Communication based on Tools being the Message:
Methodological Support for Software Project Tool Selection

Floris Wijbrands, Sietse Overbeek and Gerard Wagenaar

Department of Information and Computing Sciences, Utrecht University, Princetonplein
5, 3584 CC Utrecht, the Netherlands.

Contributing authors: f.h.f.wijbrands@students.uu.nl; {s.j.overbeek, g.wagenaar}@uu.nl;

Abstract

Documentation is an essential part of many software projects. Unfortunately, documentation is often
neglected due to a lack of interest, negatively affecting projects. Automating the process of soft-
ware documentation could help in solving this problem altogether but is, as of right now, nearly
impossible to achieve. This paper will introduce a software project tool selection method called
SoPro-TSM that allows automatic documentation to be a part of the selection process. The idea
behind SoPro-TSM is based on a concept called “tools are the message”. This concept implies
that, in long-lasting software projects, everything needed for documentation could be found in the
tools used within the project. This paper uses this concept to introduce a method that allows for
a software project tool selection that considers the message represented within the tools. Achiev-
ing this would lead to better insight into which parts can be automated. Two literature reviews
and stakeholder interviews at the IT company Incentro were conducted to develop the method.
The data collection results included a set of requirements and method fragments that were com-
bined and modeled in a Process-Deliverable Diagram (PDD). After validating this PDD through
several validation criteria, the concluding method could help in facilitating automated documentation.

Keywords: Software project tool selection; Automated documentation; Method construction;
Process-Deliverable Diagram; Tools are the message

1 Introduction

Software development projects contain many
variables that can impact the project in different
ways. For example, projects may involve many or
a few stakeholders, employ different development
processes, or contain differences in programming
paradigms like low-code versus traditional coding.
Regardless of the nature of a project, one thing
that does remain is the need for documentation.
While its exact structure, as well as the effort
that is put into it, may change, documentation

remains essential for each project. Allowing stake-
holders to understand and be up-to-date on the
status of a project through documentation is crit-
ical for solid communication, and project success
[38]. When different stakeholders are involved in a
project, documentation needs could change from
person to person. While one stakeholder might
want to know about the programming decisions
made during a project, another might want to
know more about specified requirements. The pro-
cess of documenting any of these things is often
not dissimilar, coming down to someone having to

2 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

spend time manually noting precisely what hap-
pened [62]. In general, this documentation task is
not seen as very hard or complicated yet deemed
quite tedious [19]. Due to this tediousness, mis-
takes can be made, or documentation can be
lacking completely if a project goes on for a long
time while neglecting documentation. This can
form an issue especially if one of the stakeholders
requests documentation when it is not present or
of high enough quality [1, 2, 20]. Even in this case,
relevant information regarding the project can
sometimes still be extracted from its tools if these
tools kept track of the correct data. Theunissen
et al. [66] elaborate on this by saying that tools
can contain the message in this case. This implies
that as long as an accommodating set of tools
was used during a project, information that needs
to be presented to project stakeholders should
be accessible within these tools regardless of any
manual documentation. This notion contains the
potential to improve project documentation by
reducing the need for manual documentation.
While the idea of tools containing the message
sounds promising, it needs to be sure that tools
contain the right message before an attempt can
be made at automating software documentation.
A comparison needs to be made between what
information stakeholders need and what informa-
tion is contained within tools used for software
projects. Software project documentation can be
at least partially automated if a set of tools is
selected and used within a software project that
satisfies the information needs of stakeholders.
Creating a method that facilitates tool selection
so that this is possible is the aim of this project.
As constructing a method is, in essence, a design
science problem, the guidelines provided by
Wieringa [76] were used for this research. Abiding
by these guidelines, a formal problem statement
was created to clarify the research goal:

This thesis aims to tmprove software documen-
tation by constructing a generalizable method
for tool selection that facilitates the selection
of tools being used for the automation of software
project documentation. This method should at
least consider the different types of stakeholders
tvolved in a project and their needs to provide
us with a tailored set of tools that contains as
much relevant information as feasibly possible.
This is done in order to save time and effort for

stakeholders involved in a software development
project as well as limit human error.

The rest of this paper will be structured as fol-
lows: Sect. 2 will introduce the applied research
approach. Sect. 3 will produce the results of the lit-
erature reviews. Sect. 4 will provide the results of
the conducted interviews. Sect. 5 will describe the
process and result of creating the initial method.
Sect. 6 will describe the results of the valida-
tion process. Sect. 7 will cover triangulation and
threats to validity. Finally, Sect. 8 will cover the
conclusions and future work.

2 Research approach

As the problem statement shows, a method needs
to be constructed for tool selection that can help
in facilitating automated documentation. The
accompanying research question that should be
answered during this research is therefore as fol-
lows:

MRQ: What methodological support can be
provided for facilitating automatic software docu-
mentation via tool selection?

Similar to the problem statement, the
approach used to answer this research question
was based on design science as described by
Wieringa [76]. Wieringa proposes a design cycle
containing three primary phases that should pro-
vide a resulting treatment upon completion. As
shown in Fig. 1, the design cycle can be executed
iteratively; however, this research opted for only
one complete iteration due to time constraints.

Implementation
evaluation / Problem
investigation
[SRQ1, SRQ2]

Treatment validation Treatment design
[SRQ5] [SRQ3, SRQ4]

Fig. 1 Adaptation of the design science engineering cycle
[76]

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

The first of the phases described by Wieringa
is called Implementation evaluation / Problem
investigation. While it might seem like this phase
should be split into two phases, implementation
evaluation and problem investigation essentially
become the same thing through iterations and
are therefore depicted as such. During this first
phase, the problem space was investigated. This
not only meant looking at any previous treatments
and their effectiveness but also formalizing what
phenomena needed to be improved. The second
phase, Treatment design, is where the research
artifact was designed. In this case, the artifact
was an approach for tool selection, as mentioned
in the problem statement. During this phase, an
initial version of the method was produced. In
the final phase, Treatment validation, the created
treatment was studied to see if it could achieve its
goals in a real-life setting. Verifying this allowed
us to fully answer the main research question
and complete the project. The application of the
selected research methods to the phases of the
design cycle is summarized in Fig. 2. A summa-
rizing Process-Deliverable Diagram (PDD) can be
found in Appendix A.

2.1 Problem investigation

As there are no previous implementations of this
specific method to evaluate, the first phase focuses
solely on the problem investigation. Wieringa [76]
explains that a problem investigation aims to
look at the problem in detail before establishing
requirements for the treatment. As such, the goals
of a problem investigation can be described as
identifying, describing, explaining, and evaluating
the to be treated problem. Two sub-questions were
posed to capture the essence of what should be
investigated during this phase.

e SRQ1: What are the current characteristics of
software project documentation?

e SRQ2: What decision factors currently go into
the tool selection process for software projects?

2.1.1 Exploratory literature review

An exploratory literature review was performed as
a first step towards completing the problem inves-
tigation. This review served to provide a basic
understanding of the problem space and start

answering the research questions that were cre-
ated. The full extent of the review was performed
by searching through Google Scholar and using
snowballing to find an expansive array of sources.
The results of this review can be found in Sect.
3.1.

2.1.2 Interviews

Expert interviews were conducted to add to the
literature review and finish off the problem inves-
tigation phase. These interviews were performed
at three different branches of the IT company
Incentro. More information on this can be found
in Sect. 2.4. The selection process for the inter-
viewees included a brainstorming session with a
team lead and operations manager at Incentro
to identify stakeholders and potential interview
participants. Within this session, ten participants
were selected, eight of whom ended up available for
an interview. An overview of the final participants
can be found in table 1. The interviews them-
selves were conducted in a semi-structured way,
including an interview protocol that can be found
in Appendix B.1. All participants also signed the
informed consent form that is shown in Appendix
B.3.

2.2 Treatment design

To guide the construction treatment design, two
additional sub-questions were posed.

e SRQ3: What method can be constructed for
eliciting documentation needs in different soft-
ware projects?

® SRQ4: How can we use the method from SRQ3
to select a complementing set of tools?

2.2.1 Systematic literature review

Before starting the construction of the eventual
method, one final systematic literature review was
performed. The research protocol for this review
can be found in table 2 and follows the guidelines
provided by Okoli [47]. While there was no spe-
cific research question coupled with this review,
its main purpose was to find applicable method
fragments as well as criteria for the to be con-
structed method. To decrease threats to validity,
the research queries were reviewed several times
before deciding on a final set. Consideration was
also made on which databases to apply the queries.

3

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

L

Exploratory literature
review

Systematic literature

—> ;
review

Expert interviews —>f

>

Method construction —>{ Validation interview —>» Document results

Fig. 2 Summarization of the research process

Table 1 List of interviewees

Name Branch Occupied function Exp. in years
IntervieweeA Data analytics and OutSystems (DOS) Project manager 0.5
IntervieweeB Data analytics and OutSystems (DOS) Data engineer/developer 8
IntervieweeC Digital Information Services (DIS) Solution architect/project lead 12
IntervieweeD Data analytics and OutSystems (DOS) Project manager/delivery manager 3
IntervieweeE ~CLOUD Cloud architect/IT consultant 8
IntervieweeF Digital Information Services (DIS) Developer 10
IntervieweeG Data analytics and OutSystems (DOS) Solution architect/project lead 11
IntervieweeH Data analytics and OutSystems (DOS) Data engineer/developer 5

While opinions on the best approach differ, there
is evidence to suggest that using Google Scholar
as a sole database can provide a 100% coverage of
research and this option was therefore chosen [24].
The results for this review are described in Sect.
3.2.

2.2.2 Process-Deliverable Diagrams

The creation of two methods as demanded by the
research questions can be a complicated thing.
Method engineering research provides some guid-
ance as to how to construct such methods; however
most of these projects describe situational meth-
ods, whereas this project aims to create a gener-
alizable method. As such, strictly applying these
methods to this research was deemed inappropri-
ate. Instead, the expert interviews were used to
extract method requirements. Method fragments
were then used to create a method that fits these
requirements. To represent and validate the con-
structed method, a PDD will be used. While the
concept of a PDD has been covered in various
works, the guidelines presented by Weerd et al.
[70] appear to be the most complete and will there-
fore be referred to for this project. As its name
implies, a PDD is a diagram including two main
components, one on each side of the model. The
first side of the model concerns the process and
displays all activities that will take place within
the method, similar to a UML activity diagram.

The second side is similar to a UML class dia-
gram. It concerns the deliverables or concepts that
result from the aforementioned activities. By cre-
ating a PDD, the order of activities and their
relation to resulting deliverables should become
more apparent. To ensure everything within the
model is understandable, accompanying activity
and concept tables were made to explain all the
terms used within the PDD.

2.3 Treatment validation

For the final phase within the design cycle, one
more sub-question was posed.

® SRQ5: How can we walidate and eventually
implement the newly constructed method?

