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Abstract

In recent years, Human Pose Estimation (HPE) algorithms have become increasingly well-
performing in localizing the joint locations of humans from images. Besides benefitting from the
fast-paced innovations in the field of deep-learning, these models benefit from large-scale manually
labeled HPE datasets. These datasets, however, consist mostly of annotations for adult people,
whilst underrepresenting children. As children go through a considerable change in body structure
throughout puberty, there are several distinct anatomical differences between prepubescent children
and adults. This provides reason to believe there to be a performance regression when State Of
The Art HPE models are tested on children.

We experimentally demonstrate that modern pose estimators indeed struggle comparatively
more with estimating child poses than the poses of adults. We furthermore finetune a benchmark
HPE model on child data to verify if this performance difference is due to data limitation or
due to model limitations. This is done using a newly collected child-specific dataset that we dub
Kinetikids-pose. This experiment, however, did not culminate in a conclusive result.

Kinetikids-pose is compiled from photos and video frames of children performing sporting ac-
tivities. It is to our knowledge the first monocular child HPE dataset that is publicly available.
We also present and share two filtered subsets of the COCO validation split: COCO Adult and
COCO Child. These are, as the names suggest, subsets filtered to contain either solely adults or
solely children.
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Chapter 1

Introduction

1.1 Motivation

In current times, deep learning models are becoming increasingly more capable of understanding
the world around us. Computer vision models can detect and locate thousands of different objects
in images [76] and natural language models are becoming increasingly performant in condensing
internet-scale information into their neurons [7]

Another field where deep learning models are extensively used, HPE, has not yet achieved the
same level of success. An HPE model attempts to localize specific human joints from image data,
to construct a digital representation of the pose of a subject. Currently, even the best-performing
HPE models are not yet performant enough for many practical applications [18]. We suspect this
to be especially true for applications that revolve around children, which are underrepresented in
most datasets these models are trained on [83].

Where there are many large and varied datasets for visual objects or text, such datasets are less
prevalent for HPE. Moreover, through the way these datasets are constructed, the data is often
collected with a focus on adult activities, causing samples of children to be underrepresented. We
suggest this makes it difficult to train models on them that generalize well to children.

This thesis aims to understand the effects of the biases in these datasets regarding their gener-
alization on children. We also introduce a new dataset called Kinetikids, which we construct to test
our hypotheses. We show the performance of current State Of The Art (SOTA) pose estimation
models on this dataset, both with and without finetuning on it.

1.2 Pose Estimation

HPE is the study of estimating the location of skeletal keypoints of a person in an image or video.
The derived pose can be used in a multitude of applications, such as to animate a digital character
[18]. The estimations can also be used as part of a larger pipeline, such as for action recognition
[91]. On children, applications include behavioral studies and early identification of autism [77, 65]
or cerebral palsy [36].

The focus of this thesis will be on HPE via monocular images, such as standard photographs
or videos. Using specialized hardware, it is also possible to perform HPE on binocolar [68], or
RGB-Depth (RGB-D) [36] images. This can provide useful additional 3D information, but relies
on said specialized hardware.

1.3 Children are not miniature adults

HPE algorithms require some form of internal understanding of the human anatomy to work.
In certain cases this is explicitly implemented as part of the algorithm [27, 48], but often this
understanding is implicitly learned [89, 88, 57]. Because most research into pose estimation is
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1.4. THESIS GOALS

carried out with datasets consisting of mostly adults, these algorithms mainly learned to understand
the anatomy of said adults. This knowledge, however, is not directly transferrable to the anatomy
of children.

Children are not just smaller versions of human adults, as human bodily proportions continu-
ously change from infancy to adulthood [38]. As visualized in Figure 1.1a and Figure 1.1b, infant
bodies have relatively large head and trunk sizes compared to their small neck and legs. More
specifically: the head of the average infant is about one-fourth of its total size, whereas that of an
adult is about one-seventh of its size [83]. Meanwhile, the proportion that the neck and head take
up combined only decreases marginally. They combine to be just over one-fourth for a newborn,
whereas the head and neck of an adult take up just one-fifth of their body, proportionally. Lastly,
the upper limbs of infants are longer than their lower limbs; this is the opposite in adults.

These differences in structure make it so that one cannot take the posture of a child as equivalent
to that of a miniature adult. Models with internal knowledge about human anatomy thus need to
adapt to this difference.

PRENATAL AGE IN WEEKS POSTNATAL AGE IN YEARS
(BOTH SEXES) (MALES)

25 YR HEAD AND NECK LENGTHEZN TRUNK LENGTHLC D  LEG LENGTHZZ

(a) Schematic drawings of the human anatomy (b) Chart graphing the proportions of head and neck,

throughout its development. trunk and leg lengths throughout a human’s devel-

opment

Figure 1.1: Visualization of changes in bodily proportions from infant to adult. From “An Overview
of Anatomical Considerations of Infants and Children in the Adult World of Automobile Safety
Design”[38]

1.4 Thesis Goals

This thesis will explore the effect of the adult biases in current datasets on the generalizability of
HPE models on children. By developing a novel child-centered pose estimation dataset, the effect
of these biases in existing datasets can be exposed. This dataset also enables further research into
HPE on children.

The contents of this thesis are built around the following research question:

“Is the performance of current SOTA pose estimation on children limited by the adult-
biases of the datasets that they are trained on?”

To answer this main research question, the following sub-research questions are composed:

RQ 1. Is there a difference in performance between pose estimation on children when com-
pared to adults?

We know that there are a) anatomical differences between adults and children, that b) children
are underrepresented in current HPE datasets, and that ¢) machine learning models are less perfor-
mant on out-of-domain data. We thus hypothesize that there is indeed a performance degradation
when these models are applied to child subjects.
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1.5. THESIS CONTRIBUTION

It stands to reason that some approaches are more robust to anatomical changes than others.
We thus also test if some approaches in pose estimation suffer a larger performance degradation
than others.

RQ 2. Do SOTA models improve their accuracy on children when trained with a child-
specific dataset?

Using part of a dataset to train an HPE model would logically yield an increase in accuracy on
that dataset. We will thus examine if training on child data from one dataset also increases the
accuracy on children from other datasets.

1.5 Thesis Contribution

color=orange, author=Vincent Brouwers (dev comment)|TODO: Make sure the contributions tie
in with the research questions. While there are earlier attempts at creating child-focussed datasets
for pose estimation [83], none are sufficiently large to be compared with large-scale datasets such
as J-HMDB [42] or MPII [3]. Other attempts also focus on pose estimation in one specific domain,
using depth cameras [35, 36]. To our knowledge, ours is the first public HPE dataset with a focus
on children.

This thesis contributes to the academic community:

e A new, publicly available, monocular joint-annotated video dataset of expressive children.

« An extensive evaluation of adult bias in current HPE datasets.

1.6 Outline

This thesis will continue by addressing and discussing techniques and theories related to this project
in Chapter 2. Chapter 3 then explains the methodology of our approach in detail. The results
of this method will be described in Chapter 4, which will be further discussed and analyzed in
Chapter 5. Closing the thesis, Chapter 6 states out conclusions to the stated research questions.
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Chapter 2

Related Works

This chapter will introduce and explain previous works related to this thesis. The first section
(2.1) will introduce the various methods and approaches of 2D pose estimation. Following this, the
second section (2.3) lists and summarizes current HPE datasets. Finally, the third section (2.4)
looks into previous works on HPE on children.

2.1 Overview of Pose Estimation

Human Pose Estimation is the study of localizing joint and pose information from images or video.
For the rest of this thesis, it will specifically refer to 2D localization via monocular images. To
estimate the joint positions of a human, a model needs to output the correct coordinates for each
joint on an image. As demonstrated in Figure 2.1, these estimated “Point of Intersets (POls)”
can be connected to form a skeleton representation of the limbs of the subject. This process of
localizing POls is also called “keypoint detection”, and is an important aspect of various other
subfields of computer vision. such as face recognition [84, 1] or camera stabilization[47].

Figure 2.1: Example of how pose estimation applied to multiple athletes in an image. mage and
annotations extracted from PoseTrack [4].

2.1.1 Localizing Keypoints

An intuitive approach for estimating the keypoint coordinates would be to use a regressive model
to predict them directly from the image data. This method was used for in earlier attempts at
for pose estimation with Neural Network (NN) [89, 64], but got surpassed as SOTA by a more
performant heatmap-based approaches [63, 19, 64]. More recently, the regressive approaches are
making a comeback with the introduction of the SoftArgMax function [59] and the similar DSNT
layer [67]. We discuss these three classes of approach in the subsequent paragraphs, see Figure 2.2
for a summarized graphical explanation.
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2.1. OVERVIEW OF POSE ESTIMATION

Loss
Input __ - { l< ! I Numerical
image — CNN ]z’ FC coordinates

Heatmap

(a) Coordinate regression with fully connected layers

Loss .
Input _ 4 ! i Numerical
. - ~ > Argmax > -
1mage CNN { E g _____________ H coordinates
Heatmap

(b) Joint detection via heatmap prediction

Loss
Input __ -« { l4 /! I Numerical
image — CNN ]z’ DSNT coordinates

Heatmap

(c) Coordinate regression via differentiable argmax (DSNT[67] depicted)

Figure 2.2: The arrows indicate inference during training (black, solid), during testing (black,
dotted) and the gradient flow (dashed red). From Nibali et al. [67].

“Classical” regression-based

Regression-based approaches attempt to directly predict the z and y coordinates of keypoints
through a regression model. Ever since AlexNet showed the might of Convolutional Neural Net-
works (CNNs) for classifying images [50], it became clear that these types of models were capable
tools for computer vision. It was thus only a matter of time before the first CNNs were used to
take on HPE. DeepPose by Google’s Toshev and Szegedy [89] was, to our knowledge, the first CNN
model that was created specifically for pose estimation. They used multiple AlexNet-derived [50]
regression models to initially predict a coarse absolute localization, followed by multiple stages
of refinement. The refinement stages were a result of the size limitations of models of the time.
Their model could only use images of 220 x 220 in resolution, limiting the level of detail it could
work with. The subsequent refinement models only needed to focus on a crop around the earlier
prediction, allowing them to look at this region in a relatively higher resolution.

From then on, many methods followed, though currently few score a competitive performance
[87]. This is believed to be because the regression from 2D spatial data to a single coordinate is a
difficult function to approximate [18, 88].

CNNs are by design spatially invariant, meaning its abilities to recognize a pattern are equal
regardless of the spatial location of the pattern. For numerical regression, however, one needs to
transform pixel values to coordinates. This is a non-trivial function, as the pixel values themselves
contain no information about their spatial location.

Initial stage Stage s

220 x 220

- DNN-based refiner

(xsD; y &)

send refined values
to next stage

Figure 2.3: Diagram of the DeepPose model[89]. The blue blocks represent convolutional layers,
whereas the green blocks represent fully connected layers. The regressor network outputs absolute
coordinates, which are combined with refinement deltas outputted by multiple stages of refiner
networks. These networks receive a localized crop around the initial prediction.
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2.1. OVERVIEW OF POSE ESTIMATION

Detection-based

Detection-based algorithms partition the image into sections and attempt to predict the likelihood
that a keypoint is located in that section [18]. A form of the detection-based approach, heatmap-
based, is used by most current SOTA models [87].

The main advantage of these techniques over the regression-based approaches is that they do not
have to learn the complex nonlinear regression function; these models do not produce continuous
x and y values as keypoint coordinates. Instead, they produce heatmaps for each keypoint that
highlight the most probable location for each type of joint. First used by by Tompson et al. [88] on
HPE, this is still a widely used method [18]. To convert the heatmaps to coordinates, an argmaz
post-processing step is used. This retrieves the final z and y coordinates from the most likely
locations of each keypoint during inference.

This reliance on the argmaz-function for inference, however, is also one of the main drawbacks of
this approach [18, 64, 87]. Due to the non-differentiable nature of the argmaz function, these models
cannot be trained end-to-end. Instead, they require artificially crafted ground-truth heatmaps for
their supervised training process. These ground-truth heatmaps are generated by placing a 2D
Gaussian kernel (or less commonly a Bernoulli kernel [37]) on the location of the ground-truth
coordinates. The model is then trained to produce heatmaps that resemble these [18].

