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Abstract

In this study, the role of cytokines in predicting treatment outcome of
first-episode psychosis (FEP) patients will be assessed.

Background: Schizophrenia is a chronic mental disorder in which early response
to treatment is associated with improved prognosis. However, accurate prediction
of treatment response is still a problem for modern psychiatry.

Aims: Investigate the predictive value of aggregate cytokine data in the
prediction of FEP patients’ clinical remission.

Methods: Data from the OPTiMiSE cohort was used to predict clinical remission
as a binary outcome. Using a deep neural network, remission was predicted for
patients (n=309) undergoing amisulpride treatment for 4 weeks (phase 1). In
addition, remission was predicted for patients (n=57) not in remission after phase
1, who then underwent 6 weeks of either amisulpride or olanzapine treatment
(phase 2).

Results: Cytokines performed better than chance in predicting treatment
response for phase 1 (AUC = 0.58, 95% CI = 0.56-0.60, p = 0.024, permutation
n = 1000) and phase 2 (AUC = 0.67, 95% CI = 0.59-0.75).

Conclusions: A data modality consisting of 39 cytokines performed better than
chance in predicting FEP patients’ clinical remission. Although these findings are
modest, they suggest that cytokines should be included in a multimodal approach
to predict FEP patients’ treatment response.

Keywords: cytokines; schizophrenia; psychosis; prediction; OPTiMiSE; machine
learning; deep learning

Introduction
Schizophrenia is a chronic [1] mental disorder that has a significant impact on the

patient, its surroundings, and the society. It is characterized by comorbidity [2],

high unemployment [3], and lower life expectancy [4]. The worldwide prevalence of

schizophrenia is estimated at almost 1 percent [5, 6].

According to current guidelines, treatment of schizophrenia involves the use of

second-generation antipsychotics whenever possible. Early response to treatment is

one of the main factors associated with improved long-term prognosis [7, 8, 9, 10,

11, 12]. However, accurate prediction of treatment response is still an open problem

in modern psychiatry. Psychiatrists mostly rely on a ’trial-and-error’ approach for

the treatment of psychiatric disorders [13, 14, 15]. Not surprisingly, a significant

portion of patients do not respond well to treatment [15, 16, 17].
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One way to improve treatment response is to move towards precision medicine

[18, 19, 20, 21]. In general, precision medicine ”prioritizes the individualization of

care and focuses attention on unique characteristics of a particular patient” [22].

Better prediction might help to personalize treatment, potentially leading to better

outcomes for the individual patient [23]. Predictions could potentially be improved

by using biological variables (e.g., cytokines) in the prediction model, as they are

increasingly being implicated in the etiology of schizophrenia.

Immune System Dysregulation and Schizophrenia

Although the precise pathogenesis of schizophrenia is unknown, more and more

studies suggest an involvement of the immune system in schizophrenia [24, 25, 26,

27, 28]. A wide range of studies point to a dysregulation of both the innate and

the adaptive immune system [29, 30, 31, 26]. It is likely that these immune changes

actively contribute to clinical symptoms [32, 33, 34, 35, 36]. In this study, we will

focus on cytokines, a group of small signaling molecules that coordinate both the

innate and adaptive parts of the immune system.

Cytokines and Schizophrenia

Cytokines play an important role in the coordination of the immune response [37,

38]. The release of cytokines can lead to a cascade of events: attracting immune

cells, production of immune cells, and the release of other cytokines [39].

Numerous studies demonstrated abnormalities in serum cytokine levels in

schizophrenia patients compared to healthy controls [40, 41, 35, 42, 43, 44, 45,

46, 25, 47]. Since these studies suggest a possible link between immune dysfunction

and psychosis, it was proposed that serum levels of cytokines could predict early

response to treatment [48].

Cytokines and Psychosis Prognosis Prediction

Attempts to identify convincing biomarkers of treatment response in first-episode

psychosis (FEP) patients have so far shown mixed results [49, 50, 51, 47, 52, 53].

One study showed that cytokines IL-6 and IL-8 could predict negative symptoms

in a 6-months follow-up [50], while another demonstrated that MIP-3α serum levels

were able to predict the time to remission [52]. However, these studies suffered

from low statistical power issues and modest effect sizes. In a different approach,

Martinuzzi et al. [54] stratified FEP patients into four clusters. For the cluster with

the most severe symptoms, they found that cytokines IL-15 and CXCL12 were

associated with higher odds of being non-remitters after 4 weeks. However, in a

more recent study, the same research group found no cytokine biomarkers when

using an unstratified approach [51].

These mixed results could be due to two reasons. First, collecting data from FEP

patients requires significant time, cost, and organizational investments. Therefore,

only a few studies investigated the relationship between baseline levels of cytokines

and treatment response in FEP patients. Despite this challenge, FEP patients are

still the preferred choice, as antipsychotic treatment itself could impact cytokine

blood levels, leading to a confounding effect on the study [55, 56, 57, 58, 59]. Sec-

ond, FEP patients show high heterogeneity in symptom expression and underlying
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biological disease mechanisms [60, 61, 62, 63], making it more challenging to find

one-size-fits-all predictors. Instead, a machine learning approach that can appre-

ciate the complex, non-linear relations between predictors and outcomes might be

more effective.

Machine Learning for Psychosis Prognosis Prediction

Nowadays, researchers are increasingly employing advanced machine learning tech-

niques to aid in psychosis prediction for FEP patients [64, 65, 66, 21, 67]. Conven-

tional models looking at linear relations, might not be able to capture the complex

non-linear interactions between predictors and outcomes [68]. Instead, advanced

(non-linear) machine learning models can potentially better detect the intricate

interactions between input and output [69, 70, 68, 71, 72, 73, 74].

