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GRAPHICAL ABSTRACT 

 

In Brief 

RNA sequencing data of a representative, morphologically well-characterized neuroblastic tumor cohort 
allows tumor subgrouping and classification, opening up avenues for further gene and protein 
expression analysis and comparison with outcome. 
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HIGHLIGHTS  

o The Máxima peripheral neuroblastic tumor cohort is representative with regard to INPC 

category and MYCN status 

o Histology-based diagnoses and RNA-sequencing-based classification data show strong 

correlation 

o Expression data of peripheral neuroblastic tumors describe a differentiation gradient   

o Undifferentiated neuroblastic tumors display pathways involved in proliferation and 

development 

o Differentiated neuroblastic tumors show enrichment in immune pathways 

 
SUMMARY  

Although primary pediatric tumors are extremely rare, they remain the leading cause of non-accidental 
death in children. Peripheral neuroblastic tumors (pNTs) account for about 10% of pediatric 
malignancies. Their incidence is approximately ten cases per million children each year. They are highly 
heterogeneous and are classified based on morphological characteristics. Since 2018, the Princess 
Máxima Center routinely uses RNA-sequencing to detect fusion genes, one of the most common 
genomic alterations in pediatric cancers. Through our study we aim to refine tissue-based diagnosis as 
well as predict the outcome of pNT patients. We reviewed the morphology of frozen tumor tissue 
fragments from patients with neuroblastic tumors from which RNA was extracted. Based on this 
morphology review we created three groups: undifferentiated, differentiating and differentiated tumors 
and sought to determine whether there was a correlation between the morphology and the RNA-seq 
data of the samples. We then investigated the RNA-seq data of pNTs, neurofibromas and 
Schwannomas to observe the relation between the expression profile and the histology-based 
diagnosis. The expression profiles described a differentiation gradient, moving from benign 
differentiated tumors such as schwannomas and neurofibromas to malign undifferentiated tumors such 
as poorly differentiated neuroblastomas. Subsequently, we explored the expression level of MYCN 
throughout the pNT cohort and found a correlation between the MYCN expression level and the 
differentiation gradient. We then analyzed differentially expressed genes (DEGs) and enriched 
pathways in undifferentiated versus differentiated tumors and in MYCNA versus non-MYCNA-PDNBs. 
Overall, based on our cohort, we showed that pNTs, neurofibromas and Schwannomas cluster together 
by morphological diagnosis and follow a cellular differentiation gradient. Further, we showed that these 
gene sets are differentially expressed between undifferentiated and differentiated tumors as well as 
between MYCNA and non-MYCNA PDNBs. Combining our data with clinical follow-up data, may 
provide new avenues for prediction of prognosis and targeted treatment for patients with peripheral 
neuroblastic tumors.  
 

 
LAYMEN’S SUMMARY  

Cancers in children are very rare, and neuroblastic tumors are the most common solid tumors in 
newborns and the third most common pediatric tumor in general. Neuroblastic tumors (NTs) come from 
cells responsible for generating neurons during early development: the so-called neural crest cells. 
They are very diverse tumors that can be divided into three main groups: neuroblastomas (NBs), 
ganglioneuroblastomas (GNBs) and ganglioneuromas (GNs), accounting for about 80, 17 and 3% 
respectively. NTs mainly occur in children during their first year of life and most cases are diagnosed 
before the age of 5 during a routine medical visit. They may appear in many places in the trunk and 
belly and spread to the liver, bone marrow, lymph nodes and skin. Because NTs are so diverse, they 
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are classified based on their morphology. In the Princess Máxima Center (PMC), a piece of tumor (a 
biopsy) is taken from all new patients and molecular analyses such as RNA-sequencing (RNA-seq) are 
performed to detect changes in their genetic material (DNA and RNA). RNA-seq is also performed on 
tissue samples after the whole tumor or a part of it was removed. The purpose of our study was to 
enable us to find a correlation between the microscopic image and the RNA-seq data of NTs to later on 
link these data to patient outcome data and facilitate prediction of prognosis.   

We looked at the microscopic images of NT tissues used to perform RNA-seq. Based on the proportions 
of cell types (neuroblasts, ganglion cells) found, we categorized the tumors. NBs were categorized as 
undifferentiated (NBUD), poorly differentiated (PDNB) or differentiating (DNB) and we also identified 
GNBs and GNs. We then investigated a possible link between the microscopic image and the RNA-seq 
data of the samples and found that the RNA-seq data followed a trajectory based on the level of 
differentiation or maturity and aggressivity of the tumor samples. We then searched for differentially 
expressed genes (DEGs) and their corresponding enriched pathways (CEP) in the RNA-seq data of 
our samples. DEGs are highly expressed in one group compared to the other and vice versa. We 
created three groups to analyze DEGs and their CEP: undifferentiated (NBUD and PDNBs), 
differentiating (DNBs) and differentiated (GNBs and GNs) tumors. We performed two analyses: 
between undifferentiated and differentiated tumors and between MYCN-amplified (MYCNA) and non-
MYCNA PDNBs. Finally, we looked at the expression level of MYCN, a crucial gene in NTs, throughout 
the differentiation gradient of NTs. 

We showed that NTs cluster together based on their microscopic image and follow a differentiation 
gradient. Further, we were able to state that the morphological and the RNA-seq data were correlated 
and that the expression level of MYCN follows the same abovementioned gradient. We found that 
undifferentiated tumors are proliferative while differentiated ones and non-MYCNA PDNBs have 
enriched immune pathways, possibly due to immune cell infiltration in the tumors. Our data may provide 
new avenues for targeted treatment and should be linked to its corresponding outcome data and to 
future prediction models for NTs. 

 

INTRODUCTION 

Pediatric cancers, although very rare, constitute the leading cause of non-accidental death in children1, 
among which peripheral neuroblastic tumors (pNTs) account for about 10% of all pediatric 
malignancies9. pNTs constitute a spectrum of benign to malignant embryonal neoplasms15, 17 with 
clinical behaviors going from spontaneous regression to a disastrous outcome18, 19.  This heterogeneity 
is reflected in the overall survival rates (OS) ranging from 85% for low-to-intermediate risk disease to 
50% for high-risk disease patients19. pNTs are derived from neural crest cells and mainly arise in the 
adrenal medulla or the sympathetic ganglia of the neck, thorax, abdomen, or pelvis6, 8, 9, 10, 11. pNTs 
encompass neuroblastoma (NB) and ganglioneuroblastoma nodular (GNBn), both considered 
malignant, and ganglioneuroblastoma intermixed (GNBi) as well as ganglioneuroma (GN) considered 
benign9.  