Within the treatment validation phase, it needs to
become clear whether the constructed method is
feasible and would support stakeholder goals when
implemented. Wieringa [76] recommends doing
this through the use of a validation model. As the
name implies, a validation model is a model of
the created artifact that can be used to validate
the use of this artifact. By studying the valida-
tion model, design theories can be created which
can help in predicting the effects that implement-
ing the created artifact would have in the real
world. Wieringa proposes several methods to val-
idate a design; however, due to the availability of
experts as well as recommendation by Weerd et
al. [71], expert opinion was considered the most

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Table 2 Systematic literature review protocol

Component

Description

Purpose

Find criteria and /or method fragments of software project documentation
processes. Find criteria and/or method fragments of software project tool
selection processes.

Practical screen Inclusion 1. The research is applicable to the software industry.
criteria 2. The result is not a duplicate of other research.
3. The research is not an older version of another result.
4. A digital copy of the research is available to the researcher.
5. The research is written in a language in which the researcher is profi-
cient.
Search strategy Search “software project documentation”, “software development documen-
terms tation”, “software project”, “software development”, “tool selection”,
“method”, “criteria”, “framework”
Resources Google Scholar
Search 1. (“software project documentation” OR “software development docu-
queries mentation”) AND (“criteria” OR “method” OR “framework”)
2. (“software project” OR “software development”) AND “tool selection”
AND (“criteria” OR “method OR “framework”)
Search To limit the amount of outdated or irrelevant research as well as to limit
limits the search results to a reasonable amount, only query results from 2010

Study quality
assessment

and up were considered.

1. The research is part of a peer-reviewed journal or conference proceed-
ings [60].

2. The research contains a clear scientific method.

3. The research is elaborated to an extent where it is deemed understand-

able.

Synthesis of
extracted data

Methods, as well as criteria, are grouped and compared for overlap.

practical and accurate option available for this
project. According to Wieringa [76], validation
through expert opinion is done by presenting the
design of an artifact to one or multiple experts who
can imagine how this artifact will interact with
imaginary problem contexts. In this case, the val-
idation model would exist in the expert’s mind.
As long as the experts understand the artifact,
can imagine realistic problem contexts, and make
reliable predictions of the effects it will have, this
method can work well for validation. To provide
some structure to this validation, evaluation cri-
teria defined by Prat et al. [51] were used during
validation. Since their original list of criteria is
quite extensive and not all of them are relevant
for this research, the selection of criteria that was

used for this research can be found in table B1.
Obtaining expert opinions can be done in multiple
ways. For this research, the proposed artifact was
presented to practitioners at Incentro as well as a
method engineering expert at Utrecht University
during semi-structured interviews. As an alterna-
tive to single-person interviews, focus groups were
also considered as recommended by Venable et al.
[72] for ex-ante, naturalistic evaluation. This idea
was, however, discarded due to a lack of significant
benefits [26, 63] and scheduling constraints.

2.4 Research environment

This research was performed as a graduation
project for the Master’s program Business Infor-
matics at Utrecht University. As a result of this,

5

6 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

resources available through the university were
used where possible. One example of this was the
availability of a method engineering expert for
the treatment validation. Aside from its ties to
the university, this research was carried out in
collaboration with the Dutch IT company Incen-
tro. Incentro is a company currently active in the
Netherlands, Spain, and Kenya that works on vari-
ous digitalization projects across the world. While
it would have been beneficial for this research
to work with multiple companies, Incentro pro-
vided a unique benefit in its structure that made
it a good alternative. This is because each branch
at Incentro essentially works as an autonomous
cell with its own policies, processes, and projects.
In this way, looking at different branches within
Incentro is much like looking at different com-
panies. Throughout this research, the scope of
the interviews will focus on the larger, ongoing
projects within these branches and the experi-
ences from those working within them to maintain
focus on the relevant subject matter. The selected
branches for this research project were Digital
Information Services, Data & OutSystems, and
CLOUD. These branches work on software-related
projects ranging from creating small or large data
solutions for other companies to implementing
existing systems. The varying environments for
projects, as well as the availability of field experts,
made Incentro a solid environment in which to
perform this research.

3 Literature review results

This section will discuss the results obtained from
the two literature reviews performed throughout
this project. The exploratory review aimed to cre-
ate a foundation for the knowledge base on which
to build, and the systematic review served to sup-
plement and finalize this knowledge base. The
results of the exploratory review are primarily
descriptive and therefore depicted as such. The
systematic review aimed to collect method frag-
ments and criteria from various research, which
could be summarized in tables.

3.1 Exploratory review

Throughout the exploratory literature review, sev-
eral topics are covered that together provide an

overview of the research domain as well as high-
light the gap in research that this research aims to
fill. The first part of this review covers the concept
of software documentation in general and goes into
the current characteristics of its processes. The
second part refers to the current efforts towards
automating the process of software documenta-
tion. Finally, the concept of tools are the message
is introduced to show how a new approach could
make steps towards fully automating software
documentation via tool selection.

3.1.1 Documentation characteristics

At its core, the process of software documenta-
tion can be described as ”collecting, organizing,
storing, and maintaining a historical record of
programs and other documents used or prepared
during the different phases of the life cycle of
the software” [9, p. 2563]. While this description
captures part of the essence of what software
documentation is, the exact purpose or goal of
documentation is still often debated. One elemen-
tary way to describe the role of documentation
in a project is that it should communicate infor-
mation from software engineers to each other and
their project’s stakeholders [12]. Alternatively,
Ambler [6], and Cockburn [10] proposed that
the role of software documentation should not
be to provide information but more to convey
knowledge, meaning a reader should be able to
understand the system instead of just be presented
with tidbits of information. Aghajani et al. [2]
substantiate this school of thought by performing
a survey study among 146 professional practition-
ers on the usefulness of software documentation.
They found that explanatory documentation like
code comments can be especially beneficial for
introducing new team members to a project and
allowing them to get familiar. While neither of the
described roles of software documentation is more
accurate than the other and a perfect description
does not exist, it is essential to a project’s success
to realize that different stakeholders might require
different things from their documentation [74].

Because software documentation can be such
a broad concept when looking at a full software
project, it might prove insightful to split it up into

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

smaller parts. Sommerville [61] did this by split-
ting documentation into two main categories and
two subcategories:

® Process documentation can be described
as all documents that record the process of
development and maintenance. They are most
often relevant for managing parties and include
project plans, schedules, and quality docu-
ments. These types of documentation are often
created during the beginning of a project and
serve as a guide for the rest of the project.

¢ Product documentation includes all docu-
mentation that has to do with the product
in development. Within this category, a fur-
ther distinction can be made between system
documentation and user documentation.

— System documentation describes the
product from the developers’ point of view
and is used during development and main-
tenance. Some documents belonging to this
term include requirements documents, system
architecture, component functionality, valida-
tion documents, and maintenance guides.

— User documentation is constructed to pro-
vide a simple description of the product
intended for its end-users. This user docu-
mentation usually includes things like manu-
als.

A summarizing model can be found in Fig. B2.
While documentation can be used throughout
a project, research by Hager [28] suggests that
maintenance is the single most crucial phase for
documentation usage. The structural integrity of
the documentation that is used during any phase
of a project becomes more critical if a project
lasts a long time or even indefinitely. One rea-
son for this is that good documentation makes
handing over projects to new teams or introduc-
ing new team members to the project much more
accessible [23]. As one can imagine, this is impor-
tant for more extensive projects since there is
much more to explain, which cannot all be done
in person. Another subconscious benefit of soft-
ware documentation was posed by Dagenais et al.
[13] in the form of improved code quality. They
stated that if every change made by a developer
was documented, a form of embarrassment-driven
development would ensue. The idea behind this is
that the developer subconsciously feels like they

are performing a demo of some sort because what
they are doing is documented. This, in turn, means
that they will try and create the best code they
can for this demo.

Considering the previous explanation of the
software documentation, it might seem like every-
thing is already going smoothly. In reality, there
are unfortunately some issues regarding the exe-
cution of software documentation that cause it to
be less effective than it could potentially be [1].

Perhaps the most detrimental factor to soft-
ware documentation is the lack of effort from
developers. While the importance of software doc-
umentation is mostly undisputed among partici-
pants of a software project [78], the task itself is
often still neglected. This problem can potentially
impact the documentation in three significant
ways: up-to-dateness, accuracy, and completeness
[22]. Survey research by Forward et al. [20] found
that most documentation is rarely updated, and
68% of the 48 participants found across several
high-tech companies stated that documentation
was always outdated. Documentation regarding
software testing was the only thing that seemed
to be updated frequently enough. It is impor-
tant to note that, even though documentation was
often considered outdated, participants still found
themselves referring to it quite often. In practice,
this could result in mistakes that can even be
more costly than not having documentation at all,
according to research by Poston [50].

Capers [34] found that flawed process docu-
mentation was often the most costly when not
done properly. They analyzed approximately 250
large software projects and found common prob-
lems in the documentation among those that even-
tually failed, including poor planning, milestone
tracking, and quality control.

Another thing that can impact the usability of
software documentation is structure. Research by
Das et al. [14] and Treude et al. [68] found that the
overall quality of documentation becomes worse
as a project goes on. Their reason for this is that
there is often simply too much. New documents
are created regularly, which means that eventu-
ally, even if everything is up to date, it might be
hard for a stakeholder to find what they are look-
ing for unless a solid structure is in place. Along
the same lines, working in a single document can
also cause it to become too long and convoluted

7

8 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

[18, 69], causing the same problem as mentioned
before. Ideally, stakeholders should be easily able
to find documents and, after finding them, quickly
identify and anticipate what is in them [32].

The amount of documentation is not the only
problem that arises as a software project con-
tinues. The phase of a project, if not handled
correctly, can also cause some trouble in the
documentation. As a project progresses through
different phases, like construction or maintenance,
documentation needs may change [6, 10]. Doc-
umentation during the construction of software
will often require a different substance than the
documentation during maintenance of the same
software simply because of the tasks and peo-
ple involved. These differences should be taken
into account when attempting to automate doc-
umentation. A final problem issue in software
documentation is that it is hard to establish stan-
dards. While most people would agree that the
documentation is important, it is hard to pin-
point precisely which elements of documentation
are important [15]. One reason for this is that the
importance of some aspects in the documentation
might change depending on who is asked. Another
could be the project phase or even the nature of
the project itself. Taking extra steps to elicit this
information might prove to remedy this problem
somewhat.

3.1.2 Automating software
documentation

After looking at what software documentation is
and what its current issues are it, is reasonable
to say that automating the documentation pro-
cess could prove very useful. This conclusion has
been drawn by researchers in the past and sev-
eral initiatives have been made towards this goal
in different areas of documentation [20].

For example, Hu et al. [31] developed a method
called DeepCom, which uses natural language pro-
cessing (NLP) to add comments to large amounts
of code. Other research projects [41, 44] focus
more on global documentation by developing
methods able to summarize methods and classes
respectively to provide programmers with quick
insight into code. The use of previously existing
text summarization techniques has also been stud-
ied by Haiduc et al. [29], who used a combination
of different techniques on source code and found

that together, they were able to generate a satis-
fying summary of the code. Finally, McBurney et
al. [42] developed a technique using topic model-
ing that can make a hierarchical summary of all
topics within the code, allowing users to look at
the highest level functionality without having to
look at each topic individually.

