our

original time range [t1, t2] gets adjusted to [t1, t]. The t1 timestamp will stay the same throughout

our traversal and is the lower bound of our query. For forwards traversal we adjust the time range

upwards since we are looking at the future from where our traversal started. This means that our

original time range [t1, t2] gets adjusted to [t, t2]. In forward traversal the upper bound of the query

t2 stays the same during the traversal.

Besides handling the time ranges we also need to update the weight of the path when a new

node is reached. When this node is reached the weight of the path has to be adjusted based on our

last step. This is done by multiplying the current weight of our path with the weight of the edge

that was used to reach the new node. So the new weight is wnew = w ∗ we, where w is the current

weight of the path and we is the weight on the edge. There are two weights on the edge, namely

wo&wd. For backwards traversal the weight of the origin wo is used, this weight is the ratio of items

that were once classified as x that are now classified as our new concept c. For forward traversal the

weight of the destination wd is used. The weight of the destination is the ratio of items in our new

concept c that were previously classified as x.

The traversal terminates when there are no more edges either incoming or outgoing depending

on traversal type or the timestamp of the edge is not within the traversal time range. When the

traversal stops the visited list containing all visited concepts with time ranges and weights is returned.

However, this list should be edited before it can be used. It is possible for a single node to be visited

by multiple paths. When this happens it also creates multiple entries in our visited list. Since this

CHAPTER 5. SOLUTION 28

visited list is directly used to create our evolution aware queries it is important that this situation

is handled to avoid having duplicate queries. This issue is avoided by making sure there are no

duplicate cases in our result, this procedure can be seen on line 23 as the function Sum Duplicates.

However, a case is only a duplicate if their concept and time range are equal. So for every tuple

〈x1, wnew1 , [t11 , t21]〉 in our list L we check it against all other tuples in the list. For every tuple

〈x2, wnew2 , [t12 , t22]〉 found that satisfies x1 = x2 ∧ t11 = t12 ∧ t21 = t22 we remove the tuple from L

and replace the weight in our original tuple wnew1 = wnew1 + wnew2 . There is one special case that

has to be taken into account, namely the origin of the query. So for all cases where the concepts and

time ranges are equal the weights are summed. An example of backwards traversal can be found in

example 5.

Backwards traversal

Attributes Weight Time Range

C 1 [26/1/20-1/3/21]

D 0.8 [1/1/20-1/2/21]

B 0.6 [26/12/20-26/1/20]

A 0.6 [1/1/20-26/12/20]

E 0.3 [26/1/21-1/3/21]

B 0.12 [26/12/20-26/1/21]

A 0.12 [1/1/20-26/12/20]

G 1 [26/1/21-1/5/21]

Forwards traversal

Attributes Weight Time Range

G 1 [26/1/21-1/5/21]

I 0.5 [1/5/21-1/1/22]

J 0.5 [1/5/21-1/7/21]

K 0.3 [1/7/21-1/9/21]

L 0.3 [1/9/21-1/1/22]

L 0.2 [1/7/21-1/1/22]

Backwards traversal after combining

Attributes Weight Time Range

A 0.72 [1/1/20-26/12/20]

B 0.72 [26/12/20-26/1/20]

C 1 [26/1/20-1/3/21]

D 0.8 [1/1/20-1/2/21]

E 0.3 [26/1/21-1/3/21]

G 1 [26/1/21-1/5/21]

Forwards traversal after combining

Attributes Weight Time Range

G 1 [26/1/21-1/5/21]

I 0.5 [1/5/21-1/1/22]

J 0.5 [1/5/21-1/7/21]

K 0.3 [1/7/21-1/9/21]

L 0.3 [1/9/21-1/1/22]

L 0.2 [1/7/21-1/1/22]

Table 5.1: Expansion of the query (c,G)[1/1/20−1/1/22] with backwards traversal top and forwards
traversal bottom (left) and after removing duplicates with backwards traversal top and forwards
traversal bottom (right)

Example 5 If we have a query (c,G)[1/1/20 − 1/1/22] and the graph in figure 5.1 is our concept

evolution graph. Performing the graph traversal algorithm on this graph according to the query will

start both traversals from the node G. There will be two results, each for one of the traversals, as can

be seen in table 5.1 on the left side. The upper table is our backwards traversal and the lower table

is the forwards traversal. One thing that stands out in both tables is that certain concepts appear

more than once, namely A, B and L. The output of the following step, the removal of duplicates, is

shown in the tables on the right. Here we can see the concepts A & B now only appear once since

their time ranges were exactly the same and their weights are now summed. The concept L however

still appears twice since their time ranges are not the same.

