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[bookmark: _howmlu3e6oit]

[bookmark: _72qrw0wk0k2h]Layman’s abstract
The DNA of a human is stored in cell nuclei, where it is present in a 3D space. In this 3D space, the DNA can form loops. Due to these loops, certain parts of DNA get brought together. When brought together these parts of DNA can interact. These interactions are needed for the correct functioning of cells and organisms in total. The forming of these loops can be interrupted, leading to loops that bring wrong parts of the DNA together. These parts of DNA will still interact, but not as intended. This can lead to different types of diseases, like limb deformities or cancers. Therefore it is important to study these interactions and loop forming. Methods for harvesting these data are already known, but actually studying and processing this data is still hard. The complexity of the data made machine learning and computational help necessary and different tools have been made, each having their own pros and cons. In this report we suggest further additions to an already good working tool, peakHiC, to make the studying of these interactions even more advanced and easier. It tries to advance the data processing and eliminate the need of several datasets to use peakHiC. The new tool peakHiC 2.0 shows to be working, albeit not perfect yet. It does show some of the additions to be working and indeed suggests that the need for more datasets can be eliminated with the suggestions made in this report. All in all, peakHiC 2.0 shows lots of its aspects working but still needs a lot of finetuning and testing to make it usable for actual research.
[bookmark: _4bthqkjf04a9]

[bookmark: _eabaj8v8olsf]Abstract
Our genome, the cookbook of life, which encodes every function of our cells is tightly compacted into a tiny cell’s nucleus of only 6 micrometers. This high level of compression is achieved through folding of the genome. Mechanistically, this folding causes the DNA to “loop” which brings faraway regulatory elements close to their target gene and simultaneously limits the unintended regulatory loops to other non-target genes in the neighborhood. This relationship effectively partitions the genome into structures called Topologically Associated Domains (TAD) where elements within a TAD are often in close proximity compared to elements outside the TAD. The accurate formation of TADs is essential for proper functioning of the cell and disruption of this structure is known to be associated with several diseases. Proximity-ligation assays such as HiC is able to capture these loops in a genome-wide manner and is therefore commonly used in genomic research to assess genome conformation in health and disease. Many computational tools (such as HiCCUPS and PeakHiC) are developed to process this massive data and identify genomic loops. This is done by modeling the likelihood of forming a loop based on how far two genomic sections of the genome are located from each other. Even though such modeling is proved to be effective in detecting strong loops, identification of more subtle genomic loops remains challenging. In this work, we aim to use the power of machine learning to devise a more sensitive loop caller called PeakHiC v2.0. This is achieved by searching the genome to identify TADs with similar interaction profiles and then use these similar TADs as replicates to identify more subtle loops in the genome. Therefore, PeakHiC can be used without a requirement for producing replicates. Additionally, we implement a more extensive normalization and smoothing procedure to further enhance the sensitivity and specificity of the loop calling procedure. Apart from confirming the already predicted loops, our comparative analysis shows that the current iteration of PeakHiC 2.0 is able to detect novel loops that are missed by state of the art methods like HiCCUPS. Meanwhile, during our assessment we also show several loops that are missed by PeakHiC 2.0 which justifies further optimization and assessment of PeakHiC 2.0.

[bookmark: _l1lnhv36sqmj]1 Introduction
[bookmark: _sn3f2qeuc79s]1.1 3D organization of the genome

The human genome consists of 23 chromosome pairs residing in the nucleus. Each chromosome contains DNA and in total 3 billion base pairs form the human genome. (“Human Genome Project FAQ” n.d.) All of this DNA is structured in a 3D fashion (Fig. 1), which means different parts of DNA are in direct proximity to each other. This 3D conformation is organized on different levels. First of all DNA is stored in compartments, the A compartment and B compartment. The A compartment represents euchromatin, which is more openly packed. The B compartment represents heterochromatin, which is more densely packed. This already creates a difference in the topological locations and distances between different parts of DNA. 

On a smaller scale the genome is organized in Topologically Associated Domains (TADs). These TADs are created by architectural proteins like cohesin and CTCF, which lead to loop formation and thereby TAD forming. This genomic region is brought into closer proximity to each other due to this loop formation, leading to the possibility of DNA interaction. (Spielmann, Lupiáñez, and Mundlos 2018)

[image: ]
Figure 1 - Hierarchy of the three-dimensional organization of the genome and translation to HiC data. The genome is stored in the nucleus. Here it is organized in A compartments (Euchromatin) and B compartments (Heterochromatin). On a smaller, DNA, level the DNA is present in Topologically Associated Domains (TADs), which bring different DNA loci in closer proximity. Interaction levels in these TADs can be studied and shown in HiC maps. (Spielmann, Lupiáñez, and Mundlos 2018)
[bookmark: _hxlgttw9yiq3]

[bookmark: _8226bg9nkllv]1.2 TADs and interactions
In these TADs different interactions can occur. Bringing different regions of DNA together also creates the possibility of different regulatory elements to be in closer proximity. This means that different regulatory proteins like promoters, enhancers and transcription factors are brought together. These interactions are needed to keep gene regulation correct and disruption of these mechanisms can lead to disease.

