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Abstract

In order to counteract disease outbreaks, monitor pathogen populations, and allow preventive

measures to be put in place against pathogens, pathogens need to be attributed to putative sources.

To this extent source attribution may look at phenotypical and genotypical characteristics of the

pathogen to link it to a source. Proper designation to a source requires overcoming problems related

to the pathogen and sources characteristic, which may erase recognizable patterns differentiating

one serovar strain from another. However, no standard approach to source attribution exists, which

overcomes the problems and limitations inherent therein. No standard approach to all source

attribution tasks is likely to exist, however by combining different genotyping approaches using WGS

data pathogens can be attributed with a higher resolution. Here biological problems and technical

problems associated with source attribution, among which host range, host switching behavior,

genome plasticity, source designation, metadata annotation, problems with data, and

spatio-temporal dynamics are evaluated. These technical and biological problems are placed in

context of different phenotyping, genotyping and genotype-based microbial source attribution

approaches to give an intuitive overview of the strengths and weaknesses of the aforementioned

approaches. Agreeing with previous papers, we find that a combination of genotyping approaches is

the best way forward. However, WGS genotyping approaches require standardization before

universal application. We hope to highlight possible research directions, such as to what extent

genetic signals are associated with adaptation, and by proxy attributable to a source. Additionally, we

stressed the relevance of spatio-temporal data to expand source attribution capabilities.



Layman's summary

Disease outbreaks can occur sporadically, during which one of the first steps taken is the

identification of the possible source of the outbreak. For example, a Salmonella outbreak can

originate from infected meat, which in turn could originate from some chickens on a random farm

located somewhere far off in the hinterland. Source attribution refers to the identification of this

source from which pathogen originates. Human cases of foodborne diseases may be attributed to

animals, food, and environmental reservoirs. Through the transmission routes, direct exposure and

risk factors are also often considered.

The relevance of source attribution lies not only in its’ ability to determine how outbreaks can be

counteracted, but also in the prevention of the spread of pathogens. Knowledge of the source of a

pathogen allows relevant authorities to perform food safety interventions and measure the impact of

such interventions. Such intervention may include the removal of products from shelves, temporary

closure of affected animal farms, and improved hygiene in slaughterhouses.

In order to get data on these pathogens, samples are taken from the human cases as well as possible

sources. Genetical information of the pathogen and observable characteristics of the pathogen are

used to determine species and perhaps even the specific strain; e.g. proteins expressed on the

surface of the pathogen can  be used as a characteristic. Similarities and differences between

pathogens from the sources and human cases can then be used to infer the relatedness and origin of

the pathogen.

Source attribution may sound intuitive, but specific characteristics of pathogens and sources may

complicate matters. Certain pathogens or strains often switch hosts, some have broad-host ranges,

and some are more inclined to have their genetic information shuffled and changed. Additionally, for

a link between source and pathogen to be determined the source should be included and clearly

defined. All these characteristics and considerations muddle a clear inference of a source.

To overcome these problems many different techniques were either developed or applied. All these

techniques have their specific downsides. However, genetic information, through the sheer quantity

of available information contained within a single genome by means of nucleotide sequences, can

reveal many more patterns of similarity and dissimilarity.

I propose that different approaches to retrieve these patterns/signals from genomic nucleotide

sequences should thus be applied together to compare one approach to another. Moreover,

metadata may be applied to further distinguish both source and pathogens. Metadata refers to

specific information pertaining to data acquisition, such as the host the sample was taken from, the

place, and time of acquisition. However, research is still required to reveal the temporal and

geographical effects on source attribution, and to reveal relevant patterns within different pathogens

and pathogen strains. These patterns may change through time, thus a continuously updated

reference frame is needed to standardize source attribution and allow tracking of signatures

associated with particular strains.



Introduction

In the year 2019 a sudden gulf of disease whipped across Germany, even potentially being the cause

of death for two elderly persons. As to the root of this disease; sausages contaminated with Listeria,

a bacteria that causes gastroenteritis, meningitis and sepsis (Deutsche Presse-Agentur, 2019).

The quick identification of origin of the outbreak, preventing further disease and potentially deaths,

was thanks to source attribution. Source attribution allows identification of the sources of the

outbreak, which in turn allows a quick response from the relevant authorities to counteract the

outbreak. Source attribution is defined as the subdivision of human cases caused by foodborne

pathogens to their sources (Mughini-gras et al., 2019).

The term source, in relation to source attribution, denotes not only the reservoir the disease

originates from, such as for example a variety of farm animals, but oftentimes includes the route of

transmission, the direct exposure and the risk factors (Mughini-gras et al., 2019). Examples of

transmission routes are both food and the environment, whilst exposure may occur through meat or

milk, and risk factors might be the consumption thereof or the proximity to livestock (Wagenaar.,

2015).

There are a plethora of different methodologies used for source attribution. These techniques

commonly  fall either within the categories; microbiological methods, epidemiological methods, or a

combination of both (Mughini-gras et al., 2019). Whereas, the epidemiological approach to source

attribution looks at the distribution and determinants to infer sources, the microbiological methods

use phenotype or genotype data to characterize the pathogen and trace the source of the infection.

Source attribution is, however, still far from perfect. There are no universal consensus approaches for

attributing sources to most foodborne diseases, since information regarding their source is lacking,

which complicates understanding. This is partly due to the majority (around 95%) of these cases

being sporadic, causing no wider outbreak (Zhang et al., 2019). Additionally, improving source

attribution would lessen the number of cases and economical burden associated with an outbreak

through prevention and mitigation. For example, Salmonella enterica, a prevalent foodborne

pathogen, infects over a million humans and causes considerable economic damages of around $ 3.7

billion a year (Zhang et al., 2019 & Hoffmann et al., 2015). Identification of the sources responsible

for disease is therefore crucial.