The reliance of the argmaz function also induces a disconnect between the training objective
and the actual objective of predicting coordinates during inference [67]. During inference, only the
brightest pixel of a heatmap contributes to a prediction, while during training all pixels contribute
to the heatmap similarity loss. This can have the unintended consequence where an objectively
better prediction results in a higher loss than a lesser prediction, as illustrated in Figure 2.4b.

Furthermore, these models also suffer from quantization issues during inference. Where the
regression-based approaches can estimate coordinates on a continuous scale, these detection-based
approaches cannot. The argmaz function can only produce integer values in the range of [0,n — 1]
for an output dimension of size n. This, in turn, restricts these methods to discrete values, bound
by the resolution of the heatmap [18, 67, 87].

This last problem, also known as quantization, can be mitigated by producing a heatmap of
the same resolution as the input image, which is employed by many of the top-scoring methods
[66, 92, 98, 8]. This, however, has its own drawbacks as this demands more storage, computation,
and memory.

Correct prediction Incorrect prediction
Target heatmap MSE =100 MSE =16

o [0 oo oofolofofoforofofolo]

[0 P o oo o lofoo] o
O [ ook

o000l Iﬂﬂﬂﬂ oo ool

‘O Ground truth Argmax prediction

Input a) Neck (b) Left (c) Left (d) Right (e) Right
image elbow wrist knee ankle

(a) Example heatmaps, as produced by a stacked hour- (b) When heatmap matching, it is possible

glass model. Each heatmap indicates the predicted for predictions to worsen despite the pixel-wise
likelihood of one type of joint being in the heatmap. MSE improving. Caption and images from Ni-
From Newell, Yang, and Deng [66]. bali et al. [67].

Figure 2.4

Regression through part-detection

Regression through part-detection is a recent development where a differentiable approximation to
the argmaz function is utilized to unify the two aforementioned approaches. This, in many ways,
combines the best of both worlds. It allows for networks that are both end-to-end trainable (as
the regressive models), as well as being spatially invariant (such as the heatmap models).
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2.1. OVERVIEW OF POSE ESTIMATION

In 2017, Luvizon, Tabia, and Picard [59] showed how the differentiable soft-argmax function
introduced by Finn et al. [28], can directly convert heatmaps into keypoint coordinates. They
showed how their novel regression-based model outperformed both normal regression and heatmap
approaches when used with a similar architecture. Parallel to Luvizon, Tabia, and Picard, [67]
developed the Differentiable Spatial to Numerical Transform (DSNT'), which served a similar pur-
pose. Their work was not based on Finn et al. [28], but rather introduced a new matrix-based
soft-argmaz that outputs coordinates as values scaled between —1 and 1. color=blue|There are
structural differences in how the two methods work, but I'm not sure if there are any differences
in the effect they have on training. There must be, but if there are, I'm not sure if there is much
written about it. color=orange, author=Vincent Brouwers (dev comment)]TODO: Write about
how these two methods differ. While both approaches are not shown any heatmap examples, they
cause networks to learn these implicitly Figure 2.5.

Sun et al. [87] later showed how the approach by Luvizon, Tabia, and Picard, which they
dubbed integral regression, can be used to transform any heatmap-based method into a regression
model. This effectively makes every heatmap model end-to-end trainable, removing the disparity
between training and inference performance. It also eliminates the aforementioned quantization
issue.

(a) Example image and with (b) Training target for heatmap (c) Heatmap learned implicitly
pose overlay matching with DSNT

Figure 2.5: Demonstration of the implicitly learned heatmap with DSNT. Both heatmaps represent
the location of the neck keypoint. Image (b) is a 2D Gaussian rendered at the ground truth location,
whereas (c) is learned freely by a model. From Numerical Coordinate Regression with Convolutional

Neural Networks [67]

2.1.2 Multi-Person Pose Estimation

Multi-Person Pose Estimation requires not just the correct skeletal estimation for one subject in the
picture, but it also has to deal with and distinguish many different subjects. This difference makes
it so that one image can contain multiple instances of each joint, causing the normal single-instance
models to fail. Two approaches are commonly used to address this problem:

With the top-down approach , a person-detector provides bounding boxes for each visible
human. The crops of these boxes are then fed into the keypoint-detector. This approach is
conceptually the easiest and provides the highest accuracy. It does come with some drawbacks,
one of them being that its performance is directly related to the number of people in a frame. It
also heavily relies on the accuracy of the person-detector, which often fails with crowded images
[43]. Overlapping bounding boxes can also result in skeletons where the joints belong to different
people.

With the bottom-up approach |, all joints are located in a single pass. A second algorithm
is then used to group the joints into distinct skeletons. This approach is less accurate than the
top-down approach but is considerably faster, even more so as the amount of subjects increases. It
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2.2. DESIGN OF A POSE ESTIMATION MODEL

does require complex joint-association algorithms. On the other hand, it also does not depend on
the accuracy of the person-detector and often performs better on complex poses [43]. The joint-
matching algorithms also handle crowded scenes better, though these models can also struggle to
annotate very large and very small silhouettes [53] (relative to the frame).

(a) With a Top-down approach, individual subjects are identified and extracted, after which a single-person
pose estimation model is used to predict the poses.

(b) With a Bottom-up approach, all visible joints are detected at once, which are then used to construct
the most probable skeletons.

Figure 2.6: Difference in the localization process for multi-person scenes between top-down and
bottom-up approaches. Image and annotations extracted from PoseTrack [4].

2.2 Design of a pose estimation model

The goal of regression-based HPE methods has much in common with that of image-classification
models; image-classification models aim to predict the numerical likelihoods that an image is part
of n classes (Figure 2.7a), keypoint regression models predict the numerical locations of features
in the image (Figure 2.7b). Heatmap-based HPE models, on the other hand, are more closely
related to segmentation networks; both types of problems require the production of spatial maps
that project an aspect of the original image (Figure 2.7c and Figure 2.7d).

The aforementioned similarities in objectives are also reflected as similarities in network archi-
tectures. Both classification and regression models rely on convolutional layers, often combined
with pooling layers, to downsample and extract features from the images. Fully-connected layers
then transform these features into the numerical output values. The keypoint-regression models
implemented in DeepPose [89], for example, only differ from the AlexNet [50] classification model
in the dimensions of their layers. Segmentation and heatmap models also rely on convolutional
layers to process image information. Though since these models need to construct high-resolution
output maps, downsampled features are often upsampled again in a later layer. Advances in either
of the two fields often carry over to the other [54, 97, 92].

2.2.1 Design of a heatmap-based model

Convolutional neural networks work by convolving filters over a feature or input map.

This makes it so that features in resulting feature maps are only affected by a local area of
features or pixels from the previous layer. This field of vision, or “receptive field” is stackable
through multiple convolutional layers and determines how much context a feature has access to.
In pose estimation, large receptive fields are crucial to capture long-range interactions between body
parts [93]. This need for large receptive fields is shared among many computer vision problems
that also want to base predictions on as much context as possible. That is, together with the
computational benefits, why generally all CNNs use a deep stack of convolutions and pooling
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2.2. DESIGN OF A POSE ESTIMATION MODEL

(a) Image Classification (¢) Scene Segmentation

(b) Coordinate Regression (d) Heatmap localization

Figure 2.7: Comparison of the input and output of keypoint localization methods to the input
and output of similar techniques. Image classification models (a) aim to regress the likelihood
of an image belonging to classes; coordinate regression models (b) aim to regress the location of
keypoints in an image. (Semantic) scene segmentation models (¢) aim to draw (semantic) boundary
regions on an image; heatmap localization models (d) aim to draw Gaussian kernels on an image.

layers to compress the feature sizes [85, 33]. We want to condense as much information in these
dense feature maps, which is why a halving in resolution is often paired with a doubling in feature
depth [85, 33, 81]. This approach is excellent as-is for classification and regression tasks, heatmaps
need to be of a sufficiently high resolution to minimize quantization errors. As such, these thus
cannot be directly produced from downsampled features.

A common approach to create high-resolution heatmaps looks like an encoder-decoder model.
In this context, Encoder-decoder models use the aforementioned downsampling method for feature
extraction, before using an upsampling decoder to recover a high-resolution heatmap. In these
models, the encoder can sometimes be any off-the-shelf CNN architecture such as VGG [85] or a
ResNet model [33], often already pretrained on another image perception task such as ImageNet
[20] classification [94, 73, 11, 17, 74, 75].

A simple, yet surprisingly performant, example of such a model is the aptly named “Simple-
Baseline” model by Xiao, Wu, and Wei [94]. Visualized in Figure 2.8a, this encoder-decoder-style
model uses an unmodified ResNet-152 [33] encoder which is pre-trained to classify ImageNet pho-
tos. The coupled decoder consists of just three transposed convolutional” layers for upscaling and a
single 1 x 1 convolutional layer to create the final heatmap. These transposed convolutional layers
in essence perform the opposite operation to normal convolution layers; a standard convolutional
layer multiplies filters with a region of features and extracts a single feature, transposed convolu-
tions multiply individual features with filters and extract a region of features.! When combined
with striding, this results in a learnable upsampling operation, as is the case in SimpleBaseline.
Each transposed convolutional layer in this model has 256 4 x 4 filters with a stride of 2 x 2. The
final 1 x 1 convolution has the same amount of filters as the number of joints and outputs the
final prediction heatmaps. Following Newell, Yang, and Deng [66] and Chen et al. [17], images

*Transposed convolutional layers are also often, but mathematically incorrectly, referred to as “deconvolutional”
layers [24, p 20]. In practice, “deconvolutional” and “transposed convolutional” are often used interchangeably.

TThe produced regions overlap when the filter size is larger than the stride, in which case the final value is the
sum of overlapping regions. The filter size should be divisible by the stride, as else an “uneven overlap” results in
checkerboard-like patterns in the output features [70]
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DESIGN OF A POSE ESTIMATION MODEL

=11l

(a) Schematic representation of SimpleBaseline
[94]. This simple, yet effecive encoder-decoder
model consists of a standard ResNet encoder,
followed by several transposed convolutional
layers that perform a trainable upscaling
operation.  This stands in contrast to the
earlier Stacked Hourglass [66] (Figure 2.8b)
and Cascaded Pyramid Network (CPN) [17]
architectures, which nearest-neighbor and bilin-
ear upsampling, respectively, instead. Image
adapted from [94].

(b) The Stacked Hourglass network (b.a) net-
work consists of eight consecutive U-Net-like
hourglass modules (b.b) that condense the in-
put before reconstructing a matching heatmap.
The condensed features are upsampled and com-
bined with more detailed information from ear-
lier layers via skip-connections. The stacking
of the modules enables repeated refinements
of the joint localizations. The modules are
trained with intermediate supervision, where
the heatmap reconstruction loss is not just com-

puted at the final module, but also for each in-
termediate module. Images from [66]

channel conv.
maps ~ unit

strided

\ conv. / upsample

(c) Schematic representation of HRNet. Contrasting to the (repeated) downsampling and upsampling of
(a) and (b), HRNet instead maintains a high-resolution representation throughout the network. It further
maintains separate subnetworks of varying lower resolutions that exchange information at set phases in the
network.” HRNet derivatives currently make up of three of the five top-performing models on the COCO
Keypoints Leaderboard [19]. Image from [92].

Figure 2.8: Visualizations of three heatmap-based CNN HPE models.

are evaluated in both the in their original form and flipped horizontally to improve estimation
accuracy. For each keypoint, the location of the highest confidence prediction is taken and offset
a quarter towards the lower-confidence prediction.

Though many heatmap-based HPE models follow the practice of downsampling and then recov-
ering the high-resolution heatmaps from the encoded low-resolution feature, this is not followed by
all. HRNet [92, 86] instead maintains a high-resolution representation throughout the network and
is currently the base model for three out of five of the five top-performing models on the COCO
Keypoints Leaderboard [19]. Instead of downsampling and upsampling the image data, HRNet
maintains separate subnetworks of varying resolutions (see Figure 2.8c)that exchange information
at set phases in the network.” As in most networks, high-resolution feature maps are spatially pre-
cise, whereas low-resolution maps are semantically strong. This repeated “multi-resolution fusion”
boosts both qualities across all the resolution levels.