[bookmark: _an5khru0yhcn]1.3 Incorrect loop formation can lead to disease
TADs bring multiple genes and their regulatory regions together. These genes and regulatory elements together lead to correct gene expression. When TADs are disrupted this distorts the gene expression, which can lead to disruption of normal cell proliferation and other cellular mechanisms. Examples are different limp deformations, but also cancers and other diseases. TAD deformation can occur by different mechanisms (Fig 2). 
Neo-TAD formation is the result of duplication of a boundary region. When this happens, a new TAD is created bringing parts of DNA together that should not be.
TAD fusion happens when TAD boundaries get deleted. This deletion leads to TADs fusing, creating a bigger TAD and therefore a larger region of possible and unintended interactions.
At last TAD shuffling can take place, which means that an inversion or translocation leads to the shuffling of TAD boundaries. This can again lead to different TADs than normal and therefore again create unwanted interactions.
All these mechanisms can lead to deregulation of gene expression by either gain of function or loss of function. One clinical example is the EPHA4 TAD (Lupiáñez et al. 2015). When certain mutations were brought into mice CTCF boundaries were disrupted. This disruption leads to Epha4 enhancers and promoters interacting with other genes and DNA than normal. This loss of CTCF boundary was also confirmed in human-patient derived fibroblasts leading to different limb deformities. Another example is acute T-cell lymphoblastic leukemia, where TAD disruption leads to activation of the TAL1 and LMO2 proto-oncogenes (Valton and Dekker 2016). Many more diseases are connected to TAD disruption, which means the study of 3D genome conformation is needed to better understand and detect these mechanisms. (Spielmann, Lupiáñez, and Mundlos 2018)
[image: ]
Figure 2 - Multiple processes can lead to TAD disruption. Multiple genomic mutation events can lead to TAD disruption. TAD boundary deletion leads to TAD fusion. Duplication of a TAD boundary leads to Neo-TAD formation, where a new TAD is created. Inversions again lead to change of the TAD boundary loci and shuffle TADs around. All of these processes lead to TAD disruption and thereby unwanted interactions between parts of DNA. (Spielmann, Lupiáñez, and Mundlos 2018)
[bookmark: _j1kpas7c60sk][bookmark: _k1zf97r33ik8]
[bookmark: _cg2ox762ymyd]1.4 Chromatin Conformation Capture (3C) assays

To understand and study genome interactions different assays have been created to accomplish this. Genome conformation capture (3C) is the most basic way of studying these interactions and is the core of all current-day interaction assays. Using 3C it is possible to look at one interaction by choosing a target locus and fixating the interaction by crosslinking and ligation (Fig 3). Using PCR and sequencing the exact location of the interaction can be found and quantified. Newer techniques have made it possible to study multiple interactions at once. For example 4C looks at all interactions of one locus, while 5C looks at all interactions in a larger region. The newest method, High throughput 3C (HiC), can even look at all interactions in a genome datasets. This makes it possible to study all genomic interactions in an organism at once.(Li et al. 2014)
[image: ]
[bookmark: _28jxwnhgu8sx][bookmark: _3pvztp2kv81k]Figure 3 - The basics of Chromatin Conformation Capture assays. All chromosome conformation capture techniques still operate using the same basics. Interactions are fixated using formaldehyde by crosslinking. This crosslinked DNA is digested and ligated. This ends with a DNA hybrid containing both DNA loci that were present in the interaction, which can be studied further using PCR and sequencing techniques. (Li et al. 2014)
[bookmark: _rc8sj3n434sp]1.5 High throughput 3C
HiC still uses the same concept as 3C. All DNA gets crosslinked using formaldehyde. After this, all hybrids are marked with biotin at the ends and are ligated (Fig. 4). Biotin that are present at the ends are removed. This makes it possible to only select hybrids containing Biotin and therefore only target actual interactions. This is done by using a biotin-targeted pulldown technique. After this sequencing is done for locating and quantifying the interactions. (van Berkum et al. 2010; Li et al. 2014)

[bookmark: _3w3h28svtgpi][image: ]
Figure 4 - High throughput genome conformation capture (HiC).  HiC still keeps the main crosslinking procedure from 3C. After that it adds biotin when ligating (blue circles). This means when a biotin molecule is present inside a crosslinked DNA hybrid, this is a correctly ligated interaction. Using a biotin pulldown technique only actual interactions get selected. These biotin-labeled DNA molecules undergo PCR and sequencing as usual, but using the biotin technique can select all interactions in a genome at once. (Li et al. 2014)
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1.6 HiC visualization and data processing

The HiC method results in large datasets containing interaction values between all loci present in the dataset. This data can be stored in a matrix, where the X and Y axes contain the locations and each datapoint shows the interaction between locus X and locus Y. This matrix can be easily printed into a heatmap, where color intensity shows the amount of interaction of this datapoint. A HiC heatmap can clearly visualize TADs this way (Fig 6). Although the interactions and TADs can be visualized by the human eye, the amount of data and data complexity makes this almost impossible. Several biological biases and technical biases make normalization and correct data processing necessary for studying HiC data (Lyu, Liu, and Wu 2020). To tackle this problem softwares and algorithms have been developed, as the complexity of the total HiC data processing is very high (Fig 5) (“Hi-C Processing Pipeline” n.d.; Dekker et al. 2017). These softwares can extract, process and normalize the data and also create different (visual) representations of the HiC data. Different methods have been created through the years to do this and tackle the problems in different ways. For the actual interaction-loop calling stand-alone softwares are made that use the processed data. 




[image: ]
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Figure 5 - 4DN HiC workflow shows the complexity of the data processing.  Data processing for the HiC workflow starts with the sequencing files obtained from the conformation capture assay. These read files are first aligned to a reference genome. After that they are filtered, which deletes duplicates and only keeps correct HiC interactions. Finally matrix generation takes place where the data is stored in one of the possible file types that can be converted to HiC matrices. (Dekker et al. 2017; “Hi-C Processing Pipeline” n.d.)
[image: ]
Figure 6 - Visual representation using a HiC matrix of 4DN dataset. A visual representation of chromosome 5 of the 4DNFI1UEG1HD dataset. Brighter red spots show higher amounts of interaction than whiter spots. The X and Y axes contain all loci of chromosome 5 where the crosspoints contain the interaction value. As can be seen, a big gray cross is present at ~44Mb. This is due to the centromere being there and no data is present for these. (Durand, Robinson, et al. 2016)
[bookmark: _f4lhqdviln6z]

