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Abstract

The maximum weight matching problem for general graphs is a well-studied problem with a
variety of approximation algorithms already existing. Yet, many of them are hard to parallelize.
Therefore, we propose an approximation algorithm completely built on matrix operations in
GraphBLAS using different semirings. The parallelization of these matrix operations is also
well studied, and the idea is that parallelization is therefore more straightforward.

Our algorithm is based on the idea of positive-gain k-augmentations. We provide algorithms
to search for these k-augmentations for k = 1, 2, 3 and we describe how to flip them if they
exist. These algorithms can be performed fast since the runtime is linear in the size of the
graph. Repeating these searching and flipping methods until no positive-gain k-augmentation
exists, gives a guaranteed lower bound of k/(k + 1) times the optimal weight. This means that
the best lower bound is equal to 3/4 times the optimal weight, meaning the algorithm is a
3/4-approximation algorithm.

We provide some numerical results for k = 1, 2, indicating that the quality of the matchings
is indeed as expected. In addition, we analyse the runtime of a few different setups to find the
fastest.
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1 Introduction
Nowadays, graphs are widely used in a variety of applications and scientific areas due to their natural
way of describing many real-life situations. Examples are road networks, social networks, as well
as the structure of complicated molecules. Each situation gives rise to some specific questions and
problems. One of these problems is the maximum weight matching problem: consider an undirected
weighted graph G(V,E) where V and E contain the vertices and the edges respectively and where
|V | = n and |E| = m denote the number of vertices and edges. The goal is to find a set of edges
such that the total weight is maximized and all edges are vertex disjoint. This problem occurs in
numerous real-life applications where the goal is to assign some task, object or person to another
entity, where each item can only be linked to one other item. Examples are: assigning tasks to
employees, making a schedule for a tournament, and assigning donor organs to patients. The
problem also has a more scientific application. When performing a sparse Gaussian elimination
(LU-decomposition), it is beneficial to permute the original matrix such that the diagonal contains
heavy weights. The pivoting approach by Olschowka and Neumaier [34] uses a perfect matching
with maximum product of matched elements. The implementation by Duff and Koster [15], using
sparse bipartite graphs is widely used nowadays.

The maximum weight matching problem is a well-studied problem. The Blossom-algorithm by
Edmonds [16] is the first algorithm that computes a maximum matching in polynomial time. The
implementation of this algorithm by Gabow [17] is the fastest known implementation, using O(m)
space and O(nm+n2 logn) time. For some applications, it is not necessary to find an exact solution.
A matching close enough to the maximum matching is often sufficient. Approximation algorithms
are therefore often a great alternative. In comparison to heuristics, approximation algorithms
guarantee a lower bound on the weight of the obtained matching in terms of the exact matching.
A variety of these algorithms have been developed for the maximum weight matching problem.
Many of them guarantee a lower bound of 1/2 times the maximum weight. Examples of these
algorithms are Greedy, LAM [37], PGA [12], PGA’ [12], GPA [33] and Suitor[30]. These algorithms
often return a matching which is far better than the 1/2 guarantee [33, 36]. However, a better lower
bound cannot be proved for general graphs. Another group of approximation algorithms guarantees
a better bound. The quality of the bound as well as the runtime of the algorithm depend on a
variable ε. Known lower bounds are (2/3− ε) [10, 35], (3/4− ε) and (4/5− ε) [19, 13] and (1− ε)
[13, 14].

With the rise of parallel computing, the question arises how to compute a maximum weight
matching in parallel. Many of the previous mentioned algorithms are inherently difficult to paral-
lelize due to their sequential nature. However, some are suitable for parallelization, such as the local
domination algorithm [37] and the Suitor algorithm [30]. For the distributed memory models, a few
algorithms have been developed based on the concepts and ideas of these algorithms [26, 21, 29, 5].

In recent years, there has been a (renewed) interest in the duality between graphs and matrices.
A community effort to standardize the building blocks of this duality has led to GraphBLAS [31,
22, 7]. GraphBLAS is a standard in which graph operations can be seen as matrix-vector operations
using different semirings. An advantage of using this duality is that parallelization comes almost
for free, since parallelization of (sparse) matrix operations is widely studied [23].

The aim of this thesis was therefore to develop an approximation algorithm for the maximum
weight matching problem using GraphBLAS in reasonable time. Since there already exist many
1/2-approximations, the additional goal was to achieve a lower bound of at least 2/3. The algorithm
is based on performing different improvements called augmentations and a lemma which guarantees
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a lower bound if no positive-gain augmentations of a certain type can be found which improve the
matching.

This thesis is structured as follows: Chapter 1 introduces the problem, states the preliminaries
for the augmentations and introduces the used concepts of GraphBLAS. In addition, some existing
algorithms are discussed in more depth. Chapter 2 describes our algorithm based on different
augmentations. The first section focuses on the three simplest augmentations, whereafter the step
is made to more complicated augmentations. Chapter 3 shows some results and finally Chapter 4
draws conclusions.

1.1 Problem description and notation
In this section, some basic notation and definitions considering graphs used in this thesis are de-
scribed. Consider an undirected weighted graph G(V,E) where V and E contain the vertices and
the edges respectively. We will denote |V | = n and |E| = m. Two vertices are adjacent if they are
linked by an edge. Two edges are called adjacent or incident if they have a vertex in common. If a
vertex is on an edge, we say that the vertex is incident to this edge. The weights of the edges are
denoted by w(e) for all edges e ∈ E. In this thesis, we will assume that the weights are positive. If
edge e /∈ E, the weight of the edge is zero. The total weight of a set of edges S is given by

w(S) =
∑
e∈S

w(e).

A matching M is a set of edges such that every edge does not have a vertex in common with
another edge. This means that every vertex has either one incident edge or zero incident edges in
M . An edge in a matching is called a matched edge and an edge not in a matching an unmatched
edge. Similarly, a vertex that is incident to an edge from the matching is called a matched vertex
and a vertex not incident to a matched edge an unmatched vertex. A set of edges that forms a
matching and cannot be extended by adding an unmatched edge is called a maximal matching.
A matching that contains the maximum possible number of edges is called a maximum matching.
Note that a maximum matching is a maximal matching but a maximal matching does not have
to be a maximum matching. When all vertices in a graph are matched, the matching is called a
perfect matching. Note that this can only occur when the number of vertices is even.

Given a set of edges S, we will use a solid line in figures to indicate when an edge is in S. When
an edge is not in S, it will be depicted with a dashed line. Vertices incident to an edge in S will be
depicted by a solid black circle, whereas a vertex with no edge from S incident to it will be an open
circle. Using this representation, Figure 1a shows a matching whereas Figure 1b does not since one
vertex has two edges incident to it.

The maximum weight matching problem looks for a matchingM such that the sum of the weights
is maximized. Note that a maximum weight matching does not have to be a maximum matching.
However, if the weights are positive, the matching must be maximal. If not, we could add another
unmatched edge to the matching which will increase the total weight. This is a contradiction since
we assumed to have a maximum weight matching.

There are some special cases of the maximum weight matching problem. The first is when all
weights of the graph are one. In this situation, the maximum weight matching problem is equivalent
to the maximum cardinality matching problem, i.e., find a matching with as many edges as possible.
The second case is when the vertices can be split into two different sets such that for every vertex,
it cannot be adjacent to a vertex from the same set. This kind of graph is called a bipartite graph.
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(a) A matching (b) Not a matching

Figure 1: Two simple graphs with each a set of edges S depicted. Edges in S are depicted as a solid line
and vertices incident to them are denoted by a solid black circle. The dashed lines depict edges not in S
and if a vertex has no adjacent edge in S, it is depicted as an open circle.

For both special cases, there are specific algorithms that only work for that case and not for a
general graph. For the remaining part of this thesis, we will assume we have a general graph.

1.2 Augmentations
In this section, we discuss how we can improve an existing matching M , define the term augmen-
tations and state an important lemma guaranteeing a lower bound based on these augmentations.
The theory in this section is based on [36] by Pothen, Ferdous and Manne.

An existing matching M can be improved in many ways. Take, for example, the matching M
from Figure 2a. The red unmatched edge in Figure 2b is the most straightforward edge to add to
the matching. This unmatched edge is not incident to matched vertices and therefore, adding this
edge gives a valid matching with a higher weight. If at least one of the adjacent vertices is matched
and the edge would be added to M , M becomes an invalid matching. However, it could be that the
weight of the unmatched edge is higher than the adjacent matched edge, as can be seen in the blue
path in Figure 2b. Therefore, deleting the matched edge from M and adding the unmatched edge
also improves the matching. Figure 2c shows the improved matching where these improvements are
performed. The idea of deleting matched vertices from M and adding adjacent unmatched vertices
is the main idea for augmentations. To define them properly, we need the notion of an alternating
path or cycle:

Definition 1.1. Let M be a matching. Then, a path or a cycle is alternating if the edges are
alternately drawn from the matching M and all edges not in the matching: E \M .

An alternating path or cycle forms the basis for the improvements of matching M . Each improve-
ment must be an alternating path or cycle. If two unmatched edges are allowed to be adjacent to
each other in an improvement, the matching becomes invalid when the improvement is performed.
However, an alternating path is not sufficient to guarantee a valid matching. To see this, consider
Figure 2d. The red path is an alternating path. However, performing this improvement yields an
invalid matching, see Figure 2e. Therefore, we define an augmentation as those alternating paths
which give a valid matching.

Definition 1.2. Let M4P = (M \ P ) ∪ (P \M) be the symmetric difference of two sets and let
P be an alternating path or cycle. Then P is called an augmentation with respect to M if M4P
is also a matching. If it is clear from the context which matching M is used, P will be just called
an augmentation.
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(e) An invalid matching M
after flipping the alternating
path in Figure 2d.

Figure 2: A simple graph to show different situations involving augmentations.

The symmetric difference of P and M is the mathematical description of deleting the matched
edges in the alternating path and adding the unmatched edges. We will call this process the
flipping of an alternating path. An augmentation is therefore an alternating path which gives a
valid matching if the path is flipped. In fact, an alternating path can only be an augmentation if the
matched edges adjacent to an unmatched edge in the alternating path are included in the same path.
Note that finding an augmentation does not automatically yield a better matching. Therefore, we
will speak of a positive-gain augmentation if the total weight of a matching is increased when M is
replaced by M4P . The gain of an alternating path or cycle P is denoted by

g(P ) = w(P \M)− w(P ∩M).

Intuitively, it is clear that a matching M has maximum weight if and only if no positive-gain
augmentation can be found. If a matching has maximum weight and there is a positive-gain
augmentation, the matching could not have had maximum weight. Furthermore, if a matching
does not have maximum weight, there must be a path or cycle P with respect to M which is a
positive-gain augmentation with respect to M . To see this, let M ′ be a matching with maximum
weight and define the following variables: S = M ∩M ′, R = M \ S and R′ = M ′ \ S. Then

w(M) = w(S) + w(R) < w(S) + w(R′) = w(M ′)

yielding w(R) < w(R′). By assumption, M ′ and M are both matchings and thus are R and R′.
Therefore, the matched vertices in the union of R and R′ have a degree of at most two. As a result,
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Figure 3: All possible 1-
augmentations.

Figure 4: All types of augmentations with exactly 2 edges not in
M .

R∪R′ consist of cycles of even length and paths with edges alternately drawn from R and R′. Since
w(R) < w(R′), for at least one of these paths or cycles the total weight of the edges in R′ must be
higher than those in R. Call one of such paths or cycles P . Since P is an alternating path or cycle,
augmenting M with P leads to a new matching with a higher weight, which proves the statement.

Note that there are many augmentations of different lengths. To distinguish between those
augmentations, we introduce k-augmentations. A k-augmentations is an augmentation with at
most k edges not in M . Figure 3 shows all possible types of 1-augmentations and Figure 4 shows
all possible types of augmentations with exactly 2 edges not in the matching M . Together with the
1-augmentations, they form all types of the 2-augmentations.

In matching with maximum weight, all k-augmentations must be negative or zero gain augmen-
tations for all k. When using approximation algorithms, this does most likely not hold. However,
the approximation lemma states that when no k-augmentations occur, a certain lower bound can
be proved.

Lemma 1 (Approximation Lemma). Let M be a matching on G and k be an integer greater than
1. If furthermore, M does not admit any positive-gain (k − 1)-augmentations, then

k − 1
k

w(M∗) ≤ w(M),

where M∗ is the matching with maximum weight.

Drake and Hougardy proved the result for k = 3 in 2003 [11]. The general statement as stated
in Lemma 1 is proved in [36] by Pothen, Ferdous and Manne.

Using positive-gain 2-augmentations to improve the outcome of a 1/2-approximation algorithm
was suggested by Drake and Hougardy in [11]. They state that a maximal set of pairwise vertex dis-
joint 2-augmentations can be found in linear time. They numerically show that performing a number
of these augmentations increases the quality of a matching found by using a 1/2-approximation con-
siderably. However, the guaranteed lower bound is not increased since they only perform a fixed
number of such improvements, and they cannot guarantee that they considered all positive-gain
2-augmentations.

1.3 Known approximation algorithms
In this section, we give a short overview of the existing algorithms for the maximum weight matching
problem. Despite the existence of an exact polynomial runtime algorithm, many approximation
algorithms have been developed. Solutions obtained from these algorithms have, unlike heuristics,
a guaranteed lower bound. Let M be the matching obtained by such an algorithm and let M∗ be
the matching with maximum weight. Then, the following must hold:

α · w(M∗) ≤ w(M) ≤ w(M∗),
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i.e., the total weight of the approximation is at least α times the maximum weight. The idea is that
by approximating the solution, one can complete the algorithm in less time than by using an exact
algorithm. Furthermore, approximation algorithms can be much simpler than exact algorithms and
therefore they are often easier to understand and implement.

The simplest approximation algorithm is the Greedy algorithm. The Greedy algorithm starts
with an empty matching and considers all edges by nonincreasing weight. If the considered edge
has two unmatched vertices incident to it, the edge is added to the matching. If not, the edge is
discarded. It can be shown that the Greedy algorithm results in a 1/2-approximation. Due to the
sorting of the edges, the time complexity of the Greedy algorithm is O(m logn).

The first linear-time approximation algorithm was given by Preis in 1999 [37] and is called LAM.
It uses the idea of the Greedy algorithm but instead of using the global heaviest edge each iteration,
it considers a local heaviest edge. A local heaviest edge e is an edge such that the weight of e is at
least the weight of all adjacent edges of e. In other words: if e = (u, v) is a local heaviest edge then
w((u, v)) ≥ w((a, b)) for all (a, b) ∈ E such that a = u or b = v. The algorithm adds such an edge
to the matching and removes all edges adjacent to e and itself from E. This is repeated until E
is empty. This algorithm is also called the Locally Dominant Edge algorithm since each iteration,
it searches for the edge that is dominating over all its adjacent edges. In his paper, Preis shows
that LAM is a 1/2-approximation algorithm and that it has runtime O(m). However, to obtain the
linear runtime, a Depth-First-Search is used. This makes parallelizing the algorithm directly hard.
Although the algorithm itself is not suitable, it provides useful ideas for other algorithms that are
parallelizable.