CHAPTER 5. SOLUTION 29

Algorithm 1: Traverse graph

Input: Concept graph G, Concept q, TimeRange [t1, t2]

Result: Predecessors & Successors 〈P, S〉
1 Function Visit predecessors(Concept graph G, Concept node c〈tc, te〉, List of Expanded

Concepts L, Weight w, TimeRange [t1, t2]):

2 L← L ∪ 〈c, w, [tc,min(t2, te)]〉
3 foreach e〈t, wo, wd〉 ∈ IncomingEdges(G, c) do

4 if t1 ≤ t ≤ t2 then

5 x← AdjacentV ertex(G, c, e)

6 wnew ← w ∗ wo

7 L← L ∪ V isit predecessors(G, x, L,wnew, [t1, t])

8 end

9 end

10 return L

11

12 Function Visit successors(Concept graph G, Concept node c〈tc, te〉, List of Expanded

Concepts L, Weight w, TimeRange [t1, t2]):

13 L← L ∪ 〈c, w, [max(t1, tc), te]〉
14 foreach e〈t, wo, wd〉 ∈ OutgoingEdges(G, c) do

15 if t1 ≤ t ≤ t2 then

16 x← AdjacentV ertex(G, c, e)

17 wnew ← w ∗ wd

18 L← L ∪ V isit successors(G, x, L,wnew, [t, t2])

19 end

20 end

21 return L

22

23 Function Sum Duplicates(List of Expanded Concepts L):

24 R← {}
25 X ← {}
26 foreach 〈c1, w1, [t11 , t21]〉 ∈ L do

27 if 〈c1, [t11 , t21]〉 ∈ X then

28 foreach 〈c2, w2, [t12 , t22]〉 ∈ R do

29 if c1 = c2 ∧ t11 = t12 ∧ t21 = t22 then

30 w2 ← w2 + w1

31 end

32 end

33 else

34 R← R ∪ 〈c1, w1, [t11 , t21]〉
35 X ← X ∪ 〈c1, [t11 , t21]〉
36 end

37 end

38 return R

39 P ←Sum Duplicates(Visit predecessors(G, q, {}, 1, [t1, t2]))

40 S ←Sum Duplicates(Visit successors(G, q, {}, 1, [t1, t2]))

41 return 〈P, S〉

CHAPTER 5. SOLUTION 30

5.2 Query rewriting

When the traversal procedure is completed we do not yet have our complete answer. If there are

multiple concepts in our original query we need to combine concepts from the traversal to get a

complete answer. So, after the traversal procedure of the graph we will have two sets of tuples 〈c, w,

[t1, t2]〉 for each concept in our query q, one set for forwards traversal Tf and one set for backwards

traversal Tb. This procedure is also algorithmically explained in algorithm 2. In particular, to

rewrite our original query to an evolution aware query we need to combine each of these concepts

with the other concepts in the set. This is done by continuously taking the Cartesian product of

the tuples of different concepts, as can be seen on line 15 & 26. For each of the sets of concepts

in our query 〈c1 . . . cn, [t1, t2]〉 we have a list of tuples with related concepts. We start with the list

of concept c1 (line 11 & 12), if there are any other concepts in the query we iteratively build up

the list of results. Combining the list for forwards and backwards traversal is done differently, see

figure 5.3. When taking the Cartesian product of two sets we combine the tuples within the lists.

When combining the tuples the concepts and weights of two tuples can be combined without further

work. However, the time ranges of the two tuples need to be correctly handled, which is the point

that differs between the two traversal methods. For backwards traversal we take the maximum of

the two lower bounds and minimum of the upper bound as can be seen on line 18. For forwards

traversal we take the minimum of the lower bounds and the maximum of the two upper bounds as

can be seen on line 29. Doing this step can create a time range that is not valid due to t1 > t2. In

order to discard these combinations we check if t1 < t2 as can be seen on line 19 & 30.

T × T

〈c1, w1, [t11 , t21]〉 × 〈c2, w2, [t12 , t22]〉
For Tb:

〈c1, w1〈c2, w2〉, [max(t11 , t21),min(t12 , t22)]〉
For Tf :

〈c1, w1〈c2, w2〉, [min(t11 , t21),max(t12 , t22)]〉
Figure 5.3: Query rewriting procedure

Figure 5.4: Example of the combination for tuples
found through backwards traversal of the query
c = G ∧ c′ = one[1/1/20− 1/1/22]

This procedure is done for every combination created by taking the Cartesian product. Doing

this yields a new list of combinations with adjusted time ranges such as can be seen in figure 5.4.

During this process impossible combinations can be created as mentioned before. These impossible

combinations have been crossed out in the figure. The new list that is created this way is used for

the next combination procedure. This will cause every valid combination to be created since only

valid combinations are kept. The end result of the combination is every valid combination between

concepts and their related concepts. This combination includes a weight for every concept in the

resulting query indicating the ratio records with this concept belong to the original concept in our

CHAPTER 5. SOLUTION 31

query. Included as well is the time range where that specific query is valid. When all combinations

are made for both backwards and forward traversal tuple sets we combine both sets of combinations.

This combined set is the set of our rewritten evolution aware queries. A thing to note here is if there

is only one concept in the original query there is no combination between concepts needed as there

is only one set in Tb & Tf and they can be combined immediately.