[bookmark: _no6kdspnz2m9]1.7 HiCCUPS loop caller

One golden standard loop caller is HiCCUPS. This method will be used all through the report as reference. HiCCUPS loads HiC data from .hic data files and applies Sinkhorn-Kopff-like normalization to the whole data matrix. This normalization method creates a matrix where all rows and columns are equal to a sum of 1, which makes all rows and columns comparable. After this HiCCUPS searches for interaction hotspots (red spots) in the HiC matrix. When a suspected increase of interaction is found, it needs to be statistically confirmed. HiCCUPS does this by using the surrounding data as background. When looking at the ratio of interaction between the suspected point and surroundings (Fig 7) high enough ratios can confirm an increase of interaction in this area. This method using a regional background has been used to find thousands of interactions loops genome wide. (Durand, Shamim, et al. 2016)
[image: ]
Figure 7 - Schematic representation of HiCCUPS loop calling. HiCCUPS searches for interaction hotspots. When found, HiCCUPS selects the region, where surrounding data is used as background. The background used is marked in blue, black, green and black boxes. HiCCUPS uses the ratios between these background regions and the center. A high ratio means that there is a lot of increase compared to the background and using thresholds loops can be called.  (Durand, Shamim, et al. 2016)
[bookmark: _vjbsegxj4h13][bookmark: _vmrl2bu8e0ez][bookmark: _hzount7ke1hn]

[bookmark: _hc27znv0bioj]1.8 PeakHiC is a loop caller using the V4C space
Another method is PeakHiC. PeakHiC works fundamentally differently when compared to HiCCUPS. When using PeakHiC first a region of interest is selected, which is called the View Point. From this ViewPoint a virtual 4C (V4C) profile is created, which contains the interaction data of this one locus with the rest of the dataset (Fig 8). After this, the V4C profile is normalized using the total length of this V4C profile and the amount of fragments present. Isotonic Regression is applied to this V4C profile to create a background. Isotonic Regression is a never increasing function and is used to create a background in which the interaction lowers by increase of distance from the viewpoint. This is based on the assumption that when the distance normally increases in terms of base pairs, you would normally expect a decrease in interaction unless a TAD/loop is present. Therefore, all interactions above this isotonic regression can be considered an increase of interaction and the presence of a loop. To validate a possible loop, reciprocality is used. This means that the increase in interaction also should be visible when looking from the other side of the interaction (Fig 8). At last, a loop found by PeakHiC is statistically confirmed by using replicate datasets and rank sum tests. Using this method PeakHiC can reach high resolution loop calling and finds lots of loops. Besides that, PeakHiC also incorporated a way to determine loop strength by using the isotonic background. As the PeakHiC method is a very promising and good working method, we present multiple additions that could advance it even more. (peakHiC: peakHiC Method to Identify 3D Chromatin Interactions (loops) from HiC Data n.d.; Bianchi et al. 2019)


[bookmark: _gtg2thxt90ly][image: ]
Figure 8 - PeakHiC loop calling schematic visualization. PeakHiC first selects a region of interest, it does this by using the Virtual 4C profile of one row in the matrix. When select Isotonic Regression is applied, which can be seen by the white dashed line in the green profiles. When the interaction profile shows interaction values which are significantly above this isotonic regression, it is considered a loop. To validate this, reciprocality search is used. Here the interaction is viewed from the other side of the interaction, where the loop loci now is the View Point. If here the loop is also found it is considered validated.  (Bianchi et al. 2019; peakHiC: peakHiC Method to Identify 3D Chromatin Interactions (loops) from HiC Data n.d.)[image: ]
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[bookmark: _hpyxqbc5v7s6]1.9 PeakHiC 2.0: PeakHiC empowered by machine learning
As the PeakHiC software already shows good results, PeakHiC 2.0 will build further on the original algorithm. Therefore loops will still be called in the V4C space using isotonic regression. The changes that are presented therefore mostly will be in data processing, like smoothing, normalization and statistics.
 
[bookmark: _bvrdfjxxfixb]1.10 Row-only normalization vs full matrix normalization
The main reason to alter the normalization method compared to the original PeakHiC, is that PeakHiC uses V4C normalization and genomic fragment sizing instead of bin sizing. V4C normalization only normalized the row of the View Point (VP). This means only these specific interactions are normalized when using this kind of normalization. Columns are not normalized and therefore only one way of the interaction is normalized (VP vs bin). However, when the location of this bin for example is a very unique region with exceptionally high or low interaction with multiple regions, this is not taken into account with this normalization method. To tackle this incomplete way of normalization, which can create biases, whole matrix normalization is a better option. This all columns and rows are normalized at once, which limits biases of certain regions as they are normalized vs the whole genome instead of vs only one interaction with the viewpoint.
[bookmark: _jfbivr7drbgq]
[bookmark: _huec0uv9ce9z]1.11 Rolling mean vs Gaussian smoothing

The original PeakHiC also used a smoothing algorithm. A rolling mean kernel was used, but this can be considered non optimal. Rolling mean places a kernel over the data where the mean of the underlying bins is applied to X amount of bins. This means that all bins are weighted equal. This means that the edges of the kernel weigh as much as the middle, meaning that a clear upwards/downwards trend in the data can be completely flattened. Other smoothing methods tend to handle fluctuating data better, where the trend of the data is stored but noise is still reduced. Therefore for PeakHiC 2.0 we suggest another smoothing method to treat the data better for later stages in the algorithm. 
[bookmark: _9def0e3akac1]
[bookmark: _bhh0zz7f6sve]1.11 Intrinsic background creation vs seperate background datasets
As stated, PeakHiC uses separate datasets for background creation and statistical testing. As HiC data is expensive and scarce, this can be considered non optimal. Therefore we propose a method in which the original dataset can be used as background, by creating backgrounds using the rest of the genome. Using V4C profiles of sortlike interaction regions instead of different datasets, this eliminates the actual need of background datasets. Similar looking V4C profiles show a sort-like interaction decay profile. Using these similar profiles you can create a background profile that shows the average of these decay profiles. So instead of using the exact same location from replicate datasets, we look for similar V4C in the original dataset both leading to an average decay profile. So, because similar decay profiles exist these can be used instead of replicate datasets, eliminating the need for replicates.
[bookmark: _m2s8loavbskt]This intrinsic background creation does ask for other alterations though, like other statistical methods.
[bookmark: _pkely645208]2 Methods
[bookmark: _7s6uqrhri54a]2.1 Data used & data processing
The HiC data used is 4DNFI1UEG1HD (“4DNFI1UEG1HD.hic – 4DN Data Portal” n.d.). This is a HiC dataset that resulted from in situ HiC on GM12878 cells. It is associated with genome assembly GRCh38 (hg38, human). The dataset is stored in the .hic filetype coming from the 4DN data portal, which is a binary file containing the contact data of interest. The 4D Nucleome program contains different tools and datasets to understand human DNA and genome organization, which includes interaction between genomic locations. The dataset used in this report is one of the ~2000 available datasets on the 4DN portal. This data is accessible using the StrawAPI, which is used for this report for loading in the data and VC_SQRT normalization (Durand, Shamim, et al. 2016). Due to computational reasons only Chr5 has been used for creating the current PeakHiC 2.0. As edges of HiC matrices do show lower quality of data, the region from 5Mb to 175Mb has been selected. This 170Mb region has been subdivided in 17 submatrices of 10Mb data with 1.5Mb overhangs on either side (Total: 13Mb) to counteract bias at the edges of the 10Mb matrices when doing normalization or other data processing methods. Each step described further in the report is therefore applied to 13x13Mb matrices and the final results are created using 10x10Mb matrices. The different tools and packages used can be found in the supplementary. 