In 2003, Drake and Hougardy published another approach for a 1/2-approximation algorithm
[12]. This algorithm is known as the Path Growing Algorithm (PGA). The algorithm starts at a
single vertex v with a degree of at least 1. The goal is to construct a path P1 starting at this
vertex. Each step, the heaviest edge incident to the endpoint of the already existing path is added
to the path and all other edges incident to the endpoint are removed. This is repeated until no
edge can be added to the path. Then, if there are still edges left, a new not yet visited starting
point v is chosen and the procedure starts again. The algorithm terminates when no new starting
point can be found. The result is a collection of l paths {P1, P2, . . . , Pl}. During the process, each
edge that is added to a path is alternately put into the sets M1 and M2. Then, by construction,
M1 and M2 are matchings. The matching with the largest weight is returned. The runtime of this
algorithm is O(m+ n). In [12], it is proved that this is indeed a 1/2-approximation algorithm. In
the same paper, some additional improvements are stated. For example, the obtained matching
can be a non-maximal matching. Therefore, the matching can be improved easily by extending the
found matching to a maximal matching. Furthermore, instead of just putting an edge alternately
into M1 or M2, one can determine the best matching for each Pi. This can be done via dynamic
programming and this algorithm is often denoted by PGA′. Each of these improvements do not
increase the asymptotic runtime. Since this algorithm constructs long paths, it is most likely not
suitable for parallelization.

In 2007, Maue and Sanders proposed the Global Paths Algorithm (GPA) [33]. This algorithm
combines the ideas of Greedy and PGA′. It uses the path creating approach from PGA′ but this
time it considers all edges in nonincreasing order. If an edge is applicable, it is added to a set of
edges E′. An edge is applicable if adding it to E′ does not yield cycles of odd length or vertices
with more than 2 adjacent edges. When all edges are considered, E′ consist of paths and cycles
of even length. Then, for each such path or cycle, a maximum matching is found using the same
dynamical programming technique as in PGA′. The final result is the union of all found maximum
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matchings. Maue and Sanders also propose an alternative post-processing step. Instead of extending
the algorithm to a maximal matching by just picking the heaviest weights, they perform GPA again
on the edges which have two unmatched vertices incident to it. Although this algorithm focuses
more on finding heavier paths, the guarantee is still 1/2. The runtime is O(m+ sort(m)) which in
most cases is equal to O(m logn).

Up to this point, all algorithms are 1/2-approximations. Although these algorithms perform
quite well in practice, a better bound cannot be guaranteed for general cases. Drake and Hougardy
proposed the first (2/3−ε)-approximation [10] where both the lower bound and the runtime depend
on ε. Given a fixed ε, the runtime is linear in the size of the graph. The algorithm uses the idea of
using 2-augmentations to improve an already existing maximal matching. Sometime later, Pettie
and Sanders propose a similar but simpler algorithm [35]. In this paper, they propose two different
algorithms: one based on randomization and a deterministic algorithm, both with a lower bound of
(2/3− ε). The lower bound and the runtime for the algorithm based on randomization is expected.
Although all three algorithms are linear in time and the lower bound can get arbitrarily close to 2/3,
they are often more complicated than the previously mentioned algorithms. Similarly, using the
ideas of augmenting paths and cycles, algorithms have been developed that guarantee a (3/4− ε) or
even a (4/5− ε) lower bound [19], [13]. In 2010, Duan and Pettie propose a near linear-time (1− ε)-
approximation [13] which they improve in 2014 to linear runtime given a fixed ε [14]. Although
these lower bounds can get as good as one wants, these algorithms are often quite complicated to
understand, analyse and implement.

Parallel algorithms

In the past decades, computers advanced considerably, increasing the computational speed. One
of these improvements is the change from one processor to multiple ones. By having multiple
processors, more work can be done at the same time in parallel, speeding up the process. This
development gave rise to a new problem: how to distribute the work over different processors. The
answer is often not as simple as taking a sequential algorithm and distributing the work evenly.
Processors need to communicate and synchronize at some point in time to share their progress
with the other processors which can be very costly. To analyse these costs, many models have
been developed. One of these models is the bulk synchronous parallel model (BSP) [42]. The
model consists of different supersteps (communication, computation, or both). At the end of each
superstep, each processor synchronizes with the other ones. This means that if one processor takes
more time than the others, some processors stay idle for a moment. After the synchronization, the
processors continue with their work.

For many problems, special algorithms need to be developed for the parallel case. The matching
problem is one of these problems. Many of the sequential algorithms mentioned in the previous
section are inherently sequential, and the gain of parallelizing them is very limited. There are
already numerous parallel algorithms for the (bipartite) weighted matching problem. However,
most of them are developed for shared memory models. We will focus on algorithms for distributed
memory models and general graphs.

One of the first algorithms for distributed memory models is an algorithm based on the ideas
behind the local domination algorithm and is developed by Manne and Bisseling [29]. It is based
on the parallel algorithm by Hoepman [21] which uses the idea of LAM by Preis [37].

In 2014, Manne and Halappanavar [30] presented an algorithm called Suitor based on [29] which
also works well when used sequential. Each vertex u makes a bid to match with one of its neighbours
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equal to the weight of the edge between the two vertices. Vertex u proposes to the vertex v which
yields the highest weight under the requirement that v has not received a higher offer from another
vertex. Let Suitor(v) denote the adjacent vertex with the highest edge weight. If at some moment
in time such a higher offer occurs, the bid by u is withdrawn and u has to propose to another vertex
if possible. The algorithm terminates when for all u, u is a suitor or u has no vertex to propose to.
The edges (u, v) with u = Suitor(v) and v = Suitor(u) are the edges in the matching. Note that
it is important that each edge weight is unique. If not, three vertices with edges between them of
equal weight can result in a stalemate where no matches can be made. If the weights are all unique,
this is not a problem, but in general graphs this does not hold. To overcome this, one can add a
second weight criterion by, for example, considering the sum of the vertex numbers of an edge. If
a tie occurs, the edge with the highest sum is the one with the highest weight. Since only edges
adjacent to each other are compared, the edges differ only one vertex and therefore it is sufficient
to compare these two vertices. When tie-breaking is done consistently, the Suitor algorithm gives
the same outcome as the Greedy algorithm. Therefore, it gives a 1/2-approximation.

This algorithm is extended in [5] by Bisseling using the ideas of the Suitor algorithm [30]. New
in this algorithm is the partial sorting added to find preferences faster.

1.4 GraphBLAS
In most situations, graphs are denoted by vertices and edges. However, each graph can also be
represented as a matrix. Through the past years, this duality between graphs and matrices has
been stated multiple times and has been proved to be useful [20, 24]. For many known problems,
algorithms are developed in terms of matrix operations. Examples are a Breadth-First-Search
(BFS) algorithm [6], Shortest Path algorithms [40] and PageRank algorithms [38]. Likewise, it is
also used for Clustering [4] and Deep Neural Networks [25].

In 2013, Mattson et al. [31] proposed to define a standard which defines some primitive building
blocks for graph operations based on linear algebra. The authors of the manifest were worried that
without such a standard, progress would be held back. Algorithms with different building blocks
are more difficult to compare, and it also makes it harder to discuss the topic. From this point
onwards, GraphBLAS is developed as a community effort. This resulted in a description of the
mathematical foundations by Kepner et al. in 2016 [22] and a C binding called the GraphBLAS
C API [7] in 2017. Nowadays, there are multiple implementations of the GraphBLAS standard.
One of these implementations is the SuiteSparse:GraphBLAS library by Timothy Davis [8]. In
the recent versions, it includes (shared-memory) parallelism [28] and a MATLAB interface. Other
implementations include GraphBLAST [43] for the GPU and the implementation of Yzelman et al.
for C++[44].

These days, the focus shifts to developing algorithms which are built on top of GraphBLAS [32].
Some algorithms completely built on GraphBLAS can be found in [41]. Up till now, no algorithm
for the maximum weight matching problem for general graphs is developed in terms of matrix
operations. However, for some special cases, there have been some developments. For the bipartite
case, an algorithm for the cardinality matching problem is developed by Azad and Buluç [1, 2] and
a few years later an algorithm for the maximum weight perfect matching problem was developed
[3].

In the next sections, we will introduce the basic ideas behind GraphBLAS, introduce additional
functions and operations and give a short remark about sparse matrix operations in GraphBLAS.

8



Main idea: matrix-vector multiplication

In this subsection, we will introduce the idea behind GraphBLAS and give some notation. This
notation is based on [22].

As stated before, the main idea behind GraphBLAS is that each graph can be represented as
a matrix. The two most used representations are the adjacency matrix and incidence matrix. We
will use only the adjacency matrix, and therefore we will only describe this representation. An
adjacency matrix A is often a square n × n-matrix which has a nonzero at A(i, j) if there is a
directed edge from vertex i to vertex j. This nonzero is equal to one if the graph is unweighted,
and is equal to its weight if the graph is weighted. If the graph is undirected, the adjacency matrix
is symmetric.

GraphBLAS uses this matrix representation to express graph operations in terms of linear
algebra. The simplest example is the matrix-vector multiplication Ae1. This operation gives all
vertices adjacent to vertex 1. This can be extended to Ake1 which gives the vertices after k hops
in the graph starting from vertex 1. This example uses the standard matrix-vector multiplication
which can be written as:

(Af)(i) =
n∑

k=1
A(i, k)f(k) =

n⊕
k=1

A(i, k)⊗ f(k)

where ⊕ = + and ⊗ = × are the standard addition and multiplication.
There are many possible choices for the operators ⊕ and ⊗ and each combination can be a graph

operation. However, there are some restrictions on the possible combinations. Each combination of
addition and multiplication needs to form a (GraphBLAS) semiring. The definition of a GraphBLAS
semiring and a monoid are given below.

Definition 1.3 (Commutative monoid). Given an operator ⊕ : D × D → D. The algebraic
structure 〈D,⊕, 0〉 is called a commutative monoid if for all a, b, c ∈ D the following holds

• a⊕ b = b⊕ a (commutative)

• (a⊕ b)⊕ c = a⊕ (b⊕ c) (associative)

• a⊕ 0 = a = 0⊕ a (identity)

Definition 1.4 (GraphBLAS semiring). The algebraic structure 〈D,⊕,⊗, 0〉 is called a Graph-
BLAS semiring if

• 〈D,⊕, 0〉 is a commutative monoid with the addition operator

• the multiplication operator is a closed binary operator where multiplication distributes over
addition.

Note that the definition of a GraphBLAS semiring is slightly different from the conventional
mathematical definition of a semiring [18, 27]. The latter one requires ⊗ to be a monoid. For
the GraphBLAS semiring this is not obligatory. This extra freedom gives more possibilities when
designing an algorithm. The matrix-vector multiplication between matrix A and vector b over a
semiring 〈D,⊕,⊗, 0〉 will be denoted by A⊕ .⊗ b. Some example GraphBLAS semirings and their
applications are:
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• The semiring using the standard addition and multiplication: 〈R,+,×, 0〉. The standard
matrix-vector multiplication uses this semiring.

• The semiring 〈R ∪ {+∞},min,+,+∞〉. This semiring can be used to determine all lengths
of shortest paths from a starting source s.

• The GraphBLAS semiring 〈N ∪ {+∞},min,first,+∞〉 with first(x, y) = x. Note that this
GraphBLAS semiring is not a conventional semiring since the function first is not a (commu-
tative) monoid. This semiring is used in performing a BFS and finding a BFS-parent of each
vertex.

Other operations and functions

GraphBLAS offers plenty more possibilities. When performing a matrix-vector multiplication, it is
possible to add some extra options. One of these is applying a mask. A mask prevents the adjusting
of certain elements in an output matrix C. This output can be the result of a matrix multiplication
or some other operation. A mask can be expressed as a boolean matrix M whose size is the same
as the output. If M(i, j) is true, then the result of the main operation is written at C(i, j). If it is
false, the mask prevents the output to be modified. The notation of applying a mask is C〈M〉 = Z
where C is the output, M the mask and Z the result of some operation. It is also possible to use
the complement of mask M as a mask, i.e., C〈¬M〉 = Z.

Another option is the use of an accumulator option. It is denoted by C = C � T or C�= T
and accumulates entries of T into existing C entries. For example, C = C + AB. This operator is
controlled by a descriptor object. The option replace is also controlled by such a descriptor object.
It does what it says, it deletes all previous entries in C before setting the new values. It is possible
to use replace in combination with a mask.

Another possibility is to perform an element-wise addition and multiplication. Similar to chang-
ing the operators in the matrix-matrix multiplication, the operator used in these calculations can
be changed into any binary operator. An element-wise addition gives a different outcome than an
element-wise multiplication even when the same binary operator is used. An element-wise addition
between A and B has a nonzero at position (i, j) if at least one of A(i, j) or B(i, j) is nonzero. The
operation is defined as follows:

[A⊕B](i, j) =


A(i, j) if only A(i, j) is nonzero
B(i, j) if only B(i, j) is nonzero
A(i, j)⊕B(i, j) if both A(i, j) and B(i, j) are nonzero
0 otherwise.

Let a pattern of a matrix represent the nonzeros of a matrix. It is clear that an element-wise
addition represents the union of the patterns of A and B. This in contrary to an element-wise
multiplication. An element-wise multiplication between A and B has a nonzero at position (i, j) if
both A(i, j) and B(i, j) are nonzero. Therefore, it represents the intersection of the patterns of A
and B.

In Table 1 the notation of the operations described above is mentioned as well as some other
often used operations such as the reduction of a matrix to a vector. Note that most of the operations
are described as matrix operations, but there is often also a vector variant. Table 2 shows some
GraphBLAS functions that are used in this thesis.

10



Mathematical notation Name Examples
c = A⊕.⊗ b Matrix-vector multiplication max.first, +.×
C = A⊕.⊗B Matrix-matrix multiplication
C〈M〉 = Z Mask operation. M is the boolean matrix of the

same size as C.
C = C � T or C�= T Accumulator C = C + T

C = AT Transpose
C = A⊕B Element-wise addition
C = A⊗B Element-wise multiplication
v =

⊕
j S(:, j) Reduce a matrix to a vector by summing up all ele-

ments in a row.
〈D,⊕,⊗, 0〉 GraphBLAS semiring

Table 1: Table with the most important notation when using GraphBLAS.

Function name Input Explanation
GrB.prune Matrix or vector and an addi-

tional scalar (not obligatory).
Deletes all explicit zeros. When an additional
scalar is given, it deletes all explicit entries
equal to the scalar.

GrB.select Matrix or vector and an addi-
tional string.

Select specified elements of the input matrix,
determined by the input string. Examples are:
’positive’, ’tril’. Sometimes an additional in-
put entry is necessary.

GrB.emult Two matrices of the same size
and a binary operator

Element-wise multiplication using a specified
binary operator. The standard operator is ×,
although any binary operator can be used.

GrB.eadd Two matrices of the same size
and a binary operator

Element-wise addition using a specified binary
operator. The standard operator is +, al-
though any binary operator can be used.