A critical part of the software construction
phase is unit testing. During this process, devel-
opers test a specific part of the software to see if
everything works as intended. Because unit testing
is a task that needs to be performed quite often,
attempts have been made to automate it. The
result of these attempts was often that there is not
much time to be saved on automated unit testing
since the developers have a hard time under-
standing the output of these automated tests [21].
This is another area where automated documen-
tation can provide aid. This sentiment is shared
by Panichella et al. [48], who produced TestDe-
scriber, an automated documentation approach
for summarizing automated unit tests. Another
effort in this area was made by Li et al. [35],
who designed a similar approach called UnitTest-
Describe. UnitTestDescribe uses statistic analysis,
NLP, backward slicing, and code summarization
to generate documentation for test cases.

After unit tests are performed and docu-
mented, changes in code on a personal machine
can be committed to keep everyone up to date.
While doing this, adding a commit message to
describe what changes were made is a crucial part
of the documentation. Especially for maintenance,
knowing what was changed in which commit is
essential. As is a trend among the previously
mentioned topics, these messages can also be auto-
mated. Several studies have been performed to
approach this goal and tools like ChangeScribe
[11] and ARENA [45] have been developed that
automatically write commit messages. Both these
approaches have been tested and were judged to
often include more helpful information in messages
than those written by developers themselves.

Aside from automatically documenting out-
put, formally documenting input is also an option.
Multiple research projects [36, 39, 54] opted for
this idea by developing methods and techniques to
automatically summarize incoming bug reports to
only show relevant information. While this does
not necessarily fall within the scope of this project,
it is good to realize that these things exist, and it

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

might be interesting to incorporate them in future
research.

Alternatively, some attempts have also been
made at automating documentation for people
other than programmers specifically. For exam-
ple, Rodeghero et al. [57] proposed a method for
automatically extracting user stories from conver-
sations between a developer and client. If done
correctly, this would eliminate the need for taking
notes within these conversations.

3.1.3 Tool selection and tools being
the message

We have seen in the previous section that many
attempts at the automation of documentation
have been made. Some of them are included in
industry-standard tools, and others are not, but
much progress has been made nonetheless. What
we can learn from all these attempts at automa-
tion is that, realistically, everything we need to
know for the software documentation is often
available in the tools that are used for the project.
This idea that tools can contain the message that
needs to be documented is also presented by The-
unissen et al. [66]. They adapted this idea from
McLuhan et al. [43], whose original statement was
that the medium is the message. In this case, the
phrase tools are the message can be seen as an
application of the phrase ”the medium is the mes-
sage.” Since both concepts are similar and tools
are the message is more recent and applicable to
this research, this is the phrasing that will be used
from now on.

The research done by Theunissen et al. [66]
concludes a few things:

1. There is a strong relationship between the
tools used and the type of information pro-
duced. This considers the content, format, and
relevance (why it is stored).

2. Tools are organized into tool stacks which in
turn are organized into software development
ecosystems.

3. The variety of tools refers to the amount of
structure for information.

4. The previous three conclusions make a dif-
ference in creating, retrieving, communicating,
and understanding ”the message” which in our
case is just software documentation.

5. The focus on information from specific tools
for each stakeholder decreases the complex-
ity of the ecosystem and makes it easier to
understand.

Of these conclusions, the first one is the most
relevant for this project. It shows that differ-
ent forms of information are produced depending
on the tools used. When using the information
that is stored in tools for automation, it is there-
fore critical to select the right tools. Otherwise,
the message contained in the documentation will
change.

While the idea that tool selection can have an
impact on the success of a project is not unrea-
sonable, surprisingly little research has gone into
how tools are currently selected and how this could
be done better [3]. There is, however, no short-
age of studies that evaluate what companies and
practitioners find most important during the tool
selection process. Ease of use [4, 46, 55, 56, 64, 73]
and pricing [55, 56, 64] are the aspects that come
by the most often as a contributing factor in tool
selection. Nevertheless, the need for better report-
ing capability is also something that is desired
by practitioners, especially in agile software devel-
opment spaces [7]. While these requests do not
necessarily mean that this aspect is more or less
important than any other factor, it does mean
that selecting tools for documentation and report-
ing automation could be very beneficial. Some
other notable criteria for tool selection include:
the possibility of collaboration [3, 46, 56], vendor
responsiveness [64], reliability [55], and security
[46, 55].

3.1.4 Summary

From this first part of the literature review, a
few conclusions can be drawn that are part of
answering SRQ1 and SRQ2. Starting at the begin-
ning, there is essentially no such thing as the
perfect documentation approach. There are dif-
fering views on what documentation of a project
should include and what can make documentation
good or bad. Yet, ultimately, it will differ from
person to person and from project to project. We
also know that in many projects, the current docu-
mentation is not good enough. The documentation
lacks in areas such as up-to-dateness, accuracy,
completeness, and structure. An ideal implemen-
tation of automated documentation would aim

10 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Table 3 Guiding principles for documentation elicitation

Reference
[15, 16, 59]

Description

Make sure stakeholder preferences regarding docu-
mentation are identified.

Characterise documentation preferences of common [16]
stakeholders within a project to save time.

Compare the documentation protocol to protocols of [33]
other, successful, projects.

Documentation priciple
Stakeholder preference identification

Characterization

Protocol comparison

Checklist compilation Create forms or checklists that can be verified. [27]
Role dedication Assign dedicated roles and reviews to enforce agree- [52, 53]
ments.

Cyclic documentation refactorization At the end of a project cycle, refactor documentation [65]
and decide what will be needed for future cycles.
Choose a documentation format that will work for [75]

the project, preferably formats that withstand time

Preemptively choosing a text format

like plaintext.

to alleviate these problems. Practitioners’ state-
ments and statistics show us that the problems
in documentation can be costly and waste sig-
nificant amounts of time, which are things any
project team would rather avoid. Several initia-
tives have already been made to pursue the goal
of documentation automation. While some have
been effective, there is little effort to automate
more than just a single aspect of documentation
at one time. Tools are the message provides us
with a reason why this has not yet been done
and gives some idea as to how progress can be
made in this area. To fully automate documen-
tation via tools, we first need to select the right
set of tools or software development ecosystem to
facilitate. Devising a method that can consistently
provide this selection has not yet been done for
this purpose and could therefore carry significant
academic and practical potential. While the selec-
tion of tools for automated documentation could
have a high priority, there are several other crite-
ria , like ease of use, pricing, and security, that are
often just as important.

3.2 Systematic review

To finalize the knowledge base needed for con-
structing an initial treatment, a systematic liter-
ature review was conducted as per the protocol
described in table 2. This review essentially con-
sisted of two parts; to search for criteria and
method fragments for documentation needs elic-
itation and to search for criteria and method

fragments for tool selection. Unfortunately, while
there were a fair amount of method fragments to
be found for tool selection, documentation needs
are a subject that is glanced over by most liter-
ature. The topic of software documentation has
been researched, and different approaches towards
documenting are readily available; however, none
of these approaches specifically mention how to
decide what should be documented. Because of
the lack of method fragments to be found, a list
of principles and criteria that should be kept in
mind during the process was compiled instead. As
shown in table 3.

For tool selection, several applicable meth-
ods were found. While using every single method
within the treatment would be inefficient and
unnecessary, a summarizing description of each
method can be found in table 4.

4 Interview results

Alongside the literature reviews, interviews were
used to supplement the knowledge base. Three
main topics were discussed during these inter-
views. First off, the topic of software documenta-
tion in general and its current implementation was
discussed. Next, automated documentation was
discussed, including any experiences already had
as well as the consequences of implementing some
form of an automated system. Finally, some effort
was put into eliciting goals or requirements for the

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Table 4 Tool selection methodologies

Code

Description

Reference

M1

M2

M3

M4

M5

M6

M7

M8

A method applying the Analytical Hierarchy Process (AHP) to the tool selec-
tion domain in three stages: structuring complexity, measuring on a ratio scale,
and synthesizing results.

A method aiming to identify the most important features of a tool and then
filter out tools that do not contain these features. Any tools left are subject to
a standard comparison on selection criteria.

A method featuring a semi-automated tool recommender which uses AHP to
obtain the weight of each selection criteria and then uses Multi-Attribute Utility
Theory (MAUT) to recommend a tool or toolset.

A method using a weighted decision matrix to represent the availability of
certain desired features within tools and select optimal candidates.

A method containing four phases for the selection of tools. These phases include
justifying and initiating the need for tools, developing specification and evalua-
tion criteria, investigating tools and selecting the best candidate toolsets using
an algorithm, and implementing and maintaining the solution.

A method providing business process-oriented tool selection in four steps. These
steps include the identification of relationships among project goals, critical
success factors and criteria, the identification of relevant tools, the development
of an AHP model, and final decision making.

A method providing a seven-step guide for selecting tools that support trace-
ability. These steps include agreeing on the problem, understanding the
problem, identifying stakeholders, determining requirements and constraints,
designing a requirement management system, assessing and selecting tools, and
planning the tool introduction.

A method providing a decision framework allowing users to prioritize tool

3]

[64]

[49]

[58]

[37]

[25]

[17]

features using the MoSCoW technique to assign weights to the criteria.

to be designed treatment. To allow for traceabil-
ity of the evidence produced within the interview,
a coding scheme was created. The scheme for the
first set of interviews can be found in table C2.

4.1 Documentation process

As three different branches were interviewed
throughout this project, three slightly different
takes on project documentation were discussed.
Out of the described processes, those of DOS and
DIS were the most similar. This is a logical con-
sequence of the fact that these two branches only
recently split up and used to be a single branch.
Participants from both branches also mention that
while they do document, there is no clear process,
which sometimes causes problems [iv-1, iv-2, iv-3,
iv-6, iv-7]

The DOS documentation process starts with a
meeting with the customer to discuss the project
parameters. One of these parameters could be the
documentation; however, if the client themselves

do not find this very important then it is often
not discussed to a significant extent. For techni-
cal documentation, agreements are made between
developers depending on what they encounter dur-
ing the project [iv-2, iv-8]. This documentation is
often separated over multiple channels like Teams,
Google Drive, or Confluence making it sometimes
hard to find [iv-7, iv-8]. Aside from doing this
technical documentation, most of the interviewees
mentioned that documentation is rarely updated.
Unless someone specifically asks for it, it remains
outdated until the end of a project where it is
updated for the final delivery [iv-2, iv-4, iv-7, iv-
8].

DIS attributes even less value to documentation
as, based on the nature of their projects, their
documentation can be more inherent. As such,
most of the documentation is written near the
end of the project [iv-6]. An exception to this is
in-code documentation which is often based on
mutual agreements [iv-3]. One major problem DIS

11

12 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

projects encounter is that documentation needs
are often formalized too early within a project and
might later prove useless [iv-3].

The documentation process within CLOUD
entails four documentation types [iv-5].

¢ Solution documentation is created at the
start of a project and concerns whatever is dis-
cussed at day-0. This includes project plans
which are updated whenever a change is made.