Despite still being imperfect there are ample opportunities for the improvement of source

attribution. The advent of next-generation sequencing, specifically whole genome sequencing (WGS),

allows greater resolution as compared to traditional genetic approaches to source attribution (Franz

et al., 2016). In addition, the continued improvement of WGS and the lessening costs support

innovative new ways to tackle source attribution. For example, larger amounts of data have made

the application of the increasingly popular field of machine learning in the context of source

attribution possible (Arning et al., 2021, Lupolova et al., 2019 & Munck et al., 2020). In addition, the

bipartite nature of the association between sample and source, allows for a variety of network



related analyses (Merlotti et al., 2020). These techniques and others open up a variety of avenues for

the development of source attribution

However, dually there is a need to overcome a myriad of problems inherent in source attribution and

the types of data used. For example, pathogen behavior, such as host switching (Dearlove et al., 2016

& Woodcock et al. 2017), genome recombination (Woodcock et al., 2017), and a generalist lifestyle

(Dearlove et al., 2016), affect source attribution. Additionally, current gaps in knowledge, such as

unknown sources (Wilson et al., 2008), suboptimal source clustering (Griekspoor et al., 2013), the

inability to sample everything (Lupolova et al., 2019), and the lack of spatio-temporal data (Smid et

al., 2013) hamper precise source attribution. Lastly, there appears to be no standardized protocol for

any of these methods encompassing different pathogens.

The great variety of ways to tackle source attribution, with their tacit benefits and shortcomings, the

various problems related to source attribution, and the availability and nature of the data begs the

question; what methods or combinations of methods are best able to overcome the problems and

limitations inherent in source attribution to perform accurate and precise attribution to the correct

sources?

All by all, no standard approach to all source attribution tasks exists, and there probably will not be a

general fit-all approach since pathogen behavior differs. Therefore, decisions on a case-by-case basis

need to be made considering behavior and available data. Nevertheless, increasingly the existing

gaps in knowledge are bridged allowing more sophisticated approaches to be taken. Despite this,

much research is still required to evaluate and optimize the best decision making for different

pathogens and choice of sources.



Main body of text

1. Biological problems related to source attribution

In order to figure out the best methods to apply to a source attribution problem, it is important to

understand the biological problems associated therewith. Pathogen behavior influences the genetic

makeup and plasticity of the genome. For example, the host range of a given pathogen influences the

level of specialization. The wider the host range the less specialized a pathogen is and the more it

conforms to a generalist lifestyle. Some species of pathogen like Campylobacter coli and C. jejuni

have a wide host range, including cattle, sheep, poultry, pigs, wild birds and wild mammals (Dearlove

et al., 2015). Whereas, live-stock associated lineages of Staphylococcus aureus are mostly

host-restricted (Woodcock et al., 2017). However, even within species there may be differences up to

serovar level in their host restriction. To illustrate, whilst Salmonella enterica serovar Typhimurium

has a rather broad host range, the serovar Typhi is restricted to fewer hosts (Lupolova et al., 2019).

Possible links were made between a generalist lifestyle and genome plasticity. A study by Woodcock

et al., 2017 inferred that outcompeting of Campylobacter generalists by specialists, who have a

fitness advantage in a specified niche, was prevented by the introduction of new genetic variance.

Their model specifies that horizontal gene transfer, frequent host switching and recombination can

promote host generalism by enhancing the standing variation in populations and enhancing the

efficiency of selection of combinations of beneficial alleles.

Rapid host switching is problematic for source attribution. Namely, the transient presence of a

pathogen within a host can cause errors in the acquired metadata associated with genomic

techniques (Lupolova et al., 2019). Wrong labeling decreases the source attribution capacities and

for models requiring training with data may introduce faulty patterns. Furthermore, studies on the

capacity of whole-genome sequencing of Campylobacter strain’s broad host range found that the

rapid rates of host switching erased the phylogenetic association between host and pathogen

complicating source attribution (Dearlove et al., 2015). After all, the genetic signatures of such

strains were omnipresent and were not limited to a specific host. Overall it might be worth

investigating the commonalities and differences between pathogens adapting to a single host and

broad host ranges, such as patterns of gene degradation (Wheeler et al., 2018).

Affinity for a host does not only play into host switching, but also plays into the ability of a pathogen

to infect a certain host. After all, the contributions of a host to human infection do not necessarily

reflect the composition of the sampled source (Arning et al., 2021).

Concerning the gathering of data there are also a few things to be kept in mind; only a fraction of

information is gathered, there may be unknown sources, and samples should be representative of

the sources. The fraction of information gathered is but a mere fraction of the in total existing data

available. Therefore, the different steps between the original source and the eventually diseased

individual need to be inferred or circumvented. This means that the source identified may not fit

one-on-one with the disease isolate, since the real source was never sampled. Wilson et al., 2008

used re-sampling to show that no major unknown sources for C. jejuni remained to be discovered.



However, even smaller sources can underlie a large reassignment of putative sources (David et al.,

2013b). In addition, as only a fraction is sampled it does not represent the entire population

structure, which means the data is biased to some extent (Lupolova et al., 2019)

Wrongly designated source, which should be multiple genetically diverse sources may affect

performance and cause ambiguity. For instance many studies erroneously group wild birds into a

single group, however Griekspoor et al., 2013 showed a strong differentiation between C. jejuni

populations in wild birds on a nucleotide level. These differences, however, were obscured on an

allele level, which comparatively lacked resolution.

Probabilistic source attribution at times is preferred over discrete source attribution, because it is

able to reflect the uncertainty in designation of the source. For example, probabilistic source

attribution helps in the attribution of Campylobacter isolates to either sheep or cattle is iffy, since

there is a large overlap in the gene pool, due to frequent transmission between cattle and sheep,

which may reflect  the physiological makeup of the gastrointestinal tract of ruminants (Wilson et al.,

2008). This is related to source clustering where in a perfect situation low diversity within sources

and high diversity between sources is expected. However, the close proximity and regular contact

between some host species and broad-host ranges muddle separation between sources. Techniques,

such as AMOVA, exist to examine this variance (Excoffier et al., 1992).