Table 2: Table with functions in GraphBLAS used in this thesis.
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Sparse matrices in GraphBLAS

Often, the adjacency matrix A is a sparse matrix, i.e, A has many zeros. In this data structure, only
the nonzeros are stored to prevent unnecessary storage use. When using GraphBLAS, the element
that is not stored depends on the monoid used as the addition operation [7]. This is important to
realize, since the zero element depends on the used semiring, and it is likely to change the semiring
during an algorithm. This means that it is not possible to assume the value of a not stored element
since there might be multiple different options. Stored values will be called explicit values or entries,
whereas non-stored values are called implicit values. In addition to the definition of implicit values,
it is important to know what this means for matrix operations in GraphBLAS. Let us consider the
following matrix-matrix multiplication:

C(i, j) =
n⊕

k=1
A(i, k)⊗B(k, j).

The operation A(i, k) ⊗ B(k, j) is only performed if A(i, k) and B(k, j) are both explicit. If we
allow one of the two entries to be implicit, this could lead to unwanted situations if the semiring is
changed during the algorithm. Note that this approach requires more work if we want to perform
A(i, k) ⊗ B(k, j) where B(k, j) is equal to zero, and we want A(i, k) ⊗ B(k, j) to be used into the⊕

operation. This is only possible when B(k, j) is stored explicitly. This in contrast to the normal
sparse matrix operation, where the assumption can be made that the implicit value is equal to
zero. This is important to keep in mind since this situation will occur later on in this thesis. When
talking about an element being zero, we will mean that this zero is stored implicit unless stated
otherwise. The same applies when talking about nonzeros. A nonzero means an explicit stored
value, unless stated otherwise.

This implementation of a sparse matrix-matrix multiplication makes the multiplication between
a permutation matrix P and a sparse matrix A masked with sparse matrix B very fast. To see this,
consider a single element of output matrix:

[P⊕.⊗A](i, j) =
n⊕

k=1
P (i, k)⊗A(k, j).

The operation P (i, k) ⊗ A(k, j) is performed only once due to P being a permutation matrix.
Therefore, the ⊕ operation is only performed on a single explicit value and thus, to compute
[P⊕.⊗A](i, j) only two operations are needed. This implies that the complexity of the matrix-
matrix computation only depends on the number of nonzeros in matrix B. Only for elements (i, j)
where B(i, j) is nonzero, the matrix-matrix multiplication is performed. If the number of nonzeros
in matrix B is bounded by the number of nonzeros in adjacency matrix A, the runtime is linear in
the number of edges m.

12



2 Design of the algorithm
Our approximation algorithm is based on finding a vertex-disjoint set of positive-gain k-aug-
mentations, after which these augmentations are flipped simultaneously. When this is repeated
until no positive-gain k-augmentation can be found, a lower bound of at least k

k+1 times the optimal
solution can be guaranteed as a result of the approximation lemma. By using a vertex disjoint set,
we ensure that the new matching remains valid when multiple augmentations are flipped at the
same time, whereas searching for multiple augmentations and flipping them at once is a good base
for parallelization. This idea of finding positive-gain k-augmentations and flipping them is used in
many algorithms already [10, 11, 12, 13, 14, 19, 35].

The pseudocode for our main algorithm can be found in Algorithm 1. The structure is as
follows: each iteration, a set of vertex disjoint positive-gain k-augmentations is found by the function
FindkAug(A, k,M). This step is significantly different for each k. After this step, the found
augmentations are flipped and the process is repeated until no positive-gain k-augmentations can
be found. The flipping phase Flipping(M,Aug, k) also depends on parameter k, but the function
is very similar for each k.

Algorithm 1: Main algorithm
Input : Adjacency matrix A, parameter k.
Output: A matching M with a weight of at least k

k+1w(M∗).
1 M = ∅ ;
2 while a positive-gain k−augmentations can be found in matching M ;
3 do
4 Aug = FindkAug(A, k,M); // Find a vertex disjoint set of positive-gain

k−augmentations named Aug
5 M = Flipping(M,Aug, k) ; // Augment matching M with Aug: M = M4Aug

In Section 2.1 we describe the details of Algorithm 1 for k = 1, providing two different approaches
for the function FindkAug(A, k,M). We also give a simple method to detect if there exists a positive-
gain 1-augmentation in an existing matching without finding the path itself. We also provide how
to flip the found augmentations within GraphBLAS. In section 2.2 we then generalize the ideas of
k = 1 to k = 2 with the emphasis on FindkAug(A, k,M) and in 2.3 we do the same for k = 3.

2.1 1-augmentations
In this section, we discuss how the algorithm works for k = 1, including how to search for (positive-
gain) 1-augmentations and how to flip them. Two different approaches are discussed for finding the
1-augmentations. We also give a method which checks for termination only. All three methods have
in common that they treat all 1-augmentations within the same operation. The intuition behind
this is that these augmentations are very similar to each other. Each 1-augmentation can be seen
as an unmatched edge extended with either zero, one or two adjacent matched edges. Therefore,
taking this unmatched edge as the starting point, the hope is that these augmentations can be
treated simultaneously. At last, the method for flipping is described for k = 1 and some remarks
are made for general k.

Before we continue, we set some notation. In this section we will use the labelling of the vertices
and edges as in Figure 5. In all three augmentations, the vertices incident to the unmatched edge are

13



i j

(a) Augmentation 1a.

i j l

(b) Augmentation 1b.

k i j l

(c) Augmentation 1c.

Figure 5: All three 1-augmentations with labelled vertices.

labelled i and j. Starting with this edge, augmentation 1a is extended to 1b by adding a matched
edge adjacent to vertex j. The matched vertex adjacent to this edge is called l. Augmentation 1b
can be extended to augmentation 1c by adding another matched edge adjacent to vertex i. The
vertex adjacent to this edge is called vertex k. We will say that each augmentation is centred around
edge (i, j). We will also say that the augmentation with unmatched centre edge (i, j) has vertex
i as starting vertex or starts at i and that vertex j is the end vertex or the augmentation ends at
vertex j. With this notation, the gain of the three augmentations can be expressed as follows:

gain augmentation 1a: w(i, j),
gain augmentation 1b: w(i, j)− w(j, l),
gain augmentation 1c: w(i, j)− w(j, l)− w(i, k).

With the use of the indicator function

1E(i, j) =
{

1 if (i, j) ∈ E
0 if (i, j) /∈ E,

where E is a set of edges, we can express all three gains in a single expression:

w(i, j)− w(j, l)1M (j, l)− w(i, k)1M (i, k).

The matrix [A \M ] only contains the edges in the graph which are not in the matching M . Vector
m contains the index of the adjacent matched vertex if vertex i is matched and zero otherwise, and
vector mw contains the weight of the matched edge if vertex i is matched and zero otherwise. Note
that for the algorithm to work, the zeros in mw needs to be stored explicitly, as will be shown later
in this section. Table 3 shows the most important variables used in this section.

2.1.1 Termination method

The method discussed in this subsection can be used to check if there exists a positive-gain 1-
augmentation without knowing where the corresponding path is in the graph. It is therefore un-
suitable for performing a flip, but it can be used as a termination criterium. Additionally, the first
approach for searching uses similar ideas to this method, and therefore we discuss it.

The idea behind this method is as follows: each row i of matrix [A\M ] represents the unmatched
edges adjacent to vertex i. The position of the edge in the row indicates the index of the adjacent
vertex j. This vertex j can be adjacent to a matched edge, but it does not have to. Let each
unmatched edge and the possible matched edge form a path starting at i. If this path contains
a matched edge, the path is part of either an augmentation 1b or 1c, depending on whether i is
matched or not. If it does not contain a matched edge, it is part of either augmentation 1a or 1b.
All four situations are depicted in Figure 6. The idea is to select the highest gain from all possible
paths starting at i. Then, if i is matched, subtract the weight of the matched edge adjacent to i and
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A Adjacency matrix.
M Matrix with M(i, j) = w(i, j) if edge (i, j) is matched and M(i, j) = 0 (implicit)

otherwise.
[A \M ] Matrix without the edges in M , e.g. [A \ M ](i, j) = w(i, j) if (i, j) is not

matched and implicit otherwise.
gain Scalar which is equal to the maximum gain of all possible 1-augmentations, or

a vector where gain(i) is equal to the maximum gain of the 1-augmentations
starting at vertex i if i is unmatched and implicit otherwise.

Gain Matrix which contains the gains of the 1-augmentations centred around un-
matched edge (i, j). Only has explicit values at [A \M ].

Gain+ Equal to Gain but only shows those elements greater than 0.
mw Vector with mw(i) = w(i, j) if vertex i is matched with vertex j and mw(i) = 0

if vertex i is not matched. Note that mw(i) = 0 is stored explicitly.
m Vector where m(i) = j if vertex i is matched to vertex j and implicit otherwise.
Aug Matrix that contains the edges that are the centre of a 1-augmentation that

can be used for improving the matching M .

Table 3: Table with names of different important variables used in this section.

take the maximum over all possible gains over all i. The result is a scalar gain which contains the
maximum gain over all the possible 1-augmentations. Since we first take the maximum gain over
all suitable paths adjacent to i and then over the corrected gain for all i, we are indeed guaranteed
to find the maximum gain of the 1-augmentations, meaning that if gain is positive, there exist a
positive-gain 1-augmentation. If gain is zero or negative, no positive-gain 1-augmentation exists
and there is no need to search for them. Furthermore, a lower bound of 1/2 can be guaranteed.

How can this be done in GraphBLAS? This method relies on a matrix-vector and a vector-vector
multiplication, both using the same semiring max .−. Assume we have adjacency matrix A and
the matching matrix M to our disposal. Matrix M contains the weight of edge (i, j) if edge (i, j)
is matched and is zero totherwise. The first step is to make vector mw with the weights of the
current matched edges. This can be obtained by summing over all elements of row i in matrix
M . Matrix M only contains one element per row, and therefore mw(i) will be equal to M(i, k) if
i is matched. Matrix [A \M ] can be obtained by subtracting M from A and making the explicit
zeros implicit, or more formally perform an element-wise addition using the binary operator - and
pruning the explicit zeros. The selection of the best path starting at vertex i for each i can be
done via the matrix-vector multiplication: c = [A \M ]max .− mw. To see that this works, consider

i i

Augmentation 1a

Augmentation 1b

Augmentation 1b

Augmentation 1c

Figure 6: The different possible 1-augmentations when considering a starting vertex i adjacent to an
unmatched edge.
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the calculation for a single i:

c(i) = ([A \M ] max .− mw)(i)
= max

j
([A \M ](i, j)−mw(j))

= max
j

(w(i, j)− w(j, l)1M (j, l)).

The element c(i) is indeed the maximum gain of all the paths starting at i existing of either a
single unmatched edge if j is unmatched or an unmatched edge followed by a matched edge if j is
matched. The second step is a vector-vector multiplication: gain = c max .− mw which is equal
to:

gain = c max .− mw = max
i

(c(i)−mw(i))

= max
i

[max
j

[[A \M ](i, j)−mw(j)]−mw(i)]

= max
i

[max
j

[w(i, j)− w(j, l)1M (j, l)]− w(k, i)1M (k, i)].

This means that gain calculates indeed the correct maximum gain of all possible 1-augmentations.
Note that vector mw needs to be a full vector where the zeros are stored explicit, implying more

storage is needed. If the zeros would be stored implicitly, the computation [A \M ](i, j) −mw(j)
would not be performed for those j for which mw(j) = 0. This is due to the implementation of the
sparse matrix-matrix multiplication. This situation can lead to an incorrect value of gain. To see
this, consider augmentation 1a. In this case, vertex j is unmatched and therefore, augmentation
1a will not be treated in computation [A \M ](i, j) −mw(j). Since both vertices are unmatched,
the edge (i, j) is completely ignored by the algorithm, while it might be that this edge is the only
positive-gain augmentation. Therefore, it is crucial that mw is a full vector with explicit zeros.
If we want mw to be full, we need to adjust the operation mw =

⊕
j M(:, j). Since matrix M is

sparse, mw will only have nonzeros at matched vertices. A solution to this is to add
⊕

j M(:, j) to
a vector with explicit zeros. For the remainder of this thesis, mw will be a full vector with explicit
zeros.

The complete algorithm can be found in Algorithm 2 and the runtime of Algorithm 2 isO(m+n).
To see this, note that the creation of vector mw and the multiplication between c and mw takes
O(n) time. The creation of matrix [A \M ] takes O(m) time and the multiplication of [A \M ]
by mw can be performed in O(m) due to matrix [A \M ] being sparse and containing at most 2m
nonzeros. Therefore, the number of operations performed in the matrix-vector multiplication is
bounded by m. This gives a total time complexity of O(m+ n).

Algorithm 2: Termination method for 1-augmentations
Input : Adjacency matrix A, Matching M , vector z with explicit zeros
Output: A scalar gain equal to the maximum gain of all 1-augmentations

1 mw =
⊕

j M(:, j) + z ;
2 [A \M ] = A−M ;
3 [A \M ]=GrB.prune([A \M ]);
4 c = [A \M ] max .− mw;
5 gain = c max .− mw;
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different methods in this section.
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Figure 8: Matrix A belonging to the ex-
ample graph of Figure 7. The gray squares
represent the elements in [A \M ].

2.1.2 Searching method: approach 1

In this section, we describe the first method to search for augmentations to flip. It heavily relies
on the previous described termination method. It uses the same ideas, but instead of finding one
number with the maximum gain, we find the maximum gain over all 1-augmentations starting from
a vertex adjacent to an unmatched edge. The problem of the termination method is that the path
with the maximum gain is not known. If the unmatched edge (i, j) of a 1-augmentation would be
known, the whole path is determined due to the knowledge of vertices i and j being matched or
unmatched. The method in this section solves the problem of the previous section by replacing line
5 of algorithm 2 by the operation gain = c−mw which gives:

gain(i) = max
j

([A \M ](i, j)−mw(j))−mw(i).

The result is a vector gain with for each element i the maximum gain of all three 1-augmentations
starting at vertex i. To select only those augmentations that are positive, only the elements are
selected that have positive gain. These are stored in the vector gain+. If the maximum of gain
is positive, a positive-gain augmentation exist. Figures 7 and 8 show a very simple graph and its
corresponding adjacency matrix, respectively. This graph will be used to visualize the different
steps in the algorithm. Figures 9 and 10 visualize the steps up to obtaining vector gain. We see
that gain(2) and gain(3) are both positive. Since these values correspond to the same and only
augmentation, we know vertices i and j and therefore could perform the flipping.

The minor change of line 5 in Algorithm 2 can give us possibly more paths with positive-gain than
just the one we found in the example, since there might be multiple positive-gain 1-augmentations
starting at different vertices. This might lead to an invalid matching if all are executed. We will
say that a conflict occurs, if after performing an augmentation, the matching becomes invalid. In
the example it is clear what index j is because there is only one positive-gain augmentation. Due
to the symmetry of A, both augmentations starting at i and j are found and therefore i and j must
belong together. However, if we find multiple augmentations, we cannot say anything about which
vertex j belongs to i in the general case. However, this information is needed for the flipping phase.
This means more computations are needed to find this vertex j and to avoid conflicts. Fortunately,
both tasks coalesce quite nicely. First, we focus on finding j whereafter we say something about
the conflicts.
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Figure 9: Visualization of [A \M ] max .− mw.
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Figure 10: Visualization of gain = c−mw.