*The authors refer to this exchange of information as “multi-resolution fusion”
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2.2. DESIGN OF A POSE ESTIMATION MODEL

2.2.2 Design of a multi-person pose estimation algorithm

Single-person pose estimators can rely on just their localization networks. Both top-down and
bottom-up multi-person estimation approaches, however, require additional algorithms to discern
the different subjects in frame. Top-down methods require some form of bounding-box detector
for persons, whereas bottom-up approaches use various different heuristics for keypoint matching.

Top-Down

HPE methods are very reliant on accurate people detections. Undetected people will not be
annotated and erroneous detections will result in false joint detections. The detections are directly
processed by the subsequent single-person pose estimator, meaning there is no recovering from an
incorrect detection. The manner in how these detections are performed does not matter for the
rest of the pipeline, however.

In general, any single-person pose estimation model can be combined with a human detector
to add multi-person pose estimation capabilities. As an example: the SimpleBaseline model from
the previous section was combined high-performing human detector to achieve SOTA performance
on the multi-person COCO [19] dataset. Following G-RMI [72] and later followed by HRNet, the
multi-person version of SimpleBaseline employs a (pretrained) Faster R-CNN [79] object detector
that identifies bounding boxes around human subjects in each image. The image data inside
each of these bounding boxes is then cropped out and processed via the normal single-person
SimpleBaseline model. The fully-convolutional SimpleBaseline model can process images of varying
dimensions, though some architectures, often regression methods such as DeepPose, require an
intermediate transformation that warps the detected area to a processable form. In the end, the
estimated coordinates, which are local and relative to the cropped area, are merged with the
location of the detection to retrieve the final global coordinates.

R-CNN: Regions with CNN features

classifier
ST warp(id region ﬂ
I E=SAH ] ,;
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7§ =~ “moniior? o ]
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(a) Original R-CNN architecture. Image from
Girshick et al. [31].
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(b) Fast R-CNN architecture. Image from Gir- (c) Faster R-CNN architecture. Image
shick [30]. from Ren et al. [79].

Figure 2.9: Variations of the R-CNN architecture.

Top-down pose estimation can be performed with any off-the-shelf human detector, though the
“Faster R-CNN” model by Ren et al. [79] is a commonly used [43, 53, 86] example. A Faster-R-CNN
model is, as the name implies, a faster version of an R-CNN model. Visualized in Figure 2.9a, an R-
CNN consists of two parts: a Region-Proposal Model (RPM) and a CNN classification model [31].
The classification model attempts to classify the contents of each region, after which sufficiently
identifiable regions are kept as the final detections. The original R-CNN model (Figure 2.9a) used
an RPM algorithm called selective search to propose regions and ran an AlexNet [50] classifier over
each region individually. As AlexNet can only process images of a set resolution, the detection
regions were first warped onto a square 227 x 227 format. A later improvement in the form of
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2.2. DESIGN OF A POSE ESTIMATION MODEL

Fast R-CNN [30] (Figure 2.9¢) required just one feature extraction step to be performed by the
classification model, now VGG-16 [85]. A special Region of Interest (Rol) pooling method after the
feature extraction process allowed individual regions to be pooled into a set-size feature map that
could be classified as if the images were warped before the feature extraction. Faster R-CNN is the
latest progression and introduces a CNN-based RPMthat can be combined with the classification
model into one such that they share the majority of their parameters. The classifier itself is also
upgraded again, this time being ResNet-101 [33].

Bottom-Up

DeepCut [75] is an early and influential bottom-up pose estimation algorithm. Most multi-
person methods at the time of publishing were top-down approaches whose performance suffered
accuracy losses on people in close proximity. Overlapping detection boxes can cause the subsequent
estimation models to predict skeletons with joints belonging to different persons. Pishchulin et al.
therefore introduced DeepCut, a bottom-up approach that does not share this problem. Instead,
it localizes all joints globally and uses an Integer Linear Program optimization process to connect
the joints in the most likely manner.

Deepcut uses a modified R-CNN to generate body part candidates. These candidates are then
fed into a CNN with multiple outputs that acts as both a regression and classification model.
This predicts likelihoods for each of the body part classes C and provides more accurate relative
coordinates in a manner similar to DeepPose [89]. All predictions are transformed into a fully-
connected graph (see Figure 2.10a) and processed using an ILP solving algorithm. This algorithm
attempts to find the most likely subgraphs such that each subgraph represents exactly one skeleton
(see Figure 2.10c). It does this by finding the cheapest solution such that all connected keypoint
nodes satisfy the following constraints: 1) Each keypoint can be of at most one joint type, classless
keypoints are suppressed, 2) suppressed keypoints cannot be part of a body, 3) a body can have at
most one of each joint type, and 4) if keypoint k& and k" are part of the same body, as are k' and
k", then so are k and k”. As more solutions are possible, DeepCut attempts to find the cheapest
solve where the cost of keypoints is defined by the likelihood that joints are of the predicted class
and the cost of edges is defined by the likelihood that one joint solve implicates the other.

Figure 2.10: Visualization of the DeepCut algorithm. (a) shows the fully-connected graph of joint,
which are clustered in (b) s.t. each subgraph contains proposals for just one subject. Color and
shape combinations indicate different joint types. (c) depicts the final solved skeletal predictions.
Note that Deepcut does perform an explicit subject clustering stage as depicted in (b), as this is
performed through the ILP solving. Images from [75].

It was the first CNN bottom-up approach and its robustness awarded it SOTA on both the
COCO and MPII HPE datasets. The ILP solving, however, is an NP-hard problem that can take
tens of hours per image to solve. A later revision by the same authors called DeeperCut [41]
provided much-improved performance by substituting the global ILP solving by an incremental
multi-stage variant. This 3-stage solver first just processes joint proposals for head and shoulder
keypoints. When this problem is solved, elbows and wrists are added, followed by hips, knees, and
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2.2. DESIGN OF A POSE ESTIMATION MODEL

ankles. This splitting significantly reduces the number of edges in the fully-connected graphs and
allows for the ILP solving to be completed in around 270 s/ frame”, three orders of magnitude less
than the original DeepCut.

OpenPose |, a popular open-source HPE framework by Cao et al. [10], uses a significantly faster
method for bottom-up multi-person pose estimations. Based on earlier work of the same authors,
CMU-Pose [9], OpenPose does not rely on the same computationally heavy ILP solving as deep-cut
to group keypoints. Instead, it relies on Part-Affinity Fields (PAFs) to match related joints. These
PAF maps are 2D vector fields that indicate both the direction and location of limbs. Just as with
the heatmap-predictions, the PAF maps are generated by CNNs. Where the heatmap predictions
localize individual keypoint types, the PAF maps are used to show a directed relatedness between
the joints of a limb.

(a) Input Image

(c) Part Affinity Fields (d) Bipartite Matching

(e) Parsing Results

Figure 2.11: Visualization of the OpenPose (and also CMU-Pose) pipeline. The input image (a) is
converted into localization heatmaps (b) and part affinity fields (c¢) via CNNs. The PAFs are then
used to match related keypoints belonging to the same limbs (d), finally resulting in the skeletal
representations from (e).

Both the localization heatmaps (which the authors refer to as “Part Confidence Maps” for a sim-
ilar termonology to “Part-Affinity Fields”) and the PAFs are produced by an iterative refinements
with intermediate supervision. Inspired by Wei et al. [93], and similar to the Stacked Hourglass
[66] model from Figure 2.8b, OpenPose relies on multiple stacked CNN stages that iteratively pre-
dict and refine the target maps (see Figure 2.12a). Contrasting to these earlier methods, however,
OpenPose does not produce part confidence maps at each stage. Instead, the first four stages solely
work to predict the PAFs (Figure 2.12b), whose result is then used to predict the part heatmaps
via the next two stages. CMU-Pose, the predecessor of OpenPose, predicted both map types at
each inference stage simultaneously, for which it effectively used two separate CNNs. The authors
however found that the PAFs did not require as many refinement steps, as well as that the part
confidence maps could be predicted from the PAFs. color=blue]Should I use numbers or words
to describe amounts like the number of stages? I know that spelling ”four” is more formal than
writing ”4”, but I also know that technical texts often prefer numerical notation...

Finding an optimal skeletal parse in a graph of joints (such as in Figure 2.12¢.2) in NP-hard [10].
Combined with the PAFs, OpenPose instead uses a greedy parsing algorithm that approximates
the global solution at a fraction of the cost. It firstly creates a bipartite subgraph (Figure 2.12¢.4)
for each pair of joint types that can be connected. The edges in these graphs are then weighed by
sampling the corresponding Part-Affinity Field along the line that each edge draws on the image.
This affinity score directly corresponds to the likelihood that the edge represents a limb connection.
The greedy picking algorithm then iteratively picks the highest-scoring edge that does not share
any keypoints with earlier picked edges. Finally, all picked edges and nodes are merged into the
full skeletal representations as visualized in Figure 2.11.

*Average duration taken over all images in the MPII test set
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1) VGG-19 backbone 3a)Pass1  3b)Pass2  3c)Pass3  3d)Passd  3e)Pass5  3f)Pass6

(a) Diagram of the OpenPose architecture. The first four stages extract the PAF maps, followed by two
stages that extract the confidence maps. Each stage is supervised with their respective ground-truth map
type and consists of five blocks of 3 x 3 convolutional layers that have their outputs concatenated. The
input image is first processed by a feature extractor based on the first 10 layers of VGG-19. Note that this
limits the resolution of the OpenPose predictions, which is a prominent example of the quantization issue
for heatmap-based models presented in Section 2.1.1. Image from Groos, Ramampiaro, and IThlen [32].
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(b) Accuracy improvements throughout multiple (c) Creation of biparte graphs (c.4), compared
stages of PAF refinements in OpenPose. to

Figure 2.12: Images from Cao et al. [10].

2.3 Pose Datasets

For a long time, progress in the field of computer vision has gone hand-in-hand with the develop-
ment of new datasets. Ever since the release of ImageNet in 2009 [20], the field of computer vision
has experienced a boom in both performance and attention. Where previous datasets had no more
than tens of thousands of images [49, 52], ImageNet had 3.2 million images. This amount of data
enabled a boom into data-hungry CNN research, which is still ongoing.

While the ImageNet dataset enabled many developments to happen for CNNs, the data was
mainly useful for the classification of objects. Datasets are inherently costly to create, as manual
annotation is a labor-intensive process. Where ImageNet was expensive to create due to its size,
the images themselves were mostly easy to manually classify. Pose estimation datasets require more
effort to annotate each sample, as annotators need to place each keypoints on the right location
for each image. This results in even the largest HPE datasets being orders of magnitude smaller
than similarly popular image classification datasets.

The following two sections discuss the most widely HPE datasets. We emphasize the methods
used to collect them and the possible biases that training on them could introduce against children.

2.3.1 Image datasets

Leeds Sports Poses (LSP) [44] is one of the earlier datasets that aimed to provide a dataset
that is realistically sized to train models varied human poses. They collected their videos by
querying Flickr for images with one of seven sport tags and scaled these such that the annotated
person was around 150 pixels tall. Though nothing constrained the subjects to be adults, the
resulting 2000 images contain almost no child subjects. The LSP-Extended [45] dataset was created
in a similar fashion by the same authors, after realizing non-upright poses, like those found in
gymnastics and parkour, were especially challenging.
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Frames Labeled In Cinema (FLIC) [82] is another early effort at creating a large pose dataset
of high-resolution images. The authors note that earlier datasets such as H3D [6] and PASCAL
VOC [25] contain mostly images of insufficient resolution. Their new FLIC dataset contains 5003
high-resolution images, of which 3987 are used for training. The images are all extracted are frames
from 30 different Hollywood movies. As many of the following datasets, the individual images were
annotated via Amazon Mechanical Turk (AMT). Due to the choice of movies, this dataset does
not contain any images of child subjects. It is also annotated on just 10 upper-body joints and is
manually filtered to exclude occluded or non-frontal subjects.