In some cases the addition of metadata helps elucidate source separation. However, for the majority

of available sequence data metadata is not readily available (Lupolova et al., 2019). Additional

information such as the geographical location of the sample help further source prediction and data

separation.

Palma et al., 2018 found that geographically segregated S. enterica Typhimurium isolates formed

distinct monophyletic groups, suggesting that the spatial factor may influence source attribution. For

example, a mix of datasets disregarding geographical or temporal information may increase the data

available, but may increase within cluster variance. Geographically separated population may evolve

independently from each other even within similar niches (Lupolova et al., 2019). The decision of

local vs. global sampling thus reflects choices in general and more distinct data patterns. The same

might be true for some hosts. However, factors like travel and trade may also influence this (Smid et

al., 2013). Griekspoor et al., 2013 noticed a less pronounced geographical pattern in wild bird

populations, as compared to different livestock animals. This is especially relevant to pathogens

undergoing fast genomic change where global sampling obscures source attribution. On a temporal

scale fast genomic changes can cause distinct patterns between pathogen populations, which ideally

should be accounted for. Smid et al., 2013 looked into the effects of differing spatio-temporal data of

C. jejuni and C. coli. They found that even on a small time-scale, dissimilarity was introduced in

sources. Ignoring temporal differences between data may thus cause a temporal bias. Introduction of

a temporal aspect allows evaluation of contributions of sources and the impacts of intervention as

well (Mughini-gras et al., 2019).



2. The various methodologies for source attribution

2.1. Epidemiological methods

Among the various methodologies used for source attribution are the so-called epidemiological

approaches. Better known epidemiological approaches include; case-control studies, cohort studies,

and outbreak analysis.

Case-control studies compare the frequencies of exposure to a factor between a control group and

the group of diseased. Whereas, a cohort study compares an unexposed group to an exposed group

and based thereon compares the frequency of the cases (Mughini-gras et al., 2019). With this in

mind, data is collected through means of questionnaires or interviews. There are a variety of

problematic factors involved in case-control and other epidemiological studies; concurrent exposure

to multiple sources and a variety of biases complicate epidemiological studies (Fullerton et al., 2012).

Some examples of biases include recall bias, information bias, and selection bias. Selection bias refers

to the differential selection between cases and controls, where they should have the same

characteristics. Whereas, information bias refers to mistakes in the measurements of associations.

Recall bias occurs when experiences cannot be recalled accurately or details are omitted. To prevent

recall bias the recall period often equals the maximum duration of the incubation of the disease. In

addition, these epidemiological studies suffer from a variety of other confounding effects. Partially,

these effects can be accounted for, raising statistical power, by controlling, e.g. age, gender,

health-related issues and geographical area (Fullerton et al., 2012). Nevertheless, these approaches

are subject to certain biases. This may warrant combining epidemiological approaches with

molecular/microbiological approaches in order to improve source attribution.

2.2. Microbiological & molecular methods

The molecular methods often include data gained through phenotypic expression patterns of

pathogens used to attribute a source to the sampled pathogen (van Belkum et al., 2007). Whereas,

the microbiological methods can roughly be subdivided in population genetic models and

frequency-matching models (Mughini-gras et al., 2019). Frequency-matching models determine the

putative source in a probabilistic manner by accounting for exposure, prevalence of pathogen

subtypes in sources, and frequency of cases by these subtypes (Mughini-gras et al., 2019). On the

other hand, the population genetic models are based on various types of genotype data discussed in

the genotyping section. This genotype data is then used for source attribution. Either directly

through comparison of the samples to the source samples (Foley et al., 2006) or through the use of

Bayesian models (Wilson et al., 2008), machine learning approaches (Arning et al., 2021, Lupolova et

al., 2019 & Munck et al., 2020), phylogenetic trees (Gymoese et al., 2017 & Henri et al., 2017), and

network-like approaches (Merlotti et al., 2020) to name a few.



2.2.1. Phenotyping

Phenotyping includes methods such as phage-typing (Barco et al., 2013), serotyping (Grimont &

Weill., 2007), antimicrobial resistance profiling (Barco et al., 2013), and biotyping (Mughini-gras et

al., 2019) . Phenotyping is based on the assumption that similar organisms group together, as a result

of the expression of their genotype (van Belkum et al., 2007). For example, antimicrobial resistance

profiling tests a pathogen’s or strain’s susceptibility to antimicrobial agents, whereas biotyping

differentiates based on reactions to biochemical tests (Barco et al., 2013). These methodologies used

to dominate the field, but decreased sequencing costs and improvement in sequencing sensitivity

out-phased these now classical techniques.

Here only phage-typing and serotyping are discussed in detail, since to a large extent these used to

dominate the field.

Phage-typing

Phage-typing attempts to separate strains into phage-types based on the ability of a phage to lyse

said strains (Barco et al., 2013). This ability depends both on the serovar specific receptors present

on the bacterial surface and the molecular characteristics of the phage (Ferrari et al., 2017).

Phage-typing keeps being persistently used into the recent years, despite limitations attached to the

method. Firstly, there is a lack of available phages, with only over 300 phage types being used to

discriminate (Ferrari et al., 2017). Secondly, changes in phage types, such as serotypes, called phage

conversion, can occur. Underlying reasons for phage conversion include changes to

lipopolysaccharide, a component of the outer wall of gram-negative bacteria, loss/acquisition of

plasmids, and the expression of so-called temperate phages (Barco et al., 2013 & Ferrari et al., 2017).

Temperate phages progress through lysogenic lifecycle, thus will not lyse. Thirdly, more common

phage-types cannot be discriminated between (Hopkins et al., 2011). Lastly, as compared more

recent genotyping methods capable of differentiating serovars showing little phenotypic variation,

phage-typing has relatively low discriminatory power and differentiates poorly among isolates of

different animal sources (Merlotti et al., 2020). However, there do exist specific strains that are

considered clones by a genotyping method called PFGE, but differ in the amount of lysis reactions

(Gorman and Adley., 2004).