Both Tb & Tf contain one identical tuple, that of the origin of the traversal. This tuple is needed

in both sets in order to create all possible combinations in both directions. However, this will cause

there to be duplicates in the final set of queries. So as a final step after combining is done, is

removing duplicates from the final result to avoid having these duplicate queries.

Algorithm 2: Concept algorithm

Input: Concept graph G(V,E), Query Q, TimeRange [tb, te]
Result: Rewritten queries R

1

2 P ← {}
3 S ← {}
4 Concepts← {}
5 foreach 〈c, a〉 ∈ Q do
6 P [c], S[c]← Traverse graph(G, a, [tb, te])
7 Concepts← Concepts ∪ c

8 end
9

10 x← pop(Concepts)
11 K ← P [x]
12 Q← S[x]
13 foreach c ∈ Concepts do
14 C ← {}
15 K ← K × P [c]
16 foreach 〈〈a1, [t11 , t21]〉, 〈a2, [t12 , t22]〉〉 ∈ K do
17 B ← a1 ∪ a2
18 T 〈t1, t2〉 ← [max(t11 , t12),min(t21 , t22)]
19 if t1 < t2 then
20 C ← C ∪ 〈B, T 〉
21 end

22 end
23 K ← C
24

25 D ← {}
26 Q← Q× S[c]
27 foreach 〈〈a1, [t11 , t21]〉, 〈a2, [t12 , t22]〉〉 ∈ Q do
28 B ← a1 ∪ a2
29 T 〈t1, t2〉 ← [min(t11 , t12),max(t21 , t22)]
30 if t1 < t2 then
31 D ← D ∪ 〈B, T 〉
32 end

33 end
34 Q← D

35 end
36 R←Remove Duplicates(K ∪Q)
37 return R

Chapter 6

Implementation

Besides the traversal and the query rewriting the system there have been more aspects that will

be discussed in this chapter. The structure of the system, the data structures and the supporting

functions will be discussed.

6.1 Architecture of the system

The system architecture can be seen in figure 6.1. The system contains two main modules that

process the query, which is our user input. An input data set in the form of a JSON file is used to

construct a concept evolution graph. This graph is used by the query rewriting module to rewrite

queries. The graph is also used by the visualisation to create visualisations of the complete or partial

graph. The query rewriting model will take take the query and rewrite it to a set of rewritten queries.

A partial visualisation can also be created based on the query after being rewritten.

Figure 6.1: System architecture

32

CHAPTER 6. IMPLEMENTATION 33

6.2 File Format

The concept evolution graph is constructed from a JSON file. Every entry in the JSON file is an

event, the entry contains 3 fields 〈Event, Timestamp, Value〉. Event contains the type of the event,

so Creation, End, Mutation or Transformation. Timestamp corresponds to the timestamp t of an

event. Value contains all values of an event, excluding the timestamp.

{ID:

{
”Event”: string,

”TimeStamp”: string,

”Value”: [

”Origin”: string,

”Destination”: string or null,

”Weight Origin”: float or null,

”Weight Destination”: float or null]

}
}

Figure 6.2: JSON file format

6.3 Import Function

Importing the JSON file is straightforward. Every entry is read and added to our data. The only

step that is done here besides the importing is converting the date strings to datetime objects.

Besides the data in each entry the index is also saved. The index of the entry will function as the

ID of the event. When the file has been imported a data set where each entry is of the form 〈Event,

Timestamp, Values, ID〉. This data set can be used to construct the concept evolution graph.

6.4 Query Handling

Since we apply an abstraction to the data in the graph by converting all concept names to IDs, we

also need to apply this procedure to the input query. This is mostly straightforward as we have a

concept Look up table (LUT) where we can find the ID of any concept name if present in the graph.

However, in the case of duplicate concept names the situation gets somewhat more complicated.

Since there is no certain way to know based on a query which of the instances of a certain concept is

targeted by a query we take all of them into account. This means that if there are multiple concepts

with the same name in the graph the system will run an input query for each of them. So for every

ID linked to the concept name a query is run.

6.4.1 Building the Graph

Using the imported data we can construct the graph. Constructing the graph is not as straight-

forward as it seems as we apply an abstraction here. To make it possible for having two or more

CHAPTER 6. IMPLEMENTATION 34

concepts with the same name, we will give each concept an ID. When there are multiple concepts

of the same ID, we will give them a different ID for every time range they are active. This is easily

done as the import function makes sure that every event has an ID associated with it. These IDs

will all be unique and in order for there to be two concepts with the same name it requires two

different begin events. There is one important restriction to this, the active time of these similar

concepts cannot overlap. Which means that given concepts a & b, where abegin < bbegin, the follow-

ing statement must be satisfied abegin < aend < bbegin < bend. As our algorithm does not care if the

nodes in the graph are names or numbers we can simply make this swap in the input without having

to complicate the rest of the system. The output however should be managed correctly. For all the

different output the IDs need to be switched out for the original names, for obvious readability and

usability reasons. In order to accomplish this we will keep a lookup table that links IDs back to

their original names and vice versa to link names to their IDs.