[bookmark: _60iqy6hy22wh]2.2 Full-interaction normalization
One of the most important parts of HiC data processing is the normalization. This is because the point of interest is not absolute values, but the relative amount of interaction. Different normalization methods are possible, but due to the flexibility Vanilla Coverage Square Root (VC_SQRT) normalization is the normalization method of choice for PeakHiC 2.0 (Rao et al. 2014; “normVC - Normalization by Vanilla-Coverage — Genome Contact Map Explorer - gcMapExplorer 1.0.30 Documentation” n.d.). VC_SQRT normalization divides each bin in the HiC matrix by the square root of the total sum coverage. The end result of this normalization is a matrix, where the sum of each row and column are approximately equal. To make this possible the data has been loaded in bin-format in 10Kb resolution, making every datapoint the same size and therefore making this normalization method possible.


[bookmark: _ed4uexybtiil]2.3 Gaussian smoothing
Gaussian smoothing is a method which smoothens data by using a kernel. This kernel lays the focus on the middle of the kernel by weighing this bin higher and lower at the edges, representing a sort-like pattern to a normal distribution. The gaussian smoothing is set up in a way that it does not delete too much detail, so that obvious loops are still clearly visible and findable. It is applied in a 1D fashion using a 7-bin kernel and a σ value of 0.75. Another option would be 2D gaussian smoothing, which will smooth the rows and columns at once by moving in a 2D space and therefore take the whole surroundings of a datapoint into account (Roayaei Ardakany et al. 2020). However, for computational and simplicity reasons we right now choose 1D gaussian smoothing. Although not using 2D smoothing, we still take into account row and column wise interactions by smoothing both columns and rows and taking the most conservative values. The smoothing reduces noise and data regularities and of course deletes some detail. The gaussian smoothing is set up in a way that it does not delete too much detail and still contains enough contrast to find actual loops.

[bookmark: _8asxjd7pglfa]2.4 Similarity search
The main addition to the original PeakHiC pipeline is the option of not needing replicate datasets. Therefore PeakHiC 2.0 uses intrinsic background creation. In PeakHiC the background is created using Isotonic Regression, which is applied on the V4C profile of interest. 
As the genome is a very big dataset containing very many of these V4C profiles, it can be expected that it also contains similar looking interaction profiles throughout the genome. Assuming this, the isotonic profiles of these similar looking V4C profiles can be used to create an in one-dataset created average isotonic background.
For this research, this is started by first calculating the isotonic profile for each profile in Chromosome 5. Collecting these profiles resulted in 34,034 isotonic profiles, each containing 2.5Mb of 10kb resolution. 
As we are interested in the similarity in terms of the trend and course of the data and not the absolute values, it is needed to normalize the data to make this comparison. The normalization method of choice Z-score normalization. This means that for each isotonic profile now each bin contains a Z-score which tells if that exact bin is relatively high or low compared to the average of the whole isotonic profile and by that contains the course of the isotonic regression instead of only absolute values.
To actually cluster all of these profiles, PeakHiC 2.0 uses the KDTree method. KDTree is a clustering method where all datapoints are subdivided in X amount of axes based on their properties. For this example, the data points are the normalized isotonic profiles, which are labeled. The properties to distinguish the data points from each other are the Z-Score normalized bins in each normalized profile. Using these properties, spaces in the KDtree get partitioned, where every node represents a further partitioning in a certain dimension (Fig 9). This results in a k-dimensional space which is partitioned in many small spaces, which can be used for searching methods.
To actually find the similar profiles for X location, nearest neighbor search is applied. For this a ‘key’ (region of interest) needs to be given, in the same data format as where the tree is built from. By inserting this, it will first go down the whole tree and mark the found leaf node as ‘best’. After this, the tree will be traversed back in and the algorithm will look if any closer points can be found at each node and also look at the other subtree if closer points are present there. It does this by looking at the Euclidian Distance from that section to the key and comparing this to the Euclidean distance between the key and the current best. This way it will find the closest point, by excluding points that are too far away resulting in the nearest neighbor. (“Find Nearest Neighbor Using KD Tree” 2020)