The first idea that comes to mind for finding j is to use the argmax function instead of the max
function. However, this is not allowed since argmax itself is not a monoid, and therefore it cannot
be chosen as the ⊕ operator. Therefore, we need to do more work to find vertex j. Since only
the weight of the maximum-gain augmentation starting at i is known, we need to reconstruct the
process of finding this path. One approach is as follows: construct a temporary matrix C which is
defined as

C(i, j) = [A \M ](i, j)−mw(j) (1)

or in words: the entry at (i, j) is equal to the gain of the augmentation centred at (i, j) without the
subtraction of the matched edge adjacent to vertex i, if applicable. Note that [A \M ] is a matrix
and mw a vector and therefore computing C by how it is defined is not possible. To solve this issue,
take the outer product between a full vector b and mw using ⊗ = second where second(x, y) = y.
This operation makes a matrix of vector mw such that the element at (i, j) is equal to mw(j).
The choice for ⊕ is less important since it is not used in the actual calculation. It is however
necessary to provide ⊕, and therefore we will use ⊕ = +. Since only the unmatched vertices are of
interest, matrix [A \M ] must be used as a mask to obtain a valid solution and avoid unnecessary
computations. The operation b +.second mT

w is made visible in Figure 11 and the visualization of
Equation (1) can be found in Figure 12.

With this matrix C it is possible to select the elements of row i of matrix C that are equal to
c(i). For this, define diag(c) as a diagonal matrix with vector c on the diagonal. Then the correct
elements can be selected by performing diag(c) any.eq C where eq(x, y) = 1 if x = y and zero
otherwise and where any(x, y) = 1 if at least one of the entries is nonzero. To see that this works
consider the outcome of a single element (i, j):

[diag(c) any.eq C](i, j) = anyk∈1:n eq ([diag(c)](i, k), C(k, j))

Note that [diag(c)](i, k) is only nonzero when i = k. Therefore, the any function only has to consider
one nonzero, which is equal to eq ([diag(c)](i, i), C(i, j)) = eq (c(i), C(i, j)). This function is only
nonzero if c(i) = C(i, j). To improve the operation, note that only for the elements c(i) for which
gain+(i) > 0 the position in C needs to be found, meaning the number of operations is reduced.
Note that it might be possible that there are multiple positions where C(i, j) = c(i), meaning that
for some j and j′: C(i, j) = C(i, j′). In this thesis, ties are broken by selecting the element with the
highest sum of the two indices. In this case, it means the element with the highest index j since i is
the same for both positions. The highest index j can be found by using the max .secondi semiring
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in a matrix-vector multiplication between the new matrix and a full vector. Here, secondi(x, y)
gives the index belonging to entry y. The above-mentioned procedure gives vertex j belonging to
the best 1-augmention starting at vertex i. In fact, it calculates the argmax of matrix C. This
procedure will be used again later on in this thesis when the argmax has to be computed again.

Now that vertex j can be determined, it is possible to select a set of augmentations which do
not lead to conflicts. For the 1-augmentations, conflicts only occur when a vertex is part of multiple
1-augmentations. Examples can be seen in Figure 6 where performing all 1-augmentations will yield
an invalid matching in both examples. These conflicts can happen in three different situations. For
the first one, two different augmentations are performed starting both at vertex i. In this section
using approach 1, this conflict cannot occur due to the construction of the algorithm. The second
way is if there are multiple augmentations ending in the same vertex j. This seems similar to the
first conflict, however this conflict is not yet dealt with. To avoid it, it is necessary to select the
augmentation with the highest gain out of the augmentations ending at the same vertex. If there
are ties, the augmentation with the highest index i is chosen. The last conflict occurs when a vertex
i is a starting vertex and an end vertex for two different augmentations. To avoid this conflict, an
augmentation centred around (i, j) can only be added to the set if the augmentation is the highest
gain augmentation starting at i and ending at i. This procedure is similar to the local domination
idea where an unmatched edge (i, j) is added to the matching if vertex j is the preference of vertex
i and vice versa. [37]

To avoid these conflicts using GraphBLAS, consider matrix D. This matrix contains the gains
of the highest (positive-)gain augmentations per row obtained from the first part of the algorithm.
If there are ties, they are broken, meaning there is only one explicit value per row which avoids
conflict one. The second conflict occurs when a column has multiple nonzeros. To avoid conflict
two, select the highest gain augmentations for each column and break ties correctly. The matrix
now also contains one element per column. Then check whether both augmentation (i, j) and (j, i)
are present in the remaining matrix. If so, then the third conflict is avoided. If not, there is a
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possibility that conflict three occurs and these augmentations must not be used. This checking
can be done by taking the element-wise product of matrix D and DT which takes the intersection
of both matrices resulting in a matrix where if (i, j) is present, so is (j, i). The result of the
intersection is a (symmetric) matrix Aug with a nonzero at the position (i, j) when this edge is a
centred unmatched edge which belongs to a 1-augmentation that can be flipped.

Observe that checking for the second conflict is not strictly necessary as this is resolved by
solving the third conflict. Since D only contains one augmentation per row, the one with the
highest gain starting at the corresponding vertex, matrix DT only contains one augmentation per
column, the one with the highest gain ending at the corresponding vertex. Now strictly speaking
DT is not equal to matrix D after the selection procedure of the columns. However, it is still only
possible to get at most one element in a row and column. Furthermore, we still select the highest-
gain augmentation ending in vertex i. Assume we would not and let (i, j) be the augmentation
with the highest gain in row i. Then there would be another augmentation centred around (j′, i)
that is not picked with higher gain than the augmentation centred around (j, i). But then the gain
of the augmentation centred around (i, j′) also must be higher than the gain of the augmentation
centred around (i, j). This is not possible since (i, j) is in the original D matrix, and therefore is
the augmentation with the highest gain augmentation starting at vertex i. If there are ties, the
same contradiction can be deduced. Therefore, it is sufficient to look at the intersection of D and
DT and the column selection is not necessary. As a result of this, it is not necessary to let matrix
D contain the gains of the augmentations around (i, j) at this point in the algorithm. Only the
position of the elements are of interest and not the value of these elements.

Note that we said we are looking for a vertex-disjoint set of augmentations. This is not entirely
true. It is not necessary that vertices k and l are only in a single augmentation. To see this,
note that both k and l can only be in at most two different 1-augmentations. If they were in
more, we would either have conflict number 1 or 2. This means that we only have to look at the
situation where they are in two 1-augmentations meaning vertex l and k are also adjacent to an
unmatched edge. Let i′ be the other vertex adjacent to such an unmatched edge. If we first flip
the augmentation around (i, j), edge (j, l) or (i, k) becomes unmatched. This influences the other
not yet flipped augmentation. However, this does not lead to a problem since this augmentation
changes from either an augmentation 1c to an augmentation 1b or from an augmentation 1b to an
augmentation 1a. Since the previously matched edge would be subtracted from the total gain of the
last augmentation, this means that the new gain of this augmentation is even higher than before
without this edge and more important, it is positive. Therefore, performing both augmentations
does not lead to conflicts and therefore this situation is not excluded. This result can be extended
for general k. When one of the two outer edges is matched, this edge can be in two different
augmentations without problems.

The full pseudocode can be found in Algorithm 3. The first half of the algorithm (up to line
5) is similar to the termination method and the runtime of this part is therefore O(m + n). The
second half of the algorithm also takes O(m + n). Checking whether vector gain+ contains an
element larger than zero takes O(n) since the number of nonzeros in gain+ is bounded from above
by n. The runtime of the creation of matrix C is bounded from above by the number of nonzeros
in [A \M ] which also can be at most 2m. The same holds for the creation of matrix D, which
despite the use of a matrix-matrix multiplication has runtime O(m+n). One of the matrices in the
matrix-matrix multiplication is a permutation matrix. Therefore, since the number of nonzeros in
C is again bounded from above by m, the multiplication is still linear in m. The other operations
used to create D can be performed in O(m+n). Lastly, the creation of matrix Aug is also O(m+n)
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leading to a total runtime of O(m+ n).

Algorithm 3: Searching method 1: potential Aug = FindkAug(A, 1,M)
Input : Adjacency matrix A, Matching M ,vector z with explicit zeros
Output: A matrix Aug which contains nonzeros at the edges which are the centre of the

augmentations that can be flipped to improve the matching
1 mw =

⊕
j M(:, j) + z ;

2 [A \M ] = A−M ;
3 [A \M ]=GrB.prune([A \M ]);
4 c = [A \M ] max .− mw;
5 gain = c − mw;
6 gain+ = GrB.select(gain,positive);
7 if maxi(gain+(i)) > 0 then
8 C〈[A \M ]〉 = [A \M ]− [z +.second mT

w];
9 Select C(i, j) such that gain+(i) > 0, C(i, j) = c(j) and j is the highest index when

there are ties. Store the values (i, j) in matrix D;
10 Aug = GrB.emult(second, DT , D);

2.1.3 Searching method: approach 2

In this section, we describe the method behind approach 2 of searching 1-augmentations. This
method first calculates the gains of all 1-augmentations, after which the best (positive-gain) aug-
mentations are selected. This in comparison to the first method, which during the searching of the
augmentations selects the best 1-augmentation. The advantage of approach 2 is that it is much
easier to know vertices i and j. This approach constructs a new matrix Gain where the element
at (i, j) contains the gain of a possible 1-augmentation centred around edge (i, j). Or written more
formally:

Gain(i, j) =
{
w(i, j)− w(j, l)1M (j, l)− w(i, k)1M (i, k) if (i, j) is unmatched
0 otherwise.

To obtain this using GraphBLAS, note again that

Gain(i, j) =
{
A(i, j)− (mw(j) +mw(i)) if (i, j) is unmatched
0 otherwise.

The previous expression cannot be calculated directly since A is a matrix and mj a vector. To
overcome this problem, we can use a similar method as for the computation of matrix C in approach
1. The expression mw(j) + mw(i) needs to be transformed to a matrix which can be done by
calculating the outer product of mw with itself using ⊗ = + and ⊕ = +. It is not necessary
to compute the whole matrix mw +.+ mT

w since this information is only relevant where (i, j) is
unmatched. Therefore, the matrix [A\M ] can be used as a mask to avoid unnecessary computations.
The visualization of mw +.+ mT

w can be seen in Figure 13 and with this computation, we get

Gain〈[A \M ]〉 = [A \M ]− (mw +.+ mT
w).
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The resulting matrix Gain is a symmetric matrix which contains the gains for every 1-augmentation
viewed from an unmatched edge. If there is a positive-gain 1-augmentation, it can be found. Since
Gain is symmetric, it contains all 1-augmentations twice. Note that to obtain the positive-gain
augmentations, only the positive elements of Gain need to be used. The matrix Gain+ only contains
these positive elements, see Figure 14 for the visualization of Gain and Gain+.

The next step is selecting a set of 1-augmentations such that conflicts are avoided. The same
conflicts can occur in this situation as in approach 1, although the first conflict is not dealt with yet.
The selection can be made by using the same approach as in searching approach 1. To construct
matrix D, first calculate the maximum value per row of matrix Gain+ and determine the highest
index which contains this value by using a similar approach as in Section 2.1.2 when finding the
argmax of matrix C. This solves conflict 1. Then proceed as in approach 1 in Section 2.1.2 to
solve the other conflicts. Although the selection involves more work due to there being more 1-
augmentations to consider, it also has an advantage. Since we have access to all 1-augmentations,
more positive-gain augmentations can be added. After the first selection round, a second round can
be performed where the edges adjacent to already selected edges are deleted from Gain+. This can
be repeated until no more augmentations can be added. The access to all possible 1-augmentations
also gives the possibility to use a selection method based on the Suitor idea. The mean idea of
how to implement Suitor in GraphBLAS and how it can be adjusted to select 1-augmentations is
described in subsection 2.1.4.

The full pseudocode of searching method 2 can be found in Algorithm 4. The runtime of this
algorithm is again similar to the previous two algorithms when choosing for the standard selection
procedure. Line 4 can be performed in O(m) whereas the selection of the augmentations can be
done in O(m + n). The analysis of the selection is similar to the selection of searching approach
1. Checking whether matrix Gain+ contains elements larger than zero can also be done in O(m).
This leads to a total runtime of O(m+ n).

2.1.4 Suitor in GraphBLAS

In this section we describe how the idea of Suitor [30] can be implemented in GraphBLAS. This
method is not described into full detail, but gives an idea of how it can be described in terms of
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Algorithm 4: Searching method 2: potential Aug = FindkAug(A, 1,M)
Input : Adjacency matrix A, Matching M , vector z with explicit zeros
Output: A matrix Aug which contains nonzeros at the edges which are the centre of the

augmentations that can be flipped to improve the matching
1 mw =

⊕
j M(:, j) + z ;

2 [A \M ] = A−M ;
3 [A \M ]=GrB.prune([A \M ]);
4 C〈[A \M ]〉 = mw +.+ mT

w;
5 Gain〈[A \M ]〉 = [A \M ]− C;
6 Gain+ = GrB.select(Gain,positive);
7 if maxi,j Gain+(i, j) > 0 then
8 select correct augmentations by using either the Suitor method or the same selection

procedure of approach 1 ;

GraphBLAS. In comparison to the sequential Suitor implementation, it first calculates all prefer-
ences and then determines the suitor values from all current preferences. Then it checks which
edges are dead, and the process is repeated.

At the start of the algorithm, all edges in A are alive meaning they can be used to add to the
matching. The edges that are alive are stored in matrix A∗. Let pref (i) be the preferred partner
of vertex i. This is the vertex adjacent to vertex i with the highest edge weight that is currently
alive. To calculate pref , first perform a matrix-vector multiplication between matrix A∗ and vector
z which is a full vector, using the max .first semiring. This computation gives the maximum element
of each row stored in the vector pref w. Then, the positions of these maximum elements can be
found by computing the argmax of matrix A∗ whereafter the ties can be broken by picking the
element with the highest index. This can be done in the same way as in Section 2.1.2. After these
operations, the preferences of all vertices are known.

Now let suitor(j) be the vertex adjacent to j that prefers j and has the highest edge weight
of all other vertices that prefer j. All preferences are known and therefore suitor can be easily
computed. Let Pref be the matrix where Pref (i, j) is equal to A(i, j) if vertex i prefers vertex
j. Then suitor can be computed by finding the argmax over each column of matrix Pref . To see
this, each column of Pref represents a vertex j that is a preference of some vertex i. If column j
has no elements, vertex j is not a preference of all other vertices. By taking the maximum of each
column, we find the highest weight of all edges that prefer vertex j which is what the suitor value
is. Therefore, taking the argmax of the column j results in suitor(j).