An unfiltered version, FLIC-Full, was also presented in the same paper. However, this set
contains images both identical and similar to those in the FLIC test set. The authors of FLIC-
Plus [88] excluded all frames from FLIC-Full that originate from the same scenes as those in the
FLIC test set and unioned this with the original FLIC train set.

MPII Human Pose (MPII) [3]is a one of the SOTA HPE benchmark datasets [18]. It contains
manually selected frames of videos queried from YouTube and annotations were generated via AMT.
The YouTube queries were derived from an activity compendium built from PA patterns of adults
[2], introducing an early bias towards them. The dataset contains 24,920 images and a combined
40,522 poses. It also provides the previous and following frames for models to facilitate the use of
motion information.

Common Objects in Context (Microsoft COCO) [55] is a large and varied dataset with
annotations for object detection, scene segmentation, dense pose” detection and keypoint detection.
The 2014 paper introducing COCO describes how the images were gathered by searching in image
repositories such as Flickr for the objects the authors originally wanted to detect. At this time,
the keypoint dataset was only speculative and there is thus not much information about it in the
paper. The collection process does not indicate a fundamental bias against children. Though of
course largely because the paper focuses on object recognition, there is also no mention that care
was taken to ensure a proper demographical representation.

2.3.2 Video datasets

VGG Pose datasets are a family of pose datasets constructed by the Visual Geometry Group
from Oxford University. Due to our focus on monocular RGB datasets, we exclude ChaLearn and
focus instead on BBC Pose [14], Extended BBC Pose [74], Short BBC Pose [13], and lastly Youtube
Pose [15].

BBC Pose contains footage of British Sign Language (BSL) interpreters of the British Broad-
casting Corporation (BBC). Its has semi-automatically annotated training videos, with manually
annotated test and validation videos. Short BBC Pose is similar but contains just five training
videos. Extended BBC Pose, however, adds 8x more, albeit slightly noisier, training data with
fully-automatically generated annotations. Youtube Pose, consists entirely of manually annotated
YouTube videos on a range of activities. Though the BBC Pose variants are large and YouTube
Pose is varied, the subjects are all adults. They also all focus on just nine upper-body joints.

Joints for HMDB (J-HMDB) [42] is a joint-annotated subset of the HMDB Action dataset
[61]. The original action dataset contains 51 categories of videos from various online sources. J-
HMDB adds joint annotations for videos of 21 categories, limited to videos where the actors are
prominently visible. As with previous datasets, children are sparsely represented in J-HMDB. Part
of this can be explained by the inclusion of actions such as “shoot gun” and “pull-up”, generally
not child activities. With the exception of the surprisingly infant-dense “push” category, most
other actions, however, such as “clap” and “walk” also contain few children.

*Dense human pose estimation aims at mapping all human pixels of an RGB image to the 3D surface of the
human body. From DensePose [21].
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Penn Action [99] is an action dataset that provides meta-annotations such as bounding boxes
and pose keypoints. The authors do not go in-depth into the way the videos were selected, apart
from that they originate from online sources. It is thus not possible to identify a bias in this
process. The resulting clips, however, contain little to no children.

PoseTrack [4] is HPE benchmark with an additional focus on multi-person articulated tracking.
It expands upon MPII by including five seconds of footage around the original MPII frames,
selecting crowded and active scenes. Besides pose, this dataset also tracks individuals throughout
the clips. It also provides unique ignore regions for crowds too complex to annotate, which can
be used to exclude false positives during training and testing. As it is based on MPII, any early
biases present in that dataset, also carry over to PoseTrack.

color=orange, author=Vincent Brouwers (dev comment)] TODO: Add Human3.6M as mainly
an evaluation dataset.

Type Dataset Train Images Total Images  Joints  Source

Images FLIC [82] 3987 5003 10 Movies
FLIC-Full [82] 20,928 20,928 10 Movies
FLIC-Plus [88] 17,380 17,380 10 Movies
LSP [44] 1000 2000 14 Flickr
LSP-Extended [45] 10,000 10,000 14 Flickr
MPII [3] 24,920 24,920 16 YouTube
COCO [55] 118,287 123,287° 17 Flickr
Sciortino et al. [83] 1176 1176 22 Video portals

Train Total
Sequences Images Sequences Images

Video BBC Pose [14] 10 610,115 20 612,115 9 BSL interpreters
Short BBC Pose [13] 5 15 9 BSL interpreters
Extended BBC Pose [74] 85 5,782,140 92 5,784,140 9 BSL interpreters
JHMDB [42] ~ 6607 31,838 928 31,838 15 Various sources
Penn Action [99] 2326 163,841 2326 163,841 13 Video portals
YouTube Pose [15] 50 5000 50 5000 7 YouTube
PoseTrack [4] 593 43,603 1138 109,513 15 YouTube

Table 2.1: Qualitative comparison of currently available HPE datasets. Some datasets contain
samples meant specifically for testing or validation. These are excluded in the “Train” columns,
but included in the “Total” columns. For video datasets, the sequence count indicates the amount
of clips. These may be clips from the same source video.

All mentioned datasets were collected because the authors saw a need for a larger or more varied
dataset. In their methods, however, little consideration was put into having the data reflect the
demographical makeup of our population. Many of these datasets are built by querying activities
mainly performed by (or at least recorded of) adult subjects. color=orange, author=Vincent
Brouwers (dev comment)]Think of how to finish this

2.4 Child pose estimation

Though most HPE studies and datasets are focused on adult subjects, there are some with a
focus on children. To our knowledge, there are is at this time just one earlier work in this area
that created a child-centric RGB monocular pose dataset. In 2017, Sciortino et al. introduce a

*COCO has over 200.000 images annotated with keypoints, but not all are publicly available. The COCO test
set is withheld due to the ongoing competition.

TJ-HMDB has multiple train/test splits: 660/268, 658/270 and 663/265
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benchmark dataset of child and infant subjects. They use this to show that HPE models trained on
adult-biased datasets, perform measurably worse on this domain. Their dataset is partly comprised
of videos from an action recognition dataset focused on early autism detection in children, Self-
Stimulatory Behaviour Dataset (SSBD) [77]. The videos of this dataset came from various video
portals, including YouTube. Sciortino et al. disregarded videos from SSBD where people were
interacting or had strongly truncated poses. They further padded their dataset with videos by
manually querying YouTube with keywords for certain expressive activities and variations of “child”
or “toddler”.

The final dataset contains 1176 images from 150 unique videos with 104 unique subjects. Re-
training these models on this dataset is difficult due to its limited size (Table 2.1) and is thus not
something the authors attempted. The authors concluded there to be an accuracy drop across
several different models when tested on their child dataset. They, however, did not address that
any difference in performance could also be the result of different strategies for collecting and/or
annotating their data.

We requested access to the dataset but received no reaction from the first, nor from the second
author. Further lack of reviews thus limits our capabilities to discuss this dataset.
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Chapter 3

Data and Methods

To answer the research questions defined in Section 1.4, we need a sufficiently large kid-specific
dataset that can be used in training deep-learning models. This section describes the manner
in which we collect our data and the reasoning behind our decisions. We call this new dataset
Kinetikids-pose, sharing its name after the child action dataset by Olalere [71] with which part of
it is derived.

Kinetikids-pose contains 1064 images of 1384 different pose-annotated children within the ages
0-12 (pre-pubescent). In contrast to many other child-specific datasets, we choose to share this
dataset publicly. T The joints are all annotated in the COCO keypoint format to facilitate straight-
forward usage with existing models developed for the COCO dataset.

The dataset is composed of two separate sources. The first part of the dataset, 219 images,
consists of frames extracted from 219 different Kinetikids videos. These are YouTube videos con-
taining children performing one of 38 selected sporting activities. The keypoint annotations for this
section are crowdsourced via the Amazon Mechanical Turk crowdsourcing platform. The remain-
ing 845 images are gathered by querying Google Images. We used the same 38 sporting activities
to generate the queries, though no effort was made to ensure these activities indeed occur in the
final images. The keypoint annotations for this section are labeled by students and staff of Utrecht
University.

3.1 YouTube Videos

The first part of Kinetikids-pose consists of frames extracted from videos of the Kinetikids dataset.
This section describes the process from the collection of the videos and up to the moment we have
pose-annotated frames, also visualized in Figure 3.1.

3.1.1 Video Collection

We first compile a list of sports activities to include in this dataset. We picked out 38 sport activity
labels from the defined sports categories in Kinetics-400. We choose the sports category based on
our hypothesis that there should be an observable difference between how a sporting activity is
performed by an adult as opposed to a kid. We work with only one category in this project because
of time and resources constraint.

After compiling the activity labels for Kinetic-kids, we define specific query lists tailored to
search for videos with kids performing these activities (see Appendix A). We tailor our query
to target the age group we are interested in e.g basketball game in pre-school or kids dunking
basketball. These queries are then searched for on YouTube. Before downloading the returned
videos, we check that the video is at most 100MB, This is to filter out professionally shot and
heavily edited videos. The non-professionally shot videos are less edited and are more depicting
of the real world. Furthermore, we only download videos that had a resolution of 480p or 720p.

Thttps://drive.google.com/drive/folders/1nQooljW1c8bWfAz2i13j20jJ18B8Db_cN
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3.1. YOUTUBE VIDEOS

Child & People Activity Labeling &
Filtering Filtering

Scene Segmentation [ Frame Extraction J [ BBox Cropping J

[ Query YouTube } [ Frame Extraction } [ Scene Ranking J [ People Detection J [ Child Filtering J

Video Collection Frame Selection Pose Labeling

{ Download Videos } { People Filtering } {Activity Annotation} [ Pose Estimation } [ Pose Annotation }

Child Filtering [ Frame Ranking } [ Annotation Cleaning }

Figure 3.1: Flow diagram of all processing steps made gathering the YouTube section of Kinetikids-
pose

We selected videos with these resolutions so they could also be useful for collating pose estimation
datasets. The videos that meet both criteria are downloaded and saved for pre-processing and
annotation.

3.1.2 Child & People filtering

Once we have downloaded the videos, we firstly perform a scene detection step on each video.
0i1Using PySceneDetect [12], we check for differences in the HSV space between consecutive frames.
If the difference in average HSV pixel values between consecutive frames is greater than 30%, we
presume a scene change. We start by splitting the videos into scenes as we deem that actions that
appear across the scene boundaries are not informative for us.

After performing scene detection for each video, we select three evenly spaced frames per scene
that is longer than one second and pass these through a pre-trained YOLO-V3 [78] model for
people detection. This detection model achieves a person detection mAP of 50.3%. Its accuracy is
less than the 56.4% mAP that the Faster R-CNN model employed by Simple Baseline and HRNet
achieves, but requires only a fraction of the computational cost. We take this step to eliminate
scenes that do not have people in them, as as we are only concerned with scenes containing human
activities. Detections with a confidence score of less than 70% are discarded.

Child Filtering

Since our goal is to end up with a kid-specific dataset, we filter out scenes that are unlikely to
contain children. Most current age recognition techniques are limited to faces (via datasets such as
MORPH [80], CACD [16] and FG-NET [29], AFAD [69], and UTKFace [100]) or to voice recognition
(TODO: I have one or two papers about this in my library, but I am not familiar enough with it
to say “These papers are good examples!”). For our purpose, however, we cannot rely on facial
features, as this would induce an obvious bias towards front-facing subjects, nor can we rely on
voice features as possible speech in the video does not have to originate from our subject. Work
exists that distinguishes children from adults on anatomical differences by use of their different
head-to-body ratios [39, 40], though these models are not public and the authors ignored our
requests for access. To our knowledge, there is no other work published to specifically identify
children based on full-body queues, that works from various angles, and requires no specialized
hardware (such as 3D cameras [5]).