[image: ]   Figure 9 - K-dtree schematic representation. The k-dimensional tree is an algorithm used for organizing data points in a multi-dimensional space. In this schematic representation, the right part can be seen as the spatial partitioning that is done, where the blue dots are data points (profiles in our case). By partitioning the space, the data points can be subdivided into small partitions using partition borders. The borders used for this can be seen as nodes in the decision tree at the left. Each border/decision leads to a smaller subpartition and finally partitions every datapoint. When doing a nearest-neighbor search the datapoint goes through this decision tree to find its most similar looking datapoint. This way similar profiles can be found. (Jiang, Cheng, and Ohno-Machado 2011)
[bookmark: _ey7gmupphvw0]
[bookmark: _7q5w7e35b0cg]2.5 Intrinsic background creation
As explained, using KDtree and NN search similar looking isotonic profiles can be found. Where the original PeakHiC uses replicates to statistically confirm loops, PeakHiC 2.0 does this by creating an intrinsic background from these similar isotonic profiles (Fig 10). When doing the nearest neighbor search, PeakHiC 2.0 selects the 100 nearest data points. From these 100 isotonic profiles an average isotonic profile can be calculated, which can be called the average background. As we can also calculate the variance and standard deviation from these 100 profiles, statistical values can be calculated. This background represents similar looking regions and the variance in this kind of interaction profiles, thereby also counting in the uniqueness of the region of interest. In this report only Chr5 has been used for loop calling and the background creation due to computational reasons, which is most likely suboptimal.
This background is the average of the isotonic regression profiles of the 100 most similar isotonic profiles. Hereby the isotonic regression used in PeakHiC is still used. However, PeakHiC only uses it to correct for the natural decay profile of HiC data. PeakHiC 2.0 also uses it for the similarity search, which is needed as we want to find a background and delete possible loops during the background similarity search. So in loop HiC 2.0 fulfills another role compared to the original PeakHiC; similarity search and creating an average decay profile.
[image: ]
Figure 10 - Example of similarity search (5 similars selected). The original profile (blue) and its similars found by the similarity search described in this report. The figure shows that not only similars in close proximity can be found, but also further away from the queried profile.  
[bookmark: _m40ckpz0pz8x]
[bookmark: _4btybefur200]2.6 Loop calling
When the average isotonic profile and standard deviation are obtained, again a Z-Score can be calculated (Fig 11). This Z-Score is calculated by putting the interaction profile of interest vs the average isotonic background. Per bin a Z-score will be calculated. This Z-Score represents the difference between the amount of interaction of this bin vs the average background. High Z-Scores thereby conclude a higher amount of interaction, while low Z-Scores conclude less interaction than average. As we are interested in loops, a threshold is set for positive thresholds at Z-Score >= 4 or >=6. We found that the Z-Score statistic became too noisy after ~1.5Mb due to an expected very low variance in relatively low interaction regions. This resulted in loops called where only very small differences in interaction were found, which is most likely noise. To combat this, only loops were called in the first 150 bins of each profile. Although this threshold is not perfect for all profiles, it did reduce loops called in this noisy data.
[bookmark: _m742e3gwaklc][image: ]
Figure 11 - Loops can be called using the average isotonic background and standard deviation. Using 100 similar looking isotonic backgrounds, the average isotonic background can be calculated. Using the average and the standard deviation, Z-Scores can be allocated to all bins of the Virtual 4C profile after this. 
[bookmark: _yfzgil1xj47g]
[bookmark: _6pxnbmeldami]2.7 Summary of the total pipeline
PeakHiC 2.0 tries to keep the identity of the original PeakHiC intact while adding and finetuning some aspects of the pipeline. This is firstly done by rewriting PeakHiC from R to Python, which we think is more diverse and less limited for a final product. This means fundamental code and packages do differ between the two loop callers. The actual pipeline can be seen in Fig 12, where green boxes are totally new parts added for the new type of data processing and analysis. 

[image: ]
Figure 12 - Summary of the PeakHiC 2.0 pipeline. Flowchart of the PeakHiC 2.0. Green parts are new additions and/or alterations that significantly changed the pipeline.
[bookmark: _f0p2z1kph2jw]3 Results
[bookmark: _uowi6mydkqy0]3.1 Comparison of loops identified by PeakHiC 2.0 and HICCUPS
Total loops of chromosome 5 have been compared between HICCUPS and PeakHiC 2.0. The results of this can be seen in table X. Z-Score thresholds of respectively >=4 and >=6 have been chosen to also see the impact of threshold difference. As seen, both thresholds call a higher amount of total loops. A lower Z-score threshold also shows more overlap with HICCUPS, but also shows a very high increase in total number of loops called compared to the higher Z-Score threshold. 


Table 1 - Results versus HiCCUPS
	 
	Total loops

	HICCUPS
	540

	
	Loops shared with HICCUPS
	Total loops

	More stringent
(Z-Score >6)
	162
	925

	Less stringent
(Z-Score >4)
	268
	2708




[bookmark: _u2cotba1oaxo]3.2 APA shows less enrichment in PeakHiC 2.0 than HICCUPS
Aggregate loop analysis (APA) is a tool used to look at the quality and thereby enrichment of the loops (Durand, Shamim, et al. 2016). At the center of the plot all found loops are present and all data surrounding the center is surrounding data from the loops. Therefore, if the center shows enrichment and thereby is more red than the surrounding pixels this means that the loops are actual loops and show more interaction than background data. To actually quantify these ratios are calculated. These ratios are the ratio between the center and one of the corners of the APA plot (Fig 13). It is recommended to take the ratio of the lower left corner as final measurement. As seen, both HICCUPS and PeakHiC 2.0 show some enrichment in the middle and therefore have loops that are higher than the background. It is clear that the enrichment from HICCUPS is higher. When comparing different Z-Scores it is clear that the ratios become higher when the Z-Score is more stringent, meaning that a more stringent Z-Score means a higher quality of loops, albeit a lot less loops in total. The lower ratio in the PeakHiC 2.0 APA analysis suggests a total lower quality of loops when compared to HiCCUPS, wherefore the reasons are discussed in the discussion.