If suitor(i) = pref (i), the vertex with the highest edge weight that prefers vertex i is the same
as the vertex that is the preference of vertex i and therefore the edge i, suitor(i) can be added to the
matching. Checking whether suitor(i) = pref (i) can be done via an element-wise multiplication,
using the function eq as the binary operator.

The next step is to determine which edges will become dead edges. An edge is dead if making a
proposal using this edge results in an immediate rejection. Proposing such an edge is meaningless
since there is already an edge with higher weight adjacent to the vertex proposed to. An immediate
rejection of edge (i, j) occurs when w(i, suitor(i)) > w(i, j). Vertex j can never become a preference
of vertex i since there already exist another vertex suitor(i) which prefers vertex i with a higher
edge weight. To find the edges for which w(i, suitor(i)) > w(i, j) holds, consider the operation B =
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diag(suitorw) max . > A where suitorw(i) is equal to the weight of edge (i, suitor(i)) and implicit
if this edge does not exist. The analysis of this calculation goes similar to that of diag(c) any.eq C
in Section 2.1.2. The result is a matrix B which contains a one at (i, j) if w(i, suitor(i)) > w(i, j)
and zero otherwise. The operation can be masked by matrix A∗. The matrix can be used to remove
the dead edges from A∗. Note that when edge (i, j) dies, edge (j, i) also dies. Therefore, edges in
BT also need to be removed from A∗.

If two vertices can be matched, it is unnecessary to compute the preferences and suitors of these
vertices again in an upcoming iteration. Therefore, pref , suitor and suitorw can be masked by m̄
where m̄ is the complement of vector m. This prevents unnecessary computations.

The Suitor algorithm described above describes one iteration of the standard Suitor algorithm.
The algorithm terminates if pref is empty. Since pref is masked by m̄, this means that every
unmatched edge is not able to set a new preference, meaning there are no alive edges that can be
added. The algorithm can be used for selecting 1-augmentations. To do this, change matrix A in
matrix Gain+. The resulting algorithm is very similar to the standard selection procedure, but
now with the dead edges removed after every iteration.

2.1.5 Searching method 1 vs 2

In Sections 2.1.2 and 2.1.3 we described two different methods to search for positive-gain 1-
augmentations. Both methods are very similar to each other and take O(m+ n) time. Therefore,
determining which one to use cannot be determined by the time complexity. In this section, we
describe some advantages and disadvantages of both methods.

The main advantage of approach 2 is that all 1-augmentations are known and that therefore
a larger selection of augmentations can be made to flip within a single main iteration. When
the selection procedure ends after one selection iteration, both methods find the same set of 1-
augmentations. This can easily be seen since both methods calculate the best 1-augmentation
starting at vertex i for all i before selecting the best 1-augmentations ending at vertex j. Approach
1 does this immediately and approach 2 searches for the best 1-augmentation starting at vertex
i after calculating all possible 1-augmentations. Both methods do not differ much in this case.
Both approaches have similar runtime since they use very similar operations. The outcome of
approach 2 needs more storage since all 1-augmentations are stored whereas in approach 1 the
outcome is only the best augmentation starting at each vertex. Approach 2 is slightly more elegant
in the sense of that vertex j can be determined quite easily whereas approach 1 might be more
intuitive in terms of the operations used. Another advantage of approach 2 is that the second-best
augmentation can be found easily. In approach 1, the algorithm needs to be repeated with the best
centre edges removed from A whereas in approach 2 the second-best augmentation can be found by
consulting matrix Gain+ directly. This observation is of importance for when the 2-augmentations
and 3-augmentations are considered later on in this thesis.

The two methods do differ when more selection iterations are used in approach 2. Each main
iteration, the set of augmentations can be extended in approach 2. When considering only 1-
augmentations, this will lead to the same final matching. To see this note that positive-gain
augmentations 1b and 1c are never found. When starting with an empty matching, the first
iteration will always only consists of augmentation 1a. Let edge (i, j) be such an augmentation 1a.
Then all edges adjacent to vertex i and j except edge (i, j) have a lower or equal weight to edge
(i, j). This is due to the construction of the algorithm. Edge (i, j) was the edge with the highest
weight starting at vertex i and j, otherwise it could not have been added to the matching. Due to
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this observation, every edge (i, i′) will have w(i, i′) ≤ w(i, j) and therefore every augmentation 1b
or 1c starting at vertex i centred around an unmatched edge (i, i′) will always have negative or zero
gain. This means that these augmentations do not occur in matrix Gain+ meaning that Gain+
only consist of augmentations 1a. This means that calculating matrix Gain+ again in a new main
iteration only means deleting the edges adjacent to an already matched edge from the matrix. This
is exactly what happens when performing more selection iterations but without calculating matrix
Gain+ again. Therefore the two methods give the same outcome. As a consequence of this, when
only performing 1-augmentations it is expected to be faster to repeat the selection iterations until
no new augmentation can be found.

The same statement does not hold when combining 1-augmentations with higher k-augmentations.
The order in which 1-augmentations and augmentations with k edges not in M are flipped, influ-
ences the final matching. All that can be said about this final matching is that it fulfils the lower
bound if no k-augmentations are found.

Finding a larger set of augmentations to flip each iteration might suggest needing fewer iterations
overall. Especially when the graph has the structure of a chain or when many vertices prefer the
same end vertex, it can be beneficial to perform a second (or more) selection iteration. This prevents
calculating the same best augmentations over en over again without using them due to there being
better augmentations that end in the end vertex. However, it is not known how many selection
iterations are needed to find a maximal set of augmentations. This number is upper bounded by
the number of vertices and therefore, the main iteration would lose its linear runtime if the selection
iterations stop when no augmentations can be added. It is possible to fix the number of selection
iterations in each main iteration to hopefully get a better matching sooner.

Overall, both methods are very alike. Approach 2 has the slight advantage in terms of using
it for finding the second-best augmentation, although this comes at the cost of needing more stor-
age. Since this is needed for 2-augmentations and 3-augmentations and in combination with the
possibility to extend the set of augmentations without performing the main iteration again, this
approach is the preferred approach theoretically.

2.1.6 Flipping phase

In this section the flipping phase of the found and selected 1-augmentations is described. For general
k-augmentations, the method is very similar and therefore, some remarks will be made for general
k such that it is not needed to describe this method for higher k.

The result of the two searching methods are the (unmatched) edges (i, j) which are the centre
edges of the 1-augmentations that need to be flipped. If i or j are matched vertices, the edges
(i, l) and (j, k) are known and available in vector m. This vector can be obtained by performing
M max .secondi z where secondi gives the index of the second entry and z is a full vector. Using
this semiring gives the highest index of the explicit values per row. In the situation of the 1-
augmentations, flipping means adding edge (i, j) to the matching and if applicable deleting edges
(i, l) and (j, k). The edges that need to be added are available in matrix Aug and if Aug(i, j) is equal
to w(i, j) we can just perform M + Aug to add the new matched edges. To achieve that Aug(i, j)
is equal to w(i, j), we can perform an element-wise matrix multiplication between Aug and A using
the binary operator second where Aug is used as a mask to prevent unnecessary and incorrect
calculations. Now, let vector aug contain vertex j at position i if the augmentation around edge
(i, j) needs to be flipped and zero otherwise. This vector can be obtained by Aug max .secondi z.
Then, the intersection between vector aug and m represents the matched edges which are adjacent
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to a centre edge in Aug and thus it gives which edges need to be deleted from M with the remark
that also edges (k, j) and (l, i) need to be removed from M . The pseudocode for k = 1 can be found
in Algorithm 5.

Algorithm 5: Flipping method: M = Flipping(M,Aug, 1)
Input : Matrix Aug with the needed augmentations, Matching M , vector z with explicit

zeros.
Output: An updated matching M with higher gain.

1 m = Mmax .secondi z;
2 aug = Aug max .secondi z;

// The foreach loop can be performed for all i at the same time
3 Foreach i in V do
4 if m(i) and aug(i) explicit then
5 Remove edges (i,m(i)) and (m(i), i) from M ;
6 Aug = GrB.emult(second,Aug,A);
7 M = Aug +M ;

Now some remarks for general k. The k-augmentations consist of the (k − 1)-augmentations
and the augmentations with exactly k edges not in M . Assuming we know how to flip (k − 1)-
augmentations, only the augmentations with exactly k edges not in M are of interest. The difference
between the flipping for general k and k = 1 is not big. Assume that we know the whole path by
knowing the centre edge and which unmatched edges are in an augmentation. The centre edge is
either a matched or unmatched edge which depends on k being even or odd. If k is odd, the centre
edge is unmatched and this edge needs to be added to the matching. The adjacent edges to the
centre edge are matched and need to be removed, the edges adjacent to these matched edges need
to be added until the whole path is treated. If k is even, the centre edge is matched, and thus it
must be removed and the adjacent unmatched edges in the augmentation need to be added etc. The
adding and deleting procedure can be done in a similar way as for k = 1 given that the unmatched
edges are provided. It does however depend on how this information is stored.
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Figure 15: The four augmentations 2 with labelled vertices.
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Figure 16: Visualization of a matched edge (i, j) being part of two 1-augmentations. The edges belonging
to a possible 1-augmentation starting at vertex i are depicted in red and those starting at vertex j are blue.
A combination of two 1-augmentations yields an augmentation 2 and all augmentations 2 can be created.
When there are two edges between two vertices, this means that this edge is in both the 1-augmentations.

2.2 2-augmentations
In this section, the method for detecting positive-gain 2-augmentations is described. A 2-augmentation
is either a 1-augmentation or an augmentation with exactly two unmatched edges not in M . To
shorten the name of the augmentations with exactly two unmatched edges not in M , they will
be called augmentations 2. Since the 1-augmentations are treated in section 2.1, the focus in this
section lies on finding augmentations 2. The four augmentations 2 and the labelling used in this
section are shown in Figure 15. Each augmentation is centred around a matched edge (i, j) and has
an unmatched edge adjacent to both vertex i and j. The difference between the four augmentations
is whether these unmatched edges have another matched edge adjacent to them or not. Note that
augmentation 2d is a special case of augmentation 2c where the first and last matched edge of
augmentation 2c are the same.

The main idea behind the algorithm for finding (positive-gain) augmentations 2 is to use the
observation that each augmentation 2 is centred around a matched edge (i, j) and that both vertices i
and j have a path of at least length one adjacent to them. These paths including edge (i, j), are equal
to either an augmentation 1b or 1c. Therefore, an augmentation 2 consists of two 1-augmentations
with an overlapping matched edge. A visualization of this can be seen in Figure 16. If we find the
best augmentation 1b or 1c for the two vertices i and j, the gain of the best augmentation 2 centred
around matched edge (i, j) can be found by combining the gains of these 1-augmentations and
making a correction for matched edge (i, j). This correction is needed since edge (i, j) is subtracted
twice from the total gain, and therefore it needs to be added again. The best 1-augmentation can
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Figure 17: Example of a positive-gain augmentation 2 with gain 4. The gain of both 1-augmentations start-
ing at i and j is −3. When the negative-gain 1-augmentations would have been ignored, this augmentation
would not be found.

have negative or zero gain and in contrast to the previous section, these cannot be discarded. The
reason for this is to make sure no positive-gain augmentation 2 exists if none are found. To see
this, take for example the augmentation 2 in Figure 17. Both 1-augmentations have a negative gain
of −3. However, the total gain of the augmentation 2 is positive. This augmentation would not
have been detected if the negative-gain 1-augmentations had been discarded. Another observation
is that a 1-augmentation starting at vertex i can only be part of at most one (best) augmentation
2. This is due to the centred edge (i, j) being matched and therefore the choice of vertex i also
determines vertex j. This observation implies that changing one of the two 1-augmentations only
has effect on one augmentation 2. This will be important when conflicts are solved.

Finding the best augmentation 1b or 1c can be done by using a slightly adapted algorithm for
finding 1-augmentations. Instead of finding the best 1-augmentation starting at all vertices i, only
the matched vertices i need to be considered. This can be obtained by using vector m as a mask.
Both searching methods for finding 1-augmentations can be used, both without the full selection
procedure. It is sufficient to know the best 1-augmentation starting at each matched vertex i even
if there might occur conflicts when multiple are used at the same time. These conflicts are treated
and solved later on in this section. To calculate the gain of the best augmentation 2 centred around
(i, j), we need to access the gains of the best 1-augmentation which are stored in vector auggain.
For the flipping phase, the end vertices of the best 1-augmentations starting at vertex i are also
needed and are therefore stored in vector aug. These end vertices are vertices k and l in Figure 15.
With the information stored in vector auggain and matrix M , the maximum gain for each centred
matched edge (i, j) can be calculated in matrix Gain2:

Gain2(i, j) =
{
auggain(i) + auggain(j) +M(i, j) if (i, j) ∈M
0 otherwise.

Here, the matrix Gain2 can be constructed in the same way as the Gain matrix in searching method
2 and therefore it can be written as:

Gain2〈M〉 = (auggain+.+ augT
gain) +M.

Matrix Gain2 contains the maximum gain for each centred matched edge (i, j). However, it might
be that a conflict occurs within a single augmentation 2 or that the gain is not calculated correctly.
We first consider the first situation. The only conflict within a single augmentation 2 that can
occur is when the two 1-augmentations starting at vertex i and j have the same end vertex. This
means k = l or in terms of vector aug: aug(i) = aug(j) and the situation can be seen in Figure 18.
When this conflict occurs, it cannot simply be ignored without searching for another augmentation
2 centred around edge (i, j). It might be that there exist another augmentation 2 centred around
this edge which also has positive gain and if this is the only positive-gain augmentation left in the
current matching, it is not found and the algorithm fails. This conflict can be solved by keeping
one of the two 1-augmentation fixed and adjusting the other 1-augmentation. By doing this, the
situation cannot occur again. There are two possible choices to do this: keep the 1-augmentation
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Figure 18: Invalid augmentation after selecting the best 1-augmentations for vertices i and j. Vertices k
and l are the same. In situation 1 vertex k = l is matched and in situation 2 vertex k = l is unmatched.

starting at i fixed and adjust the 1-augmentation starting at j or fix the 1-augmentation starting
at j and adjust the 1-augmentation starting at i. Both situations give a different augmentation 2.
To ensure that a positive-gain augmentation can be found if it exists, both possibilities need to be
included in the algorithm. This can be done by first adjusting the 1-augmentation belonging to
the smallest index (i < j). If after computing Gain2, no positive-gain augmentation is found, the
procedure is repeated for the highest index vertices (i > j). If again no positive-gain augmentation is
found, no augmentation 2 exist centred around (i, j). This approach will not always lead to the best
possible augmentation centred around edge (i, j). However, finding a positive-gain augmentation 2
is sufficient at this point.

The second problem occurs when augmentation 2d is found. In the current procedure, edge (k, l)
is subtracted twice from the total gain and therefore a correction needs to be made. This situation
can be seen in Figure 16 where the two matched edges are both counted twice in augmentation 2d.
For edge (i, j) an adjustment is already made in the calculation of Gain2. The adjustment for edge
(k, l) can be done similarly. First, compute the best 1-augmentation for each vertex i and check for
conflicts within a single augmentation. Then, if it holds that m(k) = l, augmentation 2d occurs and
the weight of edge (k, l) needs to be added to Gain2(i, j). This can be done by adding the weight
of edge (k, l) to the gain of one of the two 1-augmentations which is stored in vector auggain. In
our algorithm we adjust the gain of the 1-augmentation with the highest starting index.