Neuroblastic tumors (NTs) are the commonest extracranial solid malignancy in the pediatric population 
and the most common tumor in infants2, 3, 4 with a slight male predominance (male-to-female ratio: 1.1-
1.2)8, 12. Their incidence is approximately ten per million children per year5. They mainly occur in the 
first year of life4, and most cases are diagnosed before five years of age3, 7. Diagnosis is usually 
established during a routine clinic visit, through imaging studies for other purposes, or based on a 
variety of symptoms, that may depend on the location of the tumor4. Primary NTs may arise from 
immature neural crest cells4 anywhere along the sympathetic nervous system (SNS) and may 
metastasize to the bone marrow, lymph nodes, liver or skin8. Neuroblastic malignancies occur almost 
exclusively sporadically, however they may also arise in familial or syndromic contexts18.   

Clinically and biologically, pNTs are heterogeneous malignancies9, 15 and are clinically organized into 
low-, intermediate- and high-risk groups based on multiple prognostic factors 20. Histologically, pNTs 
have been classified (Figure 2A) by the International Neuroblastoma Pathology Classification (INPC) 
into four categories15. Neuroblastomas, the most common pNTs (80%), are also defined as Schwannian 
stroma-poor and are in turn subclassified into three subtypes: undifferentiated neuroblastoma (NBUD), 
poorly differentiated neuroblastoma (PDNB) and differentiating neuroblastoma (DNB) with each 
subtype representing about 4%, 90% and 6% of NB cases respectively14, 15, 16. The second and third 
most common pNTs are GNB intermixed (9%) and nodular (8%), also known as Schwannian stroma-
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rich and composite Schwannian stroma-rich/stroma dominant and stroma poor9, 15. The last form of pNT 
is ganglioneuroma or Schwannian stroma-dominant and represents 3% of pNT cases15 (Figure S1).  

Stage of the tumor is a crucial clinical prognostic marker and is determined based on two clinical staging 
systems (Figure 2B). They are based on either pre- or post-surgical determination of tumor extent: the 
International Neuroblastoma Risk Group Staging System (INRGSS) and the International 
Neuroblastoma Staging System (INSS) respectively15. The pre-surgical staging system is used to 
determine the extent of the pNT and its stage based on the presence or absence of image-defined risk 
factors (IDRFs). IDRFs are important to help predict surgical outcomes. Their presence is associated 
with high-risk histopathologic and molecular features of neuroblastic tumors39. Moreover, the INRGSS 
distinguishes distant metastases (M) from those confined to specific areas (MS)15. The post-surgical 
staging system is also used for the evaluation of the disease extent and enables the distinction between 
localized (stages 1, 2 and 3), metastatic disease (stage 4) as well as special metastatic disease (stage 
4S) correlated to a favorable outcome for the patient.  

Genetic and molecular alterations are of particular interest to predict prognosis in NT patients. About 
20% of pNTs and  25% of NB cases carry a MYCN amplification18, 20. MYCN is an oncogene that induces 
neoplastic transformation, codes for a transcription factor that regulates target gene expression, and 
promotes cancer hallmarks such as cell proliferation and growth among others14, 18, 19. In 80% to 90% 
of cases, MYCN amplification results in an increased amount of MYCN protein, making it a driver of 
aggressive NTs and a strong predictor of poor prognosis14, 17, 19, 20. This amplification is suspected to be 
an early and driving event in the development of NTs19, 21. Of note, MYCN amplification is usually 
assessed by fluorescent in situ hybridization (FISH) and is considered as such with a MYCN/centromere 
ratio above 4. However, it can also be detected by whole exome sequencing (WES), a technique that 
enables the detection of CNVs, mutations and amplifications. FISH is a fast, simple, specific and highly 
sensitive technique to detect chromosomal rearrangements, gene amplifications and to analyze intra-
tumor heterogeneity22, 23, 26. This technique is based on the hybridization of desoxyribonucleic acid 
(DNA) probes directly or indirectly labeled to a specific sequence in the gene of interest, followed by 
fluorescence microscopy24, 25.  

The presence of segmental chromosomal alterations (SCAs) was shown to be a strong predictor of 
poor prognosis and relapse in neuroblastic tumors40, 41. SCAs are defined as any partial chromosome 
loss or gain41. In pNTs, SCAs often take the form of deletions, the most common occurring in 
chromosomes containing tumor suppressor (TS) genes, such as 1p, 3p, 4p and 11q. Gains in 
chromosomes carrying putative oncogenes as 1q, 2p and 17q also occur on a recurrent basis and are 
commonly associated with a poor outcome in patients with neuroblastic tumors18, 40. SCAs in infants are 
correlated with higher risks of relapse in both localized unresectable and metastatic neuroblastic tumors 
without MYCN amplification40. Segmental chromosomal changes are detectable by genome-based 
approaches such as multiplex ligation-dependent probe amplification (MLPA) or single nucleotide 
polymorphism (SNP) arrays42. These techniques have demonstrated that patients with deletions such 
as the 11q deletion constitute a high-risk group in non-MYCN-amplified neuroblastomas42. Copy 
number variations (CNVs) may as well be assessed by MLPA or by single nucleotide polymorphism 
(SNP) array. MLPA enables the detection of copy number changes, provides a genetic profile of 
neuroblastic tumors and shows to be a reliable technique for risk stratification23. SNP arrays also enable 
the detection of CNVs that might predispose to tumorigenesis. Furthermore, SNP arrays also detect 
events such as aneuploidy and ploidy changes, as well as partial chromosomal imbalances. The reason 
why SNP arrays are now performed in many diagnostic laboratories and not MLPA is that they provide 
genome-wide rather than disease-specific data35. 