Traditional image recognition models are often trained in a supervised manner. These thus
require a sufficiently large (hand-crafted) labeled dataset to predict the probability that an image
belongs to one or more class labels. We instead employ the recently developed zero-shot model
CLIP [76], by OpenAl, to detect children. CLIP is trained on 400 million automatically-collected
image-text pairs and outputs cosine similarities between pairings. By comparing the similarities
of an image to several hand-crafted indicator sentences, we can map an image to the class it is
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most similar to. We manually label a subset of our data and finetune our methods of data input
to optimize CLIP’s ability to predict if a bounding box contains a child or adult. This test set
contains 1350 people, 1001 adults, and 349 children.

As a baseline, we developed basic prompts describing our images, as was done in the CLIP’s
study. We take a crop of our images for each bounding box predicted by the people detection step,
with a margin of 20% in both the width and the height. Our images are crops taken from‘ the
bounding boxes detected by the YoloV3 detector mentioned in the previous section. The prompts
include sentences formed like a photo of a <label>, where label was one of infant, toddler, child,
teen, or adult. As CLIP accepts only 224 x 224 images, we rescale the crops such that their longest
side fits these restrictions size and pad the edges to make them square. As a baseline padding
strategy, we mirror the image along the edges of the image (reflect padding).

Using the same margin scale and padding method as the baseline, we can optimize the way we
formulate our indicator sentences. As a first step, we use the same prompt templates as used in
the CLIP study for ImageNet. Following their methods, we formulate multiple sentence variations
(such as a bad photo of a <label>, a photo of a large <label>) per label and average the CLIP
text embeddings per label. This gave an increase in CLIP’s performance over when we only use
the baseline prompts. Finally, we append the words doing <sports> to all the ImageNet prompts
(ImageNet+sports); here <sports> is replaced with one of our sporting categories. This means the
prompts (text) in the image-text passed into CLIP looked like An image of a child doing badminton.

Next, we vary the margin scale between 0% and 30% in increments of 10% and settled on the
initial value of 20%. Lastly, we vary the padding function as a further optimization strategy. In
addition to reflection padding, we tried: zero-padding, where the color values of the padded edges
of the images are set to 0 (black); one-padding, where the padded edges’ color values are set to 1
(white); and reflection padding, where we repeat the last line of pixels of an image’s original edge
until the padded space is filled.

Based on the result of the ablation study, our final model configuration uses ImageNet+sports
prompts, a margin scale of 0.2x, and zero-padding (See results in Table 3.1).

Prompt type Margin scale Padding ‘ AP AUC
“a photo of <label>” 20% Reflect 0.689 0.421
ImageNet 20% Reflect 0.712 0.443
ImageNet + sports 20% Reflect 0.769 0.434
ImageNet + sports 0% Reflect 0.750 0.460
ImageNet + sports 10% Reflect 0.765 0.453
ImageNet + sports 30% Reflect 0.765 0.411
*  ImageNet + sports 20% Zero-Padded | 0.813 0.468
ImageNet + sports 20% Replication 0.804 0.441
ImageNet + sports 20% One-Padded | 0.814 0.458

Table 3.1: Abblation study of hyperparameters for our CLIP child detector. Per section, bold text
indicates the variable of interest, underlined results indicate the best scoring results per section.
The row indicated with a * shows our final configuration

To finetune the predictions of the model such that it differentiates between prepubescent chil-
dren and teens, we also use an ensemble of indicator labels per class. The labels “infant”, “toddler”,
“child” all indicate our desired “child” class, whereas “adult” is indicated by “adult” and “teen”.
Instead of cosine similarities per label, we want to have the model output a single value in the
range of [0, 1] as our child probability. Formalized in Equation (3.1), we calculate this by taking
the cosine similarities Z and pick the maximum cosine similarities Z of the labels for both our
“child” and “adult” classes. We convert these into probabilities via a softmax step ¢. Finally, since
this is a 2-class problem, it suffices to just use the probability of our “child” class.
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Z = CLIP(z, labels, prompt templates)
Zy =max({z € Z |z is child label})

2, =max({z € Z |z is adult label}) (3.1)
P=0(Z2)
Penita = Fo

The goal of the child detector is to filter out the clear adults, without filtering out too many
children. We choose to filter out all people for which the child detector scores a child probability
of less than 40%. At this threshold, the estimator has a precision and recall of 66% and 79%,
respectively, for the child class of our development set. Our development data contains three
adults for every one child before child filtering. Assuming the distribution of children and adults
from this subset is representative for our greater set of frames, we filter out 94% of the adult people.

Children  Adults

Precision 66% 94%
Recall 79% 90%

Table 3.2: Precision/Recall table for the child detector at the 40% threshold

3.1.3 Activity Labeling & Filtering

To create a robust dataset of expressive poses, we will only annotate poses from scenes where a
child subject is performing an action. The specifics of this process are further expanded upon in
Olalere [71].

After the preprocessing steps from the previous sections, we remove all scenes that do not
contain at least one frame containing at least one child. A ResNet-50 SlowFast model[26], trained
on Kinetics-400[46] is then used to predict which actions are performed per remaining scene. A
ranking algorithm then assigns each scene per video a score based on how dissimilar the predicted
actions were to the expected actions that the video was queried for. After that, a greedy algorithm
generates a sequence of consecutive scenes with the highest prediction dissimilarity, limiting the
sequence length to 60 seconds. Lastly, this list of scenes is then concatenated into a new video clip.

Each produced video clip is presented to two distinct AMT workers together with five suggested
action labels. The workers label the first clear instance that one of those actions occurs in the video,
together with the timestamp. When the workers submit differing timestamps or action labels, the
clip is presented to a third annotator.

3.1.4 Frame Selection

From the clips in Kinetikids, we select ten evenly spaced frames from the two seconds following
the annotated action timestamp as candidate frames to annotate for poses. Similar to the method
described in the previous section, how we apply a filtering step to ensure the poses present some
difficulty to current SOTA HPE models. Instead of looking at the confusion of a single model, here
we instead look at the disagreement between two different models.

The selected frames are processed by the same YoloV3 model as used in Section 3.1.2. We keep
all people with a bounding box larger than 150 pixels tall and analyze them with two human pose
detectors: SimpleBaseline and HRNet. We opted for top-down models so we can directly compare
pose annotations per bounding box instead of having to match poses between annotations. We use
the SimpleBaseline with the ResNet50 backbone with an image size of 256 x 192 and HRNet W48
with an image size of 384 x 288. These are the simples version and most complex version of their
respective architectures.

We compare the pose estimations using the Object Keypoint Score (OKS) score to calculate
the difference between the annotations. As the OKS is a non-symmetric measurement, we take
the measurement both ways. To remove unchallenging poses, we only take bounding boxes where
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the maximum of our two OKS scores is < 0.90. We also discard annotations where the minimum
of our two OKS scores is < 0.10, as such a large disagreement mostly occurs blurry images or bad
person detections.

Before the OKS filtering, we have 4179 frames containing 6676 people from 505 videos. After
filtering, 977 frames with 1113 people from 323 videos remain. We group the frames per video and
take the frame with the lowest average of the OKS scores. The remaining 437 detections from 252
videos are manually filtered to contain solely child images to arrive at a final 322 people from 221
videos.

3.1.5 Pose Labeling

We annotate the poses via the crowdsourcing platform AMT. AMT workers are presented with an
image of a child and asked to place markers on each of the COCO keypoints (see Appendix B.1 for
a full list). Per annotated pose, workers are paid $0.07. With this rate, a fast annotator can earn
an hourly wage of $6.30 to $8.40 when annotating one pose per 45 or 30 seconds, respectively.

We use a modified version of the Amazon Mechanical Turk default keypoint-annotation interface
for this.” The default interface does not allow for associating keypoints to separate child instances,
making it unsuitable for annotating multiple persons at once. Instead, we present workers with
cropped images for each of the selected bounding boxes ask the workers to annotate only child the
“child of interest”. More specifically, we crop the image to an area 2.5x the scale of the bounding
box and indicate the child of interest with a red outline 1.5x the scale of the bounding box. Shown
in Figure 3.2, we found this to give a good trade-off between showing context and keeping the
focus on the desired subject.

Figure 3.2: Sample of images shown to MTurk workers

Mechanical Turk Data Cleaning

The Amazon Mechanical Turk annotations are exceptionally noisy annotations. Besides obvious
rubbish annotations, there are also plenty of other, commonly made mistakes.

Similar to Johnson and Everingham [45], we identify four commonly made labelling errors:
full-body left/right switched, face left/right switched, torso left/right switched, legs
left /right switched. Instead of solving these errors via an iterative bag-of-poses learning method,
we state this as a simple optimization problem where we apply flipping transformations to minimize
the difference between the annotations.

The difference between two annotations is defined as the product of modified OKS and a
metric we call Shared Keypoint Rate (SKR). OKS is undefined for when the ground truth contains
a keypoint that is not labeled in the detection keypoints. We thus make a small modification to
the metric, where we only calculate the keypoint similarity between keypoints present in either
of the annotations. Relying on this metric then also has a side-effect where the algorithm would
attempt to minimize the number of shared joints as any difference between annotated joints would
be excluded if one of them is not present. We thus combine it with SKR, which we define as
the number of unique keypoints present in both annotations divided by the number of unique
annotations in just the target annotation.

*https://github.com/Vinno97/improved-mturk-keypoints-ui
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3.2. GOOGLE IMAGES

The pose solving algorithm gathers all annotations belonging to the same person and temporar-
ily applies a selected transformation. It then cross-compares the OKSSKR (Equation (3.5)) for
the transformed annotations against the non-transformed annotations and averages these scores.
It then runs the same cross-comparison between the untransformed annotations and subtracts this
from the previous scores. A positive value now indicates that applying the transformation im-
proves its similarity towards its peer annotations, a negative value implies the opposite. We take
the maximum of the scores and check if it is positive. If this is the case, we keep the transformation
for this annotation and continue to the annotations for the next person.

OKS(p.p/) = Do exp(—d(pgjég( I{isip)o)ki)é(pw >0) (3.2)
/ A Zi €$p(—d(pi7p;)2/25(p)2/€i2)(5(piv > 0)6(])211 > O)
_ 2i0(piv > 0)8(piv > 0)
T e, > 0) .
OKS(p, p') + OKS(p/, p)
2

SKR(p, p’)

OKSSKR(p, p') = SKR(p, p')

3.2 Google Images

The research questions of this thesis require a child-centered HPE dataset of sufficient size to
(re)train modern deep learning models. The 322 poses from the previous section are not sufficient
for this goal. We supplement this dataset with photos queried via Google Images. Images are
collected via the process described in Figure 3.3.

Image Collection Image Selection Pose Labeling

{ Generate Queries J { People Detection J { Pose Annotation }

{QUGYY Google Images} — { Pose Estimation } { Annotation Cleaning }

{ Download Images } { Image Ranking }

Figure 3.3: Flow diagram of the process for collecting the images from Google Images.

3.2.1 Obtaining images

Where the queries used in Section 3.1.1 were manually crafted, this section of the dataset uses
automatically generated query expansions. By combining one of the 40 action labels from Kinetikids
(Appendix A.2), with one of seven variations of “child” (Appendix C.1), using one of three stitching
templates (Appendix C.2), we can generate a total of 861 different queries. Translating these to the
20 most commonly used languages on the web [90] (with Chinese translated into both traditional
and simplified Chinese) and removing duplicate translation, finally yields 14248 different queries.
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This process has two benefits when compared to the manually crafted queries. When querying
either images on Google Images or videos on YouTube, the relatedness of results to the query
decreases the further down the list one goes. This places a limit on the number of samples that
can be retrieved per query. Running multiple variations of the same query greatly limits this effect
[23]. Translating the queries also has another significant effect, namely that it provides data with
a much greater geo-diversity.

Whilst querying Google, we use three “advanced search” constraints: we 1) only want images
larger than 400 by 300 pixels, to filter out low-resolution images at the earliest possible stage. We
2) only want images that google classifies as a “photo” to reject cartoons. And we 3) only want
images of the full-color type. This removes all images with transparent sections, which are unlikely
to be normal photos of children doing the queried sports. After querying and deduplicating image
URLs, we end up with 496193 images, which we convert to JPEG at the 95% quality setting.