[image: ][image: ]

Figure 13 - APA analysis HiCCUPS (left)  loops versus Z-Score >6 PeakHiC 2.0 (right). APA analysis compares the loopset with surrounding background data. In the center, the loops are found and show enrichment (more red) in both samples. Each APA analysis shows four corners with ratios. These ratios are the ratio between that locus compared to the center where the loops are. A higher ratio means more enrichment of the loops and therefore makes the loops more significant. APA uses the Peak to lower left (P2LL) ratio to show the results. This ratio is the ratio of the central pixel compared to the mean of the lower left corner. While both show a ratio significantly higher than 1 and both therefore show enrichment, the HiCCUPS dataset clearly shows a higher ratio. (Durand, Shamim, et al. 2016)
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[bookmark: _j08yf9eg5g1k]3.3 V4C profile and Z-Score show loops called
Off all loops called a portion are loops that are clearly visible in the coverage profile (Fig 14). In the example below, three clear loops are visible in the coverage and are confirmed with all relatively high Z-Scores. This suggests a good background that statistically confirms these loops as significantly higher. These loops were also confirmed by HiCCUPS.

[bookmark: _npy599fww7qa][image: ]
Figure 14 - Viewpoint 115.310.000 shows 3 PeakHiC 2.0 loops. This viewpoint clearly shows three loops in the coverage of which all three are confirmed by high Z-Scores (>6). All three loops have also been confirmed by HiCCUPS.
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[bookmark: _xt94p499c5cz]3.4 V4C profiles show novel loops compared to HiCCUPS

Besides calling obvious loops and HiCCUPS confirmed loops, PeakHiC 2.0 also calls novel peaks when compared to HiCCUPS (Fig 15). While the second peak is a loop also confirmed by HiCCUPS, the first peak is a novel loop compared to HiCCUPS. It can be suggested more of these novel peaks have been found, although exact numbers have not been determined at the moment. 
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Figure 15 - Viewpoint 152.550.000 shows 2 PeakHiC 2.0 loops. This viewpoint shows two clear Z-Score confirmed loops. Peak 2 has been confirmed by HiCCUPS. Peak 1 however is a novel loop, which is not confirmed by HiCCUPS. This shows that PeakHiC 2.0 also finds novel loops compared to HiCCUPS. 


























[bookmark: _lf16ply7079h]3.5 V4C profiles show missing loops compared to HiCCUPS
Besides calling actual loops, virtual 4C profiles also show clear loops that are not called by peakHiC 2.0 (Fig 16). Several loops that were obvious in the coverage profile did not result in callable Z-Scores and therefore lots of loops found in HiCCUPS could not be confirmed in PeakHiC 2.0.
[image: ]
Figure 16 - Viewpoint 81.750.000 shows a missed loop in the V4C profile. A clear loop is present in the coverage (green), which is also confirmed by HiCCUPS. However, PeakHiC 2.0 does not call this loop. Many loops were missed by PeakHiC 2.0.
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[bookmark: _t558sn7yg2xd]4 Discussion

[bookmark: _xe2ctfsumg7e]4.1 Sparsity leads to false positives 
As seen in the result section, PeakHiC 2.0 shows a lot more loops than HICCUPS. A small part of these can be explained by real novel loops, but many of them are false positives. These false positives are present in different forms and may be possible to be filtered out in future work. Many of the false positives are present in regions of sparsity (Fig 17). Here the data is sparse or is filled with NaN’s. This means that these rows will find other sparse rows resulting in low variance and therefore random loop calling across these regions, which is indeed confirmed in V4C profiles (Fig 18). It was tried to counteract this by replacing NaN’s by the mean value of the first non NaN’s before and after the NaN region, as well as using a minimal coverage threshold. As seen, this most likely reduced some of the sparsity induced false positives but many of them are still present. Although not implemented at the moment, there are most likely solutions for this problem. One of them is imputing this data, so inserting random values in these regions. This makes it less likely to find good similars and start loop calling in these regions, thereby solving the problem of low variance and empty regions. Another option is region exclusion, where the user can select regions to exclude and thereby can selectively exclude sparse regions from loop calling. Of course there can also be look at other thresholds, like max amount of NaN’s allowed or a stricter coverage threshold.

[image: ]
Figure 17 - Sparse region in JuiceBox still shows loops called by PeakHiC 2.0. Regions with sparse data still show loops called PeakHiC 2.0 (green boxes), as expected HiCCUPS does not call these. This shows PeakHiC 2.0 still needs thresholds and more filters to exclude these regions. (Durand, Robinson, et al. 2016)
[image: ]
Figure 18 - V4C profile of VP 69.140.000 in the sparse region. Virtual 4C profiles in the region also show very low coverage and therefore high Z-Score spikes that explain the loops found.



[bookmark: _curbaxws4x24]4.2 Z-Scores show very sensitive for low variance regions 
As said, high Z-Scores can be caused by low variance, which can also occur in normal data as well. As seen in multiple V4C profiles it is clear that the coverage drastically lowers after some distance from the view point. These flattened/low parts of the profile are more sensitive, due to the relatively high average and low standard deviation at these regions. This means that a small difference in coverage can already create huge spikes in Z-Scores, calling false positive loops (Fig 19). Looking at different V4C profiles we concluded that these flattened regions started after ~1.5Mb from the view point. Therefore a threshold was set to only call loops until 1.5Mb after the view point. Still this threshold is not perfect as sometimes these regions start a bit earlier than 1.5Mb and false loops are still called due to this. Therefore a different solution must be found. One of them could be to use a dynamic Z-Score threshold. This dynamic threshold can scale with distance from the viewpoint, resulting in a higher and more stringent threshold when further away from the viewpoint. This counteracts the drastically declining standard deviation. Another option could be to set a minimal coverage threshold for smaller parts of the profile and exclude very low (on average) regions. This can be combined with a standard deviation threshold. This means that regions with very low coverage and very low standard deviation can be excluded using this tactic, reducing the loops found in these low variance/coverage regions further from the viewpoint.
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Figure 19 - Regions further away from the VP show high Z-scores due to low variance. Distances further from the viewpoint show fluctuating Z-Scores. This is right now tried to be countered by setting a hard cut-off for loop calling after 1.5Mb from the VP. As seen in this profile though, it does start a bit before 1.5Mb and other distance related thresholds or solutions need to be thought off to delete further distance false loop calls.
[bookmark: _keydh22gx136]
[bookmark: _y98g7grkyf7a]4.3 Identification of loops close to the VP
Besides false positives, the relatively low amount of corresponding loops between HICCUPS and PeakHiC 2.0 can be explained by false negatives. There are multiple reasons why false negatives are or could be present using the current version of PeakHiC 2.0. The first reason is due to high variance (Fig 11). In this example you see a visual loop when looking at the coverage, however this does not translate into a very high Z-Score. Most likely this region is very unique and therefore unable to find similar enough regions, leading to a high standard deviation and the low Z-Score. This first of all could possibly be fixed by using a bigger background dataset. These results are created only using Chr5 as background. When using for example the whole genome, the chance of finding better similars increases and could make loop calling possible in these more unique regions. Another option is, as we discussed before, using a dynamic Z-Score threshold that takes the range from the viewpoint and standard deviation into account. This could include loops with lower Z-Scores when close to the view point. 