For example, Koutsouleris et al. [65] used a non-linear Support Vector Machine

(SVM) to predict 4-week and 52-week treatment outcomes. Using baseline clinical

data, they found that treatment outcomes can be reliably predicted for individ-

ual patients across multiple sites. More recently, they combined clinical data with

neuro-imaging data, to predict social functioning in young patients at increased risk

for psychosis. Their model outperformed clinicians, highlighting their potential in

clinical practice and early intervention [66]. Even more recently, De Nijs et al. [75]

used an SVM to predict three- and six-year outcomes in patients with a psychotic

disorder. Using a wide range of data modalities (but not cytokines), they were able

to make robust long-term prognostic predictions. This again indicates the potential

of machine learning models in improving clinical judgment and decision-making.

However, to date, none of these multimodal machine learning approaches included

cytokines as a data modality for psychosis prognosis prediction.

Research Aims

In this study, the aim is therefore to investigate the role of aggregate cytokine

data in psychosis prognosis prediction. This fills a gap in the current literature,

which until now only looked at individual cytokines. These studies failed to identify

convincing cytokine biomarkers of treatment response [54, 53, 76, 51]. This could be

due to the high clinical and biological heterogeneity of FEP patients [60, 61, 62, 63].

Therefore, we propose to shift the focus from individual cytokines to a set of (thirty-

nine) cytokines. That is, we hypothesize that using data of many cytokines together

is informative in predicting FEP patients’ treatment response. More specifically, it

is hypothesized that baseline, aggregate data, consisting of thirty-nine cytokines,

performs better than chance in FEP patients’ psychosis prognosis prediction.

This hypothesis will be tested on data collected from the Optimization of Treat-

ment and Management of Schizophrenia in Europe (OPTiMiSE) trial, a large, mul-

timodal cohort study on FEP patients [15]. As predictors, we will use baseline data

from twelve data modalities from the OPTiMiSE dataset, including cytokines. The

predicted outcome is whether patients are in clinical remission. This outcome will

be predicted for patients undergoing four weeks of amisulpride treatment (phase

1) and patients that failed to remit after phase 1 and then underwent six weeks of

either amisulpride or olanzapine treatment (phase 2). Finally, in a post hoc analysis,

the predictive performance of individual cytokines will be assessed, with special at-

tention for the cytokines IL-6, IL-8, IL-18, and CXCL12, implicated as biomarkers

by prior studies [50, 54].
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Methods

Patients

Patients came from 27 general hospitals and clinics in 14 European countries, Israel

and Australia (Clinicaltrials.gov identifier is NCT01248195). FEP patients were re-

cruited between May 2011 and April 2016 at the participating centers from nearby

healthcare facilities. Patients were 18 years and older and met DSM-IV criteria for

first-episode schizophrenia, schizophreniform disorder, or schizoaffective disorder

confirmed by the Mini International Neuropsychiatric Interview plus [77]. In addi-

tion, patients were within the first 2 years of onset of the first psychotic episode,

with previous antipsychotic exposure of less than 15 days in the last year. A total

of 495 patients signed informed consent.

Baseline Predictors and Outcome

As predictors, baseline data from twelve different modalities from the OPTiMiSE

trial was used (see Table 1). These modalities were: demographics, diagnosis,

lifestyle, somatic, treatment, Mini International Neuropsychiatric Interview (MINI),

cytokines, Positive and Negative Syndrome Scale (PANSS), Personal Social Per-

formance (PSP), Clinical Global Impression (CGI), Calgary Depression Scale for

Schizophrenia (CDSS) and the Subjective Well-Being Under Neuroleptic Treatment

Scale (SWN). There were a significant number of missing values (13% of the values

were missing).

The cytokines modality consisted of thirty-nine cytokines: IL-2, IL-6, IL-7, IL-

8, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-16, IL-17, IL-18, IL-21, IL-23, IL-

27, IFN-γ, chemokines C-C motif ligand (CCL)-2, CCL3, CCL4, CCL11, CCL13,

CCL17, CCL19, CCL20, CCL22, CCL26, CCL27, C-X3-C motif chemokine lig-

and (CX3CL)-1, CXCL10, CXCL11, CXCL12, TNF-α, TNF-β, vascular endothe-

lial growth factor (VEGF), C reactive protein (CRP), serum amyloid A (SAA),

soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular adhesion

molecule-1 (sVCAM-1).

The outcome variable was symptomatic remission based on the criteria of An-

dreasen et al. [78]: a score of ≤ 3 (on a scale ranging from 1 to 7) simultaneously

on all eight PANSS items (P1, P2, P3, N1, N4, N6, G5 and G9).

Study Design

Patients’ symptomatic remission was predicted for phase 1 and phase 2 of the

OPTiMiSE trial and for two strategies to handle missing data - imputation and

neutralization.

Phase 1 (4 Weeks) and Phase 2 (10 Weeks)

From the study onset, all patients were treated for 4 weeks with the antipsychotic

amisulpride in an open-label design (phase 1). Subsequently, patients who did not

meet clinical remission at 4 weeks were randomly assigned to continue on amisul-

pride or to switch to olanzapine during a 6-week double-blind trial (phase 2).
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Table 1 Data Modalities of the OPTiMiSE Dataset.