Serotyping

Serotyping is the classification among bacteria or virus species based on the expression of their

surface antigens (Barco et al., 2013). The method uses agglutination, clumping of bacteria or viruses

with specific serotypes. Serotyping is possible due to certain serotypes being associated with

geographical regions or particular hosts (Ranieri et al., 2013). Traditional serotyping considers

antigenic variability in flagellar and somatic antigens (Barco et al., 2013).



There are several drawbacks associated with serotyping. For starters, not all (sub)species can be

distinguished amongst. Therefore, serotyping often lacks the sensitivity to discriminate food-borne

illnesses or infer phylogenetic relationships (Ranieri et al., 2013). Some studies attempted to

supplement serotyping with new serotypes (Wattiau et al., 2011). However, even if resolution is

improved, the antisera used is expensive and the procedure takes at least three days to complete

(Ranieri et al., 2013). As such, serotyping is slowly being phased out by cheaper genotyping

techniques, which can reveal the genetic fundaments underlying phenotypic expression.



2.2.2. Genotyping

There are multiple different genotyping approaches such as PFGE (Swaminathan et al., 2001), MLVA

(Lindstedt et al., 2003), ribotyping (Grimont & Grimont., 1986) and MLST (Maiden et al., 1998).

Additionally, the advent of whole genome sequencing allowed complete sets of genes to be

considered, and consequently resulted in whole-genome MLST (wgMLST) and core genome MLST

(cgMLST) (Sheppard et al., 2012 & Alikhan et al., 2018). Genotyping allows for the comparison in

overlap between different sources and human samples, based on the presence or absences of a core

set of genes/SNPs/sequences. Genotyping can, however, also be used in conjunction with more

complicated models and techniques to derive source attribution from more complicated patterns.

For example, machine learning and Bayesian models may be applied, phylogenetic trees can be

constructed, or networks can be created. Additionally, genotypes can be used to infer hamming

distances, allele frequencies, or other frequency-based genetic distances. To illustrate, k-mer

frequencies can be used to discern differences between isolates, through which source attribution

may occur by means of the aforementioned techniques.

All by all, a variety of different elements within the genome can be considered, such as tandem

repeat sequences, ribosomal RNA, or antimicrobial resistance genes. Equally, CRISPR-cassettes are an

option, since the spacers undergo acquisition and removal of obsolete ones through time, since a set

amount of spacers is present within the genome in order to retain a sufficient relative fitness. As

such, inference of phylogeny and strain differentiation can be observed through sequencing of the

CRISPR system (Ferrari et al., 2017).

Restriction fragments length polymorphism (RFLP) (Swaminathan et al., 2001) and ribotyping

(Grimont & Grimont., 1986) are some of the first genotyping techniques. Both are PCR-based

techniques, based on the amplification of genome fragments through the use of restriction enzymes.

The selection of restriction enzymes decides the size and number of fragments, which can then be

separated on an electrophoresis gel. The selection of restriction enzymes influences the

discriminatory power of the techniques. Ribotyping specifically uses rRNA information. Other

techniques exist which focus on different kinds of fragments (Wang et al., 2011 & Ferrari et al.,

2017). RFLP is often used in conjunction with Pulsed-Field Gel Electrophoresis (PFGE), a technique

fragmenting the genome using partially off-target restriction enzymes combined with electrophoresis

(Swaminathan et al., 2001). PFGE results in approximately 15 fragments of varying sizes in

accordance with specified strains. Nowadays these PCR-based genotyping techniques are largely

supplanted by better discriminating genomics-based techniques, such as MLST (Ribot et al., 2019).

Here the most prominent genotyping techniques are discussed, but other techniques, such as

fla-sequence typing (Meinersmann et al., 1997) and comparative genomic fingerprinting (Taboada et

al., 2012), exist as well.



MLVA

Multi-locus variable number tandem repeat analysis (MLVA) (Lindstedt et al., 2003) looks at the

variable number tandem repeats, which are various regions with nucleotide repeats both in the

coding and non-coding DNA of bacterial genomes (Sabat et al., 2013). These regions may vary from a

couple to over a hundred base pairs in length (Lindstedt et al., 2003). The number and composition

of these tandem repeat sequences of different lengths at different loci in the genome is represented

as a profile (Mughini-gras et al., 2018). In short, the bacterial sequence gets amplified through PCR

and through gel electrophoresis or capillary electrophoresis the size of the fragments containing

tandem repeat sequences is determined (Ferrari et al., 2017). Based thereon, MLVA can differentiate

epidemic strains from endemic ones, since profile changes occur rapidly (Mughini-gras et al., 2018).

Dually, this comes with a downside. Since regardless of the stability of the tandem repeats, loci

changes may occur; e.g. recombinations and mutations (Hopkins et al., 2007). As well as, multiple

changes may occur at a single locus, which erases traces of common ancestry between MLVA profiles

(Wuyts et al., 2013). For salmonella typhimurium certain loci were identified as the hotbed of

variations and measures were taken to account for these characteristics, a study for example allowed

a single variant in those loci to be present (Schjørring et al., 2016). This may be due to their location

in prophages or plasmids being relatively unstable or absent (Litrup et al., 2010). Therefore,

understanding the evolutionary dynamics of the changes in repeat sequence and their relationship to

the genome is fundamental in performing adequate MLVA analysis (Ferrari et al., 2017). Resultantly,

MLVA should be considered only in well characterized bacterial strains.