3.2.2 Data Annotation

We use the same people detection and bounding-box filtering on these images as done in Sec-
tion 3.1.2, though notably now not followed by the child filtering. Also different from the previous
part of the dataset, we do not use AMT workers to annotate the images. Instead, we rely on
labeling by students and staff of Utrecht University. We rely on just one annotation per person
instead of averaging three annotations. As there is no need for grouping annotations here, we can
also present annotators with uncropped versions of the source image. Annotators are free to chose
which (not yet annotated) child they annotate. For future research, we also annotated whether
or not the annotated child was interacting in some form with another person in the image. Some
images contain many children, but little variance between poses. In these cases, only a select few
of the subjects were annotated.

Figure 3.4: Example of one image throughout different rounds of annotation

3.3 Compiling Validation Sets

Using part of the newly gathered Kinetikids-pose to determine if training on child data (using
Kinetikids-pose) improves performance would be problematic. Intricacies induced during data
collection or annotation would logically be present in both the training as test split.

Instead, we compile two validation sets based on the 2017 COCO validation set. Both the images
and the annotations are completely separate from Kinetikids-pose. We manually label 7256 of the
11004 annotated people in de dataset to be either “child”, “adult”, or “rejected”. People without
no labeled keypoints or whose bounding box is smaller than 50 pixels in height are automatically
rejected. We also manually reject annotations that are not clearly visible or not clearly definable
as a child or adult. We end up with 323 child annotations from 168 different images and 2857
adult annotations from 1287 different images.

As visualized in Table 3.3, both the child and (at this stage still) unfiltered adult subsets are
easier to classify than the complete validation set. This can be explained by the fact many of the
difficult-to-classify subjects are likewise difficult to estimate poses for. This is supported by the low
AP scores for the rejected poses. This, however, also shows that we cannot directly compare the
performance of off-the-shelf HPE algorithms between our subsets. The complexity of the subsets
directly depends on what the human annotator thinks is “clearly” an adult or “clearly” a child.
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SimpleBaseline HRNet Average

COCO (val) 0.724 0781 0,753
COCO Adult (unfiltered) 0.755 0.812 0.784
COCO Adult 0.803 0.857 0.830
COCO Child 0.763 0.826 0.795
COCO Rejected 0.529 0.601 0.565

Table 3.3: Baseline AP scores of off-the-shelf human pose estimators on each of the COCO-derived
subsets.

3.3.1 Minimizing Selection Biases

Our goal is to compare the performance of off-the-shelf HPE algorithms between our labeled subsets.
The manually filtered adult and child subsets are not, however, not directly comparable in their
unprocessed form. To solve this, we algorithmically adjust the complexity of the annotations to
minimize the effect of any selection biases.

We first note our adult set contains nearly a factor of nine more annotations than the child
set. This gives room to filter out many difficult or easy annotations from this dataset that are too
dissimilar to those found in the child dataset. Iterating over each annotation in the child split, we
greedily select the most similar pose from the adult split based on solely pose metadata.

We use an algorithm that iteratively picks one child annotation and compares it against each
of the adult annotations. It matches the child annotation with the most similar adult annotation
and removes both annotations from our lists. When there are no more child annotations to choose
from, the process is finished and we remain with a matched set of child and adult annotations. The
child annotations are the same as those before the equalization algorithm. The adult annotations
are now a filtered list of equal length to the list of child annotations and make up what we from
now on refer to as “COCO Adult”.

When comparing annotations, we do not want to directly compare poses or the contents of
their corresponding images. Instead, we aim to equalize on pose metadata alone. We make the
assumption that two poses with similarly sized bounding boxes and similar visible keypoints are
also similarly difficult to label for a pose estimator. The algorithm does not consider information
about the source images.

Formalized in Equation (3.13), the similarity metric is defined as the product of two binary
Jaccard indexes (Equation (3.7)), one for each of the two types of visible keypoints, and two shape
similarities that compare width (Equation (3.11) and height (Equation (3.11)). A and B are both
matrices of shape N x 3 where N is the number of keypoints and the three columns are the
continuous z,y coordinates, and the discrete visibility v ({X;, € {0,1,2}). As the Jaccard index is
only defined for for binary values, take one Jaccard index for where X;, = 1 and one for &}, = 2.
Jy (Equation (3.8)) and Ay (Z) (Equation (3.9)) take an arbitrary matrix and together output the
Jaccard index for where X, = ¢. Lastly, Swian(A, B) and Sheight(A, B) compare the bounding
box sizes by dividing the smallest sized bounding box by the largest one along either the horizontal
or vertical axis, respectively. J(A, B) would result in a division by zero in case neither of the
annotations contains labeled keypoints, though none of such annotations exist in these datasets.
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3.4 Visualizing the data

All images in Kinetikids-pose were collected in the context of sporting activities, resulting in a
wide variety poses. In this section, we present example annotations of Kinetikids-pose and visually
compare the expressiveness of this dataset and the two COCO-derived validation sets. We finalize
this section, and with that this chapter, by discussing the sizes of the gathered datasets.

In Figure 3.5, we present three randomly selected example images from the Kinetikids-pose
training split. From left to right, the images were queried for “cartwheeling”, “throwing frisbee”
and “playing basketball”, respectively. The children in the leftmost image notably do not perform
the queried action. This data in this dataset is selected for HPE purposes irregardless of the action
class. We thus place no restrictions that the images in the dataset have to contain any of the
queried activities.

Figure 3.5: Example images with annotations from the Kinetikids-pose dataset. An extended
version of this figure, also showing COCO Adult and COCO Child, is available in Appendix D.

Where Figure 3.5 visualizes the poses for three selected images, we also present aggregated
visualization in Figure 3.6. These top images each superimpose 100 normalized poses on top of
each other and serve to indicate the variety of poses. As the normalization rotates all poses upright,
we also visualize their original rotations in the bottom row.

We finish this data analysis by presenting annotation statistics per compiled dataset in Table 3.4.
We count the number of people as the number of people with one or more labeled keypoints. The
number of images is counted likewise as images that contain at least one labeled person. Even
though the validation set of COCO contains 5000 images and 11004 people, only 2346 images
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(a) COCO Adult (b) COCO Child (¢) Kinetikids

Figure 3.6: Visualization of 100 randomly selected poses from each dataset, filtered for poses with
all shoulders and hips labeled. All poses are given a calculated “spine” as the line between the
center of their shoulders and the center of their hips. The top row shows skeletal where all poses
are rotated, translated, and scaled such their spines align into a single, vertical line. The bottom
row shows the spines in their original orientations before the normalization step; blue indicates
the top of the spine, teal indicates the bottom. More visualizations for different constraints can be
found in Appendix D.

contain any of the 6352 with labeled keypoints. We also present statistics for the unfiltered version
of COCO Adult, the rejected COCO annotations, the YouTube part of Kinetikids-pose, and the
Google Images part.

Dataset (split) Images People People per image % labeled keypoints
COCO val (2017) 2346 6352 2.71 36.5
COCO Child 168 323 1.92 71.4
COCO Adult 274 323 1.18 73.6
Kinetikids (train) 851 1121 1.32 68.9
Kinetikids (val) 213 263 1.23 66.3
COCO Adult (unfiltered) 1278 2857 2.24 68.2
COCO Rejected 431 632 1.47 43.9
Kinetikids (YouTube) 219 319 1.46 59.4
Kinetikids (G-Images) 845 1065 1.26 71.1

Table 3.4: Annotation statistics per dataset.
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Chapter 4

Experiment and Results

In this chapter, we describe the setup and the subsequent results of our experiments. The chapter
starts out by defining the experimental setup and how the results will be compared. The next
section describes the reasoning for the selection of our baseline model, followed by an description
of how this model was finetuned. Finally, we will present the results of the defined experiments.

4.1 Experimental setup

We will compare the performance of two different pose estimators between the newly compiled
COCO Child and COCO Adult datasets. Via this comparison, we aim to to deduct if the poses
from either of the two datasets show to be more challenging to estimate than those from the other
set. The samples are taken from the same superset and care was taken to minimize differences in
annotation sizes and visible keypoints, this should thus allow for fair comparison of performance
indicators.

As our models, we select SimpleBaseline, in its ResNet-50 variant with an image size of 256 x 192,
and HRNet, in its W48 variant with an image size of 384 x 288. For the remainder of this chapter,
both SimpleBaseline and HRNet will refer to these specific configurations. These are the most
commonly used reference implementations and incidentally the highest performing reference HRNet
variant and the lowest-performing reference SimpleBaseline variant.

We also finetune SimpleBaseline on Kinetikids-pose and test the resulting model on both COCO
Child and COCO Adult. Afterward, we will compare the results against the previously measured
baseline scores, produced by the non-finetuned model. The hypothesis is that since children are
underrepresented in the tested COCO dataset, finetuning it on Kinetikids-pose will yield higher
estimation accuracy on COCO Child. The baseline model has been trained until convergence on
the COCO dataset. It is thus also likely that its performance will not rise much further during the
finetuning phase. We thus also anticipate an outcome where training on Kinetikids-pose results in
a performance regression on COCO Child. In such case, we analyze if there is also a performance
regression on COCO Adult and, if so, if this regression is then statistically greater than that on
COCO Child.

4.1.1 Evaluation Metrics

This chapter contains several performance evaluations, across differing levels of abstraction. Indi-
vidual keypoint predictions are compared using the Keypoint Score (KS), defined as the euclidean
distance scaled by the area of the ground truth bounding box and multiplied by a per-keypoint
scaling constant. color=blue]l moved all texts that refer to the KS and OKS to the discussions
section. I should probably move part of this section to there in a next draft. This scaling constant
is based on average per-keypoint human annotation errors and penalizes errors of precise keypoints
like eyes stronger than, for example, hip keypoints. Individual poses are evaluated using the OKS,
defined as the mean of the KS scores across only the labeled keypoints. Lastly, the main metric
used to compare performance across datasets is the Average Precision (AP). This metric is defined
equal to the AP used as the main challenge metric of COCO. Precision scores are calculated as the
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proportion of poses with an OKS greater than a certain threshold. The AP takes the average the
precision scores across the thresholds 0.05, 0.5 and 0.95. APg 5 and APg 75 refer to the precision
for the thresholds 0.5 and 0.75, respectively.

Statistical analysis on same-dataset performance measures for different models is performed
using a paired t-test. Performance measures for different datasets are subsequently compared
using an unpaired t-test.

4.1.2 Baseline Model

The Kinetikids-pose dataset contains many images that contain more people than annotated poses.
It contains only keypoint annotation for child subjects, irregardless of if adult subjects are present
in the image. These unlabeled subjects are unmasked and their joints would be considered false
positives for any algorithm that analyzes the image globally. This therefore limits the possible
models to the ones that can work with sparsely annotated images. Bottom-up models are unlikely
to converge optimally with this dataset due to this limitation and can thus all be eliminated. Top-
down models only look at a specific region around the provided bounding box for a person and are
thus not affected by the unannotated people.

At the moment of writing, to our knowledge, eight of the twelve top performing top-down
models on the COCO keypoints dataset are variations of either SimpleBaseline or HRNet (see
Table 4.1).color=blue]Got this data from paperswithcode.com. The COCO challenge leaderboard
contains many more slightly different variations on HRNet. Some of the highest performing models
from the paperswithcode list don’t actually participate in the challenge, however. Both models
have proven to be reliable bases for further experimentation and are thus good baseline models. We
choose to finetune SimpleBaseline, as its straightforward architecture makes it easier to experiment
on. All tests are performed using a ResNet-50 model with an input image size of 256 x 192 which
is pretrained on COCO.