Modality No. Features Missing values Description

1 Demographics 14 6% Socio-demographic features

2 Diagnosis 7 6% Illness related features

3 Lifestyle 7 21% Use of substances like drugs and alcohol

4 Somatic 11 13% Physical examination

5 Treatment 1 14% Average dosage of medication

6 MINI 67 8% Psychiatric comorbidity

7 Cytokines 39 20% Small proteins important in cell signaling

8 PANSS 30 8% Positive and Negative Syndrome Scale

9 PSP 5 11% Personal and Social Performance Scale

10 CGI 1 9% Clinical Global Impression

11 CDSS 9 11% Measurement scale about depression

12 SWN 20 16% Illness related features

Total 211 13% -

Handling Missing Values: Imputation and Neutralization

Clinical trials can suffer from a considerable amount of missing values [79, 80]. As

seen in Table 1, the OPTiMiSE trial is no exception. Missing values can poten-

tially lead to a bias in the results [81]. For example, dropout in clinical trials of

antipsychotic medication could be related to symptom severity [82]. Therefore, it is

important to check for such bias, especially concerning important outcome variables.

To provide such a (quick) check, see Figure 5 in Appendix A.1 for the differences

in total PANSS score, between patients with and without complete data.

Moreover, to minimize the effect of any potential bias, two different strategies to

handle missing values were used. This can be seen as a form of lightweight sensitiv-

ity analysis, following missing values guidelines in clinical research [83]. Specifically,

FEP patients’ clinical remission was predicted under two distinct strategies to han-

dle missing values - k-Nearest Neighbors (k-NN) data imputation and neutralization

[84].

Data Preprocessing

Dropping Data

The data preprocessing pipeline started with a total of 495 patients that started

the OPTiMiSE trial and signed informed consent. Patients that did not have any

measurement for one of the modalities were dropped, reducing the sample size to

383 patients. Next, for the 4-week analysis, patients were dropped that did complete

phase 1 (resulting n=309). Similarly, for the 10-week analysis patients not finishing

phase 2 were dropped (resulting n=57).

Handling Missing Data

Two distinct strategies were applied to handle missing data - k-NN and neutraliza-

tion [84]. With k-NN, missing values were imputed using the k-nearest neighbor

library from scikit-learn [85]. In the neutralization strategy, missing values were

neutralized using an experimental fully-connected layer. This layer replaces the
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fully-connected Dense layer and neutralizes the effect of missing values (and does

nothing otherwise). The performance of this imputation technique is similar to other

imputation techniques like k-NN, mean imputation, and zero imputation [84].

Preparing Data

The data modalities contained binary, categorical, and continuous features. For

the binary features 0/1 encoding was used and for the categorical features one-

hot encoding. All continuous features were standardized before feeding them to the

model. Some cytokines contained a small amount of lower limit of detection (LLOD)

values. These LLOD’s were replaced with the minimum value of that cytokine,

divided by two.

Neural Network Architecture, Training and Testing

Architecture

Using the architecture of Kia et al. [84], a multimodal neural network was employed.

As shown in Figure 1, the model has one input layer and four fully-connected layers:

representation learning, modality-specific classification, fusion, and classification. In

the input layer, the model receives data from twelve different data modalities. To

accommodate for the neutralization of missing values, nanDense [84] layers were

positioned right after the input layer. These layers can neutralize the effect of miss-

ing values and behave as a normal Dense layer otherwise. To determine the number

of neurons in the representation learning layer, a simple heuristic was employed:

the number of neurons for a given modality equals the number of features of that

modality. After representation learning, modality-specific classification layers clas-

sified each modalities’ representation into the outcome variable. These layers con-

sisted of two Softmax neurons, representing remission/non-remission. Next, these

classifications were merged with the representation learning and fed into a fusion

layer of five neurons. Finally, two Softmax neurons were used to classify the fused

data into remission/non-remission. Dropout layers with a probability of 0.1 were

applied before any fully-connected layer. Both the representation learning and the

fusion layer used a ReLU [86] activation function. As an optimization algorithm, an

Adam [87] optimizer (learning rate: 0.0003) was used to minimize the categorical

cross-entropy loss in the output layer.

Training and Testing

The model was trained and tested in ten identical runs (for implementation details

see Appendix A.2). For each run, 10-fold cross-validation was used to evaluate

the performance of the model. To deal with the unbalanced distribution of the

outcome variable (67% of patients get remitted), sklearn’s Stratified K-Folds

cross-validator was used. This cross-validator is a variation of KFold that returns

stratified folds. The folds are made by preserving the percentage of samples for each

class, in each fold of K-fold cross-validation. In each run, the model was trained on

9 of the folds for 50 epochs, and tested on the left-out fold, until all folds were tested

on.



van Schie Page 7 of 22

Figure 1 Diagram of the Deep Neural Network Used for Psychosis Prognosis Prediction.

Counterfactual Predictions of Individual Cytokines for Phase 1

For phase 1 predictions, counterfactual interpretation (CFI) was applied to assess

the predictive value of individual cytokines in psychosis prognosis prediction. CFI

provides a tool for interpreting complex AI models [88]. It describes a causal situa-

tion in the form: ”What would have happened to outcome Y , if everything stayed

the same, except for some factor X?”. To apply this to a deep neural network,

a special fully-connected layer was used that can neutralize the effect of missing

values [84]. Using this layer, it was possible to ’turn off’ individual features (e.g.,

cytokines) and check whether the prediction improved (or worsened).

Regarding training and testing the model, all the previous steps were taken, with

one exception. Instead of training the model on all (twelve) modalities, it was trained

on only the cytokine modality. At the end of each run, CFI was introduced in the

following way: Every cytokine was, iteratively, ’turned off’, by converting its values

to missing values (i.e., NaN). This way, the input consisted of 38 ’turned on’ cytokines

and one neutralized ’turned off’ cytokine. Subsequently, patients’ clinical remission

was predicted with this adapted input layer.

Statistical Analysis

AUC, Sensitivity, and Specificity

In each run, the predictive performance of the model was evaluated by computing

the area under the receiver-operating curve (AUC). An AUC of 1.0 reflects perfect

performance and 0.5 chance level performance. After ten runs, AUC scores were

averaged, and a 95% confidence interval (CI) was computed. To compute the AUC,

the roc auc score function from scikit-learn was used [85]. Remember that

the classification task assigns probabilities to either remission or non-remission.