With this abstraction in mind we can convert the data that has been imported to a graph format.

But first there are some basic restrictions that apply to all events of a concept to ensure that the

correct flow of time is preserved. The events of a concept a have to satisfy abegin < aend, as well as

for each mutation event that contains concept a with timestamp t has to satisfy abegin < t < aend.

To make sure we will be able to handle all data in the correct order we will sort the imported data

based on the timestamp so we can start with the first event.

Our system is implemented using Python and to model the graph we use the python library

NetworkX[1]. This library allows us to iteravely add nodes & edges to a graph and change the

information on them at any time. The first step of adding data to this graph is done by looping

through the data and handling begin and ending events. When we encounter a begin event we have

to make the earlier discussed abstraction so we will add a node with the event ID. As data we add

the timestamp of the begin event to the node. Here we add the link between this ID and the concept

name to our lookup tables. We will only handle this begin event if there is no other begin event with

the same name active at the timestamp of this begin event. Otherwise we are dealing with incorrect

data and will stop the graph creation. When we find an ending entry we find the corresponding

begin node through our lookup tables. The information from the lookup tables allows us to add the

ending timestamp to the node in the graph. Here it is important to check if the timestamp of our

begin event is before our ending event timestamp. One important thing to note here is that not all

concepts will have an ending event. If a concept is still active at the time of creation there will not

be an ending event. These concepts will not have an ending time. However, since we have handled

every begin and ending event at this point we always assume that if a concept does not have an

ending event the ending timestamp is that of now. The now timestamp constitutes the timestamp

at the moment of evaluation. So for every part of the system will handle a missing ending timestamp

as a now timestamp.

After doing this procedure we will have a graph with all the nodes in our data. The reason we

will first construct all the nodes before adding any edges to the graph is that we want to make sure

that every mutation event satisfies its conditions as mentioned earlier. Each mutation event in our

data has an origin and a destination. We first have to translate these names to IDs. To do this we

will lookup the ID of the concept that was active during the timestamp of the mutation. Since there

is only one possible concept with a specific name active at the same time this lookup will always

have one or no results. If there are no results we are again dealing with faulty data and stop the

CHAPTER 6. IMPLEMENTATION 35

graph creation process. If the lookup process is successful for both our origin and destination we

will add an edge in the graph linking the corresponding nodes. The edge will contain the values of

the mutation event. We will also add the mutation ID to edge, which allows for better identification

during the creation of the visualisation and output functions.

When each mutation event is handled successfully the graph is created. To keep only relevant

information in the graph we will also keep our concept & ID lookup tables. These lookup tables

allow us to change IDs to the names of concept at the last step of any output of the system.

6.4.2 Structures in memory

Edge: Each edge contains an origin, a destination, an origin weight, a destination weight, a

mutation ID and a timestamp. The origin and destinations are concept IDs. Timestamps are

datetime objects, weights are a number in the range of [0,1] and IDs are unique identifiers.

Node: Each node contains a begin timestamp and an ending timestamp.

Graph: The graph contains nodes and edges.

Query: A query is a tuple with three items, a list of concept attribute pairs, a begin timestamp

and an ending timestamp. The concept attribute pairs are strings and the timestamps are date time

objects.

Concept LUT: The node lookup table is a list of key value pairs, where the keys are concept

names and the values are tuples of begin timestamp, ending timestamp, concept ID.

ID LUT: The ID lookup table is a list of key value pairs where the keys are a concept ID and

the value is the concept name.

6.5 Export function

Our system also includes an export function for the graph. This function will convert the current

graph into JSON file according to the structure mentioned earlier. The networkX library allows us

to loop through all our nodes and edges. For each node in our graph we convert the data contained

in the node to potentially two entries. The first entry is that of a begin event which will be the type

of our entry, where we use the begin time of the node as the timestamp and the name of the concept

as the value. We can get the name of the concept based on the ID of the node and the lookup table.

If there is an ending timestamp in the node we will also add an ending entry. Which is the same

as the begin entry, but has a different type and uses the ending timestamp as timestamp. For each

edge in the graph we add a mutation entry to our output, where the timestamp is the timestamp of

the edge. The value of the entry is that of the origin, destination, weight of the origin and weight

of the destination. Here the names of the origin and destination are converted from their ID format

to their names using the lookup table. After both these procedures are done the graph is converted

to a JSON file and can be exported.

6.6 Visualisation

Understanding evolution is important, the understanding of which can be made easier by visualising

what is going on. The phrase ”A picture says more than a thousand words” exists for a reason. There

CHAPTER 6. IMPLEMENTATION 36

are two different visualisations we include. A graphical GraphViz representation that can clearly

show the graphical representation comparable to the graph figures shown in the previous chapters.

The other visualisation focuses on the showing the time flow of the concepts and is encapsulated

in an Excel graph. Taking this dual approach allows for visualisations to show that the evolution

of the data and the time flow in a format that supports these categories better than it would have

been in a singular format.