MLVA is used in outbreak studies and surveillance, since compared to PFGE it boasts a higher

discriminatory power (EFSA, 2013). However, as compared to next-generation sequencing data MLVA

may be lacking. In a study by Octavia et al., 2015, MLVA showed a lack of resolution as compared to

whole genome sequencing, since whilst the MLVA types were identical a definite difference in one or

more SNPs was observed. Therefore, similar MLVA profiles may be observed in cases that may be

epidemiologically unrelated (Octavia et al., 2015b). Moreover, in another study Octavia et al., 2015b

found that earlier detection with less required cases per cluster was possible with whole genome

data, since linked cases are easier identified.

However, whole genome sequencing often employs short-read sequencing, which makes the

reconstruction of the entirety of the repeats nigh impossible (Munck et al., 2020). The continued

improvements to long-read sequencing (De Roeck et al., 2019) should make MLVA possible and

affordable, either alone or in combination with short-read sequencing.



Multi-locus sequence typing

A better known sequencing-based source attribution method is multi-locus sequence typing (MLST).

MLST depends on schematic differences in a group of chosen loci in the genome of bacterial species.

Depending on the loci the sequence type (ST) and clonal complex (CC) can be established (Maiden et

al., 1998). As such, the number and diversity of known ST determines the source attribution

capabilities of MLST. For example, There is a 7-gene MLST scheme for Salmonella capable of

determining species level, but when determining subspecies or serotype level the technique may

lack in resolution (Foley et al., 2006). The reason being that these genes are housekeeping genes,

which only slowly accumulate nucleotide changes. As such, MLST is able to reconstruct evolutionary

histories, but is less capable of determining differences among strains when researching an outbreak

(Foley et al., 2006). Nevertheless, genomes showing greater plasticity also present complications,

since spurious links are inferred between isolates due to higher recombination rates (Lees et al.,

2019). However, a benefit to MLST is that besides the direct comparison of attained STs to known STs

for the characterization of the strains a variety of different techniques can be used to analyze the

data, such as phylogenetic trees, machine learning, and frequency-matching models. To this effect

distances between isolates or allele frequencies can be calculated.

Whole-genome sequencing has opened up new avenues for genotyping, and especially for MLST.

These come in the form of whole-genome MLST (wgMLST) and core-genome MLST (cgMLST). Both

cgMLST and wgMLST compare a number of hundreds to thousands of variable sequences or genes

(Sheppard et al., 2012 & Alikhan et al., 2018), but they differ in what genes they consider. cgMLST

considers the core genes, which are those sequences common to every isolate of the samples,

whereas wgMLST in addition considers the accessory genes.

Recent efforts recommend wgMLST as the de facto epidemiological tool for source attribution (Ribot

et al., 2019). However, this oversimplifies the efforts required and present complications of wgMLST.

One problem concerns standardization similar to the MLST schemes for both wgMLST and cgMLST.

Bacteria that often recombine have a fast growing number of orthologs, which grows with the

number of sequenced genomes. Resulting in a continuously growing wgMLST scheme necessitating

continuous re-annotation (Alikhan et al., 2018). Hence requiring a high computational demand to

create and work with a standardized, well working, reference frame. Routine surveillance with WGS

would be required (Franz et al., 2016). Whereas, simply not updating the schemes will result in a

quick outdating of said scheme. Therefore, there are arguments to be made for the use of the

computationally less expensive cgMLST (Alikhan et al., 2018). cgMLST on the other hand, drops in

resolution if not all scheme sequences are identified (Lees et al., 2019).

To overcome this problem associated with wgMLST and to a lesser extent cgMLST practices were

introduced to identify the more important sequence and gene content differences between strains;

e.g. based on partitioning of nucleotide k-mers into clusters (Lees et al., 2019), through means of

Bayesian analysis to form clusters (Cheng et al., 2013), or with STRUCTURE discussed later in this

review (Pritchard et al., 2000). Many of these approaches to selecting loci however lack scalability to

whole genome levels (Sheppard et al., 2012 & Lees et al., 2019). Also, working with alleles rather

than nucleotide sequences can somewhat alleviate this problem (Sheppard et al., 2012). However,



this may cloud the evolutionary dynamics involved in the process of differentiation, whereas

nucleotide usage shows similarities between alleles (Alikhan et al., 2018).

The incorporation of more loci into the MLST scheme may in the long run also facilitate focus on

differences in the likelihood and speed of nucleotide changes throughout genomes and their

differential importance in regards to source attribution.



2.3. Source attribution tools

2.3.1. Phylogenetic trees

Phylogenetic trees are often applied in surveillance (Henri et al., 2017 & Hudson et al., 2021) and

outbreak investigation research (Chiaverini et al., 2021 & Gymoese et al., 2017). Phylogenetic trees

are constructed from genotyping data, from which between strains proximities are calculated.

Thereafter, clustering is performed based on a cut-off of a certain number of nodes from the root

node (Mughini-gras et al., 2019). There are different metrics to assess similarity between clusters.

The downside of using phylogenetic trees for source attribution is that recombination events make a

phylogeny approach more difficult for non-clonal bacterial species, since they may lengthen branch

length or eviscerate recognizable ancestry. Whilst, this may not necessarily be troublesome for

outbreak analysis if the time frame is short, i.e. for pathogens with fairly small generation time

(Didelot et al., 2014), on longer timescales phylogenetic trees become unreliable (Hall et al., 2015).

Here generation time refers to the time between the host becoming infected and causing

subsequent infections.

More recent models attempted to overcome this problem by incorporating the mutational process

and epidemiological information (Hall et al., 2015 & Ypma et al., 2013), through for example a

molecular clock analysis (Didelot et al., 2014). However, attaching a mutational process to the

phylogeny requires certain considerations. Firstly, multiple lineages of bacteria undergoing multiple

mutation events should be allowed within a given host (Ypma et al., 2013). Secondly, branching times

in phylogeny and transmission events do not necessarily coincide (Didelot et al., 2014). Another point

needs to be considered as well; phylogenetic and transmission trees are separate entities and should

be treated as such. This means that phylogenetic trees cannot reveal the sequential transmission

events (Didelot et al., 2014). Recently attempts were made to reconcile the transmission and

phylogenetic tree (Ypma et al., 2013 & Hall et al., 2015). Since this review is interested in the end

nodes of transmission and not necessarily the route, transmission trees are outside the scope of this

review. However, methodologies considering the route of transmission, inherently, also perform

source attribution and therefore these methods are discussed shortly below.