AUC is especially suited for these kinds of tasks, as it can analyze the prediction
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more ’deeply’. AUC represents the probability that a random positive example (i.e.,

remission) is ranked higher than a random negative example (i.e., non-remission).

Unlike accuracy, AUC considers all possible decision thresholds (not only the default

0.5) and because of this can provide a ’broader’ view of the performance of the

classifier. Finally, sensitivity and specificity were measured, to assess how well (or

biased) the model predicts both remission and non-remission.

Permutation Analysis

Permutation testing [89, 90] was applied if the AUC score of the cytokine modality

was too close to chance level (cut-off point: AUC ≤ 0.6). To get a chance level

null-distribution, labels were randomly permuted 1000 times. As a result, a null-

distribution of a thousand AUC scores was obtained, based on the null hypothesis

that the model performed on chance-level. Subsequently, actual AUC scores were

acquired, by feeding the model untouched data (i.e., non-shuffled labels). To obtain

the p-value, the proportion of AUC values in the null-distribution, greater or equal

than the observed AUC value, was computed.

Computing Individual Cytokines’ Contribution to Prediction Certainty

For the post hoc analysis, individual cytokines’ predictive performance was com-

puted by checking whether the prediction (for a given cytokine) came closer to the

true label (i.e., 0 or 1) or not.

For example, suppose the true label of a patient was 1 (i.e., remission), and the

prediction with a given cytokine ’turned off’ was 0.7. Then, the resulting prediction

uncertainty would be 0.3. This would then be compared to the uncertainty with

the given cytokine ’turned on’. If the latter uncertainty was 0.1, it implied that the

prediction became 0.2 (i.e., 20%) more certain because of that cytokine.

Finally, these individual cytokines’ contributions were analyzed for the full sample

and the special cluster found by Martinuzzi et al. [54].

Results
Socio-demographic and Clinical Characteristics of Patients

Table 2 summarizes the clinical and socio-demographic characteristics of the pa-

tients included in the analysis.

The sample of patients that finished phase 1 was composed of 309 patients. The

mean age was 26 years and 71% of them were male. Of the patients not in remit-

tance after phase 1 (n=95), 76% were male, 32% overweight and 66% unemployed.

Furthermore, the total PANSS score of non-remitted patients (84.1) was higher than

that of remitted patients (74.4).

A total of 57 patients completed phase 2, of which 27 remitted and 30 did not

remit. Among others, non-remitted patients were more often overweight (37%),

older (27 years), more recreational drug use (47%), and were more often living

alone (27%) than remitted ones.

Prognosis Prediction for Patients Completing Phase 1 (4 Weeks)

Looking at Figure 2, AUC scores suggest that the cytokines modality was among

the best-performing modalities, with an AUC of 0.58 (95% CI = 0.56-0.60, p=0.024,
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Table 2 Socio-demographic and Clinical Details of Patients at Week 4 and 10. Data are shown
as mean (standard deviation, SD), or n (%). Recreational drug use is defined as having used
recreational drugs at least once in a lifetime. Abbreviations: BMI, body mass index; CDSS,
Calgary Depression Scale for Schizophrenia; CGI, clinical global impression; PANSS, Positive
and Negative Syndrome Scale.

Week 4 Week 10

Remitted Non-remitted Remitted Non-remitted

Number of patients 214 95 27 30

Age (years) 26.8 (6.3) 25.6 (5.6) 23.8 (4.0) 27.0 (6.8)

Male 69% 76% 70% 77%

BMI (kg/m2) 23.2 (4.0) 23.4 (4.4) 23.1 (5.3) 22.9 (4.1)

Waist circumference (cm) 82.7 (11.5) 84.6 (11.8) 82.9 (10.9) 84.1 (12.3)

Overweight (BMI ≥ 25) 24% 32% 19% 30%

Employed/Student 48% 34% 22% 37%

Recreational drug use 50% 45% 33% 47%

Living alone 17% 21% 7% 27%

PANSS (total) 74.4 (19.4) 84.1 (16.6) 84.8 (15.1) 89.1 (17.4)

CDSS depression score 13.1 (4.5) 13.5 (4.5) 12.2 (4.4) 14.5 (4.0)

CGI severity 5.4 (1.0) 5.6 (0.9) 5.5 (1.0) 5.7 (1.0)

Figure 2 AUC Scores for Predicting Remission After Phase 1 (4 Weeks). The figure shows the
mean AUC and SD error bar, after training and testing the model for ten runs. Included are the
AUC scores for each of the twelve modalities in the OPTiMiSE trial.
*p ≤ 0.05. **p ≤ 0.01.

permutation n=1000). In Table 3, we can see the classification performance of all

modalities. Nearly half of the data modalities provided significantly better than

chance AUC scores, namely demographics, diagnosis, cytokines, PANSS, and PSP.

Conversely, the MINI, lifestyle, somatic, treatments, CGI, CDSS, and SWN modal-

ities did not perform better than chance.

It is interesting to note that models trained on cytokines and PANSS, had rela-

tively high sensitivity and low specificity. This means that these models were espe-

cially successful at predicting remission but much less at predicting non-remission.
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Demographics and diagnosis were also among the high performers but had a much

more moderate difference between sensitivity and specificity.

Furthermore, the use of either neutralization or imputation to handle missing

values seemed to have little effect, although AUC scores are somewhat higher for

each modality in the neutralization condition. See Table 6 in Appendix A.3 for the

classification performance between both strategies to handle missing values.

Table 3 Classification Performance for FEP Patients Completing Phase 1 (Week 4). Data are
mean AUC (SD), sensitivity, and specificity scores. Significance levels were confirmed by
permutation testing (n=1000). *p ≤ 0.05. **p ≤ 0.01.