6.6.1 Graphviz visualisation

The structure of our graph is captured by the networkX library, which has an export function to

Graphviz [5]. There are two different Graphviz exports possible for our system. The complete graph

with every available node and the partial graph specific for our query. The partial graph contains

every concept that is related to the concepts in our original query. These concepts are compared

to a copy of the complete graph, any node in this graph is compared the list of related concepts.

If the node does not appear in the related concepts list it is removed from the graph. The result

of this process is a graph that only includes nodes that are in our related concepts list. Edges are

automatically removed from the graph if either one of the nodes it is connected to is removed. This

will ensure only the mutation events that are relevant to our list of related concepts remain in the

partial graph. An example of a partial graph can be seen in figure 6.3. When this graph or the

complete graph is created the graphs can be written to image files as output and shown.

Figure 6.3: GraphViz visualisation with mutation event dates on edges and concept names in nodes

6.6.2 Excel Visualisation

The Excel visualisation is different from the Graphviz visualisation as it does not show the layout

of the graph like the traditional visualisations. The Excel graph visualisation instead has as main

goal to better illustrate the time flow of events of our data set. The structure of the Excel graph

emphasises how the evolution takes place set out against the time and mainly uses background

colours of a cell to illustrate this. To achieve this every column constitutes to a specific day. Since

it is possible to have multiple events happen at the same day multiple columns can be attributed to

the same day. Every other row is used by a single concept. To create this in the visualisation we

write to an Excel worksheet with the worksheet.write(row, col, text, style) function, where row is

CHAPTER 6. IMPLEMENTATION 37

the row index, col is the column index, string is the text written to that cell and style is the style

on the cell (background colour, border, font colour etc.).

The concept row corresponds with a node in the graph. Each concept row has three different

parts to its structure: the begin header, the end header and the life time bridge. The begin header

corresponds to a creation event, so the timestamp of the begin header is that of the creation event.

The begin header is placed on the row of the concept and the column of the timestamp from the

corresponding creation event. The begin header will also contain the name of the concept and the

time range as text. The ending header corresponds to the timestamp of the ending event of the

concept. The lifetime bridge is each column in between the begin and end header on the same row

as the two headers.

With nodes added to the visualisation there are only edges left that need to be added. Edges are

represented as mutation columns, which follow a similar structure as a concept row: origin header,

destination header and evolution bridge. Since a mutation columns represent edges from the graph

the origin and destination structures are based on the origin and destination from the corresponding

edge. An origin header is placed on a column that corresponds with the timestamp of that can also

be retrieved from the edge and the row corresponding to the row of the origin concept of the edge.

The destination header is placed on the row corresponding with the row of the destination concept

from the corresponding edge and placed in the same column as the origin header. The evolution

bridge is every row in between the origin and destination header on the same column as the two

headers.

At the top of the visualisation is a date header of three rows each showing a different granularity

in the time. The first row shows the year, the second row shows the month and the third row shows

the number of the day in the month. The header will only show a specific year, month or date only

once. So in the case of multiple events on the same day creating multiple columns the header will

not repeat itself.

The goal of this visualisation is to show the events in the graph related to the flow of time.

Which puts an emphasis on the drawing of the visualisation and especially the order, the algorithm

to create the Excel visualisation is found in algorithm 3. Some preparation work has to be done to

properly create the visualisation. Since the visualisation is based on the graph, we will first read out

all the information in the graph. For all nodes we extract the begin and ending timestamp as well as

the name of the concept of the node, this process is done on line 2 through 9 in the algorithm. We

add both of these times bundled with the concept name separately to a list of our events and tag

each of them with the proper event, which is either begin or ending. As an extra value to both the

begin and ending tuples we will add the node id. This extra value is extended for the begin value

where the ending time of the node is also added. This is done so we can add the time span of the

concept.

For each edge we extract the origin, ID, destination and the timestamp. We will add a new entry

to the list with the timestamp to the list, tagged with the mutation tag. As extra value we will

add the destination, origin and the ID of the edge. This process is on lines 10 through 12 in the

algorithm. Doing this will create a collection of the data in the graph. The next step is to sort this

data based on the timestamp of each entry. This will turn the list into a chronological list of our

events.

With the preparation work out of the way we can start the first step of drawing the visualisation.

CHAPTER 6. IMPLEMENTATION 38

We start by looping through the data. When doing this, entries in our list can have the same date,

if this is the case we will only draw a background to our header. If the date is different than our

previous date we will update the header accordingly. This means that if we have reached a new

year, month or day of the month the header is updated accordingly (line 17). During the looping of

our data we will keep two indexes, the row index and the column index (line 14). The header will

only draw itself based on the column index but its rows are set to 1,2&3, based on the granularity.

Which also means that our first non header structure we draw starts at row 5, we will leave a gap

of 1 row in between each row for readability and apply the same to the header and the first row.