¢ Development documentation is created
during the project itself. Writing this documen-
tation should be done per feature. Whenever a
new feature is introduced, accompanying docu-
mentation should also be produced. What this
documentation entails is often subject to the
author’s interpretation.

¢ Installation and configuration documen-
tation is produced whenever a new feature
or update is rolled out and includes every-
thing that is needed for the installation and
configuration of a product.

® Maintenance documentation is built
towards the end of a project and should include
everything that is required by the mainte-
nance team. Some communication about this
documentation is necessary; however, most
of it is often again subject to the author’s
interpretation.

Due to a lack of structure within the docu-
mentation process, many improvements could be
made according to the participants. Some of the
current issues faced at Incentro are a lack of stan-
dards [iv-1, iv-2], spread out documentation [iv-2,
iv-7, iv-8], lack of effort from individuals [iv-5, iv-
7, iv-8], miscommunications [iv-3], and a lack of
completeness [iv-3, iv-7, iv-8].

4.2 Automated documentation tools

While every participant had at least heard of
attempts of automated documentation, not all of
them actually had experience with them. Those
that did were mildly enthusiastic but did identify
some issues that caused them not to be incorpo-
rated in their current work. The first and most
common complaint was that the initial implemen-
tation of the automation was too much work, and
there were no volunteers to do it [iv-2, iv-5, iv-8].
Because of this, using automated tools would only
be helpful for tasks that take a long time or are

done continuously. A second problem encountered
was that automatic documentation was hard to
implement in projects with little structure. This
is especially a problem within shorter projects at
Incentro, as identified earlier [iv-8]. Even if some
form of structure was present, it could still prove
challenging to make people follow this structure
[iv-4]. Another problem with previous attempts
was that there was no focus within the documenta-
tion, and it became too elaborate to be beneficial
[iv-6, iv-T7].

While the mentioned problems currently pre-
vent implementing automated documentation,
most participants did recognize its potential
upsides. Some participants mentioned the ability
to prevent human error [iv-2, iv-7], while oth-
ers found the ability to optimize handovers more
important [iv-6, iv-8]. Most of all, the possibility
of saving time [iv-1, iv-4, iv-5, iv-7, iv-8] and mak-
ing sure documentation is up-to-date [iv-2, iv-4,
iv-7, iv-8] were mentioned.

Opinions on the most important stakeholders
for such implementations differed as well. Some
found it most important to the client [iv-5, iv-8],
others found developers to be the primary ben-
eficiary [iv-2, iv-3, iv-7], and some said that all
newcomers to a project were most likely to benefit
from a solid implementation [iv-6].

4.3 About the method

Overall, most participants agreed that the treat-
ment method should be executed by someone
internal. They based these conclusions on vari-
ables such as cost, maintaining internal knowl-
edge, and the odds of accepting the new way of
working. Other than this, opinions on how to exe-
cute the method were divided. Half of the partici-
pants found some form of training to be acceptable
[iv-1, iv-2, iv-3, iv-5], while the other half felt
that a simple guide should be enough [iv-4, iv-6,
iv-7, iv-8]. While all participants recognized the
eventual end goal of automating documentation,
they also identified several goals that could be
achieved within this treatment. The most men-
tioned goal of the method was to allow for some
form of standard or minimal requirements within
the documentation [iv-1, iv-3, iv-6, iv-7]. Along
the same lines, many participants found creating a
predefined way of working for documentation to be
important [iv-2, iv-7, iv-8]. Other, less-mentioned

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Table 5 Elicited requirements.

Code Description Source

AR1 The treatment should include some efforts in creating or [27, 33, iv-1, iv-4, iv-7, iv-§]
maintaining documentation standards.

AR2 Stakeholders should be included in the process to project [15, 16, 59, iv-3, iv-6]
their needs.

AR3 Stakeholders should be included in the process to verify [iv-1]
conclusions.

AR4 If automated documentation fails to be implemented, a [iv-4]
manual takeover should be possible.

AR5 Upon completion of the treatment there should be clear [iv-2]
agreements on the application of documentation

AR6 Once candidate tools are selected, no more time should be [iv-7]
spent looking for the perfect tool.

ART7 There should be room for evaluation included in the treat- [65]
ment.

AR8 The treatment should produce documentation that is suit- [iv-2, iv-6, iv-7]
able for onboardings and project handovers

IR1 The treatment should limit interfering with the usual way [iv-4, iv-5]
of working.

IR2 The treatment should be beneficial even if not all employ- [iv-4, iv-5]
ees participate.

1IR3 The treatment should account for the changing documen- [6, 10, iv-5, iv-3]
tation needs during different phases of a project

R4 The treatment should not require any prerequisite knowl- [iv-1, iv-2, iv-3, iv-4, iv-5, iv-6, iv-7, iv-8]
edge to execute.

IR5 The treatment should contain dedicated roles of the people [52, 53]
who execute it

IR6 The treatment should produce the right amount of docu- [iv-1, iv-3, iv-7]

mentation.

goals were to simplify work [iv-1, iv-5], create
acceptable documentation in one try [iv-3, iv-4],
and improve efficiency [iv-2]. Finally, some chal-
lenges were identified that could limit treatment’s
performance. Most of all, getting the stakeholders
to accept the new way of working could provide
struggles [iv-1, iv-4, iv-5, iv-6, iv-8]. This is espe-
cially true if the treatment is invasive and not
easy to execute [iv-8]. Other than this, the cost of
changing tools caused some worry [iv-2], as well as
spending too much time finding the perfect tool
[iv-6].

5 Creating the initial method

After completing the knowledge base through the
interviews and literature review, method construc-
tion could be started. A shortlist of requirements

for the treatment was extracted from the knowl-
edge base, which can be found in table 5. Within
this table, requirements labeled starting with an
A should be related directly to an activity within
the PDD, and requirements labeled with an I are
inherent to the treatment. A new methodology
was then created abiding by these requirements
where possible using method fragments that were
found during the interviews and literature review.
The resulting PDD can be found in Figure 3.
The proposed method contains three major
phases. The first phase is executed upon start-
ing a new project and includes the steps nec-
essary to discover the documentation needs for
a project, corresponding to SRQ3. This process
includes defining the project itself, interviewing
stakeholders, and creating documentation stan-
dards. Following the documentation needs elicita-
tion, a preferred set of tools should be selected

13

14

hd
(Elicit documentation needs

[sandar

U pdate documentation
standards

N

(Setect relevanttaols

PROJECT DEFINITION :
STAKEHOLDERLIST I wsed tar®
INTERVIEW
TRANSSCRIFT b
e tarv
DOCUMENTATICN |1

NEEDS LIST

wed tar®

3
_ [DOCLMENTATION
STANDARDE LIST

e farw

F-- CRITERIA LIST 1 N

Select minimal requirements.

Approve selection with
stakeholders
Scan tool market for
candidate tools

CANDIDATETOOLS

Find priority vector }---

[eke]

[individual tool
needed]

{ Fiter candidate tools p---m———— - ———|

Identify feasible toclsets }

wsed for @ LIST
1 1
|- == A EVALUATION MATRIX
used fore
PRIORITY VECTOR]—1
used far ®

wsed fary

wed foary

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

wed fory

wed for®

Research iools or toolsets

used far®

1
TOOL PRIORITY

VECTOR

Score tools or toolsets

used for ¥

Synthesize results

ENTATION
1

GAP LIST
wsed far®

DOCUMENTATION
AGREEMENTS LIST

Identify documentation gaps

Discuss gaps with team

®

Fig. 3 PDD for the main method

Project lead

corresponding to SRQ4. This next phase pre-
scribes looking for relevant evaluation criteria like
automation prospects or tool costs and scoring
them on relevance using AHP. Alongside this, min-
imal requirements for the tool or toolset should
be selected to provide a list of candidate tools.
Finally, the tools should be researched and scored
on each of the evaluation criteria to find the final
preferred toolset. The method is concluded when

synthesizing the results by identifying what docu-
mentation can or cannot be automated using the
selected toolset and communicating these gaps in
automation with the project team.

6 Validation

To validate the designed treatment, four expert
interviews were conducted. Three of the experts
interviewed were domain experts working at

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Incentro as a developer [viv-2], delivery man-
ager [viv-3], or project manager [viv-4]. The final
expert worked as a teaching assistant for the
Method Engineering course taught at Utrecht Uni-
versity [viv-1]. During the interviews, the experts
were presented with the initial PDD and asked to
what extent the proposed treatment satisfies each
criterion in table B1. To guarantee a comparable
output between participants, a five-point Likert
scale was used during the interviews. While the
exact scores for each criterion can be found in E,
an average score was compiled in table E6. Within
this table, a score of 4 would mean that the par-
ticipants completely agree that the criterion was
fulfilled. In contrast, a score of 0 would mean they
completely disagreed. As can be seen, most cri-
teria obtained a score of at least three, meaning
that the participants, on average, agreed that they
were fulfilled.

Table 6 Average scores for each validation criterion

Criterion Score
Efficiency 3.5
Utility 2.75
Operational feasibility 2
Absence of side effects (people) 3
Absence of side effects (organization) 3
Ease of use 3
Completeness 3
Adaptability 3.75
Modifiability 2.75

The main conclusion during viv-1 was that
the created model was structurally sound. Some
final kinks in naming and modeling conventions
were ironed out, but nothing substantial needed to
be changed. The interviews with domain experts
yielded more significant conclusions. As could be
deduced from the answer "neither agree nor dis-
agree” most of the criteria that were scored close
to two had the driving reasoning that it was
hard to judge. Starting with operational feasi-
bility, the interviewees believed that while the
potential upside and the projected adoption of the
method are great, the actual upside is currently
not that significant. Because of this reliance on
future work, it is hard to state exactly how much
the method would be incorporated into a rou-
tine, and the interviewees were hesitant to answer.
What they did agree on was that the suggested
execution of the method might take a lot of time
which could cause resistance [viv-2, viv-4]. The

same thing that applies to operational feasibility
also applies to the utility of the treatment. Since it
is hard to assign a value or cost to the treatment, it
is also hard to answer this question [viv-3]. Finally,
the modifiability of the method was deemed as
hard to judge as well by some candidates [viv-2,
viv-4] since they found themselves unfamiliar with
the modeling environment. While all other crite-
ria rated by the experts were scored as a three or
higher, some changes were still suggested to make
the model more applicable. Firstly, an extension
needed to be made to the model in which the
algorithm [viv-2] was elaborated. Aside from this,
the suggestion was made to update documentation
standards during the end of the project instead
of at the start of the method [viv-4]. Finally, as
suggested previously, the algorithm that is used
to score tools was changed from AHP to MAUT.
While the original purpose of using AHP for both
parts of the tool selection was to make the method
easier to understand, the interviewees suggested
that saving time in the process was more impor-
tant. One final thing to mention is that some of
the participants [viv-4], as well as some literature
[17, 49], suggested using a database for saving
information about tools. While this could poten-
tially save a great amount of time during tool
research, creating such a database, if it is not
readily available, could prove too costly and was,
therefore, not considered for this treatment. To
highlight the changes that were made as a result
of the validation, a method evolution PDD was
created. The notation for this construct, as well
as the PDDs, can be found in Appendix D.1. The
updated and final version of the PDD, includ-
ing the accompanying concept and activity tables,
can be found in Appendix D.2. For the sake of
traceability, the activity table for the final method
contains the codes of the applicable requirements
that were defined in table 5. Aside from this,
the table also includes references to the method
fragments that were used as defined in table 4.