Modality AUC Sensitivity Specificity p-value

Demographics 0.59 (0.02) 0.70 0.40 0.019*

Diagnosis 0.58 (0.02) 0.73 0.37 0.022*

Lifestyle 0.49 (0.03) 0.64 0.33 0.574

Somatic 0.49 (0.03) 0.69 0.30 0.526

Treatments 0.52 (0.03) 0.65 0.38 0.231

MINI 0.56 (0.02) 0.72 0.38 0.079

Cytokines 0.58 (0.02) 0.74 0.32 0.024*

PANSS 0.60 (0.02) 0.72 0.38 0.015*

PSP 0.58 (0.02) 0.67 0.42 0.013*

CGI 0.54 (0.03) 0.60 0.45 0.079

CDSS 0.50 (0.03) 0.73 0.30 0.491

SWN 0.51 (0.03) 0.70 0.31 0.444

All 0.64 (0.02) 0.85 0.31 0.001**

Prognosis Prediction for Patients Completing Phase 2 (10 Weeks)

The cytokine modality performed best in predicting FEP patients completing phase

2, with an AUC of 0.66 (95% CI = 0.61-0.71). Interestingly, the performance is

even better than with all modalities fused together. Furthermore, the difference in

modalities’ AUC scores between imputation and neutralization was well within their

respective confidence intervals. This suggests that the models’ behavior was mostly

invariant to either strategy to handle missing values (see Table 7 in Appendix A.4).

Interestingly, in contrast to the phase 1 results, there was not much of a difference

between sensitivity and specificity for the cytokine modality.

Individual Cytokines’ Contribution to Prediction Certainty

A post hoc analysis of individual cytokines’ predictive performance suggests that

cytokine IL-18 contributes most to the certainty of the prediction. In this unstrat-

ified approach, cytokines IL-6, IL-8, IL-15, CXCL12 performed mediocre to poor.

See Figure 5 in Appendix A.5 for the difference between these cytokines and the

top 5 cytokines.

In addition, a post hoc test was performed for a cluster of 97 FEP patients. For

this cluster, cytokines CCL22, IL-15, and IL-12p40 show the biggest improvement

in prediction certainty. Figure 5 in Appendix A.6 shows the top 10 performing

cytokines.
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Figure 3 AUC Scores for Predicting Remission After Phase 2 (10 Weeks). The figure shows the
mean AUC and SD error bar, after training and testing the model for ten runs. Included are the
AUC scores for each of the twelve modalities in the OPTiMiSE trial.

Table 4 Classification Performance for FEP Patients Completing Phase 2
(Week 10). Data are mean AUC (SD), sensitivity, and specificity scores.
Significance levels were not confirmed by permutation testing as the AUC for
cytokines was greater than the cut-off point of 0.6

Modality AUC Sensitivity Specificity

Demographics 0.54 (0.05) 0.57 0.54

Diagnosis 0.49 (0.05) 0.48 0.50

Lifestyle 0.55 (0.07) 0.56 0.53

Somatic 0.41 (0.06) 0.42 0.48

Treatments 0.48 (0.06) 0.53 0.42

MINI 0.43 (0.05) 0.44 0.43

Cytokines 0.66 (0.05) 0.60 0.61

PANSS 0.51 (0.05) 0.48 0.52

PSP 0.52 (0.08) 0.53 0.48

CGI 0.49 (0.06) 0.51 0.49

CDSS 0.62 (0.04) 0.67 0.57

SWN 0.60 (0.05) 0.53 0.62

All 0.63 (0.04) 0.54 0.69

Discussion

The aim of this study was to assess whether aggregate baseline cytokine data could

improve psychosis prognosis prediction. The results suggest this is indeed the case.

Baseline cytokine levels show better than chance performance in predicting treat-

ment response for FEP patients completing phase 1 (4 weeks) of the OPTiMiSE

trial. Even a stronger performance was found for patients finishing phase 2 (10

weeks).

Both results were invariant under two distinct strategies to handle missing values.

In addition, significant predictive value was found for other data modalities, namely



van Schie Page 12 of 22

demographics, diagnosis, PANSS, and PSP, but not for MINI, lifestyle, somatic,

treatments, CGI, CDSS, and SWN.

To date, no other study explored aggregate cytokine data in relation to predicting

treatment response in drug-naive FEP patients. This study fills that gap and shows

a real promise for cytokines as an aggregate input modality in psychosis prognosis

prediction.

Our findings have several interesting practical implications. First, it provides

support for the continued inclusion of cytokines in multimodal cohort studies for

schizophrenia patients. In addition, it may guide decision-making on whether to

include other predictive modalities. After all, about half of the data modalities did

not perform better than chance. Second, it may sway research groups, aiming to

develop clinically relevant prediction models, to include cytokines in their set of

predictors. So far, few of such efforts have included cytokines, but the findings from

this study might convince researchers to include them by default.

Finally, a post hoc analysis was performed to investigate individual biomarkers

implicated by prior research [50, 54]. In this research, He et al. [50] found that

cytokines IL-6 and IL-8 predicted negative symptoms, while Martinuzzi et al. [54],

identified IL-15 and CXCL12 as useful biomarkers in a cluster of FEP patients. Our

findings do not support the predictive value of IL-6 and IL-8. However, our analysis

predicted 4-week remission, while IL-6 and IL-12 were identified in a 6-month follow-

up. Conversely, the results do support the predictive value of cytokine IL-15 in a

special cluster of patients. This corroborates the result of Martinuzzi et al. [54], who

also predicted 4-week remission. Nonetheless, the findings from our post hoc analysis

should be met with caution. The effect sizes were relatively small and the standard

deviations relatively high. In addition, we employed an experimental method, by

applying CFI to a deep neural network architecture. Ideally, this method first needs

to be further validated by future research.