These two situations are the only problems that can occur within a single augmentation 2. Both
adjustments can be performed before the calculation of matrix Gain2. The only exception to this
is when the first conflict occurred and Gain2 has no positive entries. Then matrix Gain2 needs
to be computed again using the adjusted vector auggain. The matrix Gain2+ now only contains
the augmentations centred around matched edges with positive gain. If Gain2+ does not contain
any nonzeros, there does not exist an augmentation 2 in the graph with the current matching M .
If there exists multiple augmentations 2, a number of augmentations need to be selected which do
not lead to conflicts if they are performed together. This means that vertices i, j, k and l can only
be part of one and the same augmentation 2. Note that vertices m(k) and m(l) do not need to be
included in this statement due to the same reasoning as in section 2.1.

To select a set of valid augmentations, we use a similar but slightly different approach to the
selection phase of the 1-augmentations. For each start vertex i of a positive-gain augmentation 2,
find vertices j, k and l of the best positive-gain augmentation. These indices of the best augmenta-
tion 2 starting at i can be found by using matrix M and vector aug. Then, a new matrix Aug2 is
constructed which contains the gain of the best augmentation 2 starting at i at positions (i, i), (i, j),
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(a) Simple example graph.
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(b) Augmentation 2 centred around
edge (4, 5). The centred edge is
blue and the edge not belonging
to the augmentation 2 is coloured
gray. The gain of this augmenta-
tion 2 is 2.
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(c) Augmentation 2 centred around
edge (1, 2). The centred edge is
blue and the edge not belonging
to the augmentation 2 is coloured
gray. The gain of this augmenta-
tion 2 is 3.

Figure 19: Simple example graph for the visualization of matrix Aug2 and the two possible augmentations
2 in the example graph highlighted.
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Figure 20: Visualization of matrix Aug2 and the vector with the number of nonzeros per row belonging to
the example of Figure 19. The blue numbers in matrix Aug2 are the maximum values per column and if
there are ties, the value with the highest index is chosen.

(i, k) and (i, l). It can now be checked if a vertex is in multiple best augmentations 2 and a selection
can be made. To do this, select the highest value in each column and in case of ties, select the
one with the highest index. This corresponds to selecting the highest gain augmentation 2 for each
vertex. If after this selection procedure a row still contains four nonzeros, the augmentation can be
used in the flipping phase. If not, the augmentation cannot be used since at least one of the four
vertices is part of a better augmentation 2 which will be used. To visualize this approach, consider
Figure 19. This figure shows a simple graph and the two augmentations 2 in the graph. Flipping
both augmentations gives a conflict at vertex 3. Figure 20 visualizes matrix Aug2 and shows the
number of nonzeros after the selection of the columns. In this example, the augmentation centred
around edge (2, 1) can be flipped, which has indeed the highest gain of the two augmentations.
Note that it is not necessary to add a row for both vertices i and j. Adding one of the rows is
sufficient since the best augmentation 2 starting at vertices i and j is the same by symmetry of
matrix Gain2+. Therefore, rows i and j will both contain elements i, j, k and l and are therefore
the same. The selection procedure can be repeated to extend the set of augmentations, but this is
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not necessary. If it is repeated, the rows with an already used vertex in it must be removed from
Aug2.

The pseudocode for the described algorithm for finding and selecting augmentations 2 can be
found in Algorithm 6. A single iteration of finding and selecting takes O(n+m). To see this, note
that the algorithm relies on the algorithm for finding 1-augmentations which also hasO(n+m). This
algorithm is performed at most 3 times. The first time is to find matrix Aug and the other times are
to find the second-best 1-augmentations when a conflict occurs. Checking whether this conflict or
an augmentation 2d occurs can be done in O(n) by first permuting a vector and then comparing two
vectors element-wise. Constructing matrix Gain2 takes O(|M |) which can be bounded by O(m).
Lastly, creating matrix Aug2 and selecting the highest elements in each column can also be done
in O(n+m). Therefore, the total runtime is linear in the size of the graph.

The augmentations 2 found can be flipped using the approach described in section 2.1.6. To
ensure that no positive-gain 2-augmentations remain, all 1-augmentations and augmentations 2
need to be negative or zero gain. However, at the moment it is not possible to flip them at the same
time, since there is no check to avoid conflicts between 1-augmentations and augmentations 2. This
check could be done by using the same selection procedure of augmentation 2. For each starting
vertex i, determine the best 1-augmentation and add i and aug(i) to matrix Aug2 in row i. Note
that row i might already contain elements for an augmentation 2 since the 1-augmentations found
in Section 2.1 can also be part of an augmentation 2. If so, chose the augmentation with the highest
gain. If after the column selection, there are two nonzero elements in a row of a 1-augmentation,
this 1-augmentation can be flipped safely. Overall, this selection procedure is more complicated in
comparison to just repeating the two separate algorithms for 1-augmentations and augmentations
2, although the set of found augmentations might be smaller in the latter case.
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Algorithm 6: Searching method for augmentations 2
Input : Adjacency matrix A, matching matrix M , vector mw and a vector z with explicit

zeros
Output: A set of paths determined by i,m(i), aug(i) and aug(m(i)) which can be flipped

1 Aug = FindkAug∗(A, 1,M) ; // FindkAug∗ is an adapted version of FindkAug
2 aug = Aug+.secondi z;
3 auggain =

⊕
j Aug(:, j) ;

// All if and for statements can be performed for all i at the same time
4 if aug(i) = aug(m(i)) then
5 for i < m(i) do
6 Repeat lines 1 till 3 to find the second-best 1-augmentation starting at vertex i;
7 if m(aug(i)) = aug(m(i)) then
8 for i > m(i) do
9 auggain(i) = auggain(i) +mw(aug(i));

10 Gain2〈M〉 = (auggain+.+ augT
gain) +M ;

11 Gain2+ = GrB.select(Gain2,positive);
12 if Gain2+ empty and for some vertex i: aug(i) = aug(m(i)) then
13 for i > m(i) do
14 Repeat lines 1 till 3 to find the second-best 1-augmentation starting at vertex i;
15 Repeat lines 9 till 15;
16 if Gain2+ not emtpy then
17 Create matrix Aug2;
18 Select highest value in each column of Aug2 and remove others from Aug2;
19 if Row Aug2(i, :) contains four nonzeros then
20 Add i,m(i), aug(i) and aug(m(i)) to the set for flipping;
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(a) Augmentation 3a.

(b) Augmentation 3b.

(c) Augmentation 3c.
(d) Augmentation 3d.

Figure 21: The four augmentations 3.

i j

1-augmentation
starting at i

1-augmentation
starting at j

unmatched
edge

Figure 22: Visualization of the construction of augmentations 3. Each augmentation 3 can be constructed
from two 1-augmentations starting at matched vertices i and j and an unmatched edge (m(i), m(j)). The
red edges correspond to the edges in the 1-augmentation starting at i and the blue edges to the edges in
the 1-augmentation starting at j. Augmentation 3d is not depicted in this figure, but it can be constructed
by letting the two outer matched edges overlap.

2.3 3-augmentations
In this section we describe an idea to treat the 3-augmentations. This method is not described
in full detail. It does however give a good overview of how these augmentations can be treated
knowing how to find 1-augmentations. Similar to the 2-augmentations, the 3-augmentations exist
of 1-augmentations, augmentations 2 and the augmentations with exactly 3 unmatched edges not in
the matching M . The latter ones will be called augmentations 3 and are the ones that are treated
in this section. All augmentations 3 can be seen in Figure 21.

Each augmentation 3 can be seen as two augmentations 1b or 1c connected with an unmatched
edge. This unmatched edge is adjacent to two matched edges belonging to the 1-augmentations
and is the centre edge of an augmentation 3. A visualization of this can be seen in Figure 22.
Matched vertices i and j are both starting vertices of an augmentation 1b or 1c and therefore the
unmatched centre edge of augmentation 3 is equal to (m(i),m(j)). The procedure for finding the
best augmentation 3 centred around each unmatched edge is as follows: first, calculate the best
1-augmentation starting at each vertex. Then, construct an augmentation 3 centred around edge
(m(i),m(j)) with the best 1-augmentations starting at i and j. The total gain of this augmentation
3 is equal to the sum of the gain of the two 1-augmentations and the weight of the unmatched edge
and is by construction the best possible augmentation 3 centred around (m(i),m(j)). The gains of
all augmentations 3 are stored in matrix Gain3 which is defined as:

Gain3(m(i),m(j)) =
{
auggain(i) + auggain(j) +A(m(i),m(j)) if (m(i),m(j)) ∈ E
0 otherwise.
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(a) The three possible categories of conflict 1 where aug(i) = m(j).
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(b) The three possible categories of conflict 2 where aug(i) = j.
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(c) The two possible categories of conflict 3 where aug(i) = aug(j).

Figure 23: All possible conflicts for the augmentations 3. The red edges belong to the 1-augmentation
starting at vertex i and the blue edges to the 1-augmentation starting at vertex j. When there are two
edges between two vertices, this means that this edge is in both the 1-augmentations.

The construction of matrix Gain3 is very similar to that of matrices Gain and Gain2 with the
difference that vector auggain needs to be permuted first such that the value at position m(i) is
equal to auggain(i). Note that a single 1-augmentation starting at vertex i can be in multiple aug-
mentations 3. If there exists a 1-augmentation starting at matched vertex j′ and edge (m(i),m(j′))
exists, there are two augmentations 3 containing the 1-augmentation starting at vertex i. This is
in contrary to augmentations 2, where a single 1-augmentation starting at vertex i could only be
in a single augmentation 2. This observation has consequences for how the conflicts within a single
augmentation 3 can be resolved as will be seen later on.

An augmentation 3 is longer than an augmentation 2, meaning it has more possibilities to
intersect with itself which leads to more conflicts. The conflicts can be divided into three main
categories, each with a number of subcategories. All possible conflicts can be seen in Figure 23. The
red edges belong to the 1-augmentation starting at vertex i and the blue ones to the 1-augmentation
starting at j. Conflict 1 occurs when aug(i) = m(j) and therefore can only happen when the 1-
augmentation starting at vertex i is an augmentation 1c. In conflict 1a, the 1-augmentation starting
at vertex j is an augmentation 1b, whereas in conflict 1b this is an augmentation 1c. Conflict 1c
is a special case of conflict 1b where it also holds that aug(j) = m(i). Conflict 2 occurs when
aug(i) = j. This conflict can only happen when the 1-augmentation starting at vertex i is an
augmentation 1c since j must be matched. In conflict 2a, the 1-augmentation starting at vertex j
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is an augmentation 1b, whereas in conflict 2b this is an augmentation 1c. Conflict 2c is a special
case of conflict 2b where it also holds that aug(j) = i. For conflict 3, aug(i) = aug(j) must hold.
In conflict 3a, aug(i) is unmatched whereas in conflict 3b aug(i) is matched.

To solve the conflicts within a single augmentation, we use a similar approach to the augmenta-
tions 2 algorithm. First, we calculate the best 1-augmentations starting at each vertex. Then, we
check if one of the three conflicts occur. If so, the 1-augmentation with the lowest index is changed
into the second best 1-augmentation and the one with the highest index stays the same. In the
algorithm for augmentations 2, the next step would be to adjust vectors aug and auggain and make
matrix Gain3. This is not possible for these augmentations 3. A single 1-augmentation starting
at vertex i can be in multiple augmentations 3 and we only want to change an augmentation 3
if a conflict occurs. When this is not the case, the augmentation must be kept the same. This
distinction depends on vertex j. To solve this issue, the idea is to first make matrix Gain3 with
the original vector auggain, then adjust auggain as would be done in augmentations 2 and adjust
Gain3 for those centred edges for which a conflict occurs.

To find the centred edges for which a conflict occurs, a mask can be used. This mask is a matrix
which contains a one at position (m(i),m(j)) if one of the three conflicts occurs and zero otherwise.
The next part will give a outline of how this mask can be made and the casualties that occur. This
is explained for the first conflict but can be used for the others. The creating of the mask relies
on the operation aug +.eq mT which gives the position (i, j) for which aug(i) = m(j). Note that
it gives the position (i, j) where we want to know the position (m(i),m(j)). This can be solved
by permuting the obtained matrix. Another important observation is that position (m(j),m(i)) is
not found, as aug(j) 6= m(i) in the general case. However, the augmentation centred around (j, i)
does need to be adjusted since it still gives a conflict. Another problem is that the index of the end
vertex of the augmentation starting at i (aug(i)) depends on vertex j. Therefore, the current way
of storing this information is not sufficient since it currently can store only one value. Fortunately,
all these problems can be solved with a little extra work, meaning the conflicts can be dealt with
relatively easily.

As mentioned all three conflicts can be checked and adjusted for at the same time. However,
after one round of adjustments, it is necessary to check for conflicts again. There are multiple
conflicts that can happen, and therefore it might be that another conflict occurs after adjusting
for the first. This takes at most three adjustments since we can obtain each conflict at most once
per centred edge (m(i),m(j)) if the other 1-augmentation is kept fixed. When no positive-gain
augmentation 3 is found, the same procedure needs to be repeated with the 1-augmentation with
the highest index changed into the second-best 1-augmentation and where the augmentation with
the smallest index stays the same.

Similar to augmentation 2d, the gain of augmentation 3d is not calculated correctly. After
checking for conflicts within a single augmentation, an adjustment can be made for those augmen-
tations. This augmentation occurs when aug(i) = m(aug(j)) holds. This adjustment can be made
in a similar way as the adjustment for the conflicts described above.

Now that matrix Gain3 contains only valid augmentations with the correct gains, a selection
of augmentations 3 has to be made such that no conflicts between multiple augmentations occur.
Of course, only the augmentations 3 with positive gain need to be considered and when there are
no augmentations 3, there exist no augmentations 3 with the current matching M . The selec-
tion can be done in the same way as described in Section 2.2 for augmentations 2. This time, a
matrix is formed with the best augmentations 3 starting at vertex i for all i. This means that
the constructed matrix contains the gain of the best augmentation 3 starting at i at positions
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(i, i), (i, j), (i,m(i)), (i,m(j)), (i, aug(i)) and (i, aug(j)). An augmentation can be added to the flip-
ping phase if after the selection of the columns there are six nonzeros in each row. Special care
needs to be taken for the value of aug(i), since this now depends on j.