7 Discussion

7.1 Triangulation

To increase academic validity throughout a qual-
itative research project, triangulation can be

16 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

included. Triangulation can increase the confi-
dence in findings by using two or more inde-
pendent measures to confirm a proposition [30].
Thurmond [67] describes several categories of tri-
angulation, two of which apply to this project.

Methodological triangulation reduces the defi-
ciencies and biases that are present when con-
ducting research using a single method. This type
of triangulation was primarily performed during
the problem investigation phase. Two types of
research were performed, including the literature
review and interviews, which primarily resulted
in the same conclusions. While describing the
exact overlap between the two methods is exces-
sive, some of the more important findings were
that both methods identified a lack of interest
as the main contributing factor for documenta-
tion quality suffering. Also, both identified that
automation efforts are available but are often in
early stages and therefore hard to introduce. No
significant contradictions were found between the
two methods.

Data source triangulation is the use of data
gathered from different times, spaces, or peo-
ple to come to a conclusion. This was achieved
several times during this project. First off, dif-
ferent research was gathered during the litera-
ture reviews giving access to multiple different
viewpoints when drawing conclusions. This was
extended to the interviews where several people
with different positions within Incentro were inter-
viewed to obtain a broad view of the topic. Finally,
to construct the method, several method frag-
ments were used from differing research projects.
These three things provide ample data source
triangulation for this project.

7.2 Threats to validity

As is the case in all research, some threats to the
validity of this research can be identified. While it
is impossible to eliminate all threats in qualitative
research completely [40], measures were still taken
to reduce the impact of these threats. Maxwell [40]
identifies five categories of threats for qualitative
research:

1. Descriptive validity: Are the findings of
the research accurately portrayed? Potential
threats to this validity could be mishearing or
mistranscribing an interview. Some steps were

taken to minimize the risk of this happen-
ing. Interviews were recorded and transcribed
at a later date to avoid too much distrac-
tion. To maintain focus during the interviews,
simple notes were taken instead. Additionally,
interviews took place in neutral and peaceful
settings as much as possible to avoid exter-
nal factors interfering. While this was hard
to maintain due to interviews mostly taking
place in an online environment, no significant
distracting events were noted. These three mea-
sures allowed for a straightforward transaction
of information during the interviews.

. Interpretive validity: Are the observations

made within the research interpreted correctly?
To attempt to avoid misunderstandings during
interviews, all feedback, and information gath-
ered was be discussed extensively. Alongside
this, any scales or rating systems that were used
to validate or evaluate aspects of the method
were discussed and explained beforehand.

. Theoretical validity: Is the right theoretical

structure being used to explain observations?
Maxwell [40] describes theoretical validity as
some combination of the more well-known
aspects of construct validity and internal valid-
ity. While they do not mention any specific
ways to combat theoretical invalidity Yin [77]
does provide some safeguards for construct and
internal validity. One thing they recommended
is using multiple sources of evidence to support
work. During this research, this was achieved
by combining the information obtained within
literature research with the information from
conducted interviews as described in Sect. 7.1.
On top of this, an expert review of work is
recommended. The validation interviews that
will be held during this research should work
towards this goal.

. Generalizability: How extendable are the

accounts of particular situations to other poten-
tial subjects? This research aimed for the
results to be at least somewhat generalizable
across the software engineering domain. The
method that was built includes steps of elicit-
ing stakeholders and their needs which should
help in accounting for different scenarios that
can occur in different companies. Aside from
this, participants of interviews were picked to
be diverse, which should benefit the generaliz-
ability of this research. Finally, one thing that

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

could be seen as a significant threat is that
the interviews are mostly conducted within one
company. While this threat is unfortunately
unavoidable at this time, Incentro does provide
somewhat of a special case as addressed in Sect.
2.4.

5. Evaluative validity: Are all drawn conclu-
sions based on gathered data? Maxwell [40]
identifies evaluative validity as perhaps the
least relevant aspect of validity to qualitative
research since it lacks any concrete methods
that could help avoid it. As there are no spe-
cific steps to take, this validity was kept in
mind throughout the research but not explicitly
addressed.

8 Conclusions and future work

This paper presents a method for tool selection
that aims to facilitate automating project docu-
mentation. We conducted two literature reviews
as well as several interviews to create this method.
The research aimed to answer five research ques-
tions that were created to finally answer what
methodological support can be provided for facili-
tating automatic software documentation via tool
selection. We aimed to learn more about soft-
ware documentation and tool selection in the first
two questions. While looking for characteristics of
software documentation, we found that its appli-
cation can vary depending on the project. Aside
from this, we discovered that the main prob-
lem with software documentation was a lack of
interest by developers, resulting in sub-par docu-
mentation up-to-dateness, structure, and quality.
Tool selection is a topic that is taken more seri-
ously overall, and several decision factors were
identified for tool selection to answer the second
research question. Some of the more relevant fac-
tors include pricing, ease of use, and security. The
third and fourth questions pertained to construct-
ing a method. Within these questions, two parts
of the final method were researched: eliciting doc-
umentation needs and using these needs as an
element of tool selection. A method was created as
a result of these questions, which was validated to
answer the final research question as well as com-
plete the research project. The resulting method is
called the Software Project Tool Selection Method
(SoPro-TSM). It should be able to help in elicit-
ing documentation needs and selecting tools that

fit these needs. Future work could include further
validation, implementing this methodology, and
evaluating the results. Doing this in a way that is
beneficial to the participants is likely some time
away since actually automating documentation is
not yet as advanced as it should be. Other excit-
ing research that could be done to supplement
this paper is expanding on the process of creating
documentation standards in a generalizable way
or creating a database that includes the relevant
information about tools for tool selection.

17

18 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Appendix A Research method PDD

KNOWLEDGE BASE
ﬁroblem investigation \ 8

Conduct exploratory literature review } ——————————————— % EXPLORATORY
C P \|/y LITERATURE REVIEW

Construct informed
consent form

——————————————— INFORMED CONSENT

Constructinterview \ ————1———— | INTERVIEW
protocol PROTOCOL
1
dl guides¥
(Conduct expert interviews
ﬁ reatment design is extracted from A

T - LITERATURE REVIEW
(Finalize literature review protocol PROTOCOL
\|/ ! guides ¥
'

C Conduct systematic literature review SYSTEMATIC

y

(Specify method requirements >— ——————————————— % LFLEBSF\E"&E:%D :

(Identify applicable method fragments)— cocooog R

LITERATURE REVIEW

¢ is used for

Construct initial method >— ——————————————— INITIAL METHOD PDD -
\ Researcher

ﬁ reatment validation \

C Select validation criteria). LIST OF VALIDATION L

(Construct interview protocol P E— J renAUDATON |
] e

C Conduct validation interviews) —— S[FALIGATION NTERVIEW
\! iy

(Update method Researcher S FINAL METHOD PDD

\ Researcher

Fig. A1 PDD of the research process

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Appendix B Compliance with ethical standards

B.1 Primary interview protocol

My name is Floris Wijbrands and I am currently following the Master’s program in Business Informatics at
Utrecht University. As part of this program, I am performing a research project at Incentro about creating
a method for tool selection that can serve as a foundation for automated software project documentation.

This interview will take approximately 60 minutes and aims to serve two main purposes. At the point
of conducting this interview, an exploratory literature review has already been performed to gain a basic
understanding of the topic at hand. The first part of this interview will serve to expand on this existing
literary knowledge and fill in the gaps. On top of this, during this interview, we will aim to identify
stakeholder goals concerning software documentation which will be used to construct requirements for
the method that will be created.

For the purpose of alignment, it is important to create a basic understanding of what the term
documentation refers to throughout this interview. Sommerville [61] split up the concept of project
documentation into the categories product documentation and process documentation. Further details
regarding these two categories can be found in Fig. B2. For the duration of this interview, any mention
of documentation will include both these categories unless specifically mentioned otherwise.

Project documentation

Product documentation

System documentation] [User documentation] { Process documentation

s Plans
« Eslimates

« Product requirement document
+ Design and architecture

« Agile product roadmaps

« Source code documentation

« UX design documentation

+ Testing documents

s Help and maintenance
documenis

End-user System admin N \Fffpins and meirics
documentation | | decumentation = working papers
« Standards

Fig. B2 Summary of the software documentation types [5].

General questions

What is the name of the department you are in?

Can you shortly describe what the position you hold in your organization entails?

How long have you worked in your current position?

How long have you been working at this organization?

Can you elaborate on some of the projects that you have worked on throughout the last years?

— What is the nature of these projects?
— What is the scale and duration of these projects?

About software documentation

Since the main topic of research for this research is project documentation, I would like to ask you some
questions regarding this concept in the context of Incentro.

1. Can you describe to me the process of documentation for projects that you have worked on?
(a) How do you decide what to document and who is involved in this process?
(b) Is this a standardized process or is it customized according to each project?

19

20 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

2. How do you feel regarding the quality of documentation as a result of the current process?
(a) Is it of sufficient detail?
(b) Is it always up-to-date?
(¢) Can you always find everything you need?
3. Have there been cases where you, in hindsight, found out something was not documented that would
have been useful?
(a) How did you deal with this at the time?
(b) How have you tried to prevent this in the future?

About automated documentation

The next few questions will be about the concept of automated project documentation. Important to
note is that these questions do not address the method that this thesis will produce but the hypothetical
continuation of it, which is automated documentation.

1. Although fully automated documentation is currently not available, some efforts have already
been made towards automating small parts of the documentation process. Do you have any
experience with any of these automated efforts?

(a) Where have you encountered these efforts?
(b) If possible, would you like for more of these pieces of automation to be included in your
documentation?

2. How do you think fully automated software project documentation would change the way you
work?

(a) How do you think it could benefit your work?
(b) How do you think it could harm your work?
3. Who do you think would benefit the most from automated documentation?
4. Do you think automated project documentation is something worth pursuing?

About the method

While the exact workings of the final method are not yet defined, two main components have been
identified so far. The first part of this method concerns formalizing the information that should be
documented during a project. The second part of this method concerns selecting a set of tools to use
that can contain this information, thus allowing for potential automated documentation. The following
questions concern these two components and some of their requirements.

1. How easy should the method be to execute? Should there be a person specialized in setting up
this process or should anyone be able to do it?
2. How often do you alternate between using different tools that essentially do the same thing for
different projects?
(a) What reasons could you think of for using a specific tool during a project?
(b) Would you be willing to alternate between different tools across projects for the purpose of
automated software project documentation?
3. What do you consider being the main goals of the tool selection method as described to you
previously?
4. Do you anticipate any risks in implementing such a method that should be taken into account?
5. When would you consider this method to be implemented successfully?

Final words

Thank you for your time participating in this interview. If you would like it I will send you a copy of my
thesis upon completion.