Ypma et al., 2013 attempted to integrate the phylogenetic tree with the transmission tree, by linking

up individual phylogenies within the host in accordance to the transmission tree. Nevertheless, this

created a two step process. As a result, certain assumptions are made concerning the population

structure of host or pathogens. For example, pathogens are limited to a particular host thus forgoing

free mixing of the isolates. Since the research was constrained by a fixed prior phylogeny, Hall et al.,

2015 attempted to perform both phylogeny inference and node labeling simultaneously. As such,

Hall et al., 2015 adopted a Bayesian Markov Chain Monte Carlo (MCMC) approach to perform these

processes concurrently, since the probability spaces calculated are highly dimensional and

consequently mathematically complicated. Improvements can still be made; ideally each infected

host should be seen as an individual entity, rather than a member of a group of hosts between which

free mixing can occur (Hall et al., 2015).



2.3.2. Frequency-matching models

Source attribution can be performed using frequency-matching models. These models

probabilistically infer the likeliest source for each isolate through comparison of weighted subtype

frequencies. The weights applied may include prevalence in sources and exposure to those sources

(Mughini-gras et al., 2019). Frequency-matching models output a number or percentage of cases

attributable to each source together with a confidence interval or, in the case of a Bayesian model, a

credibility interval (Mughini-gras et al., 2019). Two of the most prevalent frequency-matching models

are the Hald model (Hald et al., 2004), the Dutch model (van Pelt et al., 1999) and the modified

versions of these (Mullner et al., 2009b & Mughini-gras et al., 2014).

Dutch equation:

λij: expected number of cases of subtype (i) from a source (j)

The Dutch model provides source attribution through calculation of the number of cases of a subtype

(i) from a certain source (j) proportional to the total number of observed cases from said subtype

(oi). This proportion is then multiplied by the probability that the subtype comes from the source

(van Pelt et al., 1999). The model does, however, not consider the capacity of subtypes and sources

to cause infection (Mughini-gras et al., 2019). For foodborne diseases the assumption that each

source has an equal impact is lifted through the introduction of weights to food consumption and

probabilities of consumption of raw or undercooked food by the population (Mughini-gras et al.,

2014). Additionally, the inclusion of subtype-specific prevalences mitigates the equal impact of

different subtypes (Mughini-gras et al., 2018). The Hald model, on the other hand, is mainly

designed for source attribution of Salmonella in a foodborne context. The model applies the same

data type to a Bayesian framework using MCMC simulations, deciding stochastically the number of

human cases belonging to a source (Hald et al., 2004). The Hald model’s largest drawback is the

number of parameters taken into consideration. Multiple adaptations attempt to reduce the number

of parameters. For example, by fixing parameters in multiple quantified Salmonella enterica

serotypes (David et al., 2013). The modified Hald model enlarges the models applicability by allowing

non-food sources and pathogens besides Salmonella, as well as dealing with data uncertainty

(Mullner et al., 2009).

The biggest shortcoming of both the Hald and Dutch model is the inability to attribute all subtypes

found to a source, which consequently means that if a subtype is only present in the human samples

will not be attributed to a source. This results in a fraction of ‘unknown source’. Additionally,

attribution of a subtype to a source does not necessarily mean it is the only source they are present

in. The other, related source, may be absent (Mughini-gras et al., 2019). David et al., 2013b included

sources though of lesser importance, which led to reassignment of a quarter of the cases. This

highlights the importance for these models to include as many sources as possible.



2.3.3. Bayesian models based on genotyping data

AIM

The asymmetrical island model (AIM) is a Bayesian model of source attribution, which attempts to

model DNA sequence evolution of bacteria by estimating horizontal gene transfer (HGT),

recombination and de novo mutation. Furthermore, the model tries to explain zoonotic transmission

(Wilson et al., 2008). To do so, the model considers the different sources as singular islands, between

which migration might occur after a certain number of generations, representing gene flow. Given

the allelic frequencies of loci in the source populations, estimates of mutation, recombination and

migration rates can be attempted (Mughini-gras et al., 2019). Afterwards, human cases can be

assigned to a single source population on a probabilistic basis (Wilson et al., 2008).

The major benefit of this model is the consideration of genetic relationships among isolates. By

considering mutations, recombination and HGT, AIM takes advantage of the highly discriminate

subtyping methods. The high discriminatory power of these subtyping methods can in an overlap

comparison between subtypes merely obscure the actual source of a strain (Mullner et al., 2009 &

Barco et al., 2015). Similarly, by considering the genetic relationship among isolates the model may

be better able to predict the sources of highly recombinant strains, such as C. jejuni. However, if a

strain was never before found in any source it is attributed to the source with the highest

recombination rate. Another shortcoming of AIM is AIM’s attempt to attribute all strains to a source,

even if the actual source of the strain was not included in the model. Lastly, AIM assumes humans to

be the recipient of the strain, which creates directionality. The direction of this directionality may be

wrong (Mäesaar et al., 2020).

STRUCTURE

STRUCTURE uses Bayesian inference to determine allelic frequencies of populations, representing

sources, at different loci. Isolates are then assigned to populations probabilistically, reflecting

uncertainty (Pritchard et al., 2000). This is based on the allele frequencies at different loci and the

allelic profiles. Admixing is possible, if specified, allowing assignment to multiple populations.

The main drawbacks of STRUCTURE are related to the optimal number of populations, thus equaling

problems in defining optimal source separation. Like AIM, if a source is absent STRUCTURE may

wrongly assign an isolate to another source.