Going forward, we have shown that several data modalities (including cytokines)

have value in psychosis prognosis prediction. This was already apparent in the

current state of research [65, 66, 75] and if anything, has only been corroborated

by this study’s results. Looking at the future, it is this multimodal approach that

might bring us closer to precision medicine.

Future Directions

Precision Medicine

A growing body of literature shows a real promise for a movement towards precision

medicine [21]. Applying advanced machine learning to the likes of imaging, clinical,

cognitive, and biological data can potentially improve the prediction of psychosis

outcomes. This, in turn, can assist clinicians to better tailor (i.e., individualize)

treatment, which can potentially lead to better outcomes for the individual patient

[23]. One way to achieve such (effective) precision medicine, could be a growing

embracement of implementation research.

Implementation Research

A growing shift towards implementation research could improve the clinical rele-

vance of prediction models and provide these models with (much) more data.
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In a review of individualized prediction models for clinical practice, it was found

that only 0.2% of these studies could be classified as an implementation study [19].

In this review, the authors state that advancements in precision medicine could be

held back by limited replication and lack of implementation research in real-world

clinical practice.

One promise of implementation research is that it could potentially solve the

problem of external validation [91, 68]. That is, many models are (too much) tuned

to the intricacies of the data they are trained on and have difficulties achieving the

same performance on unseen data. Conversely, with implementation research, these

models can be trained and tested on the very population they are meant for. This

way, the problem of external validation in clinical prediction models could largely

be solved. Note, however, that samples from implementation research will likely

have a higher heterogeneity of patients. After all, every type of patient will enter

clinical practice, while not every type may enter clinical trials. Such an increased

heterogeneity of the sample can decrease the performance of the model [92].

Another promise of implementation research is that it could open up a massive

stream of clinically relevant data. Through implementation research, data collection

can be embedded in day-to-day clinical practice. Here, data should be ideally col-

lectable using methods that are widely available, do not require an excessive amount

of patient or clinician time, and that have a reasonable cost [21]. When applied on

a large scale, this could lead to much larger sample sizes. This, in turn, could al-

low data-driven machine learning models to achieve unmatched performance. In

addition, the individual samples themselves can become much more data-rich. Af-

ter all, if data is collected at every visit, it increasingly becomes more longitudinal

in nature. With time, patients’ longitudinal data can include a wide range of in-

terventions (e.g., shifting antipsychotics, treatments, lifestyles). Such data could

potentially enable machine learning algorithms to learn which intervention works

best, for what type of patient (i.e., precision medicine). Finally, when these predic-

tion models reach a high enough performance, exciting possibilities in the realm of

explainable Artificial Intelligence (AI) arise.

Explainable AI

One such opportunity is counterfactual interpretation (CFI). Applying CFI on (fu-

ture) high-performing prediction models can make it possible to quantify the con-

tribution of each unique feature used in the prediction. Such a development could

provide new insights in the underlying mechanisms of syndromes like schizophrenia.

In addition, CFI can provide easy and individualized therapeutic targets for clini-

cians. Any factor that can be conveniently manipulated (e.g., lifestyle changes, stress

levels, cytokines), can suddenly become a valuable treatment option. For example,

there are already drugs with anti-inflammatory or immune-modulating properties

that can manipulate the levels of specific cytokines [93, 94].

Explainable AI with CFI could also have a more practical, short-term, benefit.

As seen in the post hoc analysis, CFI could shed light on the relative importance of

individual cytokines in psychosis prognosis prediction. This way, it might be possible

to be more selective when deciding on which cytokines to include in clinical trials

and prediction models.
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Strengths and Limitations
This study had several limitations. First, although the predictive performance of

the cytokine modality was better than chance, it was still modest. Note, however,

that it was not this study’s aim to design and tune a model for maximum perfor-

mance. Second, the cytokine performance for phase 1 showed high sensitivity and

low specificity, indicating a bias towards predicting remission. This could be due

to the unbalanced class distribution and can potentially be solved by oversampling

the minority class. However, oversampling can also worsen model performance [95].

Third, there was a lack of external validation of the results. Ideally, the model would

have been trained and evaluated on similar datasets, coming from different samples.

Unfortunately, it is difficult to access comparable datasets, especially when dealing

with FEP patients. Fourth, the sample size for phase 2 was modest (n=57), as high

remission and dropout rates reduced the number of samples. Because of this rela-

tively small sample size, the phase 2 results might have been due to (overfitting) a

homogeneous sample [92] and might not generalize well to other samples.

There were also some limitations concerning the OPTiMiSE trial. First, predic-

tions were only made for patients treated with amisulpride (phase 1) or amisulpride

and olanzapine (phase 2). This might limit the generalizability of the results. After

all, the results could have been different if patients had been treated with other

popular antipsychotics [96] like clozapine and risperidone. Second, some patients

dropped out of the study during the OPTiMiSE trial. This may limit the represen-

tativeness of the patients used in prediction. Third, selection bias may be prevalent

as patients included in OPTiMiSE may differ from those that did not consent to

participation. Fourth, although the OPTiMiSE trial is one of the largest cohorts

with FEP patients to date, the sample size may not have been sufficient to appreci-

ate the heterogeneity of out-of-study schizophrenia patients. Increasing the sample

size will likely improve generalizability, by including a wider range of clinical and

biological representations of schizophrenia. However, as indicated, increasing the

heterogeneity of the sample can also decrease performance [92].