Additional markers of interest such as anaplastic lymphoma kinase (ALK) may be evaluated by 
immunohistochemistry (IHC) as it constitutes a potential therapeutic target. ALK is a receptor tyrosine 
kinase (RTK) and possible oncogenic driver being altered in about 14% of high-risk neuroblastomas by 
gain-of-function point mutations27, but may also occur in non-high-risk NTs30, 31. Mutations in ALK were 
also assessed with targeted next generation sequencing (tg-NGS). tg-NGS is a DNA sequencing 
technique most commonly used for diagnostic purposes that focuses on highly specific areas of the 
genome based on a panel of genes. It also enables to limit the investigation to specific mutations: 
hotspot mutations, found within a gene of interest. It is particularly relevant when it comes to detecting 
small CNVs in genes known to be involved in neuroblastic tumors44. This technique provides detailed 
information and enables the visualization of DNA variations such as clinically relevant mutations, 
precise information for accurate diagnosis and tumor classification33.  
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Finally, since 2018, the PMC has been the first hospital in The Netherlands to introduce whole 
transcriptome sequencing also known as RNA sequencing (RNA-seq) as a routine diagnostic technique 
followed by WES. RNA-seq enables the detection of fusion genes, one of the most common genomic 
alterations found in pediatric cancers. It also measures more accurately transcript levels and detects 
the overexpression of genes such as MYCN36, 37, 43. This technique relies on RNA extraction from tumor 
samples, complementary DNA (cDNA) library preparation, sequencing and data analysis (Figure S2). 
WES allows the detection of CNVs and DNA variants responsible for protein sequence alterations43. It 
targets genes encoding proteins, which represent about 3% of the whole genome38. However, whole 
transcriptome sequencing has additional benefits as it allows to generate reliable gene expression data, 
and gives the potential to classify tumors on the basis of transcriptome profiles. Together, these 
techniques help genetic and molecular diagnosis as well as tumor classification. Moreover, they enable 
the detection of potential therapeutic targets, improving treatment selection for both patients with cancer 
and other types of diseases22-36.  

Throughout our study we aimed to optimize and refine the RNA-seq-based classification of peripheral 
neuroblastic tumors. To do so, we explored the RNA-seq data of neuroblastic tumors to visualize the 
distribution of the samples in relation to each other, based on the diagnoses derived from this same 
RNA-seq data. The morphology of biopsy and resection samples from the Princess Máxima Center was 
reviewed and compared to the one determined by RNA-seq and a correlation between the RNA-seq 
data and the morphology of the tumor was found. We also sought to find differentially expressed genes 
and the enriched pathways they are involved in. This was carried out with the objective in the near 
future to put all these results in relation to outcome to facilitate the potential course of disease and 
outcome prediction and to make treatment stratification easier.   
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Figure 2. International classification and stagings of neuroblastic tumors  
A. Simplified International Neuroblastoma Pathology classification. Modified from van Arendonk et al.13 Histologically, pNTs are 
first classified based on the proportion of Schwannian stroma, then according to the presence or absence of microscopic 
neuroblastic foci, neuropil and ganglion cells4, 11, 13. Poorly differentiated tumors composed of 0 to 49% of Schwannian stroma 
(SS) and abundant neuroblasts are classified as neuroblastomas (Schwannian stroma-poor NBs)4, 11. NBs are then subclassified 
as follows: undifferentiated NB with absence of both neuropil and ganglion cells, poorly differentiated NB with presence of neuropil 
and, differentiating NB with at least 5% of ganglion cells and presence of neuropil. Intermediary to well-differentiated benign 
tumors composed of more than 50% of Schwannian stroma containing mature ganglion cells and scattered neuroblasts are 
classified as Schwannian stroma-rich GNB and Schwannian stroma-dominant GN4, 13. 
B. International Neuroblastoma Risk Group and International Neuroblastoma staging systems. Modified from Robbins & Cotran2 
and from the Physician Data Query (PDQ®).  
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MATERIALS AND METHODS 

Collection, processing and storage of neuroblastic tumor samples 

Core needle biopsy (CNB) and resection samples from the Princess Máxima Center were collected 
between October 2014 and December 2020 (n=150) for clinical purposes. Informed consent was given 
by patients or their parents. This study was performed under a waiver of the University Medical Center 
Utrecht medical ethical committee (non-WMO plichtig).  
Patient material was processed by the Pathologist Assistant (PA) at the diagnostic laboratory to create 
frozen sections from biobank specimens,  and paraffin blocks.  
Processing and storage of samples 
Frozen sections. Two pieces of the patient material were cryoembedded as follows : each sample was 
placed on a lens paper, transferred to the bottom of an aluminum mold in the cryoembedder 
PrestoCHILL (Milestone Medical) and covered in a cryo-embedding compound (Milestone Medical). A 
chunk was placed into the mold with a heat extractor and frozen at -42°C for one minute. The frozen 
blocks were transferred to a cryostat CryoStarTM (Fisher Scientific) set to create sections of 4µm. One 
of the blocks was trimmed in order to remove the lens paper and used to create 4µm-sections that were 
transferred to two glass microscope slides. Both frozen sections were immersed in a FineFIX (Milestone 
Medical) fixing solution and transferred to a fully automated sample processor/stainer PRESTO PRO 
(Milestone Medical) to be stained with hematoxylin and eosin (H&E). Slides were finally transferred into 
a ClearVueTM Coverslipper (Fisher Scientific) and stored at room temperature (RT). 
Paraffin blocks. Two pieces of sample were fixed overnight before being paraffin-embedded, stained 
with H&E and stored at room temperature.  
Containers. Samples in the containers were flash frozen at -80°C for two minutes to be stored for the 
biobank. 
Once processed, the frozen sections were observed under a LED microscope by a pathologist in order 
to determine the tumor cell percentage and tumor morphology. Sections were then stored at RT. 
 
 

Morphology review of H&E-stained neuroblastic tumor core needle biopsy and 
resection samples 

Eighty H&E-stained frozen sections of biopsy (52) and resection (28) samples obtained from patients 
in the Princess Máxima Center were observed with a Leica DM3000 LED microscope (Figure 3). The 
proportions of vital tumor tissue (VTT), necrosis, neuroblasts and Schwannian stroma were assessed 
and compared to the simplified International Neuroblastoma Pathology Classification (INCP) (Figure 
2A) to verify the diagnosis established with FFPE H&E slides. The relabelled cases were registered as 
frozen section-derived diagnosis or final diagnosis and summarized in Table S3.  