2.3.4. Network approaches

The relation between the isolates derived from humans and the sources can be perceived as a

bipartite system, where the connection is represented by, for example, the genetic relatedness as a

proxy for the weight of the link. Therefore, a network based approach to source attribution is a

distinct possibility. Such a network by evaluating the clustering coherence of reservoirs and driving

forces of parameters in cluster formation (such as metadata on reservoir, country of origin and year)

should give an overview of subtype and source associations. A study by Merlotti et al., 2020

constructed a weighted network using pairwise SNP, cgMLST and wgMLST matrices for source

attribution of S. enterica Typhimurium. Herein, nodes represent isolates and links between nodes as

pairwise distances calculated as the number of different nucleotides or number of different alleles

between two isolates. This builds on the underlying assumption that if two genomes are derived

from the same source this should show in a smaller distance value.

The study found that after animal sources, the geographical region was a major driver of source

attribution, which again highlights the importance of geographical segregation in source attribution.

However, additional parameters can also be applied.

A benefit of a network approach is that isolates from unknown origins can be differentiated between

and assigned to various putative unknown sources. However, on the other hand a worry with a

network approach for source attribution is the identification of too many clusters. The high

discriminatory power of genomic subtyping can lead to formation of too many clusters with a large

fraction of isolates being unattributable. Though this fear seemed unfounded in Merlotti et al.,

2020’s study, pathogens with higher interspecies genetic diversity, or without clear metadata and

unclear source separation to separate clusters for benchmarking, may complicate analysis.

Nevertheless, source attribution through a network approach is a relatively unexplored avenue of

research. Besides Merlotti et al., 2020 further research needs to be applied to evaluate network

approaches to perform source attribution.



2.3.5. Unsupervised machine learning

Unsupervised machine learning (ML), in contrast to supervised ML, does not use labels for the

isolates used in the training. Common examples of unsupervised ML include various clustering

techniques and principal component analysis. Though principal component analysis belongs to the

dimension reduction techniques, both clustering and dimension reduction attempt to group the

data. The number of features are thereby compressed during dimension reduction, whilst in

clustering they are not (Lupolova et al., 2019).

Unsupervised ML does not per se require labels for the isolates used during training. However,

patterns within the data may be difficult to associate with a source cluster. Additional metadata helps

determine the capability of the algorithm to assign isolates to the sources. This is to say you

determine the population structure a priori. Similarly spatio-temporal data may be used. However,

when lacking metadata altogether there are methods for approximating the optimal number of

clusters either beforehand (Charrad et al., 2014) or after the fact (Arbelaitz et al., 2013).  Another

benefit to these clustering techniques is, similarly to network approaches, the direct visualization of

clusters and by extent cluster separation, if labels are provided.

Lupolova et al., 2019 looked into the use of a variety of ML algorithms for source attribution of S.

enterica Typhimurium, including unsupervised ML. According to the study, assigning the number of

clusters prior based on metadata produced better results. However, when four clusters based on the

number of hosts were decided (avian, bovine, human and swine); the underlying structure of the

clustering was not entirely related to the host. After varying the number of clusters Lupolova et al.,

2019 inferred that clusters of mixed host origins contain generalist strains, since gene content

differences should be less. Additionally, the study found a group of isolates switching clusters

between runs. These singular isolates jumping clusters between runs may indicate a missing source

or rare strains captured only once in the sampling. All by all, complete separation of host populations

was not achieved.



2.3.6. Supervised machine learning

The main difference between supervised and unsupervised machine learning is the designation of

classes. The model is trained with training data of already characterized data whose source is known.

Since the model will know whether correct predictions were made based on the labels of the

samples, the model is able to learn. The benefit of supervised machine learning techniques is that

they can learn to recognize various patterns in the data, thus leading to a clearer separation of

sources. Using supervised ML, Lupolova et al., 2019 was able to classify most samples to their

sources, which was not achieved with unsupervised ML. Source attribution through supervised

machine learning can be done through a multitude of machine learning algorithms, e.g.; random

forest (RF) (Munck et al., 2020 & Wheeler et al., 2018), neural networks (NN) (Lupolova et al., 2019)

or support vector machines (SVM) (Lupolova et al., 2017 & 2019, Arning et al., 2021).

There are apparent limitations to supervised ML though. Firstly, characterized data must exist

beforehand for training of the model. Secondly, the number of samples needed for training can be

substantial. Thirdly, an ever-present worry in supervised ML is overfitting. Overfitting refers to the

too precise alignment of cut-offs to the data points within the training set. Different metrics exist,

depending on the balance of the dataset, for evaluation of the performance of such an algorithm and

to prevent overfitting.

When supervised ML is applied correctly, it provides a powerful tool to uncover patterns of

genes/mutations associated with a particular source. For example, RF allows for viewing of the most

important features. Other techniques, such as SVM and NN do not readily reveal important features.

However, the biological relevance of various entangled, possibly polygenic, traits may be rather

vague. Furthermore, supervised ML allows a probabilistic classification, providing further information

on potentially difficult to classify strains, such as those with broad host ranges. In other words it has

the potential to predict zoonotic potential (Lupolova et al., 2017). The dimensional space may be

substantial, however feature selection can be done prior with for example dimension reduction

(Lupolova et al., 2019), dissimilarity analysis (Duarte et al., 2021), the boruta function (Munck et al.,

2020), and random forest allows viewing of the most important features for selection making.



Discussion and conclusion

There are many ways to approach source attribution. Here we discussed the various epidemiological,

Phenotyping, genotyping, and techniques based on genotyping and/or sequencing data, such as

phylogenetic trees, frequency-matching models, network approaches, and machine learning.

Furthermore, there exist various other miscellaneous source attribution approaches not further

elaborated upon, and combinations of methods can be applied. Each of the approaches have their

benefits and drawbacks pertaining to the associated biological problems, such as the nature and

behavior of the pathogens and sources. This again brings us to our main question. To rehash; what

methods or combinations of methods are best able to overcome the problems and limitations

inherent in source attribution to perform accurate and precise attribution to the correct sources?