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection 21

B.2 Validation interview protocol

My name is Floris Wijbrands, and I am currently following the Master’s program in Business Informatics
at Utrecht University. As part of this program, I am performing a research project at Incentro about
creating a method for tool selection that can serve as a foundation for automated software project
documentation.

This interview will take approximately 60 minutes and aims to serve the purpose of validating a
created Process-Deliverable Diagram (PDD). This diagram has been formed using previous interviews
and extensive literature review. At the start of this interview, I will explain to you the workings of the
proposed PDD, and we will walk through the method together. During the second part of this interview,
we will go through several validation criteria as shown in table B1. While doing this, I will ask your
opinion on each of the posed statements in the form of a five-point Likert scale. This gives you the options
to answer as strongly disagreeing, disagreeing, neither agreeing nor disagreeing, agreeing, or strongly
agreeing. If you have questions at any point, please do not hesitate to ask.

Table B1 Final selection from the criteria by Prat et al. [51]

Evaluation criteria Description

Efficiency The method could achieve its goal in a real-life situ-
ation.

Utility There is a significant positive difference between the

worth of achieving the projected goal and the price
paid for executing the method.

Operational feasibility Management, employees, and other stakeholders will
be likely to support the proposed method and incor-
porate it into their routines.

Absence of side effects (people) The artifact is free of undesirable impacts on indi-
viduals in the long run.

Absence of side effects (organization) The artifact is free of undesirable impacts on the
organization in the long run.

Ease of use Executing the steps in the artifact is mostly free of
effort.

Completeness The structure of this artifact contains all necessary
elements and relationships between elements.

Adaptability The artifact can easily work in contexts other than
those it was originally designed for.

Modifiability The artifact can easily be changed without introduc-

ing defects.

Thank you for your time participating in this interview. If you would like it I will send you a copy of
my thesis upon completion.

22 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

B.3 Informed consent form

Please read the following consent document carefully before you decide to participate in
this study. The researcher will answer any questions before you sign this form.

Title of study:
Communication based on the Principle of Tools are the Message: Methodological Support for Software
Project Tool Selection.

Purpose of study:
The purpose of this study is to develop a method for tool selection that can act as a foundation for
facilitating automated software project documentation. Interviews will be conducted to gain knowledge
on relevant topics as well as to elicit potential method requirements.

Potential risks of participating:
The potential risks of participating in this research are no more than those in everyday life.

Potential benefits of participating:
Contributing to this research in any way could help in providing the first steps toward automated soft-
ware project documentation. Should this eventual goal be achieved, your company can use it to improve
efficiency.

Confidentiality:
All data that is gathered during this research will be recorded. These recordings will only be used for
scientific purposes and access to it will be limited to the researcher. Upon completion of the research,
the interview recording will be deleted.

Voluntary participation:
Your participation in this study is entirely voluntary. There is no penalty for not participating. You may
also refuse to answer any question that is ask

Right to withdraw from the study:
You have the right to withdraw from the study at any time without consequence.

Whom to contact about the study:
If you have any further questions or comments about this study, please contact the researcher via email
at f.h.f.wijbrands@students.uu.nl.
If you have an official complaint about the study, you can send an email to the complaints officer at
klachtenfunctionaris-fetcsocwet@uu.nl.

Agreement:
I have read the contents described above. I voluntarily agree to participate in this research and I have
received a copy of the description.

Participant Researcher
Name: Name:
Signature: Signature:

Date: Date:

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Appendix C Coding schemes

Table C2 Coding scheme for the preliminary interviews

Code

Reference

iv-1
iv-2
iv-3
iv-4
iv-5
iv-6
iv-7
iv-8

(IntervieweeA, personal communication, November 23, 2021)
(IntervieweeB, personal communication, November 24, 2021)
(IntervieweeC, personal communication, November 24, 2021)
(IntervieweeD, personal communication, November 25, 2021)
(IntervieweeE, personal communication, November 26, 2021)
(IntervieweeF, personal communication, November 29, 2021)
(IntervieweeG, personal communication, December 3, 2021)

(IntervieweeH, personal communication, December 6, 2021)

Table C3 Coding scheme for the validation interviews

Code

Reference

viv-1
viv-2
viv-3
viv-4

(ValidationExpertA, personal communication, February 12, 2022)
(ValidationExpertB, personal communication, February 15, 2022)
(ValidationExpertC, personal communication, February 17, 2022)
(ValidationExpertD, personal communication, February 20, 2022)

23

24 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Appendix D Treatment design
D.1 Method evolution PDDs

Activity/Concept
remains unchanged

_- - Activity/Concept is
inserted or modified

;/ f_':l"{‘ij{jfj!f’#j;f!f“!xlj{jiy ?/// Aﬂtwﬂylrcu”ﬂept IS
jff/f’fff{fffffffffﬂ’ffffé% //% dEIEIEd

Fig. D3 Method evolution notation

(Example activity }———} EXAMPLE CONCEPT

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Defne project
Identify stakeholders
Interview stakeholders

<D

Select tool evaluation criteria

stakeholders
7 Craate svaliation Metor
Yy

Select minimal reguirements

Scan tool market for
candidate tools

[

Identify feasible toolsets

Fitter candidate tools
Research tools ortoolsets

Identify documentation gaps
Discuss gaps with team

Fig. D4 Method evolution PDD for the main method

Vvt

5 used far®

ST

A

RN

2

5 used fary

1
MINIMAL 1
REQUIREMENTS LIST
_~| CAMDIDATETOOLE
LIST

1

s it for @

s uzed far®

RICRITY
VEGTOR

s inges for W

5 used for ¥

5 wsed for ¥

26 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Fig. D5 Method evolution PDD for finding the AHP priority vector

Fig. D6 Method evolution PDD for finding the MAUT tool priority vector

s Input for ¥

i inget. for

ks inpet for

s Input for ¥

i inget. for

ks inpet for

b l H‘ = [b b l H‘ = [b

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

D.2 SoPro-TSM
D.2.1 PDDs

s used farw

@

s used far¥

Create documentation
standards

Select tool evaluation crteria ===t -3 cRTERIALST |

s used farw

Approve selection with
stakeholders

1
Select minimal requirements p—————--———}———-———-————— 4 ____ EEERET - % REQL!IEE’:::’II:S et |1

Scan tool market for
candidate tools

Find priority vector '

ldentify feasible toolzets

Fiter candidate tools
Research tools or toolsets

TOOL FRICRITY
Calculate final scores ' VECTOR Iz

Esused far ¥

____» cenDiDaTETOOLS
LIST
1
s used for®
& nput for ¢
e

Busedfar®

bl
Identify documentation gaps DOCUMENTATION
GﬁPLIST

Eused far ¥

; - COCUMENTATION
Dizcuss gaps with team A VE N -

Fig. D7 PDD for the main phases of SoPro-TSM

Eusedfor

27

28 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

EMPTY CRITERIA
MATRIX
Create criteria matrix Evaluation criefia L
5 gt fore
COMPLETE CRITERIA
MATRIX 1
e
S-point score
5 linput dory
NORMALEZED
- | CRITERIA MATRIX !
Evaluation crieria 1
Normalzed score
s Input fory
Find priority vector PRIORITYVECTOR |7

Fig. D8 PDD for finding the AHP priority vector

Score tools ortoolsets INITIAL TL?‘;‘::- SCORE

i s input fory

Apply MAUT formula MAUT Tﬁ SCORE
! s input forw
1)

: [TOOLFREGRTY
Apply veights VECTOR

Fig. D9 PDD for finding the MAUT tool priority vector

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

D.2.2 Activity table

Table D4: Activity table of the SoPro-TSM PDD

Activity

Sub-activity

Description

Define project

Identify stakeholders

Interview stakeholders [AR2,
ARS]|

Analyze interviews

Create documentation
standards [AR1]

Select tool evaluation criteria
[M1]

Approve selection with
stakeholders [AR3]

Find priority vector [M1]

Create criteria
matrix

Compare
criteria

At the start of any project the project should be
defined. How exactly this is done will depend on the
way of working within the organization. The
activity results in a PROJECT DEFINITION.
After defining the project, relevant stakeholders
need to be identified in order to select participants
for any future meetings or interviews. The activity
results in a STAKEHOLDER LIST.

To start identifying documentation needs the
stakeholders should be interviewed. During the
views of each stakeholder on project documentation
should be elicited so that needs can be

extracted. The activity results in an INTERVIEW
TRANSCRIPT.

Analyzing the views of each stakeholder on
documentation allows for the creation of an
extensive list of documentation needs. The activity
results in a DOCUMENTATION NEEDS LIST.

If no previous documentation standards were
available for use within the project, new
documentation standards should be created to use
in the future. The activity results in a
DOCUMENTATION STANDARDS LIST.

Based on the PROJECT DEFINITION, a list of
criteria should be created on which the tools that
will be selected can be judged. The activity results
in a CRITERIA LIST .

The CRITERIA LIST should be verified by the
stakeholders to make sure they relevant and gain an
idea of how important they are to the project. The
activity results in an APPROVED CRITERIA
LIST.

Finding the priority vector is done through
application of the AHP. After following all the steps
this activity results in a PRIORITY VECTOR.
The first activity for execution of the AHP is to
create a matrix of the selected criteria to score. The
activity results in an EMPTY CRITERIA
MATRIX.

To identify the importance of criteria, the EMPTY
CRITERIA MATRIX has to be filled in. This is
done by performing pairwise comparison on each of
the criteria and scoring them using a 9-point

scale. The activity results in a COMPLETE
CRITERIA MATRIX.

29

30 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Table D4: (continued)

Activity Sub-activity

Description

Normalize
matrix

Find priority
vector

Select minimal requirements

(M2]

Scan tool market for candidate

tools [M5] [ARS6]

Identify feasible toolsets [M5]

Filter candidate tools [M5]

Research tools or toolsets [M5]

Calculate final scores [M3]

[ARG6]

Score tools or
toolsets

Apply MAUT

formula

Apply weights

The results within the COMPLETE CRITERIA
MATRIX need to be normalized in order to be
useable for evaluating the criteria. The activity
results in a NORMALIZED CRITERIA MATRIX.
To complete the AHP, the average score of each
evaluation criterion is taken and documented in a
PRIORITY VECTOR.

Using the PROJECT DEFINITION, a selection of
minimal (or must-have) requirements is made for
the tools used within the project. This activity
results in a MINIMAL REQUIREMENTS LIST.

A selection of available candidate tools is made
based on the expertise of the project lead. This
activity results in a CANDIDATE TOOLS LIST.
If there are no individual tools that meet the
selected minimal requirements or there is simply a
need for multiple tools, a set of tools that can be
considered sufficient will be selected. This activity
results in a FINAL CANDIDATE LIST.

Using the MINIMAL REQUIREMENTS LIST as a
guide, any tools that are not suitable for the
project are filtered out of the candidates. This
activity results in a FINAL CANDIDATE LIST.
To be able to identify the optimal tools for a
project the candidate tools should be researched.
Depending on the criteria to evaluate, this research
might look differently yet it will often come down
to searching through product websites, user forums,
and actually testing the products. This activity
results in a RESEARCH DATASET.