[bookmark: _amf94x3zikak]4.3 Unique regions can complicate similarity search
While the similarity search performs for V4C interaction profiles that have actual similar looking profiles, it does not for very unique regions. For very unique regions, similar profiles will not be found leading to a background with very high standard deviation and variance. This means that across the whole profile only low Z-Scores will be calculated, leading to no loop calling in these very unique areas. This could possibly be countered by using more data, as the chance of finding a similar region increases. Ofcourse, for these regions also the option could be added to actually use replicates for these regions. 
[bookmark: _luwdwwh6cdn8]
[bookmark: _4jgddl74nv12]4.5 Future research and additions
Right now the PeakHiC 2.0 software does show to work in certain regions. Like described above, still a lot of problems occur and need to be fixed by adding these tools and alterations over time. Besides the problems described above, PeakHiC 2.0 also still requires optimization in other parts of the software. First of all, the parameters of the Gaussian Smoothing need to be revisited as right now they have been chosen using trial and error and therefore can still be optimized specifically for PeakHiC 2.0. Also parameters for the k-means clustering can be optimized or even a totally other method can be chosen. While k-means works for now and is rather fast, other methods that do use other measurements than euclidean distance could be more accurate for PeakHiC 2.0. PeakHiC 2.0 also already tries to combat sparse data with a minimal coverage threshold. Thresholds for this problem also need more finetuning as the problem still occurs. Another important step to consider for the future is to test PeakHiC with more data and bigger datasets as right now it only is tested for Chromosome 5 with one dataset. Testing with (optional) background datasets and using the whole genome for the similarity search could potentially already delete some of the problems described above.

All in all, PeakHiC 2.0 shows the possibility of HiC loop calling without the need of replicate datasets. While it does not perform optimal at the moment, it paves a way of more advanced HiC loop calling in the near future.



[bookmark: _db6w27mx58hl]References
“4DNFI1UEG1HD.hic – 4DN Data Portal.” n.d. Accessed February 28, 2022. https://data.4dnucleome.org/files-processed/4DNFI1UEG1HD/.
Berkum, Nynke L. van, Erez Lieberman-Aiden, Louise Williams, Maxim Imakaev, Andreas Gnirke, Leonid A. Mirny, Job Dekker, and Eric S. Lander. 2010. “Hi-C: A Method to Study the Three-Dimensional Architecture of Genomes.” Journal of Visualized Experiments: JoVE, no. 39 (May). https://doi.org/10.3791/1869.
Bianchi, Valerio, Geert Geeven, Nathan Tucker, Catharina R. E. Hilvering, Amelia W. Hall, Carolina Roselli, Matthew Hill, et al. 2019. “Detailed Regulatory Interaction Map of the Human Heart Facilitates Gene Discovery for Cardiovascular Disease.” https://doi.org/10.2139/ssrn.3416642.
Dekker, Job, Andrew S. Belmont, Mitchell Guttman, Victor O. Leshyk, John T. Lis, Stavros Lomvardas, Leonid A. Mirny, et al. 2017. “The 4D Nucleome Project.” Nature 549 (7671): 219–26.
Durand, Neva C., James T. Robinson, Muhammad S. Shamim, Ido Machol, Jill P. Mesirov, Eric S. Lander, and Erez Lieberman Aiden. 2016. “Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom.” Cell Systems 3 (1): 99–101.
Durand, Neva C., Muhammad S. Shamim, Ido Machol, Suhas S. P. Rao, Miriam H. Huntley, Eric S. Lander, and Erez Lieberman Aiden. 2016. “Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments.” Cell Systems 3 (1): 95–98.
“Find Nearest Neighbor Using KD Tree.” 2020. Kanoki (blog). August 5, 2020. https://kanoki.org/2020/08/05/find-nearest-neighbor-using-kd-tree/.
“Hi-C Processing Pipeline.” n.d. Accessed February 28, 2022. https://data.4dnucleome.org/resources/data-analysis/hi_c-processing-pipeline.
“Human Genome Project FAQ.” n.d. Genome.gov. Accessed February 28, 2022. https://www.genome.gov/human-genome-project/Completion-FAQ.
Jiang, Xiaoqian, Samuel Cheng, and Lucila Ohno-Machado. 2011. “Quantifying Fine-Grained Privacy Risk and Representativeness in Medical Data.” In Proceedings of the 2011 Workshop on Data Mining for Medicine and Healthcare, 64–67. DMMH ’11. New York, NY, USA: Association for Computing Machinery.
Li, Guoliang, Liuyang Cai, Huidan Chang, Ping Hong, Qiangwei Zhou, Ekaterina V. Kulakova, Nikolay A. Kolchanov, and Yijun Ruan. 2014. “Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) Sequencing Technology and Application.” BMC Genomics 15 Suppl 12 (December): S11.
Lupiáñez, Darío G., Katerina Kraft, Verena Heinrich, Peter Krawitz, Francesco Brancati, Eva Klopocki, Denise Horn, et al. 2015. “Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions.” Cell 161 (5): 1012–25.
Lyu, Hongqiang, Erhu Liu, and Zhifang Wu. 2020. “Comparison of Normalization Methods for Hi-C Data.” BioTechniques 68 (2): 56–64.
“normVC - Normalization by Vanilla-Coverage — Genome Contact Map Explorer - gcMapExplorer 1.0.30 Documentation.” n.d. Accessed February 28, 2022. https://gcmapexplorer.readthedocs.io/en/latest/commands/normVC.html.
peakHiC: peakHiC Method to Identify 3D Chromatin Interactions (loops) from HiC Data. n.d. Github. Accessed February 28, 2022. https://github.com/deLaatLab/peakHiC.
Rao, Suhas S. P., Miriam H. Huntley, Neva C. Durand, Elena K. Stamenova, Ivan D. Bochkov, James T. Robinson, Adrian L. Sanborn, et al. 2014. “A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping.” Cell 159 (7): 1665–80.
Roayaei Ardakany, Abbas, Halil Tuvan Gezer, Stefano Lonardi, and Ferhat Ay. 2020. “Mustache: Multi-Scale Detection of Chromatin Loops from Hi-C and Micro-C Maps Using Scale-Space Representation.” Genome Biology 21 (1): 256.
Spielmann, Malte, Darío G. Lupiáñez, and Stefan Mundlos. 2018. “Structural Variation in the 3D Genome.” Nature Reviews. Genetics 19 (7): 453–67.
Valton, Anne-Laure, and Job Dekker. 2016. “TAD Disruption as Oncogenic Driver.” Current Opinion in Genetics & Development 36 (February): 34–40.