Every time we encounter a different date we increment the column index by 1, which can be seen

in lines 18 through 21. On line 24 we write in our Excel worksheet on the correct row & column

combination. We also write the concept name and time span of the concept in this cell. The last

argument of every worksheet write operation are static style objects, which determine things such

as the background colour and border style of the cell. The column index will also be incremented if

we encounter a mutation entry. We do this to separate all mutation columns for better visibility.

In our first loop through the data whenever we encounter an entry tagged with as begin, we

will draw the begin header on the location of the current row and column indices. In addition to

this we will add the name and time range to this cell, since we added both the begin and ending

time to our begin entries. After drawing the begin header we will increment our row index by two.

We will keep track of what row corresponds to this concept so we are later able to draw on this

row when we encounter events associated with this concept. This process can be found in lines 22

through 27. When we encounter an entry tagged as ending, we will draw the ending header. Since

we saved the row where the begin header of this ending entry was drawn at we can draw the ending

header at the current column index and the saved row index. Besides drawing the end header we

will also keep a list on what column the ending header is drawn so we can later add in the lifetime

bridge without having to loop through the entire data collection again (lines 28-31). Whenever we

encounter a mutation event during our first loop we note the current column index and save it in a

list so we can create the mutation columns later. In addition to this we will also draw a mutation

header under the date header. This will signify that on a certain date a mutation has taken place

to contrast these columns to the columns that only contain begin of end headers. In addition the

header can also contain the ID of the mutation. This ID corresponds to the ID of the mutation from

the input. (lines 32-35).

CHAPTER 6. IMPLEMENTATION 39

Figure 6.4: A partial Excel visualisation with each structure and element pointed out.

After our first loop we have drawn the begin & end headers and know what row belongs to each

concept. With this knowledge we can draw the structures for the mutation events. Each of these

entries contain an origin, destination and timestamp. Since we know the row of each concept and

have earlier identified the column of each mutation it is easy to draw the headers on the right spot.

The origin header is drawn at the row of the origin concept and the column of the mutation. The

destination header is drawn at the row of the destination concept and the column of the mutation.

Each row at the column of the mutation in between these headers is then drawn as an evolution

bridge. This procedure is found on lines 37 through 45.

The last step is to draw the lifetime bridges of our concepts (lines 46-50). Since we have earlier

determined the begin column, the ending column and the row of our concepts it is simple to draw

this last structure. So in between every begin and end header we will draw a life time bridge. This

is drawn last to ensure it is on after the evolution bridges to make sure the lifetime bridges of the

concepts are the most clear. We will also set the width of the column as small as possible without

removing the possibilities to read numbers to improve the presentation of the graph.

Executing this entire process will create the Excel visualisation. An example of a partial Excel

visualisation can be seen in figure 6.4. In this figure each structure is pointed out for easy identifi-

cation. There you can see the begin headers and how they have the concept name as well as their

time range for when they are valid. The start of the date header in this picture starts at the second

of January in the year 2000 and goes until the fifth of January, but as can be seen here only the

days are noted here as they are the only date variables that change. Worked into the header are the

mutation headers, with the mutation ID in them. This layout allows for easy identification where

the mutation take place in the timeline. The layout not only allows for easy identification when the

mutation takes place but also between which concepts. If we examine the mutation with ID 12, we

can see that on the third of January a mutation has taken place. This mutation connects concept A

with concept C by looking at the Origin & Destination headers and the connecting evolution bridge.

CHAPTER 6. IMPLEMENTATION 40

Algorithm 3: Excel visualisation algorithm

Input: Concept graph G(V,E), ID Lut I, Excel worksheet worksheet
Result: Excel worksheet worksheet

1 event list, concept rows,mutation columns, concept start column, concept end column←
{}

2 foreach node〈id, tb, te〉 ∈ V do
3 event list← event list ∪ 〈”Begin”, tb〈te, id〉〉
4 if te then
5 event list← event list ∪ 〈”Ending”, te〈id〉〉
6 else
7 event list← event list ∪ 〈”Ending”, tnow〈id〉〉
8 end

9 end
10 foreach edge〈t, o, d〉 ∈ e do
11 event list← event list ∪ 〈”Mutation”, t〈o, d, id〉〉
12 end
13 event list← sort(event list)
14 row index← 5; column index← 0
15 current date← date.min()
16 foreach 〈k, t〈v〉〉 ∈ event list do
17 Update header()
18 if current date 6= t or k = ”Mutation” then
19 column index← column index + 1
20 current date← t

21 end
22 if k = ”Begin” then
23 row index← row index + 2
24 worksheet.write(row index, column index, I[vid][t, vte], begin header background)
25 concept rows← ∪concept rows ∪ 〈vid, row index〉
26 concept start column← concept start column ∪ 〈vid, column index〉
27 end
28 if k = ”Ending” then
29 concept end column← concept end column ∪ 〈vid, column index〉
30 worksheet.write(concept rows[vid], column index, ””, ending header background)