The time complexity of the augmentations 3 is O(m + n) and its analysis is similar to that of
augmentations 2. The main components of the algorithms are the same such as first calculating
the best 1-augmentations and combining them to augmentations 3. There are a couple of main
differences. The first is that there are more centred edges since the centre edge is unmatched. This
can result in more edges for which Gain3(m(i),m(j)) needs to be computed. Furthermore, in many
of the stages of the algorithm, a vector needs to be permuted to get the correct solution. Also, there
are more conflicts to take care of, taking at most three rounds of adjustments. Lastly, the selection
matrix to select a set of multiple augmentations 3 contains more nonzeros than the same matrix
for augmentations 2. However, these changes do not influence the time complexity, and therefore
it is still O(m+ n).
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3 Experimental results
The approximation algorithm has been tested on performance in terms of runtime and quality of
the obtained matching. A distinction has been made between the results of the 1-augmentations
algorithm and the 2-augmentations algorithm. The graphs used for testing are obtained from the
SuiteSparse collection [9] and their properties are shown in Table 4. If the adjacency matrix of the
graph was nonsymmetric, the lower trianguler part of the matrix was used in the calculations. All
used matrices have positive explicit values.

All experiments were run on the same computer with an Intel(R) Core(TM) i7-10750H processor
at 2.60GHz using 16 GM of RAM, running Windows 10. We used MATLAB version R2020b using
the MATLAB interface of SuiteSparse:GraphBLAS version 4.0.3 [8].

To test the quality of the matching, we define the gap to optimality. This gap indicates the
difference between the weight of the maximum matching and the weight of the approximation and
is defined as (

1− w(M)
w(M∗)

)
· 100.

Calculating this gap can give problems since computing the exact optimal matching can become
very time-consuming when the graphs get bigger. However, if we want to show that our algorithm
obtains a 1/2- or 2/3-approximation, we need to know the exact maximum matching M∗. For this
reason, a few smaller graphs have been added for which the optimal solution could be computed in
reasonable time using [39]. For these graphs, the exact gap to optimality can be computed. For the
other test graphs, the following upper bound [5] can be used to estimate the weight of the maximum
matching:

w(M∗) ≤ 1
2
∑
i∈V

max{w(i, j) : j ∈ V and (i, j) ∈ E}.

If this upper bound is used in the gap to optimality to replace the maximum weight, the estimated
gap to optimality will be an upper bound of the exact gap to optimality. This means that if the
estimated gap implies a 1/2-approximation, the algorithm is indeed a 1/2-approximation. However,
if it does not, this does not mean the algorithm fails automatically since the estimated gap to
optimality might be too pessimistic. Despite this detail, it can be used to say something about
the difference in quality between the different matchings obtained from the 1-augmentations and
2-augmentations algorithm.

3.1 1-augmentations
In this section we discuss the results obtained from the algorithms for 1-augmentations. The main
results can be seen in Tables 5 and 6. We tested a few different setups. Both searching method
approach 1 and searching method approach 2 were tested. Since both methods give the same
matching, the gap to optimality is only mentioned once. The main advantage of approach 2 is the
ability to extend the set of augmentations used in the flipping phase in a single main iteration.
Therefore, we included the results of approach 2 where some additional selection iterations were
performed in each main iteration. If it was possible to extend the set of augmentations with the
available augmentations, additional selection iterations were performed, up to a total of two, five or
ten selection iterations. These methods are denoted as approach 2-2, approach 2-5 and approach
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Matrix name Number
of vertices

Number
of edges

Description

orsirr 2 886 2542 Computational Fluid Dynamics Problem
saylr4 3564 9376 Computation Fluid Dynamics Problem
Binaryalphadigs 10NN 1404 9696 Undirected Weighted Graph
G22 2000 19990 Undirected Random Graph
MISKnowledgeMap 2427 28511 Undirected Weighted Graph
cond-mat 16726 47594 Undirected Weighted Graph
foldoc 13356 59693 Directed Weighted Graph
hi2010 25016 62063 Undirected Weighted Graph
har 10NN 10299 75868 Undirected Weighted Graph
astro-ph 16706 121251 Undirected Weighted Graph
sd2010 88360 205361 Undirected Weighted Graph
cage11 39082 260320 Directed Weighted Graph
appu 14000 919552 Directed Weighted Random Graph
kron g500-logn16 65536 2456071 Undirected Multigraph
gupta3 16783 4653322 Optimization Problem

Table 4: The used test matrices sorted by the number of edges. All are obtained from the SuiteSparse
collection [9].

2-10 respectively. In the next two sections, the runtime and the quality of the matching and its
behaviour in time are discussed in more detail.

Quality of the matching

In this section we discuss the quality of the matching after performing the algorithm for 1-
augmentations. First, we start with the analysis of the results of the graphs for which an exact
gap to optimality could be calculated. Table 6a shows these gaps to optimality for five relatively
small graphs. All five gaps are less than 50% and therefore the found matchings are indeed 1/2-
approximations as should be by design of the algorithm. Notable is that all gaps are quite small.
The quality of the matchings is therefore much higher than the guaranteed lower bound. The
matching of graph saylr4 is of very high quality, having a gap of 0.0007733 after just finding and
flipping all positive-gain 1-augmentations. The graph MISKnowledgeMap has the lowest quality
matching, having a gap to optimality of 6.1457. Still this is far better than the guaranteed upper
bound of 50%.

Next, we discuss the results of table 6b which shows the estimated gaps to optimality of ten
bigger graphs. These numbers are higher than the exact gaps to optimality. Notable is the gap
belonging to graph kron g500-logn16. This gap is 66.7609 which is higher than the upper bound of
50 which would have been expected if the exact gap to optimality was used. However, since this
gap is an estimated gap, this does not automatically mean that the algorithm fails. The estimated
gap is an upper bound of the exact gap and therefore, the exact gap to optimality might be lower
than 50. This cannot be said with certainty until the exact matching is calculated. Due to the
same reasoning, it cannot be said that the quality of the matchings in this set of graphs is worse
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app 1 app 2 app 2-2 app 2-5 app 2-10

Matrix It Time It Time It Time It Time It Time
orsirr 2 9 0.1468 9 0.1482 5 0.0806 3 0.0508 2 0.0378
saylr4 17 0.6112 17 0.6055 9 0.3239 4 0.1628 3 0.1315
Binaryalpha
digs 10NN 7 0.1365 7 0.1236 4 0.0726 2 0.0406 2 0.0417
G22 29 0.5604 29 0.5668 15 0.3102 6 0.1623 4 0.1332
MISKnow-
ledgeMap 10 0.2491 10 0.2418 6 0.1514 3 0.0917 2 0.0739
cond-mat 9 4.7242 9 4.6321 5 2.6448 3 1.6693 2 1.1442
foldoc 1062 405.6532 1062 415.2144 532 197.2991 178 70.2070 98 42.2087
hi2010 10 12.0129 10 12.0537 5 5.9528 3 3.6447 2 2.4695
har 10NN 8 1.9259 8 2.0382 5 1.2349 3 0.7739 2 0.5379
astro-ph 24 13.3852 24 12.7739 13 6.9778 5 2.8309 4 2.3410
sd2010 11 157.7922 11 163.5784 6 87.2879 3 45.3147 2 29.2746
cage11 17 49.0224 17 48.9057 9 26.0803 4 11.9939 3 8.8428
appu 14 7.4022 14 6.9004 8 4.1419 4 2.5826 3 2.1618
kron g500-
logn16 39 270.9712 39 279.5976 20 143.4536 7 52.7207 5 39.0580
gupta3 164 135.4841 164 148.7698 82 93.9225 28 58.6497 16 51.0913

Table 5: Runtimes of the 1-augmentation algorithms on all fifteen graphs. The time is measured in seconds,
and it represents the number of main iterations used in the algorithm. App 1 and app 2 represent searching
methods approach 1 and 2 respectively. App 2-2, app 2-5 and app 2-10 represent the methods where
searching methods approach 2 is used with 2, 5 or 10 iterations of selecting 1-augmentations.

Matrix %
orsirr 2 0.0254000
saylr4 0.0007733
Binaryalphadigs 10NN 1.3617000
G22 3.1000000
MISKnowledgeMap 6.1457000

(a) The exact gap to optimality of 10 graphs.

Matrix %
cond-mat 23.8647
foldoc 6.9908
hi2010 26.2439
har 10NN 10.3633
astro-ph 23.4335
sd2010 21.1847
cage11 1.8381
appu 16.9548
kron g500-logn16 66.7609
gupta3 1.2691

(b) The estimated gap to optimality of 10 graphs.

Table 6: Test results of the gap to optimality. The % column contains the exact gap to optimality (Table
6a) and the estimated gap to optimality (Table 6b).
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than the quality of the matchings in the first set. The exact matching should be calculated to say
something about this.

We described the results of quality of the matching at the end of the algorithm. Since the
algorithm makes a new matching each main iteration, it can be interesting to see what happens
with the gap to optimality after each iteration. Therefore, the gap to optimality was calculated
after each main iteration. These results can be seen in Figure 24. For the five small graphs, the
exact gap to optimality is used. For the 10 bigger graphs this is the estimated gap to optimality.

A number of observations can be made. The first is that the first gap to optimality differs for
each matrix. There are test matrices where approach 2 without extra selection iterations achieves a
gap of less than 40%. Examples of these matrices are orsirr 2, Binaryalphadigs 10NN and cage 11.
There are also graphs for which the matching after the first main iteration is of very poor quality.
Examples are sarylr4 and G22. The matchings for foldoc, kron g500-logn16 and gupta3 also have
very high estimated gaps after the first iteration. These gaps might be smaller in practice since
they are upper bounds. The second observation involves the rate of convergence. Some graphs
approach the final gap very closely after a few iterations whereafter the gap only decreases very
little for the remaining iterations. Examples are appu, cage 11 and astro-ph. This in contrary to
matrices foldoc and G22 for which the gap decreases steadily as the number of iterations increases.
The third category consist of matrices gupta3 and kron g500-logn16. These matrices need a few
iterations before the gap starts to decrease fast. The difference in rate of converges between the
three used methods depends on the rate of convergence of approach 2. When the decrease of the
gap using approach 2 in the first iterations is small, approach 2-2 and approach 2-5 will start with
a higher start gap than when the decrease of the gap using approach 2 is larger. This is expected
since approach 2-2 gives the same result as two main iterations and 2-5 as five main iterations. The
differences between the matrices were expected since the performance of the algorithm depends
heavily on the structure of the graphs and the weights of the edges. Since each matrix has its own
structure, it is likely that the behaviour is different.

Runtime

In this section we discuss the runtime of the two different approaches and their variants shown in
Table 5. First, we discuss the runtimes of the different methods for the same test matrix whereafter
we say something about the difference in runtime between multiple test matrices.

We start with noting that the difference between approach 1 and approach 2 without selection
is very small. Both methods always use the same number of iterations and the runtime is very
similar. In most test matrices, the runtime only differs 1%. This is very plausible since the two
methods use the same kind of operations. When comparing approach 2 without extra selection and
approach 2 with extra selection, a larger difference can be observed. For almost every test matrix,
the runtime and the number of main iterations decrease by a factor between 1.5 and 2.5 as the
number of selection iterations increases. For some test matrices, this decrease is less dramatic. For
example graph Binaryalphadigs 10NN shows no improvement from approach 2-5 to approach 2-10.
An explanation is that the maximum number of selection iterations needed is already achieved
in approach 2-5. Therefore, method 2-5 and approach 2-10 are the same. This explanation is
strengthened by the observation that both methods use two main iterations. In the first iteration,
all positive-gain augmentations are found and flipped. In the second main iteration, the Gain
matrix is calculated again and is found empty and therefore the algorithm terminates after two
iterations. This means that only one flipping phase has happened implying the maximal number
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Figure 24: The gap to optimality after each main iteration for the methods approach 2, approach 2-2 and
approach 2-5. For the five matrices in the left column, this is the exact gap to optimality. For the other
ten matrices this is the estimated gap to optimality. The gap to optimality is given as a percentage.
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of selection iterations is achieved in approach 2-5. For test matrices as gupta3, astro-ph and appu,
the difference between 2-5 and 2-10 is also less than the 1.5 time speed up. In these matrices, the
decrease of main iterations is less than half times the time of approach 2-5.

To investigate the dependence of the runtime on the number of selection iterations, we performed
a second experiment. The number of selection iterations was set to the number of vertices, which
is an upper bound for the maximum number of selection iterations that can be performed within a
single main iteration. When the maximum number is reached, i.e., there are no more edges that can
be added, the main iteration stops. To keep the experiments the same and make them comparable,
an additional iteration was done to check if matrix Gain is indeed empty. This method was called
approach 2-max. Table 7 shows the runtime of this experiment. It also shows the maximum
number of selection iterations needed. When comparing the results from this table with Table 5,
two observations can be made. The first is that the number of selection iterations in this experiment
and the number of main iterations in approach 2 in the previous experiment are the same. The
second is that the runtimes of this experiment are faster or the same in comparison with approach
2-10. For some matrices, the decrease in runtime is large (matrix foldoc and kron g500-logn16)
whereas for others it is not. The two mentioned matrices needed more than 10 main iterations
in approach 2-10, meaning a lot of time could be saved. For many other matrices, the number
of main iterations was already low. These results prove the hypothesis that performing a single
main iteration with a maximum number of selection iterations is faster than performing the main
iteration multiple times with or without a fixed number of selection iterations when only considering
1-augmentations of type 1a.

Matrix name Iterations Runtime
orsirr 2 9 0.0348
saylr4 17 0.1063
Binaryalphadigs 10NN 7 0.0374
G22 29 0.0992
MISKnowledgeMap 10 0.0608
cond-mat 9 1.1281
foldoc 1062 9.5462
hi2010 10 2.4992
har 10NN 8 0.5671
astro-ph 24 1.3586
sd2010 11 29.3817
cage11 17 6.1640
appu 14 1.7680
kron g500-logn16 39 20.0479
gupta3 164 47.0488

Table 7: Results of method approach 2-max. The number of iterations represents the maximum number of
selection iterations needed. The runtime is in seconds.

Another interesting question about the runtime is how it relates to the size of the test matrices.
This question is harder to analyse, since it depends on the number of edges, the number of vertices
and the structure of the graph. Additional to this, the algorithm needs a different number of
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iterations for each test matrix. This make comparing multiple graphs with each other difficult. To
make an attempt to analyse it, we calculated the average runtime per iteration. Table 8 shows
these average runtimes for each method, where the matrices are sorted by the number of vertices.
The average runtime increases as the number of vertices increases for almost all methods and all
test matrices implying that the number of vertices has a major influence on the average runtime.
An increase in the number of vertices means almost always a higher average runtime per iteration
despite the number of edges. This statement is strengthened by comparing matrix foldoc with
hi2010. These matrices have almost the same number of edges but a different number of vertices,
59693 and 62063 edges vs 13356 and 25016 vertices respectively. When comparing the average
runtime per iteration, hi2010 has an average runtime of around 3 times the average runtime of
foldoc whereas the number of vertices has increased by a factor 1.5. The same holds for matrices
cage11 and sd2010. The difference in vertices is around a factor 2.2, but the difference in average
runtime is a factor 5. For small matrices Binaryalphadigs 10NN and saylr4 this difference is less.
Again, both matrices have almost the same number of edges and the number of vertices of saylr4
are 2.5 times the number of vertices of Binaryalphadigs 10NN. The difference in average runtime is
a factor 2.