 

Figure description on the next page. 
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Figure 3. Pathology of peripheral neuroblastic tumors. The morphology of each sample was assessed based 

on the International Neuroblastoma Pathology Classification (INPC). All photomicrographs were taken on frozen sections used 
to perform RNA-seq at a 20X magnification. Scale bar: 100µm.  
A. Resection sample of a lymph node located in the neck (left) with metastasis from a 6-year-old patient. The morphology is 
characteristic of an undifferentiated neuroblastoma, with a complete absence of neuropil and the exclusive presence of 
neuroblasts. 
B. Resection sample of a lymph node located in the groin (left) with extensive metastasis from a 2-year-old patient with a MYCN-
amplified tumor. The morphology is characteristic of a poorly differentiated neuroblastoma with small blue round cell-tumor and 
presence of neuropil. 
C. Resection sample of a differentiating neuroblastoma in the retroperitoneal area of a 2-year-old patient. The morphology of this 
tumor is characteristic of a differentiating neuroblastoma with the presence of neuropil and ganglion cells (≥5%). 
D. Bone marrow biopsy sample taken from a 11-year-old-patient. The morphology is representative of a ganglioneuroblastoma 
with more than 50% of Schwannian stroma and the presence of microscopic neuroblastic foci. Black and white arrows indicate 
mature ganglion cells and Schwannian stroma respectively, the asterisk indicate the presence of neuropil.  
E. Tru-Cut and incisional biopsy sample of a left adrenal gland from a 15-year-old patient displaying a morphology characteristic 
of ganglioneuroma. This picture shows histology indicative of mature Schwannian stroma as well as mature ganglion cells. In 
addition, there is no presence of neuropil and neuroblasts.   

 
Cohort establishment 

The RNA-seq data of 107 peripheral neuroblastic and benign peripheral nerve sheath tumor (BPNST) 
samples was collected. Three samples of pretreated necrotic poorly differentiated neuroblastoma and 
one neuroblastoma sample collected from bone marrow were excluded from our study leaving 103 
samples retained for the establishment of the whole tumor spectrum cohort and its visualization. The 
BPNST samples (six neurofibromas (NFs) and five Schwannomas (SCHs)) were then excluded to 
create the peripheral neuroblastic tumor (pNT) cohort gathering 1 NBUD, 62 PDNB, 14 DNB, 8 GNB 
and 7 GN for a total of 92 samples. After visualization of the pNT cohort, a MYCN cohort was 
established. This cohort exclusively gathered the data of 61 poorly differentiated neuroblastoma 
samples of which 16 carried a MYCN amplification and 45 did not. All three cohorts were created with 
the histology-based diagnoses. The composition of each cohort is summarized in Figure 4A and Table 
S4. 

 
Data collection 

Patient data were collected from the pathology archives of the PMC and clinical data retrieved from the 
hospital system. The data of interest were then entered into the Castor database. 

 

RNA-sequencing 

Neuroblastoma frozen samples were processed as shown in Figure S2. Part of the core needle biopsy 
and resection samples from the PMC collected between June 2018 and December 2021 for clinical 
purposes was frozen. Total RNA was extracted from these samples, after which ribosomal RNA (rRNA) 
and mitochondrial RNA (mtRNA) depletion step was performed to retain the RNA of interest: the mRNA. 
mRNAs were fragmented, random primers were added and cDNA synthesis was performed. Adaptors 
were added to the ends of the cDNA fragments, ligated and PCR amplification cycles were conducted. 
The samples were then sequenced with the NovaSeqTM 6000 Sequencing System from Illumina. This 
sequencing step was followed by data processing and analysis. 

 

RNA-seq data analysis 
Data visualization with UMAP and ggplot2 

RNA-seq data was received as count and meta data and processed using both R and RStudio 
softwares. The data was normalized to counts per million (CPM) and then log transformed to provide a 
normal-like distribution. The variance and mean of each gene were calculated after which the 5000 
most variable genes were used for further analysis. The data was then z-score normalized and a  
principal component analysis (PCA) was performed on the z-normalized data. A UMAP projection was 
then generated on the loadings of the PCA using 100.000 as seed. UMAP projections were generated 
either in one or two dimensions depending on the type of analysis. The UMAP projections were 
visualized using the ggplot2 R package.  
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Finding differentially expressed genes with DESeq2 

Differentially expressed genes (DEGs) were assessed using the DESeq2 R package on our different 
data subsets (differentiated versus undifferentiated pNTs, differentiating versus undifferentiated pNTs, 
differentiating versus differentiated pNTs and MYCN-amplified PDNBs versus non-MYCN-amplified 
PDNBs). The DESeq function was used on each comparison. The generated results were ordered by 
adjusted p-values (padj).   
 
Determining enriched signaling pathways with FGSEA 

Gene set enrichment analysis was performed on the DESeq2 results using the FGSEA R package. We 
used the Hallmark gene set from MSigDB (h.all.v7.4.symbols.gmt.txt) and set a random seed of 
100.000. The list of pathways was loaded and the fgsea algorithm was ran a thousand permutations. 
The results obtained were tidied, the normalized enrichment scores (NES) were plotted and each bar 
was colored to indicate whether or not the pathways were significant. 

 
Key resource table 

Softwares and algorithms  
Resource Identifier 
BioRender https://biorender.com/  
Castor EDC https://www.castoredc.com  
Microsoft Excel Microsoft 
HiX Productie ChipSoft 
PACS IDS7 22.1 Pathologie Sectra Medical 
R https://www.r-project.org  
RStudio https://www.rstudio.com  
SymPathy Tieto 

 

RESULTS 

Morphological characterization of peripheral neuroblastic tumors.   
Morphological review of frozen sections resulted in sixteen (20%) cases being relabelled as compared 
to the original H&E-based diagnosis (Table S3). If no frozen section was available the H&E diagnosis 
was used for further analysis. We then assessed the degree of relabeling, and found that thirteen (81%) 
of the sixteen relabelled cases were first-degree relabelled. That is to say that there was only one step 
of differentiation between the first and the second labels such as a PDNB relabelled into a DNB and 
vice versa or a GNB relabelled into a GN and vice versa. Of the thirteen first-degree relabelled 
specimens, one NBUD was recategorized as a PDNB and one was inversely relabelled. Four PDNBs 
were reclassified as DNBs, and conversely, two DNBs were reclassified as PDNBs. Three GNB 
samples were relabelled as DNBs, one GNB as a GN and one central nervous system neuroblastoma 
(CNS-NB) was recategorized as a PDNB. The three (19%) remaining samples were second-degree 
relabelled. In other words, there were two steps of differentiation between the first and second labels. 
Of these three specimens one NBUD was relabelled as a DNB and two PDNBs were reclassified as 
GNBs. Having determined the frozen section-derived diagnoses, we sought to observe the distribution 
and location of our samples in relation to each other based on this second diagnosis.  

 

The morphology review matches the whole tumor spectrum and the peripheral 
neuroblastic tumor cohort expression data and their visualization reveals that both 
follow a differentiation gradient. 