31 end
32 if k = ”Mutation” then
33 mutation columns← mutation columns ∪ 〈vid, column index〉
34 Update Mutation Header(vid)

35 end

36 end
37 foreach 〈k, 〈v〉〉 ∈ event list do
38 if k = ”Mutation” then
39 worksheet.write(concept rows[vo],mutation columns[vid], ””, origin header background)

40 worksheet.write(concept rows[vd],mutation columns[vid], ””, destination header background)

41 for i = concept rows[vo], i < concept rows[vd], i + + do
42 worksheet.write(i,mutation columns[vid], ””, evolution bridge background)
43 end

44 end

45 end
46 foreach 〈id, row〉 ∈ concept rows do
47 for i = concept start column[id], i < concept end column[id], i + + do
48 worksheet.write(row, i, ””, lifetime bridge background)
49 end

50 end
51 return worksheet

Chapter 7

Experiments

In order to test the performance of the system we identify two different parts of the system. The

first part we will test is the import functionality, which covers the reading and importing of the

JSON file and the creation of the concept evolution graph from the imported data. The second part

is the query answering time and how it relates to answer size and nodes visited in the graph. The

experiments are executed using an Intel Core i7-5500U CPU @ 2.40GHz (4 CPUs) and 8192MB of

RAM.

7.1 Import performance

To test the performance of the import function we compare the time it takes to import different

sizes of graphs. In order to do this we randomly create graphs of certain sizes, where the size of the

graph is measured by the amount of nodes in the graph. We will randomly connect nodes in the

graph so that the amount of edges will always be roughly one and a half times the amount of nodes

in the graph. We measure the performance of the import function by measuring the time it takes

to import the file and parse the data so our graph creation algorithm can be used. We will start by

using a graph size of 100 nodes and scale up the size by a factor 10. By generating each graph size

10 times and taking the average of the time elapsed we get the result shown in figure 7.1. In this

figure we can see that increasing the graph size by a factor 10 leads to the same increase in import

function time. Even large graph of a million nodes are able to be processed in a reasonable time of

slightly over 1 minute.

41

CHAPTER 7. EXPERIMENTS 42

Figure 7.1: The time it takes to execute the import function for certain graph sizes (n = 10)

Doing the same process as for the import function for the graph creation results in the data

shown in figure 7.2. Here the same relation holds that the factor of the increase in graph size results

in the same factor of time increase. This means that the entire import functionality, which consists

of the JSON import and the graph creation, will scale with the same factor as increase of the graph

size.

Figure 7.2: The time it takes to create the graph from imported data for certain graph sizes (n = 10)

7.2 Query performance

To measure the query performance we measure the time it takes to execute a query and set it out

against the size of the result or the amount of nodes visited. We do this so we can measure which

of the two, the result size or the amount of nodes visited, is important for the query performance.

These experiments are run on a randomly created graph with a million nodes, that contains a large

amount of sub graphs. Each layer of a sub graph has a random number of nodes which can randomly

connect with a node from the previous layer of the sub graph. To simulate random queries we will

CHAPTER 7. EXPERIMENTS 43

randomly pick a node from the graph and use it as our concept to query. The time range of the

query will spawn the entire graph to allow for the maximum result of the query. Measuring the

result size, which is the amount of rewritten queries, our random query creates is shown in figure

7.3. Here we can see that the result size does not directly correlate with the query execution time.

While bigger result are likely to take longer, it is not a rule. So a expecting a large result does not

necessarily mean that the execution time of the query will also be large.

Figure 7.3: Amount of rewritten queries created from a random query set out against the execution
time of the query rewriting procedure (n = 100000)

Since the result size of a query does not seem to directly correlate to the execution time of a

query we look at the amount of nodes visited. The amount of nodes that are visited are the nodes

visited during the traversal of the concept evolution graph. These are not unique nodes, as nodes

can be visited multiple times by different paths. Counting the amount of nodes visited for a random

query set out against the time it takes to rewrite the query is shown in figure 7.4. Here we do see a

direct relation between query execution time and the amount of nodes visited. A striking thing from

this figure is that randomly generating graphs can lead to a very large amount of nodes visited for

certain queries. A graph does not need to have a large amount of nodes to cause the graph traversal

to have a high count of nodes visited. A more important factor is the amount of edges between the

nodes in the graph. If there are many edges between nodes in a graph there are also potentially

a large amount of paths available from nodes in the graph. From this we can conclude that the

execution time of a query is better defined by the amount of edges in a graph, as this is the main

cause of a high amount nodes visited during the traversal.

CHAPTER 7. EXPERIMENTS 44

Figure 7.4: Amount of nodes visited during traversal for a random query set out against the execution
time of the query rewriting procedure (n = 100000)

Chapter 8

Conclusion

In this work we have shown an approach that allows all data in a data set to still be of use when

evolution causes concepts to change in a data set. We have created a system that allows users to

query the complete data set without having knowledge of this evolution. The system also visually

shows the evolution of a data set and the evolution of a query in two different formats. One format,

the GraphViz format, to clearly show how concepts evolve. The other format, the Excel format, to

clearly show when concepts evolve and how that relates to the rest of the data. The system has the

combination of querying while taking evolution into account and visualising the evolution in order

to allow users to not only query the data set with evolution but also understand the evolution. With

this approach we hope that users will be able to more easily understand the results of their queries

without having prior knowledge of a data set and the changes that have occurred to the data set.