2
image2.png
vs reference genome

Vs custom genome

O Boundary

I Gene

| Regulatory element
6& Ectopic contacts

Deletion Duplication Inversion
Fused TAD ~
' - NeoTAD Shuffled TAD
TAD TAD ——————— Shuffled TAD





image3.png
Chromosome Conformation Technologies

crosslink digest crosslinked ligation reverse
chromatin chromatin crosslinking

ChiP-loop ChIA-PET

e S S

addition of
adapters and
ligation on the
beads

with 4bp RE

(semi-)quantitative * ligation on
PCR

— the beads

ligation and
¥ tgaton ¥ PR
* enrichment

¥ e reverse
crossiinking crossiinking

+ —

m ’ digestion
—
adapters

EfRaray oS sauencag * and PCR semi quantitative PCR

—_—
’ adapters and
PCR
e —
C —

\

sequencing sequencing

microarray
or sequencing

one vs one one vs all many vs many all vs all one vs one all vs all





image4.png
Alignment vs ref. genome

- o
- e
- | B aonFssie) - ——

B mrssomos
o -

contact s replcate

:
Igé

contact mtric

Ir
H

el

contact mtric

pairs

-
H
3
:
g,
:
FH
H
:

contct st combined:

-
H
i
H
H
Ig

reads slignment




image5.png
100 MB 120 MB 140 MB 160 MB 180 MB
| | | | | | | | | |

160 MB 140 MB 120 MB 100 MB 80 MB 60 MB 40 MB 20 MB

30 MB




image6.png
)

o1 5

wmr

s





image7.png
c o

ot 129 S0 A Bz 183

:

=

ek





image8.png
. VAC(viewpoint A): pesk caling finds &





image9.png
1

13





image10.png
s00

400

300

100

Original profile and some similars (VP ChrS 115310000

— original
79550000
115330000
50590000
79560000
14600000

20 ) £ & 100 120
Bing

100




image11.png
Coverage + Average Background

— Average Background Profie
= Coverage
5 StDev Average Background





image12.png
Pair-wise Gaussian smoothing Creating Isotonic Regression
normalization (Row + Collumns) profiles

Calculating Z-
scores

Loading in _hic file (StrawC)|

Intrinsic
Find # of similars background

creation

Create KD-tree using Z-
scores

Select region of
interest

Calculate per
bin Z-score





image13.png
104
2]
<
4
5]
B
4]
aq
24
1
o)
10}
24)
a
)
s
&)
79
ag)
ag)
104

N=301 (filtered) 541 (unique) 541 (total), P2LL = 3,240

sa%0 [
2240 se70
SIFNEFTINTS TSNS aS

28970

20183,

17387,

11501,




image14.png
104
2]
<
4
5]
B
4]
aq
24
1
o)
10}
24)
a
)
s
&)
79
ag)
ag)
104

N=751 (filtered) 925 (unique) 925 (total), P2LL = 1,832
2202 a6
e 2508
R R R

s1421,

44904

az13n,

25710,

10280,

12855,

64277




image15.png
Coverage + Z-Scores

10





image16.png
Coverage

Coverage + Z-score (Chr5 - VP 152550000)

® ®
s e

¥
Locus (bo)

o

o

1





image17.png
Possible False Negatives (ChrS - VP 81750000)

Locus (bp)

— sverage Background profle
Coverage

5 Stbey Average Backsround

— Zscore

1

1




image18.png
59,300 KB 69,200 KB 69,100 KB 69,000 KB 65,900 KB 65,600 KB

69,400 KB

400 KB 69,500 KB 69,600 KB 69,700 KB 69,800 KB 69,900 KB 70,000 K8 70,100 K8 70200 k8 70,300 k8. 70,400 k8 70,500 K8 70,600 K8 70,7008 7
| ! I 1 | | | | | | | I 1 1 |
[ ]
a
a o
[ ] o
o
o L]
o
o
=]
o
[]
@ -
[ 5 y

A4




image19.png
Coverage

Interaction profile 69.140.000 with Z-Score

[
1400 1 Coverage
Z-score

1200 1

1000
800

600

400
200 l l
‘ |
000 000 090

0
6960 1000 1()50 1\,00 1&5
Locus (bp)

Z-score





image20.png
Z-scores further from VP (Chr5 - VP 58890000)

00 1
— Average Background Profie
== Coverage

350 5 StDev Average Background [ 16
— Zzscore

1
300

100

s0

&

Locus (bp)




image1.png
Chromosome
territories

A compartments

B compartments

TADs
LADs

. Nuclear lamina —

TAD

TAD

HIC maps
cicr
HKzzac |l M w ow
ATAC-seq
BGene |0 Regulatory elements @ Boundary