 

https://biorender.com/
https://www.castoredc.com/
https://www.r-project.org/
https://www.rstudio.com/


 10 

 
Figure 4. Visualizations of a whole tumor spectrum and a neuroblastic tumor dataset based on 
their morphology-based diagnoses.   
Both cohorts were visualized in 2D plots after using the UMAP algorithm to reduce the dimension of the data. A. Overview of the 
three cohorts of which two were used for the two following 2D UMAP visualizations. The Whole tumor spectrum cohorts gathers 
103 samples of which 92 are pNTs and 11 are BPNSTs, the Peripheral neuroblastic tumor cohort that gathers the 92 pNT samples 
and the MYCN cohort which gathers 61 PDNB samples of which 16 carry a MYCN amplification and 54 don’t.  B. 2D UMAP plot 
of the Whole tumor spectrum cohort based on the diagnoses obtained after the morphology of the available frozen samples was 
reviewed.  C. 2D UMAP plot of the Peripheral neuroblastic tumor cohort based on the diagnoses obtained after morphological 
assessment.  

Having determined the frozen section-derived diagnoses, we looked at the distribution and location of 
the specimens in relation to each other based on this final diagnosis. Visualizing the expression data of 
the samples gathered in the whole tumor spectrum cohort (Figure 4A) revealed that the tumors follow 
a differentiation gradient (Figure 4B, Figure S1B). Thus, the most malignant and undifferentiated tumors 
(e.g. NBUD and PDNBs) clustered on one end of the tumor spectrum, while the most benign and 
differentiated tumors (e.g. GNBs, GNs, NFs and SCHs) clustered to the lower right of the spectrum. We 
were able to visualize the same distribution of the samples included in the peripheral neuroblastic tumor 
cohort (Figure 4C), excluding the benign peripheral nerve sheath tumors.  
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Differentially expressed genes and enriched pathways in the pNT and MYCN cohorts. 

 

Figure 5. Differentially expressed genes and their corresponding enriched pathways in the pNT 
and MYCN cohorts.  
A, B. Volcano plots showing Log2 fold change versus adjusted P-value obtained by using the DESeq2 package on the 
undifferentiated versus differentiated tumors (A) and on the MYCNA versus non-MYCNA-PDNBs (B), with an adjusted P-value 
threshold of 0.01. C, D. Visualization of normalized enriched scores versus pathways generated by using the fgsea package on 
the undifferentiated versus differentiated tumors (C) and on the MYCNA versus non-MYCNA-PDNBs (D). The pathways are 
colored based on the adjusted P-value (padj) threshold of 0.01.   

For our further analyses the cases were merged into three groups (Table S5): the undifferentiated 
tumors (NBUD and PDNBs), the differentiating tumors (DNBs only) and the differentiated tumors (GNBs 
and GNs). The pairwise comparison of the RNA-seq expression data of these groups enabled us to find 
differentially expressed genes (DEGs) and identify the corresponding enriched pathways (Figure 5). 

We first compared undifferentiated and differentiated tumors and showed high expression of stemness 
genes such as MEX3A, a key regulator of neuroblasts proliferation in neurogenesis and its homolog 
MEX3B, mini-chromosome maintenance genes such as MCM10, a protein involved in the initiation of 
genomic replication, and histone genes in undifferentiated tumors (Figure 5A). High levels of MEX3A 
and MCM10 proteins among others were associated with proliferative, metabolic, DNA damage and 
developmental hallmarks (Figure 5C). In  the differentiated tumors, results showed high expression of 
ITGB8 and UTS2 which correlated with immune, proliferative and developmental hallmarks (Figure 5A, 
5C). 

Secondly, given the crucial impact of MYCN amplification in neuroblastic tumors, we compared MYCN-
amplified (MYCNA) and non-MYCNA PDNBs. Results showed high expression of MYCNOS, MYCN, 
DDX1 and NBAS genes in MYCNA PDNBs. (Figure 5B, 5D) These genes are all located on the same 
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locus and their expression level is a consequence of the MYCN amplification in the  MYCNA PDNB 
samples. These results correlated with proliferative hallmarks. In the non-MYCNA PDNBs, differential 
expression of genes such as S100PBP correlated with enriched immune, developmental and metabolic 
pathways (Figure 5B, 5D). 

Expression level of MYCN throughout the differentiation gradient of a neuroblastic 
tumor cohort.  

 

Figure 6. MYCN expression level throughout the differentiation gradient of neuroblastic tumors. 
1D UMAP representation of the MYCN expression level throughout the differentiation gradient (Figure 4, Figure S1B) in the 
peripheral neuroblastic tumors cohort. The most differentiated samples are located on the left part of x axis and the most 
undifferentiated ones are located on the right side of the axis. The samples above the red dashed line are all MYCN-amplified 
neuroblastic tumors (represented by squares), all samples below the red dashed line do not carry this amplification (represented 
by triangles) except for the two samples indicated by a white arrow. The colors are based on the histology-based diagnoses. ND: 
no data available regarding the MYCN status. 

MYCN amplification is a strong indicator for poor prognosis and therefore marks the most malign 
neuroblastic tumors.  Therefore we wondered whether MYCN expression follows the differentiation 
gradient we observed in the transcriptome wide cluster analyses. To test this, we performed a new 
dimensionality reduction using UMAP dimension. This single dimension still reflects the differentiation 
gradient (Figure 6). Furthermore, expression level of MYCN increases along the differentiation gradient 
and is higher on the far right end of the plot where undifferentiated tumors cluster. Two samples 
indicated as MYCN-amplified and located under the red dashed line showed a lower MYCN expression 
level than the other MYCN-amplified samples. Most interestingly, two groups stood out within the 
MYCN-amplified tumors, with one group gathering six samples localized on a more differentiated part 
of the gradient and the other one including twelve samples localized on a more undifferentiated part of 
this same differentiation gradient. 