To determine the most relevant method the biological problems associated with the pathogen strains

are to be considered first. The most interesting pathogens in relation to source attribution are those

with broad host ranges, since those lacking these will not often need re-evaluation after the initial

determination of the source. Simultaneously, pathogens with broad host ranges are more

problematic to attribute to a specific source, due the potential lack of specific phylogenetic

associations. Additionally, host switching can cause errors in the metadata annotation and erases

genetic signatures (Dearlove et al., 2015). On top of this, different strains of a pathogen species may

behave differently. Therefore, a technique's ability to generalize to different pathogen strains is key.

Classically phenotyping methods were the method of choice. However, in many cases they do not

provide the same resolution as genotyping techniques, except for very specific cases, such as

differences in the number of lysis reactions of certain sub-strains (Garman and Adley., 2004). Even

so, higher levels of resolution may give light to finer patterns, like specific SNPs. The development

especially in genotyping, specifically wgMLST and cgMLST, may make this possible. Additionally, WGS

data allows several different genetic signatures to be used concurrently, like tandem repeats and

point mutations. Consequently, genotyping techniques are generally preferred.

Whole-genome sequencing has the capability to overcome problems associated with the lack of

genomic signatures in source attribution, but also raises new questions. Such as; what are the

commonalities and differences between pathogens adapting to a single host and those adapting

broad host ranges, such as patterns of gene degradation (Wheeler et al., 2018)? And more

fundamentally; to what extent are genetic signals associated with adaptations? The last question

feeds back into the need to standardize and create a continuously updated reference frame for

wgMLST, where growing number of samples necessitate removal and re-annotation. Temporal

differences between strain pathogens may relate to either, but research needs to show how genetic

changes accommodate host changes over time.

The lack of spatio-temporal data makes investigating their effects on source attribution challenging.

Links between geographical distance between pathogen populations are established (Lupolova et al.,

2019). Griekspoor et al., 2013 saw less of a geographical pattern in birds, but this may relate to

ranging behavior of birds compared to confined broiler chickens or cattle. Furthermore, as opposed

to free mixing populations, pathogens within a host cannot readily interact with pathogens in

another host of the same host species (Hall et al., 2015). The spatial effect may thus be linked to

both exposure to hosts and transmissibility of the pathogen. Concerning the temporal aspect a



tangible link was made between genomic time-scale dissimilarities and the pathogen’s genome

plasticity. Even though temporal data will benefit source attribution allowing evaluation of

contributions over time and impacts of interventions (Mughini-gras et al., 2019), a base level

understanding of the effect of pathogen behavior through time on source attribution is required.

Figuring out the ‘sweet spot’ of time past in between subsequent data acquisitions for which direct

ancestry of different serovars can be determined is necessary. For each pathogen these questions

should be handled before spatio-temporal data is fully incorporated.

Despite the availability of multitudes of sequencing data these are often poorly annotated.

Additionally, not every study will have the capital to perform a plurality of sequencing sessions for an

indiscriminate amount of potential sources. Therefore, in such cases this needs to be considered

when choosing an attribution method. For example, AIM performs as well as the Hald or Dutch

model, but requires a larger amount of samples. Moreover, introduction of a standardized way of

annotating metadata would allow easier re-use of data and separation of clusters in clustering

approaches based on additional information.

We need to acknowledge that within this review we were not able to evaluate all pathogen and

source characteristics. Certain pathogen behaviors were left unconsidered, like pathogen interactions

with one another, human-to-human transmission, and the effects of niche occupation. Neither was

the related topic of attributing anti-microbial resistance to a putative source taken into

consideration, or were biases implicit in source representation imbalances discussed.

The method preferable for analyzing genotyping data may not always be apparent. Besides the

quality and completeness of the data, the characteristics of the pathogen and designated sources in

the epidemiological context play a major role in the suitability of a technique. The various

approaches all have their upsides and downsides. However, many of these techniques can be used in

consortium with one another and various studies have compared the performance of different

techniques with one another (Lupolova et al., 2019 & Arning et al., 2021). Clustering approaches for

instances are potentially hindered by high levels of resolution, causing the creation of too many

clusters. Phylogenetic trees may on their own not be the most suitable approach, since non-clonal

species eviscerate recognizable ancestry. Moreover, the phylogenetic trees cannot fully omit the

transmission tree. ML, and especially supervised ML may offer valuable insights into patterns of

information within the data, which to the naked eye are hidden. These features may then be used by

other approaches to improve source attribution. Frequency-matching models may offer an intuitive

approach to source attribution, but like supervised ML they have a predefined number of sources,

which causes them to erroneously attribute all strains to a source. Since the inclusion of missing

sources can cause a large shift in source attribution (David et al., 2013b), clustering, phylogenetic or

network approaches should be used as well. Network approaches in particular are a relatively

unexplored avenue of research in the field of source attribution and should be evaluated in terms of

usefulness. More generally, case-control studies can be combined with microbial subtyping

approaches to infer sources and transmission pathways.

We hypothesized that all by all, no standard approach to all source attribution tasks exists, and there

probably will not be a general fit-all approach since pathogen behavior differs. As such, decisions on

a case-by-case basis need to be made considering behavior and available data. For each differently

behaving bacteria a standardized protocol needs to be developed. This protocol likely consists of an



array of different WGS genotyping approaches used in conjunction with one another, in order to

approximate their ability to perform source attribution. For example, for highly recombinant strains

phylogenetic trees may not offer the best solution. Increasingly the existing gaps in knowledge are

bridged allowing more sophisticated approaches to be taken. The use of spatio-temporal information

for instance allows temporal and geographical trends to be considered. Despite this, much research

still needs to be performed in regards to evaluating and optimizing decision making for different

pathogens and for considering sources.
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