8.1 Future work

A clear next step for future work is the automatic detection of the evolution within a data set and

the creation of the JSON file as described in this work. This would allow for an entirely automatic

system that does not require human intervention to detect evolution in data and allow users to query

the data. It would be a tool to detect and understand, by querying and visualising, evolution in an

unknown data set.

45

Bibliography

[1] Networkx is a python package for the creation, manipulation, and study of the structure, dy-

namics, and functions of complex networks. https://networkx.org.

[2] Abbas Raza Ali. Intelligent call routing: Optimizing contact center throughput. In Proceedings

of the Eleventh International Workshop on Multimedia Data Mining, MDMKDD ’11, New York,

NY, USA, 2011. Association for Computing Machinery.

[3] Markus Blaschka. Fiesta: A framework for schema evolution in multidimensional databases

(abstract). Datenbank Rundbrief, 27:65–66, 01 2001.

[4] Siarhei Bykau, John Mylopoulos, Flavio Rizzolo, and Yannis Velegrakis. On modeling and

querying concept evolution. Journal on Data Semantics, 1, 05 2012.

[5] J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, and G. Woodhull. Graphviz and dynagraph

– static and dynamic graph drawing tools. In M. Junger and P. Mutzel, editors, Graph Drawing

Software, Mathematics and Visualization, pages 127–148. Springer-Verlag, Berlin/Heidelberg,

2004.

[6] Manolis Gergatsoulis and Pantelis D. Lilis. Multidimensional rdf. In OTM Conferences, 2005.

[7] Itay Gurvich, James R. Luedtke, and Tolga Tezcan. Staffing call centers with uncertain demand

forecasts: A chance-constrained optimization approach. Manag. Sci., 56:1093–1115, 2010.

[8] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. Temporal rdf. In Asunción Gómez-

Pérez and Jérôme Euzenat, editors, The Semantic Web: Research and Applications, pages

93–107, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[9] Claudio Gutierrez, Carlos A. Hurtado, Alberto O. Mendelzon, and Jorge Pérez. Foundations

of semantic web databases. Journal of Computer and System Sciences, 77(3):520–541, 2011.

Database Theory.

[10] Amal Kaluarachchi, Aparna Varde, Srikanta Bedathur, Gerhard Weikum, Jing Peng, and Anna

Feldman. Incorporating terminology evolution for query translation in text retrieval with asso-

ciation rules. pages 1789–1792, 10 2010.

[11] C. Keet and Alessandro Artale. Representing and reasoning over a taxonomy of part-whole

relations. Applied Ontology, 3:91–110, 01 2008.

[12] Ora Lassila, Ralph R. Swick, World Wide, and Web Consortium. Resource description frame-

work (rdf) model and syntax specification, 1998.

46

BIBLIOGRAPHY 47

[13] Mehedy Masud, Qing Chen, Latifur Khan, Charu Aggarwal, Jing Gao, Jiawei Han, and Bhavani

Thuraisingham. Addressing concept-evolution in concept-drifting data streams. pages 929–934,

12 2010.

[14] Mohammad Mehedy Masud, Jing Gao, L. Khan, Jiawei Han, and Bhavani M. Thuraisingham.

Classification and novel class detection in concept-drifting data streams under time constraints.

IEEE Transactions on Knowledge and Data Engineering, 23:859–874, 2011.

[15] Gilad Mishne, David Carmel, Ron Hoory, Alexey Roytman, and Aya Soffer. Automatic analysis

of call-center conversations. In Proceedings of the 14th ACM International Conference on In-

formation and Knowledge Management, CIKM ’05, page 453–459, New York, NY, USA, 2005.

Association for Computing Machinery.

[16] Tadeusz Morzy and Robert Wrembel. On querying versions of multiversion data warehouse. In

Proceedings of the 7th ACM International Workshop on Data Warehousing and OLAP, DOLAP

’04, page 92–101, New York, NY, USA, 2004. Association for Computing Machinery.

[17] George Papastefanatos, Yannis Stavrakas, and Theodora Galani. Capturing the history and

change structure of evolving data. 02 2013.

[18] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. nsparql: A navigational language for rdf.

Journal of Web Semantics, 8(4):255–270, 2010. Semantic Web Challenge 2009 User Interaction

in Semantic Web research.

[19] Darja Solodovnikova. Data warehouse evolution framework. volume 256, 01 2007.

[20] Hai Wang, Zeshui Xu, Hamido Fujita, and Shousheng Liu. Towards felicitous decision making:

An overview on challenges and trends of big data. Information Sciences, 367-368:747–765, 2016.