 

CONCLUSION 

In this study we used RNA expression data obtained from whole transcriptome sequencing to analyze 
pediatric neuroblastic tumors and investigate how the expression profile relates to the histology-based 
classification. First, we performed morphological review of frozen sections corresponding to the tissue 
used for RNA-seq analysis, to see if this diagnosis correlated with the original H&E-based diagnosis. 
Our results showed that pNT and BPNSTs predominantly cluster together according to the 
morphological diagnosis and follow a gradient related to the tumor differentiation (e.g. neuroblasts, 
Schwannian stroma). Furthermore, we have shown that these groups of neuroblastic tumors may be 
distinguished on the basis of their RNA-seq data. The abovementioned differentiation gradient appears 
to be based on DEGs as we have shown that genes such as MEX3A and MCM10 are differentially 
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expressed in undifferentiated NTs and that ITGB8 and UTS2 are highly expressed in differentiated NTs. 
These expression profiles correlated with proliferative, metabolic and developmental hallmarks in 
undifferentiated tumors and with immune, proliferative and developmental ones in differentiated NTs. 
We also showed that MYCNA PDNBs had enriched proliferative pathways whereas non-MYCNA 
PDNBs displayed enriched immune, developmental and metabolic pathways. The DEGs that were 
found may provide new avenues for targeted treatment. Within the MYCN cohort, we found a correlation 
between the MYCN expression level and the differentiation gradient. We also highlighted two distinct 
groups of MYCNA PDNBs that require further investigation. This led us to conclude that peripheral 
neuroblastic tumors can be classified on the basis of their RNA-seq data. Our data should be linked to 
outcome data in order to potentially serve as a prediction model for the prognosis of these tumors.  

 

DISCUSSION 

In our study we reviewed the morphology of NTs taken in the PMC over a five-year period and 
investigated their expression profile which constitutes the signature of the tumors. We determined that 
frozen section-derived diagnosis correlated with H&E-based diagnosis (Figure 2A, Figure 3).  We then 
showed that pNTs together with BPNSTs follow a differentiation gradient based on the histology-based 
diagnoses (Figure 4, Figure S1B). The most undifferentiated tumors clustered on one end of the plot 
while the most differentiated tumors clustered on the other end. Having established the distribution 
pattern of our samples, we searched for DEGs and the enriched pathways they were involved in (Figure 
5). We found that undifferentiated NTs had enriched proliferative and developmental pathways whereas 
differentiated tumors displayed enriched immune pathways. We then turned to a different approach 
through which we visualized the expression level of MYCN (Figure 6). This showed that the expression 
level of MYCN throughout the specimens followed the differentiation gradient mentioned earlier and 
correlated with the MYCN status of each tumor with the exception of two resection samples.  

Frozen sections of peripheral neuroblastic tumors obtained from patients of the Princess Máxima Center 
between 2017 and 2021 were classified according to the INPC (Figure 2A). In the pNT cohort, of ninety-
two cases, frozen sections were available for eighty, of which the morphology review resulted in 
relabeling of sixteen cases. The twelve missing slides that were not revised might alter the results 
obtained as it might have prevented us from highlighting relevant cases of relabeling. However, it 
remained important to keep the frozen section-derived or final diagnoses for our analyses as most of 
the slides (87%) had been reviewed and were found to provide complementary information to that 
provided by expression data. In the future, we could choose to include only morphologically reviewed 
samples, either by microscopy or through images for larger cohorts in order to limit biases. Another 
important aspect of our cohort is that it contains both biopsy and resection samples. Some specimens 
were taken from the same patient at different disease stages, other samples were taken after treatment 
and this led to morphological therapy-related changes in the frozen sections (e.g. necrosis, calcification, 
maturation towards ganglion cells). This could distort our observations especially when, in the future, 
we want to put our data in relation to outcome data and should be taken into consideration. 

Most importantly, frozen sections were used for both purposes, that is to say for morphology review and 
RNA-sequencing. In most cases, we were able to correlate the morphological images to the molecular 
data from exactly the same piece of tissue. For our study, the frozen section-derived diagnosis gave 
the best match as we were able to verify its accuracy by visualizing the expression data of the frozen 
sections used for the morphology review. However, the overall histopathology and the RNA-seq data 
did not necessarily match as neuroblastic tumors are very heterogeneous and frozen tissue doesn’t 
necessarily represent the entire tumor. This should be considered in the event of an intention to replicate 
this study. In the further analyses of the data, we used the adjusted labels and looked at the pNT cohort 
in an unsupervised approach and at known genes. In the event that someone would be interested in 
replicating our study, it is important to note that the use of the UMAP algorithm generates random results 
and therefore different plots and that it requires the use of a seed (material and methods). 

We searched for differentially expressed genes and their corresponding enriched pathways in 
undifferentiated versus differentiated neuroblastic tumors and secondly, in MYCNA and non-MYCNA 
PDNBs (Figure 5). These groups were established in order to get higher numbers per groups and 
reduce as much as possible the discrepancies in numbers between each diagnostic group for analytical 
reasons. It is necessary to bear in mind that the groups formed did not contain the same number of 
samples. Even though our cohort appears representative as compared to the literature, the small 
sample size might have affected our statistical analyses. Differential expression analysis (DEA) 
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between undifferentiated and differentiated tumors showed that undifferentiated NTs are characterized 
by enriched proliferative and developmental pathways whereas differentiated ones displayed enriched 
immune pathways. Enriched proliferative hallmarks could be related to the aggressivity of the 
undifferentiated NTs. DEA on MYCNA and non-MYCNA PDNBs showed high expression of MYCNOS, 
MYCN, DDX1 and NBAS genes in MYCNA-PDNBs. As these genes are located on the same locus, on 
chromosome 2, their co-amplification is a consequence of the MYCN amplification found in the MYCNA 
group of the MYCN cohort. MYCNOS is a modulator of the MYCN locus and causes the amplification 
of the latter when it is itself amplified. In the MYCNA-PDNBs, differentially expressed genes correlated 
with proliferative hallmarks. Meanwhile, we identified high expression of the S100PBP gene in non-
MYCNA PDNBs, which encodes a protein involved in the regulation of many cellular processes such 
as cell cycle progression and cell differentiation. These results correlated with enriched immune, 
developmental and metabolic pathways. 

Most interestingly, two groups stood out within the MYCNA PDNBs (Figure 6), with one group gathering 
six samples localized on a more differentiated part of the gradient and the other one including twelve 
samples localized on a more undifferentiated part of this same differentiation gradient. This specific 
distribution of the MYCN-expression level throughout the differentiation gradient of NTs seems to 
correlate with the level of aggressiveness of the tumors and would require an investigation regarding 
the outcome of these patients. In fact, the more undifferentiated they are, the more malignant and the 
higher the MYCN expression level seems to be. 

Since the data visualization of the pNT cohort showed two clusters among the MYCNA PDNB samples, 
we could look for DEGs and enriched pathways within these two groups. This exploration could help us 
unravel genes responsible for the formation of these clusters and determine with the help of outcome 
data whether one group is associated to a better prognosis than the other one.  