Based on the previously calculated PRIORITY
VECTOR and the RESEARCH DATASET the
final scores for each candidate tool are calculated
using MAUT. This activity results in a TOOL
PRIORITY VECTOR.

The tools or toolsets that are available for selection
are given an initial score on each criterion. The
activity results in a INITTAL TOOL SCORE LIST.
The MAUT formula is applied to the INITTAL
TOOL SCORE LIST in order to find the MAUT
TOOL SCORE LIST. Given a score x on criterion
y, The formula that is used for this method

is % where wosty and besty signify the
worst and best scores that were given on y out of
all the rated tools.

The weights of the criteria are applied to the
MAUT TOOL SCORE LIST to obtain the
WEIGHTED SCORE LIST.

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

Table D4: (continued)

Activity

Sub-activity

Description

Identify documentation gaps

Discuss gaps [AR4, ARS5]

Update documentation
standards [AR1, ARY]

After selecting a set of tools based on the best
combination of attributes, the documentation
capabilities need to be analyzed. This is done based
on the RESEARCH DATASET and results in a
DOCUMENTATION GAP LIST.

Using the DOCUMENTATION GAP LIST as a
foundation, the development team should meet and
discuss what will need to be documented by hand
during the project, what can be automated and
how this will be approached. This activity results in
a DOCUMENTATION AGREEMENT LIST.

After the project has run its course the
documentation should be reflected on and
documentation standards should be updated if
necessary. These updates are represented in the
DOCUMENTATION STANDARDS LIST.

31

32 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

D.2.3 Concept table

Table D5 Concept table of the SoPro-TSM PDD

Concept Sub concept

Description

PROJECT DEFINITION
STAKEHOLDER LIST
INTERVIEW TRANSCRIPT

DOCUMENTATION NEEDS
LIST

DOCUMENTATION
STANDARDS LIST
CRITERIA LIST

APPROVED CRITERIA
LIST

PRIORITY VECTOR
EMPTY CRITERIA
MATRIX
COMPLETE CRITERIA
MATRIX
NORMALIZED CRITERIA
MATRIX

MINIMAL REQUIREMENTS

LIST

CANDIDATE TOOLS LIST

FINAL CANDIDATE LIST

RESEARCH DATASET

TOOL PRIORITY VECTOR

INITIAL TOOL SCORE LIST
MAUT TOOL SCORE LIST

DOCUMENTATION GAP
LIST

DOCUMENTATION
AGREEMENT LIST

A document containing the parameters and details of a
project.

A list of stakeholders that either participate in
creating documentation or use it.

A transcript of the interviews conducted with relevant
stakeholders.

A list of documentation needs that should provide
complete oversight of what should be present within
the documentation.

A list of documentation standards that should be
abided by in the current or in future projects.

A list of the selected tool criteria that could be used to
evaluate the candidate tools.

A complete list of evaluation criteria that was
approved by the relevant stakeholder and will be used
for the final evaluation.

A vector containing a list of evaluation criteria and
their respective weights.

A matrix containing a matchup of all the criteria that
were selected previously.

A matrix containing a matchup of all the criteria that
were selected previously. This version includes the
scores of each matchup on a 9-point scale.

A matrix containing a matchup of all the criteria that
were selected previously. This version includes a
normalized version of the scores of each matchup on a
9-point scale.

A list of minimal, or must-have, requirements that the
candidates have to fulfill in order to be considered for
the final selection.

A list of candidate tools for the final selection. This
list has not yet been subjected to the list of minimal
requirements.

A final list of candidate tools or toolsets that all fulfill
the minimal requirements and are ready to be
evaluated.

A complete dataset resulting from the research
performed on the candidate tools. This data includes
information on each of the evaluation criteria including
their suitability for automated documentation.

A final vector of the candidate tools or toolsets
including their final weighted score. This vector is
what is used to make a final decision on the selection.
A list that includes the scores of each tool for all
individual evaluation criteria.

A list of scores that have been subjected to the MAUT
formula.

A list of all the gaps that will be present in the
automated documentation because of the tool selection
that was chosen.

A list of all the agreements made on how to deal with
automated documentation. This includes a plan for
reviews, dealing with gaps, and responsibilities.

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection 33

Appendix E Validation scores

Table E6 Score for each validation criterion per interviewee

Criterion viv-1 viv-2 viv3 viv4d
Efficiency 3 3 4 4
Utility 3 3 2 3
Operational feasibility 2 2 2 2
Absence of side effects (people) 3 3 3 3
Absence of side effects (organization) 3 3 3 3
Ease of use 3 3 3 3
Completeness 3 3 3 3
Adaptability 4 3 4 4
Modifiability 3 2 3 3

34

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

References

1]

Aghajani, E., Nagy, C., Vega-Mérquez, O.L.,
Linares-Vésquez, M., Moreno, L., Bavota, G.,
Lanza, M.: Software documentation issues
unveiled. In: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering
(ICSE), pp. 1199-1210 (2019). IEEE

Aghajani, E., Nagy, C., Linares-Vasquez, M.,
Moreno, L., Bavota, G., Lanza, M., Shepherd,
D.C.: Software documentation: the practi-
tioners’ perspective. In: 2020 IEEE/ACM
42nd International Conference on Software
Engineering (ICSE), pp. 590-601 (2020).
IEEE

Ahmad, N., Laplante, P.A.: Software project
management tools: making a practical deci-
sion using ahp. In: 2006 30th Annual IEEE/-
NASA Software Engineering Workshop, pp.
76-84 (2006). IEEE

Alomar, N., Almobarak, N., Alkoblan, S.,
Alhozaimy, S., Alharbi, S.: Usability engi-
neering of agile software project management
tools. In: International Conference of Design,
User Experience, and Usability, pp. 197-208
(2016). Springer

Altexoft: Technical Documentation in Soft-
ware Development: Types, Best Practices,
and Tools. https://www.altexsoft.com/blog
/business/technical-documentation-in-softw
are-development-types-best-practices-and-t
ools

Ambler, S.: Effective practices for extreme
programming and the unified process. Ist. Ed.
John Wiley & Sons, Inc (2002)

Azizyan, G., Magarian, M.K., Kajko-
Matsson, M.: Survey of agile tool usage and
needs. In: 2011 Agile Conference, pp. 29-38
(2011). IEEE

Bosilj-Vuksié, V.: The method of business
process oriented tool selection in information
systems development projects. Zagreb Inter-

national Review of Economics & Business
9(2), 135-153 (2006)

[9]

[13]

Chomal, V.S., Saini, J.R.: Software project
documentation-an essence of software devel-
opment. International Journal of Advanced
Networking and Applications 6(6), 2563
(2015)

Cockburn, A.: Agile Software Development.
Addison Wesley, Boston, MA (2001)

Cortés-Coy, L.F., Linares-Vasquez, M.,
Aponte, J., Poshyvanyk, D.: On auto-
matically generating commit messages via
summarization of source code changes. In:
2014 IEEE 14th International Working
Conference on Source Code Analysis and
Manipulation, pp. 275-284 (2014). IEEE

Curtis, B., Krasner, H., Iscoe, N.: A field
study of the software design process for
large systems. Communications of the ACM
31(11), 1268-1287 (1988)

Dagenais, B., Robillard, M.P.: Creating and
evolving developer documentation: under-
standing the decisions of open source con-
tributors. In: Proceedings of the Eighteenth
ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp.
127-136 (2010)

Das, S., Lutters, W.G., Seaman, C.B.: Under-
standing documentation value in software
maintenance. In: Proceedings of the 2007
Symposium on Computer Human Interaction
for the Management of Information Technol-
ogy, p- 2 (2007)

de Souza, S.C.B., Anquetil, N., de Oliveira,
K.M.: A study of the documentation essen-
tial to software maintenance. In: Proceedings
of the 23rd Annual International Conference
on Design of Communication: Documenting
& Designing for Pervasive Information, pp.
68-75 (2005)

Diaz-Pace, J.A., Villavicencio, C., Schiaffino,
S., Nicoletti, M., Vazquez, H.: Producing
just enough documentation: An optimization
approach applied to the software architecture

domain. Journal on Data Semantics 5(1),
37-53 (2016)

https://www.altexsoft.com/blog/business/ technical-documentation-in-software-development -types-best-practices-and-tools
https://www.altexsoft.com/blog/business/ technical-documentation-in-software-development -types-best-practices-and-tools
https://www.altexsoft.com/blog/business/ technical-documentation-in-software-development -types-best-practices-and-tools
https://www.altexsoft.com/blog/business/ technical-documentation-in-software-development -types-best-practices-and-tools

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

[17]

[18]

[21]

[24]

Farshidi, S., Jansen, S., Fortuin, S.: Model-
driven development platform selection: four
industry case studies. Software and Systems
Modeling 20(5), 1525-1551 (2021)

Fernandez-Sdez, A.M., Caivano, D., Gen-
ero, M., Chaudron, M.R.: On the use of
uml documentation in software maintenance:
Results from a survey in industry. In: 2015
ACM/IEEE 18th International Conference
on Model Driven Engineering Languages and
Systems (MODELS), pp. 292-301 (2015).
IEEE

Fontanet Losquino, D., Urdell, T.: Why
do developers struggle with documentation
while excelling at programming. B.S. thesis,
Universitat Politecnica de Catalunya (2014)

Forward, A., Lethbridge, T.C.: The relevance
of software documentation, tools and tech-
nologies: a survey. In: Proceedings of the 2002
ACM Symposium on Document Engineering,
pp. 26-33 (2002)

Fraser, G., Staats, M., McMinn, P., Arcuri,
A., Padberg, F.: Does automated unit test
generation really help software testers? a con-
trolled empirical study. ACM Transactions
on Software Engineering and Methodology
(TOSEM) 24(4), 1-49 (2015)

Garousi, G., Garousi, V., Moussavi, M.,
Ruhe, G., Smith, B.: Evaluating usage and
quality of technical software documentation:
an empirical study. In: Proceedings of the
17th International Conference on Evaluation

and Assessment in Software Engineering, pp.
24-35 (2013)

Garousi, G., Garousi-Yusifoglu, V., Ruhe, G.,
Zhi, J., Moussavi, M., Smith, B.: Usage and
usefulness of technical software documenta-
tion: An industrial case study. Information
and Software Technology 57, 664—682 (2015)

Gehanno, J.-F., Rollin, L., Darmoni, S.: Is the
coverage of google scholar enough to be used
alone for systematic reviews. BMC medical

informatics and decision making 13(1), 1-5
(2013)

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[34]

Gotel, O., Mader, P.: Acquiring tool support
for traceability. In: Software and Systems
Traceability, pp. 43-68 (2012). Springer

Guest, G., Namey, E., Taylor, J., Eley,
N., McKenna, K.: Comparing focus groups
and individual interviews: findings from a
randomized study. International Journal of
Social Research Methodology 20(6), 693-708
(2017)