This study also had several strengths. First, data came from a relatively large sam-

ple of drug-naive FEP patients. This diminishes the effect of possible confounding

factors, like illness duration and long exposure to antipsychotics [57]. For exam-

ple, the latter can have a direct effect on cytokine levels themselves [56]. Second,

the OPTiMiSE trial being a multi-center European cohort, potentially improves

the generalizability of the results. After all, patients came from 27 centers, from

14 European countries, Israel and Australia. Third, the longitudinal nature of the

data made it possible to perform psychosis prognosis prediction for different points

in time (e.g., 4 and 10 weeks). This is informative, as phase 2 patients might be

clinically different (i.e., more chronic) than phase 1 patients. Fourth, a multimodal

set of predictors was used, making it possible to assess the performance of each

of these modalities individually. This can be important in deciding which modali-

ties to include in future clinical studies and prediction models. Fifth, two different

strategies to handle missing values were applied. This can reduce the potential bias

coming from replacing (i.e., imputing) missing values. Sixth, this study tried to

avoid publication bias [97], by taking the average of many results. This way, a form

of ’cherry-picking’ the best results was avoided. Seventh, although outside the scope
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of this study, a time-consuming permutation test was applied to test whether the

cytokine modality performed better than chance. This test adds to the robustness

of the results, as it makes clear that the results were not due to an inherent bias in

the model.

Conclusions
A deep multimodal neural network was applied to assess the value of cytokines

in psychosis prognosis prediction. Using data from first-episode psychosis (FEP)

patients in the OPTiMiSE trial, the predictive performance of twelve modalities

(including cytokines) was assessed. Treatment response was predicted for patients

completing phase 1 (4 weeks) and phase 2 (10 weeks) of the OPTiMiSE trial. The

results show that the cytokine data modality offers modest but better-than-chance

predictive value for patients completing phase 1. The predictive performance for

phase 2 is even better and outperforms all the other modalities. To date, no other

study assessed the role of aggregate cytokine data in FEP patients’ psychosis prog-

nosis prediction. This study shows that cytokines (and other modalities) hold a

genuine predictive promise. These findings suggest cytokines should be included in

a multimodal approach towards psychosis prognosis prediction. Looking at the fu-

ture, a growing shift towards implementation research might lead to improvements

in prediction models and data collection. Such a shift could bring us closer to pre-

cision medicine, by increasingly enabling machine learning models to decide which

intervention is best for what type of patient.
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27. Horváth, S., Mirnics, K.: Immune system disturbances in schizophrenia. Biological psychiatry 75(4), 316–323
(2014)

28. Miller, B.J., Goldsmith, D.R.: Evaluating the hypothesis that schizophrenia is an inflammatory disorder. Focus

18(4), 391–401 (2020)

29. Brown, A.S., Derkits, E.J.: Prenatal infection and schizophrenia: a review of epidemiologic and translational

studies. American Journal of Psychiatry 167(3), 261–280 (2010)

30. Drexhage, R.C., Knijff, E.M., Padmos, R.C., Heul-Nieuwenhuijzen, L.v.d., Beumer, W., Versnel, M.A.,

Drexhage, H.A.: The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia

and bipolar disorder. Expert review of neurotherapeutics 10(1), 59–76 (2010)

31. Bergink, V., Burgerhout, K.M., Weigelt, K., Pop, V.J., de Wit, H., Drexhage, R.C., Kushner, S.A., Drexhage,

H.A.: Immune system dysregulation in first-onset postpartum psychosis. Biological psychiatry 73(10),
1000–1007 (2013)

32. Michel, M., Schmidt, M.J., Mirnics, K.: Immune system gene dysregulation in autism and schizophrenia.

Developmental neurobiology 72(10), 1277–1287 (2012)

33. Mueller, N.: Cox-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr Opin Investig Drugs

11(1), 31–42 (2010)

34. Müller, N., Weidinger, E., Leitner, B., Schwarz, M.J.: The role of inflammation in schizophrenia. Frontiers in

neuroscience 9, 372 (2015)

35. Upthegrove, R., Manzanares-Teson, N., Barnes, N.M.: Cytokine function in medication-naive first episode



van Schie Page 17 of 22

psychosis: a systematic review and meta-analysis. Schizophrenia research 155(1-3), 101–108 (2014)

36. Khandaker, G.M., Cousins, L., Deakin, J., Lennox, B.R., Yolken, R., Jones, P.B.: Inflammation and immunity

in schizophrenia: implications for pathophysiology and treatment. The Lancet Psychiatry 2(3), 258–270
(2015)

37. Takeuchi, O., Akira, S.: Pattern recognition receptors and inflammation. Cell 140(6), 805–820 (2010)

38. Miller, B.J., Goldsmith, D.R.: Towards an immunophenotype of schizophrenia: progress, potential

mechanisms, and future directions. Neuropsychopharmacology 42(1), 299–317 (2017)

39. Schaper, F., Rose-John, S.: Interleukin-6: biology, signaling and strategies of blockade. Cytokine & growth

factor reviews 26(5), 475–487 (2015)

40. Rodrigues-Amorim, D., Rivera-Baltanas, T., Spuch, C., Caruncho, H.J., Gonzalez-Fernandez, A., Olivares,

J.M., Agis-Balboa, R.C.: Cytokines dysregulation in schizophrenia: a systematic review of psychoneuroimmune

relationship. Schizophrenia research 197, 19–33 (2018)

41. Miller, B.J., Buckley, P., Seabolt, W., Mellor, A., Kirkpatrick, B.: Meta-analysis of cytokine alterations in

schizophrenia: clinical status and antipsychotic effects. Biological psychiatry 70(7), 663–671 (2011)

42. Fang, X., Zhang, Y., Fan, W., Tang, W., Zhang, C.: Interleukin-17 alteration in first-episode psychosis: a

meta-analysis. Complex Psychiatry 3(3), 135–140 (2017)
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Appendix
A.1