Having examined the distribution and location of each sample throughout our cohorts regardless of the 
material type, it would be of great interest to retain only the biopsy and resection samples used to 
establish the primary diagnoses and to repeat our analyses on this new dataset. Thus, these new 
analyses would not be biased by treated tumors that might have differentiated into other tumor 
subtypes. Moreover, it would be particularly interesting to re-examine the morphology and perform 
single-cell RNA sequencing (scRNA-seq) on these same samples used for diagnostic purposes to look 
into possible immune infiltrates49. We could perform the necessary immunostainings and look for a 
correlation with morphology, single cell and RNA-seq data. After a cell sorting step, the scRNA-seq 
analysis could thus reveal the different cell populations (immune cells and fibroblasts2) present in the 
tumor micro-environment (TME) of patient specimens. By searching for differentially expressed genes 
and their corresponding pathways on this primary material cohort, we could look into other candidate 
genes and MYCN. Even though NTs were shown to be immunologically “cold”49, the presence of tumor-
infiltrating lymphocytes (TILs) constitutes a prognostic indicator in many tumors50. Mina et al. showed 
that low-risk neuroblastic tumors were characterized by higher levels of TILs than the ones associated 
with a poor prognosis50 making this kind of investigation on our samples relevant to completement our 
study. 

So far, we have investigated the RNA-seq data of a PMC cohort of neuroblastic tumors. In the future, 
we could bring some improvements discussed earlier and use our study workflow to predict prognosis. 
This requires more time to enlarge our cohort, collect sufficient data about patient outcome and put 
these two elements in relation after data analysis. 
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List of abbreviations 

ALK Anaplastic lymphoma kinase 
ALT Alternate lengthening of telomere 
ATRX Alpha thalassemia/mental retardation syndrome X-linked 
BPNST Benign peripheral nerve sheath tumor  
cDNA Complementary desoxyribonucleic acid 
CNB Core needle biopsy 
CNV Copy number variation 
CPM Counts per million 
DEA Differential expression analysis 
DEGs Differentially expressed genes 
DNA Desoxyribonucleic acid 
DNB Differentiating neuroblastoma 
DSS Disease sub-specification 
DSS2 Disease sub-specification 2 
EFS Event-free survival 
FFPE Formalin-fixed paraffin-embedded 
FH Favorable histology 
FISH Fluorescent in situ hybridization 
GN Ganglioneuroma 
GNB Ganglioneuroblastoma 
GNBi Ganglioneuroblastoma intermixed 
GNBn Ganglioneuroblastoma nodular 
H&E Hematoxylin and eosin 
IDRF Image-defined risk factor 
IHC Immunohistochemistry 
INPC International Neuroblastoma Pathology Classification 
INRGSS International Neuroblastoma Risk Group Staging System 
INSS International Neuroblastoma Staging System 
OS Overall survival 
MKI Mitosis-karyorrhexis index 
MLPA Multiplex ligation-dependent probe amplification 
mtRNA Mitochondrial RNA 
NB Neuroblastoma 
NBUD Undifferentiated neuroblastoma 
NES Normalized enrichment scores 
NF Neurofibroma 
NGS Next generation sequencing 
NTs Neuroblastic tumors 
padj Adjusted p-value 
PDNB Poorly differentiated neuroblastoma 
PMC Prinses Máxima Centrum 
pNTs Peripheral neuroblastic tumors 
RNA Ribonucleic acid 
RNA-seq Ribonucleic acid sequencing 
rRNA Ribosomal ribonucleic acid 
RT Room temperature 
RTK Receptor tyrosine kinase 
SCA Segmental chromosomal alterations 
SCH Schwannoma 
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SNP array Single nucleotide polymorphism array 
SNS Sympathetic nervous system 
SS Schwannian stroma 
SSTRs Somatostatin receptors 
SSTR2A Somatostatin receptor type 2A 
tg-NGS Targeted next generation sequencing 
TS Tumor suppressor  
UH Unfavorable histology 
UMAP Uniform Manifold Approximation and Projection 
UT Undifferentiated tumors 
VTT Vital tumor tissue 
WES Whole exome sequencing 
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Figure S1. Proportions and distribution of peripheral neuroblastic tumors and their subtypes 
A. Bar plot representation of the proportions of the different peripheral neuroblastic tumors and their subtypes. PDNB: Poorly 
differentiated neuroblastoma, DNB: differentiating neuroblastoma, NBUD: undifferentiated neuroblastoma, GNBI: 
ganglioneuroblastoma intermixed, GNBN: ganglioneuroblastoma nodular and GN: ganglioneuroma. Neuroblastomas represent 
approximately 80% of pNTs with PDNB representing about 71%, DNB 4% and NBUD 3%. Ganglioneuroblastomas account for 
about 20% of pNTs with GNBI 9% and GNBN 8%. Finally, ganglioneuromas represent about 3% of all pNTs. In the bar plot, 
malignant tumors are represented by blue bars whereas benign tumors are represented by purple bars. 
B. Schematic representation of the distribution of peripheral neuroblastic tumors. pNTs are ordered based on their 
aggressiveness, level of differentiation and malignancy. The purple gradient represents the aggressiveness of the pNTs and the 
blue gradient indicated the level of differentiation of the pNTs. NBUD is an undifferentiated and aggressive type of malignant 
neuroblastic tumor.  PDNB constitutes a poorly differentiated and aggressive type of malignant neuroblastic tumor. DNB is a 
differentiating, aggressive and malignant tumor. Finally, both GNB and GN are well differentiated (GN being more differentiated 
than GNB) benign tumors. 
C. Overview of the proportions of neuroblastic tumors in the peripheral neuroblastic tumor cohort. 
  

 
Figure description on the next page. 
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Figure S2. RNA-sequencing workflow 
Schematic representation of the RNA-sequencing workflow. (1) Core needle biopsy and/or resection samples were collected. (2) 
Samples were frozen. (3) Total RNA was extracted from the samples and stored until library preparation steps. (4) rRNA as well 
as mitochondrial RNA (mtRNA) were depleted in order to select the mRNA of interest. (5, 6) mRNA was fragmented and random 
primers were added to it, after what the cDNA synthesis took place. (7, 8) The cDNA was mixed, annealed with adaptors and 
PCR amplification cycles were performed. (9) Samples were sequenced with the NovaSeqTM 6000 Sequencing System from 
Illumina. (10) Data analysis was performed in order to make sense of the data, to highlight fusion genes, gene amplification 
among other alterations.  
 