Hadar, I., Sherman, S., Hadar, E., Harri-
son, J.J.: Less is more: Architecture docu-
mentation for agile development. In: 2013
6th International Workshop on Cooperative

and Human Aspects of Software Engineering
(CHASE), pp. 121-124 (2013). IEEE

Hager, J.A.: Software cost reduction methods
in practice: A post-mortem analysis. Journal
of systems and software 14(2), 67-77 (1991)

Haiduc, S., Aponte, J., Moreno, L., Marcus,
A.: On the use of automated text summariza-
tion techniques for summarizing source code.
In: 2010 17th Working Conference on Reverse
Engineering, pp. 3544 (2010). IEEE

Heale, R., Forbes, D.: Understanding trian-
gulation in research. Evidence-based nursing
16(4), 98-98 (2013)

Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.:
Deep code comment generation. In: 2018
IEEE/ACM 26th International Conference
on Program Comprehension (ICPC), pp.
200-210 (2018). IEEE

Janicki, R., Parnas, D.L., Zucker, J.: Tabular
representations in relational documents. In:
Relational Methods in Computer Science, pp.
184-196 (1997). Springer

Jayasuriya, D.B., Perera, I.: Ontology based
software design documentation for design
reasoning. In: 2019 Moratuwa Engineering
Research Conference (MERCon), pp. 710-
715 (2019). IEEE

Jones, C.: Software project management
practices: Failure versus success. CrossTalk:
The Journal of Defense Software Engineering

36

[36]

[39]

[43]

[44]

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

17(10), 5-9 (2004)

Li, B., Vendome, C., Linares-Véasquez, M.,
Poshyvanyk, D., Kraft, N.A.: Automatically
documenting unit test cases. In: 2016 IEEE
International Conference on Software Test-
ing, Verification and Validation (ICST), pp.
341-352 (2016). IEEE

Lotufo, R., Malik, Z., Czarnecki, K.: Mod-
elling the ‘hurried’bug report reading process
to summarize bug reports. Empirical Soft-
ware Engineering 20(2), 516-548 (2015)

Madsen, J., Munck, A.: A systematic and
practical method for selecting systems engi-
neering tools. In: 2017 Annual IEEE Interna-
tional Systems Conference (SysCon), pp. 1-8
(2017). IEEE

Mahmood, S., Khan, A.: An industrial
study on the importance of software com-
ponent documentation: A system integrators

perspective. Information Processing Letters
111(12), 583-590 (2011)

Mani, S., Catherine, R., Sinha, V.S., Dubey,
A.: Ausum: approach for unsupervised bug
report summarization. In: Proceedings of the
ACM SIGSOFT 20th International Sympo-
sium on the Foundations of Software Engi-
neering, pp. 1-11 (2012)

Maxwell, J.: Understanding and validity
in qualitative research. Harvard educational
review 62(3), 279-301 (1992)

McBurney, P.W., McMillan, C.: Automatic
source code summarization of context for java
methods. IEEE Transactions on Software
Engineering 42(2), 103-119 (2015)

McBurney, P.W., Liu, C., McMillan, C.,
Weninger, T.: Improving topic model source
code summarization. In: Proceedings of the
22nd International Conference on Program
Comprehension, pp. 291-294 (2014)

McLuhan, M., Fiore, Q.: The medium is the
message. New York 123, 126-128 (1967)

Moreno, L., Aponte, J., Sridhara, G., Marcus,

[46]

A., Pollock, L., Vijay-Shanker, K.: Automatic
generation of natural language summaries for
java classes. In: 2013 21st International Con-
ference on Program Comprehension (ICPC),
pp. 23-32 (2013). IEEE

Moreno, L., Bavota, G., Di Penta, M.,
Oliveto, R., Marcus, A., Canfora, G.: Auto-
matic generation of release notes. In: Pro-
ceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Soft-
ware Engineering, pp. 484-495 (2014)

Niazi, M., Mahmood, S., Alshayeb, M.,
Hroub, A.: Empirical investigation of the
challenges of the existing tools used in global

software development projects. IET Software
9(5), 135-143 (2015)

Okoli, C.: A guide to conducting a stan-
dalone systematic literature review. Commu-
nications of the Association for Information
Systems 37(1), 43 (2015)

Panichella, S., Panichella, A., Beller, M.,
Zaidman, A., Gall, H.C.: The impact of test
case summaries on bug fixing performance:
An empirical investigation. In: Proceedings
of the 38th International Conference on Soft-
ware Engineering, pp. 547-558 (2016)

Pilar, M., Simmonds, J., Astudillo, H.: Semi-
automated tool recommender for software
development processes. Electronic Notes in
Theoretical Computer Science 302, 95-109
(2014)

Poston, R.M.: When does more documenta-
tion mean less work. IEEE Software, 98-99
(1984)

Prat, N., Comyn-Wattiau, 1., Akoka, J.: A
taxonomy of evaluation methods for infor-
mation systems artifacts. Journal of Man-
agement Information Systems 32(3), 229-267
(2015)

Prause, C.R., Durdik, Z.: Architectural
design and documentation: Waste in agile
development? In: 2012 International Confer-

ence on Software and System Process (icssp),
pp. 130-134 (2012). IEEE

Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

[53]

[59]

Priestley, M., Utt, M.H.: A unified process for
software and documentation development. In:
18th Annual Conference on Computer Docu-
mentation. Ipcc Sigdoc 2000. Technology and
Teamwork. Proceedings. IEEE Professional
Communication Society International Profes-
sional Communication Conference An, pp.
221-238 (2000). IEEE

Rastkar, S., Murphy, G.C., Murray, G.: Auto-
matic summarization of bug reports. IEEE
Transactions on Software Engineering 40(4),
366-380 (2014)

Raulamo-Jurvanen, P., Kakkonen, K.,
M""antyl""a, M.: Using surveys and web-
scraping to select tools for software testing
consultancy. In: International Conference
on Product-Focused Software Process
Improvement, pp. 285-300 (2016). Springer

Rivas, L., Pérez, M., Mendoza, L.E., Griman,
A.C.: Tools selection criteria in software-
developing small and medium enterprises.
Journal of Computer Science & Technology
10 (2010)

Rodeghero, P., Jiang, S., Armaly, A., McMil-
lan, C.: Detecting user story information
in developer-client conversations to generate
extractive summaries. In: 2017 IEEE/ACM
39th International Conference on Software
Engineering (ICSE), pp. 49-59 (2017). IEEE

Rodic, B., Marinova, G., Chikov, O.: Algo-
rithms and decision making methods for
filter design tool selection for a given speci-
fication in online-cadcom platform. In: Pro-
ceedings of the Twenty-Sixth International
Electrotechnical and Computer Science Con-
ference ERK’2017, Slovenian IEEE Section,
pp. 247-251 (2017)

Sauer, T.: Using design rationales for agile
documentation. In: WET ICE 2003. Proceed-
ings. Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2003., pp. 326-331
(2003). IEEE

Scherer, R.W., Saldanha, I.J.: How should

systematic reviewers handle conference

abstracts? a view from the trenches.

Systematic reviews 8(1), 1-6 (2019)

Sommerville, I.: Software documentation.
Software Engineering, Volume 2: The Sup-
porting Processes, 143-154 (2001)

Stettina, C.J., Heijstek, W.: Necessary and
neglected? an empirical study of internal doc-
umentation in agile software development
teams. In: Proceedings of the 29th ACM
International Conference on Design of Com-
munication, pp. 159-166 (2011)

Stokes, D., Bergin, R.: Methodology or
“methodolatry”? an evaluation of focus
groups and depth interviews. Qualitative
market research: An international Journal

(2006)

Taheri, M., Sadjadi, S.M.: A feature-based
tool-selection classification for agile software
development. In: SEKE, pp. 700-704 (2015)

Theunissen, T., Van Heesch, U.: Specification
in continuous software development. In: Pro-
ceedings of the 22nd European Conference
on Pattern Languages of Programs, pp. 1-19
(2017)

Theunissen, T., Hoppenbrouwers, S., Over-
beek, S.: In continuous software development,
tools are the message for documentation. In:
Proceedings of the 23rd International Con-
ference on Enterprise Information Systems,
SCITEPRESS-Science and Technology Pub-
lications (2021)

Thurmond, V.A.: The point of triangulation.
Journal of nursing scholarship 33(3), 253258
(2001)

Treude, C., Robillard, M.P., Dagenais, B.:
Extracting development tasks to navigate
software documentation. IEEE Transactions
on Software Engineering 41(6), 565-581
(2014)

Uddin, G., Robillard, M.P.: How api docu-
mentation fails. Ieee software 32(4), 68-75
(2015)

37

38 Communication based on Tools being the Message: Methodological Support for Software Project Tool Selection

[70] van de Weerd, I., Brinkkemper, S.: Meta-
modeling for situational analysis and design
methods. In: Handbook of Research on Mod-
ern Systems Analysis and Design Technolo-
gies and Applications, pp. 35-54 (2009). IGI
Global

[71] van de Weerd, 1., Brinkkemper, S., Souer,
J., Versendaal, J.: A situational implemen-
tation method for web-based content man-
agement system-applications: method engi-
neering and validation in practice. Software

process: improvement and practice 11(5),
521-538 (2006)

[72] Venable, J., Pries-Heje, J., Baskerville, R.:
A comprehensive framework for evaluation
in design science research. In: International
Conference on Design Science Research in
Information Systems, pp. 423-438 (2012).
Springer

[73] Verma, V., Dhawan, S.: Methodology for
selection of a data mining tool. International
Journal of Software & Hardware Research in
Engineering 2(5), 189-192 (2014)

[74] Voropaev, V., Gelrud, Y., Klimenko, O.:
Who manages what? project management for
different stakeholders. Procedia-Social and
Behavioral Sciences 226, 478-485 (2016)

[75] Waits, T., Yankel, J.: Continuous system
and user documentation integration. In: 2014
IEEE International Professional Communi-
cation Conference (IPCC), pp. 1-5 (2014).
IEEE

[76] Wieringa, R.J.: Design Science Methodol-
ogy for Information Systems and Software
Engineering, (2014). Springer

[77] Yin, R.K.: Case Study Research and Appli-
cations: Design and Methods, (2018). Sage

[78] Zhi, J., Garousi-Yusifoglu, V., Sun, B.,
Garousi, G., Shahnewaz, S., Ruhe, G.: Cost,
benefits and quality of software development
documentation: A systematic mapping. Jour-
nal of Systems and Software 99, 175-198
(2015)

	Introduction
	Research approach
	Problem investigation
	Exploratory literature review
	Interviews

	Treatment design
	Systematic literature review
	Process-Deliverable Diagrams

	Treatment validation
	Research environment

	Literature review results
	Exploratory review
	Documentation characteristics
	Automating software documentation
	Tool selection and tools being the message
	Summary

	Systematic review

	Interview results
	Documentation process
	Automated documentation tools
	About the method

	Creating the initial method
	Validation
	Discussion
	Triangulation
	Threats to validity

	Conclusions and future work
	Research method PDD
	Compliance with ethical standards
	Primary interview protocol
	Validation interview protocol
	Informed consent form

	Coding schemes
	Treatment design
	Method evolution PDDs
	SoPro-TSM
	PDDs
	Activity table
	Concept table

	Validation scores