The number of edges seems to be of less importance. Sorting Table 8 by the number of edges
does not show any direct relationship between the test matrices. To see strengthen this further,
consider matrices cond-mat en astro-ph. These matrices have a very similar number of vertices:
16726 vs 16706. The number of edges differs more: 47594 vs 121251. The runtime for cond-mat is
slightly less for all methods, but they are very close to each other. A similar observation can be
made when comparing foldoc and appu. The number of vertices is 13356 and 14000 respectively,
whereas the number of edges is equal to 59693 and 919552 respectively. The runtime of appu is at
most 2 times the runtime of foldoc whereas for the number of edges this is 15 times. These results
suggest that the runtime increases as the number of edges is increased and the number of vertices
is kept fixed. However, this effect is less dramatic than when the number of vertices is increased.

The above analysis indicates that the number of vertices plays an important role in the runtime
of the algorithm. To get a better idea of how the runtime depends on the number of edges and
vertices, additional experiments should be done with graphs that have a similar structure or have
the same number of vertices and a different number of edges or vice versa.
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Matrix app 1 app 2 app 2-2 app 2-5 app 2-10
orsirr 2 0.0163 0.0165 0.0161 0.0169 0.0189
Binaryalpha-digs 10NN 0.0195 0.0177 0.0182 0.0203 0.0209
G22 0.0193 0.0195 0.0207 0.0271 0.0333
MISKnow-ledgeMap 0.0249 0.0242 0.0252 0.0306 0.0370
saylr4 0.0360 0.0356 0.0360 0.0407 0.0438
har 10NN 0.2407 0.2548 0.2470 0.2580 0.2690
foldoc 0.3820 0.3910 0.3709 0.3944 0.4307
appu 0.5287 0.4929 0.5177 0.6457 0.7206
astro-ph 0.5577 0.5322 0.5368 0.5662 0.5853
cond-mat 0.5249 0.5147 0.5290 0.5564 0.5721
gupta3 0.8261 0.9071 1.1454 2.0946 3.1932
hi2010 1.2013 1.2054 1.1906 1.2147 1.2348
cage11 2.8837 2.8768 2.8978 2.9985 2.9476
kron g500-logn16 6.9480 7.1692 7.1727 7.5315 7.8116
sd2010 14.3447 14.8708 14.5480 15.1049 14.6373
Normalized geometric mean 1.00 1.01 1.03 1.16 1.25

Table 8: Average runtime of all methods applied to the test matrices where the matrices are sorted by
number of vertices. The bottom line summarizes the results of each column as a normalized geometric
mean.

3.2 2-augmentations
In this section we discuss the results of the algorithm for 2-augmentations. We investigated four
setups. In the first, we start with a maximal matching obtained with searching approach 2 using the
maximum number of selection iterations needed. After this step, the algorithms for 1-augmentations
without additional selection and augmentations 2 are alternated. The difference between setup
1, setup 2 and setup 3 is that for setup 2 the normal 1-augmentation algorithm is replaced by
approach 2-2 and for setup 3 that the normal 1-augmentation algorithm is replaced by approach 2-
max. In the fourth setup, searching approach 2 without selection is alternated with augmentations
2 directly, meaning it does not start with a head start. A single iteration contains both a search for
1-augmentations and a search for augmentations 2. The results can be found in Tables 9 and 10.

Quality of the matching

In this section we discuss the quality of the matchings of the four setups found in table 9. The first
thing to notice is that almost all gaps are bounded from above by 33%, implying the algorithm
is indeed a 2/3-approximation. The only exception is again kron g500-logn16 with an estimated
gap to optimality of 64.1061 and 64.3815. This graph was also an outlier in the algorithm for
1-augmentations. Again, it could be that this estimated gap is too pessimistic and that the actual
gap is less than 33%, but this has to be checked by computing the exact solution. Secondly, the
gaps to optimality for setup 1, 2 and 3 are all the same. There is no difference between these setups.
The gap to optimality of setup 4 does differ from the other setups. For most test matrices, the gap
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Matrix setup1 setup2 setup3 setup4
orsirr 2 0.0123 0.0123 0.0123 0.0016
saylr4 0.0005 0.0005 0.0005 5.0729
Binaryalphadigs 10NN 0.3964 0.3964 0.3964 0.5922
G22 0.4000 0.4000 0.4000 0.3000
MISKnowledgeMap 2.1134 2.1134 2.1134 2.6510
cond-mat 22.9142 22.9142 22.9142 23.0433
foldoc 6.2962 6.2962 6.2962 6.5663
hi2010 23.8503 23.8503 23.8503 24.1537
har 10NN 8.9824 8.9824 8.9824 9.1869
astro-ph 22.1311 22.1311 22.1311 22.2450
sd2010 18.1422 18.1422 18.1422 18.3245
cage11 1.5875 1.5875 1.5875 1.8666
appu 16.0739 16.0739 16.0739 17.4218
kron g500-logn16 64.1061 64.1061 64.1061 64.3815
gupta3 0.6971 0.6971 0.6971 0.7091

Table 9: The gap to optimality when the algorithm is finished for four different setups. The gaps of the
first 5 matrices are exact, the others are estimated.

setup1 setup2 setup3 setup4

Matrix It Time It Time It Time It Time
orsirr 2 5 0.2933 5 0.2968 5 0.2960 7 0.3780
saylr4 2 0.2958 2 0.2836 2 0.2808 7 0.7719
Binaryalphadigs 10NN 6 0.4072 6 0.4132 6 0.4101 11 0.7202
G22 5 0.4640 5 0.4402 5 0.4397 15 0.9925
MISKnowledgeMap 8 0.6947 8 0.6417 8 0.6468 13 0.9642
cond-mat 5 6.7992 5 6.8848 5 6.7530 7 9.0253
foldoc 4 14.5512 4 14.2818 4 14.1753 21 22.4479
hi2010 8 29.4262 8 29.2034 8 29.6515 11 39.2547
har 10NN 12 9.3207 12 9.3800 12 9.7724 18 14.3847
astro-ph 5 7.8531 5 8.4249 5 8.0560 13 18.9385
sd2010 10 462.3908 10 464.6600 10 467.6958 15 684.3732
cage11 4 36.7353 4 36.1937 4 37.4641 13 119.9034
appu 21 34.4274 21 34.0722 21 33.9948 22 34.4894
kron g500-logn16 6 118.5570 6 117.1152 6 119.3278 15 249.9642
gupta3 24 102.6813 24 101.4183 24 102.0405 103 247.9074

Table 10: The runtimes in seconds and the number of iterations of the four different setups for the 15 test
matrices.
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belonging to setup 4 is higher than the gap belonging to the other setups. The only two exceptions
are orsirr 2 and G22. The difference between the setup 4 and the others seems not very large.
Only for the five small test matrices and cage11, this difference is a little larger. The difference for
matrix saylr4 is the most remarkable. Setup 4 obtains a gap to optimality of 5.0729% whereas the
gap of the other setups is 0.0005%. The gap to optimality of setup 4 is even larger than the gap to
optimality after just performing all 1-augmentations. This behaviour can be expected. Since setup
4 does not start with a maximal matching obtained via the 1-augmentations, it is more likely to
end with a different final matching. This matching can be better or worse than the matching found
with the algorithm for 1-augmentations or setup 1,2 or 3. The only thing that can be said about
the matching is that it obtains a gap of at most 33%. There are more test matrices for which the
matching of setup 4 obtains a larger gap to optimality than the 1-augmentations algorithm. These
matrices are cage11 and appu. The difference between the lowest estimated gap to optimality of
the 2-augmentations and the 1-augmentation is not very large. The highest difference is achieved
for matrix gupta3, which has decreased its gap by a factor 0.5. For the other matrices, this factor
lies between 0.97 and 0.86. For the exact gaps to optimality, this difference is larger. Matrix
orsirr 2 improves its gap by a factor 0.06 and the others improve by a factor between 0.1 and 0.59.
An explanation for these low improvements could be that the gaps to optimality obtained by the
1-augmentations algorithm are already quite low. Therefore, decreasing the gap is more difficult to
achieve.

Runtime

In this section, we discuss the results of the runtime of the algorithm for 2-augmentations as
shown in Table 10. The most important observation is that setup 4 is always slower than the
other setups, up to three times. The number of iterations is also higher, up to 5 times. Setup
1, 2 and 3 perform again very alike. The number of iterations for these methods is the same
as is the runtime. An explanation for this is that after flipping augmentations 2 only a limited
number of edges become unmatched and available for 1-augmentations again. Therefore, the number
of positive-gain 1-augmentations after performing a round of augmentations 2 is not as high as
the number of positive-gain 1-augmentations starting with an empty matching. Therefore, there
probably will be fewer positive-gain 1-augmentations starting at the same vertex and therefore fewer
conflicts with other 1-augmentations occur. Therefore, an additional selection iteration has less
effect. Another explanation is that after flipping the augmentations 2, there are still no positive-gain
1-augmentations and a new round of augmentations 2 is performed. In the current implementation,
no extra selection iteration is added for the augmentations 2. In future work, this could be added
and the influence of this extra selection could be investigated.
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4 Conclusion
In this thesis, we presented an approximation algorithm for the maximum weight matching problem
for general graphs. In each iteration of the algorithm, the algorithm searches for positive-gain k-
augmentations and flips them. With the use of an approximation lemma, a lower bound of k

k+1
times the maximum weight can be guaranteed if no positive-gain k-augmentations exist. In this
thesis, we provided searching methods for k equal to 1, 2 and 3 as well as a general description
of how to perform these augmentations. For k = 1 we even provided two different approaches
and a method to detect if a positive-gain 1-augmentation exists. This all means that theoretically,
we obtained a 3/4-approximation algorithm. The algorithm is developed in GraphBLAS, meaning
it is completely built with matrix operations. Each iteration of searching for augmentations and
flipping them can be done in linear time depending on the size of the graph. This suggests that
the algorithm can be fast, although the overall number of iterations depends on the graph and is
not known beforehand. Additionally, we provided a brief description of how the Suitor idea can be
implemented in terms of GraphBLAS.

We implemented the algorithm for k = 1 and k = 2. For this we used the Matlab interface
of the SuiteSparse implementation [8] of GraphBLAS. With this implementation we checked the
quality of the obtained matching and the runtime of the algorithm for both k = 1 and k = 2.

The obtained matchings were compared with the maximum weight if this matching could be
computed in reasonable time. If not, an upper bound of the maximum weight was used. For both
k = 1 and k = 2, the algorithm achieved the expected quality when comparing them with the exact
maximum weight. For the estimated maximum weight, there was one matrix that did not achieve
the required quality. Since the estimated maximum weight is an upper bound of the exact maximum
weight, it cannot be concluded that the algorithm fails. To ensure this, the exact matching must
be determined. For all other test matrices, the matchings were of sufficient quality. In most cases,
the quality was far better than the guaranteed lower bound.

We compared the runtime and number of iterations needed for a different number of setups.
The result was that for k = 1, the algorithm with a maximal number of selection iterations was the
fastest. Setting the number of selection iterations to maximal means losing the linear runtime of
each main iteration. However, the results showed that even when the number of selection iterations
is not maximal, it is beneficial to perform a number of them. Therefore, performing a fixed number
of these selection iterations decreases the runtime and keeps the linear runtime. For k = 2 it
was fastest to start with a maximal matching obtained by running the algorithm for k = 1 until
no positive-gain augmentations are found. Then switch between the algorithm for k = 1 and the
searching method for augmentation 2. Both the runtime as the number of main iterations was lower
in these cases in comparison to not starting with a maximal matching.

To conclude, our algorithm achieves our goal to develop an 2/3-approximation algorithm for
the maximum weight matching problem in GraphBLAS. Theoretically, we even obtained a 3/4-
approximation. Theoretically, each iteration has linear time complexity, which also fulfils the goal
to find an algorithm that performs in reasonable time.
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4.1 Future work
Although the algorithm fulfils our goals, more work remains to be done. The algorithm has been
developed in GraphBLAS such that it can easily be parallelized. This has not been tested and it
is interesting to see if it indeed performs well if used with multiple processors. Furthermore, the
algorithm is not implemented for k = 3. This could be added in further work. The same holds for
better selection methods for augmentations 2 and 3.

Furthermore, more experiments could be done to investigate the runtime of each iteration and
the influence of the number of vertices and edges and the structure of the graph on it. Now, it was
hard to investigate the claim of linear runtime since the test matrices all had different structures
and different sizes.

Lastly, in this thesis, we focussed on the development of a single main iteration. Questions as:
how many of them are needed? or: what order is best to use when repeating augmentations 2 and
1-augmentations in the algorithm for k = 2? are not investigated theoretically. This could be of
interest. It might be that some smart order of alternating the augmentations 2 and 1-augmentations
exists to achieve a faster runtime.
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GraphBLAS API for C. In 2017 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW), pages 643–652. IEEE, 2017.

[8] Timothy Davis. Algorithm 1000: SuiteSparse:GraphBLAS: Graph algorithms in the language
of sparse linear algebra. ACM Transactions on Mathematical Software, 45:1–25, 2019. See
http://suitesparse.com.

[9] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw., 38(1), dec 2011.

[10] Doratha E. Drake and Stefan Hougardy. Improved linear time approximation algorithms for
weighted matchings. In Approximation, Randomization, and Combinatorial Optimization..
Algorithms and Techniques, pages 14–23, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[11] Doratha E. Drake and Stefan Hougardy. Linear time local improvements for weighted match-
ings in graphs. In Experimental and Efficient Algorithms, pages 107–119, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

[12] Doratha E. Drake and Stefan Hougardy. A simple approximation algorithm for the weighted
matching problem. Information Processing Letters, 85(4):211–213, 2003.

[13] Ran Duan and Seth Pettie. Approximating maximum weight matching in near-linear time.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 673–682.
IEEE, 2010.

49

http://suitesparse.com


[14] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. Journal
of the ACM, 61(1):1–23, 2014.

[15] Iain S Duff and Jacko Koster. On algorithms for permuting large entries to the diagonal of a
sparse matrix. SIAM Journal on Matrix Analysis and Applications, 22(4):973–996, 2001.

[16] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[17] Harold N. Gabow. Data structures for weighted matching and extensions to b-matching and
f -factors. ACM Transactions on Algorithms (TALG), 14(3):1–80, 2018.

[18] Jonathan S Golan. Semirings and their Applications. Springer Science & Business Media,
2013.

[19] Sven Hanke and Stefan Hougardy. New approximation algorithms for the weighted matching
problem. Research report 101010, Research Institute for Discrete Mathematics, University of
Bonn, 2010.

[20] Frank Harary. Graph theory. Addison-Wesley Publishing Company, 1969.

[21] Jaap-Henk Hoepman. Simple distributed weighted matchings. ArXiv, cs.DC/0410047, 2004.

[22] Jeremy Kepner, Peter Aaltonen, David Bader, Aydın Buluç, Franz Franchetti, John Gilbert,
Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke, et al. Mathemat-
ical foundations of the GraphBLAS. In 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–9. IEEE, 2016.
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[40] Edgar Solomonik, Aydın Buluç, and James Demmel. Minimizing communication in all-pairs
shortest paths. In 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing, pages 548–559. IEEE, 2013.
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