Table 5 Total PANSS Scores for Patients With and Without Missing Values

Total PANSS

Modality % missing Patients without missing values Patients with missing values

Demographics 0% 77.9 (18.7) -

Diagnosis 4% 77.7 (18.7) 82.9 (19)

Lifestyle 88% 80.8 (16.9) 77.5 (18.9)

Somatic 21% 78.0 (19.1) 77.6 (17.1)

Treatments 2% 78.0 (18.7) 83.4 (21.7)

MINI 4% 77.1 (18.3) 98.2 (17.7)

Cytokines 21% 79.2 (19.0) 74.9 (18.6)

PSP 3% 77.8 (18.7) 80.4 (17.4)

CGI 1% 78.0 (18.7) 68.8 (19.9)

CDSS 2% 77.7 (18.8) 87.3 (12.1)

SWN 9% 77.1 (18.7) 86.8 (15.9)

The data are presented as mean (SD) and based on all 454 patients that had PANSS scores measured
at the start of the OPTiMiSE study. patients that had at least one missing value for any given modality
were included in the patients with missing values category. Patients with complete data were included
in the patients without missing values category. The % missing is thus the proportion of patients
that had at least one missing value for that modality. The PANSS (total) is the sum of 30 items
included in the Positive and Negative Syndrome Scale [98]. As the scale ranges from 1-7, theoretical
scores range from 30 to 210.

A.2
The deep neural network was implemented using the packages tensorflow-cpu

2.4.1 [99], keras 2.4.3 [100], numpy 1.19.5 [101], pandas 1.0.5 [102] and

scikit-learn 0.23.1 [85] using Python 3.8 as the interpreter. Data analyses were

performed on a Windows X64-based machine with an Intel i7-6700 CPU and 16 GB

RAM.
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A.3

Table 6 Classification Performance at Week 4 for Two Different Strategies to Handle Missing Values.
AUC scores are shown as mean (statistical deviation, SD). AUC scores are shown for two different
strategies to handle missing values: k-NN impute and neutralization. Sensitivity is also called recall or
true positive rate (TPR), while specificity is also called true negative rate (TNR) or selectivity.

Imputation Neutralization

Modality AUC Sensitivity Specificity AUC Sensitivity Specificity

Demographics 0.60 (0.02) 0.64 0.47 0.60 (0.02) 0.65 0.46

Diagnosis 0.58 (0.02) 0.66 0.44 0.58 (0.03) 0.66 0.46

Lifestyle 0.47 (0.03) 0.55 0.41 0.51 (0.03) 0.53 0.49

Somatic 0.49 (0.03) 0.61 0.37 0.50 (0.03) 0.60 0.40

Treatments 0.51 (0.02) 0.51 0.52 0.52 (0.02) 0.53 0.53

MINI 0.56 (0.01) 0.68 0.43 0.57 (0.02) 0.70 0.44

Cytokines 0.58 (0.01) 0.71 0.34 0.58 (0.02) 0.71 0.33

PANSS 0.60 (0.02) 0.72 0.42 0.60 (0.02) 0.70 0.39

PSP 0.58 (0.02) 0.56 0.57 0.59 (0.02) 0.56 0.58

CGI 0.55 (0.02) 0.51 0.65 0.55 (0.01) 0.50 0.55

CDSS 0.49 (0.03) 0.65 0.37 0.50 (0.02) 0.65 0.40

SWN 0.50 (0.03) 0.65 0.35 0.52 (0.02) 0.64 0.39

All 0.65 (0.02) 0.86 0.33 0.66 (0.01) 0.85 0.32

A.4

Table 7 Classification Performance at Week 10 for Two Different Strategies to Handle Missing Values.
AUC scores are shown as mean (statistical deviation, SD).

Imputation Neutralization

Modality AUC Sensitivity Specificity AUC Sensitivity Specificity

Demographics 0.54 (0.05) 0.57 0.54 0.50 (0.04) 0.48 .50

Diagnosis 0.49 (0.07) 0.48 0.50 0.59 (0.01) 0.88 0.31

Lifestyle 0.55 (0.06) 0.56 0.53 0.54 (0.07) 0.55 0.55

Somatic 0.41 (0.05) 0.42 0.48 0.42 (0.08) 0.45 0.43

Treatments 0.48 (0.08) 0.53 0.42 0.52 (0.07) 0.54 0.55

MINI 0.43 (0.06) 0.44 0.43 0.41 (0.06) 0.44 0.38

Cytokines 0.66 (0.03) 0.60 0.61 0.67 (0.04) 0.61 0.61

PANSS 0.51 (0.06) 0.48 0.52 0.58 (0.06) 0.55 0.56

PSP 0.52 (0.06) 0.53 0.48 0.51 (0.06) 0.51 0.52

CGI 0.49 (0.09) 0.51 0.49 0.48 (0.09) 0.49 0.49

CDSS 0.62 (0.04) 0.67 0.57 0.60 (0.05) 0.65 0.52

SWN 0.60 (0.04) 0.53 0.62 0.59 (0.05) 0.51 0.61

All 0.63 (0.06) 0.54 0.69 0.63 (0.07) 0.54 0.64
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A.5

Figure 4 Individual Cytokines’ Contribution to Prediction Certainty. Improvement in prediction
certainty (%) for the top 5 performing cytokines (white) and cytokines IL-6, IL-8, IL-15 and
CXCL12 (gray). The rank (out of 39 cytokines) is indicated by the white box.

A.6

Figure 5 Individual Cytokines’ Contribution to Prediction Certainty for a Cluster of Patients.
Improvement in prediction certainty (%) for the top 10 performing cytokines (white) and
cytokines IL-6 and CXCL12 (gray) implicated in psychosis prognosis prediction for the a cluster of
97 FEP patients.
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