Model Variety Base Model Test AP Source

UDP-Pose-PSA 384 x 288 HRNet 79.5 Liu et al. [56]
UDP-Pose-PSA 256 x 192  HRNet 78.9 Liu et al. [56]
EvoPose2D-L - EvoPose 78.9 McNally et al. [61]
PoseFix - SimpleBaseline  76.7 Moon, Chang, and Lee [62]
DarkPose - HRNet 76.2 Zhang et al. [96]

MSPN - CPN 76.2 Luo et al. [58]

HRNet W48 HRNet 76.2 Sun et al. [86]

CPN+ - CPN 73.0 Chen et al. [17]

PNFS - SimpleBaseline  70.9 Yang, Yang, and Cui [95]
Mask R-CNN - Mask R-CNN  66.5 He et al. [34]

HRNet W32 HRNet 75.8 * Sun et al. [86]

SimpleBaseline ~ ResNet-50  SimpleBaseline 72.2 * Xiao, Wu, and Wei [94]

Table 4.1: Top-performing top-down HPE models (as of writing). Models with a * behind the AP
scores are only tested on the COCO validation set, instead of the COCO test set.

4.1.3 Finetuning SimpleBaseline

We start with a SimpleBaseline model, pretrained on COCO Keypoints 2017", which we aim to
finetune on Kinetikids-pose.

*Model downloaded from https://github.com/microsoft/human-pose-estimation.pytorch,
weights downloaded from https://drive.google.com/file/d/1DIhf0DoyHjTkk_14BshTAdbgaa9ApnET
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A common strategy for transfer learning is to only alter the weights of certain layers at the
end of the model, whilst “freezing” the weights of the rest. The first layers then act as static
“feature extractors”, whilst the layers that further transform these features are allowed to learn.
This effectively results in a simpler trainable sub-model with less potential for overfitting and
quicker convergence. Adversely, every additional frozen layer reduces the model’s ability to learn
new patterns.

SimpleBaseline consists of three major sections: a ResNet-50 CNN feature extractor, a sequence
of three deconvolutional layers to upsample the ResNet features , and a 1 x 1 convolutional layer that
converts the deconvolutional features into the final heatmaps. The feature extractor is a standard
Resnet-50 model without the classification layer. This means it uses an initial 7 x 7 convolution
with a stride of 2 to reduce the initial dimensionality, followed by four ResNet bottleneck layers
that convert the image to a 6 x 8 x 2048 feature map. Each ResNet layer halves the resolution.

We identify the first convolutional layer (with corresponding batch normalization layer), each
of the ResNet bottleneck layers, the deconvolutional section and the final 1 x 1 layer as the main
stages of this model. Each of these stages observes a different level of abstraction and resolution,
except the deconvolutional section that enlarges the observed features three times in one stage.
We test the effect of freezing each of these main stages of this model on its potential for learning
and overfitting in Figure 4.1. From this, we choose to freeze all downsampling convolutional layers,
only finetuning the decoding section of SimpleBaseline.

Finetuning SimpleBaseline using different frozen layers
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Figure 4.1: Learning curves for finetuning SimpleBaseline on Kinetikids-pose using different frozen
layers. Training for the first three models was stopped halfway at 40 epochs. All curves are
smoothed with a rolling average of window size 10. Layer naming follows the internal naming in
the SimpleBaseline code; layer{1...4} resemble one ResNet module each.

To further reduce overfitting potential, we test various methods for data augmentation. As
the convolutional layers are frozen, we focus on augmentations whose effects should propagate
throughout these layers and subsequently affect the trainable upsampling layers.

We visualize the effects of the selected augmentations on the finetuning performance in Fig-
ure 4.3. We test vertical flipping, half-body augmentation, shearing, rectangular cutout [22], and
random brightness jitter. All tests also use the base augmentations of random rotation (+40%),
random scaling (+30%), and horizontal flipping (50% chance) used by the authors of SimpleBase-
line in addition to the tested augmentation.

Shearing displaces all pixels horizontally by a set amount compared to the previous row of
pixels (Figure 4.2a). Rectangular cutout masks random rectangles of the source image with a
constant value (Figure 4.2b). With vertical flipping, samples are flipped upside down 50% of the
time (Figure 4.3c). Random brightness jitter multiplies the brighness of the image by a randomly
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chosen value within a range (Figure 4.2d). And finally half-body augmentation crops the sample
to either the top or bottom half of a person’s body when there are sufficient keypoints present
(Figure 4.3e).

With the exception of vertical flipping, none of the tested augmentations greatly affect Sim-
pleBaseline’s ability to generalize on Kinetikids-pose. Shearing and cutout seem to have minimal
effect, though half-body augmentation and 12.5% brightness jitter do seem to improve general-
ization performance. We decide on brightness jitter (+£12.5%) and half-body augmentation (30%
chance) as the augmentations for the final model.

(e) Half-body aug-
mentation
Upper body

(a) Shearing (b) Cutout (c) Vertical Flip
I

. (d) Brightness Jitter
2 Iterations 1.95
16° X 1.

Figure 4.2: Example images of augmentations
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4.1. EXPERIMENTAL SETUP
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Figure 4.3: Learning curves for finetuning SimpleBaseline on Kinetikids-pose with different data
augmentation strategies. All curves are with a rolling average with window size 10.
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4.2. MODEL EVALUATION

4.2 Model evaluation

All performance discussed in tests discussed in Section 4.1 are summarized in Table 4.2.

SimpleBaseline and HRNet both perform better on COCO Adult than they do on COCO Child.
SimpleBaseline achieves an AP of 0.803 and 0.763 on them, respectively. HRNet 0.857 and 0.826.
Comparing the combined scores per dataset results using an independent t-test results in a P of
0.0018, indicating the difference is significant. This is smaller than 0.05, meaning these differences
are statistically significant.

COCO Child COCO Adult Kinetikids
Model AP APO‘5 APO‘75 AP APO,5 APO,75 AP Apo,s APO,75
HRNet 0.826 0.980 0.888 0.847 0.964 0.919 - - -
Baseline SB 0.763 0.959 0.845 0.803 0.966  0.898 0.836 0973 0.872
Finetuned SB 0.722  0.949 0.815 0.771 0956  0.882 0.838 0972  0.880

Table 4.2: Model performances across Kinetikids, COCO Child, and COCO Adult.

After finetuning on Kinetikids-pose, the SimpleBaseline model performs marginally better on
the corresponding validation split. Visualized in Figure 4.4 and also shown in Table 4.2, the
finetuned model edges out the baseline model with an AP improvement of 0.002. This comes at
the cost of an AP drop of 0.032 for COCO Adult and 0.042 for COCO Child. An unpaired t-test
between the OKS differences provides a P of 0.22, also not significant.

100 1
Baseline model
Finetuned model

804

60 -

404

Average Precision (AP)

204

COCO Adult COCO Child Kinetikids (val)
Dataset

Figure 4.4: AP scores
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Chapter 5

Discussion

This chapter we will analyze the results of Chapter 4 and discuss them in relation to the research
questions from Section 1.4. We also analyze the performance of the finetuned model and explore
several explanations as to why the chosen model was unable to significantly improve its performance
on Kinetikids-pose. We explore limitations in both the model and the dataset.

5.1 Experiment Evaluation

In Section 4.2, we see that both HRNet and SimpleBaseline show a lower accuracy on COCO Child
than on COCO Adult. With a P of 0.0018, the difference in results is also statistically significant.
From this we can thus safely conclude there is indeed be a decrease in performance on children
when compared to adults, hereby answering RQ 1..

We also see that the finetuned performance of SimpleBaseline on Kinetikids-pose only marginally
edges out the baseline performance on this dataset. Finetuning, however, considerably reduces the
performance on both COCO sets. There is thus no need for validating if any increase in performance
is significant, as was proposed in Section 4.1. The performance regression of COCO Child is slightly
greater than that of COCO Adult. This difference is, however, not significant with a P of 0.22.
RQ 2. questions if training on child data improves the performance of a model on child poses.
From these results, we are not able to establish such a relation.

The main research question for this thesis, “Is the performance of current SOTA pose estimation
on children limited by the adult-biases of the datasets that they are trained on?”, depends on both
of the sub research questions to be true for it to be true. The failure to confirm RQ 2. thus also
leaves us unable to prove this question.

5.1.1 Model Limitations

A paired t-test between the validation OKS scores for the baseline model and the finetuned model
gives a P of 0.06 This indicates that finetuning the model did not succeed in improving upon the
evaluation metric in a statistically significant amount. In this section, we thus explore mechanics
that could have contributed to this lacking performance gain.

Frozen Layers

In finetuning SimpleBaseline, we decided to freeze all initial convolutional layers. This was done
in an effort to prevent overfitting. These initial layers, however, are responsible for most of the
pose perception. Deeper levels of the model receive increasingly more localized information, shown
in Figure 5.1. This also easily visualizes why finetuning only the final layer had little to no effect.
The four ResNet modules compress the image down to a 6 x 8 image with 2048 values per pixel.
All image processing has already happened at this stage and the compressed spatial features are
optimized to contain only the required pose information to create a higher resolution heatmap.
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5.1. EXPERIMENT EVALUATION

By freezing all the convolutional layers, we impede the model from learning any new lower-level
visual patterns. Unfreezing any more layers, however, proved to result in quick overfitting. Perhaps
a baseline model designed when large pose datasets were less prevalent (like Tompson et al. [88])
may have been more perceptible to finetuning with the limited available data.

Layer activations across different depths of SimpleBaseline

layerl layer2 layer3 layer4 deconv_layers final_layer
4 of 256 4 of 512 4 of 1024 4 of 2048 4 of 256 4 of 17

. L

Figure 5.1: Example layer activation across different depths of SimpleBaseline. For each stage, we
visualize the activations of four channels. Note that channels visualized on the same row do not
have to focus on the same sections of the image as there is no ordering to which channel focus on
which features.

Converged Model

Another reason that finetuning the baseline model on Kinetikids-pose had minimum effect on
its performance on the Kinetikids-pose validation split, might be because the model was already
pretrained to convergence on the full COCO training set of 200,000 + images. The baseline model
is already very close to its maximum performance level. Transfer learning attempts with similar
data to which it was trained on to convergence can thus only have a limited effect.

A possible alternative methodology could be to train the SimpleBaseline model with the com-
plete COCO train set for a certain fraction of the epochs required for convergence. This new
baseline model would then have a passable but not exceptional HPE accuracy. It should, however,
be more susceptible to accuracy improvements via transfer learning.

The 1121 poses in our training set were unable to have a significant impact on the fully converged
model’s performance, but might have been able to have more of an effect on this hypothetical
unconverged version. We also did not test if training on an adult training set would have the same
negative effect on the model’s performance. Or if this set would disproportionately affect children.
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5.1. EXPERIMENT EVALUATION

Training to Extremities

Visualized in Figure 5.2, we see that finetuning on Kinetikids-pose has resulted in the model being
able to label more people with a very high OKS (OKS — 1) score. Meanwhile, there are also more
poses it scores a very low OKS (OKS — 0) score on. This can indicate the model becoming better
in estimating the poses it is already good at, whilst becoming worse at the more difficult poses.

OKS histograms per model per dataset
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Figure 5.2: Histograms of OKS values for each dataset before and after finetuning.

5.1.2 Dataset Size

Finetuning a pretrained deep learning model requires fewer samples than when one would train
that same model from scratch. It is, however, still desired to have a dataset of multiple thousands
of samples for such a task. The COCO train split contains 139,486 poses and still techniques like
OpenPose include additional sources like 40,522 poses of MPII to augment the boost of training
samples size. The training split of Kinetikids-pose consists of just 1121 poses from 851 source
images.

To confirm if the performance of our finetuned model was limited by the size of the training
set, we attempt to finetune the same baseline model using 20%, 40%, 60%, 80% and 100% of the
Kinetikids-pose data. A consistent increase in localization performance per increased training size,
would indicate that our model would benefit from more data. Figure 5.3, however, does not show
such a relation. This would indicate the model is either limited elsewhere, or the amount of data
is so little that the decrease in data does not demonstrate a significant decrease in performance.
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5.2. DATASET
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Figure 5.3: Training AP and loss for finetuning the baseline model with 20%, 40%, 60%, 80% and
100% of the Kinetikids-pose data. Both curves are smoothed with a rolling average with window
size 10.

5.2 Dataset

Finetuning on Kinetikids-pose only marginally improved our model’s accuracy on Kinetikids-pose,
but noticeably regressed the performance on both COCO Child and COCO Adult. This indicates a
difference between the newly collected data and the COCO reference data in any of or a combination
of a) the visual properties of the images, b) the manner of posing, or ¢) the manner of annotation.
In this section, we investigate these potential causes.