 

 Diagnosis 1 Diagnosis 2 % VTT % necrosis % neuroblasts 
%Schwannian 
stroma 

1 GNB GN 100 0 0 100 

2 GNB DNB 95 0 95 5 

3 PDNB DNB 70 10 90 0 

4 PDNB DNB 95 5 50 10 

5 NBUD PDNB 100 0 100 0 

6 DNB PDNB 80 20 100 0 

7 CNS NB PDNB 90 10 100 0 

8 GNB DNB 90 10 90 10 

9 PDNB GNB 25 0 90 10 

10 PDNB DNB 95 5 100 0 

11 GNB DNB 60 40 90 10 

12 PDNB GNB 85 15 50 50 

13 PDNB NBUD 25 75 100 0 

14 NBUD DNB 80 20 90 10 

15 DNB PDNB 80 15 95 5 

16 PDNB DNB 80 20 65 45 
 

Table S3. Relabelled frozen sections stained with H&E. 
This table summarizes the sixteen samples that were relabelled after scoring. The diagnosis 1 column refers to the diagnoses 
established on the basis of the H&E slides assessed by a pathologist. The diagnosis 2 column corresponds to the labels assigned 
to the same cases as in the diagnosis 1 based on the morphology review of the frozen sections that were used to perform the 
RNA-seq. The determination of the frozen section-based diagnosis (diagnosis 2) was determined with the help of the scores and 
the simplified International Neuroblastoma Pathology Classification (INPC) (Figure 2A).  

 
 

Sample types Whole tumor spectrum cohort pNT cohort MYCN cohort 

NBUD 1 1 - 

PDNB 62 62 - 

DNB 14 14 - 

GNB 8 8 - 

GN 7 7 - 

SCH 5 - - 

NF 6 - - 

MYCN-amplified PDNB - - 16 

Non-MYCN-amplified PDNB - - 45 

Table S4. Overview of the composition of the different cohorts. 
Overview of the types and number of samples included in each cohort of our study. The whole tumor spectrum cohort gathered 
both peripheral neuroblastic tumors (NBUD, PDNBs, DNBs, GNBs and GNs) and benign peripheral nerve sheath tumors (SCHs 
and NFs). The pNT cohort included peripheral neuroblastic tumors and the MYCN cohort gathered only MYCN-amplified and 
non-MYCN-amplified poorly differentiated neuroblastomas. 

 
 

Compared groups Diagnosis 2 (number of samples) 
Number of samples once 
merged 

Undifferentiated tumors 
Poorly differentiated neuroblastomas (62), 
Undifferentiated neuroblastomas (1) 

63 samples 

Differentiating tumors Differentiating neuroblastomas (14) 14 samples 

Differentiated tumors 
Ganglioneuroblastomas (8), Ganglioneuromas 
(7) 

15 samples 

MYCNA — PDNBs 16 samples 16 samples 

Non-MYCNA — PDNBs 45 samples 45 samples 

Table S5. Overview of the composition of the different groups used to perform DEG and 

FGSEA analyses. This table recapitulates the data subsets used to perform DESeq2 and GSE analyses. 
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R packages Uses of the package Citation 

ComplexHeatmap Provides a flexible way to 
arrange multiple heatmaps. 

Gu, Z. (2016) Complex heatmaps reveal patterns and 
correlations in multidimensional genomic data. 
Bioinformatics. 

DESeq2 Differential gene expression 
analysis based on the 
negative binomial distribution 

Love MI, Huber W, Anders S (2014). “Moderated 
estimation of fold change and dispersion for RNA-seq 
data with DESeq2.” Genome Biology, 15, 550. doi: 
10.1186/s13059-014-0550-8. 

dplyr Function designed to 
manipulate dataframes. 

Hadley Wickham, Romain François, Lionel Henry and 
Kirill Müller (2021). dplyr: A Grammar of Data 
Manipulation. R 
  package version 1.0.7. https://CRAN.R-
project.org/package=dplyr 

EnhancedVolcano Publication-ready volcano 
plots with enhanced coloring 
and labeling 

Kevin Blighe, Sharmila Rana and Myles Lewis (2021). 
EnhancedVolcano: Publication-ready volcano plots 
with enhanced colouring and labeling. R package 
version 1.12.0. 
https://github.com/kevinblighe/EnhancedVolcano 

fgsea R package for fast preranked 
gene set enrichment analysis 

G. Korotkevich, V. Sukhov, A. Sergushichev. 
Fast gene set enrichment analysis. bioRxiv 
(2019), doi:10.1101/060012 

ggplot2 Data visualization, creation of 
plots. 

Wickham H (2016). ggplot2: Elegant Graphics for 
Data Analysis. Springer-Verlag New York. ISBN 978-
3-319-24277-4, https://ggplot2.tidyverse.org. 

ggpubr Package for elegant data 
visualization.  

Alboukadel Kassambara (2020). ggpubr: 'ggplot2' 
Based Publication Ready Plots. R package version 
0.4.0. https://CRAN.R-project.org/package=ggpubr 

ggrepel Repulsive text labels.  Kamil Slowikowski (2021). ggrepel: Automatically 
Position Non-Overlapping Text Labels with 'ggplot2'. 
R package version 0.9.1. https://CRAN.R-
project.org/package=ggrepel 

org.Hs.eg.db Genome wide annotation for 
Human 

Marc Carlson (2021). org.Hs.eg.db: Genome wide 
annotation for Human. R package version 
3.14.0. 

RColorBrewer Palette of colors. Erich Neuwirth (2014). RColorBrewer: ColorBrewer 
Palettes. R package version 1.1-2. https://CRAN.R-
project.org/package=RColorBrewer 

readxl Enables importation of Excel 
files in R. 

Hadley Wickham and Jennifer Bryan (2019). readxl: 
Read Excel Files. R package version 1.3.1. 
https://CRAN.R-project.org/package=readxl 

tidyverse Package gathering ggplot2, 
tidyr and dplyr among others.  

Wickham et al., (2019). Welcome to the tidyverse. 
Journal of Open Source Software, 4(43), 1686, 
https://doi.org/10.21105/joss.01686 

umap Uniform manifold 
approximation and projection 
(UMAP). Algorithm for 
dimensional reduction. 

Tomasz Konopka (2020). umap: Uniform Manifold 
Approximation and Projection. R package version 
0.2.7.0. https://CRAN.R-project.org/package=umap 

viridis Colorblind-friendly color 
palette 

Simon Garnier, Noam Ross, Robert Rudis, Antônio P. 
Camargo, Marco Sciaini, and Cédric Scherer (2021). 
Rvision - Colorblind-Friendly Color Maps for R. R 
package version 0.6.2. 

Table S6. R packages used for the RNA-seq data analysis.  