5.2.1 t-SNE

As an initial assessment, we use t-SNE [60] to plot inter-pose differences between datasets. This
dimensionality reduction method uses statistical optimization to map higher dimensional data to
lower dimension whilst maintaining relative distances between samples. We select equally sized
random subsets for each dataset and project normalized x, y, v values for the joints of all poses onto
a 2D space. We do this for the ground truth poses (Figure 5.4a), baseline predictions (Figure 5.4b)
and predictions by the finetuned model (Figure 5.4c). None of the plots show clear seperated
clusters between datasets, indicating the pose distributions to be very similar to each other.

5.2.2 Labeling Differences

Plotting the per-keypoint difference in KS between the baseline and finetuned models (Figure 5.5)
provides further insight into where the finetuned model makes different predictions compared to
the baseline model. Finetuning on Kinetikids-pose slightly improves the model’s accuracy on the
hip and leg keypoints for this dataset. At the same time, the model’s accuracy on the COCO hip
and leg keypoints significantly decreases. This can be the result of (slightly) different manners
of annotating these keypoints. Facial landmarks like the eyes, the keypoints with the smallest
performance difference, are unambiguously recognizable, whilst the hips, the keypoints with the
largest performance difference, can be more difficult to place precisely.

Figure 5.6 shows the number of poses per dataset that contain a certain percentage of labeled
poses, a percentage of 100% means all 17 possible keypoints are labeled. From these plots, we
can see that the COCO validation sets contain comparatively more poses with a higher number
of labeled keypoints than those from Kinetikids-pose. The Kinetikids-pose poses, in turn, show
more poses with 50%-80% labeled keypoints. This figure also shows that COCO Adult contains
comparatively less fully-labeled poses than COCO Child. This is in spite of the amount of visible
keypoints being part of the similarity metric used to remove selection biases in Section 3.3.1. From
Figure 5.7 we can infer that COCO Child also contains comparatively more poses where the facial
keypoints are annotated, especially compared to Kinetikids-pose.

It is difficult to directly compare poses between datasets. These plots, however, do provide
some insight. The training split of Kinetikids-posecontains comparatively less labeled keypoints
for the face than for the rest of the body. It also has a noticeably smaller performance regression
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5.2. DATASET

t-SNE on the reference poses

t-SNE on poses for the baseline model

201

104

-101 ® Kin k‘id‘s (train) S . %
Kinetikids (val) ~ ,* |

=201 COCO Child

® COCO Adult

—10 A Kinetikids (train)

° Kinetikids (val)
COCO Child

. . . ® COCO Adult

-20 -10 0 10 20 T T T y y y

-20 -10 0 10 20 30

—20

(a) T-SNE on reference poses. (b) t-SNE on poses predicted by the reference model.

t-SNE on poses for the finetuned model
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COCO Child

® COCO Adult

—éO —‘20 —‘10 6 1‘0 2‘0 3b
(¢) T-SNE on poses predicted by the finetuned
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Figure 5.4: T-SNE visualizations of equally sizes random subsets of the different datasets. All pose
annotations are normalized such that the center of their Point-to-Point (PTP) bounding boxes are
centered around (0,0) and have a height of 1.

on the facial keypoints of the COCO datasets in Figure 5.5. SimpleBaseline ignores unlabeled
keypoints during the loss calculation, meaning low performance regression could be just the result
of less update steps. This conclusion, however, does not explain the reason for any of the other
keypoints with less of a performance regression is thus at best a partial explanation. For further
conclusions, more analysis is required.
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Figure 5.5: Per-joint KS changes averaged for Kinetikids, COCO Child, and COCO Adult.
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Visibility percentages per keypoint per dataset
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Chapter 6

Conclusions

This thesis aimed to explore the presence and effects of adult biases in HPE datasets for child pose
estimation. We created a new HPE dataset of children and filtered the validation set of COCO to
create child-specific and adult-specific subsets.

In Chapter 2, we found that many of the current HPE datasets have an either advertent or
inadvertent underrepresentation of children that can be directly linked to the content type they
were compiled from, e.g. adult Hollywood actors. Also datasets without this immediate content
bias contain a representational bias against children. Whilst filtering for COCO Child and COCO
Adult in Chapter 3, we found that children make up merely 8% of the annotated people in COCO
compared to the 75% of adults. The remaining 17% being people too unclear to classify.

This work provides strong evidence that child poses are more difficult to estimate for modern
HPE models than those of adults. This concurs with the assumption that this observed bias also
translates into a performance degradation for child pose estimation. This thesis, however, did
not succeed in demonstrating if training a model on additional child data indeed improves the
HPE accuracy on children for said model. It also does not prove the absence of such a relation.
We thereby believe there is still valid reason to presume child pose estimation performance to be
limited by predominantly adult-focussed datasets.

Limitations

In our finetuning experiments, we limited the learning ability of our model to prevent overfitting.
We found this to be necessary when finetuning the model with our amount of training data. It
may also inadvertently have limited the trainability of the model to the point where it was unable
to sufficiently adapt its internal concept of the human body to that of children. Our follow-up
experiments demonstrated that decreasing the amount of training data did not further lower the
finetuning performance. This suggests that our current model was not data-limited in its training
capacity. With a larger training set, however, there would be no (or less of a) need to freeze
sections of our model. This would have allowed us to finetune SimpleBaseline in its entirety —
without limiting its training potential. Selecting different settings for data augmentation and
hyperparameters had equally little effect on the performance of the model. This could could also
be contributable to the learning impairment we emposed on the model.

We also only attempted to finetune a single HPE model, instead of multiple models of different
architectures. This effectively limits our reseach to answering if pose estimation on children via
Simplebaseline is limited by adult-biased datasets, instead of answering if “SOTA pose estimation
on children” is limited by these biases. The chosen model was also already pretrained to convergence
on COCO. The same dataset from which we sample our validation datasets, and one that is close
in domain to Kinetikids-pose. This limits any possible improvements whilst finetuning.

Lastly, the manner in which the finetuned model regressed in performance on the COCO
datasets, also indicates a possible disparity between how keypoints are labeled in Kinetikids-pose
when compared to COCO. We intended to create a COCO-like dataset containing solely children,
though such a disparity further limits our ability to draw conclusions from the finetuning results.
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Future work

This thesis uses a new dataset to finetune a HPE model on children; Sciortino et al. [83] used a new
dataset to determine a difference in HPE accuracy between adults and children. Both works suffer
from the fact that, unless utmost care is taken to prevent this, all datasets contain differences in
pose complexity and/or labeling characteristics. Future work would benefit from instead using an
existing large-scale HPE dataset, such as COCO, as a base and filter it in a manner as to how
COCO Child and COCO Adult were constructed. This could be a comparatively simple process
that would result in two large subsets without differences in data biases or method of labeling to
the original dataset. The larger scale of these datasets would also enable training of HPE models
without having to undermine their trainability by freezing too many layers.

Finally, the measured difference in pose estimation performance between adults and children, whilst
measurable, is not substantial compared to inter-model performance differences. Considering the
current techniques and data, we believe that if a specific child pose estimation task requires greater
precision, model improvements should be prioritized over data improvements.
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Acronyms

AMT Amazon Mechanical Turk. 17, 23, 24, 26

AP Average Precision. 30, 31, 35

BBC British Broadcasting Corporation. 17

BSL British Sign Language. 17, 18

CNN Convolutional Neural Network. 7, 10-16, 32, 46

CPN Cascaded Pyramid Network. 12

DSNT Differentiable Spatial to Numerical Transform. 9

HPE Human Pose Estimation. 1, 3-8, 10, 12-19, 23, 25-28, 31, 37, 43, 44
ILP Integer Linear Program(ming). 14, 15, Glossary: integer linear programming
KS Keypoint Score. 30, 39, 41

NN Neural Network. 6

OKS Object Keypoint Score. 23, 24, 30, 31, 38

PAF Part-Affinity Field. 15, 16

POI Point of Interset. 6, 46

PTP Point-to-Point. 40

RGB-D RGB-Depth. 3

Rol Region of Interest. 14

RPM Region-Proposal Model. 13, 14

SKR Shared Keypoint Rate. 24

SOTA State Of The Art. 1, 3-6, 8, 13, 14, 17, 23, 36, 43
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Glossary

compendium A comprehensive collection of something. 17

Convolutional Neural Network A class of neural networks for spatial data that work by mov-
ing trainable filters over the spacial data. 7, 45

encoder-decoder model A neural network architecture consisting of two major components:
an encoder component that condenses the input into a dense feature tensor and a decoder
component that creates a new representation from the condensed repersentation.. 11

integer linear programming A linear mathematical model where all variables are contrained
to be integers. 14

integral regression The process of regressing coordinates via a the soft argmax approximation
on a heatmap. 9

keypoint A Point of Interset (POI) on an image. In the context of this thesis, it most oftenly
refers to the location of human joints in an image. 6, 9

R-CNN From “Regions with CNN features”, an object detection algorithm that creates (2000)
proposal regions an classifies them with a CNN. 13, 14

receptive field Field of pixels that affect a pixel in a later feature map pixel in a . 10

regression Predicting a continuous value from a set of features. 46
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Appendix A

Actions in Kinetikids

A.1 Action Categories

Bowling
Baseball
Basketball
Softball
Kickball
Golfing
Cricket
Tennis

Soccer
Volleyball
American football
Parasailing
Surfing water

Water skiing

Windsurfing
Hurdling

Parkour

Archery

Frisbee

Disc golfing
Throwing ball
Throwing discus
Badminton

Bouncing on trampoline
Cartwheeling
Gymnastics tumbling
Somersaulting

Gymnastics Vault
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A.2. ACTION LABELS

A.2 Action Labels

doing archery

bouncing on trampoline
bowling

cartwheeling

catching baseball
throwing baseball
catching frisbee
throwing frisbee
catching softball
throwing softball

disc golfing

dribbling basketball
dunking basketball

golf chipping

golf driving

golf putting

doing gymnastic tumbling
hitting baseball
hurdling

juggling soccer ball

kicking field goal

kicking soccer ball
parasailing

doing parkour

passing American football
passing American football
playing badminton
playing basketball
playing cricket

playing kickball

playing tennis

playing volleyball
shooting basketball
shooting goal (soccer)
somersaulting

surfing water

throwing ball

throwing discus

doing gymnastics vault
doing water skiing

doing windsurfing
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Appendix B

Annotation

B.1 Keypoints

Nose Tip
Left Ear
Right Ear
Left Eye
Right Eye
Left Shoulder
Right Shoulder
Left Elbow
Right Elbow
Left Wrist
Right Wrist
Left Hip
Right Hip
Left Knee
Right Knee
Left Ankle
Right Ankle

Information
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Appendix C

Queries - Google Images

C.1 Query templates
kids
childs
toddlers
middle school
preschool
primary school

elementary school

C.2 Query templates

<subject> <action label>
<subject> <action label> competition

<action label> with <subject>

C.3 Languages

English - en
Russian - ru

Turkish - tr

Spanish - es

Persian - fa

French - fr

German - de

Japanese - ja

Vietnamese - vi

Chinese (simplified) - zh-cn
Chinese (traditional) - zh-tw
Arabian - ar

Portuguese - pt

Greek - el

Italian - it

Indonesian - id

Ukranian - uk

Polish - pl

Dutch - nl

Korean - ko

Hebrew - iw
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Appendix D

Dataset Visualizations
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Figure D.1: Example images with annotations from each of the compiled datasets. From top to
bottom, we visualize poses from COCO Adult, COCO Child, and Kinetikids-pose.
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(a) COCO Adult (Frontal) (b) COCO Child (Frontal) (c) Kinetikids (Frontal)

(d) COCO Adult (Left) (e) COCO Child (Left) (f) Kinetikids (Left)

(h) COCO Child (Right)

(j) COCO Adult (Right) (k) COCO Child (Right) (1) Kinetikids (Right)

Figure D.2: Poses of datasets
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